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A Full-Plane Block Kalman Filter for Image
Restoration

Stuart Citrin, Member, IEEE, and Mahmood R. Azimi-Sadjadi, Senior Member, IEEE

Abstract-A new two-dimensional (2-D) block Kalman filter
ing method is presented which uses a full-plane image model to
generate a more accurate filtered estimate of an image that has
been corrupted by additive noise and full-plane blur. Causality
is maintained within the filtering process by employing multiple
concurrent block estimators. In addition, true state dynamics
are preserved, resulting in an accurate Kalman gain matrix.
Simulation results on a test image corupted by additive white
Gaussian noise are presented for various image models and
compared to those of the previous block Kalman filtering meth
ods.

I. INTRODUCTION

KALMAN filtering has been known to be an effective
method for signal processing and control applica

tions [1], [2], The extension of the standard one-dimen
sional (1-0) Kalman filtering to the two-dimensional
(2-D) case such as in image processing, however, creates
various problems. To maintain the proper state dynamics
within both the state and the error covariance equations
[1], [2] and to design an optimal Kalman filter, a large
state vector and correspondingly large error covariance
matrices would be involved. This, obviously, leads to an
excessively large amount of storage and computations. A
number of researchers introduced various filtering
schemes [3]-[6] to overcome these problems. The idea of
the reduced update Kalman filtering (RUKF) [4]-[6] is to
partition the state vector into two segments-the "local
state" and the "global state." The "local state" propa
gates in both dimensions during the filtering process and
consists of a group of pixels, in the region of support
(ROS) of the model, which are spatially close to the points
being estimated. The "global state," however, contains
those previously estimated pixels needed to estimate the
future ones. Substantial computational saving is achieved
by using only the local state in the filtering process and
by transferring the data from the global state into the local
state whenever the initial estimate is generated. Pixels
which are not included in the local state tend to be less
correlated and provide little information for generating the
initial estimate due to the Markovian assumption.

The ROS of the 2-D model can have various geometry
and types, namely, causal, semi-causal (or half-plane),
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and noncausal (or full-plane) [7]. Although noncausal
models are shown [7] to provide better match to the actual
image correlations, causal support was widely used in al
most all of the previous methods. However, when a causal
model is used more than half of the pixels in the adjoining
support are ignored in generating the initial estimate.
Therefore, it is desirable to devise a way to generate a
full-plane model for more accurate estimation while
maintaining the causality within the filtering process.

In this paper a full-plane block Kalman filtering scheme
is developed which uses multiple concurrent block esti
mators to maintain causality within the actual filtering
process. By using this method true state dynamics are pre
served without having to store or make calculations on
excessively large error covariance matrices. By using a
full-plane model, more accurate modeling of the image
process can be achieved, which leads to a more accurate
Kalman gain matrix, and hence, improvements in the sig
nal-to-noise ratio (SNR) in the filtered images.

II. PROPAGATION OF THE STATE IN THE BLOCK

STATE-SPACE MODEL

Consider an image of size M x M which is scanned
vectorially from left to right and top to bottom in block
rows of width N). The image is assumed to be represented
by a zero-mean vector Markov process, Each block within
a block row is of size N = N 1 X N2 , where N 1 is the
number of rows of pixels within a block; N2 is the number
of columns in a block, and N is the number of pixels in
each block. A block row is defined as a strip of blocks
extending across the image from left to right and is of size
N 1 x M, A block row contains M / N2 blocks, assuming
that M is divisible by N2 • The process is illustrated in Fig.
1. The pixels within a block are arranged in row-ordered
form. A processing strip, hereafter called a strip, consists
of three block rows. The goal is to estimate the blocks in
the middle block row. The upper and lower block rows
consist of block estimates generated to provide support
for the blocks in the middle block row. Two estimates of
the blocks in the middle block row need to be generated,
The first estimates are generated solely to provide support
to the second estimator. The second block estimates in the
middle block row will be saved as the final filtered esti
mate.

The local state-space model for the image process is
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given by

where X(k) is the current state vector consistmg of 9
blocks Xi(k), i E [0, 8]; X(k - 1) is the past state vector
consisting of 9 blocks Xi(k - 1) i E [0, 8], and U(k) is a
zero mean white driving noise vector process and is of
size (9 x N) x 1. The first 5 x N elements of U(k) are
equal to zero.

