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Unmanned aerial vehicles (UAV) have become an interesting and active research topic

for photogrammetry. Current research is based on images acquired by an UAV, which

have a high ground resolution and good spectral and radiometrical resolution, due to

the low flight altitudes combined with a high resolution camera. UAV image flights are

also cost effective and have become attractive for many applications including, change

detection in small scale areas.

One of the main problems preventing full automation of data processing of UAV im-

agery is the degradation effect of blur caused by camera movement during image acqui-

sition. This can be caused by the normal flight movement of the UAV as well as strong

winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and

interpretation of the data, causes errors and can degrade the accuracy in automatic

photogrammetric processing algorithms. The detection and removal of these images is

currently achieved manually, which is both time consuming and prone to error, partic-

ularly for large image-sets. To increase the quality of data processing an automated

process is necessary, which must be both reliable and quick.

This thesis proves the negative affect that blurred images have on photogrammetric

processing. It shows that small amounts of blur do have serious impacts on target

detection and that it slows down processing speed due to the requirement of human

intervention. Larger blur can make an image completely unusable and needs to be

excluded from processing. To exclude images out of large image datasets an algorithm

was developed. The newly developed method makes it possible to detect blur caused by

linear camera displacement. The method is based on human detection of blur. Humans

detect blurred images best by comparing it to other images in order to establish whether

an image is blurred or not. The developed algorithm simulates this procedure by creating

an image for comparison using image processing. Creating internally a comparable image
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makes the method independent of additional images. However, the calculated blur value

named SIEDS (saturation image edge difference standard-deviation) on its own does not

provide an absolute number to judge if an image is blurred or not. To achieve a reliable

judgement of image sharpness the SIEDS value has to be compared to other SIEDS

values of the same dataset.

This algorithm enables the exclusion of blurred images and subsequently allows pho-

togrammetric processing without them. However, it is also possible to use deblurring

techniques to restor blurred images. Deblurring of images is a widely researched topic

and often based on the Wiener or Richardson-Lucy deconvolution, which require precise

knowledge of both the blur path and extent. Even with knowledge about the blur kernel,

the correction causes errors such as ringing, and the deblurred image appears “muddy”

and not completely sharp. In the study reported in this paper, overlapping images are

used to support the deblurring process. An algorithm based on the Fourier transforma-

tion is presented. This works well in flat areas, but the need for geometrically correct

sharp images for deblurring may limit the application. Another method to enhance the

image is the ‘unsharp mask’ method, which improves images significantly and makes

photogrammetric processing more successful. However, deblurring of images needs to

focus on geometric correct deblurring to assure geometric correct measurements. Fur-

thermore, a novel edge shifting approach was developed which aims to do geometrically

correct deblurring. The idea of edge shifting appears to be promising but requires more

advanced programming.
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1 Introduction

Unmanned aerial vehicles (UAV) have recently become an interesting and extensively

researched topic. Remote controlled drones are used for military applications

(Associated Press, 2014; BBC, 2014; Wilson, 2014), for security and surveillance (Agence

France-Presse, 2014; Merrill, 2014; Skahill, 2014), search and rescue operations and for

monitoring of natural disasters (Bidwell, 2014; Jefferies, 2014; Killalea, 2014). UAVs

are particularly useful due to their small size, low cost and the removal of an on-board

pilot. The on-board pilot was made redundant using advanced technology, faster and

more powerful computers, increasing knowledge about aerodynamics and development

of newer, lighter and more robust materials. This enables full automatic flight without

the risk of endangering human life and at low costs.

Most scientific and civil applications focus on small scale UAVs of only a few decimetre

in size, which are remote controlled or have an autopilot for fully automated flight

from take-off to landing. Due to the small size they are exempt from airport fees or

registration costs like large aircraft. However, many countries have introduced new laws

and regulations that restrict the use of small scale UAVs. Some regulations limit the

weight and size of small scale Unmanned aerial systems (UAS), which subsequently

limits the payload. Due to this limitation, UAVs have to be equipped with small and

light weight sensors. One type of sensor often used are cameras. Cameras used in

UAVs are often consumer-grade cameras, which are both light weight and small in size.

They are also much cheaper than aerial imaging systems, but also less accurate and are

particularly influenced by external effects.

Typically, consumer grade cameras are used in particular with interchangeable lenses or

digital single lens reflex (DSLR) cameras. These cameras provide acceptable images and

1
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Figure 1.1: Image acquired by an UAV.

(a) Example of a fixed wing UAV. (b) Example of a wing design UAV.

Figure 1.2: Examples two UAVs used to collect datasets.

are widely used for mapping and monitoring of sites, in scientific research projects and

in commercial projects (Figure 1.1). Images acquired are of value because they provide

a good ground sampling distance (GSD) with a good spectral and radiometric resolution,

due to the low flight altitudes and high resolution sensors. The high geometrical resolution

makes UAV images especially interesting for aerial photogrammetry, which focuses on

the reconstruction of ‘the position, orientation shape and size of objects from pictures’

(Kraus, 2007). To reconstruct an object from an image, two dimensional (2D) image

coordinates have to be measured in the image space and have to be transformed to three

dimensional (3D) object coordinates in the object space. To get accurate 3D coordinates

the 2D image coordinates have to be measured accurately.
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1.1 Motivation for the thesis

The motivation for this thesis is based on the photogrammetric use of images. To

get accurate photogrammetric results it is necessary to measure accurately 2D image

coordinates. To achieve this sharp images are required. If it is not possible to accurately

measure coordinates in the image space, calculations based on these image coordinates

are subsequently incorrect. In most photogrammetric applications sharp images are

achieved by using a camera tripod and an external shutter release. This prevents

the camera from exhibiting any movement during image exposure and creates a sharp

image.

UAVs can be seen as unstable imaging platforms during flight conditions and sudden

motions are commonly experienced during image acquisition. These sudden movements

can be caused by gusts, turbulence, vibrations of the engine or even operator inputs

and can cause significant image blur. Even the forward motion of a fixed wing UAV

has a degrading effect on images due to the constant displacement of the camera body

whilst the shutter is open. Due to motion blur, measuring 2D coordinates in the image

space becomes difficult and inaccurate. Furthermore, other automatic image processing

techniques could be expected to be influenced. As a first task the impact of this negative

influence has to be assessed, examined and quantified.

If blur has a degrading effect on subsequent image processing, an obvious strategy is to

exclude blurred images from further processing. This requires the detection of blurred

images. Detection of blurred images is traditionally carried out manually by an operator

assessing images presented visually on a computer screen. The operator assesses whether

an image is sharp or blurred and acceptable for further processing. This has to be

repeated for many, perhaps hundreds of images in a sequence and is exhausting for the

eyes, prone to errors and time consuming. An automatic filtering algorithm would help

to speed-up the process and to prevent errors and tired eyes.

The filtering of blurred images reduces the number of images available for post processing.

This can significantly reduce the accuracy and precision of post processing results or

even make post processing impossible. To avoid any problems during post processing
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there is a danger that too many images maybe excluded. By excluding many images the

number of overlapping images is reduced and degrades the accuracy of subsequent image

coordinate measurements. However, redundant coordinate measurements are important

to ensure accurate adjustment of errors. To provide a sufficient number of images it

might be required to deblur some of the blurred images to maintain a strong image

configuration. However, deblurring is an ill-posed problem, which cannot be solved. To

solve this problem deblurring requires an iterative process. However, the process may

not converge and it may return incorrect results. Due to the iterative process deblurring

is time extensive and it is unstable when carried out for each image in a large UAV

image dataset. A deblurring algorithm capable of enabling photogrammetric operations

could help ensure accurate post processing.

1.2 Aims and objectives of the thesis

The initial project name was ‘Efficient and Reliable Algorithms for Image Deblurring’

with the focus on UAV images. However, it was established early that the project had to

be extended and needed a more extensive remit than simply blur correction. Surprisingly,

the influence of motion blur on the results of photogrammetric processing has not yet

been analysed, which identifies the aim of this project to analyse, detect and correct blur

in digital images used for photogrammetric procedures. Specific objectives include:

• Reviewing currently available and used techniques for image blur, blur detection

and deblurring. Also review important photogrammetric techniques used for

processing UAV imagery.

• Generating motion blurred images with precisely known characteristics and

comparing these to other methods used for image blurring.

• Analysing if and whether photogrammetry and image processing procedures are

influenced by blurred images. If so, identify an appropriate threshold necessary to

isolate and exclude blurred images.

• Develop an efficient and reliable algorithm for image blur detection.

• Develop an algorithm for blur correction acceptable for UAV image sets and

photogrammetric purpose.
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• Confirm results of laboratory tests by applying and testing UAV imagery acquired

with a small scale, home-made fixed wing UAV.

1.3 Contribution to knowledge

This thesis contributes to current knowledge in the field of computer vision and image

processing. Blur is a widely researched topic in computer vision. However, most of the

research concentrates on correcting blur but rarely on determining the influence of

blur on image processing or even photogrammetric processing. The main contribution

achieved in this research is the determination of the influence of motion blur images on

photogrammetry. This general contribution has been achieved through:

• Producing blurred images with known characteristics using a new approach

involving a shake table.

• Analysing if and how much blur influences photogrammetry and image processing

using typical processing techniques.

• Developing a blur detection algorithm for large image datasets. Although this has

been evaluated for UAV imagery it has wider applicability.

• Development of a range of blur correction methods applicable for UAV images.

1.4 Structure

After careful consideration it was decided, that this thesis should be structured and

presented in seven parts plus an appendix.

• The first chapter is an introduction, providing the initial context and basic

justification for the research conducted.

• The second chapter provides a detailed review of the research domain. It includes

a literature review to understand basic principles associated with image processing

and photogrammetry, which will be helpful in the following chapters. Furthermore,

the basic setup of the shake table will be explained.
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• The third chapter analyses how blurred images influence photogrammetry and

image processing. It starts with an explanation about photogrammetry and

photogrammetric targets, and how subsequent measurements and calculations affect

the quality of results. It is followed by the experimental research that was carried

out, to analyse the influence of blur on these processes.

• The fourth chapter examines the detection of blurred images in an image dataset.

The literature review gives an insight on techniques adopted previously before the

newly developed method is explained and discussed.

• The fifth chapter concentrates on blur correction and explains the methods

previously developed in the field of computer vision. A method aiming to correct

photogrammetric targets is applied to the shake table images and results examined.

• The sixth chapter applies the techniques developed in the previous three chapters

to a new set of UAV imagery and discusses the applicability of the methods.

