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Samenvatting

De laatste jaren worden videoverwerking en computervisie op grote schaal ge-
bruikt om het dagelijkse leven te assisteren, beveiligen en vereenvoudigen op
het gebied van veiligheid en inspectie, ouderenzorg, verkeersobservatie, video-
conferencing, medische zorg, enz. Cameranetwerken op grote schaal zijn steeds
wijder verspreid door de dalende kost van camera's en vooruitgang in cam-
eraminiaturisatie. Het omgaan met en het analyseren van deze grote hoeveel-
heden videodata zijn redenen voor het ontwikkelen van nieuwe computervisie-
algoritmen en samenwerkende multi-camerasystemen die de video lokaal verw-
erken op de camera's, en alleen compacte data uitwisselen om de gewenste taak
te vervullen. Deze systemen worden slimme multi-camera netwerken genoemd.

Eén van de essentiële taken van zulke netwerken, en de focus van deze thesis,
is het volgen van objecten en mensen om hun trajecten, gedrag en relaties
vast te stellen. In levensechte omstandigheden zijn er verschillende signi�cante
uitdagingen bij het volgen van objecten.

• Grote variaties in belichtings- en weersomstandigheden (bij gebruik
buitenshuis), zowel als frequente occlusie van de geobserveerde objecten,
creëren een enorme uitdaging voor nauwkeurige tracking.

• De typische beeldkenmerken voor tracking, zoals kleur, vorm of textuur,
zijn vaak niet discriminatief genoeg in werkelijke condities.

• Bandbreedtebeperkingen en moeilijkheden bij het opslaan en analyseren
van grote hoeveelheden videodata maken tracking duur en technisch
veeleisend. Deze moeilijkheden leggen een behoefte op slimme infor-
matieselectie, slimme verspreiding en slimme fusie.

• Het gebruik van slimme visuele sensoren, zoals slimme camera's, creëren
de behoefte voor lage complexiteit, en computationeel e�ciënte real-time
tracking.

De uitdagingen hangen af van de camerasetup die gebruikt wordt: een
enkele camerasetup, of een multi-camerasetup met of zonder overlappende
gezichtsvelden.

Als een omgeving geobserveerd wordt door een enkele camera, komt alle ver-
worven informatie van een enkel gezichtspunt. In dit geval is het een uitdaging
om voldoende data te verzamelen over de verschijning van geobserveerde ob-
jecten. Tracking is gevoelig aan poseveranderingen van het object en occlusies.
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De enkele camerasystemen zijn nog steeds aanwezig in verschillende toepassin-
gen, zoals perimeter en verkeerstoezicht, het buitenshuis volgen van mensen,
enz.

In een netwerk met overlappende cameragezichtsvelden wordt elk deel van
het interessegebied bekeken door minstens één camera en typisch met verschil-
lende camera's die verschillende gezichtspunten hebben. Bij het volgen van
objecten moet de informatie vanuit verschillende zichten gefuseerd worden om
de performantie te verbeteren. Real-time tracking van mensen is vaak een
essentiële taak in deze setups, in het bijzonder om het pad terug te vinden
in beveiliging- en toezichttoepassingen [P�ugfelder 10], [Morris 08]. Verschil-
lende andere toepassingen komen constant op. Bijvoorbeeld in telecommuni-
catie (meer speci�ek videoconferencing) kan positionele data van elke aanwezige
in de meeting gebruikt worden om interessegebieden die personen bevatten te
de�niëren, om zo meer gedetailleerde verwerking uit te voeren in deze gebieden.
Het kan helpen om met pan-tilt-zoom (PTZ) camera's te focussen op speci�eke
personen [Aghajan 09], bij hette bepalen wanneer ze een kamer binnenkomen
of buitengaan, hun identiteit (zelfs wanneer ze niet naar een camera kijken),
en hun activiteiten a�eiden [Fathi 11] zoals presenteren, kijken naar de presen-
teerder, en andere. In deze toepassingen, waarbij het doel is om de individuele
trajecten van elke persoon vast te leggen, is het vermijden van tracking loss
essentieel. Individuele trajecten mogen niet verloren gaan door occlusies en
individuen mogen niet verward worden wanneer ze in elkaars buurt komen of
wanneer hun paden elkaar kruisen.

Anderzijds, in een niet-overlappend cameranetwerk zijn er typisch �blinde�
vlekken waar geen enkele camera een zicht heeft op het object. In deze
netwerken is het belangrijk om niet alleen objecten te volgen vanuit elk cam-
erastandpunt, maar ook om elk object te heridenti�ceren wanneer het bij an-
dere camerazichten verschijnt, zodat trajecten uit verschillende zichten kunnen
verbonden worden. Dit is een typisch scenario in verkeersobservatie, waarbij
camera's in tunnels of langs wegen geplaatst worden.

In deze scriptie stellen we een tracking methode op voor deze drie camera
setups. In de context van enkele camera tracking gebruiken we een multi-cue
Kalman-�lter-raamwerk. We stellen het gebruik van de Radontransformatie-
gebaseerde beeldprojectiekenmerken, wat we signaturen noemen, als compu-
tationeel e�ciënt en verlichtingsinvariante kenmerken. We de�niëren een ti-
jdsvervormende techniek voor signatuur-matching, waar we randdetectie van
gevolgde objecten gebruiken in elk videoframe. We demonstreren de voordelen
van signatuur-gebaseerde kenmerken tegenover voorgrond blobs en optical �ow
kenmerken en analyseren vervolgens onze aanpak op verschillende verkeersob-
servatie sequenties, opgenomen in variabele weers- en belichtingsomstandighe-
den. Wanneer de lichtomstandigheden niet snel veranderen, zijn voorgrond
blobs en optical �ow geschikt voor tracking. In het geval van plotse belicht-
ingsverandering hebben voorgrond blobs last van gaps- en ghosting-e�ecten,
wat zorgt voor het uitzetten of inkrimpen van selectiekaders op de voorgrond,
terwijl optical �ow vectoren snel veranderen, zowel in magnitude, als in richting.
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De voertuigsignaturen zijn echter relatief invariant aan deze verlichtingsveran-
deringen en dus zijn we hiermee beter in staat om betrouwbare metingen te
bekomen.

In de context van multi-camera tracking met overlappende gezichtsvelden,
afgezien van de nauwkeurigheid in realistische condities, focussen we op real-
time uitvoering, lage latency en schaalbaarheid van tracking. Dit zorgt voor
een extra complexiteitsniveau, vergeleken met state-of-the-art methoden zoals
gepubliceerd in [Berclaz 11]. Een real-time en laag-latency operatie is in veel in-
door trackers nodig, aangezien ze snel moeten reageren op positieveranderingen
van personen. Aangezien deze toepassingen typisch gepaard gaan met moni-
toring op lange termijn, zijn robuustheid en tracking nauwkeurigheid ook van
groot belang. Schaalbaarheid is een probleem dat veel over het hoofd gezien
wordt in multi-camera-onderzoek: gecentraliseerde verwerking van meerdere
videostromen creëert niet alleen een computationeel, maar ook een communi-
catieprobleem. Dit betekent dat het toevoegen van een camera aan het gecen-
traliseerd netwerk een signi�cante impact kan hebben op het vermogen van het
netwerk om waargenomen data te verdelen en verwerken. Daartoe richten we
ons in deze scriptie op gedecentraliseerde en verdeelde tracking benaderingen,
waarbij camera's gegroepeerd worden in clusters die communiceren met een
lokaal fusiecentrum (gedecentraliseerd) of met elkaar (verdeeld), aangezien deze
veel meer schaalbaarheid hebben dan gecentraliseerde benaderingen [Taj 11].

In onze aanpak, voert elke camera tracking met lage complexiteit uit, ge-
bruik makend van beeldprojectiefeatures in combinatie met eenvoudige blob-
analyse. Iedere camera representeert objecten (personen) als omhullende
rechthoek (kuboiden) met respect tot een globaal coördinatensysteem. We
ontwikkelden en vergeleken twee on-camera tracking benaderingen: histogram
�ltering en een aanpak zonder on-camera staatschatting. Aangezien we gekali-
breerde camera's veronderstellen, schatten we de kuboiden corresponderend
met de personen in globale coördinaten, en niet in beeldcoördinaten. Dit laat
toe om een fysisch bewegingsmodel eenvoudiger op te stellen dan een model
in het beelddomein waar schijnbare snelheden afhangen van de positie van de
persoon relatief ten opzichte van de camera. Verder kunnen schattingen van
een kuboide in globale coördinaten van verschillende camera's onmiddellijk ge-
fuseerd worden in een fusiecentrum of zelfs in andere camera's zonder kennis
van het verband tussen het beeldomein van de camera en het globaal coördi-
natiesysteem.

Een heel belangrijke component van onze multi-camera aanpak is feedback
van het fusiecentrum. Deze feedback geeft de meest recente posities, snelhe-
den en geometrie van de individuen in de scene terug aan de camera's. We
passen probabilistische occlusieredenering toe in elke camera om te detecteren
welke blobs behoren tot welke kuboide. De analyse zorgt ook voor aangepaste
kuboide parameters (bv. posities). Onze methode vereist geen geso�sticeerde
bewegingsestimatie voor iedere camera, maar we demonstreren de voordelen
van het bezit van deze contextbewuste bewegingsmodellen.

We tonen de voordelen van onze aanpak aan door uitgebreide experimenten



viii

waarbij personen getracked worden in vergaderzalen, d.w.z. dat de relatief een-
voudige analyse van beeldveranderingen betrouwbaar en accuraat kan zijn bij
het tracken van meerdere objecten in een multi-camera netwerk. Dit wordt
bereikt van zodra informatie, afkomstig van meerdere camera's, gefuseerd is en
terug gecommuniceerd wordt naar elke camera, waardoor een krachtig mecha-
nisme ontstaat om occlusieproblemen tegen te gaan. We tonen aan dat het aan-
tal tracking losses in dit feedback gebaseerd raamwerk dicht bij nul ligt, zelfs in
sequenties met overvloedige occlusie en moeilijke verlichtingsomstandigheden.
De gemiddelde tracking error in deze sequenties is ongeveer 10 cm. Deze resul-
taten tonen een verbetering aan op state-of-the-art algoritmen zoals [Berclaz 11]
en [Fleuret 08]. Ze tonen ook aan dat de toevoeging van beeldprojectie fea-
tures aan voor- en achtergrondsignalen, voorgesteld door [Grünwedel 14], de
tracking nauwkeurigheid verbetert, zonder daarbij de real-time prestaties en
schaalbaarheid te schaden.

De communcatie overhead is zeer laag: een frequentie van 10 updates
per seconde is voldoende om elke camera zijn parameters (positie, snelheid,
breedte en hoogte) samen met een betrouwbare meting van iedere gevolgde
kuboide naar het fusiecentrum uit te zenden. Deze geometrische descriptoren
zijn geïntegreerd in het fusiecentrum, wat op zijn beurt gefuseerde descrip-
toren doorstuurt van alle gevolgde objecten naar alle slimme camera's. De
transmissie-bandbreedte van de camera naar het fusiecentrum en terug ligt in
de orde van 1 kilobyte/seconde per object voor elke camera. De lage commu-
nicatie overhead resulteert in een heel schaalbaar systeem. Bovendien is het
een aanwinst bij slimme camera's op batterijen, waar de levensduur van deze
batterijen meestal gelimiteerd is door communicatievermogen [Taj 11]. Het is
eveneens een aanwinst in tijdelijke, ad-hoc setups, waar draadloze netwerken
geprefereerd worden om bouwwerken op kabelinstallaties te vermijden.

In de context van multi-camera object tracking in niet-overlappende cam-
erazichten is de grootste uitdaging het accuraat heridenti�ceren van objecten
wanneer ze in elk camerazicht verschijnen. We pakken dit probleem aan met
een conceptueel andere benadering dan state-of-the-art methoden [Yu 11],
[Shan 08], [Guo 07], [Hou 09], [Rios Cabrera 12]. Ten eerste, gebruiken we
de voorgestelde signatuur features als eenvoudige descriptoren van het ob-
jectvoorkomen, wat eenvoudig is om te berekenen en vergelijken, en toch heel
informatief is bij laag-resolutie beelden. Het matchen van voorkomensmodellen
wordt verkregen door een eenvoudige combinatie van 1-D correlaties in een
grof-naar-�jne procedure. De signaturen worden ook gebruikt om schaalver-
schillen tussen observaties van verschillende camera's te leren, wat belangrijk
is voor hun uitlijning. De tweede nieuigheid is het gebruik van signaturen
van meerdere beelden om een voorkomensmodel, gebaseerd op meerdere ob-
servaties en automatische selectie van goede observaties voor matching (d.w.z.
informatieve observaties met weinig tot geen storingen), op te stellen. Dergelijk
voorkomensmodel laat toe om objecten voor the stellen vanuit meerdere stand-
punten, online verzameld terwijl ze bewegen in de multi-camera-omgeving. Dit
is in het bijzonder voordelig wanneer objecten van vorm veranderen (bv. door
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richtingsverandering of door het weglopen van de camera). Tenslotte gebruiken
we het Hungarian algoritme om matching te optimaliseren en onduidelijkheden
op te lossen.

Samenvattend, stellen we in deze scriptie een uitgebreid raamwerk voor om
objecten te tracken in slimme cameranetwerken. We benaderden tracking prob-
lemen van laag tot hoog niveau, i.e. van objectdetectie en feature extractie tot
hoog-niveau contextueel redeneren, informatieselectie en fusie. De belangrijk-
ste contributies van deze scriptie zijn:

• computationele en data-e�ciënte descriptoren van het objectvoorkomen,
gebaseerd op de 1-D Radon-transformatie-achtige beeldprojecties (signa-
turen) [Jela£a 11b], [Jela£a 11a], [Jela£a 12], [Jela£a 13];

• modellering van objectvoorkomen, gebaseerd op objectsignaturen, robu-
ustheid naar vorm- en belichtingsveranderingen toe en occlusies [Je-
la£a 11b], [Jela£a 11a], [Jela£a 12], [Jela£a 13];

• computationeel e�ciënt matchen van voorkomen voor objectherkenning,
gebruik makend van vervormbare curve-uitlijning, dynamische tijdsver-
vorming en globale en locale 1-D correlatie [Jela£a 13];

• gedistribueerde multi-view modellering van voorkomen met automatische
selectie van informatieve observaties voor tracking [Jela£a 13];

• robuust, real-time tracking met één enkele camera, gebruik makend van
beeldprojectie features in een Kalman-�lter-raamwerk [Jela£a 12], [Je-
la£a 14];

• een gedecentraliseerd multi-camera raamwerk voor tracking met een feed-
back loop van het fusie centrum [Jela£a 11a], [Grünwedel 14], [Grün-
wedel 12], [Xie 12].

We demonstreren deze bijdragen in meerdere, realistische scenario's:

• verschillende verkeersscenario's onder verschillende belichtings- en weer-
somstandigheden,

• tracken van voertuigen in een tunnel, gebruik makend van een camer-
anetwerk met niet-overlappende zichten, en

• tracken van personen in een vergaderzaal, gebruik makend van een cam-
eranetwerk met overlappende zichten.

In totaal heeft dit doctoraatsonderzoek geleid tot drie publicaties in in-
ternationale peer-reviewed tijdschriften: twee gepubliceerd [Jela£a 13], [Grün-
wedel 14], en een artikel in review fase [Jela£a 14]. Verder werden dertien papers
gepubliceerd in de notulen van internationale conferenties [Jela£a 08], [Despo-
tovi¢ 10], [Jela£a 11b], [Jela£a 11a], [Grünwedel 11a], [Van Hese 11], [Demeule-
meester 11], [Niño Castañeda 11], [Frías Velázquez 11], [Jela£a 12], [Grün-
wedel 12], [Ma¢e²i¢ 12], [Xie 12].
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Summary

In recent years video processing and computer vision have become widely used
to assist, protect and simplify the daily life in areas such as security and surveil-
lance, elderly care, tra�c monitoring, video conferencing, medical care and
many more. Large-scale camera networks have become increasingly widespread
due to decreasing costs of cameras and advances in camera miniaturization.
Handling and analysis of these vast amounts of video data are reasons for de-
velopment of new computer vision algorithms and cooperative multi-camera
systems that process video data locally, on the cameras, and share only com-
pact and informative representation of these data to ful�l the desired applica-
tion task. These systems are called smart multi-camera networks.

One of the essential tasks of such networks, and the focus of this thesis, is
tracking of objects and people to determine their trajectories, behaviour and
relations. In real-world environments, there are several signi�cant challenges
to accomplish the object tracking task.

• Big variations in illumination and weather conditions (in outdoor use),
as well as frequent occlusions of the viewed objects create a tremendous
challenge for accurate tracking.

• Some of the typical image features for tracking, such as colour, shape or
texture, are often not discriminative enough in real-world conditions.

• Bandwidth constraints and di�culties in storing and analysing large
amounts of video data make tracking costly and technically demand-
ing, imposing the need for smart information selection, distribution and
fusion.

• Deployment of smart visual sensors, such as smart cameras, creates the
need for low complexity, and data and computationally e�cient real-time
tracking.

The challenges also depend on the camera setup that is used: a single camera
setup, or a multi-camera setup with or without overlapping views.

If the environment is observed by a single camera, all acquired information
comes from a single viewpoint. In this case it is challenging to collect enough
data about the appearance of viewed objects and tracking is sensitive to object
pose changes and occlusions. The single camera systems are still present in
many applications, such as perimeter and tra�c surveillance, outdoor people
tracking, and many others.
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In a network with overlapping camera views, each part of the area of inter-
est is viewed by at least one camera and typically with several cameras having
di�erent viewpoints. Object tracking needs to fuse the information from mul-
tiple views to enhance its performance. Real-time tracking of people is usually
an essential task in these setups, especially for path-retracing in security and
surveillance applications [P�ugfelder 10], [Morris 08]. Many other applications
are constantly emerging. For instance, in telecommunications (more specif-
ically video-conferencing), positional data of each meeting attendant can be
used to de�ne regions of interest containing people, to limit more detailed pro-
cessing to these areas. It can be helpful to focus pan-tilt-zoom (PTZ) cameras
on speci�c people [Aghajan 09], to determine when they enter and leave the
room, their identity (even when they do not face a camera), and infer their
activities [Fathi 11] such as presenting, looking at the presenter, and others.
In these applications, in which the goal is to determine individual trajectories
of each person, avoiding tracking losses is essential. Trajectories of individuals
should not be lost due to occlusions and individuals should not be mixed up
when they get close together or when their paths intersect.

On the other hand, in a non-overlapping camera network there are typically
�blind� areas where neither of the cameras has a view on the object. In these
networks it is necessary to not only track objects in each camera view, but
also to re-identify each object when it appears in the other views so that the
trajectories in di�erent views can be connected. This is a typical scenario in
tra�c surveillance when cameras are placed in tunnels or along roads.

In this thesis we propose tracking methods for all these three camera se-
tups. In the context of single camera tracking we use a multi-cue Kalman �lter
framework. We propose using Radon transform like image projection features,
which we call signatures, as computationally e�cient and illumination invariant
cues. We de�ne a time warping technique for signature matching, which we use
to �nd boundaries of tracked objects in each video frame. We demonstrate the
advantages of such signature based cues versus foreground blobs and optical
�ow cues, and evaluate our approach on several tra�c surveillance sequences
recorded in di�erent weather and illumination conditions. When the lighting
conditions do not change rapidly, foreground blobs and optical �ow are suitable
measurements for tracking. In the cases of sudden illumination changes fore-
ground blobs su�er from gaps and ghosting e�ects, which leads to stretching or
shrinking of foreground bounding boxes, while the optical �ow vectors change
rapidly, both in magnitude and direction. However, the vehicle signatures are
relatively invariant to such illumination changes so with them we are able to
obtain more reliable measurements.

In the context of multi-camera tracking with overlapping views, beside on
the accuracy in real-world conditions, we focus on real-time, low-latency and
scalability of tracking. This adds another level of complexity compared to state-
of-the-art methods as published by [Berclaz 11]. Real-time and low-latency op-
eration is needed in many indoor trackers, because they need to react quickly
to changes in people's positions. Since these applications typically involve long-
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term monitoring, robustness and tracking accuracy are also critical. Scalability
is an often overlooked problem in multi-camera research: centralized processing
of multiple video streams creates not only a computing but also a communica-
tion bottleneck. This means that adding a camera to the centralized network
can signi�cantly impact the network's ability to distribute and process the ac-
quired data. Therefore, in this thesis we focus on decentralized and distributed
tracking approaches, which group cameras into clusters that communicate with
a local fusion centre (decentralized) or with each other (distributed), since these
are much more scalable than centralized approaches [Taj 11].

In our approach, each camera performs low-complexity tracking, using sim-
ple image projection features in combination with simple blob analysis. Each
camera represents objects (people) as bounding boxes (cuboids) with respect
to a world coordinate system. We developed and compared two approaches for
on-camera tracking: histogram �ltering and an approach without on-camera
state estimation. Since we assume calibrated cameras, we are estimating the
person's cuboid in world coordinates rather than in image coordinates. This
allows a physical motion model to be expressed more easily than a model in the
image domain where apparent speeds depend on the position of the person with
respect to the camera. Furthermore, the estimates of a cuboid in world coor-
dinates from di�erent cameras can be directly fused in a fusion center or even
in other cameras without knowing the relationship between a camera image
domain and the world coordinate system.

A very important component of our multi-camera approach is feedback from
the fusion centre. This feedback returns to the cameras the most recent posi-
tions, speeds and geometries of individuals in the scene. Based on this feed-
back, we perform probabilistic occlusion reasoning in each camera to identify
which blobs belong to which cuboid. The analysis also yields updated cuboid
parameters (e.g. positions). Our method does not require sophisticated mo-
tion estimation in each camera, but we demonstrate the bene�ts of having the
context aware motion models.

By extensive experiments of people tracking in meeting rooms, we demon-
strate the advantages of our approach, i.e. that a relatively simple analysis
of changes in images can be reliable and accurate for tracking multiple ob-
jects in a multi-camera network. It is achieved when information from multiple
cameras is fused and communicated back to each camera, creating a powerful
mechanism to overcome many issues with occlusions. We demonstrate that
the number of tracking losses in such a feedback based framework is close
to zero, even in sequences with abundant occlusion and di�cult illumination
conditions. The average tracking error in these sequences is around 10 cm.
These results show an improvement on state of the art algorithms as reported
by [Berclaz 11] and [Fleuret 08]. They also show that adding image projection
features to foreground/background cues proposed by [Grünwedel 14] improves
tracking accuracy, without a�ecting the real-time performance and scalability.

The communication overhead is very low: a frequency of 10 updates per
second is su�cient for each camera to transmit the parameters (position, speed,
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width and height) together with a reliability measure of each tracked cuboid to
the fusion centre. These geometrical descriptors are integrated by the fusion
centre, which then returns fused descriptors for all tracked objects to all smart
cameras. The transmission bandwidths from the camera to the fusion centre
and back are in the order of 1 kilobyte/second per object for each camera. The
low communication overhead results in a highly scalable system. Moreover,
it is an asset in battery operated smart cameras, where battery lifetime is
mostly limited by communication power [Taj 11]. It is also an asset in ad-
hoc temporary setups, where wireless networks are preferred to avoid building
works on cable installations.

In the context of multi-camera object tracking in non-overlapping cam-
era views, the biggest challenge is to accurately re-identify objects when they
appear in each camera view. We address this problem by a conceptually dif-
ferent approach then state-of-the-art methods [Yu 11], [Shan 08], [Guo 07],
[Hou 09], [Rios Cabrera 12]. Firstly, we use the proposed signature features
as simple descriptors of object appearance, which are easy to compute and
compare, yet highly informative in low resolution images. Matching of the ap-
pearance models is obtained by a simple combination of 1-D correlations in a
coarse-to-�ne procedure. The signatures are also used to learn scale di�erences
between the observations from di�erent cameras, which is important for their
alignment. The second novelty is to use signatures from multiple images for
creating a multiple observation appearance model and automatic selection of
good observations for matching (i.e. informative observations with few or no
disturbances). Such an appearance model enables representation of objects
from multiple views, collected online as they move through the multi-camera
environment. This is especially bene�cial when objects change pose (e.g. by
changing movement direction or moving away from the camera). Finally, we
use the Hungarian algorithm to optimize the matching and resolve ambiguities.

To summarize, in this thesis we proposed a comprehensive framework for
object tracking in smart camera networks. We addressed the tracking problems
from the low to the high level, i.e. from object detection and feature extraction
to the high level contextual reasoning, information selection and fusion. The
main contributions of this thesis are:

• computationally and data e�cient descriptors of the object appearance,
based on 1-D Radon-transform like image projections (signatures) [Je-
la£a 11b], [Jela£a 11a], [Jela£a 12], [Jela£a 13];

• object appearance modelling based on the object's signatures, robust to
pose and illumination changes, and occlusions [Jela£a 11b], [Jela£a 11a],
[Jela£a 12], [Jela£a 13];

• computationally e�cient appearance matching for object recognition us-
ing deformable curve alignment, dynamic time warping, and global and
local 1D correlation [Jela£a 13];

• distributed multi-view appearance modelling with automatic selection of
informative observations for tracking [Jela£a 13];
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• robust real-time single camera tracking using image projection features
in a Kalman �lter framework [Jela£a 12], [Jela£a 14];

• a decentralized multi-camera framework for tracking with a feedback
loop from the fusion centre [Jela£a 11a], [Grünwedel 14], [Grünwedel 12],
[Xie 12].

We demonstrate these contributions in multiple real-world scenarios:

• various tra�c scenarios under di�erent illumination and di�erent weather
conditions,

• vehicle tracking in a tunnel using a camera network with non-overlapping
views, and

• people tracking in a meeting room using a camera network with overlap-
ping views.

In total, the research during this PhD resulted in three publications in inter-
national peer-reviewed journals: two published [Jela£a 13], [Grünwedel 14], and
one article under review [Jela£a 14]. Furthermore, thirteen papers have been
published in the proceedings of international conferences [Jela£a 08], [Despo-
tovi¢ 10], [Jela£a 11b], [Jela£a 11a], [Grünwedel 11a], [Van Hese 11], [Demeule-
meester 11], [Niño Castañeda 11], [Frías Velázquez 11], [Jela£a 12], [Grün-
wedel 12], [Ma¢e²i¢ 12], [Xie 12].



xvi



Contents

Acknowledgements iii

Samenvatting v

Summary xi

List of Abbreviations 1

1 Introduction 1

1.1 Contributions and publications . . . . . . . . . . . . . . . . . . 4
1.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Object Tracking 13

2.1 Object representation overview . . . . . . . . . . . . . . . . . . 14
2.1.1 Object shape representation . . . . . . . . . . . . . . . . 14
2.1.2 Object appearance representation . . . . . . . . . . . . . 15

2.2 Object detection overview . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Detectors based on local features . . . . . . . . . . . . . 17
2.2.2 Detectors based on foreground/background models . . . 20
2.2.3 Segmentation based detectors . . . . . . . . . . . . . . . 24
2.2.4 Classi�cation based detectors . . . . . . . . . . . . . . . 27

2.3 Object tracking overview . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Point tracking . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1.1 Deterministic methods for correspondence . . . 32
2.3.1.2 Statistical methods for correspondence . . . . 34
2.3.1.3 Point tracker evaluation . . . . . . . . . . . . . 40

2.3.2 Kernel tracking . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2.1 Tracking using templates and appearance models 41
2.3.2.2 Tracking using multi-view appearance models . 42
2.3.2.3 Kernel tracker evaluation . . . . . . . . . . . . 43
2.3.2.4 Tracking objects in real-world scenarios . . . . 44

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



xviii CONTENTS

3 Image Projection Features for Object Tracking 47
3.1 The Vicats project . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Vicats contributions and credits . . . . . . . . . . . . . 49
3.2 Overview of features for tracking . . . . . . . . . . . . . . . . . 50
3.3 Image projection features . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Signatures in pose/viewpoint changes . . . . . . . . . . 60
3.3.2 Signatures under illumination changes . . . . . . . . . . 61
3.3.3 Computational and data e�ciency . . . . . . . . . . . . 61

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Tracking in a Single Camera View 63
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Signatures based measurement for tracking . . . . . . . . . . . 67

4.3.1 Deformation based curve alignment . . . . . . . . . . . . 69
4.3.1.1 Finding the optimal alignment curve . . . . . . 71
4.3.1.2 Matching at di�erent scales . . . . . . . . . . . 72
4.3.1.3 Signature based measurement . . . . . . . . . 73

4.4 Tracking algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Vehicle tracking in a tunnel . . . . . . . . . . . . . . . . 74
4.5.2 Tracking in various weather conditions . . . . . . . . . . 78
4.5.3 Tracking in low-light conditions . . . . . . . . . . . . . . 78

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Tracking in Non-overlapping Camera Views 81
5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Robust multi-observation appearance model . . . . . . . . . . . 88
5.4 Vehicle appearance matching . . . . . . . . . . . . . . . . . . . 92

5.4.1 Signature matching . . . . . . . . . . . . . . . . . . . . . 92
5.4.1.1 Learning of rescaling factors . . . . . . . . . . 93
5.4.1.2 Global alignment by correlation with shifting . 95
5.4.1.3 Local alignment and signature matching measure 95

5.4.2 Matching of the appearance models . . . . . . . . . . . 96
5.4.3 Template-candidate association . . . . . . . . . . . . . . 98

5.5 Vehicle matching algorithm . . . . . . . . . . . . . . . . . . . . 98
5.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Results for di�erent camera pairs . . . . . . . . . . . . . 100
5.6.2 Comparison with other methods . . . . . . . . . . . . . 101
5.6.3 Results for di�erent vehicle categories . . . . . . . . . . 102
5.6.4 Results for di�erent reference lengths . . . . . . . . . . . 102
5.6.5 Comparison of 2-D and 4-D signature vectors . . . . . . 103
5.6.6 Results in a tunnel application . . . . . . . . . . . . . . 103
5.6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS xix

6 Tracking in Overlapping Camera Views 111
6.1 The iCocoon project . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 iCocoon contributions and credits . . . . . . . . . . . . 120
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Smart multi-camera system: our approach . . . . . . . . . . . . 128
6.5 Object tracking in smart cameras . . . . . . . . . . . . . . . . . 130

6.5.1 Foreground/background measurement . . . . . . . . . . 132
6.5.2 Signature based appearance modelling . . . . . . . . . . 135
6.5.3 Context aware motion model . . . . . . . . . . . . . . . 137
6.5.4 Histogram �ltering tracking . . . . . . . . . . . . . . . . 139
6.5.5 Tracking without local state estimation . . . . . . . . . 141

6.6 Consensus tracking . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7.1 Calibration accuracy . . . . . . . . . . . . . . . . . . . . 147
6.7.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.7.3 Real-time performance and scalability . . . . . . . . . . 148
6.7.4 Performance of the proposed system architecture . . . . 150

6.7.4.1 Overall performance of the proposed multi-
camera system . . . . . . . . . . . . . . . . . . 153

6.7.4.2 Performance for di�erent number of cameras . 153
6.7.4.3 Comparison of the on-camera trackers . . . . . 156
6.7.4.4 In�uence of feedback and feedback frequency . 157

6.7.5 Comparison with state-of-the-art methods . . . . . . . . 157
6.7.5.1 Comparison on our data sets . . . . . . . . . . 159
6.7.5.2 Comparison on public data sets . . . . . . . . 161

6.7.6 Real-time demonstrator . . . . . . . . . . . . . . . . . . 162
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7 Conclusions 165
7.1 Overview of contributions . . . . . . . . . . . . . . . . . . . . . 165

7.1.1 Low-level tracking . . . . . . . . . . . . . . . . . . . . . 165
7.1.2 Mid-level tracking . . . . . . . . . . . . . . . . . . . . . 166
7.1.3 High-level tracking . . . . . . . . . . . . . . . . . . . . . 166
7.1.4 Summary of contributions . . . . . . . . . . . . . . . . . 167

7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 188



xx CONTENTS



List of Abbreviations

ARMA Autoregressive moving average
ASIFT A�ne scale-invariant feature transform
BG Background
BraMBLe Bayesian multiple-blob tracker
DPDM Dynamic point distribution model
DTW Dynamic time warping
EKF Extended Kalman �ltering
EM Expectation maximization
FAST Features from accelerated segment test
FG Foreground
FN False negative
FP False positive
GC Graph Cut
GMM Gaussian Mixture Model
GT Ground truth
HF Histogram �ltering
HMM Hidden Markov model
HOG Histogram of oriented gradients
ICA Independent component analysis
iCocoon Immersive communication by means of computer vision
JPADF Joint probabilistic data association �lter
LBP Local binary patterns
MAP Maximum a posteriori probability
MHT Multiple hypotheses tracking
MIL Multiple instance learning
MOG Mixture of Gaussians
MSE Mean squared error
NLE No local state estimation
NN Nearest neighbour
NoOL Number of object losses
NoOS Number of object switches
PCA Principal component analysis
PDA Probabilistic data association
PDF Probability density function
PF Particle �ltering
PGM Probabilistic graphical model
RANSAC Random sample consensus



xxii CONTENTS

ROI Region of interest
SIFT Scale-invariant feature transform
SURF Speeded up robust features
SVD Singular value decomposition
SVM Support vector machines
TATE Total average tracking error
TBD Track-before-detect
TP True positive
ViBe Visual background extractor
VICATS Video content analysis for tra�c/tunnel surveillance



1
Introduction

In recent years video processing and computer vision have become widely used
tools to assist, protect and simplify the daily life by deployment in areas such
as security and surveillance, elderly care, tra�c monitoring, video conferenc-
ing, medical care and many more. Large-scale camera networks have become
increasingly widespread due to decreasing costs of cameras and advances in
camera miniaturization. Handling and analysing these vast amounts of video
data are reasons for development of new computer vision algorithms and coop-
erative multi-camera systems that process video data locally, on the cameras,
and share only compact and informative representation of these data to ful�l
the desired application task. These systems are called decentralized or dis-
tributed multi-camera networks.

One of the essential tasks of a multi-camera network is tracking of viewed
objects (in most cases humans and vehicles) to determine their trajectories,
behaviour and relationships to each other. Here, security and surveillance for
path-retracing is among the best known applications [P�ugfelder 10], [Mor-
ris 08]. More recently, telecommunication applications are also emerging. For
instance, in video-conferencing, positional data of each meeting attendant can
be used to de�ne regions of interest containing people, to limit more detailed
processing to these areas. It can be helpful to focus pan-tilt-zoom (PTZ) cam-
eras on speci�c people [Aghajan 09], to determine when they enter and leave
the room, their identity (even when they do not face a camera), and infer their
activities [Fathi 11] such as presenting, looking at the presenter, and others.

There are several signi�cant challenges on the way to accomplish the object
tracking task in real-world environments (see Figures 1.1 and 1.2).

• Big variations in illumination and weather conditions (in outdoor use),
as well as frequent occlusions of the viewed objects create a tremendous
challenge for accurate tracking.

• Some of the typically used image features for tracking, such as colour,
shape or texture, are often not discriminative enough in real-world con-
ditions.
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• Bandwidth constraints and di�culties in storing and analysing large
amounts of video data make tracking costly and technically demand-
ing, imposing the need for smart information selection, distribution and
fusion.

• Deployment of smart visual sensors, such as smart cameras, creates the
need for low complexity, and data and computationally e�cient real-time
tracking.

Networks of smart cameras and low resolution visual sensors attract a lot
of research attention [Soro 09a]. These are cameras with on-board processing
and communication hardware. They allow construction of more �exible and
scalable camera networks because the required image processing can be dis-
tributed over the cameras. The collaborative processing of the output data of
the smart cameras can take place either on a central station or on one of the
cameras. However, data processing in a smart camera network entails some
speci�c challenges. The hardware embedded with the image sensor is usually
designed speci�cally for image processing (high degree of parallelism), which
is an advantage, but it also has some limitations in terms of memory and pro-
cessing power. If the amount of output data of the smart cameras is kept low,
wireless operation also becomes possible. This is a huge advantage for the �ex-
ibility of the system. Battery operation is in this case also desirable. A battery
life on a single charge is extended if the image processing algorithms are com-
putationally e�cient and require less communication between the cameras or
with the central station.

Various methods for multi-camera tracking have been proposed in litera-
ture, such as [Kim 06], [Fleuret 08], [Khan 09], [Taj 09] to name a few. Most
of them focus on computer vision tasks such as foreground segmentation, mo-
tion analysis and 3-D position estimation, but achieving real-time, scalable and
robust collaborative tracking, with optimal use of multi-camera resources re-
mains insu�ciently explored. A low-latency problem is also often overlooked in
multi-camera networks (centralized processing of multiple video streams cre-
ates not only a computing but also a communication bottleneck). One way
to address these problems is to shift the computation load towards the smart
camera and to limit the data exchange within the camera network by transmit-
ting compact and representative data, instead of whole images. In this way, no
video transmission is needed for the purpose of object tracking, not even for
regions of interest within the camera views. When video transmission is needed
for other purposes, the positional information provided by the tracking system
can help to reduce the overall video bandwidth by restricting transmission to
regions of interest. However, even many detailed image analysis algorithms,
e.g. face recognition, can run on a single (smart) camera and do not require
video transmission.

Taking into account all aforementioned aspects, in this PhD thesis we ad-
dress the following multi-camera tracking problems.

• The information selection problem: Which image and video features
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are data and computationally e�cient, and at the same time robust to
illumination changes and object occlusions? Which features create the
most informative object descriptors?

• The distribution of work within the network: Which part of the
analysis can be done in the smart camera and which within the network?
How to avoid processing overload in any given camera by distributing
work to other cameras? How to achieve real-time processing within a
camera network?

• The information distribution problem: What is the optimal amount
of information to send from each camera, avoiding that some cameras
send redundant information? What information needs to be sent from
each camera to maximally contribute to the system?

• The information integration problem: What is the most likely esti-
mate of the current position of any object given the data from all cam-
eras? How can the integrated information be sent back to the cameras
to improve the accuracy of on-camera trackers?

We focus on �nding solutions to address all these problems by deeply inte-
grating di�erent tracking levels into a single framework.

Low-level: Low-level tracking is based directly on features extracted from
raw video data. These approaches include algorithms for foreground/back-
ground segmentation, low-level object detection (determination of object
boundaries based on the extracted features), and rough estimation of object's
appearance, pose and position. The processing is usually performed on, but
not limited to, a single camera and operates on a frame-by-frame basis.

Mid-level: At the middle level, the trajectories obtained at the low-level
are associated into longer trajectories. This is often done considering not only
initialization, termination and transition of trajectories, but also hypotheses of
trajectories being false, i.e. not belonging to any object of interest. At this
level the appearance and motion model are typically re�ned to characterize the
tracked object (target) more accurately. A modi�ed transition matrix can be
computed and sent to an optimization algorithm to obtain optimal associations.
The processing at this level is more bene�cial when performed in a multi-camera
network. In particular, multi-camera networks with overlapping views provide
substantial advantages over a single �xed viewpoint camera in terms of accuracy
and precision of mid-level tracking.

High-level: High-level tracking typically operates on an abstract level and
combines several low-level and mid-level cues, such as object detection, object
recognition, object pose estimation, and others. At the high level the con-
textual information is also included into tracking. A scene structure model is
often reconstructed, including maps for scene entries and exits, occluders and
relationships between the objects. Kinematics of objects is used to constrain
trajectory associations. All this high-level information is then used to assign
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the long range trajectories and reduce trajectory fragmentation and possible
identity switches.

Each of these levels poses already challenges on its own. Therefore, com-
bining approaches of each level for development of applications such as multi-
camera vehicle and people tracking is highly non-trivial. In this thesis, we
deploy techniques ranging from low-level to high-level, speci�cally designed for
smart multi-camera networks. Our focus is on robust, real-time and scalable
tracking of multiple vehicles and people simultaneously. The developed algo-
rithms evolve from techniques for pattern recognition of speech and text, and
probabilistic modelling used in automation and robotics. We demonstrate the
proposed techniques using a single camera and smart camera networks with
overlapping and non-overlapping views. This research has been performed in
projects VICATS (Video Content Analysis for Tunnel Surveillance) and ICO-
COON (Immersive Communication by means of Computer Vision). More in-
formation about these projects we give in Chapters 6 and 5, where we explain
also how this PhD research has contributed to these industrial applications.

1.1 Contributions and publications

The main novelties and contributions presented in this thesis are as follows.

