
Dissertations and Theses

12-2015

Aircraft Detection and Tracking Using UAV-Mounted Vision Aircraft Detection and Tracking Using UAV-Mounted Vision

System System

Yan Zhang

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Electrical and Computer Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Zhang, Yan, "Aircraft Detection and Tracking Using UAV-Mounted Vision System" (2015). Dissertations
and Theses. 316.
https://commons.erau.edu/edt/316

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fedt%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/316?utm_source=commons.erau.edu%2Fedt%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

AIRCRAFT DETECTION AND TRACKING USING

UAV-MOUNTED VISION SYSTEM

A Thesis

Submitted to the Faculty

of

Embry-Riddle Aeronautical University

by

Yan Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2015

Embry-Riddle Aeronautical University

Daytona Beach, Florida

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

ABSTRACT . vii

1 Introduction . 1
1.1 Background of the thesis work . 1
1.2 Literature review . 3

2 Camera calibration . 7
2.1 Pinhole model . 7
2.2 Principle of camera calibration . 8
2.3 Camera calibration implementation 12

3 Video stabilization . 14
3.1 State estimation theory . 14
3.2 Models . 15
3.3 The Baysian filter . 17
3.4 The Kalman filter . 19

3.4.1 Derivation of the Kalman filter 20
3.4.2 Algorithm of the Kalman filter 25

3.5 Particle filters . 26
3.5.1 Derivation of the particle filter 28
3.5.2 Algorithm of particle filters 31

4 Implementation of the particle and Kalman filters for video stabilization . 33
4.1 Camera model . 33
4.2 Implementation of particle filter . 35
4.3 Implementation of the Kalman filter 39
4.4 Testing results . 42

4.4.1 Testing results for smooth linear motions 43
4.4.2 Testing results for random motions 45

5 Object detection algorithms . 50
5.1 Edge detection . 50
5.2 Morphological processing . 53
5.3 Dynamic programming . 56
5.4 Implementation of object detection algorithms 59
5.5 Results of object detection . 60
5.6 Remarks about algorithm selection 63

iv

Page

6 Conclusion . 66

REFERENCES . 68

v

LIST OF FIGURES

Figure Page

1.1 Diagram of the vision-based sense and avoid system. 2

2.1 Pinhole camera model. 8

2.2 Projection coordinates. 9

2.3 Calibration process. 12

2.4 Calibration results from MATLAB. 13

3.1 State transition. 15

4.1 Frames from the unstable video. 44

4.2 Stabilized frames processed with Scheme A. 44

4.3 Stabilized frames processed with Scheme B. 44

4.4 Stabilized frames processed with Scheme C. 44

4.5 Comparison of x-axis translation estimations for linear translation change. 45

4.6 Comparison of y-axis translation estimations for linear translation change. 46

4.7 Comparison of rotation estimations for linear rotation change. 46

4.8 Frames from unstable video. 47

4.9 Stabilized frames processed with Scheme A. 47

4.10 Stabilized frames processed with Scheme B. 47

4.11 Stabilized frames processed with Scheme C. 47

4.12 Comparison of the x-axis translation estimations for random translation
change. 48

4.13 Comparison of the y-axis translation estimations for random translation
change. 49

4.14 Comparisons of the rotation estimations for random rotation change. . 49

5.1 Object movement illustration. 57

5.2 Object detection results for a synthetic video with dark clouds. 61

vi

Figure Page

5.3 Object detection results for a synthetic video with light clouds and added
noise. 62

5.4 Object detection results for a recorded video with varying clouds. . . . 63

5.5 Object detection results for a video without cloud clutters. 64

5.6 The SNR comparison. 64

vii

ABSTRACT

Zhang, Yan MSECE, Embry-Riddle Aeronautical University, December 2015. Air-

craft detection and tracking using UAV-mounted Vision System.

For unmanned aerial vehicles (UAVs) to operate safely in the national airspace
where non-collaborating flying objects, such as general aviation (GA) aircraft without
automatic dependent surveillance-broadcast (ADS-B), exist, the UAVs’ capability of
“seeing” these objects is especially important. This “seeing”, or sensing, can be
implemented via various means, such as Radar or Lidar. Here we consider using
cameras mounted on UAVs only, which has the advantage of light weight and low
power. For the visual system to work well, it is required that the camera-based
sensing capability should be at the level equal to or exceeding that of human pilots.

This thesis deals with two basic issues/challenges of the camera-based sensing
of flying objects. The first one is the stabilization of the shaky videos taken on
the UAVs due to vibrations at different locations where the cameras are mounted.
In the thesis, we consider several algorithms, including Kalman filters and particle
filters, for stabilization. We provide detailed theoretical discussions of these filters
as well as their implementations. The second one is reliable detection and tracking
of aircraft using image processing algorithms. We combine morphological processing
and dynamic programming to accomplish good results under different situations. The
performance evaluation of different image processing algorithms is accomplished using
synthetic and recorded data.

1

1. Introduction

1.1 Background of the thesis work

Unmanned aerial vehicles (UAVs) have great potential in various military and

civil applications. To safely operate UAVs in the national aerospace where non-

collaborating flying objects, such as general aviation (GA) aircraft without automatic

dependent surveillance-broadcast (ADS-B), exist, the UAV’s ability to “see” these

objects should be at least at an equivalent level to that of human pilots.

To promote the research of this “seeing” technology, the National Aeronautics and

Space Administration (NASA) organized a NASA competition called Unmanned Air-

craft Systems (UAS) Airspace Operations Challenge (AOC) (Development Projects

INC, 2013). Embry-Riddle Aeronautical University (ERAU) formed a team to par-

ticipate in this competition, and we started the thesis work to serve the ERAU team.

The UAS-AOC is focused on demonstrations of some of the key technologies that

will make integration of UAS into the National Airspace System (NAS) possible. One

of the most difficult technical problems is to ensure safe separation with neighboring

non-cooperative aircraft that do not broadcast ADS-B messages. Though the compe-

tition was cancelled later, the research on this topic continued due to its importance.

Many technologies including radar (Moses, 2013) and computer vision (Rozantsev,

2009) have been researched to improve the sense and avoid ability for UAVs. This

2

thesis focuses on a potentially feasible and affordable way to address the problem

of detecting and tracking uncooperative aircraft using cameras mounted on a UAV,

a vision system. Such a system provides advantages including light weight and low

power consumption compared to active sensors like radar and lidar (Zarandy, Zse-

drovits, Nagy, Kiss, & Roska, 2012).

The diagram of a vision-based sense and avoid system for UAVs (Zarandy, Zse-

drovits, Nagy, Kiss, & Roska, 2011) is illustrated in Fig. 1.1. The system works as

follows. First, the images are captured using the camera block at given time inter-

vals. Then the captured images are passed to an image processing block. After that,

the decision on whether an aircraft is detected or not is made. Once an aircraft is

detected and tracked, the aircraft’s position information as referenced to each image

is collected in the Data Acquisition block. The coordinate information about the

detected aircraft can be obtained by combining information from onboard Inertial

Navigation System (INS), Global Positioning System (GPS), and the local position

of detected aircraft relative to the image from the Image Processing block. The other

parts of the system are related to collision detection and avoidance control.

Figure 1.1. Diagram of the vision-based sense and avoid system.

3

This thesis concentrates on the Image Processing block to acquire reliable detec-

tion and tracking of an aircraft. Specifically, we address two issues/challenges. The

first is that the image sequence captured from the camera is usually not stable due

to the shaky platform of the UAV. To handle this problem, we consider several algo-

rithms, including the Kalman and particle filters, for video stabilization. The second

is the detection and tracking of an aircraft. We combine morphological processing

and dynamic programming to accomplish good results under different situations. The

performance evaluation of different image processing algorithms is accomplished using

synthetic and recorded data.

1.2 Literature review

Here we first provide a brief literature review about image stabilization. In

(Fergus, Singh, Hertzmann, Roweis, & Freeman, 2006), the in-plane camera rota-

tion is neglected and the camera motion is estimated using a proposed blur kernel

estimation algorithm. Then they apply a deconvolution algorithm to correct the

blurry image under the assumption that the camera motion is uniformly distributed

over the whole image.

Lin et al. (Lin, Hong, & Yang, 2009) present a stabilization system using the mod-

ified proportional integrated (PI) controller to remove the shaking from the captured

videos while maintaining the panning motion of the camera. The motion compensa-

tion vector estimated in the paper is utilized to control the movement of the camera

platform through a PI controller. In (Matsushita, Ofek, Ge, Tang, & Shum, 2006),

4

the motion inpainting is implemented to enhance the quality of the stabilized image

sequences.

Particle filter (Mohammadi, Fathi, & Soryani, 2011) and Kalman filter (Song,

Zhao, Jing, & Zhu, 2012) for video stabilization are particular interesting as those

algorithms are applied in a wide range of fields (Zhou, Chelleppa, & Moghaddam,

2004). Also, these algorithms have been developed over years and proven to be

reliable (Orlande et al., n.d.).

Now we consider target detection. Zarandy et al. (Zarandy et al., 2011) present

a way to detect and calculate the position of known-size aircraft. In the paper,

FlightGear, a flight simulator, is used to produce the simulated aerial aircraft images.

These images are then transmitted through Simulink to Matlab where the image

processing algorithms are applied. The proposed algorithm is completed in two main

steps. In the first step, the entire image is handled as a whole and then the region

of interest is extracted and processed in the second step. However, this method is

only effective in detecting the intruder aircraft in daylight situations when the cloud

contrast is medium or small. In complex situations where the contrast of the clouds

is high and the image is cluttered with obstacles, the proposed algorithm is not able

to detect the aircraft without prior information.

Jaron & Kucharczyk (Jaron & Kucharczyk, 2012) describe two detailed vision

system prototypes (a ground tracking and onboard detection and tracking system) to

solve the problem of positioning and detection with cameras only. An object identifi-

cation algorithm was developed and its position was estimated in the ground tracking

5

system. On the onboard system, a FAST (Features from Accelerated Segment Test)

feature detection and extraction algorithm is implemented for position estimation and

collision detection. This method, however, has not been implemented on hardware

and a performance test is needed before being used in real-world applications.