The spatial positions of Xi(k) at a given iteration "k"
are shown in Fig. 1. The peculiar numbering of these
blocks is solely chosen to provide easier programming by
getting all the blocks which are to be estimated, i.e.,
blocks 5, 6, 7, and 8, numerically close together and their
support numerically adjacent. The blocks which are not
filtered estimates are obtained by shifting the blocks within
the state as the state advances to the right, so that the
previously estimated blocks occupy the proper spatial po
sitions within the state. Fig. 2 illustrates the state propa
gation along horizontal direction with each iteration.

The supports for blocks 5, 6, 7, and 8 are given below:
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Fig. I. Size of blocks, block row, state, and numbering of pixels within a
block.

(lb)X(k) = AX(k - 1) + BU(k)

or

X(k)

where all submatrices of A not filled in above are zero
matrices. Each submatrix of A is of size N x N.

This results in an A matrix of size (9 x N) x (9 x N)
which is given by
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The procedure in each strip begins by advancing the
strip one block row down. The propagation of the state
along the boundaries will be discussed later. The state
propagates along the strip from left to right and as it ad
vances blocks 0, I, 2, 3, and 4 are shifted from the pre
vious state and blocks 5, 6, 7, and 8 are estimated using
four concurrent estimators. Block 5 is re-estimated to
avoid the storage of this block from the previous block
row, which could have resulted in large error covariance
matrices. Block 7 is an intermediate estimate of data that
will again be estimated as blocks 6 and 8 when the strip
is advanced to the next block row. Block 6, which is ahead
of block 8, is estimated based upon the past block 6 in the
same block row to provide the right side support of block
8. The filtered estimate of block 8 with a full-plane of
support is the only block estimate which is saved.

As can be seen, by using these multipole concurrent
block estimators causality is maintained within the actual
filtering process. Furthermore, re-estimating those blocks
along the upper and lower block rows avoids the need to
store large error covariances associated with these states,
thus resulting in substantial reduction in computation ef
forts and storage requirements. The only disadvantage is
that the recursion occurs in one direction.

Fig. 2. Propagation of the state. Xo(k) and X,(k - I) occupy the same
spatial position.
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III. PARAMETER ESTIMATION FOR THE IMAGE MODEL

In this section a procedure is given to obtain the model
parameters for the four estimators (Xi(k), i = 5, 6, 7,8)
described in Section II. The model parameters to be es
timated are the Ai' i.e., the ith block row of the A matrix
and the correlation matrices QUij ~ E[Ui(k)U](k)], i,j =

0, I, ... 8, where E['] is the expectation operator.
These are the diagonal submatrices of the covariance ma
trix, Qu, of the driving process, U(k).

Let us begin by considering the first block estimator
X6(k) which has only one support block. To obtain the
model parameters A6 and QU66 for this block estimator we
extract the corresponding row of (1) i.e.:

X6(k) = A0(k - I) + U6(k). (3a)

Ignoring the zero portion of A6 , we simply obtain

X6(k) = A66X6(k - I) + U6(k) (3b)

where X6(k) and U6(k) are of size N x I and A66, which
is the seventh submatrix of A6 , is of size N x N. By post
multiplying by Xf(k - I), taking the expectation, and us
ing the orthogonality principle [I]:

E[U6(k)Xf(k - 1)] = 0 (4)

yields

where

Pij(!) ~ E[Xi(n).\j(n - I)]. (5b)

Transposing (5a) and using the property p[(!) = Pji( -I)
gives

P66(-I) = P66(1 - I)Af6 + QU66o(l) (6)

which is the normal equation for this estimator. Plugging
I = 0, 1 in this equation gives the following vector Yule
Walker equation

IP66(0) P66(1)l II l = IQU66l (7)

Lpf6(1) P66(0)J L-Af6J lo J

which can be rearranged and solved to give QU66 and A66.
To obtain the parameters As and Quss for the second

block estimator Xs(k) , and A7 and Qun for the third esti
mator X7(k) , the same procedure can be repeated. For ex
ample for the second estimator the state equation is

Using a similar procedure and invoking the orthogonality
principle gives the relevant vector Yule-Walker equation
as

Pss(O) PS4(1) Pss(1) PS6(1) PS7(1)

pI4(1) P44(O) P4S(0) P46(0) P47(0)

pIs(1) PS4(0) Pss(O) PS6(0) PS7(0)

pI6(1) P64(O) P6S(0) P66(0) P67(0)

pI7(1) P74(0) P7S(0) P76(0) Pn(O)

Quss

-AI4 0

-AIs 0 (10)

-AI6 0

-AI7 0

The solution of this system of equation provides Quss and
ASi' i = 4, 5, 6, 7. For the third estimator, X7(k) , we
simply replace Xs(k) with X7(k) , Us(k) with U7(k) , ASi with
A7i and PSi with P7i(i = 4, 5, 6, 7) in (9) and (10).