• Computationally and data e�cient descriptors of the object
appearance, based on 1-D Radon-transform like image projec-
tions. These descriptors, which we call signatures, similarly as edge
based descriptors capture discontinuities in image brightness, but with-
out a thresholding step in the feature calculation. Therefore, there is
no dependence on threshold parameters and the proposed signatures can
be calculated more consistently than edges in various illumination condi-
tions. These features are also robust against occlusions and inaccurate or
false object detections, common in real-world tracking scenarios. They
are suitable for implementation on smart cameras and can be calculated
for all objects in an image in a single reading of the image. We represent
the appearance of viewed objects with the signatures computed along
di�erent image axes. This contribution was demonstrated in applications
for tra�c surveillance and people tracking in a meeting room. It was a
basis for further novelties in our work and has been published as a part
of several publications: [Jela£a 11b], [Jela£a 11a], [Jela£a 12], [Jela£a 13].

• An object appearance modelling based on the object's signa-
tures. We represent the appearance of viewed objects with the signatures
along di�erent image axes. We demonstrate that horizontal and vertical
signatures capture most of the information about the appearance. The
appearance model is constructed over time to capture information from
di�erent viewpoints as the object moves through the scene, collecting the
most informative signatures into the model and neglecting the signatures
from bad observations (sudden illumination changes, false or inaccurate
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detections and occlusions). Moreover, we extended this appearance mod-
elling approach to multi-camera environments where models can be cre-
ated collaboratively by the cameras along the object trajectory. These
contributions were demonstrated in applications for tra�c surveillance in
di�erent weather and illumination conditions, and people tracking in a
meeting room. They have been published as a part of several publica-
tions: [Jela£a 11b], [Jela£a 11a], [Jela£a 12], [Jela£a 13].

• A computationally e�cient appearance matching for object
recognition. We propose a coarse to �ne procedure based on global
and local 1-D correlations to compare 1-D signatures and compute the
appearance matching measure. We also use a dynamic time warping
technique to match the signatures that originate from the observations
in successive frames. The Hungarian optimization algorithm is used for
many-to-many matching when the observations are taken from di�erent
cameras. This work has been published in a journal [Jela£a 13].

• A distributed multi-view appearance modelling with automatic
selection of informative observations for tracking in a single camera view
and camera networks with overlapping and non-overlapping views. This
appearance modelling enables scalable real-time tracking of multiple ob-
jects simultaneously (the scalability means that adding more cameras into
the network has low impact on real-time performance of tracking). This
work has been published in a journal [Jela£a 13].

• Robust real-time single camera tracking. We incorporated the pro-
posed appearance models into a multi-cue Kalman �lter framework to
robustly track vehicles and people even in cases of challenging illumina-
tion conditions, low resolution images with various artefacts and di�erent
camera viewpoints. We use tracking by recognition approach, where the
objects are redetected and reidenti�ed at each time instance. This work
has been published in a conference [Jela£a 12] and a journal paper [Je-
la£a 14] has been submitted.

• A decentralized multi-camera framework for tracking with a
feedback loop from the fusion centre. In this framework, the main
part of the low-level video processing takes place in the cameras. Each
camera transmits a compact high-level description of moving objects to
the fusion center, which fuses these data using a Bayesian approach. Pos-
sible errors in estimations done by cameras are corrected using the feed-
back made by a cooperative decision from all available cameras in the net-
work. The performance of the proposed system is evaluated in terms of
precision and accuracy on indoor and meeting scenarios. In meeting sce-
narios we construct a context aware motion model that takes into account
position of furniture in the room and people behaviour (walking, standing
in place, sitting). This work has led to one journal publication [Grün-
wedel 14] and three conference publications [Jela£a 11a], [Grünwedel 12]
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and [Xie 12].

We demonstrate these contributions in multiple real-world scenarios:

• various tra�c scenarios under di�erent illumination and di�erent weather
conditions,

• vehicle tracking in a tunnel using a camera network with non-overlapping
views, and

• people tracking in a meeting room using a camera network with overlap-
ping views.

In total, the research during this PhD resulted in three publications in inter-
national peer-reviewed journals: two published [Jela£a 13], [Grünwedel 14], and
one article under review [Jela£a 14]. Furthermore, thirteen papers have been
published in the proceedings of international conferences [Jela£a 08], [Despo-
tovi¢ 10], [Jela£a 11b], [Jela£a 11a], [Grünwedel 11a], [Van Hese 11], [Demeule-
meester 11], [Niño Castañeda 11], [Frías Velázquez 11], [Jela£a 12], [Grün-
wedel 12], [Ma¢e²i¢ 12], [Xie 12].

The work on multi-camera tracking of vehicles in tunnels has been performed
in collaboration with my colleague Jorge Niño Castañeda. Therefore, parts of
the general concept of vehicle tracking might also appear in his PhD disser-
tation. However, his work has been mainly focused on vehicle detection and
single camera tracking using local binary patterns and optical �ow, so track-
ing based on image projection features, vehicle identi�cation and multi-camera
tracking with non-overlapping views are not the focus of his thesis.

The work on multi-camera people tracking has been performed in collab-
oration with my colleague Sebastian Grünwedel. Our joint work focused on
the conceptual design of a distributed multi-camera system for collaborative
tracking (information selection, distribution and fusion), but from di�erent
perspectives. In his work and PhD thesis the focus is on a system design of
collaborative trackers, mainly the information distribution and fusion within
the system. In his work he also tackles problems of foreground/background
segmentation robust to lighting changes and occupancy mapping in centralized
multi-camera systems. In this thesis, however, a higher focus is on information
selection, optimizing tracking features and incorporating low-level and mid-
level tracking cues to create more robust and more accurate tracking data.

Some other colleagues in the Image Processing and Interpretation (IPI)
research group at Ghent University, and in Vision Systems (VIS) group at
Hogeschool Gent have also worked on the multi-camera system for people track-
ing, though more from an engineering perspective. Their contribution will be
explained in Chapter 6, in the more detailed explanation of the iCocoon project.
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Figure 1.1: Examples of people surveillance videos from real meeting room environ-
ments. We see that signi�cant illumination changes are possible when indoor lighting
is turned on or o�, or when ambient lighting varies in di�erent parts of the room.
There are also signi�cant occlusions of people by the room furniture or between peo-
ple themselves. When objects are viewed by low resolution visual sensors there is an
additional challenge to �nd tracking features (see the bottom row).
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Figure 1.2: Examples of tra�c surveillance videos from real-world environments.
We see there is a big variation in illumination and weather conditions, as well as
camera viewpoints. Vehicle images often have low resolution and there are frequent
and signi�cant occlusions.
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V. Jela£a, A. Piºurica, J.O. Niño Castañeda, A. Frías Velázquez and
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pro�les at multiple instances. Image and Vision Computing, vol. 31, no. 9,
pages 673-685, 2013.

S. Grünwedel, V. Jela£a, J.O. Niño Castañeda, P. Van Hese, D. Van
Cauwelaert, D. Van Haerenborgh, P. Veelaert and W. Philips. Low-Complexity
Scalable Distributed Multi-Camera Tracking of Humans. ACM Transactions
on Sensor Networks, vol. 10, no. 2, May 2014.

International peer-reviewed conferences

V. Jela£a, A. Piºurica and W. Philips. Computationally e�cient algorithm
for tracking of vehicles in tunnels. In Proceedings of the 19th Annual
Workshop on Circuits, Systems and Signal Processing, pages 335-338, 2008.

I. Despotovi¢, V. Jela£a, E. Vansteenkiste and W. Philips. Noise-robust
method for image segmentation. In Advanced Concepts for Intelligent Vision
Systems, Lecture Notes in Computer Science, volume 6474, pages 153-162,
2010.

V. Jela£a, J.O. Niño Castañeda, A. Frías Velázquez, A. Piºurica and W.
Philips. Real-time vehicle matching for multi-camera tunnel surveillance. In
Proceedings of SPIE, the Society of Photo-Optical Instrumentation Engineers,
volume 7871, 2011.

V. Jela£a, S. Grünwedel, J.O. Niño-Castañeda, P. Van Hese, D. Van
Cauwelaert, P. Veelaert and W. Philips. Demo: Real-time indoors people
tracking in scalable camera networks. In Proceedings of the Fifth ACM/IEEE
International Conference on Distributed Smart Cameras, 2011.

S. Grünwedel, V. Jela£a, P. Van Hese, R. Kleihorst and W. Philips. PhD
forum: Multi-view occupancy maps using a network of low resolution visual
sensors. In Proceedings of the Fifth ACM/IEEE International Conference on
Distributed Smart Cameras, 2011.

A. Demeulemeester, V. Jela£a, C. Hollemeersch, S. Grünwedel, P. Lambert,
J.O. Niño Castañeda, D. Van Cauwelaert, P. Van Hese, P. Veelaert, R. Van de
Walle and W. Philips. Demo : real-time 3D visualization of multi-camera room
occupancy monitoring for immersive communication systems. In Proceedings
of the Fifth ACM/IEEE International Conference on Distributed Smart
Cameras, 2011.
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A. Frías Velázquez, J.O. Niño Castañeda, V. Jela£a, A. Piºurica and W.
Philips. A mathematical morphology based approach for vehicle detection in
road tunnels. In Proceedings of SPIE, the International Society for Optical
Engineering, volume 8135, 2011.

J.O. Niño Castañeda, V. Jela£a, R. Rios Cabrera, A. Frías Velázquez,
A. Piºurica, T. Tuytelaars and W. Philips. Non-overlapping multi-camera
detection and tracking of vehicles in tunnel surveillance. In Proceedings of
the International Conference on Digital Image Computing Techniques and
Applications, pages 591-596, 2011.

P. Van Hese, S. Grünwedel, J.O. Niño Castañeda, V. Jela£a and W. Philips.
Evaluation of background/ foreground segmentation methods for multi-view
occupancy maps. In Proceedings of the 2nd International Conference on
Positioning and Context-Awareness, pages 37-42, 2011.
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tion clues for improved real-time vehicle tracking in tunnels. In Proceedings of
SPIE, the International Society for Optical Engineering, volume 8301, 2012.

S. Grünwedel, V. Jela£a, J.O. Niño Castañeda, P. Van Hese, D. Van
Cauwelaert, P. Veelaert and W. Philips. Decentralized tracking of humans
using a camera network. In Proceedings of SPIE, the International Society of
Photo-Optical Instrumentation Engineers, volume 8301, 2012.

M. Ma¢e²i¢, V. Jela£a, J.O. Niño Castañeda, N. Prodanovi¢, M. Pani¢, A.
Piºurica, V. Crnojevi¢ and W. Philips. Real-time detection of tra�c events
using smart cameras. In Proceedings of SPIE, the International Society for
Optical Engineering, volume 8301, 2012.

X. Xie, S. Grünwedel, V. Jela£a, J.O. Niño Castañeda, D. Van Haerenborgh,
D. Van Cauwelaert, P.Veelaert, W. Philips and H. Aghajan. Learning about
Objects in the Meeting Rooms from People Trajectories. In Proceedings of
the 6th ACM/IEEE International Conference on Distributed Smart Cameras,
2012.
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1.3 Thesis outline

The remainder of the thesis is organized as follows.
Chapter 2: Object tracking. In this chapter we give background on

object tracking. We start with a brief overview of object representation and
object detection as two important factors that in�uence the choice and design
of object trackers. We also explain and motivate the object representation and
detection choices we have made in our work. Next, we describe various methods
for object tracking, with comparison of their advantages and disadvantages. We
focus in more detail on the methods we use in our work.

Chapter 3: Image projection features for object tracking. This
chapter we begin with an overview of features that are typically used for object
tracking. We explain their advantages and disadvantages in the context of
smart camera networks and real-world conditions. Then, we give an overview
of appearance modelling methods and relate them to the underlying features.
After this we introduce the image projection features that we proposed in our
work to model the appearance of tracked objects. We show characteristics
of these features and demonstrate their advantages in cases of illumination
changes, changes in object pose (viewpoint at the object), and inaccurate and
false object detections.

Chapter 4: Tracking in a single camera view. In this chapter we give
a formal de�nition of the object tracking problem in a single camera view and
show the challenges of real-time tracking in real-world conditions. We give an
overview of the common methods that address this problem. Then we de�ne
our approach by introducing appearance modelling using the image projection
features proposed in Chapter 3. We show how to use these appearance mod-
els in a Kalman �lter framework for multi-cue tracking. The evaluation of
our approach is done both qualitatively and quantitatively on several tra�c
surveillance videos recorded in di�erent weather conditions, during night and
in a tunnel.

Chapter 5: Tracking in non-overlapping camera views. This chap-
ter addresses the problem of tracking objects in environments that are not
completely observed by cameras. The objects need to be identi�ed in each
camera view and therefore, after giving an overview of state-of-the-art work in
this area, we de�ne our approach for object recognition suitable for real-time
tracking on smart cameras. We de�ne a method to construct a multi-view
multi-template appearance model and use it for object recognition and track-
ing. We demonstrate the robustness of our approach on tracking vehicles in
harsh tunnel environments and compare our results with several other methods.

Chapter 6: Tracking in overlapping camera views. In this chapter
our focus is on people tracking using a network of smart cameras with over-
lapping views. People are tracked in a video conference scenario, hence the
tracker has to be robust to frequent occlusions by room furniture and between
people themselves, as well as to global and local lighting changes. Before we
introduce our approach we give an overview of the state-of-the-art in multi-
camera tracking with overlapping camera views. Then, we show how to use
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image projection pro�les in a multi-cue fashion for people tracking, how to
construct a people motion model in a furnished room, build a collaborative
auto-corrective multi-camera tracker, and deal with occlusions by high level
reasoning. We demonstrate the accuracy, real-time performance and scalabil-
ity of our approach using several video sequences recorded in a meeting room.
Finally, we show potential of our approach in real video conference applications.

Chapter 7: Conclusion This chapter concludes this PhD thesis, giving
an overview of the main �ndings and proposals for the future work.



2
Object Tracking

Object tracking can be de�ned as the problem of estimating the trajectory of
an object as it moves through the scene. In other words, a tracker assigns
consistent labels to the tracked objects (targets) in di�erent frames of a video.
Additionally, depending on the tracking domain, a tracker can also provide
object-centric information, such as orientation, area, or shape of an object.
Some of the issues that make object tracking complex are:

• loss of information caused by projection of the 3D world on a 2D image,

• noise in images or low image resolution,

• scene illumination changes,

• non-rigid nature of objects,

• complex object motion,

• changes of the object appearance,

• partial and full object occlusions, and

• real-time processing requirements.

Many approaches for object tracking have been proposed. They primarily
di�er based on the way they address the following questions: Which object
representation is suitable for tracking? Which image features should be used?
How should the motion, appearance, and shape of the object be modelled? The
answers to these questions depend also on the context in which the tracking is
performed. This chapter provides the necessary background on object tracking.

Tracking algorithms in almost all cases require object detection as an input
information, i.e. instances of the objects to track in the video. Depending on
the way objects are represented (as points, rectangles, or some more precise
shapes) object detection can also deliver information about the object bound-
aries, in the best case to fully extract the object from the rest of the image. In
this context, object detectors might be better called object extractors, but the
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term detector is commonly used in literature so we also use it in this thesis. In
the context of tracking, detection methods are very important because they can
signi�cantly in�uence on design of object tracking. There is also a whole group
of tracking methods called tracking-by-detection in which tracking is performed
by redetecting objects and establishing correspondences with previous detec-
tions. Therefore, in this chapter where we give an overview on object tracking,
we pay signi�cant attention to object detection as well. For more details we
refer the reader to very good surveys of object detection and tracking made by
Yilmaz et al. [Yilmaz 06], and of local feature detectors made by Mikolajczyk
and Schmid [Mikolajczyk 05a], and Tuytelaars and Mikolajczyk [Tuytelaars 08].
We also refer the reader to the book of Thrun et al. [Thrun 05], which explains
in detail the tracking methods applied to intelligent robotics and autonomous
agents.

This chapter is structured as follows. In Section 2.1 we give an overview
of various types of object representation. In Section 2.2 we explain di�erent
object detection methods. Object tracking methods that are relevant for our
work are explained in Section 2.3. Section 2.4 concludes this chapter.

2.1 Object representation overview

In this section we describe the object shape and appearance representations
commonly used for detection and tracking.

2.1.1 Object shape representation

Objects are typically represented in one of the following ways.
Points. In general, the point representation is suitable for tracking objects

that occupy small regions in an image. The object can be represented either
by a single point, e.g. the centroid, (Figure 2.1b) [Veenman 01], or by a set of
points (Figure 2.1c) [Serby 04]. In our work we used the point representation to
represent objects in the Kalman �lter framework. We represent the position of
tracked people by a point (a projection of their centroid) on the ground plane.

Primitive geometric shapes. In this type of representation, object shape
is represented by a rectangle, ellipse (Figure 2.1d, 2.1e) [Comaniciu 03], or
some other geometric shape. Object motion for such representations is usually
modelled by translation, a�ne, or projective (homography) transformations.
Though primitive geometric shapes are more suitable for representing simple
rigid objects, they are also used for tracking non-rigid objects. In our work we
used this type of object representation. In 2D (images) we represented vehicles
and people by rectangular bounding boxes or polygons, while for representation
in the 3D space (real-world) we used cuboids.

Object silhouette and contour. Contour representation de�nes the boundary
of an object (Figure 2.1h, 2.1i). The region inside the contour is called the sil-
houette of the object (see Figure 2.1j ). Silhouette and contour representations
are typically suitable for tracking complex non-rigid shapes [Yilmaz 04].
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a) b) c) d)

e) f) g) h) i) j)

Figure 2.1: An example video frame from a people tracking scenario (a), and di�er-
ent types of object representations: b) Centroid; c) Multiple points; d) Rectangular
patch (bounding box); e) Elliptical patch; f) Part-based multiple patches; g) Object
skeleton; h) Complete object contour; (i) Control points on the object contour; (j)
Object silhouette.

Articulated shape models. Articulated objects are composed of connected
body parts. For example, the human body is an articulated object with torso,
legs, hands, head, and feet connected by joints. The relationship between the
parts are typically governed by kinematic motion models. In order to represent
an articulated object, the constituent parts can be modelled using, for instance,
cylinders or ellipses as shown in Figure 2.1f.

Skeletal models. Object skeleton can be extracted by applying the medial
axis transform to the object silhouette [Ballard 82]. This model can be used to
model both articulated and rigid objects (see Figure 2.1g). In some works, e.g.
[Ali 01], this model has also been used as a shape representation for recognizing
objects.

2.1.2 Object appearance representation

There are several common appearance representations in the context of object
tracking.

Probability densities of object appearance. The probability density estimates
of the object appearance can either be parametric, such as Gaussian [Zhu 96]
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and a mixture of Gaussians [Paragios 02], or non-parametric, such as Parzen
windows [Elgammal 02] and histograms [Comaniciu 03]. The probability den-
sities of object appearance features (e.g. colour or texture) can be computed
from the image regions speci�ed by the selected shape models (e.g. the interior
region of an ellipse or a contour).

Templates. Templates are formed using simple geometric shapes or silhou-
ettes [Fieguth 97]. An important advantage of a template is that it carries
both spatial and appearance information. Traditionally, templates encode the
object appearance generated from a single view. In such cases they are only
suitable for tracking objects whose poses do not vary considerably during the
course of tracking. In this thesis we use templates for object appearance repre-
sentation and a signi�cant portion of our work has been dedicated to creating
and matching templates from multiple camera views.

Active appearance models. Active appearance models are generated by si-
multaneously modelling the object shape and appearance [Edwards 98]. In
these models, the object shape is typically de�ned by a set of landmarks. Sim-
ilarly to the contour-based representation, the landmarks can reside on the
object boundary or, alternatively, inside the object region. For each landmark
an appearance vector is stored, which is usually in the form of colour, texture,
or gradient magnitude. Active appearance models typically require a train-
ing phase to learn both the shape and its associated appearance from a set of
samples. To create such a sample set one can use, for instance, the principal
component analysis (PCA).

Multi-view appearance models. These models encode di�erent views of an
object. One way to represent these di�erent object views is to generate a
subspace from the given views. Subspace approaches, for example, principal
component analysis (PCA) and independent component analysis (ICA), have
been used for both shape and appearance representation [Black 98]. Some other
possible approaches to learn the di�erent views of an object is by training a set
of classi�ers, for example, Bayesian networks [Park 04] or the support vector
machines [Avidan 01].

In general, there is a strong relationship between the object representations
and the tracking algorithms. Object representations are usually chosen accord-
ing to the application domain. For tracking objects that appear very small in
an image, a point representation is usually appropriate. For the objects whose
shapes can be approximated by rectangles or ellipses, more appropriate are
primitive geometric shape representations. For instance, Comaniciu et al. [Co-
maniciu 03] for tracking football players used an elliptical shape representation
and for appearance modelling they employed a colour histogram computed from
the elliptical region. Black and Jepson [Black 98] used eigenvectors to repre-
sent the appearance. The eigenvectors were generated from rectangular object
templates. For tracking objects with complex shapes, for example humans, a
contour or a silhouette based representation is often appropriate.

In our work presented in this PhD thesis, we use rectangular bounding
boxes to represent vehicles and people in a single camera view. In a multi-view
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setup we represent these objects as cuboids in a 3D (real-world) environment,
and as a polygonal projection of the cuboids onto the image plane in each
of the camera views. In the low level tracking steps (e.g. tracking based on
foreground blobs), the objects are represented by silhouettes. We represent
the appearance of objects by Radon transform like image projection pro�les,
which we call signatures. We will de�ne these signatures in Chapter 3 of this
thesis. From the signatures we construct appearance templates and multi-view
appearance models, which we then use for object tracking and recognition.

2.2 Object detection overview

Tracking methods typically require object detection either in every frame of the
video, in multiple frames while object moves throughout the scene, or at least
when the object �rst appears in the scene. Object detection methods can use
information from a single frame or the temporal information computed from a
sequence of frames. This temporal information is often based on frame di�er-
encing, to detect changing regions and moving objects in consecutive frames,
which can reduce the number of false detections. Given the object detections
(object regions in the image), the tracker then performs object correspondence
from one frame to the next to generate the tracks (trajectories).

Some of the common object detection methods can be divided into several
groups: detectors based on local features, segmentation based detectors, detec-
tors based on foreground or background modelling, supervised or unsupervised
classi�ers, and others.

2.2.1 Detectors based on local features

These detectors �nd interest points (keypoints) and regions in images, which
have an expressive texture in their localities. An object of interest is then de-
tected based on the correspondence of these features in this new versus previ-
ous observations. There are very good surveys of local feature detectors made
by Mikolajczyk and Schmid [Mikolajczyk 05a], and Tuytelaars and Mikola-
jczyk [Tuytelaars 08]. As formulated by Tuytelaars and Mikolajczyk [Tuyte-
laars 08], good features should have the following properties.

• Repeatability : given two images of the same object or scene, even when
taken under di�erent viewing conditions, there should be a high percent-
age of the corresponding features detected in both images. This can be
achieved if the features are invariant to the image transformations that
can occur between di�erent views.

• Distinctiveness/informativeness: the intensity patterns underlying the
detected features should show a lot of variation, such that features can
be distinguished and matched.

• Quantity : the number of detected features should be su�ciently large,
such that a reasonable number of features are detected even on small
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Figure 2.2: Example of Harris corners detection. Left: the original image; Right:
the illustration of Harris cornerness measure. We see that Harris corners (highlighted
by white dots in the image on the right) are found as locations where the image signal
varies signi�cantly in both x and y directions.

objects. The density of features should re�ect the information content of
the image to provide a compact image representation.

• Locality : the features should be local, to enable simple model approxima-
tions of the geometric and photometric deformations between two images
taken under di�erent viewing conditions.

• Accuracy : the detected features should be accurately localized, both in
spatial location, as with respect to scale and possibly shape.

• E�ciency : preferably, the detection of features in a new image should
allow for time-critical applications.

Some common interest point detectors are the Harris [Harris 88], KLT [Shi 94],
SIFT [Lowe 04], SURF [Bay 08] and FAST [Rosten 05] interest point detectors.
For a comparative evaluation of interest point detectors, we refer the reader to
the surveys [Mikolajczyk 05a] and [Tuytelaars 08].

The Harris detector computes the �rst order image derivatives in x and y
directions to �nd the directional intensity variations. Then, a second moment
matrix, which encodes this variation, is evaluated for each pixel in a small
neighbourhood. Corners are found as locations in the image where the image
signal varies signi�cantly in both directions (see Figure 2.2). Interest points
are similarly computed by the KLT detector, with an additional criterion that
enforces a prede�ned spatial distance between detected interest points (points
that are spatially close to each other are eliminated). The Harris and KLT de-
tectors are invariant to rotation and translation, but not to a�ne or projective
transformations.

In order to introduce robust detection of interest points under di�erent
transformations, Lowe [Lowe 04] introduced the SIFT (Scale Invariant Feature
Transform) method. This method detects interest points based on the peaks
in the histograms of gradient directions in a small neighbourhood around a
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Image gradients Keypoint descriptor

Figure 2.3: An example of a SIFT descriptor. A keypoint descriptor is created by
�rst computing the gradient magnitude and orientation at each image sample point
in a region around the keypoint location, as shown on the left. These are weighted
by a Gaussian window, indicated by the overlaid circle. These samples are then
accumulated into orientation histograms summarizing the contents over subregions,
as shown on the right, with the length of each vector (arrow) corresponding to the
sum of the gradient magnitudes within the region. This �gure shows a 2×2 descriptor
array computed from an 8× 8 set of samples.

Figure 2.4: Illustration of box-type SURF �lters. These �lters can be quickly applied
on images using integral images as illustrated in Figure 2.5.

point, and creates a keypoint descriptor as shown in Figure 2.3. The points
are detected at di�erent image scales and resolutions. Therefore, SIFT detector
generates a greater number of interest points compared to other point detectors.
It has also been shown by Mikolajczyk and Schmid [Mikolajczyk 05a] that SIFT
outperforms most point detectors and is more resilient to image deformations.
On the other hand, SIFT detector is not very computationally e�cient, so there
are recent point detectors such as SURF and FAST that are made with the
goal to achieve high computational e�ciency.

SURF (Speeded Up Robust Features) have been proposed by Bay et al.
[Bay 08]. It is a scale-invariant feature detector based on the Hessian-matrix. It
uses the determinant of the Hessian matrix both for selecting the location and
scale. The Hessian matrix is roughly estimated using a set of box-type �lters, as
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Figure 2.5: Illustration of the integral image and the sum calculation of pixel values
in an arbitrary image area. Left: The integral image is a summed area image in which
each pixel is equal to the sum of all pixel values with lower or equal x and y coordi-
nates; Right: Having the integral image, a sum of pixel values in any arbitrary image
area can be calculated in only three basic arithmetic operations (two subtractions
and one addition).

shown in Figure 2.4, similar to the rectangular �lters proposed in [Viola 01] for
face detection. These box �lters approximate second-order Gaussian derivatives
and can be evaluated very fast using integral images [Viola 01], independently
of their size, see Figure 2.5. This enables using SURF features in real-time
video processing.

The FAST detector was introduced by Rosten and Drummond in [Ros-
ten 05, Rosten 06]. This detector compares pixels only on a circle of �xed
radius around the point. A circle of 16 pixels around the corner candidate is
considered (see Figure 2.6). The pixels are classi�ed into dark, similar, and
brighter subsets. A decision tree algorithm from [Quinlan 86] is used to select
the pixels which yield the most information about whether the candidate pixel
is a corner. This is measured by the entropy of the positive and negative corner
classi�cation responses based on this pixel. This process is applied recursively
on all three subsets and terminates when the entropy of a subset is zero. The
decision tree resulting from this partitioning is used as a corner detector. Fi-
nally, non-maxima suppression is applied on the sum of the absolute di�erence
between the pixels in the circle and the center pixel. This results in a very
e�cient detector, applicable in real-time video processing. The FAST detector
can produce a large number of interest point candidates, but there are many
unstable ones that exist only in some viewing conditions and need to be �ltered
out during the process of feature matching in di�erent views.

In our work we used KLT, FAST and SIFT detectors as some of the cues for
people and vehicle tracking and as a comparison with our proposed approaches.

2.2.2 Detectors based on foreground/background models

Detection of moving objects can be achieved by building a representation of
the scene called the background model and then �nding deviations from the
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Figure 2.6: Illustration of pixels examined by the FAST detector. Initially pixels 1
and 2 are compared with a threshold, then 3 and 4 as well as the remaining ones at
the end. The pixels are classi�ed into dark, similar, and brighter subsets.

model. Any signi�cant change from the background model is typically a result
of a moving object. Usually, a connected component algorithm is applied to
obtain connected regions corresponding to the objects. This process is called
the background subtraction. Background subtraction became popular following
the work of Wren et al. [Wren 97]. They proposed modelling the colour of each
pixel by a single 3D Gaussian in a Y-U-V colour space (it can be generalized
to any colour space). The model parameters, the mean and the covariance,
are learned from the colour observations in a prede�ned number of consecutive
frames. Once the background model is computed, the pixels that deviate from
this model are labelled as foreground pixels. This approach was later extended
by Stau�er and Grimson [Stau�er 00] to use a mixture of Gaussians (MoG)
instead of a single Gaussian. Zivkovic et al. [Zivkovic 06] added also modelling
of shadow casts and a variable number of Gaussians to model the pixel colour
value distribution. This approach adapts the number of Gaussian components
on-line to statistical changes to improve the processing time and make it suited
for real-time applications.

One of the recent extension of the MoG method is the Visual Background
Extractor (ViBe) [Barnich 09], [Barnich 11], [Zhu 12]. This is a sample-based
approach for modelling the pixel distribution. Instead of using a statistical
model for the unknown pixel distribution, Barnich et al. approximate this dis-
tribution by a set of representative pixel samples. The sample set is updated
by a random process that substitutes old pixel values by new ones if there are
enough pixels similar to the new value in the neighbourhood around the mod-
elled pixel. In this way ViBe exploits spatial information and adapts to lighting
changes. As shown in [Barnich 09], this method is more robust to noise than
MoG. Van Droogenbroeck et al. made a variant of ViBe with adaptive param-
eters and blob �ltering [Van Droogenbroeck 12]. ViBe has several parameters
that adapt its performance to di�erent conditions. There is an extension named
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Pixel-Based Adaptive Segmenter (PBAS) [Hofmann 12], which adds heuristics
to adaptively change the parameters.

Some other approaches to model background per pixel incorporate region-
based (spatial) scene information using non-parametric kernel density estima-
tion. One of such approaches is proposed by Elgammal and Davis [Elgam-
mal 00]. This method can handle small camera jitter or small movements in
the background. Liyuan and Maylor [Liyuan 02] fuse the texture and intensity
(colour) features to perform background subtraction. Since texture does not
vary greatly with illumination changes, the method is less sensitive to illumi-
nation. Methods such as [Heikkila 06] use local binary patterns as a model of
local texture characteristics, which are calculated over a circular region around
the pixel.

There are also background subtraction methods that represent pixel inten-
sity variations as discrete states corresponding to the events in the environment.
For instance, for tracking vehicles on a highway image pixels can be in the back-
ground state, the foreground (vehicle) state, or the shadow state (which can be
both foreground and background). Rittscher et al. [Rittscher 00] use Hidden
Markov Models (HMM) to classify small blocks of an image as belonging to
one of these three states. In the context of detecting light on and o� events in
a room, Stenger et al. [Stenger 01] use HMMs for the background subtraction.
The advantage of using HMMs is that certain events, which are hard to model
correctly using unsupervised background modelling approaches, can be learned
using training samples.

Instead of modelling the variation of individual pixels, Oliver et al.
[Oliver 00] propose a holistic approach using the eigenspace decomposition.
The background is represented by the most descriptive eigenvectors, which
capture possible variations in illumination in the �eld of view. The foreground
objects are detected by projecting the current image to the eigenspace and
�nding the di�erence between the reconstructed and actual images.

One limitation of the aforementioned approaches is that they require a rel-
atively static background. There are methods, such as the ones proposed by
Monnet et al. [Monnet 03], and Zhong and Sclaro� [Zhong 03], which address
this limitation. Both of these methods are able to deal with time-varying back-
ground (e.g., the waves on the water, waving trees, moving clouds, escalators,
etc.). These methods model the image regions as autoregressive moving aver-
age (ARMA) processes which provide a way to learn and predict the motion
patterns in a scene. An ARMA process is a time series model that is made up
of sums of autoregressive and moving-average components, where an autore-
gressive process can be described as a weighted sum of its previous values and
a white noise error.

Illumination changes in the observed scene pose a big challenge to most
background subtraction methods. Therefore, Grünwedel et al. [Grünwedel 11b]
recently proposed using edge features (image gradients) for background sub-
traction, since edges are theoretically insensitive to illumination changes. Their
method detects moving edges, i.e. the edges that belong to moving objects.
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Figure 2.7: Comparison of di�erent foreground/background segmentation methods.
We see that the edge based method of [Grünwedel 11b] is the most robust to illumi-
nation changes and outperforms other methods.

An essential component of this method is combining a short-term and a long-
term background model to include both fast and slow background changes in
the model. In this way mostly only edges that belong to real moving objects
remain in the foreground, and not edges of �ghost objects� (e.g. the edges that
appear when an object moves and reveals the background behind it). The work
of [Grünwedel 11b] also includes comparison with other background subtraction
methods, namely ViBE, MoG, and short plus long term background modelling
based on pixel intensities, showing that edge based approach is the most ro-
bust one for environments with intensive illumination changes, see Figure 2.7.
In his PhD thesis Grünwedel S. goes further and shows that this edge based
method performs better than the other methods in the context of occupancy
monitoring (monitoring a presence of people in certain areas). Therefore, we
use this method to detect people in our work on people tracking.

One of the biggest limitation of background subtraction as an object detec-
tion method is the requirement of stationary cameras. Camera motion usually
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distorts the background models so background subtraction is not suitable for
applications with moving cameras. Background subtraction in practice also
provides incomplete object regions in many instances. The objects may be
spilled into several regions, or there may be holes inside the object since there
is no guarantee that the object features will be di�erent from the background
features. On the other hand, the advantage of background subtraction methods
is their computational e�ciency. Since the scope of our work is on real-time
tracking in stationary camera networks, we �nd background subtraction a use-
ful element as one of the cues for object detection and tracking in our work.

2.2.3 Segmentation based detectors

The aim of image segmentation algorithms is to partition the image into
perceptually similar regions. In our work we used segmentation based detectors
to extract high-level information about the observed scenes. For instance,
in tra�c surveillance applications vehicles are expected to be seen on roads,
so by segmenting the scene to detect roads and adding this information to
the vehicle tracker, we reduce the number of false trajectory associations. In
this section, we will give an overview of fundamental segmentation techniques
relevant to object tracking, and explain what methods we use and why.

Mean-shift clustering. For the image segmentation problem, Co-
maniciu and Meer [Comaniciu 02] propose the mean-shift approach to �nd
clusters in the joint spatial-colour space. Given an image, a large number
of hypothesized cluster centres randomly chosen from the data are used to
initialize the algorithm. Then, each cluster centre is moved to the mean of
the data lying inside the multidimensional ellipsoid centred on the cluster
centre. The vector de�ned by the old and the new cluster centres is called
the mean-shift vector. This vector is computed iteratively until the cluster
centres do not change their positions. Note that some clusters may get
merged during the mean-shift iterations. In Figure 2.8 there is an example
of the mean-shift segmentation. Mean-shift based segmentation requires �ne
tuning of various parameters to obtain better segmentation. For instance,
selection of the colour and spatial kernel bandwidths, and the threshold for
the minimum size of the region can considerably e�ect the resulting segmen-
tation. However, mean shift segmentation gives good results in segmenting
roads and pavements (due to relative uniformity of their colour, brightness
or texture) so we use it to establish additional cues in vehicle tracking scenarios.

Image segmentation using graph-cuts. Image segmentation can also
be formulated as a graph partitioning problem, where the vertices (pixels) of
a graph (image), are partitioned into disjoint subgraphs (regions), by pruning
the weighted edges of the graph (see Figure 2.9). The total weight of the
pruned edges between two subgraphs is called a cut. The weight is typically
computed by colour, brightness, or texture similarity between the nodes. Wu
and Leahy [Wu 93] used the minimum cut criterion, where the goal is to �nd
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Figure 2.8: Illustration of the mean shift procedure and result examples. Top left :
Principle of the mean shift analysis for one cluster- to �nd the cluster center for points
P1, repeatedly �nd the centroid of points inside a sphere (initially at P1) and recentre
the sphere on the centroid until the sphere is stationary (when centroid reaches the
point Pn in this example); Top right : the mean shift procedure for multiple clusters
in the L*u*v* colour space [Comaniciu 02]- gradient ascent trajectories and centroids
of each cluster (marked with red dots); Bottom: Two result examples of outdoor
scenes- we see that roads and pavements are typically very well segmented due to
their relatively uniform colour.

the partitions that minimize a cut. In their approach, the weights are de�ned
based on the colour similarity. One limitation of the minimum cut is its bias
toward oversegmenting the image. This e�ect is due to the increase in cost of
a cut with the number of edges going across the two partitioned segments.

Shi and Malik [Shi 00] proposed the normalized cut to overcome the over-
segmentation problem. In their approach, the cut not only depends on the sum
of edge weights in the cut, but also on the ratio of the total connection weights
of nodes in each partition to all nodes of the graph. In normalized cuts-based
segmentation, the solution to the generalized eigensystem for large images can
be expensive in terms of processing and memory requirements. On the other
hand, this method requires fewer manually selected parameters, compared to
the mean-shift segmentation, which is an advantage in application where many
clusters need to be extracted. In our applications the processing power and
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Figure 2.9: Graph cut segmentation procedure. Two clusters are separated by cutting
the weighted edges of the graph to minimize the cost of a cut.

memory requirements are more critical so mean shift segmentation is a better
choice.

Beside graph-cuts there are other inference methods with Markov Ran-
dom Field (MRF) priors that could be used for image segmentation, such
as methods based on random search [Grady 06], (loopy) belief propaga-
tion [Felzenszwalb 06], and others.

Active contours. In an active contour framework, object segmentation
is achieved by evolving a closed contour to the object's boundary, such that
the contour tightly encloses the object region. The evolution of the contour is
governed by an energy functional which de�nes the �tness of the contour to the
hypothesized object region. Typically, image gradient and image region based
information is used to construct the energy terms. Image gradients provide
very local information, while regional terms do not result in good contour
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localization so it is best to use them in combination.
Important issues in contour-based methods are the contour initialization

and representation. Initialization in image gradient-based approaches is typi-
cally done by placing a contour outside the object region and then the contour is
shrunk until the object boundary is encountered. In region-based methods the
contour can be initialized either inside or outside the object so that the contour
can either expand or shrink, respectively, to �t the object boundary. However,
these approaches require prior object or background knowledge. Contour rep-
resentation can be explicit, by control points, or implicit, by level sets. In the
explicit representation, the relations between the control points are de�ned by
spline equations. In the level sets representation, the contour is represented on
a spatial grid, which encodes the signed distances of the grids from the contour
with opposite signs for the object and the background regions. The most im-
portant advantage of implicit representation over the explicit representation is
its �exibility in allowing topology changes.

2.2.4 Classi�cation based detectors

Object detection can also be performed by learning di�erent object appearances
automatically from a set of examples by means of supervised learning, and then
�nding new observations of the same categories based on the learned examples.
Given a set of learning examples (templates), supervised learning methods
generate a function that maps inputs to desired outputs. Inputs are typically
features computed from object images, while outputs are object class labels
(e.g. �a vehicle� or �not a vehicle�). In the context of object detection, the
learning examples are composed of object features and their associated object
class, where both are manually de�ned.

Selection of features has an important role in the performance of classi�ca-
tion. It is important to use a set of features that discriminate one class from the
other(s). In Chapter 3 we give an overview of the features that could be used
for object classi�cation. Other good candidates are the features mentioned in
Sections 2.2.1 and 2.2.2 of this chapter. Once the features are selected, di�erent
appearances of an object can be learned through supervised learning. Some of
the supervised learning approaches are neural networks [Rowley 98], adaptive
boosting [Viola 03], decision trees [Grewe 95] and support vector machines [Pa-
pageorgiou 98]. These learning methods compute a hyperplane that separates
one object class from the other in a high dimensional space.

The biggest drawbacks of supervised learning methods are the require-
ments of a large collection of samples from each object class and the need
for manual labelling of the samples. A possible approach to reducing the
amount of manually labelled data is to accompany co-training with supervised
learning [Blum 98]. The main idea behind co-training is to train two classi�ers
using a small set of labelled data where the features used for each classi�er
are independent. After training is achieved, each classi�er is used to assign
unlabelled data to the training set of the other classi�er. It was shown
that, starting from a small set of labelled data with two sets of statistically
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independent features, co-training can provide a very accurate classi�cation
rule [Blum 98]. Co-training has been successfully used to reduce the amount of
manual interaction required for training in the context of Adaboost [Levin 03]
and Support Vector Machines (SVM) [Kockelkorn 03]. In the remainder of
this section we will give more details about adaptive boosting and support
vector machines since we use these two methods in our work.