In (Shah, 2009), the author attempts to find the size and location of an obstacle

in real world applications by generating a 3D world model from a 2D image received

by cameras. The idea behind this is to use one camera mounted on a UAV to detect

obstacles by means of feature points. Then the UAV flies around it in a circular path

while capturing the feature points at the same time. The advantage of such an idea

is that only one camera is needed. However, disadvantages, such as flying around

obstacles, make it hardly applicable in applications of sense and avoid.

In (Gaszczak, Breckon, & Han, 2001), the authors present an approach for au-

tomatic detection of vehicles based on cascade Haar classifiers with secondary infor-

mation in thermal images. The presented results show successful detection under

varying conditions with minimal false detections. However, the algorithm must be

improved to detect aircraft in the real world. The improvements can be as follows.

First, the intruding aircraft detection performance at a long distance should be im-

proved. Secondly, since the Haar classifier needs to train hundreds of aircraft images

with different angles of view, prior information about the airplane like model and size

should be known.

Hajri (Hajri, 2012) provides the preliminary process for target detection and posi-

tion estimation. The article explores the computer vision detection algorithms. The

6

first algorithm uses edge detection and image smoothing possesses to achieve a high

detection rate, yet it exhibits high false alarm rates in highly cluttered image envi-

ronments at the same time. The other approach is to use morphological filters and

color-based detection. This method works effectively with the prior information of

the UAV color patch. Hence, it exhibits low detection rates in low lighting condition.

A multi-stage detection method is developed in (Dey, Geyer, Singh, & Digioia,

2009). The approach starts with the morphological filter that looks for high contrast

regions in the image that are likely to be aircraft. Next a classifier that has been

trained on positive and negative examples has been used. Finally, it tracks the can-

didates over time to remove false detections. The results of the proposed algorithm

demonstrate that it can achieve a high detection rate at a long distance.

Carnie et al. (Carnie, Walker, & Corke, 2005) combine the operation of morpho-

logical filter and dynamic programming to detect small aircraft in images with poor

signal to noise ratios. The results demonstrate the ability to detect distant objects

even in the presence of heavy cloud clutter.

7

2. Camera calibration

Although camera calibration is not the main focus of this thesis, it is an integral part

of the work for vision-based sense and avoid. Hence, we present the work that we

have performed on this topic here. In the later chapters, we will assume the camera(s)

is calibrated.

2.1 Pinhole model

In this thesis, a pinhole model camera is used for all calculations regarding size,

position, and distance estimation, as well as in video stabilization. This simplified

model assumes that there exists an opaque wall with only one small hole in the center

allowing only one ray of light to pass at a time. The ray then is projected onto the

image plane which is at the same distance as the focal length of a camera from the

aperture wall, as shown in Fig. 2.1. The advantage of the pinhole model is that the

height of the object on the image plane is relative to only one parameter. As it can

be seen from Fig. 2.1, the relation between the height of the object and the height of

its projection on the image plane is formulated as

f

h
=
Z

S
,

8

where f is the focal length of the camera, the distance between the image plane and

the pinhole, h is the height of the projected object on the image plane with regard to

the optical axis, Z is the distance between the object and the pinhole, and S is the

height of the object. The intersection of optical axis with the image plane in Fig. 2.1

is called the principal point.

The above model provides an easy way to calculate the distance between the

camera and the object, given S and h which can be obtained via image processing.

But in reality, the camera is far from the pinhole model. Ideally, the principal point

should be placed exactly in the center of the image plane. However, this can never

be true because of manufacturing imperfections. Therefore, in order to acquire the

precise position of the object, the camera calibration is needed.

2.2 Principle of camera calibration

Image acquisition processes usually comprise one or more digital cameras, and

in reality, most cameras are not ideal pinhole models. Thus camera calibration, an

essential process for constructing real world models and interacting with real world

Image plane

P O

Figure 2.1. Pinhole camera model.

9

coordinates (Hruska, Lancaster, Harbour, & Cherry, 2005), is needed. Camera cali-

bration is used basically to find a number of internal and external parameters that

describe the camera, as detailed below.

An alternative pinhole model, which is more applicable to camera calibration, is

given in Fig. 2.2. The reference point for the homogeneous coordinates is O, the same

as the pinhole point shown in Fig. 2.1. The image plane is mirrored to the right side

of the pinhole point since it does not change the projection point. (xw, yw, zw) denotes

the world coordinates while the image coordinates are represented by (xi, yi, zi). Wc is

the point that the optical axis intersects with the world plane. The center of the image

plane, P , is the principal point. And zi equals to f since the principal point is the

reference point. Fig. 2.2 assumes that the two coordinate vectors are homogeneous.

Thus,

xw
xi

=
yw
yi

=
zw
zi
,

Figure 2.2. Projection coordinates.

10

which leads to xi = f xw
zw
, yi = f yw

zw
, where xi and yi are both distances from the image

center.

To transform from the object lengths to pixels, scaling factors kx and ky for x,

y directions are defined, respectively. The unit of the scaling factor is distance per

pixel. Also, the coordinates for the principal point P on xpix and ypix axes are defined

to be (x0, y0) in pixels. Therefore, the pixel coordinates for the same projection point

are designated as (xp, yp), which are formulated as xp = x0 + kxxi, yp = y0 + kyyi.

Therefore, (xp, yp) is modified as

xp = x0 + kxf
xw
zw
,

yp = y0 + kyf
yw
zw
.

Moreover, the image plane often is a parallelogram instead of a rectangle. Thus there

is a parameter s to correct the skewness.

The transformation from the world coordinates to the a new coordinates can be

formulated as 
u

v

w

 =


fkx s x0

0 fky y0

0 0 1




xw

yw

zw

 , (2.1)

which leads to

xp =
u

w
,

yp =
v

w
.

11

The calibration matrix is represented by

M =


fx s x0

0 fy y0

0 0 1

 , (2.2)

where fx = fkx and fy = fky. fx and fy are also referred to as focal length in x and

y directions with pixel units. Note the elements in the calibration matrix are intrinsic

parameters.

The extrinsic parameters that need to be handled in the calibration process are

the lens distortions. The major lens distortions are radial and tangential distortions.

Radial distortion is caused by the inappropriate shape of the lens and tangential

distortion depends on the accuracy of the aligning lens with the image plane. In this

thesis, it is assumed that five distortion coefficients are extracted since higher order

distortion lenses are rare (Tsai, 2003). The lens calibration vector is given as

d =

[
k1 k2 p1 p2 k3

]T
.

The variables k1, k2 are the coefficients of radial distortion, p1, p2 are the coefficients

of tangential distortion, and k3 is zero unless a fish-eye is used. So in total, nine

parameters are required to be obtained to calibrate the camera.

12

(a) Picture feature extraction. (b) MATLAB simulated viewpoints.

Figure 2.3. Calibration process.

2.3 Camera calibration implementation

Based on what has been introduced above, there are nine parameters (not includ-

ing k3) that need to be found through calibration process. Such a complicated process

is made easy with the MATLAB calibration toolbox. The toolbox processes many

pictures of different point of views from the same object and outputs the camera

parameters. The tested object should have a distinctive and repeatable pattern so

that it would be easy to locate and track on the image. Therefore, a chessboard is

often used in the calibration since it has a repeatable pattern with black and white

squares. Furthermore, the more pictures taken from the various views of the object,

the more accurate the calibration is. So for the calibration, many pictures, say, 30,

are taken from different views of the chessboard and then processed with the camera

calibration toolbox in MATLAB.

13

(a) Lens calibration. (b) Calibration matrix.

Figure 2.4. Calibration results from MATLAB.

Fig. 2.3a demonstrates a chessboard in the feature extraction window in the MAT-

LAB calibration toolbox and Fig. 2.3b shows the simulated process of taking different

pictures. Meanwhile, the calibration matrix and the four distortion parameters of the

camera are computed. An example of the lens distortion and calibration matrix for a

GigE camera (IDS, n.d.) is displayed in Fig. 2.4a and Fig. 2.4b. Note that the matrix

in Fig. 2.4b is the transpose of the calibration matrix M in Eq. (2.2). With the

calibrated parameters, the real world homogeneous position of a known size object

can be easily computed according to Eq. (2.1). For non-homogeneous coordinates,

they can be transformed to homogeneous coordinates using translation and rotation

matrices.

14

3. Video stabilization

A stable video is essential to achieve good target detection. The problem of stabilizing

video is one of the applications of state estimation. Therefore, before diving into the

details of video stabilization, let us discuss the theory and methods of state estimation.

3.1 State estimation theory

State estimation theory is commonly used in dynamic system applications such

as signal processing, computer vision, object tracking, etc. The evolution of those

dynamic systems is determined by the state of the systems, which are not directly

observable, and the inputs to the systems. The observed data, the measurement,

is related, to some extent, to the system state and can be leveraged to infer the

actual states (Haykin, 2009). Usually, the system is modeled as a discrete system

since it is not required to know the system data all the time. In the meanwhile, the

measurement at every time interval is available to the observer. The diagram of the

system state transition and measurement is given in Fig. 3.1.

In Fig. 3.1, the system is represented by the hidden Markov model (HMM) and

the discrete state is denoted as xn, where n is the time step. The Markov model is a

random process that features the transition from one state to another. In the Markov

model, the current state is only dependent on the system’s previous state instead of

15

Figure 3.1. State transition.

the entire past state sequence. The available measurement at time step n for the

system is denoted as yn.

3.2 Models

Two models are required to describe the state evolution and the measurement of

a dynamic system. Under the assumption that the current state xn evolves only from

its previous state xn−1, the evolution equation is defined as

xn = f(xn−1) + wn, (3.1)

where f is the system transition function which is also known as the evolution function

and wn is the system dynamic noise. Also, the measurement model is formulated as

yn = g(xn) + vn, (3.2)

where g is the observation function and vn represents observation noise.

To estimate the system’s state, we need to use the above two models. In (Haykin,

2009), those models are addressed in four different cases.

16

The first case deals with the linear, Guassian models. In this case, the system

evolution and observation functions are both assumed to be linear. The dynamic

noise wn and observed noise vn are both additive, independent zero-mean Gaussian

processes. The Kalman filter, which will be discussed later, is often used to handle

this case.