• This thesis ends with a review of the work conducted. It will discuss the collected

results and suggest future improvements. Furthermore, it includes concluding

remarks to connect the findings.

An appendix consists of three parts.

• The first part contains additional material supporting the research presented in

this thesis.

• The second part presents publications produced during this research project.

• The third part explains the patent progress regarding the blur detection algorithm.

The attached DVD also contains the used program codes and documentation for these

codes. However, the program code provides only code fragments as a proof of concept.

They do not represent an independently working program.

1.5 Software

The processing of digital imagery is clearly an important part of this research. Processing

images requires special software, which can return different results to other software even

when providing the same functions. The software used will be presented to ensure the
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same outcome. Also the visualisation of images in this research depends strongly on the

way they are displayed, so many images have been modified before presentation.

Image processing was carried out using C++. To make the results better reproducable

and to comply with the university regulations to include all program codes, C++ code

sniplets were included in the text. The C++ program code includes functions of the

open computer vision (OpenCV) library (OpenCV Dev Team, 2014). OpenCV is an

open source programming library providing functions and methods to process images.

To use these functions the OpenCV library has to be included in a C++ program code.

OpenCV provides a range of functions and settings to customise the results of image

processing. However, as an open source project OpenCV relies on volunteer developers

for further developments and requires a community of users to verify published functions.

OpenCV v2.4.0 was used on large image sets. The software ImageJ was used for examples

presented in this thesis. The benefits of using ImageJ are that long program codes were

avoided which have to be developed and debugged.

Photogrammetric processes were carried out using PhotoModeler (Eos Systems Inc.,

2014). It is a software package for processing close range imagery for spatial measurements.

It provides the necessary functionality for automatic, semi-automatic and manual

photogrammetric processing. PhotoModeler also has the advantage of being customisable

using Visual Basic. It also supports the export of data and the import of additional

data using either, the internal interface or external plug-ins. PhotoModeler provides

algorithms for target detection, camera calibration and which are typical of a range of

photogrammetric software packages.

Matlab was used to analyse the results and numbers returned by C++ programs, Im-

ageJ and PhotoModeler (The MathWorks, Inc., 2015). Matlab provides easy to access

functions to process and visualise data and is often used in research. In this research

it was used to control the shake table, analyse PhotoModeler and ImageJ output and

to generate diagrams. The produced diagrams are saved as vector graphics to ensure

precise and clear visibility.

Inkscape (2015) was used to modify vector graphics. Inkscape is an open source program

for creating and manipulating line art graphics. For raster graphics GNU image ma-
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nipulation program (GIMP) was used (The GIMP Team, 2015). It provides tools to

manipulate images and was used to edit images for the figures in this document.



2 Detailed overview and supporting
concepts

This chapter will introduce key background information which are required for this thesis.

There are three distinct contributions regarding blur in this thesis each within three

related but distinct topics. Consequently the thesis is structured into three dedicated

chapters, each with their own separate literature review and discussion. However, this

chapter aims to clarify common concepts used in each of the subsequent chapters. At

first a few basic principles concerning images and image processing are presented. This

includes how images are used in photogrammetry, how they are acquired and introduces

UAVs as platforms for aerial photogrammetry. Furthermore, it will explain how the

blurred images used in this thesis were generated, before concluding with a chapter

summary.

2.1 General literature review

This first literature review will provide general information and methods, which are

required to understand the subsequent chapters of the thesis. This literature review

explains how digital images are represented and how digital images are processed. Basic

principles of image processing are presented before some initial photogrammetric

algorithms are explained. The literature review concludes with an examination of UAV

platforms and which hardware modifications are actually able to prevent motion blur in

images.

9
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2.1.1 Images and image processing

Images are ‘a representation of the external form of a person or thing . . . ’ more precisely

‘A visible impression obtained by a camera . . . or other device, or displayed on a computer

or video screen . . . ’ (Oxford University Press, 2014). A digital image recorded by an

electronic sensor or visualised by an electronic device is composed of a 2D matrix of

picture elements (pixel). The pixels on a sensor are made of sub-pixels, which record one

of the three additive colours at a range of wavelength. These include: red (500-700 nm),

green (450-630 nm) and blue (400-500 nm) (RGB) (Ernstoff et al., 1977). The sub-pixels

can be co-located in a range of ways, either side by side (Ernstoff et al., 1977), arranged

in a Bayer filter mosaic (Bayer, 1976) or other arrangements. To record just one specific

wavelength representing blue, green or red, each of the sub-pixels is equipped with a

colour filter, which lets only light of a specific colour or wavelength pass through (Ernstoff

et al., 1977). The light density illuminating the sub-pixels is recorded. Combining the

different recordings of the sub-pixels results in different colours. The recording for each

sub-pixel is stored as a numerical value called the digital number (DN), which are each

written in separate 2D matrices and stored together in an image file (Lillesand et al.,

2008).

2.1.1.1 Image compression and colour space

DNs can be stored in image files in two main ways. The area filling raster graphics

are the better known version of storing DNs. Highly accurate vector graphics are the

second method used to store DNs. The latter stores the DN for a specific point together

with an accurate coordinate, enabling visualisation with an infinite spatial resolution

(Figure 2.1(a)). Vector graphics are mostly used for line-based graphics (Murray and

van Ryper, 1996). Raster graphics instead, store the DN in a 2D matrix (raster), which

limits the visualisation to one cell of the raster. However, this can never be more

accurate than the area of each pixel (Figure 2.1(b)). In contrast the accuracy of a

vector representation is higher because each edge and point can be represented with

high resolution coordinates. The disadvantage of vector representations for graphical

imagery is however, that they are not “area filling” but just contain points and edges,
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(a) Vector graphic. Infinite spatial resolution.

(b) Raster graphic. Limited spatial resolution.

Figure 2.1: Comparison of vector and raster graphic.

hence raster graphics are ‘particularly well-suited for . . . real-world images’ (Murray and

van Ryper, 1996) because they cover a complete area with DNs. Hence, this format is

widely used and known. Vector graphics are normally generated by software while raster

graphics are recorded using image sensors. For UAVs raster graphics are used because

they are acquired with image sensors and the graphics format used and processed in this

presented research. Typical file formats for raster graphics are Windows Bitmap (.bmp),

Graphics Interchange Format (.gif) and Joint Photographic Experts Group (JPEG) files

(.jpg/.jpeg) but many more are known.

Image compression The reasons for so many different file formats lies within the design

of the image and file formats. A typical consumer camera will record millions of pixels,

which is a vast amount of data that has to be stored in a file. Storing them by ‘writing’

every DN for each cell of the raster to the file would result in huge image files. As

example a 16mega pixels image recording RGB with 24 bit per channel would result in
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137MB large file (Equation 2.1).

Ibit = npixels · bitdepth · nchannels

Ibyte = Ibit/8bit

Ibit . . . Image file size in bit

Ibyte . . . Image file size in byte

npixels . . . Image size in pixel

bitdepth . . .Bit depth of the image

nchannels . . .Number of channels in the image

(2.1)

Hence, it is normal to compress the information to prevent files becoming too large.

There are broadly two compression approaches, distinguished by "lossless" and "lossy"

image compressions. A lossy compressed image cannot be restored completely as during

compression some information of the image is not stored. Lossless compressed images

however, can always be restored to their original values without loss of information.

JPEG is a lossy image compression technique, which can result in incorrect DNs and an

imprecise visualisation of images (Pennebaker and Mitchell, 2004). In contrast, Portable

Network Graphics (PNG) (.png) is a lossless image file format (Roelofs, 2014). However,

there are also file formats which support lossy and lossless compressions methods for

example the Tagged Image File Format (.tif/.tiff) (Adobe Developers Association, 1992).

Table 2.1 shows that different file formats, which reduce the same input file to different

sizes. Dependent on the input image the best compression method changes. Also the

File type File Size
.pdf (vector input image) 9KB
.gif (lossless) 4KB
.jpg (lossy) 10KB
.tiff (lossless) 1407KB
.png (lossless) 1410KB
.bmp (lossless) 1876KB

Table 2.1: Comparison of storage used by various raster graphic file formats using the same vector
graphic as input.
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(a) Cropped JPEG image with low compression.
File size 3346KB.

(b) Cropped JPEG image with high compression.
File size 300KB.

Figure 2.2: Different compression level of JPEG.

compression strength influences the size of a file. Figure 2.2 shows an enlarged patch

of a JPEG image with both, a low (Figure 2.2(a)) and high compression level (Figure

2.2(b)). It is possible to identify that the highly compressed image exhibits a loss of

detail and introduces noise in the colours, compared to the low compressed image does

not.

Colour space Another difference between the file formats is the colour space they use.

TIFF supports the cyan, magenta, yellow and key (CMYK) ‘colours’. Cyan, magenta

and yellow are the subtractive colours, which can be generated by mixing RGB (Figure

2.3(a)). CMYK is an important colour space because CMYK represent the colours that

are used by printers due to ‘key’, which is used to align the channels, which makes TIFF

popular for printing applications. This popularity for printing is also because of the

key channel which is used to align cyan, yellow and magenta during printing. Beside

the CMYK colour space the YCbCr is used for digital images by JPEG. YCbCr is the

digital version of the analogue YPbPr television signal. Y carries the luminance and

Pb and Pr the difference between blue and red respectively and luma (Pennebaker and

Mitchell, 2004). Luminance is also used in the hue, saturation and luminance (HSL)

colour space (Figure 2.3(b)). This colour space is different from the previous colour
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(a) RGB, CMYK (b) HSL (c) HSV

Figure 2.3: Visualisation of different colour spaces by (SharkD, 2010).

spaces because it reduces colour information to the hue of one channel only. Luminance

and saturation provide the information necessary to define how the colour appears, if it is

dark, bright, pale or saturated. The hue, saturation and value (HSV) (Figure 2.3(c)) and

hue, saturation and intensity (HSI) colour space are similar to HSL (Ford and Roberts,

1996). The latter three colour spaces containing hue are often used for image editing.

This is because image editing often aims to adjustment the contrast, exposure and

colours, which are easily accessible by changing saturation, luminance/value/intensity

and hue. These colour spaces are closely related to the RGB colour space by linear

equations, which makes transformations between RGB and ‘hue’ colour spaces easy.

There are various other colour spaces but a particularly important space to mention is

the RGB colour space. This colour space is of high significance because the cones in the

human eye are sensitive to light of the wavelength red (500-700 nm), green (450-630 nm)

and blue (400-500 nm) (Hunt, 2004). Also computer displays use the RGB colour space

to display content.