Adaptive boosting. Boosting is an iterative method of �nding a very
accurate classi�er by combining many weak classi�ers, each of which may only
be moderately accurate [Freund 95], see Figure 2.10. Proper training is crucial
to the performance of the Adaboost algorithm. The underlying idea is to train
each of the weak classi�ers to perform better than the others at classifying data
using a particular feature. A strong classi�er is then constructed by integrating
the best trained weak classi�ers. The Adaboost training process consists of
several steps. First, an initial distribution of weights over the training set is
constructed. Secondly, the boosting mechanism selects a base classi�er that
gives the least error proportional to the weights of the misclassi�ed data. Then
the weights associated with the data misclassi�ed by the selected base classi�er
are increased. In this way, in the next iteration the algorithm encourages the
selection of another classi�er that performs better on the misclassi�ed data.

In the context of object detection, weak classi�ers can be simple operators
such as thresholding scalar object features extracted from the image. In 2003,
Viola et al. [Viola 03] used the Adaboost framework to detect pedestrians.
In their approach, perceptrons were chosen as the weak classi�ers which are
trained on image features extracted by a combination of spatial and temporal
operators. The operators for feature extraction are in the form of simple
rectangular �lters shown in Figure 2.11. In the temporal domain, the operators
can be in the form of frame di�erencing, which captures motion information.
This can reduce the number of false detections by enforcing object detection
in the regions where the motion occurs. In the context of vehicle tracking, for
vehicle detection we use the method of [Rios Cabrera 12], which is based on
Adaboost.

Support vector machines. As a classi�er, Support Vector Machines
(SVM) are used to cluster data into two classes by �nding the maximum
marginal hyperplane that separates one class from the other [Boser 92], as
shown in Figure 2.12. The margin of the hyperplane, which is maximized, is
de�ned by the distance between the hyperplane and the closest data points.
The data points that lie on the boundary of the margin of the hyperplane are
called the support vectors. In the context of object detection, these classes cor-
respond to the object class (positive samples) and the non-object class (negative
samples). The computation of the hyperplane is carried out from manually gen-
erated training examples labelled as object and non-object. Despite being a
linear classi�er, SVM can also be used as a non-linear classi�er by applying a
kernel function to the input feature vector. The kernel function transforms the
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Figure 2.10: Adaboost classi�cation principle. The strong classi�er is obtained as a
weighted liner combination of many weak classi�ers. In this way it is possible to have
highly accurate classi�cation and real-time performance.

data that is not linearly separable to a higher dimensional space which is likely
to be separable. The kernels used for this purpose are typically polynomial
kernels or radial basis functions, for example, Gaussian kernel or a sigmoid
function. However, the selection of the right kernel for the problem at hand is
not easy. Once a kernel is chosen, one has to test the classi�cation performance
for a set of parameters, but there is no guarantee that the performance will
remain good when new observations are introduced to the sample set. Never-
theless, SVM classi�ers o�er high �exibility and in many applications achieve
higher accuracy than other classi�ers.

2.3 Object tracking overview

The aim of an object tracker is to generate the trajectory of an object over
time by locating its position in video frames. Object trackers may also provide
the complete region in the image that is occupied by the object at a given time
instance. The tasks of detecting the object and establishing correspondence
between the object instances across frames can either be performed separately
or jointly. In the �rst case, possible object regions in every frame are obtained
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Figure 2.11: Adaboost classi�cation and features often used for object detection.
Classi�ers are organized in a cascade so that each classi�er specializes for one feature
and at each stage many false hypotheses are rejected. Only the hypotheses classi�ed
as true pass to the next classi�er.

by means of an object detection algorithm, and then the tracker associates
objects across frames. This approach is usually referred to as tracking-by-
detection. For this purpose the detection methods explained in Section 2.2 can
be used. In the case when the object region and correspondence are jointly
estimated, this is typically done by iteratively updating object location and
region information obtained from previous frames. In both approaches, the
objects are represented using the shape and/or appearance models described
previously in this chapter, in Section 2.1.

The selected model that represents object shape limits the type of motion or
deformation the object can undergo. For example, if an object is represented
as a point, then only a translational model can be used. In the case where
a geometric shape representation like a polygon or a cuboid is used for the
object, parametric motion models like a�ne or projective transformations are
appropriate. These representations can approximate the motion of rigid objects
in the scene. For a non-rigid object, its silhouette or contour is the most
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Figure 2.12: Support vector machines classi�cation example for two classes. Left :
Input space in which data is not linearly separable; Right : Higher dimensional feature
space in which data becomes linearly separable. The kernel function φ transforms the
input space into feature space.

descriptive representation and both parametric and non-parametric models can
be used to specify their motion. However, if there is no interest to determine
motion of speci�c parts of a non-rigid object or there is no a close up view
of the object, a non-rigid object can as well be represented by a rectangle, a
polygon or a cuboid.

We now brie�y introduce the main categories of tracking methods, followed
by a detailed section on the two categories we use extensively in our work.

Point tracking. Objects detected in successive frames are represented by
points. The association of the points is based on the previous object state,
which can include object position and motion (see Figure 2.13a). This approach
usually requires an external detection of the objects in every frame.

Kernel tracking. Kernel refers to the object shape and appearance. For
example, the kernel can be a rectangular template or an elliptical shape with
an associated histogram. Objects are tracked by computing the motion of the
kernel in consecutive frames (see Figure 2.13b). This motion is usually in the
form of a parametric transformation such as translation, rotation, and a�ne.

Silhouette tracking. Tracking is performed by estimating the object region
in each frame. Silhouette tracking methods use the information encoded inside
the object region. This information can be in the form of appearance density
and shape models which are often in the form of edge maps. Given the object
models, silhouettes are tracked by either shape matching or contour evolution
(see Figures 2.13c and 2.13d). Both of these methods can essentially be consid-
ered as object segmentation applied in the temporal domain using the priors
generated from the previous frames.

In our work we focus on point and kernel tracking approaches since silhou-
ette tracking approaches typically require a close up view of the object and are
less computationally e�cient. Therefore, in the following sections we explain
point and kernel tracking in more detail.
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(a) (b)

(c) (d)

Figure 2.13: Di�erent tracking approaches: a) Multipoint correspondence; (b) Para-
metric transformation of a rectangular patch; c, d) Two examples of contour evolution.

2.3.1 Point tracking

Point tracking can be formulated as associating detected objects represented by
points across frames. Point correspondence is a complicated problem, especially
in the presence of occlusions, misdetections, entries, and exits of objects. Over-
all, there are two broad categories of point correspondence methods: determin-
istic and statistical methods. Deterministic methods typically use qualitative
motion heuristics [Veenman 01] to constrain the correspondence problem. On
the other hand, probabilistic methods establish correspondence by explicitly
taking into account the object measurement and uncertainties.

2.3.1.1 Deterministic methods for correspondence

Deterministic methods for �nity point correspondences de�ne a cost of asso-
ciating each object in frame t − 1 to a single object in frame t using a set of
motion constraints. Minimization of the correspondence cost is formulated as
a combinatorial optimization problem. A solution consists of one-to-one cor-
respondences among all possible associations. Such a solution can be obtained
by optimal assignment methods, such as Hungarian or the Kuhn-Munkres al-
gorithm, [Kuhn 55] and [Munkres 57], or by greedy search methods. The
correspondence cost is usually de�ned by using a combination of the following
constraints.

• Proximity assumes the location of the object does not change notably
between successive frames (see Figure 2.14a).

• Maximum velocity de�nes an upper bound on the object velocity and
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(a) (b) (c)

(d) (e)

Figure 2.14: Di�erent motion constraints: a) Proximity; b) Maximum velocity (r
denotes radius); c) Small velocity change; d) Common motion; e) Rigidity constraints.

limits the possible correspondences to the circular neighbourhood around
the object (see Figure 2.14b).

• Small velocity change (smooth motion) assumes the direction and speed
of the object does not change drastically between successive frames (see
Figure 2.14c).

• Common motion constrains the velocity of objects in a small neighbour-
hood to be similar. This constraint is suitable for object represented by
multiple points (see Figure 2.14d).

• Rigidity assumes that objects in the 3D world are rigid so the distance
between any to points in the actual object will remain unchanged (see
Figure 2.14e).

• Proximity uniformity is a combination of the proximity and the small
velocity change constraints.

Note that these constraints are not speci�c to the deterministic methods. They
can also be used in the context of point tracking using statistical (probabilistic)
methods.

Here we present a sample of di�erent methods proposed in the literature
in the category of deterministic point trackers. Sethi and Jain [Sethi 87] solve
the correspondence by a greedy approach based on the proximity and rigidity
constraints. Their algorithm is initialized by the nearest neighbour criterion
and uses the information from two consecutive frames for tracking. The corre-
spondences are exchanged iteratively to minimize the cost. A modi�ed version
of the same algorithm which computes the correspondences in the backward
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direction (from the last frame to the �rst frame) in addition to the forward
direction is also analysed. This method cannot handle occlusions, entries, or
exits. Salari and Sethi [Salari 90] handle these problems by �rst establish-
ing correspondence for the detected points and then extending the tracking of
the missing objects by adding a number of hypothetical points. Rangarajan
and Shah [Rangarajan 91] propose a greedy approach, which is constrained by
proximal uniformity. Optical �ow in the �rst two frames is used to �nd ini-
tial correspondences. This method does not address entry and exit of objects.
If the number of detected points decrease, the method assumes occlusion or
misdetection. Occlusion is handled by establishing the correspondence for the
detected objects in the current frame. For the remaining objects, position is
predicted based on a constant velocity assumption.

In the work by Intille et al. [Intille 97], which uses a slightly modi�ed version
of [Rangarajan 91] for matching object centroids, the objects are detected by
using background subtraction. The authors explicitly handle the change in the
number of objects by examining speci�c regions in the image, for example, a
door, to detect entries/exits before computing the correspondence. Veenman
et al. [Veenman 01] extend the work of [Sethi 87], and [Rangarajan 91] by
introducing the common motion constraint for correspondence. The common
motion constraint provides a strong constraint for coherent tracking of points
that lie on the same object. However, it is not suitable for points lying on
isolated objects moving in di�erent directions. The algorithm is initialized by
generating the initial tracks using a two-pass algorithm, and the cost function is
minimized by Hungarian assignment algorithm [Munkres 57] in two consecutive
frames. This approach can handle occlusion and misdetection errors, however,
it is assumed that the number of objects are the same throughout the sequence,
that is, no object enters or exits.

Sha�que and Shah [Sha�que 03] propose a multi-frame approach to preserve
temporal coherency of the speed and position. They formulate the correspon-
dence problem as a graph theoretic problem. Multiple frame correspondence
relates to �nding the best unique path for each point. For misdetected or
occluded objects, the path will consist of missing positions in corresponding
frames. The correspondence is then established by a greedy algorithm. They
use a window of frames during point correspondence to handle occlusions whose
durations are shorter than the temporal window used to perform matching.

2.3.1.2 Statistical methods for correspondence

Measurements obtained from video sensors always contain noise. Moreover, the
object motion can undergo random perturbations. For instance, when people
walk they can suddenly change their moving direction or stop walking. Statis-
tical correspondence methods solve these tracking problems by taking the mea-
surement and the uncertainties into account during the object state estimation.
The statistical correspondence methods use the state space approach to model
the object properties such as position, size, velocity, and acceleration. Measure-
ments usually consist of the object position in the image, which is obtained by
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an object detection mechanism. In this section we will give an overview of the
state estimation methods in the context of point tracking. However, it should
be noted that these methods can be used in general to estimate the state of
any time varying system. For example, these methods have extensively been
used for tracking contours [Isard 98], activity recognition [Vaswani 03], object
identi�cation [Zhou 03], and structure from motion [Matthies 89]. We also
extensively use them in our work, both for single and multi-camera tracking.

Consider a moving object in the scene. The information represent-
ing the object, for example, location, is de�ned by a sequence of states
xt : t = 1, 2, .... The change in state over time is governed by the dynamic
equation, xt = f(xt−1) + wt , where wt : t = 1, 2, ... is white noise. The
relationship between the measurement and the state is speci�ed by the
measurement equation zt = h(xt,nt), where nt is white noise independent
of wt . The objective of tracking is to estimate the state xt given all the
measurements up to that moment or, equivalently, to construct the probability
density function p(xt|z1,...,t). A theoretically optimal solution is provided by a
recursive Bayesian �lter which solves the problem in two steps. The prediction
step uses a dynamic equation and the already computed probability density
function of the state at time t − 1 to derive the prior probability density
function of the current state, p(xt|z1,...,t−1). Then, the correction step employs
the likelihood function p(zt|xt) of the current measurement to compute the
posterior probability density function p(xt|z1,...,t). There are several �ltering
techniques typically used for this purpose.

Kalman �ltering. Kalman �ltering (KF) was invented in the 1950s by
Rudolph Emil Kalman [Kalman 60], as a technique for �ltering and prediction
in linear systems. At time t, the state is represented by the the mean µt and
the covariance σt. It is assumed that the state has a Gaussian distribution and
that state transitions and measurements are linear with added Gaussian noise.
These limitations are rarely ful�lled in practice, but in many applications they
can be good approximations if it is possible to keep the state and measurement
uncertainties very small.

Figure 2.15 illustrates the Kalman �lter algorithm for a simplistic one-
dimensional localization scenario. Suppose an object moves along the horizon-
tal axis in each diagram in Figure 2.15. Let the prior over the object location
be given by the normal distribution shown in Figure 2.15a. Various sensors
(e.g. a GPS system, video cameras, etc.) are used to get the information about
the object's locations, and those return a measurement that is centred at the
peak of the bold Gaussian in Figure 2.15b. This bold Gaussian illustrates this
measurement: its peak is the value predicted by the sensors, and its width
(variance) corresponds to the uncertainty in the measurement. Combining the
prior with the measurement by the Kalman �lter algorithm, yields the bold
Gaussian in Figure 2.15c. This belief's mean lies between the two original
means.

Next, assume the object moves towards the right, as represented by the
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Gaussian shown in bold in Figure 2.15d. This Gaussian is shifted by the
amount the object moved, and it is also wider due to a higher uncertainty
in the location. Next, the robot receives a second measurement illustrated by
the bold Gaussian in Figure 2.15e, which leads to the posterior shown in bold
in Figure 2.15f. As this example illustrates, the Kalman �lter alternates a
measurement update step, in which sensor data is integrated into the present
belief, with a prediction step (or control update step), which modi�es the belief
in accordance to an action. The update step decreases and the prediction step
increases uncertainty in the belief in object's location.

Extended Kalman �ltering. Extended Kalman �ltering (EKF) over-
comes the linearity limitations of KF by taking the assumption that the next
state probability and the measurement probabilities are governed by non-linear
functions. These non-linear functions are then typically approximated using
linear Taylor expansions. In this way EKF represents the belief by a mul-
tivariate Gaussian distribution, opposed to a single variate in KF. This also
enables EKF to be computationally e�cient. There are also extensions of EKF
that enable multi-modal representations of the posterior belief by a mixture of
Gaussians (very useful in cases when the object can be in multiple states with
considerable probabilities, but the arithmetic mean of these hypotheses is not
a likely state). These extensions are typically called multi-hypotheses extended
Kalman �lter. In the case of high non-linearity of prediction and update func-
tions, it is possible to sample a set of points around the mean and propagate
them through the non-linear functions to compute the mean and covariance of
the state estimate. This technique is called unscented Kalman �lter.

In our work and in this thesis we extensively use Kalman �ltering methods.
As the state of a tracked object (target) at time instance t we use as a six-
dimensional vector xt = (xt, yt, ẋt, ẏt, wt, ht), which contains the position of
the target along the x and y image axes (xt, yt), its apparent velocity (ẋt and
ẏt), and apparent size, i.e. the width and height of its bounding box (wt
and ht). We combine multiple cues (measurements) to improve quality and
robustness of state estimations. Depending on the application domain, vehicle
or people tracking, and camera views, close-up or wide view, we set di�erently
the parameters of the �lter. Between consecutive video frames (observations)
the state of people can change more abruptly than the state of vehicles, so we
use higher Kalman gain for people tracking. The Kalman gain is a function of
the relative certainty of the measurements and current state estimate, and can
be tuned to achieve particular performance. With a high gain, the �lter places
more weight on the measurements, and thus follows them more closely. With
a low gain, the �lter follows the model predictions more closely, smoothing
out noise but decreasing the responsiveness. At the extremes, a gain of one
causes the �lter to ignore the state estimate entirely, while a gain of zero causes
the measurements to be ignored. In this way, by using high gain values for
people tracking we rely more on camera observations and incorporate new
measurements faster than for vehicle tracking. The optimal value of Kalman
gain we determine experimentally.



2.3 Object tracking overview 37

(a) (b)

(c) (d)

(e)

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 (f)

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

5 10 15 20 25 30

5 10 15 20 25 30

5 10 15 20 25 30 5 10 15 20 25 30

5 10 15 20 25 30

 p p

p p

p p

d d

d d

d d

Figure 2.15: Illustration of a Kalman �lter for a simplistic one-dimensional robot
localization scenario [Thrun 05]: the vertical axis (p) represents state (location) prob-
ability, while the horizontal axis (d) represents the location of the robot. a) Initial
belief; b) Measurement (in bold) with the associated uncertainty; c) Belief after inte-
grating the measurement into the belief using the Kalman �lter algorithm; d) belief
after motion to the right (which introduces uncertainty); e) A new measurement with
associated uncertainty; f) the resulting belief.

Histogram �ltering. Histogram �lters (HF) decompose the continuous
state space into �nitely many regions, and represent the cumulative posterior
for each region by a single probability value. When applied to discrete spaces,
such �lters are known as discrete Bayesian �lters. HF are well-suited to repre-
sent complex multi-modal beliefs. For this reason, they are often the method of
choice when a tracker has to cope with phases of global uncertainty, and when
it faces hard data association problems that yield separate, distinct hypotheses.
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Particle �ltering. Particle �ltering (PF) is an alternative non-parametric
implementation of the Bayesian �lter. Just like histogram �lters, particle
�lters approximate the posterior by a �nite number of parameters. However,
they di�er in the way these parameters are generated, and in which they
populate the state space. The key idea of the particle �lter is to represent
the posterior belief by a set of random state samples (particles) drawn from
this posterior, instead of representing the belief by a parametric form. Such
a representation is approximate, but it is non-parametric, and therefore can
represent a much broader space of distributions than parametric methods. PF
is a popular substitute for the KF in presence of non-Gaussianity of the noise
statistics and non-linearity of the relationships between consecutive states and
between state and measurements. PF can use multi-modal likelihood functions
and propagate multi-modal posterior distributions like those occurring in
case of temporary occlusions and background clutter. However, the number
of samples required and therefore the complexity of the algorithm grows
exponentially with the dimensionality of the estimated state space. This limits
the application of the PF variety where samples are drawn from the prior to
relatively small tracking problems.

To better and practically understand how particle �lter works, let us show
an example of algorithm iteration with 10 particles, which represent 10 possible
�ltered values (Figure 2.16):

1. Starting step - there are 10 possible �ltered values, all with the same
weight;

2. Importance weight step - by exploiting state estimate probability ob-
tained from measurements, the algorithm assigns a weight at each �ltered
value;

3. Re-sampling step - values with high weight are spread over di�erent values
with the same weight, while low weight values are discarded;

4. Sampling/prediction step - �ltered particles are randomly perturbed.

Note that when tracking multiple objects using these �lters, one needs
to deterministically associate the most likely measurement for a particular
object to that object's state, i.e. the correspondence problem needs to be
solved before these �lters can be applied. The simplest method to perform
correspondence is to use the nearest neighbour approach. We exploit it also in
our work. However, if the objects are close to each other, then there is always
a chance that the correspondence is incorrect. An incorrectly associated mea-
surement can cause the �lter to fail to converge. There are several statistical
data association techniques to tackle this problem. A detailed review of these
techniques can be found in the survey by Cox [1993]. Joint probability data
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Figure 2.16: An example of particle �lter iteration: 1) Starting step; 2) Importance
weight step; 3) Re-sampling step; 4) Sampling/prediction step.

association �ltering and multiple hypotheses tracking are two widely used tech-
niques for data association. Here we give a brief description of these techniques.

Joint probability data association �lter (JPADF). If we assume
there are N tracks (tracked objects) and M , M 6= N , measurements at
time instance t, the problems is to assign these measurements to the tracks.
The JPDAF associates all measurements with each track, assigning a weight
factor to each of the associations and assuming that the number of tracks
will remain constant over time. The major limitation of the JPDAF al-
gorithm is its inability to handle new objects entering the �eld of view
or already tracked objects exiting the observed area. Since the JPDAF
algorithm performs data association of a �xed number of objects tracked over
two frames, serious errors can arise if there is a change in the number of objects.

Multiple hypotheses tracking (MHT). If motion correspondence is es-
tablished using only consecutive frames, there is always a chance of an incorrect
correspondence. Better tracking results can be obtained if the correspondence
decision is deferred until several frames have been examined. The MHT al-
gorithm maintains several correspondence hypotheses for each object at each
time frame [Reid 1979]. The �nal track of the object is the most likely set of
correspondences over the time period of its observation. The algorithm has the
ability to create new tracks for objects entering the �eld of view and terminate
tracks for exiting objects. It can also handle occlusions by continuation of a
track even if some of the measurements from an object are missing. MHT is an
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iterative algorithm. An iteration begins with a set of current track hypotheses.
Each hypothesis is a collection of disjoint tracks. For each hypothesis, a pre-
diction of each object's position in the next frame is made. The predictions are
then compared with actual measurements by evaluating a distance measure. A
set of correspondences (associations) are established for each hypothesis based
on the distance measure, which introduces new hypotheses for the next itera-
tion. Each new hypothesis represents a new set of tracks based on the current
measurements. Note that each measurement can belong to a new object enter-
ing the �eld of view, a previously tracked object, or a spurious measurement.
Moreover, a measurement may not be assigned to an object because the ob-
ject may have exited the �eld of view, or a measurement corresponding to an
object may not be obtained. The latter happens because either the object is
occluded or it is not detected due to noise. Note that MHT makes associations
in a deterministic sense and exhaustively enumerates all possible associations.
To reduce the computational load, Streit and Luginbuhl [Streit 94] proposed a
probabilistic MHT in which the associations are considered to be statistically
independent random variables and thus there is no requirement for exhaustive
enumeration of associations.

2.3.1.3 Point tracker evaluation

Point tracking methods can be evaluated on the basis of whether they gener-
ate correct point trajectories. Given a ground truth, the performance can be
evaluated by computing precision and recall measures. In the context of point
tracking, precision (p) and recall (r) measures can be de�ned as:

p =
Nc
Ne

, (2.1)

where Nc and Ne are respectively the number of correct and established corre-
spondences, and

r =
Nc
Ngt

, (2.2)

withNc andNgt being the number of correct and ground truth correspondences,
respectively.

Additionally, a qualitative comparison of object trackers can be made based
on their ability to deal with entries of new objects and exits of existing objects,
handle the missing observations (occlusions), and provide an optimal solution to
the cost function minimization problem used for establishing correspondence.
To handle missing or noisy observations, it is often necessary to use motion
based constraints as explained in Section 2.3.1.1.

In our work and in this thesis we extensively use statistical point tracking
methods. Therefore, in Chapters 4 and 6 we will explain the methods we use
in more detail. We combine multiple cues to improve quality and robustness
of measurements. We also pay signi�cant attention to computational and data
e�ciency.
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2.3.2 Kernel tracking

Kernel tracking is typically performed when the object is represented by a
primitive object region (e.g. a rectangle or an ellipse). The object motion is
computed in the form of parametric motion (translation, conformal, a�ne, etc.)
or the dense �ow �eld computed in subsequent frames. These algorithms di�er
in terms of the appearance representation used, the number of objects tracked,
and the method used to estimate the object motion. We divide these tracking
methods into two subcategories based on the used appearance representation:
templates and density-based appearance models, and multi-view appearance
models.

2.3.2.1 Tracking using templates and appearance models

Templates and density-based appearance models (see Section 2.1.2) are widely
used because of their relative simplicity and low computational cost.

The most common approach in this category is template matching. Tem-
plate matching is a brute force method of searching the image for a region
similar to the object template de�ned in one of the previous frames. The posi-
tion of the template in the current image is computed by a similarity measure,
for example, cross correlation. Usually image intensity or colour features are
used to form the templates. Since image intensity is very sensitive to illumina-
tion changes, image gradients [Birch�eld 1998] can also be used as features. A
limitation of template matching is its high computation cost due to the brute
force search. To reduce the computational cost, one of typical solutions is to
limit the object search to the vicinity of its previous position. Also, more
e�cient algorithms for template matching have been proposed [Schweitzer 02].

Note that instead of templates, other object representations can be used
as well. For instance, colour histograms or mixture models can be computed
by using the appearance of pixels inside the rectangular or ellipsoidal regions.
Fieguth and Terzopoulos [Fieguth 97] generate object models by �nding the
mean colour of the pixels inside the rectangular object region. To reduce com-
putational complexity, they search the object in eight neighbouring locations.
The similarity between the object model and the hypothesized position is com-
puted by evaluating the ratio between the colour means. The position which
provides the highest ratio is selected as the current object location. Comaniciu
and Meer [Comaniciu 03] use a weighted histogram computed from a circular
region to represent the object. For histogram generation, the authors use a
weighting scheme de�ned by a spatial kernel that gives higher weights to the
pixels closer to the object center. Instead of performing a brute force search for
locating the object, they use the mean-shift method (Section 2.2.3). The mean-
shift tracker maximizes the appearance similarity iteratively by comparing the
histograms of the object and the window around the hypothesized object lo-
cation. However, a disadvantage of the mean-shift tracking is its sensitivity to
initialization. Birch�eld and Rangarajan [Birch�eld 05] introduced the concept
of a spatiogram, which is a generalization of a histogram that includes poten-
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tially higher order moments. They show how to use spatiograms in kernel-based
trackers, deriving a mean-shift procedure in which individual pixels vote not
only for the amount of shift but also for its direction. They used both mean
shift and exhaustive search and showed that spatiograms improve results in
comparison with histograms.

There are methods, such as [Jepson 03], that propose classifying object
features into stable, transient and noise components. The stable component
identi�es the most reliable appearance for motion estimation, that is, the re-
gions of the object whose appearance does not quickly change over time. The
transient component identi�es the quickly changing features, while the noise
component handles the outliers in the object appearance. The parameters of
these three-component mixture can be learned online, for instance by the ex-
pectation maximization (EM) algorithm. The advantage of learning stable and
transient features is that one can give more weight to stable features for track-
ing. For example, if the face of a person who is talking is being tracked, then
the forehead or nose region can give a better match to the face in the next
frame as opposed to the mouth of the person.

Another approach to track a region de�ned by a primitive shape is to com-
pute its translation by use of an optical �ow method. Optical �ow methods
are used for generating dense �ow �elds by computing the �ow vector of each
pixel under the brightness constancy constraint. This computation is always
carried out in the neighbourhood of the pixel, either algebraically [Lucas 81]
or geometrically [Schunk 86]. Extending optical �ow methods to compute the
translation of a rectangular region is trivial. Shi and Tomasi [Shi 94] proposed
the KLT tracker which iteratively computes the translation of a region (typ-
ically n × n patch) centered on an interest point (for interest point detection
see Section 2.2.1). If the sum of square di�erence between the current patch
and the projected patch is small, they continue tracking the feature, otherwise
the feature is eliminated.

In our work we extensively use template matching with selection of stable
features and highly informative templates. We also use optical �ow, both as
a tracking cue and as a comparison to better understand the value of our
proposed methods.

2.3.2.2 Tracking using multi-view appearance models

In the previous tracking methods, the appearance models (e.g. histograms,
templates, etc.) are usually generated online. Thus, these models represent the
information gathered about the object from the most recent observations. The
objects may appear di�erent in di�erent views, and if the object view changes
dramatically during tracking, the appearance model may no longer be valid, and
the object track might be lost. To overcome this problem, in some applications
di�erent views of the object can be learned o�ine and used as templates for
tracking. In our work we strongly refer to these multi-view appearance methods
and frequently compare the results of our proposed methods with these ones.
Here we give a brief overview of the most common methods.
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Black and Jepson [Black 98] proposed a subspace-based approach,
eigenspace, to compute the a�ne transformation from the current image of the
object to the image reconstructed using eigenvectors. First, a subspace repre-
sentation of the appearance of an object is built using Principal Component
Analysis (PCA). Then the transformation from the image to the eigenspace
is computed by minimizing the so-called subspace constancy equation, which
evaluates the di�erence between the image reconstructed using the eigenvectors
and the input image. Note that the use of eigenspace for similarity computa-
tion is a useful alternative to standard template matching techniques, such as
normalized correlation. The eigenspace-based similarity computation is equiv-
alent to matching with a linear combination of eigen templates. This allows
for distortions in the templates, for example, distortion caused by illumination
changes in images.

In a similar vein, Avidan [Avidan 01] used a Support Vector Machine (SVM)
classi�er for tracking. SVM is a general classi�cation scheme that, given a set
of positive and negative training examples, �nds the best separating hyper-
plane between the two classes (see Section 2.2.4 for more details on SVM).
During testing, the SVM gives a score to the test data indicating the degree
of membership of the test data to the positive class. For SVM-based trackers,
the positive examples consist of the images of the object to be tracked, and
the negative examples consist of all things that are not to be tracked. Gener-
ally, negative examples consist of background regions that could be confused
with the object. Avidan's tracking method, instead of minimizing the intensity
di�erence of a template from the image regions, maximizes the SVM classi�-
cation score over image regions in order to estimate the position of the object.
One advantage of this approach is that knowledge about background objects
(negative examples that are not to be tracked) is explicitly incorporated in the
tracker. Instead of the SVM classi�er, other classi�ers can be used as well, e.g.
Adaboost [Rios Cabrera 12].

2.3.2.3 Kernel tracker evaluation

The main goal of the kernel trackers is to estimate object motion. With the ob-
ject representation based on primitive geometric models, the computed motion
implicitly de�nes the object region as well as the object orientation. Depending
on the context in which these trackers are being used, their evaluation can be
performed in the following ways.

In the case of analysing the object behaviour based on the object trajectory,
only the motion is adequate. In this case, the evaluation can be performed
by computing a distance measure between the estimated and actual motion
parameters. However, to identify an object, the region assigned to it is also im-
portant, not only the motion. Therefore, in this case the tracker's performance
is evaluated by computing the precision and the recall measures. Both of these
measures are de�ned in terms of the intersection of the hypothesized and cor-
rect object region. In particular, precision is the ratio of the intersection to the
hypothesized regions. Recall is the ratio of the intersection to the ground truth
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region. A qualitative comparison of kernel trackers can also be obtained, based
on tracking single or multiple objects, ability to handle occlusion, requirement
of training, type of motion model, and requirement of a manual initialization.

The use of primitive geometric shapes to represent objects is very common
due to the real-time applicability of the state-of-the-art methods. Because of
the rigidity constraint, tracking methods in this category compute parametric
motion of the object. This motion is usually in the form of translation, con-
formal a�ne, a�ne, or projective. Motion of the object can be estimated by
maximizing the object appearance similarity between the previous and current
frame. The estimation process can be in the form of a brute force search, or
by using gradient ascent (descent)-based maximization (minimization) process.
Object trackers, based on the gradient ascent (descent) approach, require that
at least some part of the object is visible inside the chosen geometric shape
whose location is de�ned by the previous object position. To eliminate such
requirements, a possible approach is to use Kalman �ltering or particle �ltering
discussed in the context of point trackers to predict the location of the object
in the next frame. Given the object state de�ned in terms of velocity and ac-
celeration of the object centroid these �lters will estimate the position of the
object centroid such that the likelihood of observing part of the object inside
the kernel is increased [Comaniciu 03]. This requirement can also be met by
performing global motion compensation, assuming that the objects are further
from the camera and camera motion can be estimated by a�ne or projective
transformation [Yilmaz 03].

One of the limitations of primitive geometric shapes for object representa-
tion is that parts of the objects may be left outside of the de�ned shape while
parts of the background may reside inside it. This phenomena can be observed
for both the rigid objects (when the object pose changes) and non-rigid objects
(when local motion results in changes in object appearance). In such cases, the
object motion estimated by maximizing model similarity may not be correct.
To overcome this limitation, one approach is to force the kernel to reside inside
the object rather than encapsulating the complete shape, but this can often
lead to loss of valuable information. Another approach is to regularly update
the appearance model and assign weights to the components of the model based
on the conditional probability of observed components.

2.3.2.4 Tracking objects in real-world scenarios

In this section, we discuss issues that arise in tracking objects in realistic sce-
narios. These include locating objects as they undergo occlusion and keeping
unique tracks of objects as they are viewed through multiple cameras. Here
we give only a brief overview of these issues, while more details are given in
Chapters 4, 5 and 6.

Occlusion can be classi�ed into three categories: self occlusion, inter-object
occlusion, and occlusion by the background scene structure. Self occlusion
occurs when one part of the object occludes another. This situation most fre-
quently arises while tracking articulated objects. Inter-object occlusion occurs
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when two objects being tracked occlude each other. Similarly, occlusion by the
background occurs when a structure in the background occludes the tracked
objects.

Generally, for inter-object occlusion, the multi-object trackers like [Mac-
cormick 00] and [Elgammal 02] can exploit the knowledge of the position and
the appearance of the occluder and occludee to detect and resolve occlusion.
Partial occlusion of an object by a scene structure is hard to detect since it is
di�cult to di�erentiate between the object changing its shape and the object
getting occluded, but in our work we did some e�ort in this direction as well.
A common approach to handle complete occlusion during tracking is to model
the object motion by linear dynamic models or by non-linear dynamics and,
in the case of occlusion, to keep on predicting the object location until the
object reappears. For example, a linear velocity model and a Kalman �lter
is a common approach for estimating the location and motion of objects. A
non-linear dynamic model is used in [Isard 01] and a particle �lter employed
for state estimation. Some works have also utilized other features to resolve oc-
clusion, for example, silhouette projections [Haritaoglu 00] (to locate persons'
heads during partial occlusion), and optical �ow [Munkres 01] (assuming that
two objects move in opposite directions).

Free-form object contour trackers employ a di�erent occlusion resolution ap-
proach. These methods usually address occlusion by using shape priors which
are either built ahead of time [Cremers 02] or built online [Yilmaz 04]. In par-
ticular, Cremers et al. [Cremers 02] built a shape model from subspace analysis
(PCA) of possible object shapes to �ll in missing contour parts. [Yilmaz 04]
built online shape priors using a mixture model based on the level set contour
representation. Their approach is able to handle complete object occlusion.

The probability of occlusion can be reduced by an appropriate selection of
camera positions. For instance, when a birds-eye view of the scene is available,
occlusions between objects on the ground do not occur. Multiple cameras
viewing the same scene can also be used to resolve object occlusions during
tracking [Dockstader 01a], [Mittal 03].

The need for using multiple cameras for tracking arises for two reasons. The
�rst reason is the use of depth information for tracking and occlusion handling.
The second reason for using multiple cameras is to increase the area under
view since it is not possible for a single camera to observe large areas because
of a �nite sensor �eld-of-view. An important issue in using multiple cameras
is the relationship between the di�erent camera views which can be manually
de�ned [Collins 01], [Cai 99] or computed automatically [Lee 00], [Khan 03] from
the observations of the objects moving in the scene. For the tracking algorithms
in these multi-camera environments high computational cost is another concern.
It is necessary to optimize used features, and e�ciently and accurately fuse
information from di�erent views.

In many situations, it is not possible to have overlapping camera views
due to limited resources or large areas of interest. Methods for tracking in
such a scenario inherently have to deal with sparse object observations due to
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non-overlapping views. Therefore some assumptions have to be made about the
object speed and the path in order to obtain the correspondences across cameras
[Huang 97], [Kettnaker 99], [Javed 03]. The performance of these algorithms
depends greatly on how much the objects follow the established paths and
expected time intervals across cameras. For scenarios in which spatio-temporal
constraints cannot be used, for example, objects moving arbitrarily or with
signi�cant freedom in the non-overlap region, it is necessary to use tracking-
by-recognition approach. This approach uses the appearance and the shape of
the object to recognize it when it reappears in a camera view.

2.4 Conclusion

In this chapter we presented an extensive overview of object tracking meth-
ods and also gave a brief review of related topics: object detection and object
representation. We divided the tracking methods into three categories based
on the use of object representations: methods establishing point correspon-
dence, methods using primitive geometric models, and methods using contour
evolution. Note that all these tracking methods require object detection at
some point. For instance, the point trackers require detection in every frame,
whereas geometric region or contours-based trackers require occasional detec-
tions or only when the object �rst appears in the scene.

In this chapter we also described the context of use, degree of applicability
and evaluation criteria of the tracking algorithms. Our biggest focus was on
the algorithms that we use in our work and throughout this thesis.



3
Image Projection Features

for Object Tracking

Selecting the right features plays a critical role in tracking. In general, the
most desirable properties of a visual feature are its uniqueness so that they can
be distinguished in the feature space, and repeatability so that these features
can be found in di�erent object observations. Feature selection is closely re-
lated to the object representation. For example, colour is used as a feature for
histogram-based appearance representations, while for contour-based represen-
tations object edges are usually used as features. In general, many tracking
algorithms use a combination of features.

In this chapter, in Section 3.1, we give an overview of the Vicats project
in which we carried out the research on single and multi-camera vehicle track-
ing. In Section 3.2 we give an overview of common visual features for tracking,
their characteristics, and advantages and disadvantages in the context of track-
ing vehicles and people in real-world environments. We also explain desirable
characteristics of features in such a context, and in Section 3.3 introduce Radon
transform like image projection features that we use in our work. Similar fea-
tures have been used for object detection [Betke 00], human gait [Lee 07] and
handwritten text recognition [Rath 03]. However, we are to our knowledge the
�rst who extensively use these features through the entire framework for people
and vehicle tracking, multi-view appearance modelling and object recognition.
In Section 3.3 we also present main advantages of these features that motivate
us to use them in our work, and conclude the chapter in Section 3.4.

3.1 The Vicats project

Tunnel security and surveillance has become very important topic in tra�c
management. A situation where tunnel operators are particularly on the alert
is when trucks carrying dangerous goods enter the tunnel. When such a vehicle
catches �re inside the tunnel the consequences can be devastating. For a tunnel
operator it is very important to detect when such a truck enters the tunnel and
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Figure 3.1: Illustration of two main components in the Vicats project. Left: At
the entrance of the tunnel the vehicle (typically a truck) carrying dangerous goods
is being detected and identi�ed using ADR plates that indicate what substance the
vehicle is carrying; Right: Throughout the tunnel the vehicle is being followed with
the surveillance cameras in the tunnel. A tra�c management software can then
automatically visualize the position of the vehicle throughout the tunnel.

its exact location in the tunnel. This was the main research goal of the Vicats
(Video Content Analysis for Tunnel Surveillance) project: detecting trucks
carrying dangerous goods entering the tunnel and tracking them throughout
the tunnel by the means of video cameras. This problem was split in two
parts, namely the detection and identi�cation of vehicles carrying dangerous
goods at the entrance of tunnels on the one hand, and tracking of the vehicles
throughout the tunnel on the other hand, see Figure 3.1.

At the entrance of the tunnel the truck carrying dangerous goods is be-
ing detected and identi�ed with a dedicated license plate recognition (LPR)
camera, which can also recognize ADR plates that indicate what substance
the truck is carrying. The LPR cameras are high resolution cameras. Then
the truck is being followed with the surveillance cameras in the tunnel. These
are typically low resolution cameras operating in harsh lighting conditions so
their videos often contain many artefacts and illumination problems. From
a research point of view the core challenge is to correctly detect and track a
certain vehicle in a camera image and over the di�erent cameras. This was
the research goal we carried out in this PhD thesis. The project was done in
collaboration of academic and industrial partners in Flanders, Belgium, in the
iMinds VICATS project 1, and together with academic and industrial partners
from Serbia, through the Eureka VICATS project 2.

1More details can be found at http://www.iminds.be/en/projects/2014/03/07/vicats
2More details can be found at http://www.eurekanetwork.org/project/-/id/4160

http://www.iminds.be/en/projects/2014/03/07/vicats
http://www.eurekanetwork.org/project/-/id/4160
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In the project the cameras have been placed along the tunnel and pointed
in the same direction (the tra�c direction). The con�guration utilizes the
minimal number of cameras in order to visually cover as much as possible of
the tunnel space. Therefore, there is no overlap between the camera views.
Because of the layout of surveillance cameras, multi-camera tracking in this
context is done in a scenario with non-overlapping camera views.

In the development of our multi-camera tracker we start from the single cam-
era tracker and extend it later to a more complex multi-camera environment.
In the single camera tracking task, the goal is to develop a tracking module
that repeatedly registers positions of vehicles in each frame of a video sequence
acquired by a single camera. Even in this single camera case many trackers
fail in real environments, and especially in tunnels due to occlusions and poor
lighting conditions. The solution for this non-trivial problem is divided in two
parts:

• Feature extraction, appropriate choice of features that are extracted from
video frames, and can be e�ciently used for tracking;

• Tracking algorithm itself, which delivers the exact trajectory of the object
of interest throughout the sequence.