The second case is the same as the first one, except that the system dynamic noise

wn and the observation noise vn are now assumed to be additive, independent non-

Gaussian processes. The tricky part for this case is the complicated non-Gaussian

processes, which can be roughly approximated by the summation of several Gaussian

processes. Thus a bank of Kalman filters may be used to solve the linear, non-

Gaussian state estimation problem.

The third case is the same as the first case, except that the system evolution and

observation functions are nonlinear. The nonlinear model issue can be addressed by

two different solutions called local approximation and global approximation, respec-

tively. The extended Kalman filter is an example of the local approximation, where

the localized estimates are assumed to be linear. For the global approximation, the

states and measurements are regarded to be related in a tractable mathematical way

so that the approximation boils down to solving a mathematic problem. The particle

filter is one of the methods for global approximation.

The fourth case deals with the nonlinear, non-Gaussian models. In this case,

the system evolution and observation functions are both nonlinear, and the system

17

dynamic and observation noises are not only non-Gaussian, but also may not be

additive. Currently, the problem can be resolved by a particle filter.

3.3 The Baysian filter

The problem of the discussed models can be tackled by a recursive Baysian filter,

such as the Kalman filter or a particle filter (Orlande et al., n.d.). The recursive

Baysian filter is a process to estimate the probability density function (pdf) using the

up-to-date measurements and the mathematical models. The filter is recursive be-

cause a new estimation is produced whenever a new measurement is obtained. Instead

of processing the whole batch of data, the recursive method makes use of the cur-

rent measurement, previous system state, and system models to estimate the current

state, which is computational efficient in real time (Arulampalam, Maskell, Gordon,

& Clapp, 2002). The Baysian filter provides a general framework for sequential state

estimation.

As can be seen from Fig. 3.1, at each time step, there will be a hidden updated

internal state and a new observable measurement. A filter can be repeatedly applied

to solve the posteriori pdf p(xn|y0:n) given all the the observations along with the

assumption of the initial pdf p(x0|y0) = p(x0). In general, two steps are involved in

the process and they are referred as state prediction and update.

18

In the prediction step, the priori pdf of the state at time step n, p(xn|y1:n−1),

is obtained via the Chapman-Kolmogorov method (Perreault, 2012). Note that the

p(x,y) is the simplified version of p(x
⋂

y) in this thesis.

p(xn|y1:n−1) =

∫
p(xn,xn−1|y1:n−1)dxn−1

=

∫
p(xn|xn−1,y1:n−1)p(xn−1|y1:n−1)dxn−1

=

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1.

Note that we have used the Markovian property of the system in the above equations:

if xn is independent of y1:n−1, given xn−1, then p(xn|xn−1,y1:n−1) = p(xn|xn−1). The

pdf of the state transition p(xn|xn−1) can be inferred from Eq. (3.1) and the filtering

distribution p(xn−1|y1:n−1) is given at time step n− 1.

In the update step, the new measurement at time step n is used to calculate the

posteriori pdf. Based on Bayer’s rule, we have

p(xn|y1:n) =
p(xn,y1:n)

p(y1:n)
=

p(xn,y1:n)∫
p(xn,y1:n)dxn

,

and

p(xn,y1:n) = p(yn|xn,y1:n−1)p(xn|y1:n−1)p(y1:n−1)

= p(yn|xn)p(xn|y1:n−1)p(y1:n−1),

where we have used p(yn|xn,y1:n−1) = p(yn|xn) because Eq. (3.2) shows that the

current measurement is only related to the current state.

19

Hence,

p(xn|y1:n) =
p(yn|xn)p(xn|y1:n−1)∫
p(yn|xn)p(xn|y1:n−1)dxn

.

Thus, the priori density is modified using the current measurement to get the required

posteriori density.

The basic procedure of the Baysian filter consists of two stages. Due to the noise

variations in the system, it is difficult to solve for the exact posterior probability

density function which is also addressed as the optimal Baysian solution. However,

the optimal Baysian solution can be achieved by applying restrictions on the system

model and noise. This is a situation where the state and measurement systems are

assumed to be linear systems with zero mean Gaussian noises. One example from

this category is the Kalman filter. However, in most cases where the linear, Gaussian

model is not suitable for the system, another approach, such as the paticle filter, that

approximates the probability density function, is utilized. In the sequel, the Kalman

and particle filters are studied and implemented to compare the applicability and

efficiency of the two different methods.

3.4 The Kalman filter

The Kalman filter is a linear recursive algorithm generating least square error so-

lutions (Orlande et al., n.d.). The Kalman filter finds the best current state estimate

based on the current measurement, previous state estimate, and mathematical mod-

els using the least square optimization method, which produces more accurate results

than just one single observed measurement. Whenever a new measurement comes

20

in, the filter updates the new estimate so that the error estimation vector between

estimated states and the real states is minimized. The recursive manner and compu-

tational efficiency of Kalman filter make it useful in a system where the estimation

accuracy and time constraints are highly required. For this reason, the Kalman filter

is widely applied in aviation fields such as guidance, navigation, and control.

3.4.1 Derivation of the Kalman filter

The Kalman filter is based on the assumption of linear discrete state-space and

Gaussian models, which update the state each time a new observation data is added.

The two models for the Kalman filter can be rewritten below. The state-space tran-

sition model of Eq. (3.1) is

xn+1 = Anxn + wn,

where An is the system state transition matrix at time step n, xn+1 and xn are the

system states at time n + 1 and time n respectively, and wn is the system dynamic

noise at time n and assumed to be independent zero-mean additive Gaussian, as

discussed in a previous section. The random noise distribution is wn ∼ N(0,Qn),

where the Qn is the variance matrix.

The observation model of Eq. (3.2) is

yn = Hnxn + vn,

21

where yn is the actual observed measurement at time n, Hn is the observation ma-

trix at time n, and vn is the observation noise at time n which is also modeled as

independent zero-mean additive Gaussian. Like the system noise, the measurement

noise is vn ∼ N(0,Rn), where the Rn is the variance matrix.

Since it is an implementation of the Baysian filter, there are basically two steps

involved in the Kalman filter. The first step is the prediction process, which takes the

previous estimated states and then outputs the predicted current states based on the

given system transition function. This is also called priori estimation process. The

second step is to update the prediction, priori estimation, given the current observed

measurements to get more accurate estimation. The updated estimation is also called

posteriori estimation. In the sequel, we provide an easy to follow derivation of the

Kalman filter.

The priori estimation of the state xn is denoted as x−n , which is x−n = An−1xn−1.

The priori estimation x−n leads to the estimated measurements, which is formulated as

ŷn = Hnx
−
n . The measurement error is defined as the difference between observations

and estimated measurements, which is calculated as en = yn −Hnx
−
n . With the

measurements at time step n, the priori state estimation can be updated to posteriori

state estimation which is referred as x+
n . The posteriori estimation is represented by

the current priori estimation plus the weighted measurement error. The equation is

illustrated below

x+
n = x−n + Kn(yn −Hnx

−
n),

22

where Kn is a weighted matrix which is also known as the Kalman gain. Kn indicates

how much the measurement error changes the estimation (Perreault, 2012).

During the Kalman filter implementation, two estimation errors are computed for

the two stages. First, we calculate the priori estimation error, the difference between

the actual state and the priori estimated state, which is represented as e−n = xn−x−n .

Then the priori error variance matrix is computed as P−n = E[e−ne
−H
n]. Similarly,

we calculate the posteriori estimation error e+
n = xn − x+

n , and the posteriori error

variance matrix P+
n = E[e+

ne
+H
n]. The Kalman filter outputs the estimated state

that produces the least square error with the actual state. In this case, Kn should

minimize the trace of the posteriori variance matrix P+
n . To do this, let us first

formulate e+
n as

e+
n = xn − x+

n

= xn − (x−n + Kn(yn −Hnx
−
n))

= xn − (I −KnHn)x−n −Knyn

= (I −KnHn)(xn − x−n)−Knvn

= (I −KnHn)e−n −Knvn.

23

So we obtain

P+
n = E[e+

ne
H
n]

= E[((I −KnHn)e−n −Knvn)((I −KnHn)e−n −Knvn)H]

= E[(I −KnHn)e−ne
−H
n (I −KnHn)H

+ Knvnv
H
n K

H
n − (I −KnHn)e−nv

H
n K

H
n −Knvne

−H
n (I −KnHn)H)].

To simplify the notation, let us make the following definition P−n = E[e−ne
−H
n] and

Rn = E[vnv
H
n], and observe that E[e−nv

H
n] = 0 and E[vne

−H
n] = 0. Therefore the

posteriori variance matrix P+
n is expressed as

P+
n = (I −KnHn)P−n (I −KnHn)H + KnRnK

H
n

= Kn(HnP
−
nH

H
n + Rn)KH

n −KnHnP
−
n − P−nH

H
n K

H
n + P−n .

To simplify the above equation, let

A = HnP
−
nH

H
n + Rn. (3.3)

Thus, by using the quadratic expression, we have

P+
n = (Kn − P−nH

H
n A

−1)A(Kn − P−nH
H
n A

−)H

− P−nH
H
n A

−1HnP
−
n + P−n .

(3.4)

24

As Eq. (3.4) indicates, to minimize the trace of P+
n , the term that contains Kn should

be zero. So we have

Kn = P−nH
H
n A

−1

= P−nH
H
n (HnP

−
nH

H
n + Rn)−1,

which leads to

P+
n = (I −KnHn)P−n .

Note that both Kn and P+
n are expressed in terms of P−n since Hn and Rn are

constant at time step n.

Next, let us calculate the priori estimation error variance matrix P−n . Again, we

first consider the error

e−n = xn − x−n

= An−1xn−1 + wn−1 −An−1x
+
n−1

= An−1e
+
n−1 + wn−1.

Hence,

P−n = E[e−ne
−H
n]

= E[(An−1e
+
n−1 + wn−1)(An−1e

+
n−1 + wn−1)

H]

= An−1P
+
n−1A

H
n−1 + Qn−1,

25

where we have used P+
n−1 = E[e+

n−1e
+H
n−1] and Qn−1 = E[wn−1w

H
n−1] as well as

E[e+
n−1w

H
n−1] = 0 and E[wn−1e

+H
n−1] = 0.