2.1.1.2 The resolutions

Raster images have multiple resolutions. Commonly known is the geometrical resolution,

which is represented by the number of pixels. However, there are altogether four different

resolutions, which are important for images.

Spectral resolution The wavelength recorded is dependent on the recording device. A

normal consumer grade digital camera records blue, green and red light in three different
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channels. However, they often have sensitivity to near-infrared light, so wavelengths

above 700 nm are recorded in the red channel. This is different to the human eye, which

is not sensitive to near-infrared light (www.eye.de, 2014). This should be prevented by

infrared filters. However, this shows already the capability of image sensors to record

more of the electromagnetic spectrum (EMS) than can be perceived by the human eye.

Hyper-spectral cameras are available also, which can record many narrow bands of the

EMS to generate a nearly continuous spectral curve for every pixel (Kurz et al., 2011).

A spectral curve represents the amount of reflected EMS at a range of wavelength of

an object (Lillesand et al., 2008). The higher the spectral resolution, the more accurate

the spectral curve for each pixel. Every reflection value in a small wavelength range

is recorded in a separate 2D matrix. Visualising one matrix would return a grey scale

image. Hence the recorded values are also called grey values.

Radiometric resolution Grey values represent the reflected energy recorded for a range

of channels (Lillesand et al., 2008). The denser the reflection, the higher the grey value.

The range of grey values is defined by the radiometric resolution. The radiometric

resolution is often defined as 8 bit per channel, which is equal to 256 grey values ranging

from 0 to 255. There are also more precise radiometric resolutions, with much higher

resolutions for example 32 bit per channel or more (Adobe Developers Association, 1992).

However, this high precision cannot be differentiated by the human eye (Steinhardt,

1936).

Temporal resolution A less important resolution in photography is temporal resolution.

The temporal resolution defines how many images can be taken in a certain time period.

This is especially important for videography, to ensure that a film appears as a moving

picture and not as many still images in a fast sequence. However, temporal resolution can

be also defined as how often image acquisition of the same area is repeated. For example,

the Landsat-satellite has a repeated coverage of 16 days (NASA, 2015). So every 16 days

the satellite passes over the same area capturing a new image. This temporal resolution

is important to detect changes in the test area, occurring over a certain time period.
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Spatial resolution The resolution most often referred to and considered important for

most consumers is spatial resolution. The spatial resolution defines how well a sensor

can record spatial differences (Lillesand et al., 2008). The spatial resolution is directly

related to the GSD by the distance to the object and the lens used with the camera.

Knowing the sensor size, number of pixels, the camera-to-object distance and the focal

length of the lens enables the calculation of the GSD (Equation 2.2 assuming square

pixels).

spx =
√
Asensor
npixels

spx
ck

= sPX
h

sPX = spx
ck
· h

spx . . .Pixel size on sensor

sPX . . .Pixel size on ground, GSD

Asensor . . . Sensor area

npixels . . .Number of pixels on sensor

ck . . .Principal distance, focal length

h . . .Distance to object, flight altitude

(2.2)

The smaller the ground area represented by a pixel, the more accurate the geometric

representation of an object and it is possible to visualise textures more accurate. Even

with smaller pixels, an area may consist of more than one material but might be recorded

as one value within the pixel. This representation of multiple materials in one pixel

is called spectral mixing (Keshava and Mustard, 2002). This effect often happens at

boundaries between different materials and can cause a blurry boundary between objects,

materials and colours. In Figure 2.1(b) the boundaries of the letters are blurred because

the black of the letter is mixed with the white of the background which results in a grey
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colour. Furthermore, the geometric resolution is also influenced by the quality of the

lens, refraction, diffraction, focusing of the lens and other physical effects influencing

electromagnetic radiation.

2.1.1.3 Image processing

Photographers often use software like Photoshop, GIMP or others to modify their images

and to make them more appealing. Techniques used for this are collected under the term

image processing. An image can be seen as a 2D recording of a signal (Burger and Burge,

2008). Hence, many techniques used in image processing are also used in other signal

processing applications and often extended from one dimensional (1D) to 2D signals.

The techniques can be classified as histogram, filter and transformation operations or

other advanced algorithms (Burger and Burge, 2008). To apply these techniques, images

are often separated into separate channels so that the algorithms are applied sequentially

to each channel. After such operations the channels are normally combined together to

recreate a multi-channel output image.

Histogram operations Histogram operations involve improving visualisation of digital

images, particularly by increasing/decreasing contrast, enhancing the illumination,

changing the saturation or even changing the colour (Burger and Burge, 2008). A

change of colour requires a multi-channel image as an input. Typically, the hue channel

is manipulated after conversion of an image to either HSL, HSV or HSI. Assuming that

all colours are represented in a range from 0◦ - 360◦ (Figure 2.3(c)), a shift by 60◦ results

in a shift of one colour. That means: green becomes yellow, yellow → red, red →

magenta, magenta → blue, blue → cyan, cyan → green (Figure 2.4(b)). Change in

illumination of an image involves an increase or decrease of each grey value. Instead

of modifying each pixel of a multi-channel image, it is possible to modify luminance,

value or intensity of an HSL, HSV or HSI converted image. The modified image looks

brighter or darker than the original image (Figure 2.4(c) and 2.4(e)). In a histogram

this change can be recognised by an increase of all grey values and subsequently the grey

value average (Figure 2.4(d) and 2.4(f)) (Burger and Burge, 2008). Another widely used

technique is contrast enhancement. This distributes the recorded intensity values over
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(a) Original unmodified
image.

(b) Colour shifted image
by 60◦.

(c) Image in one channel
grey scale.
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(d) Histogram of grey scale
image.

(e) Image with increased
brightness.
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(f) Histogram of increased
brightness.

(g) Image with increased
contrast.
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(h) Histogram of increased
contrast.

Figure 2.4: Histogram operations on an image.

the available range of grey values (Figure 2.4(g) and 2.4(h)) (Burger and Burge, 2008).

This does not influence the average grey value, but returns an image which includes

black and white pixels rather than dark or light grey.
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There is a range of other techniques for modifying the histogram such as inverting,

thresholding, noising or others, which involve a range of mathematical modifications to

the histogram.

Filter operations The second category of image processing techniques involves the use

of image filters, which are often used to accentuate or eliminate image defects (Burger

and Burge, 2008). These operate on individual pixels and influence only the pixels in the

filter region. There are several filters that concentrate on different kind of operations.

A filter is defined by their size, operation, strength, and anchor pixel (OpenCV Dev

Team, 2014). A 2D filter can be represented by a matrix. The filter matrix is moved

over each pixel of the image matrix. Calculations are then performed at each position

the filter matrix takes. The calculations are performed according to the operation and

the returned value is written at the position occupied by the anchor.

A class of popular filters are blur filters, which aim to ‘smooth’ an image. These filters

are also called convolution filters because they convolve the signal frequency. Examples

are the median filter (Figure 2.5(a)), or the Gaussian Filter (Figure 2.5(b)). The latter

is based on a Gaussian normal distribution. These filters can not only be applied on 1D

signals, but also on 2D signals like images. Each pixel within the area of the filter is

multiplied with the value given by the filter matrix and the result written in the position

of the anchor (OpenCV Dev Team, 2014). The result is a blurred image (Figure 2.5(d)

and 2.5(e)). An application for blur filters is to reduce noise (Figure 2.5(f) and 2.5(g))

or to smooth areas in an image, which can be used to smooth human skin in an image

(Adobe Systems Incorporated, 2015).
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(a) Median filter. Anchor in grey.
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(b) Gaussian filter with σ = 1.
Anchor in grey.

(c) Original unmodified
image.

(d) Median filtered image
with a 5 x 5 filter matrix and
anchor in the centre.

(e) Gaussian filtered image
with a 5 x 5 filter matrix and
anchor in the centre.

(f) Original image after
adding noise (20 dB).

(g) Applying 5 x 5 Gaussian
blur filter on noisy image.

Figure 2.5: Blur filter operations on an image.
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Due to the mathematical operation involved, these filters are called convolution kernel or

convolution filter (OpenCV Dev Team, 2014). A convolution is a mathematical operation

(⊗) using a convolution function (g) on an initial function (f) returning the convolved

function (k) (Equation 2.3).

f ⊗ g = k

f . . .Function to be convolved.

g . . .Convolution function.

k . . .Convolved function.

⊗ . . .Convolution operation.

(2.3)

For the 2D case the convolution can be written as in Equation 2.4 after Bradski and

Kaehler (2008).

Kx,y =
Grows−1∑
i=0

Gcols−1∑
j=0

Ix+i−Ga
x,y ,y+j−Ga

x,y
⊗Gi,j

K . . .Convolved image.

I . . . Input image to be convolved.

G . . .Convolution filter.

Grows,cols . . . Size of convolution filter in rows and columns.

Gax,y . . .Position of anchor in convolution filter.

⊗ . . .Convolution operation.

(2.4)

In the case of blurring, the image (F ) is convolved (⊗) by motion (G). The result

function is the blurred (convolved) image (K).

The process of deconvolution is the reverse reconstruction of the initial non convolved

image F , which is an ill posed problem due to various factors. At first, the convolution

function and convolution filter can be unknown. However, the main problem is that

the equation has more unknown variables u than knowns k (k < u) (Niemeier, 2007).
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Therefore, deconvolution has to be carried out iteratively to achieve a deconvolved result

(Section 5.1).

Beside blur filters, edge filters are also classified as convolution filters. They are used

to find gradients in the image, which typically represent edges in the object creating

a line of different grey values. In contrast to blur filters, which are low-pass filters,

edge detection is a high-pass filtering process. Popular edge detection operators include

the Sobel operator (OpenCV Dev Team, 2014), which can separate between horizontal

(Figure 2.6(b) and 2.6(c)) and vertical gradients (Figure 2.6(d) and 2.6(e)), or the

Laplace operator (OpenCV Dev Team, 2014), which combines horizontal and vertical

gradient detection (Figure 2.6(f) and 2.6(g)). Edge detection is often a first step used

to identify objects, structures or differences in images (OpenCV Dev Team, 2014).