In this project the focus is on robust and low complexity approaches that can
work in real-time.

3.1.1 Vicats contributions and credits

The research contribution to the project VICATS in the area of multi-camera
vehicle tracking was done by the Image Processing and Interpretation (IPI) re-
search group at Ghent University and the Vision for Industry Communications
and Services (VISICS) research group at the Katholieke Universiteit Leuven.

At the Image Processing and Interpretation (IPI) research group,
Prof. dr. ir. Aleksandra Piºurica (project supervisor), Jorge Oswaldo Niño Cas-
tañeda, Andres Frías Velázquez and myself were involved in the project. Jorge
Oswaldo Niño Castañeda was mainly focused on vehicle detection and single
camera tracking using local binary patterns and optical �ow. Andres Frías
Velázquez was focused on vehicle detection using mathematical morphology,
and vehicle identi�cation by using orthonormal circus functions from the trace
transform. At the VISICS research group at the Katholieke Universiteit Leu-
ven, Reyes Rios Cabrera was focused on using rectangular Haar features and
cascades of AdaBoost classifers to perform vehicle detection, identi�cation and
tracking. At the Faculty of Technical Sciences, University of Novi Sad, Ser-
bia, dr. Borislav Anti¢, dr. Dubravko �ulibrk and Prof. dr. Vladimir Crnojevi¢
were working on background modelling and segmentation, and detection of
moving objects (vehicles) using wavelet transform and texture features. Over-
all industrial support and video materials for the experiments in this project
were provided by the industrial partner Tra�con N.V. under the supervision of
dr. Wouter Favoreel.
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The emphasis of my work in this context, presented in this thesis, lies on us-
ing image projection features and feature matching methods to robustly track
vehicles in real-time under severe occlusions and in challenging lighting condi-
tions. I focused on improving the tracking accuracy by adding image projection
cues into the Kalman �lter framework, and using these cues to create a multi-
observation appearance model for more accurate vehicle recognition. Within
this project, in close cooperation with Jorge Oswaldo Niño Castañeda and
Andres Frías Velázquez, I designed and implemented a real-time demonstra-
tor, which was presented at the end of the Vicats project. The demonstrator
showed that it is possible to achieve high accuracy in tracking of vehicles that
transport dangerous goods in tunnels.

3.2 Overview of features for tracking

Colour. Colour is one of the most used features for object tracking. The
apparent colour of an object is in�uenced primarily by two physical factors:
the spectral power distribution of the illuminant and the surface re�ectance
properties of the object. In image processing there are several common ways
to represent colour. Usually, the RGB (red, green, blue) colour space is used.
However, the RGB space is not a perceptually uniform colour space, that is,
the di�erences between the colours in the RGB space do not correspond to
the colour di�erences perceived by humans [Paschos 01]. Additionally, the
RGB values are highly correlated. In contrast, L-u-v and L-a-b spaces are
perceptually uniform colour spaces, while HSV (Hue, Saturation, Value) is
an approximately uniform colour space. However, color values in these colour
spaces are sensitive to noise [Song 96]. Therefore, there is no last word on which
colour representation is the most suitable for real-world applications. Moreover,
in many real-world situations the colour of objects is not a very discriminative
and reliable feature, and some other features are better suited for tracking.
For instance, in vehicle tracking the challenge is to exploit colour features in
di�erent weather conditions, low-light and arti�cially illuminated environments
(e.g. in tunnels or at roads at night), see Figure 3.2. There are also many
vehicles of the same colour. In video conferencing applications, it is di�cult
to distinguish di�erent people based on colour, because in a business setting
people's clothing typically includes very limited colour variations and colours
from arti�cial lights in meeting rooms (the ambient or projector lighting) can
create local colour variations or supersede true colours of the viewed objects,
see Figure 3.3. These are the reasons why in our work we paid a signi�cant
attention to �nding more robust features than colour.

Edges. Object boundaries usually generate strong changes in image in-
tensities (brightness). This is true for boundaries between di�erent parts of
an object, as well as for patterns visible on the object's surface. Edge de-
tection is typically used to identify these brightness changes. An important
property of edges is that they are less sensitive to illumination changes com-
pared to colour features. Algorithms that track the boundary of the objects
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Figure 3.2: Examples of tra�c surveillance videos. In many real-world situations
the colour of objects is not a very discriminative and reliable feature. The colour of
arti�cial lighting can supersede natural colours, in too bright or too dark environments
colours are not visible, in low-light conditions grayscale cameras might be used instead
of colour cameras (due to higher dynamic range), and in di�cult weather conditions
(fog, snow, rain) the colours are typically also less visible.

or use object's shape for tracking usually use edges as the representative fea-
ture. One of the most popular edge detection methods is the Canny edge
detector [Canny 86], mainly due to its simplicity and accuracy. More detailed
information about edge detectors and an evaluation of edge detection algo-
rithms is made by Bowyer et al. [Bowyer 01]. Beside for tracking, edges can
also be used for foreground/background segmentation [Grünwedel 14] and ob-
ject recognition [Shan 08]. One of the biggest drawbacks in edge detection is the
sensitivity to thresholding, which needs to be performed to extract edges from
the image. This thresholding step strongly depends on the chosen parameters,
which are di�cult to generalize for di�erent environments, di�erent illumina-
tion conditions, image resolutions and other variable factors. Figure 3.4 shows
an example of Canny edge detection results obtained using the same parame-
ters for three images of the same vehicle. We see that the edge detection can
vary signi�cantly due to di�erent illumination conditions. Therefore, in our
work our intention has been to �nd features that have the advantages of edge
features, but without the thresholding disadvantage.
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Figure 3.3: Examples of video conferencing videos. It is di�cult to distinguish dif-
ferent people based on colour, because people's clothing typically includes very limited
colour variations and colours from arti�cial lights in meeting rooms (the ambient or
projector lighting) can create local colour variations or supersede true colours of the
viewed objects.
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Figure 3.4: Canny edge detection response for the images of the same vehicle taken
in di�erent illumination conditions. The same parameters for edge detection were
used in all cases. We see that the edge detection results can vary signi�cantly due to
di�erent illumination conditions. This is manly due to thresholding parameters, which
need to be adapted for di�erent conditions, but in the case of dynamic conditions this
becomes a di�cult task.

Optical �ow. Optical �ow is a dense �eld of displacement vectors which
de�nes the translation of each pixel in a region. It is computed using the bright-
ness constraint, which assumes brightness constancy of corresponding pixels in
consecutive frames [Horn 81]. Optical �ow is commonly used as a feature in
motion-based segmentation and tracking applications. Popular techniques for
computing dense optical �ow include methods by Horn and Schunck [Horn 81],
Lucas and Kanade [Lucas 81], [Black 96], [Szeliski 97]. For the performance
evaluation of the optical �ow methods, we refer the interested reader to the
survey by Barron et al. [Barron 94]. There are three essential conditions that
need to be satis�ed for a successful use of optical �ow features.

• Brightness constancy. This means that image brightness needs to remain
the same or very similar in a small region around the feature, even when
the region moves within the image.

• Spatial coherence. This assumption means that neighbouring points in
the scene typically belong to the same surface and have similar motions.
Since neighbouring points in the scene project to the nearby points in the
image, this results in the spatial coherence in the optical �ow.

• Temporal persistence. This means there is a gradual change in motion of
a surface patch (a region in the image) and not a sudden change.
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334 13 Image preprocessing and feature extraction
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Figure 13.7 Local binary patterns. a) The local binary pattern (LBP) is
computed by comparing the central pixel to each of its eight neighbors. The
binary value associated with each position is set to one if that neighbor is
greater than or equal to the central pixel. The eight binary values can be
read out and combined to make a single 8-bit number. b) Local binary
patterns can be computed over larger areas by comparing the current pixels
to the (interpolated) image at positions on a circle. This type of LBP is
characterized by the number of samples P and the radius of the circle R.

nine LBP types (eight rotationally invariant uniform patterns and one non uniform
class).

The LBP operator can be extended to use neighborhoods of different sizes:
the central pixel is compared to positions in a circular pattern (figure 13.7b). In
general, these positions do not exactly coincide with the pixel grid, and the intensity
at these positions must be estimated using bilinear interpolation. This extended
LBP operator can capture texture at different scales in the image.

13.1.5 Texton maps

The term ‘texton’ stems from the study of human perception and refers to a prim-
itive perceptual element of texture. In other words, it roughly occupies the role
that a phoneme takes in speech recognition. In a machine vision context a texton is
a discrete variable that designates which one of a finite number of possible texture
classes is present in a region surrounding the current pixel. A texton map is an
image in which the texton is computed at every pixel (figure 13.8).

Texton assignment depends on training data. A bank of N filters is convolved
with a set of training images. The responses are concatenated to form one N ×
1 vector for each pixel position in each training image. These vectors are then
clustered into K classes using the K-means algorithm (section 13.4.4). Textons are
computed for a new image by convolving it with the same filter bank. For each
pixel, the texton is assigned by noting which cluster mean is closest to the N × 1
filter output vector associated with the current position.

The choice of filter bank seems to be relatively unimportant. One approach has
been to use Gaussians at scales σ, 2σ, and 4σ to filter all three color channels, and
derivatives of Gaussians at scales 2σ and 4σ and Laplacians of Gaussians at scales
σ, 2σ, 4σ, and 8σ to filter the luminance (figure 13.9a). In this way, both color and
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Figure 3.5: Local binary patterns: a) The local binary pattern (LBP) is computed by
comparing the central pixel to each of its eight neighbours; the binary value associated
with each position is set to one if that neighbour is greater than or equal to the central
pixel; the eight binary values can be read out and combined to make a single 8-bit
number; b) LBP can be computed over larger areas by comparing the current pixels
to the (interpolated) image at positions on a circle. This type of LBP is characterized
by the number of samples P and the radius of the circle R.

Due to these requirements the tracked objects need to appear neither too
large nor too small in the image, and motions of these objects, as well as their
observed brightness changes, have to be relatively smooth. These conditions
are di�cult to meet when the objects pass close to the camera and when illu-
mination changes suddenly. Therefore, in these cases some other features need
to be used for tracking, either solely or as additional cues next to optical �ow.

Texture. Texture is a measure of the intensity variation in an image, and
it quanti�es properties such as smoothness and regularity. Compared to colour,
texture requires a processing step to generate the descriptors. There are var-
ious texture descriptors: Gray-Level Co-occurrence Matrices (GLCM) [Har-
alick 73] (a 2D histogram which shows the co-occurrences of intensities in a
speci�ed direction and distance), Laws' texture measures [Laws 80] (2D �l-
ters generated from �ve 1D �lters corresponding to level, edge, spot, wave,
and ripple), wavelets [Mallat 89] (orthogonal bank of �lters), steerable pyra-
mids [Greenspan 94], local binary patterns [Heikkila 06], etc. Similar to edge
features, texture features are less sensitive to illumination changes compared
to colour, but it is necessary that cameras capture high level of details, for
which typically high resolution cameras are needed (Figure 3.5 illustrates local
binary patterns calculation and demonstrates that texture typically needs to
be captured on a pixel or even sub-pixel level).

Beside these features, local interest points such as Harris corners, SIFT,
SURF or FAST, explained in Chapter 2, Section 2.2.1, are also often used for
tracking, especially in a tracking-by-detection framework. In this framework
other often used features are Haar-like rectangular features, very popular for
face detection and tracking [Viola 04], and histogram of oriented gradients
(HoG) features often used for people detection [Dalal 05]. Recently, Haar-like
features have been used for vehicle detection and tracking as well [Rios Cabr-
era 12]. Main drawbacks of local interest points are insu�cient repeatability,
quantity and uniqueness of these features in low resolution or noisy images,
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Figure 3.6: Example of SIFT response in a tra�c surveillance scenario. Main draw-
backs of local interest points are insu�cient repeatability, quantity and uniqueness of
these features in low resolution or noisy images common in video surveillance scenar-
ios. We see that similar number of SIFT correspondences are found for two di�erent
vehicles.

which are common in video surveillance scenarios, as well when the objects
appear relatively small in the image [Mikolajczyk 05b], see an example for
SIFT features in Figure 3.6. Haar-like features perform better in these cases,
but their performance depends strongly on the quality and amount of training
data and the training process (classi�er). Both local interest points and Haar-
like features do not capture a semantic interpretation of an object so in cases
when tracked objects have multiple similar surfaces, or there are other similar
surfaces in the vicinity of the object, these surfaces can be confused.

As we see from this overview, there are many di�erent features that can
be used for object tracking. Features for tracking are mostly chosen manually
by the user, depending on the application domain. Since this is not optimal,
there is signi�cant research dedicated to the problem of automatic feature selec-
tion. Automatic feature selection methods can be divided into �lter methods
and wrapper methods [Blum 97]. The �lter methods try to select the fea-
tures based on a general criteria. For example, one such a criterion is that
the features should be uncorrelated. Principal Component Analysis (PCA) is
an exemplary �lter method for the feature reduction. PCA involves transfor-
mation of a number of (possibly) correlated variables into a (smaller) number
of uncorrelated variables called the principal components. The �rst principal
component accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability
as possible. On the other hand, the wrapper methods select the features based
on the usefulness of the features in a speci�c problem domain, for example, the



56 Image Projection Features for Object Tracking

classi�cation performance using a subset of features. One wrapper method to
select the discriminatory features for tracking of a particular class of objects
is the Adaboost method [Tieu 04]. Adaboost is a method for �nding a strong
classi�er based on a combination of moderately accurate weak classi�ers. Given
a large set of features, one classi�er can be trained for each feature. Adaboost,
as discussed in Chapter 2, Section 2.2.4, will create a weighted combination of
classi�ers (representing features) that maximize the classi�cation performance
of the algorithm. The higher the weight of the feature, the more discriminatory
it is. One can use the �rst n highest-weighted features for tracking.

In our work we focused on �nding tracking features with the following char-
acteristics.

• Computational e�ciency. Ideally, the calculation of the features should
be possible in one reading of the image and with basic arithmetic op-
erations, preferably only addition and subtraction, like in the integral
images [Viola 01].

• Data e�ciency. It should be possible to create feature descriptors in few
data bytes so they could be easily transmitted between the cameras with
a negligible power consumption.

• Robustness to illumination changes. There should be a high correlation of
features of the same object taken from di�erent illumination conditions,
both in cases of global and local illumination changes.

• Robustness to object pose and camera viewpoint changes. Changes in
object pose and camera viewpoint should be either minimally re�ected
in the feature values or re�ected in a predictable way.

• No parameters that need to be adapted to di�erent environments. Ideally,
the feature calculation should not depend on any parameter that needs
to be set di�erently for di�erent environments.

Inspired by the work of Betke et al. [Betke 00] and Lee et al. [Lee 07], we
focused on adopting image projection features for tracking and building a nec-
essary framework to incorporate these features in real-world tracking scenarios.
Betke et al. used vertical and horizontal projections of a vehicle edge map for
accurate positioning of the bounding box in tracking. Similar projections have
been used by Lee et al. for human gait recognition. Compared to these works
we go a step further, showing that it is possible to use image projections for
object appearance representation and matching. We do not use projections of
object edge maps, but of the object images directly.

In the remainder of this chapter we will de�ne these features and show
whether and how they satisfy the aforementioned characteristics we aim for.
Furthermore, in Chapters 4, 5 and 6 we will explain how we use these features
to build object appearance descriptors suitable for single and multi-camera
tracking and object recognition.
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Figure 3.7: Two vehicle images captured by a surveillance camera in a tunnel, and
corresponding horizontal and vertical signatures. We see that signature peaks capture
the brightness changes of vehicle parts and patterns. There is a clear similarity in
behaviour of the signature parts that represent the vehicle. We de�ne the horizontal,
vertical, and diagonal signatures as shown in the image in the upper right corner.
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Figure 3.8: Illustration of behaviour of the signatures under signi�cant pose changes
of the observed object. The �gure contains six images (a-d) of the same car captured
from di�erent viewing angles. The di�erence in the viewing angle between successive
images is 25 degrees. These images are taken from the Columbia Object Image Library
(COIL-20).
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3.3 Image projection features

Let I be an image of size M × N , as shown in Figure 3.7. We de�ne the
image projection features of the image I as Radon transform like projection
pro�les along a certain direction. We call these features signatures. The vertical
signature vI consists of the arithmetic means of the pixel intensities in each
image row,

vI(m) =
1

N

N∑
n=1

I(m,n), m = 1, ...,M, (3.1)

where I(m,n) is an intensity value of the image pixel at the position (m,n).
Analogously, the components of the horizontal signature hI are the arithmetic
means of the pixel intensities in each image column,

hI(n) =
1

M

M∑
m=1

I(m,n), n = 1, ..., N. (3.2)

Next to the vertical and horizontal signatures, de�ned by Equations (3.1) and
(3.2), the signatures in other directions can be de�ned analogously, for instance
along image diagonals.

The signatures along di�erent directions can be combined in a single image
descriptor. In this sense, we de�ne the n-dimensional signature vector sI calcu-
lated from the image I as an n-tuple of n projections (signatures) on di�erent
lines. In our work we use 2-dimensional (2-D) and 4-dimensional (4-D) signa-
ture vectors. The 2-D signature vector is a pair of the vertical and horizontal
signature,

sI = (vI ,hI), (3.3)

while the 4-D signature vector contains also two diagonal signatures (see Fig-
ure 3.7, bottom right),

sI = (vI ,hI ,dI ,aI), (3.4)

where dI and aI are signatures on the main-diagonal and anti-diagonal, re-
spectively. We see that the signature vectors represent an image as multiple
1-D vectors, which signi�cantly reduces the amount of data needed to represent
the appearance of an imaged object. In the following sections we will analyse
the characteristics of the proposed signature descriptors with respect to the
requirements given in Section 3.2.

In Figure 3.7 we see two images of the same vehicle viewed by grayscale
cameras in a tunnel. The images are represented by horizontal and vertical
signatures. The vehicle's bright areas, captured by the signatures, are marked
with arrows. The bright areas correspond to the local maxima in the signa-
tures. Analogously, the dark patterns are represented by the local minima. If
two horizontal signatures are plotted one over the other (the signatures at the
bottom right of Figure 3.7), we see that they have similar behaviour (shape).
The background, a road, has almost uniform brightness so it does not change
signi�cantly the behaviour of the signatures. Also in the vertical direction, the
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signature parts that correspond to the vehicle are similar, both when the detec-
tion includes the background or only a part of the vehicle. Having noticed this,
we propose using the signatures as descriptors of the appearance of observed
objects.

An advantage of the proposed signature based representation compared to
an edge based representation, which also has responses in the areas of bright-
ness changes, is in the fact that there is no thresholding in the calculation of
the signatures. The shape of the signatures is, thus, less in�uenced by the
intensity gradient values within the image and more robust against lighting
changes than edges. Since vehicles are rigid objects, the signatures are similar
in di�erent observations, mainly except for translation and scale. If the vehicle
appears rotated between observations, parts of the corresponding signatures
shrink or stretch, but overall shape of the signatures remains similar. We will
demonstrate these characteristics in the following sections.

Note that the signatures could also be de�ned by using other pooling meth-
ods, e.g. maximum instead of average pooling. Furthermore, they could be
calculated on di�erent images, for instance, on a gradient image instead of an
intensity image. In our work we opted for average pooling on intensity images
to have higher robustness to illumination changes (slower saturation) and to
capture the information both about image brightness changes and brightness
intensities.

3.3.1 Signatures in pose/viewpoint changes

It is very important that object tracking is robust to apparent changes of object
pose. These changes occur in almost all tracking scenarios. Therefore, in this
section we analyse the behaviour of the signatures in cases of signi�cant pose
changes.

Figure 3.8 contains six images (a-d) of the same object (a car) captured from
di�erent viewing angles. The di�erence in the viewing angle between successive
images is 25 degrees. These images are taken from the Columbia Object Image
Library (COIL-20). They are captured from such an angle that the vehicle
appears to be rotating mainly around the vertical image axis and only slightly
around the horizontal axis. For each image the corresponding vertical and
horizontal signatures are shown, scaled to the length of 100 points using cubic
interpolation. We see there is a similarity in the shape of the vertical signatures
when the vehicle is captured in poses that from the vertical axis perspective
reveal similar parts of the vehicle (e.g. see the vertical signatures in poses c
and d, b and e, and a and f). On the other hand, we also see that the vertical
image axis is the axis of symmetry for the horizontal signatures like for the
vehicle itself (again, it is visible the most between poses c and d, b and e, and
a and f).

In our work we exploit the illustrated signature behaviour to create a multi-
view appearance model that represents viewed objects from several representa-
tive viewpoints. In this way it is possible to make signature based descriptors
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robust to object pose and viewpoint changes. We explain this in more detail
in Section 5.3.

3.3.2 Signatures under illumination changes

In Figure 3.9 we illustrate the behaviour of the signatures under illumination
changes. We show three observations of the same vehicle a�ected by di�erent
illumination (the same observations are used for edge calculation in Figure 3.4).
We see that horizontal and vertical signatures preserve similar shape even un-
der such severe illumination changes (for easier comparison, all signatures are
shown scaled to 100 points in length, using cubic interpolation). In Chapter
5 we thoroughly demonstrate this robustness. We de�ne a similarity measure
between the signatures and compare a large database of images, showing that
signatures of the same object are more similar than signatures of distinct ob-
jects, even under di�erent illumination.

3.3.3 Computational and data e�ciency

An important advantage of the signature features is their computational and
data e�ciency. The signatures for all objects in an image can be computed in a
single reading of the image. In addition to this, when signatures are compared
instead of the whole images, matching 2D data is computationaly simpli�ed to
matching multiple 1D data. Furthermore, since the most information about
the objects is captured in the signature peaks (see Figure 3.7), it is possible
to downscale the signatures still preserving most of the information, which
even more increases computational and data e�ciency. We demonstrate this in
Chapter 5, Section 5.6.4. Note also that signature calculation does not contain
thresholding or other parameters. This is one of important advantages that
enables consistence of signatures in various illumination conditions.

3.4 Conclusion

In this chapter we presented an overview of features typically used for object
tracking: colour, edges, texture features, optical �ow and local invariant points.
We also introduced popular methods for automatic feature selection: PCA
and AdaBoost classi�cation. We explained why the common features used for
tracking do not perform well in real-world conditions and introduced image
projection features (signatures) that we use in our tracking methods. We will
use these features in the following chapters as a basis for the whole tracking
framework, from low-level to high-level, to model object appearances in harsh
lighting and weather conditions, deal with inaccurate detections and occlusions.
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Figure 3.9: Illustration of behaviour (shape) of the signatures under signi�cant
illumination changes. The �gure contains three images of the same vehicle captured
under di�erent lighting conditions. The signatures show a big robustness to the
illumination changes, i.e. their shape remains very similar even in this case of a
severe illumination change. For easier comparison, the signatures are shown scaled
to the same length of 100 points.



4
Tracking in a Single

Camera View

In this chapter our focus is on tracking objects in real-world environments
observed by only one camera, i.e. object tracking from a single viewpoint.
This is still a common scenario in many applications, such as perimeter and
tra�c surveillance, outdoor people tracking, and many others. In this chapter
we address several signi�cant challenges of this object tracking task.

• Big variations in illumination and weather conditions, as well as frequent
occlusions of the viewed objects are a tremendous challenge for accurate
tracking.

• Some of the typically used image features for tracking, such as colour,
shape or texture, are often not discriminative enough in real-world con-
ditions.

• Deployment of smart visual sensors, such as smart cameras, creates the
need for low complexity and computationally e�cient tracking methods.

In our work in this context, we use a multi-cue Kalman �lter framework for
tracking. Our focus is on the signatures de�ned in Chapter 3, as computation-
ally e�cient and illumination invariant cues. In this chapter we de�ne a time
warping technique for signature matching, which we use to �nd boundaries of
tracked objects in each video frame. We demonstrate the advantages of such
signature based cues versus foreground blobs and optical �ow cues. We evalu-
ate our approach on several tra�c surveillance sequences recorded in di�erent
weather and illumination conditions.

The remainder of the chapter is organized as follows. Section 4.1 reviews
brie�y related work on single-camera tracking in the context of our work. In
Section 4.2 we formulate the tracking problem we focus on. Section 4.3 explains
our signature based cues that increase robustness and accuracy of single camera
tracking. In Section 4.4 we explain the tracking algorithm. Experimental
results are presented and discussed in Section 4.5. We present the results
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from a real tunnel video sequence, several tra�c surveillance sequences taken
in di�erent weather conditions and during night, from di�erent viewpoints.
Finally, we conclude this chapter in Section 4.6.

4.1 Related work

Monocular tracking approaches have been an active research topic in the past
decades. They involve tracking of a single or multiple targets using only one
camera view. Common features for tracking in these scenarios are colour based
(mean, histogram or correlogram of the colour [Huang 97,Porikli 03,Rahimi 04,
Javed 05,Choe 10]), gradient based (edges [Guo 07]), key points based (opti-
cal �ow of local features like Shi-Tomasi [Shi 94], Harris corners [Harris 88],
SIFT [Lowe 04], FAST [Rosten 05], etc.) or texture based (e.g. local binary
patterns [Ojala 96]). More recent methods use also feature classi�cation, with
or without online adaptation, [Babenko 11], [Rios Cabrera 12]. Edges and tex-
ture features are less sensitive to the lighting conditions and more robust to
illumination changes than colour, but in the case of sudden and intensive illu-
mination changes between successive video frames the corresponding edge or
texture maps can be signi�cantly di�erent and thus di�cult to match. Optical
�ow of local features is very popular in real-time applications since it is not
computationally demanding, neither for calculation of features nor for their
matching (even for SIFT alike features there are many speed-up methods, e.g.
SURF [Bay 08]). However, the accuracy of optical �ow tracking depends on
the number of detected features, their repeatability and uniqueness, so this
technique also su�ers from inconsistencies in the cases of sudden and intensive
illumination changes.

In the computationally low-cost (real-time) tracking approaches, the fea-
tures are typically used to form blobs, which are then used for tracking
[Collins 03]. Blobs are usually detected on a frame-by-frame basis and are
tracked by comparing their shape, location and appearance from one frame to
another. The BraMBLe tracker [Isard 01], for example, is a Bayesian multi-
blob tracker that computes the likelihood for each blob based on a known
background model and the appearance model of tracked objects. It uses par-
ticle �ltering to track an unknown number of objects. Problems arise when
object blobs merge with blobs of other close-by objects or with blobs of occlud-
ing objects, degrading the performance of this tracker. However, this method
can be improved by taking more cues into account, such as in the following
works.

Giebel et al. [Giebel 04] use Bayesian tracking based on particle �lters, com-
bined with a detector using learned spatio-temporal shapes to perform multi-
cue 3D object tracking in a single camera view. Their spatio-temporal object
representation involves a set of distinct linear subspace models or Dynamic
Point Distribution Models (DPDMs,) and it is learned fully automatically from
training data. Furthermore, the representation is enriched with texture infor-
mation by means of intensity histograms and 3D measurements provided by a
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stereo system. The reported results are very good, but they have been gener-
ated on a relatively small data set. This method also requires shape, texture
and image depth information to reliably track objects. Therefore, it requires a
signi�cant computation time.

Smith et al. use particle �ltering based on Markov chain Monte Carlo op-
timization to track people and handle entrances and exits using a �xed cam-
era [Smith 05]. Their framework uses a joint multi-object state-space formula-
tion to recursively estimate the multi-object con�guration and e�ciently search
the state-space by using particle �ltering. As a global appearance model, bi-
nary images based on background subtraction, together with foreground and
background colour statistics, are used to discriminate between di�erent objects
in the scene.

One recent approach is the method of Babenko et al. [Babenko 11]. This
is a tracking technique based on the concept of �tracking by detection�. It
uses multiple instance learning (MIL) to train a discriminative classi�er in an
online manner to separate the object from the background, based on histogram
of oriented gradients (HOG) features. Its disadvantage is also a relatively high
computational load, which makes it too complex for usage on smart cameras.

In our work we combine blobs obtained as foreground regions, optical �ow
in these foreground regions, and the signatures (image projection pro�les) that
we de�ned in Chapter 3. When the lighting conditions do not change rapidly,
foreground blobs and optical �ow are suitable measurements for tracking. In
the cases of sudden illumination changes foreground blobs su�er from gaps and
ghosting e�ects, which leads to stretching or shrinking of foreground bound-
ing boxes, while the optical �ow vectors change rapidly, both in magnitude
and direction, see Figure 4.1. However, the vehicle signatures are relatively
invariant to such illumination changes so we use them to obtain more reliable
measurements. We compare the signatures from two successive video frames
to �nd their alignment and to correct the position and size of tracked objects.
Using the signatures to improve robustness of the tracking is one of the main
novelties and contributions explained in this chapter.

4.2 Problem formulation

We de�ne the single camera tracking problem as the problem of localizing
observed objects in each video frame captured by only one camera, and as-
sociating the localizations from successive frames. We assume that the initial
detection of each object is known and provided when objects appear in the
scene for the �rst time. In our work, depending on the application domain, we
used vehicle and people detections obtained by the algorithms of [Rios Cabr-
era 12], [Frías Velázquez 11], [Jela£a 08] or [Grünwedel 14].

The single camera tracking is performed in the 2D plane of camera images.
A state of an object at time instance t is de�ned as a six-dimensional vector xt =
(xt, yt, ẋt, ẏt, wt, ht), which contains the object's position along x and y image
axis (xt and yt), x and y components of the velocity (ẋt and ẏt), and the object's
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Figure 4.1: Examples of camera images from a tunnel. a) First row: We see that
light re�ections in tunnels can be very intensive; b) Second row: Foreground detection
- incorrect in cases of illumination changes; c) Third row: Optical �ow of Shi-Tomasi
features [Shi 94] - in cases of illumination changes optical �ow vectors change rapidly,
both in magnitude and direction.

size, i.e. the width and height of the object bounding box (wt and ht). A linear
Kalman �lter is used for tracking, as a technique for �ltering and prediction
(see Chapter 2, Section 2.3.1.2). The Kalman �lter averages a prediction of
an object's state with a new measurement using a weighted average. The
purpose of the weights is that values with smaller estimated uncertainty are
�trusted� more. The �lter represents beliefs by the moments, the mean µt
and the covariance Σt. The weights are calculated from the covariance. The
result of the weighted average is a new state estimate that lies in between the
predicted and measured state, and has a better estimated uncertainty than
either alone.

The state transition is modelled as follows:

xt = Atxt−1 +Btut + εt, (4.1)

where xt and xt−1 are state vectors at time instances t and t− 1 respectively,
and ut is the control vector, which is in our algorithm omitted since we do
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not have control inputs in this system. At is the state-transition matrix and
εt the process noise. The noise is modelled as a multivariate Gaussian random
variable with zero mean and the covariance Qt. Both At and Qt have the size
n × n, where n is the dimension of the state vector xt. A constant velocity
model is used in modelling the state transition At.

The state is updated according to the following equation:

zt = Ctxt + δt, (4.2)

where zt is the vector of measurements at time t, Ct is a k × n dimensional
matrix, with k being the dimension of the measurement vector, and δt is the
measurement noise. The vector δt is modelled as a multivariate Gaussian vari-
able with zero mean and covariance Rt.

In this context, one or multiple of the following measurements are used for
single camera tracking: location and size of the foreground mask, the mean
velocity obtained from the optical �ow statistics and location and size of the
object's bounding box calculated from the signatures we proposed in Chap-
ter 3. In cases of sudden and intensive illumination changes and occlusions,
the covariance values for foreground and optical �ow measurements increase so
they become less reliable. Therefore, it is essential that the signature based
measurements are constructed in a way that enables robustness to illumination
changes and occlusions. In the following section we explain the signature based
measurement in detail. In Section 4.5.1 we present the results of vehicle track-
ing in tunnels, showing the bene�t of adding the signature measurement next to
the foreground and optical �ow measurements. In Sections 4.5.2 and 4.5.3 we
show the results of using only signature measurement in di�erent weather and
illumination conditions, demonstrating the robustness of the signature mea-
surements.

4.3 Signatures based measurement for tracking

In Chapter 3 we illustrated the characteristics of Radon transform like image
projection pro�les of viewed objects. We call these projection pro�les signa-
tures. Based on the horizontal and vertical signatures we can calculate the
motion of an object (along x and y image axis) and its approximate size (width
and height). In this way we obtain a measurement (a bounding box), which is
used in our Kalman �lter based tracker to correct predicted position and size
of the object.

In Chapter 3 we de�ned a signature vector of an observed object, sI =
(vI ,hI ,dI ,aI). Such a vector can consist of an arbitrary number of signa-
tures along di�erent projection lines: vertical, horizontal, diagonal and others.
However, for calculation of the object motion along x and y image axis, the hor-
izontal and vertical signatures are the most informative ones so we use these
two projections for tracking (see Chapter 5, Section 5.6.5 for more informa-
tion about comparison of 2D and 4D signature vectors). In the remainder of
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Figure 4.2: Images of the same vehicle from two successive time instances with the
corresponding horizontal and vertical signatures. Vehicle's rotating light partially
blinds the camera and the bottom right part of the vehicle is least a�ected by the
illumination change. We see that even in such an intensive illumination change, the
signatures preserve similar behaviour (shape).

this section we de�ne the calculation of our signature based measurement and
explain how we use it for tracking.

Let It−1 be the image of an object de�ned by its bounding box BBt−1 of
sizeM×N , and obtained at the time instance t−1, see Figure 4.3. Let further
Rt be a rectangular region of size P × Q (P ≥ M , Q ≥ N) around image I,
de�ned in such a way that the viewed object between the time instance t − 1
and the time instance t can move only within the region R. We then compare
the horizontal and vertical signatures of the image It−1 with the corresponding
signatures of the region Rt to �nd their alignment. For this purpose we use a
curve alignment technique based on dynamic time warping, as follows.

The challenges for robust signature matching come from scale, shift and ro-
tation variations between the observations that are compared (see Figure 3.7).
Scale di�erences result from di�erent apparent size of objects at di�erent dis-
tance from camera. Shift results from di�erences in the bounding box location
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BBt-1

vertical signature vertical signature vehicle image It-1 search region Rt

Figure 4.3: The image and bounding box of a vehicle at time t − 1, the tracker's
region of interest at time t, and their vertical signatures. We see the similarity of the
signature parts that correspond to the vehicle.

with respect to the objects. Rotation is caused by pose changes of objects,
together with camera viewing angle changes. Due to the scale di�erence the
lengths of the corresponding parts of the signatures di�er. A consequence of
the bounding box shift is the signature shift along the shift direction, while the
vehicle rotation results in shrinking and stretching of the signature parts. Note
that this is only approximately true for small rotations, so to cope with this we
use descriptors from multiple viewpoints with relatively small rotations. More
detail about this is given in Chapter 5. For robust signature matching it is nec-
essary to use a curve alignment method able to cope with these deformations.

As proposed by Sebastian et al. [Sebastian 03], we can use the align-
ment computed between two curves to de�ne a distance measure between these
curves, from the cost of deformations. There are two essential intrinsic prop-
erties of the curve that we use to de�ne a similarity metric based on the align-
ment: length and curvature. The optimal correspondence of these properties
can be found by an e�cient dynamic-programming method called dynamic
time warping. This method is also e�ective in the presence of a variety of
curve transformations because it performs global and local curve alignment.
An alternative to time warping can be a cross-correlation at multiple scales. In
the following sections we de�ne and explain these methods in detail.

4.3.1 Deformation based curve alignment

Let c(a) = (x(a), y(a)), a ∈ [0, L] and c∗(a∗) = (x∗(a∗), y∗(a∗)), a∗ ∈ [0, L∗] be
two curves of length L and L∗ respectively. Let further c|[A1,A2] be the segment
of the curve c between its points A1 = (x(A1), y(A1)) and A2 = (x(A2), y(A2)).
Analogously, the curve segment between points A∗1 = (x∗(A∗1), y∗(A∗1)) and
A∗2 = (x∗(A∗2), y∗(A∗2)) on the curve c∗ we denote as c∗|[A∗1 ,A∗2 ].

We de�ne a mapping (alignment) function of the two curves as g : [0, L]→
[0, L∗], g(a) = a∗. Let g|([A1,A2],[A∗1 ,A

∗
2 ]) denote the mapping of the curve
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distance A2A
∗
2, and is de�ned by |da∗ − da|+R|dθ∗ − dθ|.

segment c|[A1,A2] to the curve segment c∗|[A∗1 ,A∗2 ], where A∗1 = g(A1) and
A∗2 = g(A2). Further, let us de�ne a measure η on this alignment function,
η[g]|([A1,A2],[A∗1 ,A

∗
2 ]) : g|([A1,A2],[A∗1 ,A

∗
2 ]) → R+ to denote the cost of deforming

c|[A1,A2] to c∗|[A∗1 ,A∗2 ]. To be able to decompose the curve matching process into
a number of matches of the curve segments, we restrict the measure η to one
that has an additivity property :

η[g]|([A1,A3],[A∗1 ,A
∗
3 ]) = η[g]|([A1,A2],[A∗1 ,A

∗
2 ]) + η[g]|([A2,A3],[A∗2 ,A

∗
3 ]),

∀A1 ≤ A2 ≤ A3 ∈ [0, L],∀A∗1 ≤ A∗2 ≤ A∗3 ∈ [0, L∗].
(4.3)

where A∗i = g(Ai), i = 1, 2, 3. This additivity property enables us to write the
matching measure as a functional

η[g]|([0,L],[0,L∗]) =

∫ L

0

η[g]|([a,a+da],[g(a),g(a+da)])da. (4.4)

The optimal alignment is then given by

g∗ = arg min
g

η[g]|([0,L],[0,L∗]). (4.5)

The cost measure η is in our approach de�ned as proposed by [Sebastian 03].
Let us consider two in�nitesimal curve segments c|[A1,A2] and c∗|[A∗1 ,A∗2 ] of
lengths da and da∗, and curvatures κ and κ∗, respectively. Since we com-
pare the intrinsic aspects of these curve segments, we align their start points
A1 and A∗1, and their respective tangents tA1

and tA∗1 , see Figure 4.4. The cost
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Figure 4.5: This �gure illustrates the template that is used to �nd the edit distance
of curve segments using dynamic programming. Discrete samples along the curves
are the axes. The entry at (i, j) represents d(i, j). To update the cost at (i, j) (blue
dot) we limit the choices of the k and q in Equation (4.8), so that only the costs at a
limited set of points (green dots) are considered.

of matching the curve segments is the degree by which the endpoints A2 and
A∗2 di�er, which can be formulated as

η[g]|([A1,A1+da],[A∗1 ,A
∗
1+da∗]) = |da∗ − da|+R|dθ∗ − dθ|, (4.6)

where R is a scale constant. The functional from Equation (4.4) is therefore

η[g] =

∫
c

[|da
∗

da
− 1|+R|dθ

∗

da∗
da∗

da
− dθ

da
|]da

=

∫
c

[|g′(a)− 1|+R|κ∗(g(a))g
′
(a)− κ|]da,

(4.7)

where the �rst term penalizes �stretching� and the second term penalizes �bend-
ing�. In the following section we explain how to calculate the alignment by
means of dynamic programming.

4.3.1.1 Finding the optimal alignment curve

This section describes a dynamic programming algorithm, called dynamic time
warping (DTW), for �nding the optimal alignment curve α∗ for two curves c1
and c2. Dynamic time warping (DTW) is a technique that �nds the optimal
alignment between two signals (time series) if one signal may be �warped� non-
linearly by stretching or shrinking it along its time axis. The warping between
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signals can be used to �nd their corresponding regions or to determine their
overall similarity. DTW is often used in speech recognition to determine if
two waveforms represent the same spoken phrase. In a speech waveform, the
duration of each spoken sound and the interval between sounds are permitted
to vary, but the overall speech waveforms must be similar. In addition to
speech recognition, DTW has also been found useful in many other disciplines,
including data mining, gesture recognition, robotics, manufacturing, medicine
and others.

In the optimal alignment, the alignment of curve segments also has to be
optimal. The alignment curve of curves c1 and c2 is a mapping curve, the
axes of which are speci�ed by the curve segments. We discretize c1 and c2 at
samples s11, s12, ..., s1n and s21, s22, ..., s2m, respectively (see Figure 4.5). The
alignment curve is then represented by a sequence of N points (α1, ..., αN ),
where αk = (s1ik , s2jk), ik ∈ 1, ..., n, jk ∈ 1, ...,m, k = 1, ..., N , and α1 =
(s11, s21) and αN = (s1n, s2m).