3.4.2 Algorithm of the Kalman filter

It is obvious from the above derivation that the Kalman filter can be calculated

recursively to each newly acquired data. Assume that at time step n, the followings

are given: the system observation matrix Hn, system observation noise covariance

matrix Rn, and the real measurement yn. Also assumed given are: the system tran-

sition matrix An−1, the system dynamic noise covariance matrix Qn−1, the posteriori

estimation error covariance matrix P+
n−1, and the posteriori estimated state x+

n−1.

Then, the optimal estimated state x+
n can be calculated using the following steps.

1. Determine the priori estimation error covariance matrix P−n and predict the

priori estimated system state x−n :

P−n = An−1P
+
n−1A

H
n−1 + Qn−1,

x−n = An−1x
+
n−1.

26

2. Calculate the Kalman gain Kn, update the optimal estimated state x+
n , and

determine the posteriori estimation error covariance matrix P+
n :

Kn = P−nH
H
n (HnP

−
nH

H
n + Rn)−1,

x+
n = x−n + Kn(yn −Hnx

−
n),

P+
n = (I −KnHn)P−n .

3.5 Particle filters

As introduced before, an approach to handle nonlinear, non-Gaussian system mod-

els is to employ particle filters. Particle filters are the best examples of the Monte

Carlo method (Mackay, n.d.), a broad class of algorithms that repeatedly generate

random samples to get the results. A particle filter is also known as the CON-

DENSATION (CONditional DENsity propagATION) algorithm, bootstrap filtering,

interacting particle approximations, survival of the fittest, sequential importance sam-

pling, and the sequential Monte Carlo approach (Doucet, Freitas, & Gordon, n.d.). A

particle filter is a general and powerful method that can be applied in radar tracking,

medical analysis, human machine interaction, image restoration, etc. Compared to

the Kalman filter, particle filters do not require tight restrictions on system models.

Thus, particle filters are more applicable in most cases.

The basic idea of the particle filter is to generate a set of random weighted samples

in order to estimate the posteriori probability density function. The joint posteriori

distribution of all the states is denoted as p(x1:n|y1:n), where x1:n represents all the

27

system states from the starting time up to current time step n. Correspondingly,

all the measurements of the system, denoted as y1:n are available to use. However,

the actual sequential system states x1:n are hidden from the observer because of

the uncontrollable variables and noise in the system. Hence, it is very challenging

to obtain the real posteriori pdf p(x1:n|y1:n). The way the particle filter does is to

draw samples from the so-called importance density function which is designated as

q(x1:n|y1:n) instead of the actual posteriori p(x1:n|y1:n). Then p(x1:n|y1:n) can be

approximated by the summation of the weighted samples. The weighted samples are

denoted by {xi1:n, win}, where {xi1:n, i = 1, ..., Ns} is a set of sampled points from

q(x1:n|y1:n). And the matching weight for each sample is illustrated by {win, i =

1, ..., Ns}. Usually, the weights are normalized such that
∑Ns

i=1w
i
n = 1. Since the

samples are from the importance density function, the weight for the ith sample can

be calculated as

win =
p(xi1:n|y1:n)

q(xi1:n|y1:n)
. (3.5)

Therefore, the posteriori pdf is approximated by

p(x1:n|y1:n) ≈
Ns∑
i=1

winδ(x1:n − xi1:n),

where xi1:n are samples generated from the importance density function q(x1:n|y1:n),

and δ(·) is the delta function.

28

3.5.1 Derivation of the particle filter

In a particle filter, the posteriori density function is approximated by the weighted

samples from the importance density function q(x1:n|y1:n). We will prove that the

particle filter is a recursive suboptimal solution to state estimation. Thus, given

the approximation of p(x1:n−1|y1:n−1) and the new measurement yn at time step n,

p(x1:n|y1:n) can be computed. Every time a new observation is available, new samples

are generated from the importance density function. The importance density function

is extended as the following according to Bayer’s rule

q(x1:n|y1:n) = q(xn|x1:n−1,y1:n)q(x1:n−1|y1:n−1,yn).

To simplify the above expression, the importance density function q(x1:n|y1:n) can

be chosen such that the factorization q(x1:n−1|y1:n−1,yn) = q(x1:n−1|y1:n−1), which

means the current measurement has no effect on the system previous states. Then

the modified equation is

q(x1:n|y1:n) = q(xn|x1:n−1,y1:n)q(x1:n−1|y1:n−1). (3.6)

Therefore, it can be inferred that the updated samples xi1:n are generated by com-

bining the existing samples xi1:n−1 ∼ q(x1:n−1|y1:n−1) with the samples xin that are

drawn from q(xn|x1:n−1,y1:n).

29

The weights assigned to each particle should also be updated once the new samples

are produced, as shown below. First we have

p(x1:n|y1:n) =
p(x1:n,y1:n)

p(y1:n)
,

p(x1:n,y1:n) = p(yn|x1:n,y1:n−1)p(x1:n|y1:n−1)p(y1:n−1),

p(y1:n) = p(yn|y1:n−1)p(y1:n−1).

Thus

p(x1:n|y1:n) =
p(yn|x1:n,y1:n−1)p(x1:n|y1:n−1)

p(yn|y1:n−1)
.

Applying Bayer’s rule

p(x1:n|y1:n−1) = p(xn|x1:n−1,y1:n−1)p(x1:n−1|y1:n−1),

we have

p(x1:n|y1:n) =
p(yn|x1:n,y1:n−1)p(xn|x1:n−1,y1:n−1)

p(yn|y1:n−1)
p(x1:n−1|y1:n−1).

Under the assumption that the system follows a Markovian model, we have

p(xn|x1:n−1,y1:n−1) = p(xn|xn−1)

30

. Furthermore, we have

p(yn|x1:n,y1:n−1) = p(yn|xn)

since the current measurement is merely dependent on the current states. Besides,

at time step n, p(yn|y1:n−1) is considered to be constant. Hence we have

p(x1:n|y1:n) ∝ p(yn|xn)p(xn|xn−1)p(x1:n−1|y1:n−1), (3.7)

where ∝ denotes proportional to.

By combining Eq. (3.5), Eq. (3.6), and Eq. (3.7), the weighting update can be

computed using the following equation

win ∝ win−1
p(yn|xin)p(xin|xin−1)
q(xin|xi1:n−1,yn)

.

In practical applications, the estimation is refreshed at every time step. Thus it is

realistic to set the importance density in a way that

q(xin|xi1:n−1,yn) = q(xin|xin−1,yn),

which means the density function is now only dependent on the previous value of the

system state and the current measurement. The assumption is consistent with the

31

idea of recursive filter since there is no need to store and compute the system past

states. Therefore, the weight computing equation is modified as

win ∝ win−1
p(yn|xin)p(xin|xin−1)
q(xin|xin−1,yn)

. (3.8)

Since the filtering distribution p(xn|y1:n) is the integration of the posteriori density

p(x1:n|y1:n), hence p(xn|y1:n) can be approximated as

p(xn|y1:n) ≈
Ns∑
i=1

winδ(xn − xin).

It can be inferred that when Ns approaches infinity, the approximation is equal to

posteriori density function p(xn|y1:n) (Haykin, 2009).

3.5.2 Algorithm of particle filters

There are usually two steps implemented in particle filters when a new observation

is obtained. The algorithm below is the basic form for a particle filter, which is also

referred as sequential importance sampling.

1. Given the {xin−1, win−1} and the current measurement yn. Draw Ns samples

{xin, i = 1, ..., Ns} from an importance density function q(xn|xin−1,yn).

2. Calculate win for each new sample using Eq. (3.8) and normalize it.

The steps are applied repeatedly to get a new estimation for each time step. However,

the disadvantage of the sequential importance sampling is the degeneracy problem,

32

which happens after several iterations of the particle filter, where a few samples have

large weights while most of samples are negligible (Arulampalam et al., 2002). The

degeneracy problem implies that we will waste the computations in updating the

weights of the negligible samples whose contribution to the posteriori pdf is almost

zero. One approach to address the degeneracy problem is to add the resampling

process after several iterations. So a modified sequence importance sampling algo-

rithm called sequential importance resampling (SIR) is developed (Arulampalam et

al., 2002). We will see that the sequential importance sampling algorithm is suited for

stabilizing the video in the next chapter, where implementations and testing results

are discussed.

33

4. Implementation of the particle and Kalman filters for video

stabilization

In this chapter, we consider the implementation of the particle and Kalman filters for

video stabilization. The camera model, the implemented algorithms, and the results

are presented and discussed.

4.1 Camera model

Due to the presence of the unexpected movement of the camera, the transforma-

tion between consecutive frames is related to the camera motion. The frames in an

unstable video suffer from the rotation and the translation of the camera. Assume

there is a point in the world coordinates which is denoted by p(xw, yw, zw). At frame

k, the projection point of p on the image plane in the camera is assumed to be at

(x, y, f), where f is the focal length. Then at the next frame, frame k+ 1, due to the

movement of the camera, the projection point of p ends up at (x′, y′, f). Generally,

the distance from the camera to the scene is far enough so that we can ignore the

change of the scale factor between the consecutive frames. Also, the rotation angle

between the image plane and the z axis is small (J. Yang, Schonfeld, Chen, & Mo-

hamed, 2006). Assume the rotation angle between the image planes of the two frames

34

is counterclockwise and denoted as θk. Thus, the 2D affine transformation model is

formulated as x′
y′

 =

cos(θk) − sin(θk)

sin(θk) cos(θk)


x
y

+

Txk
Tyk

 ,
where the Txk and Tyk are the translations. The above equation can be rewritten as


x′

y′

1

 =


cos(θk) − sin(θk) Txk

sin(θk) cos(θk) Tyk

0 0 1




x

y

1

 . (4.1)

For notational simplicity, the above equation is represented as p = T kq. As Eq. (4.1)

indicates, we need to find the θk, Txk, and Tyk to obtain the transformation matrix

T k. The above three unknown variables can be grouped into a vector denoted as

xk = [θk Txk Tyk]
T . Hence, for video stabilization, the task is to find xk between

each frame pairs. The first frame in the video is considered to be stable. This means

that the transformation matrix for each frame should be referenced to the first frame,

which can be achieved with the multiplication of the transformation matrices. The

problem of solving for xk for every frame is considered as a state estimation problem

with a nonlinear, non-Gaussian model. Thus, a particle filter is utilized to estimate

xk. Note that the nonlinear relationship between xk and T k is the main reason to

apply the particle filter.

