1,284 research outputs found

    A Traffic State Detection Tool for Freeway Video Surveillance System

    Get PDF
    AbstractTraffic state is one of the most important traffic flow parameters to both the traffic management center and the traveler. It's difficult to extract traffic data using surveillance cameras because of the wider field, panning and zooming of the surveillance cameras. To leverage the existing surveillance camera infrastructure, a surveillance video based traffic state detection system is proposed. The proposed system can estimate traffic flow speed and road space occupancy, and recognize three typical traffic states (congested, slow, and smooth). Experimental results show that the system had good adaptation and high accuracy in daytime

    Trends in Sighting Systems for Combat Vehicles

    Get PDF
    Search and tracking in dynamic condition, rapid re-targeting, precision pointing and long range engagement in day and night condition are core requisite of stabilised sighting systems used for combat vehicles. Complex battle field requires integrated fire control system with stabilised sighting system as its main constituent. It facilitates quick reaction to fire control system and provides vital edge in the battlefield scenario. Precision gimbal design, optics design, embedded engineering, control system, electro-optical sensors, target detection and tracking, panorama generation, auto-alerting, digital image stabilisation, image fusion and integration are important aspects of sighting system development. In this paper, design considerations for a state of art stabilised sighting system have been presented including laboratory and field evaluation methods for such systems

    Object Detection and Tracking for ASV

    Get PDF
    In this thesis automatic Object Detection system is presented. Object Detection is performed by different algorithms. As reading many literature we have observed that detecting objects in particular video sequence or by any surveillance cameras is a really challenging task in computer vision application because in sea the atmosphere affects a lot in the detection. Therefore we felt that there can be a wide range of possibilities are open in relation to detection. In order to improve the object detection, we developed image stabilization software on top of the image acquisition. First image stabilization has been performed over the raw data of ROAZ II. After achieving stabled video or images, object detection algorithm is performed using color based segmentation. Field tests have been performed with a data set from the ROAZ-II and during it shows the effectiveness of the approach. And system is able to achieve object detection in video or images with high accuracy

    Review on smartphone sensing technology for structural health monitoring

    Get PDF
    Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there are some short reviews on this topic, the major contribution of this article is to exclusively present a compre- hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per- spectives of measurement techniques, third-party apps developed in Android and iOS, and various application domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on smartphone sensing technology

    Robust real-time tracking in smart camera networks

    Get PDF

    Proceedings of the 5th Baltic Mechatronics Symposium - Espoo April 17, 2020

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. Due to Coronavirus COVID-19 the symposium was organized as a virtual conference. The content of the proceedings1. Monitoring Cleanliness of Public Transportation with Computer Vision2. Device for Bending and Cutting Coaxial Wires for Cryostat in Quantum Computing3. Inertial Measurement Method and Application for Bowling Performance Metrics4. Mechatronics Escape Room5. Hardware-In-the-Loop Test Setup for Tuning Semi-Active Hydraulic Suspension Systems6. Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy7. Simulation and Testing of Temperature Behavior in Flat Type Linear Motor Carrier8. Powder Removal Device for Metal Additive Manufacturing9. Self-Leveling Spreader Beam for Adjusting the Orientation of an Overhead Crane Loa

    Motion blur in digital images - analys, detection and correction of motion blur in photogrammetry

    Get PDF
    Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This thesis proves the negative affect that blurred images have on photogrammetric processing. It shows that small amounts of blur do have serious impacts on target detection and that it slows down processing speed due to the requirement of human intervention. Larger blur can make an image completely unusable and needs to be excluded from processing. To exclude images out of large image datasets an algorithm was developed. The newly developed method makes it possible to detect blur caused by linear camera displacement. The method is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of additional images. However, the calculated blur value named SIEDS (saturation image edge difference standard-deviation) on its own does not provide an absolute number to judge if an image is blurred or not. To achieve a reliable judgement of image sharpness the SIEDS value has to be compared to other SIEDS values of the same dataset. This algorithm enables the exclusion of blurred images and subsequently allows photogrammetric processing without them. However, it is also possible to use deblurring techniques to restor blurred images. Deblurring of images is a widely researched topic and often based on the Wiener or Richardson-Lucy deconvolution, which require precise knowledge of both the blur path and extent. Even with knowledge about the blur kernel, the correction causes errors such as ringing, and the deblurred image appears muddy and not completely sharp. In the study reported in this paper, overlapping images are used to support the deblurring process. An algorithm based on the Fourier transformation is presented. This works well in flat areas, but the need for geometrically correct sharp images for deblurring may limit the application. Another method to enhance the image is the unsharp mask method, which improves images significantly and makes photogrammetric processing more successful. However, deblurring of images needs to focus on geometric correct deblurring to assure geometric correct measurements. Furthermore, a novel edge shifting approach was developed which aims to do geometrically correct deblurring. The idea of edge shifting appears to be promising but requires more advanced programming

    Aircraft Detection and Tracking Using UAV-Mounted Vision System

    Get PDF
    For unmanned aerial vehicles (UAVs) to operate safely in the national airspace where non-collaborating flying objects, such as general aviation (GA) aircraft without automatic dependent surveillance-broadcast (ADS-B), exist, the UAVs\u27 capability of “seeing these objects is especially important. This “seeing , or sensing, can be implemented via various means, such as Radar or Lidar. Here we consider using cameras mounted on UAVs only, which has the advantage of light weight and low power. For the visual system to work well, it is required that the camera-based sensing capability should be at the level equal to or exceeding that of human pilots. This thesis deals with two basic issues/challenges of the camera-based sensing of flying objects. The first one is the stabilization of the shaky videos taken on the UAVs due to vibrations at different locations where the cameras are mounted. In the thesis, we consider several algorithms, including Kalman filters and particle filters, for stabilization. We provide detailed theoretical discussions of these filters as well as their implementations. The second one is reliable detection and tracking of aircraft using image processing algorithms. We combine morphological processing and dynamic programming to accomplish good results under different situations. The performance evaluation of different image processing algorithms is accomplished using synthetic and recorded data
    corecore