Let d(i, j) denote the cost of matching the discrete curve segments c1|[s11,s1i]
and c2|[s21,s2j ]. Let δ|([k,i],[q,j]) denote the cost of matching subsegments
c1|[s1k,s1i] and c2|[s2q,s2j ]. Due to the optimal substructure property of the
distance function (in the optimal alignment, the alignment of curve segments
also has to be optimal) we can write

d(i, j) = min
k,q

[d(i− k, j − q) + δ|([k,i],[q,j])], (4.8)

which is a formula for computing the edit distance d(c1, c2) via dynamic pro-
gramming. The matching cost is found by sequentially updating the dynamic
programming table, and the optimal alignment by tracing through the table
(see Figure 4.5). We have to compute d(i, j) at every point in the 2D grid.
Therefore, the complexity of matching curve segments is O(n2), where n is the
number of samples along the curve segments.

The optimal alignment between the curves is found in the position with the
minimal edit distance d(c1, c2). This optimal alignment shows the translation
of the tracked object (motion along the corresponding direction) between the
compared frames.

4.3.1.2 Matching at di�erent scales

Due to the use of intrinsic properties of the curves, the length and the curvature,
the curve alignment method we use is invariant to relative translations and
rotations of the curves. However, the dissimilarity measure is not scale invariant
because the stretching term in the functional is not scale invariant. Therefore,
to match curves (signatures) at di�erent scales it is necessary to �nd a global
optimal scale parameter λ for one curve to match the other, and then minimize
over several scales. To reduce the in�uence of scaling on the matching result,
it can be done as well by upscaling one curve by

√
λ and downscaling the other

curve by the same factor to reach a common curve. In this way, the functional
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Figure 4.6: Illustration of our signature based measurement for tracking. The
position and size (the bounding box) of a vehicle at time t are found by aligning the
signatures of vehicle image at time t − 1 with the signatures of selected region of
interest at time t.

from Equation (4.7) becomes

ηλ[g] =

∫
c

|
√
λda∗ − 1√

λ
da|+R|dθ∗ − dθ|. (4.9)

The optimal scaling factor λ∗ is then computed as arg minλ ηλ[g], which can be
computed using gradient descent. This optimal scaling factor between horizon-
tal and vertical signatures shows the change of the apparent object size (width
and height of its bounding box) between the compared frames.

4.3.1.3 Signature based measurement

As de�ned in the beginning of this section, let I be the image of an object
(a vehicle) at time t − 1, de�ned by its bounding box BBt−1, see Figure 4.3.
Let further R be a rectangular region de�ned in such a way that the vehicle
between the time instance t− 1 and the time instance t can move only within
the region R. The signature measurement for tracking is then computed by
comparing (aligning) the horizontal and vertical signatures of the image I with
the signatures of the region R along the same directions. The optimal align-
ment is obtained as previously explained. The alignments along vertical and
horizontal directions de�ne the position and size of the tracked object, i.e. its
bounding box at time t, BBt, within the search region Rt, see Figure 4.6.

4.4 Tracking algorithm

We perform vehicle tracking in the 2D plane of camera images. To infer the real-
world positions from the obtained 2D positions, it is possible to use lane marks
on the road since their distance in the real-world is known and standardized.
The lane marks could be automatically detected or simply marked manually in
one of the camera images.
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As explained in Section 4.2, we de�ne a state of a vehicle at time instance
t as a six-dimensional vector xt = (xt, yt, ẋt, ẏt, wt, ht), which contains the
vehicle′s position (xt, yt) along the x and y image axes , its apparent velocity
(ẋt and ẏt), and apparent size, i.e. the width and height of the vehicle bounding
box (wt and ht). For tracking we use a linear Kalman �lter as a technique for
�ltering and prediction (see more details in Section 4.2).

As the measurements in the Kalman �lter we use the location and size of
the object, obtained by our proposed signature based measurement and the
foreground mask, together with the mean velocity obtained from the optical
�ow statistics. We also design a tracker that uses only signature based mea-
surement, without foreground and optical �ow, to infer the position and size
of the tracked objects as explained in Section 4.3.1.3. In the following section
we present the results of these two tracking approaches.

4.5 Results

In Section 4.5.1 we present the results of vehicle tracking in tunnels, showing
the bene�t of adding the signature measurement next to the foreground and
optical �ow measurements. In Sections 4.5.2 and 4.5.3 we show the results
of using only signature measurement (without foreground and optical �ow) in
di�erent weather and illumination conditions, demonstrating the robustness of
the signature measurement.

4.5.1 Vehicle tracking in a tunnel

Tunnels are environments prone to severe tra�c accidents. To enable timely
actions that can save lives and minimize the damage, it is important to track
vehicles throughout a tunnel. For this purpose, multiple surveillance cameras
are typically mounted along tunnels, often with non-overlapping �elds of view.
As an aid to human operators, computer vision algorithms can then be used for
automatic tracking of vehicles. Such algorithms consist of three parts: vehicle
detection, tracking of vehicles in a �eld of view of one camera and vehicle
matching, which is used for �handover� of vehicles between the cameras. It is
crucial that these algorithms are robust and perform in real-time.

In this context, in Chapter 5 we address the problem of real-timematching of
vehicles observed by di�erent cameras along tunnels. In this chapter, however,
we focused on the problem of vehicle tracking in a �eld of view of one camera.
This tracking is challenging due to poor lighting conditions in tunnels, low
resolution of vehicle images and frequent light re�ections from tunnel walls,
road, tra�c signalization and vehicles themselves. The most intensive and
disturbing light re�ections are caused by vehicles with rotating lights, which
are also of high importance to be tracked correctly: vehicles that transport
poisonous or explosive materials, emergency or law enforcement vehicles. Their
rotating lights periodically blind the cameras causing signi�cant artefacts in
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Table 4.1: Experimental results - vehicle tracking in a tunnel

Method Intensive illumination change Without losses [%]
Without signatures No 93
With signatures No 96
Without signatures Yes 68
With signatures Yes 89

vehicle images (see Figure 4.2). In such cases it is di�cult to extract informative
and reliable features for vehicle tracking.

We tested our tracking approach on a real tunnel video sequence acquired
by a security camera mounted roughly in the center of a tunnel pipe ceiling and
oriented in the direction of the tra�c �ow. There were in total 150 vehicles
recorded passing through the camera view. For the evaluation purpose we
manually annotated the vehicles by creating a bounding box around them in
each frame.

We compared the tracking results with and without using the proposed
image projection clues (the signatures). The comparison was done both in a
qualitative and quantitative way, for cases with and without lighting changes.
The qualitative results are shown in Figure 4.7, for cases when vehicles are
observed with and without severe lighting changes. For each case, the original
camera images are given in the �rst row. The second row shows tracking results
obtained using foreground and optical �ow as measurements in the Kalman
�lter, while the results after adding the signatures to the measurement set are
shown in the third row. We see that in the case when there are no strong
lighting changes (like for the vehicle in the left lane), both trackers, with and
without using the signatures, give good results. On the other hand, if lighting
changes occur, the tracker that uses the signatures stays on the target, while
the tracker without the signatures gets incorrectly updated by the foreground
and optical �ow measurements, which ultimately causes drift and the target
loss (exempli�ed by the vehicle in the right lane). We see also that even in the
case when the camera is partially blinded by the lights the signatures of the
vehicle contain enough information to correctly estimate the new position and
the size of the vehicle. This is because the vehicle parts that remain visible
in the image remain also �visible� in the signatures and correlate well between
frames (as shown in Figure 4.2).
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Figure 4.7: The tracking results at six di�erent time instances. We assume a vehicle
is detected, i.e. the tracker is initialized when a vehicle enters the scene completely.
Di�erent bounding box colours represent di�erent vehicles. a) First/fourth row: Orig-
inal camera images; b) Second/�fth row: tracking results using a Kalman �lter with
foreground blobs and optical �ow as measurements; c) Third/sixth row: tracking
results when the signatures based measurement is added to the tracker in b). We
see that our tracking approach using signature cues is able to cope with intensive
illumination changes.
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Figure 4.8: Qualitative results of vehicle tracking in di�erent weather conditions:
foggy and snowy. Two video frames and several vehicles are shown as a reference in
both video sequences. We see that signature based tracking stays on the target even
in these harsh weather conditions.

Quantitative results are given in Table 4.1 and expressed in the percentage
of vehicles tracked without losses. We count a vehicle as lost if there is less than
25% overlap between its manually annotated bounding box and the bounding
box estimated by the tracker. The results show there are less vehicle losses
when the signatures based measurement is added as an additional tracking
clue, especially when vehicles are observed under strong illumination changes.
The remaining losses are mainly due to occlusions when smaller vehicles (cars)
get occluded by big vehicles (e.g. trucks or buses) and stay in such occlusions
so long that Kalman �lter does not predict well their position. When this
happens it is di�cult to determine proper measurements for the correction
step and often the tracker can not recover after the occlusion.

An additional strong point of the proposed signature based measurement
is its computational e�ciency. In our C++ implementation, computation of
horizontal and vertical signatures and the similarity measure for two vehicle
images was achieved in 9 ms on a single-core 1.86 GHz CPU. Such e�ciency
allowed us to incorporate this measurement into the tracker, still preserving a
real-time performance of the tracking algorithm (25 fps).
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Table 4.2: Experimental results - vehicle tracking in harsh weather conditions

Weather conditions Average overlap with GT Tracking without losses
Fog 71 % 88 %
Snow 76 % 92 %

4.5.2 Tracking in various weather conditions

In this section we present results of our proposed algorithm using two tra�c
surveillance sequences taken in harsh, foggy and snowy, weather conditions.
The sequences are a part of a publicly available Karlsruhe tra�c surveillance
dataset and we here refer to them as the Karlsruhe-fog and Karlsruhe-snow
sequences. The initial vehicle detections (the initial bounding boxes) we set
manually for all vehicles. We also manually created the ground truth by draw-
ing a bounding box around the vehicles in every �fth video frame. Note that in
these sequences having the ground truth every �fth frame is su�cient because
observed vehicle movements between frames are not abrupt as in tunnel se-
quences (the camera is positioned higher and vehicles and their motion appear
smaller in the image).

Qualitative results are shown in Figure 4.8, with two exemplary video frames
for each of the two sequences. These examples show tracking results (bounding
boxes) for four vehicles. We see that even in the case of a heavy fog the
vehicles can be accurately tracked, even when they are barely visible to the
human eye. In the case of snowy conditions, road and vehicles are wet and the
contrast between them is low, which together with the snowfall poses additional
challenges for tracking. Nevertheless, our signature based tracking is able to
perform well even in these conditions.

Quantitative results are given in Table 4.2 and expressed by two measures:
the accuracy (the percentage of overlap between the tracker's bounding boxes
and the ground truth bounding boxes), and the percentage of vehicles tracked
without losses. We count a vehicle as lost in a particular video frame if there is
less than 25% overlap between its manually annotated bounding box (ground
truth) and the bounding box estimated by the tracker. The results are then
averaged for all vehicles and all video frames. The results show that the tracking
accuracy is acceptable, and more importantly that the number (percentage) of
losses is low.

4.5.3 Tracking in low-light conditions

In this section we present results of our proposed algorithm using a tra�c
surveillance sequence recorded during night (see Figure 4.9. The initial vehicle
detections (the initial bounding boxes) we set manually for all vehicles. We also
manually created the ground truth for all vehicles, by drawing a bounding box
around them in every �fth video frame. Here, like in the Karlsruhe sequences
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Figure 4.9: Qualitative results of vehicle tracking in a night video. Two video frames
and several vehicles are shown as a reference. We see that signature based tracking
stays on the target even in low light conditions during night.

Table 4.3: Experimental results - vehicle tracking in low-light conditions

Tra�c density Average overlap with GT Tracking without losses
High 42 % 72 %
Low 63 % 83 %

in Section 4.5.2, having the ground truth every �fth frame is su�cient because
observed vehicle movements between frames are not abrupt.

Qualitative results are shown in Figure 4.9, with two exemplary video frames
for each of the two sequences. These examples show tracking results (bounding
boxes) for four vehicles. We see that even in these very low-light conditions
the vehicles can be accurately tracked. This is mainly because the signatures
capture their frontal or rear lights and our tracker tracks them. Therefore, we
noticed that in this low-light scenario the estimation of a vehicle apparent size
is much more challenging and the resulting vehicle bounding boxes are unstable
(shrink or stretch relatively frequently).

Quantitative results are given in Table 4.3 and expressed by two measures:
the accuracy (the percentage of overlap between the tracker's bounding boxes
and the ground truth bounding boxes), and the percentage of vehicles tracked
without losses. We count a vehicle as lost in a particular video frame if there is
less than 25% overlap between its manually annotated bounding box (ground
truth) and the bounding box estimated by the tracker. The results are then
averaged for all vehicles and all video frames. The results show that even the
tracking in very low-light conditions performs decently, but due to the light
re�ections, it is signi�cantly less accurate when the tra�c is dense.
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4.6 Conclusion

In this chapter we demonstrated that using Radon-transform like signatures of
viewed objects as an additional clue for object tracking improves the tracking
performance. The tracking is robust to illumination changes, which is an im-
portant issue since illumination changes are frequent in real-world scenarios.
The proposed signature measurements are also e�ciently computed using dy-
namic time warping, so it is possible to include them into tracking algorithms
preserving the real-time performance of the tracker. We also showed that the
proposed single-camera tracking with signature clues performs well in low-light
and di�erent weather conditions. It also has consistent performance from di�er-
ent viewpoints, and signature measurements help to reduce the tracking drift
in case of partial occlusions. In the work of Betke et al. [Betke 00] it has
been shown that object signatures can also be used for object detection. This
is especially bene�cial for smart cameras where it is desirable to reuse same
features for multiple tasks (e.g. object detection, tracking and recognition) to
save processing power.

Additional improvement in the signatures based measurement can be done
on the size estimation of objects, to avoid occasional shrinking or stretching
of the bounding boxes. For this purpose object redetections during the course
of tracking can be of great help. Redetections are especially bene�cial when
objects quickly change moving direction relative to the camera, because in these
cases their appearance in consecutive observations can change signi�cantly (e.g.
from almost a frontal to almost a side view).

This research was published in the proceedings of several international con-
ferences [Jela£a 08], [Jela£a 11b], [Frías Velázquez 11], [Jela£a 12], and has been
submitted to an international journal [Jela£a 14].
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Views

In Chapter 4 our focus was on object tracking in a single camera view. In this
chapter and Chapter 6 we go beyond single camera tracking and focus on object
tracking in camera networks. From the point of observation completeness there
are two types of camera networks: with or without overlapping camera views.
In a network with overlapping camera views, each part of the area of interest
is viewed by at least one camera and typically by several cameras. There
are usually multiple views on an object, from di�erent viewpoints. Tracking
needs to fuse information from multiple views to enhance its performance. On
the other hand, in a non-overlapping camera network there are �blind� areas
where neither of the cameras has a view on the object. In these networks it
is necessary to not only track objects in each camera view, but also to re-
identify each object when it appears in the other views so that the trajectories
in di�erent views can be connected. In this chapter we focus on object tracking
in non-overlapping camera views common in tra�c surveillance.

For the purpose of tra�c management and fast reaction in cases of tra�c
accidents it is important to timely detect potential incidents or disturbances
in the tra�c �ow. Therefore, surveillance cameras are typically mounted along
roads, but for commercial reasons often with non-overlapping �elds of view.
As an aid to human operators, computer vision algorithms can then be used to
automatically detect and track vehicles in the video stream. Such algorithms
consist of three parts: vehicle detection, tracking of vehicles in a �eld of view
of one camera (single-camera tracking) and vehicle matching, which is used
for a "handover" of vehicles between cameras, i.e. for multi-camera tracking.
Typically, results of vehicle detections and single-camera tracking are bounding
boxes with vehicle images being regions of interest inside the bounding boxes.
Vehicle detections are input to the vehicle matching.

In traditional camera networks the cameras send all acquired data to the
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central server that performs video analysis. However, networks of smart cam-
eras open a possibility to process the acquired video data by the cameras them-
selves and transfer only the obtained metadata to the other cameras and to
the central server. In this context, this chapter of the thesis addresses the
problem of matching vehicles as they are imaged by a network of stationary
smart cameras with non-overlapping views. We focus on the problem of �nd-
ing a computationally and data e�cient, but still discriminative and robust
representation of vehicle appearances that can be computed by the cameras
themselves and sent between the cameras without sending the whole images.
We also focus on �nding a computationally e�cient algorithm for matching
such vehicle representations, suitable for execution on the cameras themselves.
Although the framework proposed in this chapter is developed in the context
of a vehicle tracking application in tunnels, the basic idea and the associated
techniques can be applied to vehicle tracking and matching in general, as well
as to matching of other types of rigid objects when the cameras are placed to
view them from relatively similar viewpoints.

In tra�c surveillance such placement of cameras is achieved in many cases:
in tunnels, along roads, or even at intersections of roads by placing more cam-
eras at the crossroads. Still, vehicle matching remains challenging due to sig-
ni�cant appearance changes in between cameras, camera view di�erences and
inaccurate and false vehicle detections, which are all common in real-world
applications. The vehicle appearance changes are due to various reasons: illu-
mination changes in the environment (e.g. a di�erent lighting in di�erent areas
of the environment, shadows, light re�ections), changes of the vehicle pose as
it moves through the multi-camera environment, turning vehicle lights on or
o�, etc. The camera view changes result from di�erences in camera settings or
technical characteristics (e.g. a scale di�erence due to a di�erent zoom). Inac-
curate vehicle detections are detections of vehicles or their parts together with
a part of the background. They cause misalignment of vehicle images. False
detections, i.e. detections of the background as vehicle, detections of multi-
ple vehicles as one and multiple detections of one vehicle can cause signi�cant
problems to matching algorithms, if not discarded.

In our test application (vehicle tracking in tunnels) there are also some
challenges due to a tunnel environment. Firstly, tunnels are often partly dark,
arti�cially illuminated, which makes colour information unreliable (the same
holds for outdoor environments in general in cases of poor lighting conditions).
Secondly, tunnels are tubular environments, so strong light re�ections from the
walls and ceiling can disturb cameras and "pollute" the images. Figure 5.1
shows images of six vehicles, acquired in a tunnel by three cameras and auto-
matically extracted from the corresponding frames using the detector proposed
by Rios Cabrera et al. [Rios Cabrera 12]. The images illustrate a variety of
vehicle appearance and observation changes. Moreover, if vehicle images are
of low to medium resolution, which is common in video surveillance, the mo-
tion blur and noise in the images are signi�cant. This imposes an additional
challenge for extraction of robust features from vehicle images.
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Figure 5.1: Each column contains vehicle images (detections) of the same vehicle
observed by three cameras along a tunnel. The cameras are mounted roughly in the
middle of the tunnel ceiling and oriented in the direction of the tra�c �ow. From
left to right the images illustrate a vehicle appearance change due to di�erent level
of visible details when the detections are taken at di�erent distance from the camera,
turning on/o� the rear lights, change of the scene illumination, change of pose as
vehicle moves away from the camera or changes lane, and inaccurate detections.

Previous work on object appearance matching has mainly focused on ex-
tracting robust features from acquired images, so that those features remain
invariant to appearance changes [Turk 91,Bischof 04,Sidla 04,Lowe 04,Bay 08,
Yu 11, Shan 08,Guo 07,Porikli 03, Javed 05,Hou 09]. Many di�erent features
have been proposed, based on colour, local features, edges, image eigenvectors
or entropy, all with limited success in achieving the goal of invariance. Calcu-
lation and matching of such features is also often computationally demanding,
so object comparison in real-time is typically done using only one image per
camera for each object. Therefore, the accuracy of these approaches strongly
depends on the quality of observations and the matching is much more challeng-
ing if observations contain disturbances like light re�ections, strong shadows or
occlusions.

In our work we try to overcome these problems by a conceptually di�erent
approach, based on two novelties in vehicle matching. Firstly, we use simple
descriptors of vehicle appearances that are easy to compute and compare, yet
highly informative in low resolution images. For this purpose we model vehicle
appearances using the signatures proposed in Chapter 3, that are Radon trans-
form like projection pro�les of the acquired vehicle images. Matching of the
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Figure 5.2: Observations of a vehicle along the trajectory viewed by two consecutive
cameras. The images can be very di�erent due to inaccurate detections and signi�cant
appearance changes. The key idea of our approach is to reduce this problem by
preselecting good observations before performing the inter-camera matching itself. We
use multiple good observations from each camera to allow for di�erence in appearance.

appearance models is then obtained by a simple combination of 1-D correla-
tions in a coarse-to-�ne procedure. The signatures are also used to learn scale
di�erences between the observations from di�erent cameras, which is impor-
tant for their alignment. The second novelty is to use signatures from multiple
images for creating a multiple observation appearance model and automatic
selection of good observations for matching (i.e. informative observations with
few disturbances), as shown in Figure 5.2. Such an appearance model enables
representation of vehicles from multiple views, collected online as they move
through the multi-camera environment. This is especially bene�cial when ve-
hicles change pose (e.g. by changing lane or moving away from the camera).
Finally, since each vehicle has one and only one corresponding vehicle in other
cameras, we employ the Hungarian algorithm to resolve ambiguities and to
optimize the matching.

The remainder of this chapter is organized as follows. Section 5.1 gives
related work on multi-camera tracking, object representation and matching.
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Section 5.2 brie�y formulates the problem of vehicle matching and tracking in
non-overlapping views. In Section 5.3 we propose a novel appearance model
based on the vehicle signatures, together with the procedure for collection of
good observations along the vehicle trajectory. Matching of vehicle appearances
using the proposed appearance model is explained in Section 5.4. The complete
matching algorithm that optimizes the association of vehicle correspondences
is given in Section 5.5. In Section 5.6 we present and discuss the experimental
results and �nally, we conclude in Section 5.7.

5.1 Related work

Most of the work on multi-camera tracking by cameras with non-overlapping
views, e.g. [Huang 97,Kettnaker 99,Collins 01, Porikli 03, Javed 03, Javed 05,
Guo 07,Choe 10], uses object appearance representations based on colour in-
formation (e.g. mean, histogram or correlogram of the colour). Colour alone is,
however, not reliable as a feature in many tra�c surveillance applications, espe-
cially in tunnels. To address such a problem [Porikli 03], [Javed 05] and [Hou 10]
present a method for matching object appearances by calculation of a bright-
ness transfer function for every pair of non-overlapping cameras. They map
an observed colour value in one camera to the corresponding observation in
the other camera. Once such a mapping is known, the correspondence prob-
lem is reduced to matching of the transformed appearance models. However,
real illumination often varies between frames and scenes depending on a large
number of parameters, which is very di�cult to model. Moreover, colours of
arti�cial lights in tunnels or in arti�cially illuminated environments in gen-
eral can supersede vehicle colours, which makes the mapping of vehicle colours
even more challenging (especially in presence of variable road signs, rotating
and emergency lights, etc.).

Appearance representations that do not need colour information are often
based on eigenimages (often used for face recognition) [Turk 91, Bischof 04],
local invariant features (e.g. SIFT [Lowe 04], SURF [Bay 08] or ASIFT [Yu 11])
or edge maps [Shan 08,Shan 05,Guo 07].

Methods based on eigenimages require o�ine training and their accuracy
highly depends on variations of objects and their appearances present in the
training set. Therefore, adaptation of these methods to appearance changes
is limited. These methods also require alignment of objects before matching,
which is an additional challenge in real world scenarios.

The accuracy of methods based on local features depends on the number
of corresponding key points found in images and on the dimension of the local
descriptors calculated for each key point. In our experiments with vehicle
images acquired by surveillance cameras, too few reliable and unique features
were found and thus many features were wrongly matched. Similar �ndings
have been reported in previous works [Guo 07, Shan 08]. Also, calculation of
high dimensional local descriptors is computationally demanding, which creates
additional di�culties to use local features for real-time vehicle matching.
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In the context of edge based methods [Shan 08] has proposed a measurement
vector and an unsupervised approach to learn edge measures for matching
vehicle edge maps. The edge maps are compared after spatial alignment. A
solution for the alignment has been proposed in [Guo 07]. The reported results
show that the learned edge matching measures can be relatively invariant to
changes in illumination and vehicle pose. This invariance is further increased
by [Shan 05], by matching embedded vehicle descriptors instead of direct vehicle
matching between di�erent camera views. The embedded descriptors were
obtained by matching vehicles with exemplar vehicles from the same camera
view. However, automatic selection of good exemplars has remained a problem.
Also, the learned edge measure weights indicate the illumination and aspect
di�erences between two scenes, but not the quality of compared observations
themselves (some observations can be in�uenced more than others by certain
changes, especially if changes are temporary and only in some parts of a scene).

Beside the mentioned features and approaches, recently Haar-like features
have been proposed for vehicle matching [Rios Cabrera 12]. These features
are often successfully used for object detection [Viola 04,Rios Cabrera 12], so
reusing the same features for matching reduces the computational cost of the
matching itself. The work of [Rios Cabrera 12] shows that, indeed, reusing
Haar-features for vehicle matching in tunnels is possible and can be highly
accurate if the training set of vehicle images is acquired in the same tunnel
and under similar environmental conditions as the testing vehicle images. This
condition is, however, di�cult to meet in real world applications, which is a
limitation of this approach. The training set needs to be large enough to in-
clude vehicle images from various environments (e.g. di�erent tunnels, di�erent
cameras) and various environmental conditions (e.g. di�erent lighting, wet/dry
road, di�erent aspect of vehicles etc.). This further increases complexity of the
training process. Therefore, in our work we are focused on �nding a vehicle
matching approach that does not require supervised training and has a built-in
procedure for collecting various vehicle appearances to create more informative
appearance models.

Our method for vehicle appearance matching is an extension of the signature
based appearance modelling explained in previous chapters, mainly Chapters
3 and 4. In this chapter we extend the concept of signature based tracking to
the environments observed by multiple cameras with non-overlapping views.
In these environments it is necessary to track vehicles in each view separately
and re-identify (match) them when they appear in new views. Due to temporal
and spatial di�erences between di�erent views there are signi�cant changes in
illumination and poses of vehicles, as well as in vehicle detection. Vehicles can
be inaccurately detected so that only their parts are captured by detection, the
background (a road, shadows or some other objects) can be wrongly detected
as a vehicle, or some vehicles can pass through some camera views without
being detected. Therefore, vehicle matching needs to be robust to all these
situations. Using the signatures for automatic selection of good observations
for matching is another step forward of our method compared to previous
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Figure 5.3: The problem illustration. For each vehicle (a template) from camera Cn

we �nd a set of possible matching candidates from camera Cn−1 using non-appearance
information (road constraints, inter-camera distances and vehicle kinematics). A
template-candidate matching is then obtained based on similarity of vehicle appear-
ances.

works. Such an automatic selection could also be useful for selection of vehicle
exemplars in [Shan 05] and [Rios Cabrera 12].

In addition to appearance matching, previous work, [Huang 97, Ket-
tnaker 99, Collins 01, Porikli 03, Javed 03, Rahimi 04,Markis 04, Stau�er 05],
has given signi�cant attention to object matching using "extra" information
that does not come from the tracked objects alone or is not based on their
appearance (e.g. camera calibration, topology of the camera network and al-
lowable movement paths, a site model, motion characteristics, transition prob-
abilities, etc.). In our work we use the motion trajectories, vehicle velocity and
estimated inter-camera travel time to constrain the number of matching can-
didates for each vehicle (all this information is automatically obtained from a
single-camera tracking). However, since the focus of this chapter is on match-
ing of vehicle appearances, in this chapter we present results obtained both
with and without using this "extra" information, to show how discriminative
the proposed appearance matching is by itself.

5.2 Problem formulation

We de�ne the vehicle matching problem as the problem of classifying pairs of
vehicles observed by cameras with non-overlapping views in the categories "the
same vehicle" or "di�erent vehicle". Without losing generality we can assume
that these cameras are consecutive in a prede�ned sequence of cameras, so
we denote two of them as Cn and Cn−1 (camera Cn−1 being the one that
vehicles pass before reaching camera Cn). The match score between vehicle
appearances, µ, is de�ned as

µ = f(An−1
i , Anj ), (5.1)
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where f is a similarity measure between two appearance models An−1
i and Anj

corresponding to the i-th and j-th observations On−1
i and Onj in cameras Cn−1

and Cn, respectively. We call the model Anj the template and the model An−1
i

the candidate.
In the context of online (real-time) multi-camera tracking, vehicle observa-

tions are responses of vehicle detection and single-camera tracking. For each
template a set of possible candidates (a temporal matching window) is de�ned
according to road constrains, inter-camera distances and vehicle kinematics,
see Figure 5.3. A template-candidate association is then obtained according to
the matching score µ, assuming that each template inside its matching window
has one and only one corresponding candidate.

5.3 Robust multi-observation appearance model

While moving through the multi-camera environment the appearance of vehi-
cles between observations (detections) can change due to many reasons. For
robust appearance matching it is essential to create an appearance model of
each vehicle using a diversity of good observations. In this section we analyse
observations in tunnels and explain how signatures can be used for automatic
selection of good observations.

The images in Figures 5.4 and 5.5 are typical examples of vehicle obser-
vations in tunnels (the images are rescaled to the same size for easier visual
comparison). Their signatures are also presented. Figure 5.4 (top) shows ob-
servations of the same vehicle, acquired by one camera. They illustrate the
appearance change caused by a di�erent camera viewing angle when the vehi-
cle moves away from the camera. As the vehicle moves away from the camera
it appears smaller and its lights and license plate appear bigger due to the
light dissipation e�ect. Some parts of the vehicle are even not visible any more
(e.g. the roof) and some other parts become more visible (e.g. the back win-
dow). As certain vehicle parts appear bigger or smaller, the corresponding sig-
nature parts stretch or shrink. Hence, these observations contain di�erent, but
complementary information and representing possible variations in appearance
increases informativeness of the appearance model. This is especially important
because vehicles are observed at various distances and from various angles.

A second example, in Figure 5.4 (bottom), shows vehicle appearance change
due to the actions taken by the driver, in this case turning on the rear lights.
If we compare the signatures that represent the cases when the lights are o�
and on, we see that there is a corresponding change in values and behaviour of
the signatures. As in the �rst example, having the observations with lights o�
and on in the appearance model increases its robustness, because the vehicle
can be captured in both states in other cameras.

Conversely, some observations should not be included in the appearance
model, particularly false and inaccurate detections, clutters and occlusions.
For detecting them we exploit the fact that the signatures in such observations
change di�erently than in the two aforementioned situations. When occlusions
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occur, a new object in the image causes a signi�cant change of the observa-
tions (see Figure 5.5). This change is gradual as the vehicle gets more or less
occluded, until it reaches the unoccluded state again or the state in which the
occlusion is constant. This behaviour is present in the signatures as well. Also,
strong illumination sources can blind the cameras or signi�cantly disturb obser-
vations, e.g. when vehicles with rotating lights enter the scene those lights are
periodically disturbing the camera and "polluting" the observations. In con-
secutive frames this e�ect is again visible as gradual change in vehicle images.
Analogous phenomena outside of tunnels can be observed due to re�ection of
sunlight from vehicles or cast shadows from objects alongside the road.

False and inaccurate detections can also be detected by analysing signa-
tures. False and inaccurate detections occur in real scenarios regardless of
the vehicle detector that is used, mostly due to lack of visible features, in-
tensive illumination changes in some parts of the scene or light re�ections on
the road. Our experiments showed that such detections are typically unstable,
i.e. they change quickly, capturing di�erent vehicle parts in consecutive frames
(see Figure 5.5 the bottom row). As a consequence, the signatures of false and
inaccurate detections also change quickly and not gradually.

The stated signature characteristics allow us to use them for selection and
representation of good appearance states that should be included in the appear-
ance model. The selection procedure is presented in Figure 5.6. Let A be the
appearance model and st the signature vector of the appearance state observed
at the time instance t, de�ned by Equations (3.3) and (3.4). We consider that
the appearance state is stable if the appearance remains similar enough in a
prede�ned number of successive frames T . In terms of signatures this condition
is satis�ed if a similarity measure µs between the signature vectors of these T
successive observations remains above some prede�ned similarity value Mst,

µs(st, st+τ ) > Mst,∀τ ∈ [1, T ]. (5.2)

We call this condition the stability criterion, withMst and T being the stability
parameters. A method for calculating the similarity µs between the signature
vectors is given in detail in Section 5.4. If the appearance state at the time
instant t is stable, its signature vector should be included in the appearance
model A ≡ {s1, s2, ..., sN} only if it brings additional information to the model,
i.e. if it is di�erent enough from other, previously observed states already in-
cluded in the model,

µs(st, sn) < Mvar,∀n ∈ [1, N ]. (5.3)

This condition represents variability criterion andMvar is the variability thresh-
old.
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Figure 5.4: Vehicle appearance changes. Images of vehicles observed by one camera
and their corresponding vertical and horizontal signatures; Top: A typical case of
the vehicle appearance change when vehicles are observed by a camera mounted on
a tunnel ceiling: �rst, the vehicle is observed from above and then, as it moves away
from the camera, it is viewed from behind, so some of its parts become more and some
less visible; Bottom: A vehicle appearance change when its lights turn on: signature
parts that correspond to the lights gain higher value and the number of implied pixels
when the lights are on.
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Figure 5.5: Vehicle occlusion and inaccurate detection. Images of vehicles observed
by one camera and their corresponding vertical and horizontal signatures; Top: An
occlusion from another object: there is a signi�cant gradual change of the vehicle
signatures in the parts a�ected by occlusion; Bottom: Inaccurate detections; the
signatures change quickly, not gradually between consecutive frames.
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Figure 5.6: A procedure for collection of good observations for modelling the ap-
pearance of vehicles as they move in a multi-camera environment; the stability and
variability conditions for including appearance states into an appearance model are
given. All appearances are represented by signature vectors.

By using the proposed appearance collection procedure, most occlusions,
clutters and inaccurate and false detections can be excluded from the appear-
ance model (due to the stability condition). However, the model can still
include persistent inaccurate detections for which both a vehicle detector and
a single-camera tracker constantly return a stable, positive response. Such per-
sistent inaccurate detections typically occur when bigger vehicles (e.g. trucks
or buses) are partly detected or when the detections of smaller vehicles (e.g.
cars) contain parts of the background or other vehicles. We noticed also that
for some vehicles all stable detections were inaccurate, so our intention in this
work was to develop a signature matching procedure robust to such detection
inaccuracies.

5.4 Vehicle appearance matching

5.4.1 Signature matching

The challenges for robust matching of the signatures come from scale, shift and
rotation variations between the vehicle observations that are compared. Scale
di�erences result from di�erent camera zoom settings or di�erent distances
between the observed vehicles and the camera. Shift results from di�erences
in the bounding box location with respect to vehicles. Rotation is caused by
vehicle pose changes together with camera viewing angle changes. All these
e�ects are present in the example of Figure 5.7. Due to the scale di�erence
the lengths of the corresponding parts of the signatures di�er. A consequence
of the bounding box shift is the signature shift along the shift direction while
the vehicle rotation results in shrinking and stretching of the signature parts.
Thus, we propose a coarse-to-�ne signature matching procedure composed of
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four parts: signature rescaling, and global and local alignment, followed by
calculation of the �nal similarity measure.

5.4.1.1 Learning of rescaling factors

To achieve the scale invariance necessary for signature matching, we rescale
the signatures by estimated factors using cubic interpolation. In the following
we present a method to estimate these rescaling factors. They depend on the
camera zoom settings and the position of the vehicle in the scene (further from
the camera smaller the vehicle image, i.e. shorter the vehicle signatures and vice
versa). We represent the vehicle position by the y-coordinate of its bounding
box bottom line (see Figure 5.7a). Suppose we want to determine the rescaling
factors between the vertical signatures of two vehicle images On−1

i and Onj ,
extracted at positions yn−1

i and ynj . We de�ne the rescaling factor for vertical
signatures as following:

rjiv (ynj , y
n−1
i ) =

lnvj

ln−1
vi

, (5.4)

where lnvj and l
n−1
vi are the lengths of the vertical signatures of images Onj and

On−1
i , respectively. We rescale the signatures to the same reference length

lr and compare using 1-D correlation. If the obtained correlation coe�cient
is high enough, i.e. above a prede�ned threshold (0.9 in our experiments),
the reference rescaling factors rjv = lnvj/lr and r

i
v = ln−1

vi /lr properly estimate
the scale di�erence between the vehicles at positions yn−1

i and ynj . Then, the
rescaling factor rjiv is calculated as rjiv = rjv/r

i
v and we use it as an estimate

of the scale di�erence between observations at positions yn−1
i and ynj . If the

obtained correlation coe�cient is bellow the threshold, such a signature pair is
considered unreliable, so it is not used for the rescaling factor learning.

In this way we estimate the rescaling factors for di�erent pairs of positions
in two �elds of view. Taking into account that vehicles get detected at mul-
tiple positions along their trajectory in each camera view, the estimation of
the rescaling factors can be done fairly quickly for many position pairs. If
there is no rescaling factor for a certain position pair, we use the factor for
the nearest position pair. If there are multiple factors for the same position
pair, the arithmetic mean of the latest n is used (n = 3 in our experiments).
This enables automatic adaptation to the change of the camera zoom parame-
ters. The rescaling factors for horizontal and diagonal signatures are estimated
analogously.

Note that by dividing the images in regions, see Figure 5.7a, it is possible
to group vehicle positions and to learn rescaling factors for pairs of image re-
gions instead for position pairs. This enables faster learning, but the estimated
rescaling factors are less precise. However, if the scale di�erences within the
same regions are relatively small (in our experiments 15%), the global and local
alignment can still be properly obtained.
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Figure 5.7: The signature matching procedure: a) Two observations of the same
vehicle captured by two cameras (the same as in Figure 3.7); The y-coordinates of
the bounding box bottom lines represent the positions of vehicles in the scenes; The
images are divided in regions (marked with numbers) so that vehicle scale di�erence
within each region remains less than 15%; b) Vertical signature of the observation
On−1

i (good detection); c) Vertical signature of the observation On
j (inaccurate detec-

tion); d) Signatures are rescaled using the reference length lr = 100 using the rescaling
factor rjiv = 1.48, estimated between the positions ynj and yn−1

i in images from cam-
eras Cn and Cn−1, respectively; after rescaling, the global alignment is found in the
position ag; e-f) The local alignment: unstable extrema are removed by smoothing
the signatures; the remaining local extrema (some of which are marked with arrows)
are aligned by interpolating the signatures; after local alignment the �nal matching
measure between the signatures is calculated.
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5.4.1.2 Global alignment by correlation with shifting

Due to the possible signature shift, it is necessary to align the signatures before
comparing them (see Figures 3.7 and 5.7d). The alignment we perform is
twofold. First, after rescaling the signatures by the estimated factor we align
them globally. Then, a �ner, local alignment is obtained. The global alignment
is done by shifting one signature along the other one, �nding the position with
the highest correlation coe�cient between the two signatures. Suppose x is the
signature with M elements and y the signature with N > M elements. The
signature x is then shifted along y and the correlation coe�cient ρs, obtained
in each shift position s ∈ [0, N −M ] is de�ned as

ρs =

∑M
i=1(x(i)− x̄)(y(i+ s)− ȳs)√∑M
i=1(x(i)− x̄)2(y(i+ s)− ȳs)2

, (5.5)

where ys is the part of the signature y, which in shift position s overlaps with
the signature x. The signatures are aligned in a position ag, in which the
correlation coe�cient ρs has maximal value ρg,

ρg = max
s
ρs. (5.6)

This is a coarse, global matching measure of two signatures.

5.4.1.3 Local alignment and signature matching measure

Perspective changes of the vehicle observation, subtle appearance changes and
imprecise rescaling cause shrinking and stretching of signature parts (see Fig-
ures 3.7 and 5.7d). Hence, a local alignment of signatures is needed before
calculating their correlation. For that purpose we propose a method similar
to Iterative Closest Point (ICP) [Rusinkiewicz 01]. Our method aligns corre-
sponding local extrema. Local extrema are robust features of the signatures,
preserved even if vehicles change pose or if they are observed in di�erent illumi-
nation conditions. This is because they correspond to di�erent parts/ patterns
of the vehicle. As long as those parts/patterns remain visible in two obser-
vations, the local extrema remain present in the signatures (see Figure 3.7).
Therefore, we propose the following local alignment method.

Step 1. The signatures are iteratively smoothed until the same number of
extrema is found in two consecutive iterations, or until the number of signa-
tures' extrema remains above a prede�ned limit (in our experiments we set this
limit to 10). Smoothing removes most of the extrema that originate from noise
and camera interlacing. Fine appearance details can also be lost, but due to
the low resolution of vehicle images they are mostly not present.

Step 2. The signatures are iteratively interpolated to align the closest local
extrema of the same kind (maximum or minimum), see Figure 5.7e-f. Suppose
x and y are two signatures. For each local maximum x(m) we �nd its closest
maximum y(n), i.e. the one for which the absolute di�erence in their position



96 Tracking in Non-overlapping Camera Views

|m − n| is minimal. In the same way the closest minimum is found for each
local minimum of the signal x.