35

4.2 Implementation of particle filter

As discussed in the previous chapter, a particle filter approximates the posterior

probability density using the weighted samples, which is represented as

p(xk|y1:k) =
N∑
i=0

wikδ(xk − xik). (4.2)

As Eq. (4.2) suggests, the estimation involves the generation of the samples and the

calculation of the corresponding weights. To implement the particle filter, we employ

the algorithm proposed in (J. Yang et al., 2006) with slight modifications. Assume

that at frame k, the particles are generated from an importance density function which

is known as NG(x̄k,Σk), an importance density function with Gaussian distribution

with mean x̄k and the variance Σk. Thus, the equation for the particle generations

at frame k is defined as

xik ∼ NG(x̄k,Σk). (4.3)

Note that the mean x̄k is important for the approximations since it provides the

baseline estimation. The closer the mean vector to the real state, the more accurate

results the particle filter produces.

In general, the mean vector can be obtained via feature detection algorithms

(Abdullah, Tahir, & Samad, 2012). The features of an image are usually corners and

edges (Manjunath, Shekhar, & Chellappa, n.d.). There are many feature detection

techniques that utilizes the edges, corners (Harris & Stephens, 1998), and small blob

areas on an image to uniquely characterize the image. Feature detection algorithms

36

have been used in video stabilization, image registration, motion detection, and ob-

ject recognition (Tong, Kamata, & Ahrary, 2009). The feature detection method

employed in this thesis is the Speeded Up Robust Features (SURF) detector (Pinto

& Anurenjan, 2011). The SURF detector detects the points on an image that are

invariant to scale, rotation, and the change of illumination. Also, the SURF detector

is suitable for real time application as it is computational efficient.

So once we have the matched j feature points between two frames from the SURF

operation, j equations like Eq. (4.1), exists. Let P = [p1,p2, . . . ,pj] and Q =

[q1, q2, . . . , qj]. Then P = T kQ, which leads to

T k = PQT (QQT)−1. (4.4)

It is obvious that we need at least three matched points to solve for T k and then

for xk. This can be easily achieved with SURF. Hence, we have the mean values

x̄k = [θ̄k T̄xk T̄yk]
T .

Now that the mean value x̄k is available, the samples of the state xk for frame

k can be drawn from the importance density function NG(x̄k,Σk), where the Σk

is determined independently for different situations. As the samples are generated,

the weight for each sample is assigned based on the similarity between the inversely

transformed frame using the samples and the reference frame. In our case, there

are N proposed particles. So we can apply the N inverse transformations to the

current frame using the N samples, and then calculate how similar is the inversely

transformed frame to the first frame for each sample. The particle that produces the

37

most similar frame is assigned to a heavier weight. Note that this method works only

when the camera takes the video of the same scene.

The processes for measuring the similarity between two images utilize the methods

in (J. Yang et al., 2006). The first method is to calculate the Mean Square Error

(MSE) M2
i between two images. It is obvious that the smaller the MSE, the less

difference between the two images. Thus the likelihood of the two images is higher

when the MSE is smaller, which can be approximated by the Gaussian distribution

below

P i
MSE ∝

1√
2πσM

exp{− M2
i

2σ2
M

}, (4.5)

where σM is the standard deviation and can be determined by experiments.

The second parameter is the correlation between the two images. The coefficient

of correlation Pi indicates the degree that the two images are linearly related (Kaur,

Kaur, & Gupta, 2012). The probability of the similarity between two images using

correlation coefficient is given by

P i
corr ∝

1√
2πσcorr

exp{−(Pi − 1)2

2σ2
corr

}, (4.6)

where the σcorr is the adjustable standard deviation, which is determined by experi-

ments.

38

After obtaining two weights from Eq. (4.5) and Eq. (4.6), the normalized weight

corresponding to each particle at frame k can be calculated as

wi
k =

P i
MSEP

i
corr∑N

i=1 P
i
MSEP

i
corr

. (4.7)

So far, the samples and the weights are attained, the estimated state vector at frame

k is approximated by the discrete summation of the weighted particles. The equation

is shown as

x̂k =
N∑
i=1

wi
kx

i
k. (4.8)

Therefore, the output from the particle filter provides the estimated vector x̂k =

[θ̂k T̂xk T̂yk] for the global movement between two successive frames.

One more step is to compute the transformation matrix that references to the

stable frame. Since the first frame is regarded to be stable, the accumulative trans-

formation matrix can be obtained in terms of the first frame, consider p2 = T 1 · p1,

p3 = T 2 · p2, · · · , and pk+1 = T k · pk, where pk denotes frame k and Tk represents

the transformation matrix at frame k. Thus, at frame k, the transformation matrix

between the first and the current frame is pk+1 = Hk · p1, where

Hk =
k∏
i=1

T i (4.9)

is the accumulative transformation matrix at frame k.

Note that the output from the particle filter gives us the estimation of the global

camera motion, the motion with respect to frame. To maintain the intentional move-

39

ment due to the movement of the UAV and the object motion, extra steps are required,

which are explored in the next section.

4.3 Implementation of the Kalman filter

As we only need to get rid of the unwanted movement, the intentional movement

on the video should not be removed. Thus, the intentional movement of the airplane

should be calculated and used to compensate the global movement (J. Yang et al.,

2006). A Kalman filter is utilized to estimate the intentional motion of the camera

since the intentional moving camera system can be modeled as a linear system. For the

Kalman filter, we need to find the two linear models, for the system state transition

model and the observation model. Assume the rotation angle and translations along

x and y axises are independent variables. So for the x-axis translation, the state

transition model is defined as

Txk = Tx,k−1 + vxk,

vxk = vx,k−1 + nvx,k−1,

where Txk and Tx,k−1 are the translations along the x-axis at frames k and k − 1,

respectively, vxk and vx,k−1 are the moving speed along x-axis at frames k and k − 1,

respectively, and nvx,k−1 is the zero mean Gaussian noise and has the distribution

nvx,k−1 ∼ N(0, σ2
vx). For the observation model, the equation is simply

Zxk = Txk +mxk,

40

where Zxk is the measurement at frame k and mxk is a Gaussian noise with zero mean

and variance σ2
mtx.

Similarly, translation Ty along the y-axis can be modeled in the same way as Tx.

For the rotation angle, the assumption is that there is no intentional angular velocity

of the camera. Thus, the state space model in given as



Txk

vxk

Tyk

vyk

θk


=



1 1 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1





Tx,k−1

vx,k−1

Ty,k−1

vy,k−1

θk−1


+



0

nvx,k−1

0

nvy,k−1

nθ,k−1


, (4.10)

where θk is the rotation angle at frame k, nvy,k−1 and nθ,k−1 are both zero mean Gaus-

sian noises with variance being σ2
vy and σ2

θ , respectively. Accordingly, the observation

model is formulated as


Zxk

Zyk

Zθk

 =


1 0 0

0 1 0

0 0 1




Txk

Tyk

θk

+


mxk

myk

mθk

 , (4.11)

where Zxk, Zyk, and Zθk are the measurements of the translations along x-axis, y-axis,

and the rotation angle, respectively, mxk, myk, and mθk are the zero mean Gaussian

observation noises with variance being σ2
mx, σ

2
my, and σ2

mθ, respectively.

41

From the above two models of Eq. (4.10) and Eq. (4.11), the intentional motion

vector can be obtained using Kalman filter and is denoted as zk = [Txk Tyk θk]
T .

Then the unexpected camera motion is computed as


x′

y′

1

 =


cos(θ̃k) −sin(θ̃k) T̃xk

sin(θ̃k) cos(θ̃k) T̃yk

0 0 1




x

y

1

 ,

where θ̃k = θ̂k−θk, T̃xk = T̂xk−Txk, and T̃yk = T̂yk−Tyk are the unintentional motion

estimation for the rotational angle and translations along both axises. For notation

simplicity, the above equation is represented as p = T̃ kq.

Another important issue in video stabilization is to estimate the object motion

in the video. In (J. Yang et al., 2006; Song et al., 2012), the object motion is

removed before the background motion estimation by detecting the motion speed that

is assumed to be faster than the background. However, in our case, we assume that

the airplane moves very slowly among successive frames since the target is very far

away from the camera. Moreover, the airplane appears to be very small on the image,

which has little to zero feature points. The airplane appears to be static compared

to the camera motion. Therefore, the motion of the object is not considered in this

thesis when doing the background motion estimation.

To summarize the video stabilization algorithms, the detailed operations at each

frame k is illustrated as follows.

1. Read the video and load the consecutive frames: frame k and frame k − 1.

42

2. Detect, extract, and match feature points of two consecutive frames using

SURF.

3. Compute the state vector x̄k from T k estimated using Eq. (4.4).

4. Estimate x̂k using a particle filter with N particles.

(a) for i = 1:N, generate particles from the Gaussian importance density as

shown in Eq. (4.3).

(b) for i = 1:N, assign the weights to each particle and calculate the normalized

weight for every sample, as shown in Eq. (4.7).

(c) Estimate the state vector using the weighted samples, as illustrated in

Eq. (4.8).

5. Calculate the accumulative transformation matrix as stated in Eq. (4.9).

6. Put the accumulative matrix into the Kalman filter to estimate the intentional

motion. Then calculate the unexpected transformation matrix T̃ k.

7. Apply inverse transformation using the above T̃ k to the current frame to form

the stabilized video.

Testing results of video stabilization will be shown in the next section.

4.4 Testing results

To accurately test the performance of the video stabilization algorithms, we gen-

erate the shaky videos using rotation and translations to a known image so that

43

ground truth values of rotation angle and the translations are known. The param-

eters for the particle filter are chosen as follows: the number of particles N = 30,

Σk = [0.001 10 10], and σMSE = σcorr = 0.5. For the Kalman filter, the initial states

are all zero. The system noise parameters are σθ = 0.5 and σvx = σvy = 5. The

observation noise parameters are σmθ = σmtx = σmty = 0.1. Moreover, the initial

error covariance matrix is assumed to be equal to the system noise covariance matrix.

These values are controllable and subject to change for different cases.