Another kind of filter includes morphological operations. These are developed for binary

images, which just contain black and white values (2 bit). The other difference to the

previously mentioned filters is that they do not conduct a calculation, but effectively

‘scan’ an area of neighbouring pixels. An erosion filter examines or scans pixels to

assess whether the area covered by the filter matrix contains a zero (=black) value. If

this is true, then the anchor position is defined as zero. Otherwise, a one (=white) is

assigned (OpenCV Dev Team, 2014). In this way, structures are eroded or if they are

small, completely eliminated (Figure 2.7(b)). The inverse process is known as dilate

filter, which scans for ones. If there is a white pixel detected in the filter area, then the

anchor is defined as one, otherwise it is set to zero. Structures in the image become

larger using this method (Figure 2.7(c)). It is also possible to combine both operations.

These combinations are known as ‘opening’ and ‘closing’ (OpenCV Dev Team, 2014).

An opening operation is achieved by applying an erosion filter and then a dilation filter.

The result is that small structures and noise is eliminated by the erosion filter. Larger

structures which became smaller due to the erosion are restored to their original size

by applying the dilation (Figure 2.7(d)). This combination is often used to delete small

structures and to eliminate noise in binary images. A closing operation applies the

dilation filter first and then the erosion filter. The result is that objects close to one

another are connected and small structures are not deleted (Figure 2.7(e)). However,
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(a) Original image.
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(b) Horizontal Sobel
operator. Anchor in
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(c) Normalised image
after applying horizontal
Sobel operation.
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(d) Vertical Sobel
operator. Anchor in
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(e) Normalised image
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(f) Laplace operator.
Anchor in grey.

(g) Normalised image
after applying Laplace
operation.

Figure 2.6: Different edge detection methods applied on an image.

these filters have been developed further allowing them to be applied on grey scale and

multi-channel images (The GIMP Team, 2015).

Transformation operations It is not only possible to modify the content of images, but

also to transform images to a different kind of visualisation. This provides an effective

way to identify or modify the content, or to change the image shape. The simplest

transformations involve the colour spaces, or the bit depth of an image. For example, it

is possible to change an 8 bit image with 256 grey values to a 2 bit image equivalent to

reduce the information to black and white.
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(a) Original binary
image.

(b) Erosion applied
on binary image.

(c) Dilation applied
on binary image.

(d) Opening applied
on binary image.

(e) Closing applied
on binary image.

Figure 2.7: Morphological filter operations.

(a) Original image in
spatial domain.

(b) Fourier domain of
original image. Fourier
domains are mirror
symetric.

(c) Low pass filtered
Fourier domain.

(d) Filtered Fourier
domain image
transformed to spatial
domain.

Figure 2.8: 2D Fourier domain transformation.

A very different approach is the Fourier Transformation. An image is considered a

2D, digital, electrical signal that contains frequencies, amplitudes and phase this allows

Fourier transformations to be applied. By using the Fourier transformation it is possible

to analyse which frequencies appear in the image. Therefore, the image is transferred

from a spatial (Figure 2.8(a)) to the frequency domain (Figure 2.8(b)). Visualising

the frequency domain results in a ‘noisy’ looking grey scale representation with low

frequencies in the centre and high frequencies towards the outside. Now it is possible

to filter and remove any specific frequency (Figure 2.8(c) and 2.8(d)) and when the

frequency domain is reversed to the spatial domain the image is smoothed or repetitive

patterns are eliminated (OpenCV Dev Team, 2014). There are several other
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transformations with different purposes such as Hough transformation, which aims to

identify lines in images (OpenCV Dev Team, 2014). More importantly for photogrammetry

there are a range of geometric transformations that (un)distort the image (Section

2.1.1.3).

Simple image transformation and interpolation Image transformation is used to change

the position of pixels in an image to fit them to a reference object. For example image

transformation can be used to match two images taken from different positions. In

photogrammetry the aim is to compensate for scale and rotation differences between

images, as well as shear and barrel/pincushion distortions (OpenCV Dev Team, 2014;

Singh, 2010). To achieve an image transformation it is necessary to know the function

and the transformation parameters. This can be done by measuring identical points

across both images to solve for the transformation parameters. With the transformation

parameters determined the transformation can be conducted by repositioning each of

the pixels of the frame (Figure 2.9(a)). The repositioning can cause the problem that

the repositioned pixel does not exactly match a pixel of the new frame (Figure 2.9(b)).

This problem has to be solved using interpolation. The nearest-neighbour interpolation

takes the grey value from the nearest pixel, which can cause aliasing errors (steps in the

image) (Figure 2.10(a)) (Sun Microsystems Incorporated, 1999). Another approach is the

bilinear interpolation, which uses the values of the four closest pixels and interpolates the

grey value for the pixel in the new frame (Sun Microsystems Incorporated, 1999). The

result is a much smoother image with less aliasing (Figure 2.10(b)) (Sun Microsystems

Incorporated, 1999). The bi-cubic interpolation is an approach using the 16 nearest

pixels. Interpolation over 16 pixels introduces minimal aliasing. However, with increased

numerical computations involving many pixels it is also the slowest method. Another

problem of this method is the smoothing effect, which appears as optical blur (Figure

2.10(c)) (Sun Microsystems Incorporated, 1999).

Another method used to determine transformation parameters is feature matching. This

method identifies similar features across both frames instead of manually measuring

points in both images. This is nowadays based on Scale-Invariant Feature Transform

(SIFT), Speed-Up Robust Features (SURF), or other similar algorithms. These algorithms

detect suitable candidate features in the images, which are invariant to scaling, translation
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(a) On the right the input image on the left the image after transformation.

(b) The transformed image (dark grey)
does not exactly match the new image
matrix (light grey).

Figure 2.9: Perspective transformation.

(a) Nearest neighbour method. (b) Bilinear interpolation. (c) Bicubic interpolation.

Figure 2.10: Perspective transformed image.

and rotation (Bay et al., 2006; Lowe, 2004). Similar features detected in two overlapping

images can be referenced between them using least squares matching (LSM) or other

similar methods (Brown, 1992).

If enough common features are identified between both frames, it is possible to calculate

the transformation parameters and carry out image transformations.
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Template matching A method often used in image processing and in photogrammetric

image processing is template matching. It is the process of finding a defined shape with

a certain pattern of grey values in an image. The template is a small image patch, which

contains the shape defined by its grey values. This template is then moved across the

sequentially whilst the algorithm detects the best match (Equation 2.5).

∆x,y =
Trows−1∑
i=0

Tcols−1∑
j=0

√
Fx+i,y+j − Ti,j2

best match = min(∆)

∆x,y . . .Difference image.

F . . . Input image for matching.

T . . .Template to be matched.

Trows,cols . . . Size of template in rows and columns.

(2.5)

There are also more advanced template matching techniques, which include not only

parameters to represent shift but also scale, rotation and distortion of the template.

2.1.2 Photogrammetry

Photogrammetry is the science of reconstructing ‘the position, orientation, shape and size

of objects from pictures’, which is based on precise measurements of image coordinates

(Kraus, 2007). Potentially, any image can be used for measurements in the object space,

if they fulfil special requirements. It is possible to use images from a hand-held camera in

a close range application, as well as images taken from an aircraft. To use these images

for photogrammetry it is important to know the geometry of the camera to produce

precise results.
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Figure 2.11: Aerial photogrammetry flight path.

2.1.2.1 Aerial photogrammetry

The possibility to measure 3D coordinates using aerial images has become the basis for

aerial photogrammetry and mapping. Aerial photogrammetry based upon the stereo pair

requires image overlap to have the necessary geometry for photogrammetric processing

(Kraus, 2004). Flights are typically planned so that the images overlap 60% along track

and 25% across track (Figure 2.11) (Kraus, 2004; Luhmann et al., 2014).

If the topography of the flight area is varied, or the operator is interested in measurements

of heights, it is advised to choose larger overlaps (Kraus, 2004). The overlap provides

the ability to detect identical points conjugate in both images and to reference them

to each other. Conjugate points can be then measured in photo coordinates (x′ y′) in

both images. Photo coordinates are measured relative to the principal point (x′0, y′0) in

the centre of the image. Image coordinates have their origin in the upper left image

corner. The measurement of the photo coordinates allows 3D coordinates for a point in

3D object space (X,Y, Z) to be calculated. This requires application of the collinearity
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equations (Equation 2.6) (Luhmann et al., 2014).

x′ = x′0 − ck
r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0) + ∆x′

y′ = y′0 − ck
r12(X −X0) + r22(Y − Y0) + r32(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0) + ∆y′

(x′, y′) . . .Photo coordinates.

(x′0, y′0) . . .Principal point offset.

ri,j i, j=1. . . 3 . . .Orthogonal rotation parameter.

(∆x′,∆y′) . . .Optional additional parameters

(X0, Y0, Z0) . . .Camera perspective centre

(X,Y, Z) . . . 3D coordinate

(2.6)

To fulfil the above equations, the exterior orientation of the camera needs to be known.

The exterior orientation is defined by three rotations (ω, φ, κ) to contribute to the

rotation matrix (ri,j) and the camera perspective centre (X0, Y0, Z0). The exterior

orientation can be solved by direct georeferencing or the usage of ground control points

(GCP) (Figure 2.12) (Bäumker et al., 1999). Direct georeferencing requires global

navigation satellite systems (GNSS) and inertial measurement unit (IMU) measurements.

Measurements of these, taken during image acquisition, are fed directly in the equation.

If direct georeferencing is not possible, the use of GCP in marginal images and Height

control point (HCP) chains through the pictured area provids the possibility to fulfil

the collinearity equation (Kraus, 2007). This calculation requires tie points (TP) to be

measured in overlapping image areas. With the GCP, HCP and TP the unknown exterior

orientation parameters of the equation can be determined for each image using the bundle

adjustment (Kraus, 2004). The Bundle adjustment is a least squares optimised procedure

that distributes errors homogeneously across measurements acquired in all images, even

in large datasets (Triggs et al., 2000) (Section 3.1.2.2).

Besides the exterior orientation, information about the camera itself can be determined,

including parameters capable of modelling the internal geometry of the camera. The focal
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Figure 2.12: Ground control points.

length (ck), position of the principle point (x′0, y′0) and optional additional parameter

(∆x′,∆y′) can be used to define the geometry of the camera. These parameters can

be calculated in a camera calibration, using a photogrammetric test field, or if image

geometry is strong, with an on-the-job calibration during post processing. The purpose

is to determine the image distortion caused by the lens and the camera, to achieve

accurate measurements and precise 3D object coordinates.