Ambiguities occur if multiple extrema from the signature y have the same
closest extrema in the signature x. Therefore, the local alignment is performed
in iterations. Firstly, the signatures are interpolated so all extrema with a
unique correspondence are aligned. We used cubic interpolation for this pur-
pose. After interpolation some of the ambiguities might be resolved. Then, the
whole procedure of �nding the closest extrema and aligning them repeats until
all extrema with unique correspondence are aligned.

Note also that other possible curve alignment approach is dynamic time
warping (DTW), e.g. the method of [Sebastian 03]. DTW automatically han-
dles both scale and translation e�ects globally and locally. It can be imple-
mented in dynamic programming so it is also e�cient. However, in real scenar-
ios the signatures can be signi�cantly misaligned so for a proper initialization
of DTW (selection of the starting and ending point) a coarse global alignment
is still an advantage. Moreover, the vehicle signatures taken at di�erent light-
ing conditions can vary signi�cantly in intensities, which further can lead to
inaccuracies of DTW. Therefore, we found that using the proposed iterative
ICP-alike approach is a better option.

Finally, after the local alignment, 1-D correlation coe�cient ρl between the
signatures is calculated. We de�ne the �nal matching measure between the
signatures x and y as

ρ(x,y) =

{
ρl(x,y), ρl(x,y) > 0

0, ρl(x,y) ≤ 0.
(5.7)

Negative values of the correlation coe�cient ρl are set to zero in the signature
similarity measure ρ. This is because we do not make a di�erence between
no correlation and negative correlation since these are both cases when the
compared vehicles are di�erent.

5.4.2 Matching of the appearance models

As explained in Section 5.3, the appearance of each vehicle is modelled by
multiple appearance states of which each is represented by a signature vector.
In this work we used signature vectors that consist of two and four signatures.
Therefore, if A is the vehicle appearance model, it is a set of N signature
vectors, A ≡ {s1, s2, ..., sN}, of which each is represented by one vertical and
one horizontal signature, sn = (vn,hn) or with diagonal signatures added, sn =
(vn,hn,dn,an), n ∈ [1, N ]. The correlation between signatures is calculated as
presented in Section 5.4.1. Comparison of the appearance states requires then
combining the correlation coe�cients between signatures into one matching
measure between signature vectors.

Figure 5.8 shows 2-D and 3-D scatter plots of the correlation coe�cients
ρl for the pairs of vertical, horizontal and main diagonal signatures of the
300 vehicles in our database (each compared with 21 candidates). Red circles
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Figure 5.8: Top: 2-D and 3-D scatter plots of the correlation coe�cients ρl between
the signatures of the vehicle images from our database; each vehicle from one camera
(template) is compared with the same vehicle and 20 di�erent vehicles viewed by
the other camera; on the x, y and z axes are correlation coe�cients between pairs
of horizontal, vertical and main diagonal signatures, ρlh, ρlv and ρld respectively.
Red circles represent values for the same vehicles while cyan crosses represent values
for di�erent vehicles. The correlation values for the same vehicles are clustered in
the area with high values for each of the signature pairs. Bottom: example for one
template and its candidates; 2-D scatter plot of the signature similarity measures ρ.
Even when the similarity measures ρh and ρv are relatively low for a true match, a
true match is still further from the zero correlation point than false matches.

represent the correlation values between the signatures of the same vehicles
(according to the manually annotated ground truth) and cyan crosses represent
the values for di�erent vehicles. As expected, the values for the same vehicles
are clustered in the area with high correlation coe�cients for the each signature
pair, i.e. the area furthest from the zero correlation point (point (0, 0) for 2-D
plot or (0, 0, 0) for 3-D plot). Also, even if in some cases the correlation values
of true matches are not in the cluster of red circles their distance from the zero
correlation point is mostly still higher than the distance for false matches, as
in the example at the bottom in Figure 5.8. Therefore, we de�ne a similarity
measure µs between two signature vectors as the Euclidean norm of an n-D
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vector, where each dimension represents the similarity measure ρ between the
signatures along the same projection direction, i.e.

µs(sn, sm) = ‖(ρ(vn,vm), ρ(hn,hm))‖ (5.8)

for the appearance representation by 2-D signature vectors, or analogously the
Euclidean norm of a 4-D vector when the appearance states are represented by
4-D signature vectors.

Finally, the matching measure µ between two appearance models Ap ≡
{sp1, sp2, ..., spM} and
Aq ≡ {sq1, sq2, ..., sqN} is the maximal similarity measure obtained when compar-
ing all their states,

µ(Ap, Aq) = max
m,n

µs(s
p
m, s

q
n), m ∈ [1,M ], n ∈ [1, N ]. (5.9)

This means that the vehicle matching is done according to the most similar
appearances in the vehicle appearance models.

5.4.3 Template-candidate association

Each template is compared with all its candidates according to the procedure
given in Section 5.4.2. Since every template has one and only one correspond-
ing candidate in its matching window, we optimize the template-candidate
association by �nding a solution with a maximal sum of all individual sim-
ilarity measures µ (see Figure 5.9). We use the Hungarian algorithm with
voting [Rios Cabrera 12] to solve this maximum assignment problem. Since
the Hungarian method has been initially developed to calculate an assignment
of jobs to workers that has minimal total cost, we convert the maximum as-
signment into a minimum assignment problem by multiplying all similarity
measures by factor −1. Note that when it is necessary to establish template-
candidate associations as quickly as possible, the assignments could be made
based only on matching measures µ and optimized with a delay, when all tem-
plates that could be matched to the same candidates pass through the camera
view.

5.5 Vehicle matching algorithm

Given the problem of matching vehicles observed by two cameras with non-
overlapping views, Cn and Cn−1, formulated in Section 5.2, our matching al-
gorithm consists of the following four steps.

Step 1. During the movement of the j-th vehicle through the �eld of
view of camera Cn its appearance model (template Tj) is created using the
procedure explained in Section 5.3. The vehicle observations are responses of
vehicle detection and single-camera tracking.

Step 2. The matching window (the set of candidates) for the template Tj is
determined. It is done according to the distance Dn,n−1 between the cameras
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Cn and Cn−1, together with the estimated velocity and the trajectories of the
vehicles as observed by camera Cn−1. We estimate the velocity according to
the lane marks on the road, using responses of the single-camera tracking. The
distance between the lane marks is known (complies with the known standards)
so the velocity is estimated by measuring the time vehicles need to move be-
tween the lane marks. The lane marks in the images could be automatically
detected or marked manually. Suppose that νnj is an estimated velocity of the
template vehicle Tj in the �eld of view of camera Cn at the time instance t. Let
further νmin and νmax be the minimal and maximal allowable vehicle velocities
(taking into account possible over-speeding and down-speeding, νmin and νmax
can be determined relative to the velocity νnj or in absolute values). Then, all
vehicles that disappeared from the �eld of view of camera Cn−1 between time
instances t− Dn,n−1

νmin
and t− Dn,n−1

νmax
are considered as matching candidates for

the template Tj , if being in the same or adjacent lane as the template. Note
that steps 1 and 2 can be performed simultaneously.

Step 3. A template-candidate association is computed using the Hungarian
algorithm with voting, as proposed in [Rios Cabrera 12].

Step 4. After the template-candidate assignments, we update all candi-
date appearance models with new states. These are the appearance states
that are collected in the �eld of view of camera Cn and are di�erent enough
from the states collected in previous cameras, C1, ..., Cn−1. The appearance
states are di�erent enough if they ful�l the condition in Equation (5.3). This
updating procedure enables learning of vehicle appearances online, along the
multi-camera track.

5.6 Experimental evaluation

We composed two databases of vehicle images from three security cameras
with non-overlapping views, mounted roughly in the center of a tunnel pipe
ceiling and oriented in the direction of the tra�c �ow. The databases contain
300 di�erent vehicles, manually annotated for evaluation purposes. Each ve-
hicle is represented by 20 images per camera, extracted from successive video
frames along their tracks, starting from the frame in which the vehicles are
observed completely. For the �rst database, denoted as DBM, vehicle images
were manually extracted from the videos resulting in similar detections between
the frames and the cameras. The second database, denoted as DBA, contains
real (automatic) vehicle detections, which are less accurate, thus less stable
along the single-camera tracks and di�erent between the cameras. Figures
5.1, 5.2, 5.4 and 5.5 show some examples of vehicle images in DBA database.
The automatic detections are obtained using the detector of Rios Cabrera et
al. [Rios Cabrera 12].

Five major results are presented in this section. Firstly, we give the results
of our matching method for two camera pairs (C2,C1) and (C3,C2), with and
without using multiple templates (observations) of each vehicle. We demon-
strate that our proposed method yields a better matching accuracy than the
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Figure 5.9: Match association. Example for two vehicles. Using the Hungarian
algorithm an optimal assignment with minimal total cost (maximal sum of individual
similarity measures) is found. The matching optimization does not allow multiple
matches with one vehicle. In this example, template Ti is matched to candidate Ck

due to a higher matching measure between Ti and Ck than between template Tj and
Ck. This leads to a correct matching of template Tj , too.

reference matching techniques (2-D image correlation, SIFT, eigenimages, and
Haar features based matching). Secondly, we prove that our method performs
well if vehicles are visually distinctive, i.e if there is enough information in the
images based on which they can be recognized. For that purpose we present
separately the matching results for big vehicles (trucks, buses, etc.) and cars.
Our third result shows that the signatures can be downscaled without losing
the essential information, which signi�cantly increases the computational e�-
ciency of our method. The fourth result illustrates the gain from adding two
diagonal signatures to the appearance representation based on only horizontal
and vertical signatures. Finally, the �fth result demonstrates the performance
of the whole matching algorithm in a tunnel application, including non-visual
information derived from physical constraints of vehicle motion.

5.6.1 Results for di�erent camera pairs

We have compared the matching score for two di�erent camera pairs, (C2,C1)
and (C3,C2) using our method with and without collection of multiple observa-
tions (templates) along the vehicle trajectories, see Figure 5.10. The matching
rate is signi�cantly higher when multiple templates are used for matching. Note
that having multiple templates also reduces the di�erence in performance be-
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tween di�erent environments (if a single template is used, the matching rate
drops in a more challenging environment of the camera pair (C3,C2) while this
is not the case when multiple templates are used).

5.6.2 Comparison with other methods

We have compared the matching score computed between the vehicles in DBM
and DBA databases using our matching algorithm with four other appearance
matching methods based on 2-D image correlation, SIFT [Lowe 04], eigenimages
[Turk 91] and Haar features [Rios Cabrera 12]. In our method we used 2-
D signature vectors, which contain horizontal and vertical signatures. 2-D
image correlation was obtained using vehicle images normalized to the same
size. In the SIFT-based method, vehicle matching was done using the kd-tree
and nearest neighbour search between SIFT features found in vehicle images
(as in [Lowe 04]). For the eigenimages method the datasets were divided in
two disjunct parts, the training and testing subset (in both databases 100
images were taken for training and tests were then performed on the other 200
images). Finally, for the comparison with the matching method of Rios Cabrera
et al. we refer to their results reported in [Rios Cabrera 12], since those results
were obtained using the images from the same tunnel recordings we used in our
experiment (the only di�erence is that Rios Cabrera et al. provide results for
matching each vehicle with up to 50 vehicles, while we do it up to 100 vehicles).
To evaluate how discriminative the signature based appearance model is, we
did multiple experiments with di�erent numbers of candidates in the matching
window. The Hungarian algorithm with voting, as proposed by Rios Cabrera
et al. [Rios Cabrera 12], was used to optimize the assignment in all methods.

The results are given in Figure 5.11, separately for DBM and DBA dataset
and the matching window size in the range from 3 to 101 with the step of 2,
taken to include the corresponding vehicle and 2 to 100 other vehicles. The
graphs show percentages of correct matches obtained using di�erent methods.
We see that selecting good observations suitable for matching increases the
matching accuracy, especially when vehicle detections are done automatically.
In our experiments the stability and variability parameters for our method (de-
�ned in Section 5.3) have been set to valuesMst = 0.9, T = 4 andMvar = 0.75,
selecting on average 1.7 good observations per single-camera vehicle track in
DBM set and 2.4 in DBA set. These numbers mean that the majority of
vehicles change in appearance along the track and that many disturbing obser-
vations in DBA set get disquali�ed. This preselection of observations good for
matching is a key advantage comparing to the other methods, which creates
the resulting di�erence in the matching accuracy. The methods without this
functionality fail when the input from the detector and/or tracker is not accu-
rate enough or the observations used for matching contain some disturbances.
The methods that require registration of images before matching, like 2-D cor-
relation and eigenimages based methods, are especially sensitive to inaccurate
detections, which explains the rapid drop of their performance on DBA images
(see Figure 5.11 bottom graph). In this sense, the results of 2-D correlation
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and eigenimages based methods are given here also to illustrate the di�erence
between detection accuracies in DBM and DBA set.

5.6.3 Results for di�erent vehicle categories

On inspection we found that many of the wrong matches could be attributed to
a visual similarity of vehicles. This especially holds for smaller vehicles (cars),
see Figure 5.1. On the other hand, big vehicles like trucks, buses and vans
usually have characteristic patterns (di�erent design, company logos, commer-
cials and so on), which are visually distinctive and big enough to be visible in
low resolution videos. To evaluate the in�uence of this constraint on perfor-
mance of our matching method, we have divided our database of vehicles in
two categories, denoted as cars and trucks. Category cars contains 185 vehi-
cles, while other 115 vehicles in the database are categorized as trucks. The
matching results, obtained using our signature based method with collection of
good observations, are in Figure 5.12 presented separately per each category.

These results clearly show that the proposed method is highly accurate
for matching vehicles from the trucks category. Even when the templates
are compared with as much as 101 candidates, more than 96% of trucks in
DBM set and above 70% in DBA set are correctly matched. This is bene�cial
for applications where tracking trucks is more important, e.g. for tracking of
vehicles that transport dangerous goods. The accuracy in the cars category
is much lower and it shows that the success of appearance matching is highly
limited by quality of images from surveillance cameras and distinctiveness of
vehicles themselves. One way to increase vehicle distinctiveness could be using
colour information when it is available.

5.6.4 Results for di�erent reference lengths

As explained in Section 5.4.1, the signatures are rescaled using the reference
length lr before performing the matching operations. Thus, the reference length
has a major impact on the number of computations needed for signature match-
ing. In Figure 5.13 we present the matching results obtained using di�erent
reference lengths, to evaluate their in�uence on the performance of the method.

We see that similar results are obtained for reference lengths in the range
from 30 to 150 and that the performance drop is noticeable when the lengths
are below 30 points (the curves for 20 and 10 are shown). This shows that the
signatures can be highly downscaled between local extrema, without a�ecting
the performance signi�cantly. It is due to the fact that the local extrema of
the signatures capture most of the information, so most of the points between
the extrema can be discarded. However, discarding all points except the local
extrema leads to a performance drop because the shape of the signature between
the extrema captures subtle appearance di�erences, which are important to
distinguish similar vehicles (signatures of the vehicles in our database have 12
local extrema on average while the performance drop is noticeable when the
signatures contain less than 30 points).
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The possibility of downscaling the signatures for the reference length lr = 30
before their matching, enables very e�cient performance of vehicle matching,
both in terms of data and computations. In our implementation of the proposed
algorithm, matching of two appearance states was achieved in 1.02 ms on a
single-core 1.86 GHz CPU. Such e�ciency allowed us to compare in 11.5 seconds
all 300 vehicles viewed by two cameras in a period of 8 minutes. Also, each
signature vector was computed in less then 1 ms, which enabled calculation
of signatures and collection of good observations online, during tracking of
vehicles in a single camera view.

5.6.5 Comparison of 2-D and 4-D signature vectors

In Section 3.3 we de�ned the appearance representation using two and four
signatures. The previous results are all obtained using the appearance model
based on two signatures (vertical and horizontal), while here we analyse the gain
from adding diagonal signatures. A comparison of the results obtained using
the two appearance models is given in Figure 5.14. We see that for manual
detections there is a slight increase of accuracy (aprox. 5 to 10 percent) when
the diagonal signatures are added, but it is negligible for automatic detections.
This suggests that diagonal signatures add some information, but they are
sensitive to the detection misalignment and the vehicle pose change. Moreover,
taking into account that the diagonal signatures triple the amount of data
needed for appearance representation and matching, in our work we mostly
use the appearance model based on only vertical and horizontal signatures.

5.6.6 Results in a tunnel application

In the previous sections the results of the vehicle appearance matching have
been shown for di�erent sizes of the matching window. However, in most traf-
�c environments it is possible to reduce the number of candidates for each
template. For this purpose we use the information based on space-time con-
sistency of vehicle motion, as explained in Section 5.5. In this way, taking 30
kmph for the minimal and 160 kmph for the maximal velocity of vehicles in
a tunnel application with medium tra�c density, we have been able to reduce
the matching window size to on average 9 candidates for each template (each
vehicle was compared with 9 other vehicles). In this setting the accuracy of our
2-signatures based vehicle matching between two successive cameras along the
tunnel was 97% on DBM set and 95% on DBA set, see Figure 5.11. Classi�ed
per vehicle categories, as shown in Figure 5.12, correct matching was achieved
for 100% of trucks and 95% of cars on DBM set, while 98% of trucks and 94%
of cars on DBA set. In Figure 5.11 we also see that our method outperforms
the state-of-the-art vehicle matching method of Rios Cabrera et al. [Rios Cabr-
era 12] by 9% on DBA set, while they perform similarly on DBM set. In our
method there is also no need for supervised training, which is an additional
advantage compared to the method of [Rios Cabrera 12].
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Figure 5.10: Comparison of the results of our matching method with a single and
multiple templates, for two camera pairs (C2,C1) and (C3,C2) and datasets of manual
(DBM, left column) and automatic (DBA, right column) vehicle detections. Each
curve depicts the percentage of correct matches on the y-axis in function of the number
of matching candidates (the matching window size) on the x-axis.
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Figure 5.11: Comparison of matching results of our method and other methods,
averaged over two camera pairs (C2,C1) and (C3,C2); Top: manual vehicle detec-
tions (DBM); Bottom: automatic vehicle detections (DBA). Each curve depicts the
percentage of correct matches on the y-axis in function of the number of matching
candidates (the matching window size) on the x-axis.
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Figure 5.12: Matching results averaged over two camera pairs (C2,C1) and (C3,C2),
shown for di�erent categories of vehicles; Top: manual vehicle detections (DBM);
Bottom: automatic vehicle detections (DBA). Each curve depicts the percentage of
correct matches on the y-axis in function of the number of matching candidates (the
matching window size) on the x-axis.
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Figure 5.13: Matching results averaged over two camera pairs (C2,C1) and (C3,C2),
obtained using the signatures of di�erent length; Top: manual vehicle detections
(DBM); Bottom: automatic vehicle detections (DBA). Each curve depicts the per-
centage of correct matches on the y-axis in function of the number of matching can-
didates (the matching window size) on the x-axis.
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Figure 5.14: Comparison of the results using the appearance models based on two
and four signatures, averaged over two camera pairs (C2,C1) and (C3,C2). Each curve
depicts the percentage of correct matches on the y-axis in function of the number of
matching candidates (the matching window size) on the x-axis.

5.6.7 Discussion

In this Section we discuss reasons for possible failures of vehicle matching us-
ing the proposed framework and we propose some solutions to prevent these
failures.

1. If multiple vehicles from the same matching group (vehicles
that appear at approximately the same time in the scene) appear
in poses signi�cantly di�erent from the poses observed in previous
cameras. When a vehicle appears in a camera in a pose signi�cantly di�erent
from the poses observed in previous cameras, the multi-observation appearance
model of the vehicle would not contain a descriptor of the vehicle in such a pose,
and this could likely lead to a failure in vehicle matching. To reduce the chance
of such a failure, the proposed framework has a matching optimization step,
which results in the optimal assignment for each vehicle in the corresponding
matching group. Consequently, this means that the failure would possibly
happen if multiple vehicles, not only one, from the same matching group change
pose to a previously not observed pose, which is less likely. By extending the
proposed framework with a multi-hypotheses alike approach it would be further
possible to recover from incorrect assignments over time, as there are more
observations of each vehicle from multiple cameras.

2. If a vehicle is very similar or the same in appearance with some
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other vehicle or vehicles from the same matching group. There are a lot
of vehicles, especially cars, of the same make or with similar appearance, which
is a signi�cant challenge for any appearance based vehicle matching method. It
is often not possible to re-identify vehicles based on their appearance only. In
the proposed framework it is, therefore, possible to add additional information
to select matching candidates for each vehicle based on vehicle kinematics, and
this is what we exploit in our work presented in this chapter. The proposed
framework also supports more precise selection of the matching candidates by
using the contextual information such as vehicle constellations (see Figure 5.15),
and probabilities and evidences of changes in these constellations (e.g. proba-
bilities or evidences that a vehicle overtook another vehicle, changed the lane,
etc.), but in this chapter we did not use this additional information.

3. If a vehicle is occluded or inaccurately detected so that sig-
ni�cant or distinctive parts of the vehicle are not captured. To cor-
rectly match two vehicles using any appearance based matching method it is
important there is enough visual information to do the matching. If some
vehicles are occluded or inaccurately detected, a signi�cant amount of infor-
mation might be lost. Therefore, in the proposed framework we introduced
a method to automatically detect such cases and select good observations to
perform matching. As shown in our experiments (see Figure 5.11) there is a
signi�cant improvement in the matching performance due to selecting of good
observations. However, if a vehicle is signi�cantly occluded or detected with
high inaccuracy in a whole scene, its re-identi�cation would likely fail due to
absence of good observations. This is in some cases solved by matching op-
timization in the proposed framework, but it could be further improved by
the previously mentioned approaches of multi-hypotheses and contextual alike
matching.

5.7 Conclusions

In this chapter we proposed a novel method for vehicle appearance modelling
and matching. We proposed using image projection pro�les to obtain vehi-
cle signatures that signi�cantly reduce the amount of data needed for vehicle
matching. We showed that in low resolution images such signatures capture
well the spatial distribution of vehicle parts and patterns, which was used for
their matching. We showed also that by selecting a set of good observations
along the multi-camera track, it was possible to overcome many matching prob-
lems that occur due to inaccurate detections, intensive illumination changes,
clutters and occlusions, as well as changes of the vehicle appearance. As a conse-
quence, object matching itself was signi�cantly simpli�ed and yet outperformed
more complex methods. The presented results also show that it is possible to
highly downscale the signatures without a�ecting the performance signi�cantly,
which further reduces the amount of data and computations needed for vehicle
matching. Thus, the proposed appearance matching method can be used to
perform vehicle matching on embedded systems (e.g. smart cameras) or by a
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Figure 5.15: The matching of similarly looking vehicles could be improved by using
contextual information. In two consecutive scenes, especially if the distance between
these scenes is not big, vehicles are likely to belong to the same constellation.

low-complexity central server without a need for sending the images between
the cameras or to the server.

An interesting future direction is to extend this approach towards matching
of vehicles in tra�c environments in which camera views are signi�cantly dif-
ferent, e.g. along city roads or crossroads. In this case it is important to add
automatic detection of good appearance states for matching depending on the
cameras' view. Also, in the environments where colour information is available,
it can be incorporated to further increase matching accuracy.

The work presented in this chapter has been published in the journal Image
and Vision Computing [Jela£a 13], and in the proceedings of two international
conferences [Jela£a 12], [Niño Castañeda 11].



6
Tracking in Overlapping

Camera Views

In this chapter we focus on object tracking in overlapping camera views. This
is one of the often present setups in video surveillance of indoor environments.
Real-time tracking of people is usually an essential task in these setups, of
which security and surveillance for path-retracing is among the widely spread
applications [P�ugfelder 10], [Morris 08]. Many other applications are con-
stantly emerging. For instance, in telecommunications (more speci�cally video-
conferencing), positional data of each meeting attendant can be used to de�ne
regions of interest containing people, to limit more detailed processing to these
areas. It can be helpful to focus pan-tilt-zoom (PTZ) cameras on speci�c peo-
ple [Aghajan 09], to determine when they enter and leave the room, their iden-
tity (even when they do not face a camera), and infer their activities [Fathi 11]
such as presenting, looking at the presenter, and others. In these applications,
in which the goal is to determine individual trajectories of each person, avoid-
ing tracking losses is essential. Trajectories of individuals should not be lost
due to occlusions and individuals should not be mixed up when they get close
together or when their paths intersect.

One way to avoid this problem is to rely on high-level feature analy-
sis [Babenko 11] and, for example, to periodically re-identify people. Such
algorithms are computationally intensive and it is often better to restrict their
usage. For instance, they can be activated when there is a doubt about the
current tracks or they can be run every few seconds only. Alternatively, high-
level algorithms can be used to correct tracking losses when they are already
executed for other purposes, as demonstrated in our experimental setup. Here,
we analyse people's faces when they are entering the room or when they are
seated in front of a web camera [Deboeverie 11]. This information can correct
some tracking loss problems, but often with a large delay. In conclusion, while
algorithms relying on high-level analysis are certainly valuable, it is still very
important for any tracking algorithm to minimize tracking losses in the �rst
place.

It is also essential to have high tracking accuracy. On the one hand, a
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higher tracking accuracy helps to reduce tracking losses, because a reduced
accuracy is an indicator of near losses [Aghajan 09]. On the other hand, a high
accuracy is needed for detailed behaviour analysis, e.g. to detect interactions
between people (people who know each other well tend to stand closer to each
other, shake hands, possibly hug or kiss, etc.) [Fathi 11]. These situations
are especially common in video-conferencing scenarios. In such an application,
to avoid mixing up people when they come close to each other, the distance
between the tracking response and the true position of a person needs to be
smaller than the width of a person.

There are also applications where accurate tracking statistics are more im-
portant than the accuracy of individual trajectories. For instance, in elderly
care, behaviour analysis based on trajectory statistics such as walking speed,
path smoothness and average activity levels can yield important information
about physical and mental health of the observed persons [Kröse 11]. In such
applications it is necessary that the tracking accuracy is high enough to po-
sition a person in the right area (e.g. the kitchen or the living room). This
also holds for applications in marketing and in-store promotions (e.g. to know
whether visitors stand in front of the billboards or shop's windows). Further-
more, in a work environment, statistics about the time workers spend sitting,
walking or standing, can help to pinpoint productivity problems or potential
health hazards, such as taking too few breaks. This information can also be
used to optimize the energy consumption in the observed spaces, but since the
data are used in a statistical manner it is not necessary to have as high accu-
racy as in the video-conferencing scenario. From these examples we see that
the application scenarios determine how big the tracking accuracy needs to
be. Nevertheless, a general tracking principle is to strive to minimize tracking
losses and maximize tracking accuracy.

Reliable accurate tracking of multiple people in crowded or highly cluttered
scenes is still a very challenging task, mainly due to frequent occlusions and
environmental changes. Even detecting and tracking a single non-occluded per-
son sometimes poses problems for state-of-the-art single camera tracking algo-
rithms, e.g. due to poor illumination, lighting changes or occlusions. Tracking
multiple people in the presence of furniture, and other occluding objects, poses
additional problems. In this case, the problems can be signi�cantly reduced
by using a top view rather than a side view camera. While tracking may be
possible with top view cameras only [Ozturk 09], there is limited amount of in-
formation that can come from top views. There are also signi�cant distortions
in top views and in some environments it is di�cult to obtain a good scene
coverage with top views. Therefore, most applications need side view cameras
to cover the whole scene and enable more detailed analysis or visualization (e.g.
of people's faces), so it is a good choice to use these side view cameras for people
tracking as well. Joint analysis of multiple side view camera streams increases
the robustness in most applications [Aghajan 09], especially in highly cluttered
indoor scenes. The triangulation principles can help to estimate the positions
of people with high accuracy. If enough cameras are available, problems due to
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occlusions can also be avoided so top view cameras may not even be needed.
In our work we experimented with two setups: one with only side views and
another with combined side and top views.

In our solution, presented in this chapter, beside on the tracking accuracy
in real-world conditions, we focus also on real-time, low-latency and scalability
of people tracking. This adds another level of complexity compared to state-
of-the-art methods as published by [Berclaz 11]. Real-time and low-latency
operation is needed in many indoor trackers since they need to react quickly to
changes in people's positions. The trackers also often need to deliver real-time
response to select appropriate high-resolution views for content displaying and
running detailed analysis algorithms. Examples of such applications include
surveillance, occupancy monitoring, telepresence and teleclassing, where it is
necessary to focus one or more cameras on the moving presenter. These ap-
plications typically involve long-term monitoring, so robustness and tracking
accuracy are also critical. The problem of scalability is often overlooked in
multi-camera research: centralized processing of multiple video streams cre-
ates not only a computing but also a communication bottleneck. This means
that adding a camera to the centralized network can signi�cantly impact the
network's ability to distribute and process the acquired data. From this point
of view, decentralized and distributed tracking approaches that group cam-
eras into clusters which communicate with a local fusion centre (decentralized)
or with each other (distributed) are much more scalable than centralized sys-
tems [Taj 11].

Combining real-time, low-latency, scalability, accuracy and robustness re-
quirements is highly non-trivial. Nevertheless, in recent years it has become
possible with the deployment of smart camera networks, which shift the com-
putation load towards the cameras [Hengstler 06], [Hengstler 07], [Soro 09b],
and increase robustness and accuracy of the system by combining the informa-
tion from individual cameras. Therefore, in this thesis our focus is on �nding
suitable features, extraction, distribution and fusion of the information gath-
ered in a smart camera network to create a tracker that is up to the stated
challenges.

The work presented in this chapter has been done in close collaboration
with my colleagues Sebastian Grünwedel and Jorge Oswaldo Niño Castañeda.
Sebastian Grünwedel presented parts of this work in his PhD thesis, too. His
focus was on foreground/background segmentation of images using edges, oc-
cupancy mapping using Dempster-Shafer theory of evidence, and a conceptual
design and comparison of performances of centralized and decentralized track-
ing methods. The part of conceptual design of a decentralized multi-camera
system with several di�erent approaches will also be elaborated in this thesis.
However, my focus in this PhD thesis is on using illumination invariant image
features that we introduced in Chapter 3 (as computationally e�cient tracking
cues), creating a multi-view appearance model using these features, matching
of these features to build a tracker in tracking-by-recognition fashion, and using
contextual reasoning to increase the tracking accuracy.
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In our approach, each camera performs low-complexity tracking. Each cam-
era represents objects (people) as bounding boxes (cuboids) with respect to a
world coordinate system. Since we assume calibrated cameras, we are estimat-
ing the person's cuboid in world coordinates rather than in image coordinates.
This allows a physical motion model to be expressed more easily than a model
in the image domain where apparent speeds depend on the position of the
person with respect to the camera. Furthermore, the estimates of a cuboid
in world coordinates from di�erent cameras can be directly fused in a fusion
centre or even in other cameras without knowing the relationship between a
camera image domain and the world coordinate system.

Some of the possible tracking approaches for this purpose are based on
tracking the motion of each blob using advanced motion estimation techniques
in a smart camera, such as optical �ow, as in [Grünwedel 12], or by tracking
SIFT, SURF, FAST or other local features within the blobs [Anjum 09]. In
this work we rather aim to show that tracking is possible using simple image
projection features in combination with extremely simple blob analysis. For
blob tracking, we rely on feedback from the fusion centre on the most recent
positions, speeds and geometries of individuals in the scene. Based on this
feedback, we perform probabilistic occlusion reasoning in the camera to identify
which blobs belong to which cuboid. The analysis also yields updated cuboid
parameters (e.g. positions). Our method does not involve sophisticated motion
estimation in each camera, although we demonstrate the bene�ts of having the
context aware motion models.

We developed and compared two approaches for on-camera tracking: his-
togram �ltering (HF) with local state estimation and an approach without lo-
cal state estimation (NLE). Both approaches obtain estimates for each person
based on FG/BG segmentation, signatures de�ned in Chapter 3 and the feed-
back from the fusion centre. Since these estimates are in world coordinates,
uncertainties are introduced by the back-projection from the image domain
to the world coordinate system. Nevertheless, the fusion centre uses a linear
Kalman Filter (KF) to obtain a joint decision of all cameras for each person.
The �nal estimates are fed back to each camera to minimize the uncertainties
of the camera estimates.

By extensive experiments of people tracking in meeting rooms, we demon-
strate the advantages of our approach, i.e. that a relatively simple analysis
of changes in images can be reliable and accurate for tracking multiple ob-
jects in a multi-camera network. It is achieved when information from multiple
cameras is fused and communicated back to each camera, creating a power-
ful mechanism to overcome many issues with occlusions. More speci�cally, we
demonstrate that the number of tracking losses in such a feedback based frame-
work is low, even in sequences with abundant occlusion. The average tracking
accuracy in these sequences is around 10 cm. These results show an improve-
ment on state of the art algorithms as reported by [Berclaz 11] and [Fleuret 08].
They also show that adding image projection features to FG/BG cues proposed
by [Grünwedel 14] improves tracking accuracy, without a�ecting the real-time
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performance and scalability.
Our system has a very low communication overhead: a frequency of 10 up-

dates per second alone is su�cient for each camera to transmit the parameters
(position, speed, width and height) together with a reliability measure of each
tracked cuboid to the fusion centre. These geometrical descriptors are inte-
grated by the fusion centre, which then returns fused descriptors for all tracked
objects to all smart cameras. The resulting transmission bandwidths from the
camera to the fusion centre and back are in the order of 1 kilobyte/second per
object for each camera. The low communication overhead results in a highly
scalable system. Moreover, it is an asset in battery operated smart cameras,
where a balance between computation and communication load is critical for
reducing power consumption. The low communication overhead is also an asset
in wireless camera setups (these setups are often preferred to avoid building
works on cable installations).

The remainder of this chapter is structured as follows. In Section 6.1 we
give an overview of the iCocoon project in which this research was carried
out. Section 6.2 contains an overview of related work. In Section 6.3 we
formulate the problem of multi-camera tracking with overlapping views, and
give an overview of our solution in Section 6.4. Section 6.5 describes the video
processing and local tracking within each camera, while the consensus tracking
that fuses data from all cameras and returns global states of tracked objects
is explained in Section 6.6. In Section 6.7 we present experimental results
to demonstrate the tracking performance: accuracy, precision, computational
e�ciency, scalability and communication overhead. We compare our methods
with the methods of [Grünwedel 14] and [Berclaz 11], and show improvements
in the accuracy and precision. The video data we use are acquired in two
real-world setups. We also show results on a publicly available data set of
[Berclaz 11], [Fleuret 08]. The results show that our system outperforms the
other methods in terms of accuracy and precision, having also the advantage
of being real-time and scalable, with low communication overhead. Section 6.8
concludes this chapter.
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6.1 The iCocoon project

The purpose of the project �iCocoon� (Immersive Communication by means
of Computer Vision) is to drastically change the way people communicate re-
motely. This is realized by creating third-generation video conferencing ap-
plications based on video technologies such as computer vision, scene under-
standing, 3D reconstruction and others. The targeted solution provides an
immersive sensation to the communicating parties, with good understanding
of the environment and the context in which the communication is taking place.
The project was carried out by academic and industrial partners in Flanders,
Belgium 1. The scope of the project was applied scienti�c research with a
proof of concept of a new generation video communication system, built with
innovative 2D and 3D computer vision technologies.

The main characteristics of such a system are an a�ordable price, �exible
communication and easy set-up of smart multi-camera networks, intelligent
context understanding of the scene, 3D capturing, e�cient information encod-
ing and transport, innovative rendering and displaying techniques (see Fig-
ure 6.1). From this perspective, the solution is di�erent from state-of-the-art
high-end video conferencing systems, which are expensive, targeted at formal
communications between a relatively small number of people and require ded-
icated communication rooms.

The project addresses the aforementioned issues, and moreover, includes
the following ideas.

1. Computer vision technologies are used to analyse the scene and human
behaviour in each meeting room. The data is captured from a distributed
smart camera network which registers, in an inexpensive way, every on-
going activity in the room. The smart camera network is plug-and-play
with automatic camera calibration. The visual cues important for com-
munication control are detected and automatically annotated. This en-
ables the system to take decisions over which events to visualize to an
end-group/user on the remote side.

2. On the display side, the goal is to visualize the captured information in
the most e�ective way. This is done by automatically showing the most
relevant actions and automatically editing the appropriate camera shots
from all available 2D video data. A consistent and ongoing overview of
the virtual communication environment is produced via a combination of
live and synthetic video streams. The latter takes the form of a dynamic
3D rendering of a virtual meeting room in which the participants are
displayed as moving avatars (see Figures 5.2 and 5.3).

3. In the long term, the realism of this teleconferencing experience could
be enhanced using techniques from augmented reality. For this reason,

1More details can be found at http://www.iminds.be/en/research/overview-projects/

p/detail/icocoon-2

http://www.iminds.be/en/research/overview-projects/p/detail/icocoon-2
http://www.iminds.be/en/research/overview-projects/p/detail/icocoon-2
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Figure 6.1: iCocoon - meeting room setup. These �gures show the way people could
communicate remotely. A meeting room is equipped with �xed and portable cameras
observing the on-going meeting using video technologies (such as computer vision,
scene understanding and 3D reconstruction), and meeting participants are rendered
using their avatars.
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(a) Smart meeting room

(b) Composed virtual view

Figure 6.2: iCocoon - system overview. In (a), the goal is to visualize the captured
information using a multi-camera network in the most e�ective way. The system
produces a consistent and ongoing overview of the virtual communication environment
via a combination of live and synthetic video streams in the form of a 3D dynamic
rendering of a virtual meeting room in which the participants are displayed as moving
avatars (b). These pictures are taken from the demo video produced by Alcatel-
Lucent [Alcatel-Lucent 12].
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(a) Symbolic room

(b) Presenting event

Figure 6.3: iCocoon - system overview. In a) a virtual meeting room provides
an overview of the participants and events happening in a meeting. A real-time
tracking system, using a multi-camera network, is used to estimate the whereabouts
of the participants and to detect events such as an ongoing presentation (b). For
such a system, accuracy is very important to prevent the tracking system mistakenly
following another participant or non-human objects. The representative pictures are
taken from the demo video produced by Alcatel-Lucent [Alcatel-Lucent 12].
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the project investigated capturing and compression of 3D models of peo-
ple, meeting rooms, furniture and other objects, to compose a virtual
meeting room. It also investigated the di�culties involved in the 3D cap-
ture of persons in real-time and provide a non-real-time, semi-interactive
simulation meant to probe users on how they would experience such a
system.

The project aimed to deliver a real-time demonstration of the people track-
ing, video selection, displaying and the symbolic overview features. For that
purpose, two tracking environments based on smart camera networks were set
up at Hogeschool Gent and at Alcatel-Lucent in Antwerp.

6.1.1 iCocoon contributions and credits

The research contribution to the project �iCocoon� in the area of multi-camera
people tracking was done by the Image Processing and Interpretation (IPI)
research group at Ghent University and the Vision Systems (VIS) research
group at the Hogeschool Gent.

For a video-conference meeting it is necessary to determine positions of
people within a meeting room in real-time. The research goal of the project
was to determine the location, pose, body motion and head orientation of people
in meeting rooms, using low-latency multi-camera video processing for a video
conferencing application. A smart camera solution was aimed at, in which
most of the processing is done within each smart camera. In this context, the
smart cameras output meta-data rather than video data, whenever possible.
Therefore, the data exchange and the network load is limited. This approach
di�ers radically from the traditional approaches, which jointly analyse all video
streams in a central location.

However, such a task is challenging due to frequent occlusions of people
by furniture and other people in a meeting room. An additional challenge is
imposed by changing lighting conditions (e.g. due to turning lights on or o�,
or changing presentation slides).

To deal with the occlusions, we use a multi-camera network, viewing a room
from di�erent viewpoints, to monitor participants of a meeting. However, this
creates new challenges, especially in terms of real-time processing and fusion of
the acquired data from di�erent cameras. Our proposed system is scalable be-
cause it requires a very small communication bandwidth and only light-weight
processing on a �fusion centre� that produces �nal tracking results. Thus, the
fusion centre does not need to be sophisticated and expensive, and can also be
duplicated to increase reliability. All low-level video processing is performed on
smart cameras. The smart cameras transmit a compact high-level description
of moving people to the fusion centre, which fuses this data using a Bayesian
approach. In our system, the camera-based processing takes feedback from the
fusion centre about the most recent locations and motion states of tracked peo-
ple into account. Based on this feedback and background subtraction results,
the smart cameras generate a best hypothesis for the location of each person.
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Figure 6.4: HoGent - setup overview. An experiment room was set up for the project
�iCocoon� at the Hogeschool Gent. The room is equipped with six cameras, four side-
view and two top-view cameras, operating at a frame rate of 20 FPS. The cameras
were mounted at ceiling height (3m approximately), and extrinsically calibrated and
synchronized up to frame accuracy.