For the estimation of the model parameters for the last
block estimator, X 8(k), we have

P88(0) P80(1) P81 (1) P88(1) I

pro(1) Poo(O) POI (0) P08(0) -Aro

prl(1) PIO(O) PII(O) PI8(0) -Arl

pr8(1) P80(0) P88(0) -Ar8

QU88

0

0 (11)

o
which can be solved to give QU88 and A 8i, i E [0, 8]. It
should be noted that not all the correlation matrices in the
above vector Yule-Walker equations need to be calcu
lated due to the spatial equivalencies such as

which is obtained by extracting the sixth block row of (1).
Alternatively, we have

Xs(k) = As X(k - 1) + Us(k) (8)

and

Pii(O) = Pjj(O),

Pij( -n) = pJ( -n),

=t=j

n any integer

(12a)

(12b)

+ Us(k).

(9)

(12c)

By using these and similar equivalencies, considerable
computation time can be saved.

So far we have obtained all the required submatrices of
matrix A and also identified the diagonal submatrices of
Qu, QUi;' i = j. In order to complete the modeling process
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the off-diagonal submatrices QUij, i "* j, have to be de
termined. For the QUS6 matrix, post-multiply both sides
of (9) by Xr(k) and use the orthogonality principle,
E[Us(k)Xr(k - 1)] = 0 which gives

where i(k) is the a priori (before updating) estimate, X(k)
is the a posteriori (after updating) estimate; Pb(k) is the a
priori error covariance matrix defined by

Pb(k) £!= E[(X(k) - i(k)) (X(k) - i(k)l] (17a)

P46(-1)

PS6(-1)

P66(-1)

P76( -1)

(13a)

Similarly for QU76 and QUS7' For QUS8 we obtain

QUS8 = PS8(0) - [Pso(1) PSI(1) PS2(1) PS3(1) PS4(1)

. Pss(1) PS6(1) PS7(1) PS8(1)]Ar. (13b)

PaCk) is the a posteriori error covariance matrix defined
by

PaCk) £!= E[(X(k) - X(k))(X(k) - X(k))T] (17b)

K(k) is the Kalman gain matrix and Qu and Qv are cor
relation matrices of the independent processes U and V.
The state is reinitialized at the beginning of each strip.
With the exception of the boundaries of the image, only

the estimate X8(k) is saved as a final estimate. After a strip
is processed, one advances a block row and starts a new
strip without using any filtered estimates from the prior
strip. Thus recursion only occurs along a strip.

where 0 represents a zero submatrix each of size N x N.
The Kalman filter equations for the system in (1) and (14)
are [1], [2]

IV. KALMAN FILTERING PROCESS

Once all the model parameters are identified, the block
dynamic (1) can be formed. The observation equation in
block form is

similarly, for QU78 and QU68' The remaining off-diagonal
submatrices can be obtained by the realtionship, QUji =
Q~ij' For i E [0, 4], j E [0, 8], and i E [5, 8], j E [0,4]
QUij = 0, i.e., a zero submatrix as the corresponding
blocks are obtained solely by the shifting process.

where Z(k) is the corrupted image or observation vector
of size (4 x N) x t , V(k) is the observation noise vector
of the same size as Z(k) containing a scalar zero mean
white Gaussian additive noise v (k) with variance a;" and
H is a (4 x N) x (9 x N) matrix containing the elements
of the point spread function (PSF) of the noncausal blur.
For the case of an image corrupted solely by additive noise
H becomes

A. Boundary Conditions

There are four boundary conditions to be considered,
which correspond to top, bottom, left, and right edges of
the image. The condition at the beginning of a strip (left
boundary) is related to the state at iteration k = -1. The
blocks that are outside the image, i.e., Xi (-1), i = 0, 2,
8 are initialized to the mean of the image while those in
side the image, i.e., Xi(-l), i = 1,3,4,5,6,7, are
initialized to the observed noisy data corresponding to
those in spatial position.