To calculate 3D coordinates, the exterior orientation and interior camera parameters

are combined with 2D coordinate measurements made in the image. Measurements are

more difficult, or even impossible if the image is blurred (Figure 2.13). However, blur

is a well-known problem to aerial photogrammetry, traditionally solved by fast shutter

speeds and motion compensation technology (Section 2.1.2.3).

2.1.2.2 UAVs

Unfortunately, UAVs rarely provide a stable camera position for accurate 2D image

coordinate measurements. UAVs are affected by wind, turbulence, sudden inputs by the

operator and also by the flight movement of the aircraft itself. A major advantage of
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(a) Sharp target.
Measurements
possible without
problems.

(b) Blurred target.
Measurements difficult
due to blur.

Figure 2.13: Sharp target vs. blurred targets.

UAVs is their use in high risk situations without endangering human life. These can

also be used at low altitude or in flight profiles where manned systems cannot be flown

(Eisenbeiß, 2009). Low cost sensors are practicable because of the limited payload,

regulatory restrictions and vulnerability of the UAV platform (Eisenbeiß, 2011). The

UAV system applicability for different situation is based on the flight range, endurance

and manoeuvrability and flight path control (Eisenbeiß, 2009). Table 2.2 represents a

range of different UAVs. A Kite can be considered to be a flexible wing UAV with a very

limited range but can have a very high endurance, manoeuvrability and some degree of

flight path control within a small area. In contrast, a Balloon has a long range and

endurance but the manoeuvrability is limited to changes in altitude. Following a flight

path is impossible because a balloon is completely dependent on the wind direction. The

Table 2.2: Classification of UAVs based on Eisenbeiß (2011).
Lighter
than air

Heavier than air

Flexible wing Fixed Wing Rotary
Wing

Various

Unpowered Balloon Paraglider Hang glider Gyrocopter Animals/Pets
Kite Glider

Powered Airship Paraglider Hang glider Single rotors
Propeller Coaxial
Jet engines Quadrotors

Multi-rotors
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range of potential applications for UAVs is almost unlimited. It is possible to conduct

a range of typical land surveying tasks (Peterman and Mesarič, 2012), carry out SAR

operations (Molina et al., 2012) or aerial photogrammetry applications including 3D

modelling, DSM generation (Remondino et al., 2012) and many more (Colomina and

Molina, 2014). It is also possible to carry out light detection and ranging (LIDAR)

(Zhou et al., 2012).

UAV image flights are different to typical aerial photogrammetric surveys (PIEneering,

2012). An important difference is the much lower flight altitude, which is cause by

regulatory restrictions. However, the lowflight altitude enables much higher ground

resolution and allowes the imagin of onlique facades and structures. Another difference

is the much larger image overlap used during UAV flights, typically 80% along track

and 60% across track (PIEneering, 2012). The large overlap enables a creation of more

accurate orthophotos because the ‘fall over’ effect of high stuructures such as buildings

can be compensated by cosing a different image. The larger overlap also allowes up

to 15 image coordinate meassurements for each object point. This vast amount of

measurements makes it possible that coordinates can be determined more accurate and

that height point chains are not required (PIEneering, 2012).

Due to its lighter weight and more unstable flight characteristics, images acquired by a

UAV are often blurred, when compared to a conventional aircraft. Light weight UAVs

are particularly affected by wind and turbulence. Automatic detection of image points

(GCP, HCP, TP) for the bundle adjustment is difficult and prone to errors in blurred

images. The manual detection of blurred images by human operators is time intensive

and exhausting for the eyes. Consequently, blur should be prevented and blurred images

should be identified and isolated using an automatic algorithm.

2.1.2.3 Blur prevention and preventive hardware modifications

A constraint enforced on early photographs was a stable camera position and a stationary

object, which forms the basic requirement for sharp images. The first images obtained

required exposure times of many days (Maison Nicéphore Niépce, 2013). Today

professional photographers use a tripod and an external shutter release to prevent
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the camera from any movement during image acquisition, e.g. camera calibration in

photogrammetry. With the development of compact cameras it has become very popular

to acquire images ‘on the go’, which introduced blur in images due to the hand-held use

without any stabilisation. This is why there are many different approaches in hardware

development and computer vision to prevent degradation of image quality and detect

and to deblur blurred images. Blur and sharpness are contrary and together with image

brightness, saturation and colour an important factor for image quality.

Blur and convolution filtering The overall quality of the optical system can be described

with the modulation transfer function (MTF). The MTF describes in detail the ratio

of the contrast at an object corner to the contrast of this corner in an image (Nasse,

2008). The larger the ratio of contrast, the better the quality of the optical system. It

is well known that lenses often exhibit a better sharpness in the centre of the lens and

get less sharp towards the boundaries (Nasse, 2008). This effect is commonly known

as “lens fall of” (Nasse, 2008). For this thesis the MTF was calculated for the used

lens (Figure 2.14) to established the quality. It was found that the lens used has in

average 0.79 pixel chromatic aberration and 1300 lines per image height in the centre

of the image (n = 10). Towards the boundary of the lens the chromatic aberration

increases to 3 pixels and lines per image height decreased to 1100 (n = 10). This

shows that the used lens is of acceptable quality and that the lens fall of is within the

expected boundaries for a standard DSRL lens. However, using MTF to measure motion

blur would not be possible, because the MTF is just measured along one edge. If this

edge is in direction of motion blur the MTF would be the same as for a sharp image.

Only edges perpendicular to the motion would exhibit a lower quality MTF. The MTF

is also dependent on aperture settings of the lens and the filmspeed (ISO) controlled

by the camera. The MTF describes only the ‘micro contrast’, which represents how

accurate small structures are represented (Nasse, 2008). However, the image quality is

also influenced by the ‘macro contrast’, which depends on the veiling glare of the lens.

This veiling glare are light rays, which are reflected on the glass surfaces inside the lens

and deviate from where they should originally illuminate the image sensor. The result

is that dark areas are ‘brightened up’ by additional light rays and do not appear as dark

as they are in reality (Nasse, 2008).
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Figure 2.14: Modulation transfer function for the used optical system. MTF was measured using
QuickMTF (2015)

Additinally, to the degrading effect introduces by the optical system, image quality is

influenced by ‘blur ’. There are two categories of blur. The first category of blur can be a

result of optical distortion caused by the focusing of the lens and setting of the aperture,

which is called optical blur. Another type of blur is caused by motion of the camera with

respect to the target or the object with respect to the camera, which is called motion

blur, even with the correct focal setting and aperture. The latter is the focus of this

research, for the remainder of this thesis it will be referred to simply as ‘blur’ (Section

2.2).

The apperance of motion blur depends also on the shutter used in the camera. There are

two major concepts the global shutter and the rolling shutter (www.red.com, 2015). A

global shutter illuminates all pixels of the image sensor at the same time. If the camera is

moved during exposure of the sensor, all pixels on the sensor experience the same motion

blur. With a rolling shutter however, the pixel lines are exposed one by one. If the camera

is moved between the exposure of each line, objects will be displaced compared to the

previous pixel line and movement will affect each line differently (www.red.com, 2015).

Blur prevention Image quality is affected by a range of factors. Both the camera, with

its sensor and settings and the lens are important. However, this has to be decided
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prior to an image flight and should be considered in an appropriate way. In stable flight

a fixed wing UAV has a constant velocity. This causes a quantifiable motion blur in

every image. Unfortunately, UAV flights are rarely stable and influenced by winds and

turbulence or sudden inputs by the operator. To decrease the amount of post processing

on the images it is possible to prevent image blur in advance. A technique used in

aerial photogrammetry is ‘angular motion compensation’ (AMC) and ‘forward motion

compensation’ (FMC) (Pacey and Fricker, 2005). AMC is a system, which compensates

the undesired angular motion of an aeroplane. This is achieved by mounting the camera

body on a gyroscopically controlled platform. FMC is a system that moves the film,

sensor, lens or camera in the direction of travel during image acquisition to compensate

for blur effects. To achieve this, the altitude and the ground speed needs to be precisely

known, to compensate exactly for platform movement. This information can be supplied

by precise GNSS and IMU measurements. It is also possible to use the GNSS and IMU

data to adjust the exposure time of the images to ensure it is shorter or equal to the

GSD. Physical movement of the sensor is not ideal because it is technically difficult

to realise and will be prone to errors at low altitudes. Changing the exposure times

will also cause problems because images will have different brightness, which influence

post processing of datasets. Another method used in digital cameras is ‘time delay

integration’ (TDI). TDI is a digital movement of the pixel content to the following row

of the sensor according to the ground speed (Pacey and Fricker, 2005). It is the flow

of the recorded reflectance during exposure from one pixel to the following pixel in the

direction of travel, which is the digital equivalent to the physical movement of a camera

film in FMC.

Another approach is vibration reduction or image stabilisation, which is available in

many low cost, compact and DSLR cameras because such high resolution sensors are

increasingly prone to blur from shaky hands (Sachs et al., 2006). There are two approaches

for image stabilisation. One is optical image stabilisation, which mechanically moves the

image sensor or the lens. This method requires gyroscopes, which measure the rotation

of the camera and controls the mechanical adjustment of the sensor or lens. The second

method is electronic image stabilisation within the sensor itself. This method is preferred

for video cameras because optical image stabilisation causes frame-to-frame jitter (Sachs

et al., 2006). It is also possible to use a gyroscope to detect the movement of the camera
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body and to adjust the image itself. No mechanical modifications are performed, but the

image content is simply shifted by a certain number of pixels using software, which is also

used in the case of time delayed integration (Sachs et al., 2006). An alternative approach

involves tracking a small set of feature points. These can be tracked over several frames

and interframe motion can be estimated. By connecting all single interframe motion

estimations, it is possible to compute the total motion of the camera over time and warp

the images back to the first frame (Morimoto and Chellappa, 1996).

Hardware modification Other approaches involve modifying the hardware in different

ways to simplify blur detection or correction after image acquisition. The most common

way involves a second image sensor. The first sensor takes images with a high GSD, but

includes blur caused by movement. The second sensor is attached to the same platform

as the first, hence experiences the same movement. However, it does not take high

resolution images but images with a high temporal resolution, so allowing the motion of

the platform to be calculated (Ben-Ezra and Nayar, 2004). With the calculated motion

path it is possible to use a Richardson-Lucy deconvolution to deblur the image (Section

5.1) (Ben-Ezra and Nayar, 2004; Burger and Burge, 2008). The disadvantage is the

need for a second camera with a very high frame rate. A typical exposure time for

image flights is less than 1
100 s which requires a frame rate of larger than 200 frames per

second (fps). This is not achievable with conventional video cameras, and special video

cameras are required. Another problem is the displacement of the optical path between

high frame rate and high resolution camera, which causes a different or tilted point of

view (POV).