Furthermore, to deal with lighting changes, we use our illumination robust
signature features proposed in Section 3.3 and an edge-based foreground/back-
ground segmentation method proposed by [Grünwedel 11b]. These methods
are used on each smart camera to determine regions of interest that contain
motion and objects of interest, which in turn is used to track objects.

At the Image Processing and Interpretation (IPI) research group, Peter Van
Hese, who was supervising the project, Dirk Van Haerenborgh, Jorge Oswaldo
Niño Castañeda, Sebastian Grünwedel and myself were involved in the project.
At the Hogeschool Gent, the team consisted of Dimitri Van Cauwelaert and
Francis Deboeverie.

An experiment room was set up for this project at the Hogeschool Gent
with help of Dimitri Van Cauwelaert and Dirk Van Haerenborgh and under the
supervision of Prof. dr. ir. Peter Veelaert. The room was equipped with six
cameras, four side-view and two top-view cameras, operating at a frame rate of
20 fps (Figure 6.4). The cameras were mounted at ceiling height (3m approx-
imately), and extrinsically calibrated and synchronized up to frame accuracy.
Dimitri Van Cauwelaert and Dirk Van Haerenborgh took care of this part of
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the project, as well as running experiments and testing the system.
Francis Deboeverie worked on the face analysis part of the project. His goal

was to obtain a best view selection based on face recognition with geometric
features. In his research, faces are represented as Curve Edge Maps (CEMs),
which are collections of polynomial curves with a convex region. Face recog-
nition is performed by matching face CEMs driven by histograms of image
intensities and histograms of relative positions. Moreover, the face recogni-
tion was also used to recognize the attendees of a meeting in the distributed
real-time tracking approach.

The design of the tracking approaches in the iCocoon project were planned
and implemented by Sebastian Grünwedel, Jorge Oswaldo Niño Castañeda and
myself.

The research work of Jorge Oswaldo Niño Castañeda is concentrating on
person detection and appearance modelling using machine learning techniques,
which is an ongoing research. Moreover, he was working on behaviour analy-
sis, which involved the detection of events for each meeting attendee, such as
�standing�, �sitting�, �walking� or �gesturing�.

Sebastian Grünwedel was responsible for conceptual design, research and
implementation of occupancy mapping and decentralized tracking approaches.
He focused on the aspects of scalability, accuracy and precision, as well as limi-
tations of these approaches. Furthermore, he developed an edge-based FG/BG
segmentation method which he used in both tracking systems and demon-
strated that this FG/BG segmentation is more robust to illumination changes
than state-of-the-art approaches.

The emphasis of my work in this context, presented in this thesis, lies on us-
ing image projection features and feature matching methods to robustly track
people in real-time under severe occlusions and in challenging lighting condi-
tions. I focused on improving the tracking accuracy by adding image projection
clues into the Bayesian �ltering framework. Within this project, I designed,
in close cooperation with Sebastian Grünwedel and Jorge Oswaldo Niño Cas-
tañeda, both tracking approaches: a multi-camera tracking approach based
on occupancy maps and a distributed multi-camera tracking approach with a
feedback loop. Furthermore, I together with Sebastian Grünwedel implemented
the system architecture. The implementation of such a system resulted in a
real-time demonstrator at Hogeschool Gent and Alcatel-Lucent Bell Labs in
Antwerp. The multi-camera tracking approach based on occupancy maps is
thoroughly explained in the PhD thesis of Sebastian Grünwedel so it is not a
part of this thesis.

6.2 Related work

In this section, we provide an overview of state-of-the-art approaches for multi-
camera tracking. There are several interesting surveys about multi-camera
approaches and architectures to which the reader is referred to for more details:
Smith et al. [Smith 06], Liu et al. [Liu 07], Aghajan et al. [Aghajan 09] and
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Taj et al. [Taj 10], [Taj 11].
Detection and tracking of multiple, possible occluded, people in complex en-

vironments is a challenging task which makes multiple cameras indispensable.
The di�erent viewpoints o�ered by multiple cameras decrease the number and
size of occluded regions. Also, multiple cameras simplify 3D analysis of a
scene and provide redundant information which can help to improve robust-
ness. Numerous papers addressed multi-target tracking using the principle of
associating objects in multiple views. For example, in [Nakazawa 98], human
tracking is performed using template matching to track moving people. A state
transition map together with action rules is used to coordinate between cam-
eras. The state transition map consists of three types of areas according to
the camera coverage: areas visible to only one camera, areas visible to multiple
cameras and areas not visible to any camera. This state transition map stores
the view parameters of all cameras, while the action rules de�ne the operations
performed by each camera.

Cai et al. [Cai 98] adopted a view selection approach: their tracker is a
single-camera one, based on a Bayesian classi�cation scheme. As soon as the
current camera has no longer a good view of the tracking target, the tracker
switches to another camera. This switch is predicted by the tracking system
using the position of an object along a spatio-temporal domain. The tracker
gathers sample pictures of the upper part of human bodies seen from various
viewing angles, and uses them for internal state. The principal component
analysis (PCA) is used to exclude non-human moving objects.

Bayesian networks are another popular approach to address the problem
of multi-camera tracking. Chang et al. [Chang 01] used a Bayesian network
approach to combine geometry (epipolar geometry, homographies, and land-
marks) and recognition (height and appearance) based features for matching
objects between consecutive image frames and multiple camera views. In the
work of [Dockstader 01b] Bayesian networks were used to track objects and
resolve occlusions in multiple calibrated cameras. On the other hand, Nillius
et al. [Nillius 06] focused more on the high-level tracking and assumed the
existence of an isolated track graph. In their approach they associated the
identities of those graph tracks. The problem was formulated as a Bayesian
network inference which uses standard message propagation to �nd the most
probable set of paths in an e�cient way. Their multi-object tracking is applied
to the problem of soccer player analysis.

Stereo vision is used in [Krumm 00], [Darrell 01], [Mittal 03]. For instance,
Krumm et al. use a stereo camera approach wherein depth information from
multiple stereo cameras is combined in 3D space. Firstly, they perform back-
ground subtraction and then detect human-shaped blobs in 3D space. After-
wards, people are identi�ed and tracked using a probability distribution based
on colour histograms. Nevertheless, the underlying problem of any feature
type, such as appearance, colour, blob shapes, etc., remains also in their ap-
proach: the features are easily corrupted due to occlusions or environmental
and lighting changes.
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Khan et al. [Khan 06], [Khan 09] use a homographic occupancy constraint
to fuse foreground evidence retrieved by a background subtraction method.
They make it from multiple cameras using geometrical constructs. The ho-
mographic occupancy constraint interprets foreground as scene occupancy by
non-background objects. Pixels that correspond to occupancies on a refer-
ence plane are consistently warped to foreground regions in every view. Their
method resolves occlusions by localizing people on multiple reference planes,
and attempts to �nd image locations of scene points that are occupied by
people. Similar work was presented in [Mittal 03], [Franco 05], [Berclaz 06]
and [Fleuret 08]. Fleuret et al. estimate probabilities of occupancy on the
ground plane given binary images obtained by background subtraction. They
use a generative model representing humans as simple rectangles. The proba-
bilities of occupancy at every location are approximated as the marginals of a
product law, minimizing the Kullback-Leibler divergence from the conditional
posterior distribution. Optimal tracks are computed from the raw observations
by a greedy search strategy based on dynamic programming.

In a later extension, [Berclaz 11], the trajectory estimation is treated as a
constrained �ow problem. This results in a convex optimization problem, which
is solved using the k-shortest paths algorithm. The results show a very good
performance on di�cult real-word applications. In many of the aforementioned
papers, the accumulated knowledge about the location of people is represented
by occupancy maps. This is inspired by the research on robot navigation using
range-sensor based sensors [Elfes 89], [Thrun 03]. However, methods based on
occupancy maps usually perform poorly when humans are partially hidden (e.g.
by furniture), or if the input data (result of background subtraction) is noisy or
even not existent due to environmental changes in at least one of the cameras.
The main reason is the assumption that pixels corresponding to occupancies
will warp to foreground regions in every camera view. This assumption is not
always valid and can therefore lead to errors in some of the occupancy maps,
eventually resulting in tracking errors. The major di�erence in our approach is
that we calculate a local estimate of individuals in each camera directly. Our
approach obtains global estimates of individuals using a Bayesian estimator in
a continuous state space with respect to a world coordinate system, rather than
a discretization of the ground plane into grid cells. Each camera makes its own
estimates for each person and a global (�nal) estimate is obtained by the fusion
of all camera estimates at the fusion centre side. This has the advantage that
cameras itself can make mistakes as long as the global estimates are correct.

Taj et al. [Taj 09] used a centralized tracking approach where the input
data from each camera view is projected on a top-view through the multilevel
homographic transformation of [Delannay 09]. This homographic transforma-
tion projects foreground evidence to planes parallel to the ground plane. The
projected planes are added up to generate a detection volume. The method
adopts a track-before-detect (TBD) approach to keep track of possible humans
in the scene. In the TBD approach the entire image is considered as a measure-
ment, which is a highly non-linear function of the target state. The target state
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consists of the position and speed of an object and the intensity of the image.
In their approach tracking is solved by employing non-linear state estimation
techniques such as particle �ltering.

Anjum et al. [Anjum 09] used an unsupervised inter-camera trajectory cor-
respondence algorithm to link objects across a multi-camera network. Object
association is implemented as a hybrid approach using local trajectory pairs es-
timated by multiple spatio-temporal features. Then image plane reprojections
of the matched trajectories are employed to resolve con�icting situations. The
latter approaches have high-data transfer rates due to the nature of centralized
processing and therefore a lack of scalability and energy e�ciency. However,
our proposed approach is scalable, e�cient with respect to the communication
bandwidth, and operates in real time due to the limited data exchange between
cameras and the fusion centre.

Other approaches for visual tracking range from Bayesian �ltering algo-
rithms to Probabilistic Graphical Models (PGMs). Dore et al. [Dore 10] made
a state-of-the-art review of Bayesian state estimation and PGMs, with respect
to tracking applications. In particular, in computer vision and video process-
ing, algorithms have been proposed based on di�erent types of PGMs such as
Hidden Markov Models (HMMs) or Kalman �lter. In their review, they de-
scribe PGMs as a statistical framework suitable for handling complex object
representations. This framework enables consistent formalization and handling
of uncertainties of visual observations. Moreover, this framework allows ef-
�cient solutions for complex problems, meeting real-time requirements. One
important step in these approaches is data association modelling. Here, one
commonly uses the Joint Probabilistic Data Association Filter (JPDAF) [Bar-
Shalom 87], [Kirubarajan 04].

Rasmussen et al. [Rasmussen 01] use a constrained JPDAF �lter for their
randomized tracking algorithm which oversees correspondence choices between
the tracker and image features. The algorithm is applied to three di�erent kinds
of tracking features, namely homogeneous regions, textured regions, and con-
tours described as snakes. In addition, they consider depth ordering of tracked
objects relative to the camera, resulting in the ability to predict occlusions be-
tween objects and allowing likelihoods coming from di�erent cues. Maggio et
al. [Maggio 08] propose a �ltering framework for multi-target tracking based on
particle �ltering and data association, using graph matching. Their tracker is
able to compensate for missing detections and to remove noise and clutter pro-
duced by the detector. In their approach, a novel particle resampling strategy
is proposed, and, moreover, the dynamic and observation models are adapted
to cope with various object scales. There are some shortcomings of the JPDAF:
the JPDAF does not consider situations in which multiple measurements can
be assigned to one object or where the same measurement is represented by
two objects. Moreover, by using a JPDAF for data association, the process-
ing time increases signi�cantly with the number of objects since all possible
hypotheses need to be calculated. It also cannot handle objects entering, or
already tracked objects exiting, the �eld of view.
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Another approach for data association is Multiple Hypothesis Tracking
(MHT) [Reid 79]. In the MHT algorithm, several correspondence hypotheses
for each object at each time are maintained and assessed. Using this approach,
the correspondence decision is deferred until the most likely set of observation
correspondences is found. In MHT, the probability of each potential track is
calculated, and typically only the most probable of all the tracks is reported.
The algorithm has the ability to create or terminate tracks of objects, enter-
ing or exiting the �eld of view. Moreover, it can also handle occlusions in a
way that the continuation of a track is found even if some of the measure-
ments from the object are missing. MHT makes associations in a deterministic
sense and exhaustively enumerates all possible associations. A particle �ltering
approach that handles multiple measurements to track multiple objects has
been proposed by [Hue 02]. In their method, data association is handled in
a similar way as in MHT, however, the state estimation is achieved through
particle �lters. In comparison with the latter approaches, we use a Bayesian
�ltering approach. These approaches provide e�cient solutions [Dore 10], use-
ful to achieve a scalable and e�cient communication load due to limited data
exchange between cameras and the fusion centre. However, in our proposed
method each camera sends a local estimate per person to the fusion centre,
together with a reliability measure. The fusion centre hereby fuses these lo-
cal estimates for a speci�c person of all cameras to one global estimate. The
data association strategy is described in a bottom-up manner, meaning that
evidence for a speci�c person is gathered locally in a camera. In the special
case of occlusions, where a concrete data association strategy is needed since
it could introduce ambiguities, we use probabilistic foreground modelling (see
Section 6.5.1) to perform occlusion reasoning. Furthermore, we use an ap-
proach with no local state estimation, like in MHT, to explore the posterior
probability, taking all current measurements into account. However, we do not
yet keep track of di�erent hypothesis over time. This particular idea and the
exchange of several possible hypothesis of a single object can lead to further
improvements of our method.

Relevant previous work at the IPI research group includes occupancy map-
ping [Tessens 10], [Morbee 11], [Grünwedel 12]. In [Tessens 10], a technique was
developed to calculate ground occupancy maps with a set of calibrated and syn-
chronized cameras. In particular, a fusion method of the ground occupancies
based on Dempster-Shafer theory of evidence was proposed. The method yields
very accurate occupancy detection results and it outperforms probabilistic oc-
cupancy mapping methods and fusion by summing in terms of concentration of
the occupancy evidence. In [Morbee 11], building on the work of [Tessens 10],
line sensors were used to calculate an accurate occupancy map. The empha-
sis of this work is the study of the usage of di�erent sensors (cameras, line
sensors), and their data output types (full images, scan lines from full images,
scan lines from light-integrating line sensors). An overall comparison between
the di�erent systems was presented covering the obtained occupancy map qual-
ity, the memory and computational requirements, the price of the system, its
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Figure 6.5: Decentralized system architecture. In the camera-based tracking block,
executed on a smart camera, features (foreground blobs) are extracted from the input
video. Then the local states of all people (the position on the ground plane, speed,
width and height of each person) are estimated. Afterwards, a compact representation
is sent to the fusion centre, which fuses the individual estimates into a global estimate,
resulting in the best possible global state for each person. These states are fed back
to each camera to correct possible mistakes.

power consumption and its privacy-friendliness. The work of [Grünwedel 12]
further improves the occupancy mapping by introducing additional edge based
foreground measurements for better evidence of people's positions.

6.3 Problem formulation

Our goal is to perform tracking of an unknown number of objects (people)
observed by multiple cameras from di�erent viewpoints. We formulate this
problem as a consensus tracking that estimates the most probable global state
of a hidden Markov process, given a set of independent local estimates of each
camera obtained at each time instance t (see Figure 6.5).

In this context, we model a person as a cuboid of width ww and height hw
at the location (xw, yw) on the ground plane, moving at velocity v = (ẋw, ẏw),
as shown in Figure 6.6. All of the values are expressed with respect to a world
coordinate system as indicated by the subscript w. They are di�erent for each
person m = 1, . . . ,M and vary over time as the person moves. Together they
constitute an unknown global state vector xmt per person:

xmt = (xw, ẋw, yw, ẏw, ww, hw)
T
. (6.1)

One of the main challenges come from frequent occlusions of observed peo-
ple, especially in meeting rooms where furniture occludes people in side views.
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Figure 6.6: Person model. A person is modelled as a �cuboid� with an attached
speed vector. The cuboid model is described by its state, composed of the location
(x, y) on the ground plane, the speed v = (ẋ, ẏ), the width and height (w, h). All of
these variables are expressed in a real-world coordinate system.

Figure 6.7 shows camera coverage maps in our two demonstration environ-
ments, Hogent (six cameras in total, four side and two top views) and Alcatel-
Lucent Bell Labs (�ve cameras in total, four side and one top view). We see
that in furnished rooms tables and chairs occlude objects in majority of side
views. Most areas are fully observed (without occlusions) by only one or two
side view cameras. Occlusions in top views are less severe, but these views
have higher distortion and contain less information for tracking (e.g. object
appearance information). The occlusion problem is reduced by having multi-
ple overlapping views, but as the coverage maps show, occlusion is still a very
signi�cant problem that needs to be addressed in our tracking approach.

6.4 Smart multi-camera system: our approach

In our approach every camera C calculates a local estimate of each person m,
denoted as x̂C,mt , and sends to the fusion centre the estimates together with the
corresponding reliability measure PC,mt . This compact representation reduces
the communication load between the cameras and the fusion centre, which
contributes to scalable and real-time tracking. Since every camera calculates
the estimates x̂C,mt of each person locally and sends a compact representation
of each person m to the fusion centre, it is appropriate to assume that the
estimation vectors x̂C,mt are independent random variables.
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Figure 6.7: Camera coverage maps. Camera coverage maps in our two demonstra-
tion environments: the one at Hogent (six cameras in total, four side and two top
views) and the one at Alcatel-Lucent Bell Labs (�ve cameras in total, four side and
one top view). We see that in furnished rooms tables and chairs occlude objects in
majority of side views. Most areas are fully observed (without occlusions) by only
one or two side view cameras.

There is a direct data association of local estimates Zmt to the global state
xmt . In Section 6.5 we explain why we can assume such a data association.

Given the vector Zmt =
(
x̂1,m
t , . . . , x̂C,mt

)
, i.e., the set of local estimates of

the m-th individual in C cameras at time t, our task is to �nd the global state,
xmt , as the posterior joint probability

p (xmt |Zm1:t) .

Using Bayes' theorem and the Markov assumption as shown in [Thrun 05],
we obtain for all individuals that

p (xmt |Zm1:t) = η · p (Zmt |xmt ) p
(
xmt |Zm1:t−1

)
, (6.2)

where η = p
(
Zmt |Zm1:t−1

)−1
. The distribution p (Zmt |xmt ) is the likelihood of

observing Zmt given the global state at time instance t, whereas p
(
xmt |Zm1:t−1

)
is the predicted posterior probability computed at time t − 1. The likelihood
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Figure 6.8: Decomposition of xm
t . We partition the ground plane into an evenly-

sized grid with �xed resolution, namely a histogram �lter [Thrun 05]. Histogram
�lters decompose the continuous state xm

t into possible values xk.

p (Zmt |xmt ) speci�es the probabilistic law according to which the local estimates
Zmt are generated from the global state xmt .

The predicted posterior probability p
(
xmt |Zm1:t−1

)
is given as follows

p
(
xmt |Zm1:t−1

)
=

∫
p
(
xmt |xmt−1

)
p
(
xmt−1|Zm1:t−1

)
dxmt−1. (6.3)

We track each person separately, i.e., the fusion centre uses a global Bayesian
estimator for each personm, which results in an e�cient solution suited for real-
time applications with limited data exchange. The following two sections will
explain in detail the estimation of the local estimates, x̂C,1t , . . . , x̂C,Mt , namely
the camera-based tracking on the camera side (Section 6.5), and the estimation
of p (xmt |Z1:t), i.e. the global Bayesian estimator per person m, denoted as
consensus tracking on the fusion centre (Section 6.6).

6.5 Object tracking in smart cameras

In this section we outline the calculation of the single camera (local) estimates
x̂C,1t , . . . , x̂C,Mt in each camera C, using two approaches: histogram �ltering
(HF) or a method with no local state estimation (NLE) (each camera performs
only assignment of observations to objects given by the fusion centre).

In the both methods we use not only the current camera's estimations, but
also feedback from the fusion centre, which consists of the global posterior
distributions of the global people's state xmt−1 at the earlier time instance t−1,
calculated by a Bayesian estimator on the fusion centre. The distribution for
each person m is modelled as a Gaussian with the mean µmt−1 (the most likely
global state of person m) and covariance matrix Km

t−1. Section 6.6 explains in
detail how these distributions are estimated.

The local estimate of the people at time t in each camera C is computed
from the posterior joint probability of the local states xC,1t , . . . ,xC,Mt , given the



6.5 Object tracking in smart cameras 131

images of camera C acquired until time t

p
(
xC,1t , . . . ,xC,Mt |IC1:t

)
.

Note that xC,mt represents the local state vector of person m, estimated by
camera C, whereas xmt is the global state vector of person m, estimated by all
cameras.

Applying Bayes' theorem and the Markov assumption as shown in
[Thrun 05], for all local states we obtain that

p
(
xC,1t , . . . ,xC,Mt |IC1:t

)
= η · p

(
ICt |xC,1t , . . . ,xC,Mt

)
p
(
xC,1t , . . . ,xC,Mt |IC1:t−1

)
,

(6.4)

where η = p
(
ICt |IC1:t−1

)−1
. The distribution p

(
ICt |xC,1t , . . . ,xC,Mt

)
is the

likelihood of observing ICt given all local state vectors at time t, whereas

p
(
xC,1t , . . . ,xC,Mt |IC1:t−1

)
is the predicted posterior probability from time t−1.

The likelihood p
(
ICt |xC,1t , . . . ,xC,Mt

)
speci�es the observation model, i.e., the

probabilistic law according to which the images ICt are generated from the local
state vectors xC,1t , . . . ,xC,Mt for all persons in camera C.

We simplify Equation (6.4) and assume that all xC,mt are independent ran-
dom variables, i.e. that people's trajectories are independent of trajectories of
other people, and moreover, that individuals are not totally occluded by other
people in the camera images I1:t:

p
(
xC,1t , . . . ,xC,Mt |IC1:t

)
=

M∏
m=1

p
(
xC,mt |IC1:t

)
.

Taking into account the assumed conditional independence of the local state
vectors, and assuming that the projection of a person does not overlap with
projections of other persons, the posterior probability can be represented as

p
(
xC,mt |IC1:t

)
= η · p

(
ICt |xC,mt

)
︸ ︷︷ ︸

Likelihood

∫
p
(
xC,mt |xC,mt−1

)
︸ ︷︷ ︸
Motion model

p
(
xC,mt−1 |IC1:t−1

)
dxC,mt−1 .

(6.5)
While the assumption of independent random variables is not very restric-

tive in practice, the assumption of conditional independence is violated when
one person occludes another. Therefore, we treat the occlusion problem sepa-
rately and explain it in more detail in Section 6.5.1.

To simplify the calculations, we partition the state space into a set of dis-
crete samples. For example, we partition the object's position state on the
ground plane into a uniform grid, as shown in Figure 6.8. We approximate
the continuous state xC,mt , which describes the position of the tracked object
m along the x ground plane axis, by a discrete state xC,mt = xk representing
the centre of the corresponding cell k. All cells xk are pairwise disjoint, i.e.
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xk∩xl = ∅ for each k 6= l, and all cells xk together constitute the whole ground
plane. Therefore, in the remainder of this chapter, xC,mt refers to a discrete
random variable describing a set of possible values xk.

Consequently, the posterior probability p
(
xC,mt |IC1:t

)
becomes a discrete

probability distribution. Moreover, as shown in [Thrun 05], Equation (6.2) can
be approximated for discrete values xk of xC,mt as

p
(
xC,mt = xk|IC1:t

)
= η · p

(
ICt |xC,mt = xk

)
︸ ︷︷ ︸

Likelihood

p
(
xC,mt = xk|IC1:t−1

)
, (6.6)

where

p
(
xC,mt = xk|IC1:t−1

)
=
∑
i

p
(
xC,mt = xk|xC,mt−1 = xi

)
︸ ︷︷ ︸

Motion model

p
(
xC,mt−1 = xi|IC1:t−1

)

In the following sections we explain the estimation of the likelihood (the ob-
servation model) and two on-camera tracking approaches based on Equation
(6.6).

6.5.1 Foreground/background measurement

Whether or not a particular part of a person's silhouette is detected as fore-
ground in the camera depends not only on geometrical considerations, but also
on other factors, mainly the speed of the person (immobile persons are often
invisible in FG/BG segmentation), the appearance similarity with the back-
ground, and occlusions. Since the method of Grünwedel et al. [Grünwedel 11b],
which we use for FG/BG segmentation (explained in Section 2.2.2), successfully
copes with the problem of the movement speed and appearance, in this section
we speci�cally address the problem of FG/BG segmentation in the presence
of occlusions. In case of no occlusion, a foreground blob can be considered to
belong to a single person and the likelihood estimation is relatively straight-
forward. In the case of occlusions, this representation cannot be guaranteed
and the FG/BG segmentation can result in foreground blobs that represent the
presence of multiple persons in a single blob. Hence, it is necessary to introduce
additional reasoning to treat this problem.

In this context, we use probabilistic foreground modelling to perform occlu-
sion reasoning, i.e. we relate the projection of xC,mt = xk to the image FGCt pro-

duced by FG/BG segmentation. We calculate the likelihood p
(
ICt |xC,mt = xk

)
using probabilistic foreground modelling as follows. Let ΩC,mk be the image area
obtained by the projection of the cuboid model associated with the local state
xC,mt = xk (shown in Figure 6.6) onto the image of camera C. We de�ne
ΩC,mt (i) as a binary image where the pixel i is described as being part of this
projection, with the value �1� if part, or �0� if not. Such an image is a function
of xC,mt = xk. Furthermore, let FGCt (i) be a binary image that represents the
result of the FG/BG segmentation on camera C at time t.
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(a) Input image (b) FGC
t

(c) ΩC,m
k (d) FGC

t with ΩC,m
k overlay

Figure 6.9: Occlusion reasoning. The principle of occlusion reasoning is to relate
the projection ΩC,m

k of the local state xC,m
t = xk to the image produced by FG/BG

segmentation FGC
t . From the input image (a), the foreground mask (b) is calculated.

The projection ΩC,m
k for a particular representation xk of the local state xC,m

t is
shown in (c) and compared to the foreground mask (d).

In cases with no occlusions, to calculate the likelihood p
(
FGCt |xC,mt = xk

)
for xC,mt = xk, we only take into account the projection ΩC,mk within the
image of that camera C (Figure 6.9). We model the image FGCt produced by
FG/BG segmentation as the ideal FG/BG image with random noise. Since
the likelihood estimation error increases empirically with the area of ΩC,mk , we
introduce a normalized pseudometric d to account for this. For the binary
image ΩC,mk , we denote by

∣∣∣ΩC,mk

∣∣∣ the number of pixels with value �1�, and by
⊗ the product per pixel of two images. Then, we de�ne d as

d
(

ΩC,mk ,FGCt
)

= 1−


∣∣∣ΩC,mk ⊗ FGCt

∣∣∣∣∣∣ΩC,mk

∣∣∣
1−

∣∣∣(1− ΩC,mk

)
⊗ FGCt

∣∣∣∣∣∣FGCt ∣∣∣
 , (6.7)

where
(

1− ΩC,mk

)
denotes the complement of ΩC,mk . The �rst factor of the
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(a) Input image (b) FGC
t

Figure 6.10: Probabilistic foreground modeling. From the input image (a), the
foreground mask (b) is calculated. The projection of the remaining local state vectors
(gray dashed line) and the current local state vector (red line) is shown. Using this
likelihood function it is possible to �nd an estimate of the current local state xC,m

t

despite presence of occlusions in the imageby other people.

pseudometric d describes how well the cuboid person model matches the given
foreground mask, whereas the latter speci�es how much foreground is repre-
sented outside the person model. The model measures the agreement between
our assumed person model (Figure 6.6) and the observed foreground mask.

We use the following model for p
(
FGCt |xC,mt = xk

)
:

p
(
FGCt |xC,mt = xk

)
=

1

σ
e−

1
σ d(ΩC,mk ,FGCt ).

The parameter σ accounts for the quality of the FG/BG segmentation. The
smaller the σ is, the more the FGCt is picked around its ideal value ΩC,mk . In
our experiments we empirically set the value of σ to 0.01.

However, in the presence of occlusions let us assume that at each time t a
person may be only partially visible in the camera of interest due to occlusions
by other people. In these cases, the foreground mask FGCt may contain blobs
with silhouettes of several people in a single blob. Therefore, in the estimation
of the likelihood p

(
FGCt |xC,mt = xk

)
we take into account the local state vec-

tors of the remaining persons in the scene, xC,1t , . . . ,xC,m−1
t ,xC,m+1

t , . . . ,xC,Mt .
For a particular state xk of a person m, we use the estimates of the remaining
local state vectors obtained at time t−1, x̂C,1t , . . . , x̂C,m−1

t , x̂C,m+1
t , . . . , x̂C,Mt .

Let OMC,m
t be an occlusion map for an individual m in cam-

era C, which combines all projections of the remaining individuals
xC,1t , . . . ,xC,m−1

t ,xC,m+1
t , . . . ,xC,Mt as

OMC,m = ⊕Mn=1
n 6=m

ΩC,nt−1, (6.8)
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where ⊕ denotes the �union� between binary images, and ΩC,mt−1 is the projec-
tion of the cuboid model at time t − 1 (as shown in Figure 6.6). In other
words, the occlusion map OMC,m

t for an individual m characterizes the cuboid
model projections for all individuals excluding the individual m. Note that the
occlusion map OMC,m

t is still a binary image.
The new pseudometric d can be calculated as

docc

(
ΩC,mk ,FGCt

)
= 1−


∣∣∣ΩC,mk ⊗ FGCt

∣∣∣∣∣∣ΩC,mk

∣∣∣


1−

∣∣∣(1− ΩC,mk

)
⊗
(
FGCt ⊗OMC,m

t

)∣∣∣∣∣∣FGCt ∣∣∣
 . (6.9)

The �rst factor is the same as in Equation (6.7), and describes how well the
cuboid person model matches the given foreground mask. The latter speci�es
how much foreground is represented outside the person model.

Therefore, the conditional distribution p
(
FGCt |xC,mt = xk

)
in the case of

occlusion is de�ned as follows:

p
(
FGCt |xC,mt = xk

)
=

1

σ
e−

1
σ docc(ΩC,mk ,FGCt ). (6.10)

In this way, using this likelihood function we make an estimate of the current
local state of each person, xC,mt , despite occlusions with other people.

6.5.2 Signature based appearance modelling

In Chapter 4 we showed how it is possible to use signatures of observed ob-
jects to track them in a single camera view. In a multi-camera network with
overlapping views it is possible to go a step further and use the signatures to
create a multi-view appearance model. In this section we explain how we create
such appearance models for each object, and how we use them to obtain an
additional robust measurement for the on-camera tracking.

Let us assume we have a single object (a human) viewed by multiple cameras
from di�erent viewpoints (see Figure 6.11). This enables capturing the object
appearance from multiple sides simultaneously. Moreover, since we express
the location of such an object in real-world coordinates on the ground plane
(as shown in Figure 6.6), and since we assume that the camera network is
extrinsically calibrated, we can derive a movement direction of objects relative
to each camera (e.g. towards the camera, from the left to the right side, away
from the camera, etc.). In this way, based on the object's movement, each
camera can expect which appearance it would see (frontal, side-view, backside,
etc.; we assume the objects move typically in their frontal direction). Once the
appearance model is constructed, these camera expectations helps during the
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Figure 6.11: As a person moves through the multi-camera environment it is possible
to create a multi-view appearance model of that person. Moreover, based on the
person's movement direction relative to each camera, the cameras can infer what
viewpoint they have at the person and take the appropriate appearance template for
the signature measurement.

tracking to speed up the selection of the right appearance template from the
model.

For construction of the multi-view appearance model we use the method
explained in detail in Section 5.3. Let us assume that over time the cameras
capture N views of the tracked object. In each view we calculate the hori-
zontal and vertical signature, hI and vI , of the captured image I, as de�ned
in Section 3.3. These signatures calculated from N views construct N signa-
ture vectors skI , k = 1 . . . N . Using our method for computing a multi-view
appearance model, out of those N vectors we �nd a prede�ned number M of
the most uncorrelated (the most informative) ones and include these into the
appearance model. In our camera setups these were typically signature vectors
from relatively uniformly distributed views (frontal, 2 side-views, backside, and
views in between), as shown in Figure 6.11.

Once the appearance model is constructed, at each time instance t we obtain
a signature based measurement for tracking, in the way explained in Section
4.3. By comparing the signatures of the observation at time t with the most ap-
propriate template from the appearance model (the template that corresponds
to the same moving direction) we calculate the measurement to update the
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t−1|It−1)

y

x

(b) p (xm
t |It−1)

Figure 6.12: Example distribution describing the motion model. We use a very
simple and unconstrained motion model. A human can move in any direction with
an average speed of 1.4 m/s, but is limited by a maximal speed of 4.0 m/s. In (a),
the posterior probability p (xm

t−1|It−1) at time t − 1 is shown. Now, we apply the
described motion model which result in the distribution shown in (b). Note, the
posterior is discretized in an evenly-spaced grid and the corresponding probabilities
are not normalized for a better graphical representation. As can be seen, the model
is isotropic and describes how likely it is for every cell that a person has moved there.

object's position and the apparent size. This measurement is used together
with the FG/BG measurement in our on-camera tracking approaches.

6.5.3 Context aware motion model

In many people tracking algorithms motion of a person is described using a
very simple and unconstrained motion model [Fleuret 08]. It can be assumed
that a human can move for a distance da in any direction with an average speed
of 1.4 m/s at each time instance t, but this movement is limited by a maximal
distance dmax according to a maximal speed of 4.0 m/s (Figure 6.12):

p
(
xmt = xk|xmt−1 = xi

)
=

{
η · e− 1

da
‖xk−xi‖, if ‖xk − xi‖ < dmax

0, otherwise.
(6.11)

Here, η represents a normalization factor.This model is isotropic and the func-
tion of (6.11) decreases with the distance from location xk to zero, if the dis-
tance is greater than the maximal distance dmax. In the special case of da →∞,
the model becomes a uniform distribution within the boundaries of the maximal
allowed distance dmax.

However, this simple and unconstrained motion model does not take into
account contextual information, which is its signi�cant drawback. For instance,
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Chair locations

Probability map for sitting space Probability map for walking space

Table location
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Figure 6.13: Based on trajectories of people we construct two probability maps in
the meeting room, which represent the sitting and the walking space. The regions
with high probability in the sitting space map are recognized as chairs, while the
table positions are estimated in the non-walking areas between the chairs.

in the environments such as meeting rooms, the motion of people is constrained
by furniture. Furthermore, when people sit down their motion is limited until
they stand up again. We use this information to create a contextually aware
motion model. We estimate position of furniture in the meeting room and
reduce probability of people's trajectories at these positions. We also estimate
sitting and standing states of tracked people to adapt the motion prediction
accordingly.

Initially we start from the aforementioned unconstrained motion model and
over time learn position of tables and chairs to adapt the model. We use
trajectories of people to recognize tables and chairs in a meeting room. Here
we give an overview of this method, and refer the interested reader to the work
of [Xie 12] for more details.

The trajectories used for furniture estimation include ground locations of
people and their approximate height, as a function of time. Here, the height
refers to the top of person's head, and can change as the user performs di�erent
activities. We assume it to be around 1.8m when the person is standing and
1.2m when sitting. We de�ne three kinds of human activities: sitting, standing
and walking, out of which sitting and walking are important for detection of
furniture. Using sitting activity we are able to detect chairs in the room, while
by walking activity and the detected chairs it is feasible to detect tables. The
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standing activity is not involved in object recognition directly, but we use it as
a transitional state between sitting and walking.

Over time, we construct two probability maps of the meeting room, which
represent the sitting and the walking space. The sitting space map contains
probabilities of prede�ned ground plane cells being occupied by a chair. Regions
with high probability in the sitting space map are recognized as candidate
chairs. Analogously, the walking space map represents probabilities of ground
plane cells being free for walking (not occupied by furniture). This map is
calculated using trajectories of tracked people and learning where they can
walk. The locations of tables we derive using both probability maps. We take
the assumption that a ground plane area is occupied by a table if people do not
walk in that area, and if chairs are detected around that area (see Figure 6.13).
With these assumptions, the largest rectangle surrounded by walking space and
chairs is considered as the table, and it is adjusted according to the locations
of the chairs.

Suppose that Wt is the walking space map obtained by the time t. If the
map value for the ground plane cell k is zero, it means that this cell is cer-
tainly occupied by furniture, i.e. it is not possible to walk at this ground plane
location. Using this approach we modify the motion model given by Equa-
tion (6.11) to include this contextual information about the environment. The
factor p(xk|Wt−1), which is introduced into the motion model, is the probabil-
ity of the motion at the ground plane location k at time t, given the walking
space map constructed by the time t − 1. Using this factor, the information
about the furniture locations is propagated into the enriched motion model:

p
(
xmt = xk|xmt−1 = xi

)
=

{
ξ · e− 1

da
‖xk−xi‖ · p(xk|Wt−1), if ‖xk − xi‖ < dmax

0, otherwise.
(6.12)

Here, ξ represents a normalization factor, like in Equation (6.11). If the location
k is certainly free for walking, the motion model at that location is the same
isotropic one as in Equation (6.11), illustrated in Figure 6.12. Conversely, if
the cell is certainly occupied by furniture, p(xk|Wt−1) is zero, meaning that
this enriched motion model bends around furniture-occupied cells and becomes
anisotropic. In this way, the motion model adapts to the environmental context.

6.5.4 Histogram �ltering tracking

In this section, we describe the estimation of the local state xC,mt in each
camera based on a histogram �ltering approach. The goal is to estimate the
local state xC,mt of each person in camera C on a frame-by-frame basis. This
has the advantage that a smart camera can track people independently for
a certain number of frames, operating on the frame rate of the smart camera
itself. This is an advantage over the later-explained approach with no local state
estimation (Section 6.5.5), which depends on the feedback frequency from the
fusion centre.
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Furthermore, the feedback from the fusion centre ensures that possible fail-
ures in the local state estimation are corrected. We compare the local states
xC,mt to the feedback from the fusion centre and re-initialize the �lter from the
current feedback if we encounter a probable failure (i.e. the distance is big-
ger than the assumed width of a person). The decentralized system architec-
ture could take advantage of this design and further reduce the communication
load. For instance, a smart camera could only be corrected when it is de�nitely
wrong, which saves bandwidth, and hence, energy.

As already mentioned at the beginning of Section 6.5, we use a discrete
representation of the posterior distribution p

(
xC,mt |IC1:t

)
. The continuous state

xmt is now approximated by a discrete one, i.e., the centre of the cell to which
xmt = xk belongs. All cells xk are pairwise disjoint, i.e., xk ∩ xl = ∅ for
each k 6= l, and describes an area (cell) on the ground plane. All xk positions
together constitute the whole ground plane.

We recursively estimate the local state xC,mt , according to Equation (6.6).
Here, the motion model is the context-aware model explained in Section 6.5.3.
The calculation of the likelihood p

(
ICt |xC,mt = xk

)
for the local state xC,mt

was explained in Sections 6.5.1 and 6.5.2, using FG/BG and signature based
measurements.

The resulting posterior distribution p
(
xC,mt |IC1:t

)
is approximated by a

Gaussian, NxC,mt

(
x̂C,mt ,PC,mt

)
, with the mean x̂C,mt , and a corresponding co-

variance matrix PC,mt . This limits the data exchange between cameras and the
fusion centre to a few parameters per person, and is important for a real-time,
low-latency and scalable multi-camera system. Here, the mean x̂C,mt of the
Gaussian is obtained by:

x̂C,mt = η

M∑
k=1

p
(
xC,mt = xk|IC1:t

)
xk,

where η =
(∑M

k=1 p
(
xC,mt = xk|IC1:t

))−1

and M is the number of cells.

Furthermore, the covariance matrix PC,mt is estimated over allM cells using
the mean x̂C,mt :

PC,mt = η

M∑
k=1

(
xk − x̂C,mt

)(
xk − x̂C,mt

)T
,

where η =
(∑M

k=1 p
(
xC,mt = xk|IC1:t

))−1

. The covariance matrix PC,mt is of
vital importance since it is a reliability measure of the local estimate which is
sent to the fusion centre.
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x y

kxsample

Figure 6.14: Tracking with no local state estimation (NLE). Using the uncertainties
described in the covariance matrix Km

t−1 of the feedback, we can create an uncertainty
area Wm

t around the last known position of the person m. Within this area we
distribute possible samples xC,m

t = xk ∈Wm
t .