At the beginning of each strip one also needs to initial
ize the PaC -1) matrix. For those estimates spatially lo
cated outside the image, the diagonal elements of PaC -1)
are chosen as the variance of the image since the mean is
used as the estimate. For those estimates using the obser
vation, the diagonal elements are the variance of the noise,
since this corresponds to the squared error associated with
these estimates. The off-diagonal elements of PaC -1) are
expected to be zero.

Next, we consider the boundary conditions at the right
edge of the image, i.e., at the end of a strip. As the state
approaches the right side boundary of the image at itera
tion k = (M / N2 - 1) - 3 the image is processed like the
previous iterations, with block X 8(k) being saved as a final
filtered estimate. For the three subsequent and final iter
ations in the strip, both X6(k) and X 8(k) are saved as final
estimates for their proper spatial positions. This ensures
that all spatial positions of the final filtered image contain
filtered data without having to contend with the fact that
no observation exists outside the right boundary of the
image.

For the first strip of the image located spatially within
the image, estimate Xs(k) is saved as the final filtered es
timate for the first block row and estimate X8(k) is saved
as a final filtered estimate for the second block row. The
first two blocks, and also the last block of the first block
row are left unfiltered, i.e., the observation is used as the
final estimate. The last block row is processed the same
as the first block row except that X7(k) is saved as the final

(15)

(14)Z(k) = HX(k) + V(k)

[

0 0 0 0 0 I 0 0 0]
o 0 0 0 0 0 I 0 0

H=
o 0 0 0 0 0 0 I 0

o 0 0 0 0 0 001

Pb(k) = A PaCk - l)AT + BQuBT (16a)

K(k) = Pb(k)HT (HPb(k)HT + QV)-I (16b)

i(k) = AX(k - 1) (16c)

i(k) = i(k) + K(k) [Z(k) - Hi(k)] (16d)

PaCk) = [I - K(k)H]Pb(k) (16e)
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filtered estimate. The first two and last blocks of this block
row are also left unfiltered.

V. IMPLEMENTATION AND RESULTS

In this section the effectiveness of the proposed full
plane Kalman filter is examined on the "Lena" image in
Fig. 3. The corrupted image was obtained by adding a
white Gaussian noise to the original image to achieve a
SNR of 5 dB. The resultant corrupted image is shown in
Fig. 4.

For a given pixel in the block, the diagonal elements
of matrix Qu represent the corresponding average squared
error in the modeling process. The smaller a given ele
ment is, the better the fit of the model for the correspond
ing pixel. These values are listed in Table I for pixels in
blocks 5, 6, 7, and 8. Comparison of these values indi
cates that the smallest values occur for the pixels of sub
matrix Quss which correspond to the block with the full
plane of support, i.e., Xs(k). A better fitted model ob
viously results in lower values of the Kalman gain, which
in tum result in decreased dependency of the estimate on
the noisy observation as can be observed by inspection of
(16a)-(16e). As a result, an improved SNR can be ex
pected for block Xs(k) compared to the blocks with a non
symmetric half plane (NSHP) plane or single block of
support.

The diagonal elements of the converged Pa matrix for
a given block which represent the predicted squared of the
estimation error indicate the performance of a particular
estimator. The diagonal elements of the Pa matrix corre
sponding to blocks 5, 6, 7, and 8 (i.e., the lower 16 di
agonal elements) are also listed in Table I. Within each
block, the values are the lowest corresponding to those
pixels with the closer and most extensive support. Be
tween blocks, the values are lower as the plane of support
gets larger; that is, these diagonal values are the highest
for the block 6 estimator and the lowest for the block 8
estimator. This indicates once again that the full-plane
block estimator provides a better filtering and estimation
than those of the symmetric and the NSHP filters.

Equations (16a) , (16b), and (16e) were executed in a
program to generate the Kalman gain matrix. PaCk) and
K(k) matrices were found to converge to steady state
within 25 iterations. The magnitude of the steady-state
values, especially the diagonal elements of the subma
trices corresponding to the observation blocks, i.e, sub
matrices 55, 66, 77, and 88 represent a measure of the
goodness of fit of the model and of the actual filtering
process. The diagonal elements are found to be the lowest
for the Kss submatrix which again suggests closer mod
eling for the block with a full-plane of support. This con
sequently results in a higher SNR.

The consistency test is also performed to demonstrate
the adequancy of the model by determining the conver
gence behavior of the innovation sequence and showing
that it is asymptotically zero-mean white Gaussian. The
covariance matrix and the mean vector for this sequence

Fig. 3. Original Lena image.