Two other modifications affect the camera itself. The method used by Lelégard et al.

(2012) modifies the exposure time for each of the RGB channels. The result is that

neither of the channels is blurred or that all channels are blurred differently. The channel

with the shortest exposure is least blurred. The blur difference between the channels

can be used for the deblurring process (Lelégard et al., 2012). How much the channels

are blurred can be examined by converting the channels from the spatial domain to

the frequency domain with a discreet Fourier transformation (DFT) and comparing the

phase differences.Dependent on the amount of blur of the least blurred channel, it is
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possible to use the DFT filtered image of the least blurred channel to improve the other

more blurred channels (Lelégard et al., 2012).

An alternative approach involves coding the image exposure using a fluttering shutter

(Raskar et al., 2006). The fluttering can be chosen in a way that the resultant point

spread function (PSF) has the maximum coverage in the Fourier domain. A PSF is a

convolution function (Section 5.1.1.1). The deblurring can be achieved using a linear

approach. The problem is that the camera movement, has to be known in advance to

choose the fluttering of the shutter (Raskar et al., 2006).

Another approach involving hardware modification, is the attachment of an IMU to

the camera body (Joshi et al., 2010; Shah and Schickler, 2012). This is an attractive

approach because many UAV systems already contain an IMU in their autopilot system

to support the pilot. However, based on the Nyquist-Shannon sampling theorem the IMU

needs to have a high measuring frequency of larger 2 · 1
exposure time (Jerri, 1977). This

equates to more than 200Hz and allows the IMU to record the angular movement of the

camera during image exposure. These measurements can be used for image deblurring by

deconvolving the pixels and recovering a sharp image (Section 5.1). There are problems

related to the sensor accuracy and the noise of the IMU. Flight altitudes with a larger

distance between camera and object pose additional challenges (Joshi et al., 2010).

Most of these modifications are only applicable for minor blur (e.g. TDI). Other methods

would return different spectral signatures of materials and hinder further automatic

processing (Schowengerdt, 2007). Finally, the modification of low cost cameras involves

additional equipment, which exceeds the payload and size of small scale UAVs used for

most scientific applications. Most methods described are too expensive for small scale

applications, because they require very precise GNSS receivers and/or IMUs and/or

additional or more expensive cameras with special modifications. This would therefore

erode the key benefit of a UAV system, which is low cost. This makes blur prevention

using hardware modification more difficult for UAVs and puts the focus on blur detection

(Section 4) and correction (Section 5), after image acquisition.
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(a) Motion blur do to moving object in the image. (b) Motion blur due to moving camera.

Figure 2.15: Different kind of motion blur.

2.2 Generating motion blurred images

As the literature review revealed there are two different kind of blur, optical blur and

motion blur. Motion blur can be subdivided in to two groups. The first kind of motion

blur is caused by the object moving during image acquisition. This creates a blurred

feature whilst the background of the image remains sharp (Figure 2.15(a)). The extent

and shape of blur depends on how fast and on which path the object moved. Also the

camera to object distance influences the shape of the blur. A larger camera to object

distance lets the object appear less blurred, even when motion speed is the same as for

a shorter camera to object distance.

The second cause of motion blur is camera motion during image acquisition, in this case

the entire image will be blurred. However the extent of blur still depends on the camera

to object distance. An area with a large camera to object distance will be less blurred

than areas closer to the camera. One special case occurs, if the camera moves with an

object. Then the object is sharp, even when it is moving, while the background will be

blurred (Figure 2.15(b)). This second kind of motion blur is often used in sports to show

that the object of interest is fast moving. The first kind of motion blur is often used when

there is no special object of interest but the photo is supposed to express liveliness and

motion. Both cases are used as style elements in photography (Loughborough University,

2011).
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2.2.1 Problem of current blur methods

UAV images can be affected by the second type of (motion) blur due to camera movement

during image acquisition. As the camera is attached to the moving platform the complete

image is blurred, not only an object in the image. Simulating blur has been done

before by physically shaking the camera during exposure but mainly digitally, by using

mathematical convolution filters like a Gaussian or media filter (Joshi et al., 2010; Sheikh

et al., 2006) (Section 2.1.1.3).

Blur in UAV imagery is caused by a moving camera and represents a problem which is

currently unpreventable. To simulate motion blur in a controlled environment requires

a full understanding of UAV motion blur. The acquisition of a UAV image sequence

often contains one directional motion blur, due to the forward motion of the aircraft.

The amount of motion blur is dependent on UAV ground speed, which is not necessarily

UAV velocity through the air, due to localised wind effects caused by turbulence, gusts

and operator inputs which rotate the aircraft. In addition to the velocity of the UAV,

the rotations along the roll or pitch axis of a UAV are manifest as linear motion blur also.

Rotations along the pitch axis occur when the aircraft begins to descend or climb. This

motion is in the same direction as forward motion and would add to the forward motion

blur. Rotations along the roll axis occur when the aircraft begins to turn. This motion

causes across track blur which is orthogonal to the forward motion blur. The combined

effect is a diagonal motion blur. Rotations along the yaw axis are more complicated as

they create a circular blur in the image. Added together with forward motion, it would

be described as a curve. However, due to short exposure times, most blur paths are short

and can be approximated by a line. The combined effect is that all typical movements

of a UAV can be simplified into linear motion blur and not in complicated motion paths.

Hence, only linear motion blur needs to be simulated in test images.

Generating motion blur in images can be done using various methods. One method

could involve mathematical blur filters, which use mathematical convolution to simulate

motion blur. However, it was found that mathematical blur is not the same as geometric

blur caused by camera shake (Section 4.3). The second way of inducing motion blur in

images is by hand-held shaking of the camera. This approach is problematic because
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the extent and the direction of the induced blur is unknown. Additionally, the motion

speed might vary during image acquisition. Fortunately, because of the high sensitivity

of modern sensors, exposure times are short and motion blur can be assumed almost

constant. A third way to generate images with known motion blur is to connect a

precise IMU to the camera (Joshi et al., 2010). This IMU could measure the camera

displacement, direction and velocity. However, using an IMU still requires a platform

that can be shaken in a way similar to the motion described by a UAV. It also requires

a high precision IMU with high measuring frequency to measure the displacement for

images acquired with fast shutter speeds. For an image with an 1/200 s exposure time,

the measuring frequency has to be at least 400Hz. An alternative approach is to fix

the camera on a platform which exhibits known motion. A platform capable of creating

such physical displacements is called a shake table and was available for this study.

2.2.2 Shake table

Instead of using hand-held or mathematical image blur a ‘long stroke shaker with linear

bearings’ (shake table) was used to acquire motion blurred images (APS Dynamics

Incorporated, 2015). Images created using a shake table contain motion blur, which

has a known motion path and amplitude. As the camera is physically moved, such

images also contain typical degrading effects introduced by the camera hardware, such

as noise and chromatic aberration.

The ‘APS 400 ELECTRO-SEIS ’ of the company APS can be shaken in one direction

(1D) up to 158mm. A table platform of approximately 35 cm by 35 cm was mounted on

top of the shake generator. The shaking can be monitored with acceleration sensors and

a laser displacement sensor (Figure 2.16).

The device is classically used by structural and mechanical engineers who place models

of constructions on the table platform. The force generator which moves the platform

can then be used to shake the models. By observing the model the dynamic response

characteristics can be studied, which is particularly important for construction in areas

susceptible to earthquake, for railway sleepers materials or other materials influenced by

any kind of vibration. Therefore, the table is normally jiggled with low deflection and
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Camera (Nikon D80) Acceleration sensor

Camera trigger
Laser displacement
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Figure 2.16: APS 400 ELECTRO-SEIS with sensors.

Direction of view

(a) Camera facing the ceiling.

Direction of view

(b) Camera facing the wall.

Figure 2.17: Shake table setup.

high frequency. To simulate motion blur similar to UAVs the table needs to be shaken

continuously in one direction and not ‘jiggled’ with high frequencies.

This project used the shake table extensively to generate images with known blur

characteristics. To simulate motion blur, a camera was mounted on the table and

fixed so that it moved with the table (Figure 2.17). To conduct different tests the

camera could be mounted to face the ceiling (Figure 2.17(a)), where there was a test

field composed of photogrammetric targets, or towards the wall where 3D objects were

placed (Figure 2.17(b)). The camera has to be fixed very tightly, so that the camera
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moves coincidentally with the table. The orientation of the camera was set up in a way

so that the blur appears along either image columns or rows, but not diagonally. To

measure the actual position of the table platform a laser displacement sensor is attached

to the table (Figure 2.16). Additionally, an acceleration sensor was used to measure the

acceleration of the table and two other acceleration sensors were fixed on the camera.

One sensor measured the acceleration in the direction of the movement, a second sensor

measured perpendicular to the table movement. Two seperate accelerometers were used

to increase redundency. The sensors attached to the camera were used to demonstrate

that the camera only moved in one direction (Figure 2.16).

The movement of the table was controlled by Matlab using an input function created

to describe the velocity of the table. This function was linearly dependent on the time

(vel(t)). Logically the first derivation with respect to t represents acceleration; the first

integration describes displacement. The velocity was described by a harmonic oscillation,

which ensures a smooth transition between different phases of acceleration (Equation

2.7).

vel(t) = Amp · sin(2πfqu · t)

a(t) = d · vel(t)
dt

d(t) =
∫
vel(t) dt

t . . .Time

Amp . . .Amplitude

fqu . . .Frequency

vel . . .Velocity

a . . .Acceleration

d . . .Displacement

(2.7)

A harmonic oscillation is not constant at any point which caused the problem that the

velocity described did not contain a period of constant velocity. However, a period of
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constant velocity is demanded to simulate motion blur similar to blur created by UAVs.

This required a modification of the function to create periods of constant velocity. The

function needed to be modified in a way that the table was kept at a constant velocity for

the period of one oscillation. This ensured that the table was kept at a constant velocity

and neither decelerated nor accelerated (Figure 2.21). Synchronous with the period of

constant velocity the camera needed to be triggered with a remote shutter, allowing

an image with constant motion blur to be generated. The triggering of the camera

was delayed until constant velocity was reached to make sure the table was no longer

accelerating. After image acquisition the period of constant velocity was kept for a short

period of time to ensure that the table was not decelerating during image acquisition.