6.5.5 Tracking without local state estimation

In this section, we describe the estimation of the local state xC,mt in each
camera based on an approach with no local state estimation. In this approach,
the cameras do not estimate the local state recursively, as described in the
previous approach. The predicted local posterior distribution p

(
xC,mt |IC1:t−1

)
is approximated using the feedback of the fusion centre at time t− 1

p
(
xC,mt |IC1:t−1

)
≈ p

(
xmt−1|Z1:t−1

)
,

described as a normal distribution Nxmt−1

(
µmt−1,K

m
t−1

)
. Here, p

(
xmt−1|Z1:t−1

)
is the predicted global state xmt−1. Using the uncertainties described in the
covariance matrix Km

t−1 of the feedback, we can create an uncertainty area
Wm
t around the last-known state xmt−1 of the person m at time instance t− 1.

For this uncertainty area Wm
t , we only consider possible locations of person

m on the ground plane in this uncertainty area and treat the remaining state
variables of xmt−1 as constant. The assumption is that person m can physically
only move within the area Wm

t by time t.
Within this area, we distribute K possible samples, denoted as xC,mt =

xk ∈ Wm
t with k = 1, . . . ,K, according to the predicted global posterior dis-

tribution p
(
xmt−1|Z1:t−1

)
, which is de�ned as a normal distribution. Then, the

likelihood p
(
ICt |xC,mt = xk

)
for each sample xk is calculated. The result is a

good approximation of the posterior distribution p
(
xC,mt |IC1:t

)
of each person

m in camera C around the last-known global state xmt−1. The calculation of the
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likelihood p
(
ICt |xC,mt = xk

)
for the local state xC,mt is explained in Sections

6.5.1 and 6.5.2, using FG/BG and signature based measurements.
For a scalable and e�cient communication load, limited data exchange

between cameras and the fusion centre is essential. Therefore, the re-
sulting posterior distribution p

(
xC,mt |IC1:t

)
is approximated by a Gaussian,

NxC,mt

(
x̂C,mt ,PC,mt

)
, with the mean x̂C,mt , and a corresponding covariance

matrix PC,mt . The mean x̂C,mt of the Gaussian is chosen as the mean of the

posterior distribution p
(
xC,mt |IC1:t

)
,

x̂C,mt = η

K∑
k=1

p
(
xC,mt = xk|IC1:t

)
xk,

where η =
(∑K

k=1 p
(
xC,mt = xk|IC1:t

))−1

. The covariance matrix PC,mt is es-

timated from all K samples and the mean x̂C,mt . Moreover, the covariance
matrix PC,mt is of vital importance since it is a reliability measure of the local
estimate that is sent to the fusion centre.

6.6 Consensus tracking

In this section, we describe the estimation of the global state xmt . The goal

is to fuse the likelihood distributions p
(
x̂1,m
t , . . . , x̂C,mt |xmt

)
of each camera C

to a �nal decision p (xmt |Zm1:t) for each person m (Equation (6.2)). Consensus
tracking uses a global Bayesian estimator per person (as shown in Figure 6.5).
In the camera-based tracking of each smart camera C, the local state posterior
distribution p

(
xC,mt |IC1:t

)
of each person m is approximated by a Gaussian

distribution NxC,mt

(
x̂C,mt ,PC,mt

)
and the parameters are sent to the fusion

centre. In this way we ensure that the communication is data e�cient and fast,
saving bandwidth and energy.

To estimate the global state xmt of each person m, we use a Bayesian �lter
which calculates the posterior probability based on a motion model and the
acquired local estimates x̂1,m

t , . . . , x̂C,mt from every smart camera (Figure 6.15).
The Bayesian �lter algorithm is a recursive estimator and splits Equation (6.2)
into a prediction and a correction step. As de�ned in Equation (6.3), the
prediction is computed as follows:

p
(
xmt |Zm1:t−1

)
=

∫
p
(
xmt |xmt−1

)
p
(
xmt−1|Zm1:t−1

)
dxmt−1.

Here, the state transition probability p
(
xmt |xmt−1

)
describes the motion model

for person m and p
(
xmt |Zm1:t−1

)
is the predicted posterior probability.
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Figure 6.15: Fusion of the local estimates from each camera. The local posterior

p
(
xC,m
t |IC1:t

)
of person 1, sent by each smart camera C, is shown at time t. Here,

the positional component of the mean x̂C,1
t and the covariance matrix PC,m

t are
visualized for each camera (1 to 6). Since the posterior is approximated by a Gaussian
distribution, it can be depicted as an ellipse with the semi-major and semi-minor
axis, derived from the diagonal of the covariance matrix PC,m

t . For a better display,
the semi-major and semi-minor axis are four times the standard deviation of the
covariance matrix. The �nal fusion result is illustrated as a red ellipse.

The correction step takes the local estimates x̂1,m
t , . . . , x̂C,mt from each smart

camera into account and is de�ned as (Equation (6.2))

p (xmt |Zm1:t) = ηp
(
x̂1,m
t , . . . , x̂C,mt |xmt

)
p
(
xmt |Zm1:t−1

)
,

where η = p
(
Zmt |Zm1:t−1

)−1
. The likelihood distribution p (Zmt |xmt ) is the fusion

of all local estimates Zmt =
(
x̂1,m
t , . . . , x̂C,mt

)
from every smart camera (see

Figure 6.16).
As a particular implementation of the Bayesian �lter in our proposed

tracker, we use a linear Kalman �lter [Kalman 60], denoted as global Kalman
�lter. The Kalman �lter represents the posterior probability p (xmt |Zm1:t) by
the moments, the mean µmt (the most likely global state of person m) and the
corresponding covariance matrix Km

t . In other words, the Kalman �lter is a
parametric �ltering approach and estimates the parameters of the following
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normal distribution
Nxmt

(µmt ,K
m
t ) .

A linear Kalman �lter assumes that the evolution of a person's state over
time is described by the following state transition equation:

xmt = Atx
m
t−1 + Btut + εt (6.13)

in which εt is a multivariate Gaussian random variable. Here, xmt and xmt−1

are state vectors, and ut is the control vector at time t. Since we do not have
control data in our system, we can omit the term Btut. At is thereby the state-
transition matrix and εt the process noise. This is referred to as the prediction
step. We use the constant velocity model in the state-transition modelling At,
which is de�ned as

At =

 F 02×2 02×2

02×2 F 02×2

02×2 02×2 diag (1, 1)

 ,F =

[
1 ∆t
0 1

]
. (6.14)

The vector εt is modelled as a multivariate Gaussian random variable with zero
mean and the covariance Qt. As shown in [Thrun 05], the covariance Qt can
be expressed as

Qt =

D (σẋ) 02×2 02×2

02×2 D (σẏ) 02×2

02×2 02×2 diag
(
σ2
w, σ

2
h

)
 ,D (σ) =

[
σ2

3 ∆t3 σ2

2 ∆t2

σ2

2 ∆t2 σ2∆t

]
. (6.15)

where
(
σ2
ẋ, σ

2
ẏ

)
are variances for velocity noise, and

(
σ2
w, σ

2
h

)
the variances de-

scribing the noise for width and height of a person; ∆t refers to the time
di�erence between two time instances.

The Kalman theory assumes that states cannot be observed directly. There-
fore, in the correction step, the available inputs Zmt , which are a linear function
of the unknown global state xmt , are incorporated into the Kalman �lter as fol-
lows

Zmt = Ctx
m
t + δt. (6.16)

Here, Ct corresponds to the measurement update matrix. The distribution of
δt is a multivariate Gaussian with zero mean and covariance Rt. As already
mentioned, Zmt describes the local estimates x̂1,m

t , . . . , x̂C,mt from every smart
camera.

The measurement update matrix Ct and the measurement noise matrix Rt

are described as follows ( [Thrun 05]):

Ct =

C
1,m
t
...

CC,m
t

 ,Rt =

P
1,m
t · · · 06×6

...
. . .

...
06×6 · · · PC,mt

 . (6.17)

Here, the measurement update matrix CC,m
t for each person m and a speci�c

camera C are given by an identity matrix. The covariance matrices PC,mt are
the covariances of the local estimates from the smart cameras.
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Figure 6.16: Fusion example for di�erent numbers of cameras over time. The fusion
result at the fusion centre for di�erent numbers of cameras is shown (in red), together
with the ground truth (in black). As explained in Figure 6.15, a reliability measure
given by the covariance matrix PC,m

t is shown as an ellipse around the fusion result.
As we see in (a), the fusion centre is rather unsure about the position of the person
if only one camera is used for fusion. The accuracy and precision increase with the
number of cameras.

The equation above states that all local estimates for each person m from
every camera are taken into account. Note that it is possible that a camera
does not have any information about a speci�c person due to the fact that the
person is not seen by this camera or is occluded by other persons or furniture.
In this case, the measurement update matrix CC,m

t of this camera C is a zero
matrix, and this local estimate is not taken into account for the joint decision.
Finally, the global estimates xmt of each person m are fed back to every camera
to correct possible mistakes. This feedback is essential since the tracking of
each individual camera can be inaccurate, e.g., in situations where a camera
cannot contribute or gather any information.

For example, if a person is completely occluded for one camera, this camera
does not contribute any information about this person, but also cannot estimate
any further local state of this person. In this particular case, the only way for



146 Tracking in Overlapping Camera Views

this camera to keep track of the person is by using the feedback of the fusion
centre, which is based on the input of other cameras. This is why the feedback
is very important for the overall performance of the system.

6.7 Results

In order to evaluate our approach, we conducted several experiments using our
collected video data for two di�erent scenarios: people tracking in an indoor
space without furniture, and people tracking in a meeting room (furnished
with tables and chairs). These scenarios fall into the domain of surveillance and
behaviour analysis during meetings (smart meetings). We evaluated the overall
performance of our proposed multi-camera tracking system in the following
aspects:

1. Accuracy (distance from the manually annotated positions of objects
(people) on the real-world ground plane),

2. Precision (the number of object losses and switches between objects);

3. Execution speed (faster or slower than real-time);

4. Scalability (in�uence of adding more cameras to the system).

Furthermore, we provide qualitative and quantitative results and analyse two
di�erent camera-based tracking approaches: histogram �ltering (HF) and the
approach with no local state estimation (NLE).

In the indoor scenario, people were observed while walking in a room with-
out furniture. In the meeting scenario the room was equipped with furniture
(tables and chairs) and people were observed while having a meeting: entering
the room, shaking hands with each other, walking around the table to �nd a
place to sit, sitting, moving chairs to sit at another position, standing (to give a
presentation), and leaving the room. In total, we have collected more than 120
minutes of data. All videos were recorded using a six-camera setup, consisting
of four side-view and two top-view cameras, operating on a frame rate of 20
fps. The cameras were mounted at ceiling height (3m approximately), and
extrinsically calibrated and synchronized up to frame accuracy. Furthermore,
the width and height of a person was assumed to be on average 40 and 180 cm,
respectively.

Our proposed framework was implemented in C++, in a client-server fash-
ion. In the experiments we performed, each camera was connected to a PC
(a client), with a single-core 2.8 GHz processor to simulate a �smart camera�.
All smart cameras were connected to another single PC, with a single-core 2.8
GHz processor which was functioning as the fusion centre.

The purpose of the experiments was to test several important attributes of
the framework: the calibration accuracy, the real-time performance and scala-
bility and the overall performance of the proposed system in terms of accuracy
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Figure 6.17: Calibration accuracy. In (a), the intrinsic calibration error of each
camera is very small and therefore the calibration of an individual camera very accu-
rate. To evaluate the overall accuracy of the calibration, we compared estimated 3D
coordinates to manually measured reference points. In (b), the error to each reference
point is shown. The average accuracy is 0.56 cm.

and precision. Furthermore, we compared our results with the state-of-the-
art methods of [Berclaz 11] and [Grünwedel 14]. In this section, we present
experimental results for each of these attributes separately.

6.7.1 Calibration accuracy

We calibrated the cameras using the calibration method of [Bouguet 99] for the
side view cameras, and the method of [Kannala 06] for the top view cameras.
We used a checkerboard pattern for intrinsic calibration and manually measured
reference points in the scene for extrinsic calibration.

As shown in Figure 6.17a, the intrinsic calibration we obtained for each
camera is very accurate, with an average error per camera below one pixel. To
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measure the overall accuracy of all cameras, we used the obtained calibration
results to compute the 3D coordinate of each reference point. Furthermore, we
compared the results to our manually-measured reference points and obtained
an overall accuracy of 0.56 cm (Figure 6.17b), which is the mean of the distance
between the obtained and measured reference points.

The results show that our calibration procedure is precise and that 3D
coordinates of objects in the scene can be obtained from 2D image points
with su�cient accuracy. This is of vital importance for the accuracy of our
multi-camera tracking approach. Therefore, taking into account the calibration
accuracy of our multi-camera setup, our proposed tracking approach is also
highly accurate, which we will outline in the following sections.

6.7.2 Data sets

All our experiments were conducted in a room of the size of 8.8 × 9.2 m,
equipped with a network of smart calibrated cameras (780 × 580 pixels at 20
FPS) with overlapping views. The data sets we collected in this environment
for evaluation purposes contain people walking around in the room or having
meetings.

Recordings were taken for several minutes each, and ground truth positions
of each person were manually annotated in the image plane at one second
intervals. This manual annotation process was conducted by �nding the feet
positions of individual (usually on the ground plane) in each camera image.
Using the camera calibration parameters, we then calculated the ground truth
positions of each individual on the ground plane in real world coordinates (xw
and yw coordinates, zw = 0).

The recorded sequences describe di�erent aspects of a tracking system. Se-
quence 01 shows with one single person for one minute. In sequences 02 and 03,
three and four people, respectively, are walking around in the room for several
minutes. Sequences 04 to 10 contain meetings up to four participants for about
twenty minutes. In sequences 11 to 13 up to three people are walking around
for about 10 minutes to test the reliability of our proposed tracking system.
Finally, sequences 14 to 21 were conducted under changing lighting conditions
with up to four people walking around in the room equipped with furniture,
such as tables and chairs. Each of them is about �ve minutes long.

6.7.3 Real-time performance and scalability

We tested two important aspects: the real-time performance of the whole sys-
tem, which is limited by the tracking time on the camera side, and the scal-
ability, limited by the tracking time on the fusion centre. We conducted all
experiments with the HF and NLE approaches at the camera side (these two
approaches are explained in detail in Section 6.5).

To test the real-time performance we measured the tracking execution time
per frame on each camera for a di�erent number of observed people (one to
four people). To obtain an average execution time for one camera, we averaged
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Figure 6.18: Real-time performance and scalability. (a) The dotted line shows the
measured data and the dashed line the estimated timing depending on the number
of people (up to 10 people) and the used approach (HF or NLE). Due to the nature
of the approach at the camera side, the computation time increases linearly with the
number of people. (b) The measured data with the dashed lines which show the
estimated timing for up to 20 cameras and up to four persons. The estimated time
is calculated assuming that a person is always seen by all cameras, which is not the
case in practice. This is why there is a di�erence between the measured points and
the estimated lines.

execution times over all test sequences. The results are shown in Figure 6.18a.
We see that tracking time on the camera is less than 25 ms per frame, which is
faster than real time (50 ms - 20 fps with a resolution of 780× 580 pixels). As
expected, the camera-based tracking time depends linearly on the number of
viewed people due to the �ltering approach on the camera side, where a separate
�lter is assigned to each person visible in the camera view. This means that
an increase in the number of viewed people increases just the number of used
�lters, like the global Kalman �lters in the fusion centre. Accordingly, the lines
in Figure 6.18a represent the camera tracking time of each approach, estimated
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for more than four people. We see that up to approximately 10 people can be
tracked on a camera side at 20 fps. Such a performance is suitable for most
applications since only in crowded environments one camera will have more
than 10 people in its �eld of view. Note also that in our experiments we used
relatively low processing power in the cameras (approximately a single-core 2.8
GHz processor), so by upgrading the processors the proposed tracking methods
can easily run in real-time even in very crowded environments.

We also compared the averaged execution times of the two camera-based
approaches (HF and NLE). As expected, the NLE approach is faster since there
is no local �ltering (tracking on the camera side). However, the accuracy of
this approach strongly depends on the feedback frequency of the fusion centre,
which is its signi�cant drawback in the case of lower feedback frequency.

To test the scalability of the system (possibility of adding more cameras
without a�ecting the real-time performance), we varied both the number of
tracked people and the number of cameras connected to the fusion centre.
The obtained results are shown in Figure 6.18b. Since each person is usually
not visible in all cameras connected to the fusion centre, the fusion time is
shorter than the one given by a linear function, because some cameras do not
contribute with a measurement for each person. Therefore, the lines in the
graph of Figure 6.18b represent the maximal fusion time as a function of the
number of cameras connected to the fusion centre and the number of tracked
people.

We see that it is possible to fuse information from many cameras in real-
time, i.e. at 20 fps (e.g. from 20 cameras for 10 tracked people). Also, the
fusion time and the number of cameras in which the person is observed cor-
relate in a linear fashion. Such an e�ciency enables highly scalable tracking
systems that could deploy su�cient number of cameras for any area and any
amount of people that need to be observed. Note that, like in the case of on-
camera tracking, the estimated scalability could be further increased by using
multi-core processing units or by optimizing the implementation for hardware
accelerated processing (e.g. GPU processing).

6.7.4 Performance of the proposed system architecture

We express the performance of our proposed tracker in two ways: as precision,
i.e. the total number of object losses (NoOL) and the total number of object
switches (NoOS), and as accuracy, i.e. the Euclidean distance between the
ground truth positions of people and the positions estimated by the tracker
(the total average tracking error (TATE)). Note that in the case of a loss or a
switch of the object, we manually correct its position and start tracking from
the ground truth position in the following frame.

To calculate the number of object losses, we consider that people are lost
by the tracker if the Euclidean distance between their estimated position and
the ground truth position is bigger than 80 cm (twice the assumed width of a
person). In contrast to an object loss, an object switch occurs when two objects
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Figure 6.19: Example sequence of a meeting scenario. At the top, the tracking error
for each individual is reported as the distance to the ground truth. At the bottom,
the total average tracking error (TATE) on a frame-by-frame basis for a sequence
with up to four people is shown. Note that there are no object losses. However, there
are three object switches (the peaks) in this example sequence. The total average
tracking error (TATE) over the whole sequence is about 7.3 cm.
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1 2 3

4 5 6

Figure 6.20: Example frame of a meeting scenario. This is an example frame of a
meeting sequence (the same as in Figure 6.19) from all six cameras. As we see, our
proposed multi-camera tracking is highly accurate for each individual.

Table 6.1: Performance of the on-camera histogram �ltering tracking (HF).

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

01 8.1 0 0 0.0
02 6.3 0 0 0.0
03 7.7 0 0 0.0
04 9.8 0 0 0.0
05 10.1 0 0 0.0
06 9.4 0 0 0.0
07 11.3 2 0 0.2
08 10.2 1 1 0.1
09 9.9 3 1 0.1
10 10.8 0 0 0.0
11 9.1 0 0 0.0
12 8.7 0 0 0.0
13 10.9 0 0 0.0

are switching their positions with respect to the ground truth positions. The
switches can happen if two individuals are in close proximity.

We conducted several experiments under di�erent circumstances: several
indoor scenarios of people walking in a room without furniture, and in a room
equipped with furniture, in multiple meeting scenarios. Both cases include
changing environmental conditions (lighting changes). In total, we have col-
lected more than 120 minutes of data.
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Figure 6.21: Performance for di�erent numbers of cameras. The comparison was
done between four side cameras (gray line), two top-view cameras (dashed line) and
the complete setup, which includes all six views (black line). The best results are
achieved by using top and side cameras together.

6.7.4.1 Overall performance of the proposed multi-camera system

The average accuracy and precision for our proposed smart multi-camera
tracker over the 120 minutes of data are 9.8 cm total average tracking er-
ror and 0.1 object losses per minute. The results are very promising and show
the robustness of our multi-camera system. The evaluation also includes some
very di�cult cases, i.e. we tested our tracking system under severe occlusions
and lighting changes. In Section 6.7.4.3 we give a detailed evaluation of our two
on-camera tracking approaches (see Table 6.1 and 6.2). Additionally, Table 6.4
and 6.5 show the performance under illumination changes.

An example of our tracking results is shown in Figures 6.19 and 6.20. We
see that the tracking results are very accurate (TATE of 9.8 cm).

6.7.4.2 Performance for di�erent number of cameras

In this section we show the in�uence of the number of cameras and their view-
points on the performance of our proposed multi-camera system. For this
experiment we used an indoor meeting sequence 06 from our data set (see
Section 6.7.2) in which four people are walking around, shaking hands or giv-
ing a presentation. We conducted the experiment using the HF approach for
camera-based tracking. Figure 6.21 shows the results for di�erent number of



154 Tracking in Overlapping Camera Views

cameras and di�erent viewpoints. We compare four side cameras, two top-view
cameras, and the complete setup, consisting of all six cameras.

As expected, the results show that by using only side-view cameras it is
more di�cult to accurately locate people's ground position than when using
top views. This is mainly due to occlusions in side views. Nevertheless, the
highest accuracy has been achieved when both side views and top views were
used.

Table 6.2: Performance of the on-camera NLE tracking.

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

01 11.8 0 0 0.0
02 10.2 0 0 0.0
03 10.7 0 0 0.0
04 9.5 0 0 0.0
05 13.8 1 1 0.4
06 10.1 0 0 0.0
07 12.7 4 3 0.5
08 10.8 3 1 0.2
09 13.2 5 0 0.2
10 11.6 3 0 0.2
11 12.3 0 0 0.0
12 11.1 0 0 0.0
13 10.3 0 0 0.0

Table 6.3: Comparison between di�erent feedback frequencies.

HF NLE
Freq. (Hz) TATE (cm) NoOL NoOS TATE (cm) NoOL NoOS

20 8.4 0 1 9.8 0 0
10 9.3 0 1 11.0 1 1
5 10.1 0 1 13.2 4 2
2 10.4 0 2 15.3 9 4
1 11.0 1 2 18.7 19 4
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Table 6.4: Performance of the HF approach for challenging test cases
(with occlusions and lighting changes).

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

14 10.1 0 0 0.0
15 12.0 1 0 0.8
16 10.7 1 0 0.8
17 9.8 0 0 0.0
18 10.1 0 0 0.0
19 13.1 8 2 1.4
20 10.6 0 1 0.0
21 9.9 0 0 0.0

Table 6.5: Performance of the NLE approach for challenging test cases
(with occlusions and lighting changes).

Sequence Accuracy Precision
TATE [cm] NoOL NoOS OL/min

14 10.9 0 0 0.0
15 12.5 3 0 2.4
16 14.1 4 0 3.2
17 9.7 0 0 0.0
18 11.1 0 0 0.0
19 15.2 17 1 3.1
20 13.8 6 0 1.1
21 11.9 0 0 0.0

Table 6.6: Comparison of our method with the method of [Grünwedel 14].

[Grünwedel 14] Ours
Freq. (Hz) TATE (cm) NoOL NoOS TATE (cm) NoOL NoOS

20 11.1 0 6 8.4 0 1
10 11.7 0 6 9.3 0 1
5 11.9 2 4 10.1 0 1
2 12.5 1 10 10.4 0 2
1 14.9 4 12 11.0 1 2
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Figure 6.22: Comparison of the HF and NLE camera-based approaches. This com-
parison shows the performance of the camera-based tracking approaches (HF and
NLE). We see that the accuracy is nearly the same for these approaches. We see that
there are more object losses in the NLE approach. This is caused by the fact that
this approach depends on the feedback frequency.

6.7.4.3 Comparison of the on-camera trackers

In this section we give a comparison between the two proposed camera-based
tracking approaches: the histogram �ltering (HF) (explained in Section 6.5.4),
and tracking without the local state estimation (NLE) (explained in Section
6.5.5). For this comparison we used several di�erent sequences and measured
the performance of both methods (see Tables 6.1 and 6.2). All sequences were
processed with a ground plane resolution of 10 cm.
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Figure 6.22 shows the results for a meeting scenario with four attendees,
and Tables 6.4 and 6.5 for challenging sequences with occlusions (furniture)
and global and local lighting changes. We see that the accuracy of the trackers
is comparable. The main di�erence is the number of object losses, which is
higher for the NLE tracker. This is caused by the fact that the HF approach
does not depend on the feedback frequency of the fusion centre and operates on
the camera frame rate. In general, it is an advantage to keep a local estimate
of each person on the camera side.

6.7.4.4 In�uence of feedback and feedback frequency

The feedback loop is an essential part in the proposed system architecture. To
demonstrate the use of feedback from the fusion centre, we tested the in�uence
of feedback by comparing the performance of the system with and without
feedback (see Figure 6.23). For this experiment we used an indoor scenario
with up to four people walking around (Sequence 03).

In Figure 6.23, the results demonstrate clearly that the use of a feedback
loop between the fusion centre and the smart cameras is bene�cial. There is
a big di�erence in accuracy and precision. This is mainly because a single
smart camera often cannot recover from its own wrong estimates and often
even cannot know that it made wrong estimates. In these cases the camera
keeps sending wrong information to the fusion centre, and if these errors prop-
agate to the other cameras, the whole system can fail and have di�culties to
recover from such mistakes. Therefore, the feedback from the fusion centre is
of vital importance for a robust multi-camera system as a prevention of the
error propagation between the cameras. A possible improvement could be that
the fusion centre detects mistakes made by the camera and only sends feed-
back to the cameras which are starting to fail. This could further improve the
communication load and therefore be more energy e�cient.

Table 6.3 shows the in�uence of di�erent feedback frequencies on the on-
camera trackers (HF and NLE). The results show that even with a feedback
frequency of 5 times per second (a feedback every 200 ms) the HF tracking
has good results. As expected, HF tracking is less sensitive to low feedback
frequency than the NLE method.

6.7.5 Comparison with state-of-the-art methods

We compared our proposed tracker with the state-of-the-art multi-camera
tracking approaches of [Berclaz 11] and [Grünwedel 14]. The latter is the
method presented in the PhD thesis of my colleague Sebastian Grünwedel. In
the method presented in this thesis, on the smart camera side we added the
signature based appearance tracking and context aware motion modelling. In
Table 6.6 we see the result of the comparison using a representative video se-
quence 03 and di�erent feedback frequencies. The video sequence 03 captures
four people moving in a room without furniture. We see that our method is
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Figure 6.23: In�uence of feedback from the fusion centre. To demonstrate the use
of feedback from the fusion centre we explored the case with and without feedback.
The results clearly show that accuracy and precision are much higher when feedback
is used in the system.

more accurate and has fewer object losses and switches. It is also less sensi-
tive to the feedback frequency. This is mainly because we improved on-camera
tracking by introducing additional cues next to the cues used by [Grünwedel 14].
In fact, since the video sequence used in this experiment is captured in a room
without furniture, our context-aware motion modelling has a negligible im-
pact on the performance. Therefore, this experiment demonstrates mainly the
bene�t of adding signature based cues for tracking.
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Figure 6.24: Comparison on an indoor sequence. We compare our proposed tracker
with the tracker of [Berclaz 11]. The total average tracking error (TATE) is smaller
for our tracker than for [Berclaz 11] (our proposed tracker: 6.9 cm; tracker of Berclaz
et al.: 16.6 cm). We believe this is because we improved on-camera tracking using
additional cues. There were no object losses in this sequence by neither of the trackers.

The comparison with the method of [Berclaz 11] we made using two of
our sequences and publicly available sequences. an indoor sequence (without
furniture) and a meeting sequence with up to four people. The tracker of
Berclaz et al. was con�gured with a grid cell size of 10 by 10 cm, as well as
ours. We tested di�erent grid cell sizes (10, 20 and 30 cm), whereby 10 by 10
cm achieved the best results. Our multi-camera tracker was con�gured to use
the HF tracking on the camera side, with a ground plane resolution of 10 cm.
Furthermore, the width and height of a person was assumed to be on average
40 and 180 cm, respectively. In the following two sections we present in more
detail the comparison with the method of [Berclaz 11].

6.7.5.1 Comparison on our data sets

Figure 6.24 shows the performance of our and [Berclaz 11] method on an indoor
sequence with up to four people. We see that the performance of both trackers is
comparable, although our tracker is more accurate. With our proposed tracker
we achieve the accuracy of 6.9 cm compared to 16.6 cm of Berclaz et al. There
were no object losses in this sequence for neither of the trackers.
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Figure 6.25: Performance on an outdoor data set [Berclaz 11]. For a comparison
using a public data set, we chose an outdoor data set provided by the lab of CVLAB
at EPFL [Berclaz 11]. Note that this data set is acquired using only three cameras
with small overlapping area. The accuracy of both methods is very good, but they
di�er from some object losses. We see that our method has fewer losses, which is
mainly because it includes people's appearance as a tracking cue.

In the second experiment we compared the methods using a meeting se-
quence. Our tracking results for this meeting sequence are shown in Figure 6.22.
The tracker of Berclaz et al. performed poorly on this sequence.This is mainly
because when people are seated FG/BG blobs do not capture well their silhou-
ettes and the tracker of [Berclaz 11] is not suited for these circumstances.
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Figure 6.26: Performance on an outdoor data set [Berclaz 11]. The sample frame
from the public data set, provided by the lab of CVLAB at EPFL [Berclaz 11], is
shown. The overall accuracy of our tracker for this sequence is 21.6 cm, which is
acceptable considering the use of only three cameras.

6.7.5.2 Comparison on public data sets

To compare our proposed tracker with a public data set, we chose a data set
provided by the CVLAB2 at EPFL [Berclaz 11]. They used three cameras with
a small overlapping area in an outdoor scenario. Up to �ve people can be seen
in this sequence. We made ground truth at one-second intervals for one of
the sequences we took for comparison. The results are shown in Figure 6.25.
The overall accuracy of our tracker for this sequence is 21.6 cm, which is ac-
ceptable considering the use of only three cameras (Figure 6.26). The tracker
of [Berclaz 11] shows an overall accuracy of 25.4 cm on this sequence, which is
a comparable result to our tracker. However, the tracker of [Berclaz 11] losses
tracked objects more often.

In summary, our tracking approach and approach of [Berclaz 11] have com-
parable, very good performance in terms of accuracy and precision. Both track-
ers have similar accuracy and comparable number of object losses, although
our method is better in both of these parameters. Moreover, the implemen-
tation of [Berclaz 11] tracker optimizes trajectories over the whole sequence

2Data available at http://cvlab.epfl.ch/data/pom

http://cvlab.epfl.ch/data/pom
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to deal with object losses, while in our approach we prevent object losses by
using robust multi-view appearance models and context-aware motion mod-
els. Our method is designed to work online, in real-time, while the method
of [Berclaz 11] has delayed reasoning to optimize the trajectory assignment (in
their implementation they use a �ve seconds delay). Therefore, in time criti-
cal applications, such as video conferencing, our method would outperform the
method of [Berclaz 11].

6.7.6 Real-time demonstrator

As one of the results of this research, we have implemented a real-time smart
multi-camera system using a camera network as explained in this chapter. The
system was installed at Hogeschool Gent to track multiple individuals in real
time. The network consists of six colour cameras (four side and two top-view
cameras) with a resolution of 780× 580 pixels, each connected to an Intel Core
2 Duo 2.8GHz processor. Each colour camera and the attached computer sim-
ulate a smart camera. A fusion centre with the same processor completes the
system architecture. The cameras observe a scene of approx. 9 × 5 m. Each
smart camera performs foreground/background segmentation and appearance
modelling, as explained in Sections 6.5.1 and 6.5.2. Each camera also calculates
a six dimensional state estimate for each individual based on the HF approach
(Section 6.5.4). Therefore, instead of camera images, only a compact represen-
tation of each individual, represented as a Gaussian distribution, is sent to the
fusion centre. The fusion centre calculates a �nal estimate based on the input
of the smart cameras, using a Bayesian estimator (as explained in Section 6.6).
After a �nal estimate of each individual is calculated, the fusion centre sends
the results back to each smart camera to correct potential mistakes. The im-
plemented demonstrator operates at 10 fps. It is a very good basis for further
research on real-world multi-camera systems.

6.8 Conclusions

In this chapter, we presented a novel decentralized multi-camera system ar-
chitecture for real-time tracking. The tracking is performed by distributing
tasks between cameras and a fusion centre to obtain computational and data
e�ciency important for smart camera networks. We showed the advantages of
distributing video processing and tracking tasks on each camera, and sending
only high-level compact information to the fusion centre instead of the whole
images. We also demonstrated the bene�t of fusing the information from all
cameras and communicating the fusion result back to each camera to correct
their own estimations.

We compared our approach with the state-of-the-art methods of [Berclaz 11]
and [Grünwedel 14], and demonstrated the improvements both in accuracy and
precision. These improvements come from using our proposed signature mea-
surement as an additional tracking cue, and improving the motion model of
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tracked objects by higher level contextual reasoning. The results were obtained
using multiple video sequences in two indoor scenarios, with and without fur-
niture. The sequences contain cases of severe occlusions and lighting changes.
Experimental results show high accuracy and precision, su�cient for many ap-
plications, such as surveillance or behaviour analysis of people in meetings,
even in cases of occlusions.

There are several possible extensions to this work. One possibility is to
incorporate more advanced methods to model the appearance of a person.
Another extension could be a more detailed study of the fusion methods and
the feedback loop. Adding the input from other sensors in the meeting rooms,
such as laptop cameras and microphones, would also be bene�cial for tracking
improvement.

This research resulted in one publication in the international journal ACM
Transactions on Sensor Networks [Grünwedel 14]. Furthermore, several papers
have been published in the proceedings of international conferences [Grün-
wedel 12], [Jela£a 11a], [Demeulemeester 11], [Xie 12].



164 Tracking in Overlapping Camera Views



7
Conclusions

Signi�cant progress has been made in object tracking during the last few years.
Several robust trackers have been developed which can track objects in real
time in simple scenarios. However, the assumptions used to make the track-
ing problem tractable, for example, smoothness of motion, minimal amount
of occlusion, illumination constancy, high contrast with respect to background,
etc., are violated in many realistic scenarios and therefore limit tracker's useful-
ness in applications like automated surveillance, human computer interaction,
video retrieval, tra�c monitoring, and vehicle navigation. Thus, tracking and
associated problems of feature selection, object representation, dynamic shape
and motion estimation are very active areas of research and new solutions are
continuously being proposed.

In this thesis we researched and developed object tracking techniques specif-
ically designed for smart multi-camera networks. We proposed and developed
algorithms for single and multi-camera tracking, focusing on robust real-time,
low-latency and scalable tracking of vehicles and people, in which the most
computationally intensive video processing is performed within smart cameras.
We paid signi�cant attention to performance in real-world conditions, where
illumination changes, occlusions, inaccurate and false detections are common.

7.1 Overview of contributions

In this thesis we proposed a comprehensive framework for object tracking in
smart camera networks. We addressed the tracking problems from low-level to
high-level, i.e. from object detection and feature extraction to the high level
contextual reasoning, information selection and fusion. We deeply integrated
di�erent tracking levels into a single framework.

7.1.1 Low-level tracking

At the low level we proposed using Radon-transform like image projection
pro�les, which we call signatures, as features for object detection, tracking and
recognition. These features are computationally very e�cient (calculated as
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averaged pixel values along image axes). They can be calculated for all objects
in a single reading of the image, and result in a compact image representation
(an image of size 256×256 pixels is represented by 512 values instead of 65536).

We demonstrated the robustness of the signature features to illumination
changes, viewpoint di�erences and occlusions. We showed also the advantages
of signatures compared to edge based features, foreground blobs and optical
�ow. Therefore, using signatures of viewed objects as an additional cue for
object tracking improves the tracking performance. The proposed signature
cues are e�ciently computed using dynamic time warping, so it is possible to
include them into tracking algorithms preserving the real-time performance of
the tracker. The presented preliminary results on vehicle detection indicate that
signatures can also be used for object detection. This is especially bene�cial
for smart cameras where it is desirable to reuse same features for multiple tasks
(e.g. object detection, tracking and recognition) to save processing power.

7.1.2 Mid-level tracking

A signi�cant part of this dissertation focuses on tracking in decentralized/
distributed multi-camera networks with overlapping views. In this context, we
researched and developed methods for tracking people in environments with
frequent occlusions and lighting changes, for applications in surveillance, retail,
video conferencing or similar.

In such applications, accurate tracking, real-time performance, scalability
and �exibility of the system are important. Therefore, we focused on distribut-
ing tasks between cameras to obtain computational and data e�ciency. We
showed the advantages of distributing video processing and tracking tasks on
each camera, and sending only high-level compact information between the
cameras or to the central station (fusion centre). We demonstrated the bene�t
of communicating the fusion result back to each camera to correct their own
estimations.

We compared our approach with the state-of-the-art methods and demon-
strated the improvements both in accuracy and precision. These improvements
come from using our proposed signature measurement as an additional track-
ing cue at the low level, and improving the motion model of tracked objects
by higher level contextual reasoning. Experimental evaluation shows that such
an approach has high accuracy and precision (average distance to the ground
truth position is about 10 cm).

7.1.3 High-level tracking

At the high level we combine several low-level and mid-level cues, such as ob-
ject detection, object recognition, object pose estimation, and others. We also
incorporate contextual information into tracking. For environments like tun-
nels or meeting rooms, we model the scene structure, including scene entries
and exits, occluders and relationships between the objects. We use kinematics
of objects to constrain trajectory associations. All this high-level information
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is then used to assign the long range trajectories and reduce trajectory frag-
mentation and possible identity switches.

7.1.4 Summary of contributions

To summarize, the main contributions of this thesis are:

• computationally and data e�cient descriptors of the object appearance,
based on 1-D Radon-transform like image projections (signatures) [Je-
la£a 11b], [Jela£a 11a], [Jela£a 12], [Jela£a 13];

• object appearance modelling based on the object's signatures, robust to
pose and illumination changes, and occlusions [Jela£a 11b], [Jela£a 11a],
[Jela£a 12], [Jela£a 13];

• computationally e�cient appearance matching for object recognition us-
ing deformable curve alignment, dynamic time warping, and global and
local 1D correlation [Jela£a 13];

• distributed multi-view appearance modelling with automatic selection of
informative observations for tracking [Jela£a 13];

• robust real-time single camera tracking using image projection features
in a Kalman �lter framework [Jela£a 12], [Jela£a 14];

• a decentralized multi-camera framework for tracking with a feedback
loop from the fusion centre [Jela£a 11a], [Grünwedel 14], [Grünwedel 12],
[Xie 12].

In total, the research from this PhD resulted in three publications in inter-
national peer-reviewed journals: two published [Jela£a 13], [Grünwedel 14], and
one article under review [Jela£a 14]. Furthermore, thirteen papers have been
published in the proceedings of international conferences [Jela£a 08], [Despo-
tovi¢ 10], [Jela£a 11b], [Jela£a 11a], [Grünwedel 11a], [Van Hese 11], [Demeule-
meester 11], [Niño Castañeda 11], [Frías Velázquez 11], [Jela£a 12], [Grün-
wedel 12], [Ma¢e²i¢ 12], [Xie 12].

7.2 Future research

A big challenge in tracking is to develop algorithms that perform well in un-
constrained real-world environments. In this thesis we made an important step
towards increased robustness against illumination changes, di�erent weather
conditions, camera viewpoints and resolutions, but further research is neces-
sary to enable tracking in less structured environments or environments with
non-stationary cameras.

In general, an important issue that has not been su�ciently explored is
integration of contextual information into tracking algorithms. For example,
in a vehicle tracking application, the location of vehicles relative to each other
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(vehicle constellations) can be a valuable source of additional information for
evaluating di�erent hypotheses. In addition, advances in classi�ers have made
accurate detection of scene context possible, for example, man made structures,
paths of movement, class of objects, etc. A tracker that takes advantage of
contextual information to incorporate general constraints on the shape and
motion of objects will usually perform better than one that does not exploit
this information. This is because a tracker designed to give the best average
performance in a variety of scenarios can be less accurate for a particular scene
than a tracker that is tuned (by exploiting context) to the characteristics of that
scene. Exploiting contextual information should be a very important direction
in the future research.

Another important direction that we did not explore in this thesis is an
automatic selection of tracking features. The use of a particular feature set
for tracking can greatly a�ect the performance. Generally, the features that
best discriminate between multiple objects and between the object and back-
ground are also best for tracking the object. Many tracking algorithms use
a weighted combination of multiple features assuming that a combination of
preselected features will be discriminative. A wide range of feature selection
algorithms have been investigated in the machine learning and pattern recog-
nition communities. However, most of these algorithms require o�ine training
information about the target and/or the background. Such information is not
always available. Moreover, as the object appearance or background varies,
the discriminative features also vary. Thus, online selection and learning of
discriminative features would greatly increase the applicability of our tracker.

The same applies for using additional sensors. For instance, in meeting
scenarios audio sensors could provide valuable additional information to im-
prove tracking accuracy and eliminate false object detections or associations.
In tra�c surveillance additional information could come from radar sensors.
Overall, additional sources of information, in particular prior and contextual
information, should be exploited whenever possible to adapt the tracker to the
particular scenario in which it is used. A principled approach to integrate these
disparate sources of information will hopefully result in a general tracker that
can be employed with success in a variety of applications.
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