1,334 research outputs found

    Reduced reference image and video quality assessments: review of methods

    Get PDF
    With the growing demand for image and video-based applications, the requirements of consistent quality assessment metrics of image and video have increased. Different approaches have been proposed in the literature to estimate the perceptual quality of images and videos. These approaches can be divided into three main categories; full reference (FR), reduced reference (RR) and no-reference (NR). In RR methods, instead of providing the original image or video as a reference, we need to provide certain features (i.e., texture, edges, etc.) of the original image or video for quality assessment. During the last decade, RR-based quality assessment has been a popular research area for a variety of applications such as social media, online games, and video streaming. In this paper, we present review and classification of the latest research work on RR-based image and video quality assessment. We have also summarized different databases used in the field of 2D and 3D image and video quality assessment. This paper would be helpful for specialists and researchers to stay well-informed about recent progress of RR-based image and video quality assessment. The review and classification presented in this paper will also be useful to gain understanding of multimedia quality assessment and state-of-the-art approaches used for the analysis. In addition, it will help the reader select appropriate quality assessment methods and parameters for their respective applications

    Reduced reference image and video quality assessments: review of methods

    Get PDF
    With the growing demand for image and video-based applications, the requirements of consistent quality assessment metrics of image and video have increased. Different approaches have been proposed in the literature to estimate the perceptual quality of images and videos. These approaches can be divided into three main categories; full reference (FR), reduced reference (RR) and no-reference (NR). In RR methods, instead of providing the original image or video as a reference, we need to provide certain features (i.e., texture, edges, etc.) of the original image or video for quality assessment. During the last decade, RR-based quality assessment has been a popular research area for a variety of applications such as social media, online games, and video streaming. In this paper, we present review and classification of the latest research work on RR-based image and video quality assessment. We have also summarized different databases used in the field of 2D and 3D image and video quality assessment. This paper would be helpful for specialists and researchers to stay well-informed about recent progress of RR-based image and video quality assessment. The review and classification presented in this paper will also be useful to gain understanding of multimedia quality assessment and state-of-the-art approaches used for the analysis. In addition, it will help the reader select appropriate quality assessment methods and parameters for their respective applications

    A Novel Strategy for Improving the Quality of Embedded Zerotree Wavelet Images Transmitted over Alamouti Coding Systems

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-21501-8[Abstract] This work deals with the transmission of images, previously coded using the Embedded Zerotree Wavelet (EZW) transform, over wireless systems in which Space-Time Coding (STC) is used. It is shown how the system performance, measured in terms of Peak Signal to Noise Ratio (PSNR), can be improved using bit allocation strategies that take into account the special structure of the EZW bitstream, where the bits firstly allocated are associated to the lowest frequency subbands, and therefore, an error–free transmission of such bits will be crucial to appropriately recover the transmitted image.Galicia. Consellería de Economía e Industria; 10TIC105003PRGalicia. Consellería de Economía e Industria; 09TIC008105PRMinisterio de Ciencia e Innovación; TEC2010-19545-C04-01Ministerio de Ciencia e Innovación; CSD2008-0001

    Channel coding for progressive images in a 2-D time-frequency OFDM block with channel estimation errors.

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, employing time and frequency diversities simultaneously. In particular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric n -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to protect individual descriptions. We consider the physical channel conditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effectiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifically, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves compared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB

    HDS, a real-time multi-DSP motion estimator for MPEG-4 H.264 AVC high definition video encoding

    Get PDF
    International audienceH.264 AVC video compression standard achieves high compression rates at the cost of a high encoder complexity. The encoder performances are greatly linked to the motion estimation operation which requires high computation power and memory bandwidth. High definition context magnifies the difficulty of a real-time implementation. EPZS and HME are two well-known motion estimation algorithms. Both EPZS and HME are implemented in a DSP and their performances are compared in terms of both quality and complexity. Based on these results, a new algorithm called HDS for Hierarchical Diamond Search is proposed. HDS motion estimation is integrated in a AVC encoder to extract timings and resulting video qualities reached. A real-time DSP implementation of H.264 quarter-pixel accuracy motion estimation is proposed for SD and HD video format. Furthermore HDS characteristics make this algorithm well suited for H.264 SVC real-time encoding applications

    Video Quality Metrics

    Get PDF

    Subjective Quality Assessment of the Impact of Buffer Size in Fine-Grain Parallel Video Encoding

    Get PDF
    Fine-Grain parallelism is essential for real-time video encoding performance. This usually implies setting a fixed buffer size for each encoded block. The choice of this parameter is critical for both performance and hardware cost. In this paper we analyze the impact of buffer size on image subjective quality, and its relation with other encoding parameters. We explore the consequences on visual quality, when minimizing buffer size to the point of causing the discard of quantized coefficients for highest frequencies. Finally, we propose some guidelines for the choice of buffer size, that has proven to be heavily dependent, in addition to other parameters, on the type of sequence being encoded. These guidelines are useful for the design of efficient realtime encoders, both hardware and software

    Wavelet-Based Embedded Rate Scalable Still Image Coders: A review

    Get PDF
    Embedded scalable image coding algorithms based on the wavelet transform have received considerable attention lately in academia and in industry in terms of both coding algorithms and standards activity. In addition to providing a very good coding performance, the embedded coder has the property that the bit stream can be truncated at any point and still decodes a reasonably good image. In this paper we present some state-of-the-art wavelet-based embedded rate scalable still image coders. In addition, the JPEG2000 still image compression standard is presented.
    corecore