After the period of constant velocity the table was decelerated and then accelerated in

the opposite direction until the table reached maximum speed again, which was kept for

the period of one oscillation.

The shake table signal was modified in various ways. The number of periods of constant

velocity defined how many images were taken in one shake table run. For one run the

velocity at which the camera was moved during image acquisitions was similar so that

images with similar motion blur were created. The periods of constant velocity were set

to 10, to ensure enough test images with similar motion blur. Another modification of

the signal was the frequency. A high frequency of oscillations had the consequence that

one run of 10 oscillations was accomplished faster, but also that the periods of constant

velocity were shorter. With shorter periods of constant velocity the exposure time had to

be adjusted to guarantee that images were only acquired in the time of constant velocity.

Long exposure times therefore required lower frequencies to create larger periods of

constant velocity. If the frequency was chosen too low or the table moved too far in one

direction, then the table platform can reach the maximum displacement possible, which

results in an abrupt halt of the platform. This should be avoided to prevent damage

to the table and because it would result in unknown camera displacements, making

subsequent calculation of motion blur impossible.

Another element that was modified at the shaking function was the amplitude of the

signal, as this defines the table velocity. The amplitude could be first defined in the

Matlab script, but as the signal was sent via an external amplifier, the amplitude had
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Figure 2.18: Shake table control signal (normalised).

to be adjusted. In a first run the amplitude should be set to 1 in the script and then

the amplifier gradually increased in a way that the table can be displaced by the full

extent of 158mm. However, the amplitude must not exceed the maximum displacement

of the table as this would again result in an abrupt halt of the table platform. For the

following runs the amplitude was then be chosen in the Matlab script as A ∈ [0, 1).

Additionally to the table output signal the camera had to be triggered at periods

of constant velocity. The trigger signal was generated as a binary signal which only

contained an impulse to trigger the camera shutter (Figure 2.21).

2.2.3 Camera and camera settings

The camera type, camera settings and lens had a significant influence on the outcome

of the shake table experiments. The camera should be equipped with a remote shutter,

necessary to release the shutter at the correct point of time during the shake table cycle.

A remote shutter also prevented movement of the camera caused by pressing the shutter

button manually. It had to be possible to manually adjust standard camera settings

like exposure time, aperture and film speed and also more advanced settings like shake

reduction. Also the number of pixels acquired by the camera was important as it directly
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influenced the GSD. The ground resolution (Section 2.1.1.2) was also controlled by the

sensor size and the lens. The lens had to be of good quality to prevent blur effects caused

by spheric aberration, chromatic aberration, coma astigmatism and other influences. The

focal length of the lens was chosen based on the desire of covered area and the desired

accuracy of objects in the image. Furthermore, the GSD was also influenced by the

distance between camera and object. The image resolution was important because the

larger the zoom and the more accurate an object was represented in an image, the larger

was the influence of camera movement. It was decided that a 24mm and a 28mm lens

were appropriate for the planned experiment. This decision was based upon availability,

adequate camera specifications, appropriate control over camera settings and possibility

of connecting an external shutter to either a Nikon D80 with 3872 x2592 pixels and a

Nikon D7000 with 4928 x3264 pixels.

The shake table was placed inside a laboratory, hence the camera to object distance was

clearly much shorter than during a typical UAV image flight. This required focusing of

the lens to eliminate optical blur and acquire a sharp image. The focal length of a lens

is defined for its focus to infinity and changes when the lens is focused on a distances

shorter than infinity. The focusing was carried out using the autofocus functions of the

cameras to ensure that no visual impairment influences the sharpness of the images.

After focusing, the lens was fixed to prevent any changes to the focal length. This was

done by switching off the autofocus option and taping the focus ring so that it could not

be moved any longer.

The next influencing parameter was the aperture, which controls the depth of field

(Emling, 2008). The depth of field defines how wide the range of the focused area is

(Emling, 2008). A small aperture opening ensures a large depth of field. However, a

small aperture opening does also reduce the amount of light that gets to the image

sensor. As the laboratory was inside and also no large depth of field was required, the

aperture opening was large to ensure enough light reaching the sensor. However, a larger

aperture opening also causes more chromatic aberration, which needed to be prevented

because the effect has similarities to optical blur (Section 3.4.2).

To prevent underexposed images the film speed (ISO) and exposure time had to be

adjusted. The film speed defines the sensitivity of the sensor (Emling, 2008). A high
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(a) ISO 125, exposure Time 1/500.

(b) ISO 1600, exposure Time 1/1600.

(c) ISO 3200, exposure Time 1/2000.

Figure 2.19: Comparison of different film speeds.

sensitivity requires fewer protons to trigger a signal on the pixel. However, a high

sensitivity is more inaccurate and results in noise in the final image (Figure 2.19) (Emling,

2008). Figure 2.19(a) shows an image acquired with a low ISO value. The writing in

the image is easy to read and is sharp except a few problems around the letters. Figure

2.19(b) and Figure 2.19(c) are decreasing in readability and sharpness. The aim of UAV

image flights is to acquire high quality images. Therefore the film speed should be as

small as possible to reduce noise. A low ISO prevents the image from appearing blurry

even when there is no optical and motion blur. An image acquired with a low ISO will be

a higher quality but may have a tendency to produce a darker image (Emling, 2008).

A last setting critical to achieve acceptable images was the exposure time (Emling,

2008). Changing the exposure time directly influences the image brightness. A long

exposure time creates a bright image whilst a short exposure time darkens the image.

Figure 2.19(a) has the longest exposure time but because of the film speed the image

appears as bright as 2.19(b) and 2.19(c) which both have shorter exposure times. Long

exposure times are normally avoided as they often result in motion blurred images

due to hand shake (Emling, 2008). The exposure time was important because it also

controlled the size of motion blur (Section 2.2.1). By choosing long exposure times,

images with larger camera displacements were generated. However, long exposure times

also caused the disadvantage that the table had to move very slowly to generate small
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Figure 2.20: Various images taken of the test field with the camera facing towards the ceiling.

camera displacements. In the worst case, the signal was too low and the table could not

overcome frictional resistance and did not move at all. Very short exposure times were

also problematic because the table needed to move very fast to acquire images with large

displacements. The speed, acceleration and deceleration periods could cause the table

to reach its limits, causing damage or introducing additional unwanted blur. As a result

the exposure time had to be varied to create images with small and large motion blur,

as well as images with acceptable values of image brightness.

To support the image acquisition process inside the laboratory additional light sources

were required to illuminate the scene. A projector was used both as light source, but

also to perhaps project different textures on the ceiling (Figure 2.20). However, the

projections proved to be too weak and were excluded from further experiments.
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2.2.4 Determine image blur

Several shake table experiments were carried out using a range of camera settings and

set-ups. During the experiments the output of the sensors attached to the camera and

table were recorded and used for analysis. Laser displacement sensor observations were

used to determine camera displacement during image acquisition. Figure 2.13 shows the

laser displacement sensor measurements together with observations of the acceleration

sensor attached alongside the camera body across direction of

movement. It is possible to see that the acceleration sensor measures extreme vibrations

during the period of constant velocity. If the time interval is reduced and camera trigger

signal is included in the representation (Figure 2.21(b)) it is possible to see that a

vibration appeared just after the trigger signal, followed by a short flat period and

then followed by vibrations again. It can be assumed that these additional vibrations

observed by the acceleration sensor are caused by the opening and closing of the shutter

inside the camera body. The vibrations caused by the opening are so extreme that

they can be measured by the acceleration sensor. The delay between shutter trigger

and shutter opening can be explained by the delay caused by the hardware. For

calculating the precise motion of the camera the displacement between shutter opening

and shutter closing should be analysed. The surprisingly strong vibration of the moving

shutter inside the camera was evaluated during post processing to assess whether this

vibration influences the captured blur. Therefore, the value measured by the acceleration

sensor dependent on its sensitivity has to be integrated twice over the time, to convert

acceleration to displacement (Table 2.3). The calculated displacement based on the

Table 2.3: Accelerometer properties of shear accelerometers manufactured by PCB Piezotronics (2015).
Sensor ID Model ID Sensitivity

(mV/g)
38543 333B45 492
99363 352C68 99.3014
99357 352C68 102.0174

measurements of the acceleration sensor was at maximum 0.7 · 10−5 µm in comparison

to a pixel size of 6µm. It was therefore concluded that the movement caused by the

mirror is insignificant.
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Figure 2.21: shake table measurements (normalised).

The vabrations measured by the acceleration sensor were used to determine when the

camera shutter was opend and closed. It can be assumed that after the highest peak of

the vibration the shutter was opened and closed before the highest peak of the second

vibration. The highest peak is caused by the shutter arriving at its end position. The

closing of the shutter occurs immediately after exposure time. After establishing the

opening and closing of the shutter using the acceleration sensor, the displacement was

measured with the laser displacement sensor. During the opening of the shutter the
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(a) Maximal blur with Nikon D80 (b) Maximal blur with Nikon D7000

Figure 2.22: Strongest blurred images acquired from shake table.

movement was considered linear. Small deviations in the laser sensor observations can

be identified but remain small when compared to the overall displacement. These are

insignificant and can be considered as noise. The linear motion enables an accurate

determination of camera displacement in the object space.

After determining the camera displacement in meters the displacement can be converted

into a movement in terms of sensor pixels by dividing the displacement with the sensor

pixel size. This is necessary to understand how far the sensor was moved and visualise

how the influence of this movement appears in a digital image. The maximum

displacement achieved with the shake table was approximately 396 pixels (= 2.42mm)

with the Nikon D80 and 486 pixels (= 2.33mm) with the Nikon D7000 (Figure 2.22).

In total, more than 2000 images were generated with exposure times between 1/400 s to

1/10 s using ISO 100 and apertures f/8 for the camera facing the ceiling and f/13 or

f/14 for the camera facing the wall (Table 2.4).
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2.2.5 Results

The shake table approach provides a novel and accurate method suitable for generating

blurred images with known motion blur characteristics. The main advantage is the

automatic generation of a vast number of images, with a wide range of linear motion

blur. It provides a method to accurately calculate the displacement subject to each

image. However, the shake table is limited to a one directional movement making the

generation of multi directional blurred images impossible. As this research focuses on

UAVs this limitation is not considered relevant as UAV images normally only contain

one directional forward motion blur, or blur caused by angular movements of the UAV

(Section 2.2.1). Complex motion blur paths occur rarely as the exposure time of UAV

images are too short.