Fig. 4. Lena image corrupted by 5-dB noise.

were computed for all the estimators over the entire im
age. The results reveal that the estimator with full-plane
support, the results of which are saved as final estimates,
satisfies the consistency test.

Figs. 5 and 6 show the images filtered using a 2 by 2
and 1 by 1 block sizes, respectively. Table II summarizes
the statistical data and results pertaining to these images.
As can be observed from this table, the means of all the
images are approximately equal, indicating that the esti
mators are unbiased. The variances of the filtered images
are lower than the original image, implying some loss of
information in these images which can be largely attrib-
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TABLE I
DIAGONAL V ALVES OF Qu AND P;

493

Block

6
6
6
6

7
7
7
7

8
8
8
8

Pixel Diagonal Values of Qu Diagonal Values of P;

I 66.4 117.0
2 127.2 134.7
3 34.0 91.1
4 52.3 104.0

I 104.6 115.0
2 29\.9 168.3
3 113.8 115.0
4 316.9 177.4

I 3\.6 90.3
2 56.4 102.0
3 70.0 118.9
4 149.1 143.1

I 26.3 71.3
2 27.0 72.3
3 27.0 71.5
4 26.4 73.3

Fig. 5. Filtered image using 2 by 2 block size.

uted to oversmoothing of the edges. A higher SNR is ob
tained with the larger block size (2 by 2). The processing
times shown in Table II include compile time. Execution
was done on a sequential machine, namely a Micro VAX
3600.

The diagonal elements of matrix Qu are smaller when
a 1 by 1 block size is used, indicating more accurate mod
eling than the 2 by 2 block size case. This was expected
to occur since with a 1 by 1 block size there are more
adjacent support pixels. In spite of this closer modeling,
the 2 by 2 block size resulted in a filtered image with a
higher SNR. The better SNR performance for the latter
case is mainly attributed to the use of a higher order Ma
rovian with greater averaging out of the noise.

Visual evaluation of the images in Figs. 4-6 shows that,
subjectively, the filter is effective at reducing the amount

Fig. 6. Filtered image using I by 1 block size.

of the noise present while causing minimal blurring of the
edges.

To compare the results with those of the other methods,
the image was filtered using the scalar reduced update
Kalman filter (RUKF) [3] and the block diagonal nonsym
metric half-plane filter (BDNSHP) [5] (see Figs. 7 and 8).
For the RUKF the size of the NSHP support was 2 by 2
and the resulting SNR was 10.2 dB. The case of 1 by 1
block size in this paper, which would have a support of
approximately 3 by 3, resulted in a filtered image with a
SNR of 13.2 dB.

Using the BDNSHP filter [5] with a block size of 3 by
6 and a support for each pixel of 12 pixels the SNR was
measured to be 8.74 dB. This is to be compared with the
1 by 1 case in this paper, where each pixel had 8 pixels
of support and the SNR obtained was 13.2 dB.
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TABLE II
STATISTICAL SUMMARY OF RESULTS

Original Corrupted Filtered 2 by 2 Filtered I by I

Mean 123.6 124.1 123.6 123.6
Variance 2298 2967 2230 2186
Mean Error Variance 0 69.2 87.3 100.5
Block 8 average 72.2 82.8

diagonal P" Value
SNR (dB) 00 5.17 13.9 13.2
Average diagonal Qu

Block 55 70.0 43.3
Block 66 206.8 129.3
Block 77 76.8 46.3
Block 88 26.7 18.3

Processing Time 16.2 min 8.7 min.

Fig. 7. Filtered image using scalar RUKF method.

Fig. 8. Filtered image using BDNSHP method.

VI. CONCLUSION

A method of block Kalman filtering of digital images
using four concurrent block estimators was developed.
This method uses an image model with full-plane of sup
port and yet maintains causality within the actual filtering
process. Furthermore, true state dynamics are preserved
without requiring excessively large amounts of storage for
the state and the error covariance matrices. The proposed
scheme results in closer modeling of the image process
when compared with the single estimator and the three
estimator (quarter plane of support) cases in [8]. The
comparison with other scalar and block Kalman filtering
methods indicates considerable improvement in SNR. The
final filtered images showed an approximately 9-dB im
provement in SNR with minimal loss of edge information.
The proposed modeling is well suited for the situations
when the PSF of the blur occurs in all directions [10].
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