4.4.1 Testing results for smooth linear motions

The first video comprises a series of the images that are obtained with linear incre-

ment in each of the three shaking parameters of the rotation angles, the translations

along x-axis, and the translations along y-axis. We use three different schemes on this

video for stabilization: Scheme A, SURF-only feature detection, Scheme B, SURF +

a particle filter, and Scheme C, SURF + a particle filter + a Kalman filter. Scheme

A estimates the transformation matrix using the match points directly, and Scheme

B estimates the transformation matrix using SURF first and then a particle filter

to obtain more accurate results. Note that the outputs from the first two schemes

are about global camera motion as shown in Eq. (4.9). In Scheme C, the Kalman

filter is applied to estimate the intentional motion vector following SURF and particle

filtering. The testing results are shown as follows.

44

Example frames of unstable videos, stabilized videos by Schemes A, B, and C are

given in Figs. 4.1 to 4.4. Note that for the result in Fig. 4.4, the translation along

x-axis is unchanged since it is considered as the intentional move.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.1. Frames from the unstable video.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.2. Stabilized frames processed with Scheme A.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.3. Stabilized frames processed with Scheme B.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.4. Stabilized frames processed with Scheme C.

45

Figs. 4.5, 4.6, and 4.7 show the comparisons of the estimation results for each

of the three parameters of camera motion. As can be seen from Fig. 4.7, Scheme B

outperforms Scheme A, and since Scheme C considers linear motions as the intentional

movement, both the estimation results are close to zero, which means no unexpected

motion. However, we can see from Fig. 4.5 and Fig. 4.6 that Scheme A outperforms

the other two schemes. This is due to the assumption that no intentional motion

along x-axis and y-axis translation.

4.4.2 Testing results for random motions

Another video is produced with rotation angle and translation in y-axis of each

frame being random processes to further evaluate the performances of the three

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

Frame

pi
xe

ls

X axis translation estimation

Actual
Scheme A
Scheme B
Scheme C

Figure 4.5. Comparison of x-axis translation estimations for linear translation change.

46

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

Frame

pi
xe

ls

Y axis translation estimation

Actual
Scheme A
Scheme B
Scheme C

Figure 4.6. Comparison of y-axis translation estimations for linear translation change.

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20
x 10

−3

Frame

R
ad

ia
ns

Rotation angle estimation

Scheme A
Scheme B
Actual
Scheme C

Figure 4.7. Comparison of rotation estimations for linear rotation change.

47

schemes. The motion along x-axis remains the same linear relationship as that in

the first video. The results are shown as follows.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.8. Frames from unstable video.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.9. Stabilized frames processed with Scheme A.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.10. Stabilized frames processed with Scheme B.

(a) Frame = 1. (b) Frame = 50. (c) Frame = 100.

Figure 4.11. Stabilized frames processed with Scheme C.

48

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

40

60

80

100

120
X axis translation estimation

Frame

P
ix

el
s

Scheme A
Scheme B
Actual
Scheme C

Figure 4.12. Comparison of the x-axis translation estimations for random translation
change.

Exemplary frames of unstable videos, stabilized by Schemes A, B, and C are

given in Figs. 4.8 to 4.11, and Figs. 4.12, 4.13, and 4.14 show the comparisons of the

estimation results for x-axis, y-axis translations, and rotation angle. As seen from

Fig. 4.14, Scheme C outperforms both Scheme A and Scheme B, demonstrating the

effectiveness of the Kalman filter. Yet, as shown in Fig. 4.13 for y-axis translation

estimation, Scheme C performs the worst, still due to the estimation of intentional

change. We can see from Fig. 4.12 that Scheme B outperforms Scheme A.

49

0 10 20 30 40 50 60 70 80 90 100
−60

−40

−20

0

20

40

60

80

100

120

140

Frame

P
ix

el
s

Y axis translation estimation

Actual
Scheme A
Scheme B
Scheme C

Figure 4.13. Comparison of the y-axis translation estimations for random translation
change.

0 10 20 30 40 50 60 70 80 90 100
−0.015

−0.01

−0.005

0

0.005

0.01
Rotation angle estimation

Frame

R
ad

ia
ns

Actual
Scheme C
Scheme A
Scheme B

Figure 4.14. Comparisons of the rotation estimations for random rotation change.

50

5. Object detection algorithms

In this chapter, we discuss object detection algorithms in details. Usually, the de-

tection of an aircraft in an image is hindered by many factors, including pixel noise,

heavy clouds, and other obstacles on the ground. Therefore, the development of suit-

able algorithms are critical for successful aircraft detection among other distractions.

Some popular algorithms include edge detection (Bhadauria, Singh, & Kumar, 2013),

connected area extraction (Hajri, 2012), morphological filtering (Casasent & Ye, 1997;

Sang, Zhang, & Wang, n.d.), local adaptive threshold filtering (Zarandy et al., 2011),

and dynamic programming (M. Yang et al., 2002; Barniv, 1985). In the sequel of

this thesis, we discuss the development and implementations of several algorithms for

object detection.

5.1 Edge detection

Edge detection is one of the fundamental operations in computer vision. Edges are

significant local changes of intensity, which usually occur on the boundary between

different regions in an image. Therefore, edge detection extracts image features such

as corners, lines, and curves on the image. Generally, derivative operations are applied

to detect the sudden change of the intensity in an image.

51

The first-order partial derivatives for f(x, y) are, respectively,

fx =
∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

fy =
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
.

By definition, the gradient is a vector with direction and magnitude. For a 2D discrete

digital image, the gradient is approximated by finite differences, with h = 1, which is

denoted as ∇f = [fx fy]
T :

fx = f(x+ 1, y)− f(x, y)

fy = f(x, y + 1)− f(x, y)

M(∇f) =
√

(fx)2 + (fy)2

θ(∇f) = arctan(fy/fx)

(5.1)

The operation of edge detection can be considered as the convolution of the image

with a mask, a filter. For example, the convolution masks defined in Eq. (5.1) are

[−1 1] in the x direction and [−1 1]T in the y direction, respectively. Then the

edges are determined by finding the local maximum or minimum points, which can

be decided by comparing the convoluted results with a threshold.

52

Another way to acquire the local maximum and minimum points is checking

whether the second derivative at the point is zero-crossing. The second derivative

of 2D function f(x, y) is obtained as

∇f 2 =
∂2f

∂x2
+
∂2f

∂y2
, (5.2)

which is also known as the Laplacian edge detector. For calculations using Eq. (5.2),

one of the popular discrete convolution kernels of the Laplacian edge detector is

obtained as

M =


0 1 0

1 −4 1

0 1 0

 .

Since the Laplacian operation is sensitive to noise due to the second-order deriva-

tives, the operation is often applied after a Gaussian filter which reduces noise. This

is also called the Laplacian-of-Gaussian (LoG) (Maini & Himanshu, 2009).

There are four different edge detectors widely used: Roberts, Prewitt, Sobel, and

Canny edge detectors (Shrivakshan & Chandrasekar, 2012). In this thesis, the Sobel

edge detector is employed due to its computational efficiency. The Sobel edge detector

is an example of applying the first-order derivative to the image to obtain the edges.

53

The Sobel edge detector uses a pair of 3×3 convolutional kernels which are formulated

as follows.

Mx =


−1 0 1

−2 0 2

−1 0 1

 My =


−1 −2 −1

0 0 0

1 2 1


Compared to the second derivative, the Sobel operator is less sensitive to unex-

pected noise.

5.2 Morphological processing

Morphological processing is the collection of non-linear operations related to the

shape of morphology of features in an image (Gandhi, Yang, Kasturi, Coraor, &

McCandless, 2003). It provides a way for extracting small, point-like targets (Carnie

et al., 2005; Yusko, 2007), which is a good application for UAV sense and avoidance.

Morphological processing is usually performed before the other image algorithms to

preserve the small objects while removing the large cloud clutters on the image.

Morphological operations only rely on the relative ordering of the pixel values instead

of on their numerical values, so they are widely applied to process binary images.

Generally, the operation involves two primary operations which are known as dilation

and erosion. The basic element in these two morphological operations is a binary

region called a structure element, a small binary matrix whose shape is defined by

the pattern of ones and zeros. Unless specified otherwise, the center of the structure

54

element is the origin (Sonka, Hlaval, & Boyle, 2013). During morphology operation,

different values (1 or 0) will be assigned to the corresponding area under the structure

element as the structure element slides along the image.

The mathematical expression for the dilation and erosion are defined (Sonka et

al., 2013) as

F ⊕ SE = {z|z = f + se, f ∈ F, se ∈ SE},

F 	 SE = {z|z + se ∈ F, se ∈ SE},
(5.3)

where F is a set with the elements being represented by f , SE denotes the structure

element whose members are expressed as se, and ⊕ and 	 stand for the dilation and

erosion operations, respectively.

Moreover, the dilation and erosion operations for a 2D gray-scale image f at

location (x, y) are defined (Carnie, Walker, & Corke, 2006) by the following

(f ⊕ s)(x, y) = max
(u,v∈s)

{f(x− u, y − v)},

(f 	 s)(x, y) = min
(u,v∈s)

{f(x− u, y − v)},
(5.4)

where s is the structure element and (u, v) is a pixel in s.

Additional morphological operations can be achieved by combining the two fun-

damental operations together. Morphological opening process is an erosion followed

by a dilation

f ◦ s = (f 	 s)⊕ s,

55

and morphological closing is a dilation followed by an erosion

f • s = (f ⊕ s)	 s.

Usually, the opening operation smooths the contours of the object by eliminating

thin protrusions and breaking narrow bridges that are too small to accommodate the

structure element (Sonka et al., 2013). On the other hand, the closing operation tends

to smooth the entire section area by building up the links and filling small holes and

gaps.

From the above discussion, we know that the small bright areas are darkened

by the opening operation and the small dark areas are brightened by the closing

operation. As such, by subtracting the opened image from the original image, the

small positive objects are obtained. Similarly, the difference between the original

image and the closed image identifies the small negative objects that are darker than

the background (Maragos, 1987). Thus, the closed image minus the opened image

provides the detections for both the positive and negative objects. Such a process is

called the Closing-Minus-Opening (CMO) operation which is formulated as

CMO(f, s) = (f • s)− (f ◦ s).

In (Carnie et al., 2006), a so-called minimum CMO operation is proposed to eliminate

the large cloud and ground clutter whose existence causes false detections. The

minimum CMO utilizes two 1-D structure elements that are used for vertical and

56

horizontal operations. During the two CMO operations, small objects are preserved

if the sizes of the structure elements are bigger than the objects, with large clutter

eliminated either in the vertical or horizontal operations. Therefore, most of the

large clutters are removed after calculating the minimum values out of the two CMO

operations.

5.3 Dynamic programming

While the minimum CMO operation can be used to detect small negative and

positive objects with high detection probability, the detection performance is often

affected by random pixel noise and poor signal to noise ratio. One optimal solution

for moving target detection is to utilize dynamic programming (DP) (Arnold, Shaw,

& Pasternack, 1993), a combination of detection and tracking, which returns the

target detection and tracking at the same time (Tonissen & Evans, 1995). The DP

algorithm has been proven to be efficient in detecting targets with low signal-to-noise

ratio and is robust to the camera jitter and random noise (Barniv, 1985). Instead

of detecting objects based on a single image, DP makes the decision of the presence

of the target after shifting and averaging multiple frames, which is suited for object

detection (Gonzalez & Woods, 2008), tracking (Tonissen & Evans, 1995), and even

edge detection (Lee, Yan, & Zhuang, 2001).

For aircraft sense and avoid applications, the object movement between two frames

is less than 1 pixel, especially at far distances (Hobbs, 1991). Hence, we consider a

2D image, where the target position is represented by (i, j) and the 2D velocity of the

57

Figure 5.1. Object movement illustration.

target is assumed to be (u, v), with −1 ≤ u, v ≤ 1. The number of target trajectories

can be reduced by comparing state transition between consecutive frames.

Assume at frame k, the object is at location (i, j) with the speed (u, v). Then at

frame k + 1, the object can end up at any location centered around (i, j) with the

range of 1 pixel, as shown in Fig. 5.1 (Carnie et al., 2006). The dark blue marks the

location of the object in frame k and the possible locations in frame k+ 1 are colored

in light blue. The nine possible locations are grouped into four cases in terms of the

velocity u and v.

The steps for the dynamic programming are detailed in (M. Yang et al., 2002)

and are reproduced here for completeness.

Initialization

For frame k = 0, Fu,v(i, j, 0) = 0, u ∈ {−1, 1} v ∈ {−1, 1}, where Fu,v(i, j, 0) is

the (i, j) pixel of frame 0 of the processed image in the (u, v) direction.

58

Recursion

At frame k + 1, the value of each pixel of the processed frame in each direction

is the summation of the weighted value of the pixel of the input image at

frame k+1 and the maximum response of four possible transition states in four

directions of frame k. The calculation is given as

Fuv(i, j, k + 1) = (1− α)f(i, j, k + 1) + α max
(x′,y′)∈Q(i,j,u,v)

Fuv(i
′, y′, k), (5.5)

where f(i, j, k + 1) is the original frame k + 1, α is the factor that determines

how much it should trust the previous frame (also called memory factor) whose

values range from 0 to 1, Q(i, j, u, v) represents the pixel values within the

window for four different cases as illustrated in Fig. 5.1.

Decision Finally, the pixel value at the (i, j) of the processed image of frame k + 1

is the maximum value among all the four cases. Thus

Fm(i, j, k + 1) = max
(u,v)

Fuv(i, j, k + 1). (5.6)

The processed image with DP is usually converted into a binary image with a

threshold for detection purpose. The target with low signal-to-noise ratio is able to

be detected since the dynamic programming raises the signal-to-noise ratio for dim

moving target. Note that there is usually clutter besides the target. The large area

clutter should be eliminated using the CMO operation before processing with DP.

59

5.4 Implementation of object detection algorithms

Object detection can be done using various combinations of image processing

algorithms discussed above. To test the effectiveness of the different algorithms, we

consider three schemes: Scheme 1, the Sobel edge detector, Scheme 2, morphological

processing plus the Sobel edge detector, and Scheme 3, morphological processing plus

dynamic programming and the Sobel edge detector. The algorithm for Scheme 3 is

outlined below.

1. Convert the image to grayscale as needed, which is referenced as f .

2. Apply the minimum CMO algorithm to the grayscale image f :

(a) First process f with CMO using a horizontal structure element to get the

horizontal CMO image fh.

(b) Then apply CMO with a vertical structure element to f to get vertical

CMO image fv.

(c) Finally obtain the minimum CMO image fm by finding the minimum pixel

values between fh and fv for each pixel.

3. Process fm with DP as detailed in a previous section to obtain Fm.

4. Detect the edge on Fm using a Sobel detector with a threshold value τ .

60

5.5 Results of object detection

In this section, we demonstrate the performance of the three object detection

schemes. For the morphological processing, we use a structure element of size 1× 10

in the horizontal direction and another of size 10 × 1 in the vertical direction. The

threshold τ is chosen to be 0.3 determined by experiments. For the removal of large

clutters, the maximum area size is set to be 300 pixels or 100 pixels depending on

the size of the aircraft. This means any connected area whose size is bigger than

300 or 100 pixels will be eliminated. We use four sets of videos to demonstrate the

performance of different schemes. In order to show clearly the detected objects in

the printed copy, all the binary images are displayed in a way that the background is

white and the detected objects are black.

Fig. 5.2a is the first frame from a synthetic video. This video is generated in a

way that the background does not change while the object moves between consecutive

frames. The size of the target is designed to be 2 × 2 and the speed of the target

is constrained within 1 pixel per frame to be consistent with the assumptions of the

dynamic programming. As shown in the figure, there are large dark clouds in the

sky and large buildings at the bottom. In addition, the target is very dim and the

contrast between the target and the background is not very sharp, making it difficult

to detect with the naked eye. Figs. 5.2b to 5.2d demonstrate the object detection

results using different schemes. We can see that Scheme 1 works well in terms of

object detection, but suffers from too many false detections. We can also see that

61

(a) The original image. (b) Result of Scheme 1.

(c) Result of Scheme 2. (d) Result of Scheme 3.

Figure 5.2. Object detection results for a synthetic video with dark clouds.

both Scheme 2 and Scheme 3 work very well with a lower number of false detections.

Note that the power of DP is not obvious since the video is not very noisy.

The image shown in Fig. 5.3a is a frame from the video that has been added with

zero mean Gaussian noise of variance 0.0002. This video is generated in the same way

as the one shown in Fig. 5.2a. Figs. 5.3b to 5.3d demonstrate the object detection

results using different schemes. We can see that Scheme 1 still works well in terms of

object detection and suffers less with false detections due to better cloud conditions.

62

(a) The original image. (b) Result of Scheme 1.

(c) Result of Scheme 2. (d) Result of Scheme 3.

Figure 5.3. Object detection results for a synthetic video with light clouds and added
noise.

We can also see that Scheme 3 significantly outperforms Scheme 2 due to the power

of DP in the presence of noise.

Fig. 5.4a shows the original image with varying clouds, other clutters, and a

relatively small object. The video was recorded on the ground by hand. We can see

from Figs. 5.4b to 5.4d that Scheme 3 significantly outperforms the other two schemes

in terms of reduced false alarms. This is again due to the effectiveness of DP.

Fig. 5.5a shows the original image recorded on the ground without too many

distractions. Although there are some lamp posts in the image, the sky is clear

63

(a) Original image. (b) Result of Scheme 1.

(c) Result of Scheme 2. (d) Result of Scheme 3.

Figure 5.4. Object detection results for a recorded video with varying clouds.

without heavy cloud clutter. Figs. 5.5b to 5.5d demonstrate the object detection

results using different schemes. We can see that due to the big difference between the

flying object and the background, Scheme 1 performs best.

To further show the effectiveness of SNR improvement of DP, we provide results

in Fig. 5.6. Though the SNR is not significantly improved, this makes a big difference

when SNR is low.

5.6 Remarks about algorithm selection

The decision on which detection shceme to use should be made based on specific

situations. We will use Scheme 1 when there is big contrast between the objects and

the background, Scheme 2 when there is large area clutter, such as dark clouds, to

64

(a) Original Image. (b) Result of Scheme 1.

(c) Result of Scheme 2. (d) Result of Scheme 3.

Figure 5.5. Object detection results for a video without cloud clutters.

0 50 100 150 200 250 300 350 400 450
−3.1

−3.05

−3

−2.95

−2.9

−2.85

−2.8

−2.75

−2.7

−2.65

−2.6

Frame

dB

SNR before DP
SNR after DP

Figure 5.6. The SNR comparison.

65

be removed first, and Scheme 3 when the image is noisy. However, the DP is not

computational efficient since the algorithm searches every pixel on the image in a

recursive fashion.

66

6. Conclusion

This thesis has documented the following work for sense and avoid using cameras

mounted on a UAV:

1. Camera calibration. There is no new contribution in this topic. It is included

since it is an important part for vision-based sense and avoid in terms of accu-

rately tracking the flying targets.

2. Camera stabilization. There are many different methods for camera stabiliza-

tion, which is still an active research topic. Here, we choose to address the

camera stabilization problem based on Kalman filtering and particle filtering

using matched feature points obtained using SURF. We have provided an easy-

to-understand derivation of the Kalman filter and summarized the essence of

the particle filter. We also implemented both filters, with the particle filter

used for global motion estimation and the Kalman filter for intentional mo-

tion estimation. Testing results are provided to show the effectiveness of the

approach.

3. Object detection. We have focused on the issue of small target detection, which

is especially important for vision-based sense and avoid. We have discussed

three image processing schemes to address the problem of small target detection:

Scheme 1 using a Sobel edge detector, Scheme 2 using a morphological operation

67

called CMO on gray-level images and then a Sobel edge detector, and Scheme

3 using dynamic programming between the two steps of Scheme 2. We have

evaluated the performance of these schemes, and concluded that we can use

Scheme 1 when there is big contrast between the objects and the background,

Scheme 2 when there are large clutters, such as dark clouds, to be removed first,

and Scheme 3 when the image is noisy.

A combination of the above processing algorithms provides a very valuable ap-

proach for vision-based sense and avoid for UAV applications.

In the future, the following aspects can be investigated to improve and evaluate

the performance of vision-based sense and avoid:

• Research algorithms that are robust to the heavy clutter and environment vari-

ations will be explored. One thought is that the aircraft can be detected based

on its steady moving speed between the consecutive frames. Therefore, objects

with random speed can be classified as noise and outliers (Chen, Dang, Peng,

& Bart Jr, 2009; Abe, Zadrozny, & Langford, 2006), which can be removed in

a further process.

• Evaluate the performance based on flight simulation involving multiple aircraft

and cameras. FlightGear, an open-source flight simulator, is a good candidate

for this evaluation.

68

REFERENCES

Abdullah, L., Tahir, N., & Samad, M. (2012, 7). Video stabilization based on point feature
matching technique. Control and System Graduate Research Colloquium, 303-307.

Abe, N., Zadrozny, B., & Langford, J. (2006, 8). Outlier detection by active learning. Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining , 504-509.

Arnold, J., Shaw, S., & Pasternack, H. (1993, 1). Efficient target tracking using dynamic
programming. IEEE transactions on Aerospace and Electronic Systems , 29 (1).

Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002, 2). A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on
Signal Processing , 50 (2).

Barniv, Y. (1985, 1). Dynamic programming solution for detecting dim moving targets.
Aerospace and Electronic Systems, IEEE Transactions on.

Bhadauria, H., Singh, A., & Kumar, A. (2013, 6). Comparison between various edge
detectioin methods on satellite image. International Journal of Emerging Technology
and Adavance Engineering , 3 .

Carnie, R., Walker, R., & Corke, P. (2005). Computer-vision based collision avoidance for
uavs. Melbourne, Australia.

Carnie, R., Walker, R., & Corke, P. (2006, 5). Image processing algorithms for uav “Sense
and Avoid”. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International conference on.

Casasent, D., & Ye, A. (1997, 1). Detection filters and algorithm fusion for ATR. IEEE
Transactions on Image Processing , 6 .

Chen, Y., Dang, X., Peng, H., & Bart Jr, H. (2009, 2). Outlier detection with the ker-
nelized spatial depth function. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31 .

Development Projects INC. (2013, 9). Nasa centennial challenge uas-aoc rules
(Tech. Rep.). Retrieved from http://www.nasa.gov/directorates/spacetech/
centennial challenges/uas

Dey, D., Geyer, C., Singh, S., & Digioia, M. (2009, 7). Passive, long-range detection of
aircraft: Towards a field deployable sense and avoid system. Proceedings of Field &
Services Robotics.

Doucet, A., Freitas, N., & Gordon, N. (n.d.). An introduction to sequential monte carlo
methods. Retrieved from http://www.stats.ox.ac.uk/~doucet/doucet defreitas
gordon smcbookintro.pdf

69

Fergus, R., Singh, B., Hertzmann, A., Roweis, S., & Freeman, W. (2006). Removing camera
shake from a single photograph. ACM Trans. Graph, 25 , 787–794.

Gandhi, T., Yang, M., Kasturi, R., Coraor, L., & McCandless, J. (2003, 1). Detection
of obstacles in the flight path of an aircraft. IEEE Transactions on Aerospace and
Electronic Systems , 39 .

Gaszczak, A., Breckon, T., & Han, J. (2001, 1). Real-time people and vehicle detection from
uav imagery. Proceeding of SPIE: Intelligent Robots and Computer Vision XXVIII:
Algorithms and Techniques .

Gonzalez, R., & Woods, R. (2008). Digital image processing (3rd ed.). Pearson Education.

Hajri, R. (2012, 6). UAV to UAV target detection and pose estimation. Retrieved from
http://www.dtic.mil/dtic/tr/fulltext/u2/a562740.pdf

Harris, C., & Stephens, M. (1998). A combined conrner and edge detection. Proceedings
of the Fourth Alvey Vision conference, 147 - 151.

Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson Education.

Hobbs, A. (1991, 4). Limitations of the see-and-avoid principle (Tech. Rep.). Retrieved
from https://www.atsb.gov.au/publications/1991/limit see avoid.aspx

Hruska, R., Lancaster, G., Harbour, J., & Cherry, S. (2005, 9). Small UAV-acquired,
high-resolution, georeferenced still imagery. conference: AUVSI Unmanned Systems
North America.

IDS. (n.d.). Retrieved from https://en.ids-imaging.com/store/produkte/kameras/
gige-kameras/show/all.html

Jaron, P., & Kucharczyk, M. (2012). Vision system prototype for UAV po-
sitioning and sparse obstacle detection. Retrieved from http://www.diva
-portal.se/smash/get/diva2:832010/FULLTEXT01.pdf;jsessionid=Iqf9smVDR
7DqAuk08Gd7xKFkKcBIJH3zhqMWZvt.diva2-search7-vm

Kaur, A., Kaur, L., & Gupta, S. (2012, 12). Image recognition using coefficient of correlation
and structure similaity index in uncontrolled environment. International Journal of
Computer Applications , 29 .

Lee, B., Yan, J., & Zhuang, T. (2001). A dynamic programming based algorithm for
optimal edge detection in medical images. Medical Imaging and Augmented Reality,
2001. Proceedings. International Workshop on, 193-198.

Lin, C., Hong, C., & Yang, C. (2009, 3). Real-time digital image stabilization system
using modified proportional integrated controller. IEEE Transactions on Circuits
and Systems for Video Technology , 19 .

Mackay, D. (n.d.). Introduction to monte carlo methods. Retrieved from http://www
.inference.phy.cam.ac.uk/mackay/erice.pdf

Maini, R., & Himanshu, A. (2009, 2). Study and comparison of various image edge detection
techniques. International Journal of Image Processing , 3 .

Manjunath, B., Shekhar, C., & Chellappa, R. (n.d.). A new approach to image feature detec-
tion with applications. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.1.3625&rep=rep1&type=pdf

70

Maragos, P. (1987, 7). Tutorial on advances in morphological image processing and analysis.
Proceeding of SPIE0707. Visual Communications and Image Processing .

Matsushita, Y., Ofek, E., Ge, W., Tang, X., & Shum, H. (2006, 7). Full-frame video
stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28 .

Mohammadi, M., Fathi, M., & Soryani, M. (2011, 6). A new decoder side video stabilization
using particle filter. Systems, Signals and Image Processing (IWSSIP), 2011 18th
International article on, 1-4.

Moses, A. (2013). Radar based collision avoidance for unmanned aircraft systems. Elec-
tronic Thesis and Dissertations .

Orlande, H., Colaco, M., Dulikravich, G., Vlanna, F., daSilva, W., daFon-
seca, H., & Fudym, O. (n.d.). Kalman and particle filters. Re-
trieved from http://www.sft.asso.fr/Local/sft/dir/user-3775/documents/
actes/Metti5 School/Lectures&Tutorials-Texts/Text-T10-Orlande.pdf

Perreault, B. (2012, 4). Introduction to the Kalman filter and its derivation. Re-
trieved from https://www.academia.edu/1512888/Introduction to the Kalman
Filter and its Derivation

Pinto, B., & Anurenjan, P. (2011, 2). Video stabilization using speeded up robust features.
Communications and Signal Processing (ICCSP), 2011 International conference on,
527-531.

Rozantsev, A. (2009, 5). Visual detection and tracking of flying objects in unmanned
aerial vehicle. Retrieved from http://wiki.epfl.ch/edicpublic/documents/
Candidacy%20exam/PR13Rozantsev.pdf

Sang, N., Zhang, T., & Wang, G. (n.d.). Gray scale morphology for small object detection.
Proc. SPIE2759. Signal and Data Processing of Small Targets , 2759 .

Shah, S. (2009, 8). Vision based 3D obstacle detection using a single camera
for ROBOTS/UAVs. Retrieved from https://smartech.gatech.edu/bitstream/
handle/1853/29741/shah syed i 200908 mast.pdf

Shrivakshan, G., & Chandrasekar, C. (2012, 9). A comparison of various edge detection
techniques used in image processing. International Journal of Computer Science
Issues , 9 .

Song, C., Zhao, H., Jing, W., & Zhu, H. (2012, 5). Robust video stabilization based
on particle filtering with weighted feature points. IEEE Transactions on Consumer
Electronics , 58 .

Sonka, M., Hlaval, V., & Boyle, R. (2013). Image processing, analysis, and machine vision
(4th ed.). Cengage Learning.

Tong, C., Kamata, S., & Ahrary, A. (2009, 11). 3D face recognition based on fast feature
detection and non-rigid iterative closet point. Intelligent Computing and Intelligent
Systems, 2009. ICIS 2009. IEEE International conference on, 4 , 509-512.

Tonissen, S., & Evans, R. (1995, 12). Target tracking using dynamic programming algo-
rithm and performance. Decision and Control, 1995., Proceedings of the 34th IEEE
conference on, 3 , 2741-2746 vol.3.

71

Tsai, R. (2003, 1). A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics
and Automation, 323-344.

Yang, J., Schonfeld, D., Chen, C., & Mohamed, M. (2006, 10). Online video stabilization
based on particle filters. Image Processing, 2006 IEEE International conference on,
1545-1548.

Yang, M., Gandhi, T., Kasturi, R., Coraor, L., Cmaps, O., & McCandless, J. (2002).
Real-time implementation of obstacle detection algorithms on a datacube maxpci
architecture. Real-Time Imaging .

Yusko, R. (2007, 3). Platform camera aircraft detection for approach evaluation and train-
ing. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a467710.pdf

Zarandy, A., Zsedrovits, T., Nagy, Z., Kiss, A., & Roska, T. (2011, 5). Collision avoid-
ance for UAV using visual detection. Circuits and Systems (ISCAS), 2011 IEEE
International Symposium on, 2173-2176.

Zarandy, A., Zsedrovits, T., Nagy, Z., Kiss, A., & Roska, T. (2012, 8). Visual sense-
and-avoid system for UAVs. Cellular Nanoscale Networks and Their Applications
(CNNA), 2012 13th International Workshop on, 1-5.

Zhou, S., Chelleppa, R., & Moghaddam, B. (2004, 12). Visual tracking and recognition
using appearance-adaptive models in particle filters. IEEE Transactions on Image
Processing .

	Aircraft Detection and Tracking Using UAV-Mounted Vision System
	Scholarly Commons Citation

	tmp.1493143333.pdf.9SumP