The laboratory only provides a short camera to object distance, which challenges the

applicability of the shake table approach for larger camera to object distances. UAVs

have a flight altitude of around 100m for a typical UAV image flights. To confirm

the laboratory tests are relevant, camera displacement for typical UAV image flight

should be calculated. Normal UAVs have a flight speed of around 54 km/h and an image

exposure time of 1/400 s (Grenzdörffer et al., 2012). This implies that the camera should

experience a displacement of 37mm during exposure. This is 15 times greater than in

the laboratory test, with a displacement of just 2.4mm. The camera to object distances

in the lab test was 1.6m, 63 times shorter than normal UAV flight altitude of 100m. The

ratios show that the lab tests are comparable with a typical UAV image flight. However,

this calculation does not consider angular movements of UAVs, which are much faster

and cause more extensive image blur (Grenzdörffer et al., 2012).

2.3 Chapter summary

This chapter has provided basic background concerning images and image processing

used in this thesis. It represents only a small amount of information and algorithms

available for image processing, but should give a basic understanding for the following

algorithms. Section 2.2 shows the basic theory for setting up a shake table experiment
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and presents how blurred images used in this project were generated. The production

of blurred images was necessary to prove the degrading effect of motion blur and its

influence on photogrammetric processes.



3 Blur disturbs

This chapter uses the blurred images generated with a shake table to establish whether

blur disturbs photogrammetric image processing procedures. Therefore, various

photogrammetric operations have been conducted using imagery with varying amounts

of blur on these procedures. Firstly, processes like camera calibration and bundle

adjustments were examined. Next the influence of blur on the detection of

photogrammetric targets was analysed. This includes assessing the impact upon both

types of targets, coded and uncoded. Lastly, the influence of blur on the detection of

random and unmarked feature points and the effectiveness of referencing between blurred

and sharp images was investigated. Initially, a general overview of camera calibration

and bundle adjustment is presented, before the various experiments are described and

analysed. The chapter finishes by concluding whether blur disturbs, and establishes its

significance on photogrammetric procedures.

Terminology In analysing the various procedures it is important to distinguish carefully

between the meaning of the terms ‘detection’, ‘measurement’, ‘identification’ and

‘referencing’. ’Detection’ is the process of finding a target in an image. As targets used in

photogrammetry are often of a circular shape, an algorithm is used to automatically

detect round objects in the image. It finds the boundaries of a circle and then uses

various techniques to calculate the centre of the circle (Luhmann, 2014). The detection

process can be carried out in two ways: fully automatic, where the algorithm processes

the complete image trying to find targets; or semi-automatic, where the operator defines

a region of interest (ROI) and adjusts additional parameters. The latter approach was

adopted to detect targets in most of this study. The process of detection is important

as subsequent procedures are used to calculate the centre of the detected target and

54
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derive a ‘measurement’, which is hopefully of sub-pixel precision and represents the

actual measured location of the target in the plane of the image. However, if the

target is not detected, or incorrectly detected, then automatic measurement is not

possible or the measured coordinates will be incorrect. If automatic ‘measurements’ are

unsuccessful it is still possible to manually measure coordinates in the image. However,

manual measurements are rarely practicable and therefore it is important to successfully

detect a target in order to ensure automation and measurements which are of sub-pixel

precision.

With an automatically detected and measured target it might also be possible to carry

out identification. The term ‘identification’ is used in this chapter to refer to the process

of assigning an identifying integer to a target. This is normally achieved automatically

using a coded bit pattern surrounding the target. The code needs to be clearly readable

to prevent incorrect identification (Shortis and Seager, 2014). Finally, an identified

target can then be ‘referenced’ which refers to the process of connecting identical targets

across multiple images. This can be achieved by using the identifying integer of targets

which have been successfully identified.

3.1 Literature review

This literature review will give an overview of techniques which are used in normal

photogrammetric operations, typically applied during industrial measurements (Luhmann,

2010a), where special photogrammetric targets are used. They are required for precise

camera calibrations and bundle adjustments.

3.1.1 Photogrammetric targets

Photogrammetric targets may be defined as special points of interest (POI), with the

potential to improve photogrammetric procedures. They provide identifiable points and

potential for fully automatic point identification (Luhmann et al., 2014). In many cases

they consist of simply black shapes on white paper and are placed on walls (Luhmann,
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Figure 3.1: Various targets uncoded and coded.

2014). However, they can also consist of more advanced structures containing a code

which uniquely identifies individual points (Galantucci et al., 2008). The material, colour

and especially the size of the target depends on the purpose of use. Targets for image

flights used outside with a large camera to object distances should be constructed from

weather resistant material and need to be physically larger; targets used in an indoor

laboratory test can be only a few millimetre in size (Dold, 1996) and made of less robust

materials. Targets should be:

• well defined, so they are easily identified;

• consistent, as to be visible from various POVs;

• unique, to be differentiated from other natural shapes in the image (Atkinson,

2001).

However, even if the targets meet these requirements, automatic detection methods can

confuse valid targets with similar appearing objects in the image. Hence, a human

operator is then required to distinguish between valid and invalid features.

3.1.1.1 Examples of photogrammetric targets

There is a range of different shaped photogrammetric targets which have been adopted

(Figure 3.1). Many are uncoded but provide the possibility to be measured accurately.

Many utilize a circular dot in the centre and include a small cross to define the exact

central location (Figure 3.2(a)). Coded targets are often based on these simple designs,
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(a) Dot target with cross in the
centre.

(b) 8 bit coded target. Only the
centre dot is used for
measurement.

(c) RAD coded target. Only the
centre dot is used for
measurement.

Figure 3.2: Circular shaped targets.

but include 8 bit coded (Figure 3.2(b)) or ringed automatically detected (RAD) code

that can be used by specific software such as PhotoModeler (Figure 3.2(c)).

Coded targets are rarely used in aerial applications, because they would need to be too

large, expensive and hence difficult to produce. For example PhotoModelers estimates

that a RAD coded target would have a diameter of 1.7m, for a flight altitude of 100m,

using a ck = 24mm lens on a Nikon D80. These practical limitations necessitate the

use of simple targets, involving just a dot, cross or chess pattern target, without the

possibility of automatic identification.

3.1.1.2 Coded target detection, identification and measurement

One method used for target detection and measurement involves template matching

(Bethmann and Luhmann, 2011) (Section 2.1.1.3). Once a best match has been found,

the shift parameter are measured as the target centre (Luhmann, 2014). Often target

detection is a separate step, before target measurement. To identify and measure a

target, it is first necessary to find the target in the image. There are various approaches

(Hattori et al., 2000; van den Heuvel et al., 1992) most begin by detecting the edges of

an image and filtering out every edge that does not match the requirements defined by

the target (Xia et al., 2012). In the case of round targets, all lines would be excluded as

well as edges that are too long or short (Xia et al., 2012). All structures that pass these
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tests are assumed to represent targets.

In the next step, target measurement takes place. Measuring a target accurately can

be achieved using a range of different methods. One classical approach uses the target

moment or gravity centre (Bradski and Kaehler, 2008). For this method the intensity

values of the target are used and the Green theorem applied, which describes the

integral of a plane region with a line integral (Green, 1828; OpenCV Dev Team, 2014).

The gravity centre is returned and can be taken as a coordinate measurement of the

target. Another method is based on the contours of the target. A best fitting ellipse is

determined using the edge pixels, then the centre of this ellipse can be calculated and

taken as a measurement for the target (Luhmann, 2014). All these methods return a

measurement which represents the centre point of a target. The surrounding code is

ignored due to its irregular shape.

In cases where it is desirable to read the target code and identify a target, a third step

has to be applied. The code which is defined by the target type is relative to the target

centre. As the target code often consists of a bit pattern, the identification algorithms

needs to detect the bit segments and decode them (Xia et al., 2012). When the bit

pattern is decoded an identifying integer can be assigned to the target (Wijenayake

et al., 2014).

3.1.2 Camera calibration and adjustment theory

The concept of a discrete targeted point and its location in both the image and the object

space is an important element in photogrammetry specifically for bundle adjustments

and camera calibration. They provide accurate coordinate measurements as well as the

possibility for repeated detection during motion.

3.1.2.1 Camera calibration

Targets are required for accurate image coordinate measurements, which can be repeated

across frames, but only coded targets support easy re-identification across multiple
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frames. The measurement of one target in two different images can be used to calculate

3D coordinates for the measured target (Kraus, 2007), but camera calibration is required

to achieve more accurate coordinate estimates (Luhmann et al., 2014). A camera

calibration procedure determines the inaccuracies interior camera parameter and can

also be used to convert pixel to photo coordinates, which are measured in millimetres

on the sensor and can be used for the collinearity equations to relate image to object

(OpenCV Dev Team, 2014).

There are different ways of calibrating a camera, including laboratory calibration, field

calibration, on-the-job calibration and others (Luhmann, 2010b). Laboratory calibration

has been applied traditionally to high accuracy photogrammetric cameras that provide

a permanent stable interior orientation (Hofmann, 2005; Meier, 1976). This is not

applicable for DSLRs, because they are unstable and they are calibrated either using a

test field, or on-the-job because these methods are easy and more practicable (Luhmann,

2010b).

Test field calibration requires a field with signalised targets of known coordinates or

distances between targets. The targets should be distributed over the complete image

area (Luhmann, 2010b). Subsequently targets are detected and measured in the image.

Lastly the measurements are used in a bundle adjustment to determine the unknown

camera parameters (Luhmann, 2010b) (Section 3.1.2.2). No changes to the camera set

up should occur between the field calibration and acquisition of the project images.

Self-calibration, or on-the-job calibration also uses a bundle adjustment with unknown

camera parameter. However, instead of images of a dedicated test field the images of the

project are used. However, unknown 3D coordinates of object points are introduced and

solved in the same process. Additional sensors such as IMU and GNSS can be included

in the collinearity equation (Equation 2.6) to calculate parameters necessary to model

the camera geometry.
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3.1.2.2 Adjustment theory

In general, it is comparably easy to design a photogrammetric project to allow ’on-the-job’

calibration. In fact there are often more measurements than required to solve the

collinearity equation using a bundle adjustment. Bundle adjustment is a special case of

least squares estimate. Least squares estimate is the process of adjusting observations

with least residuals to a model and is based on a Gauss-Markow-Model (Triggs et al.,

2000).

Adjustment theory uses least squares to minimise residuals from all acquired

measurements and to determine unknowns. The design matrix (A) is a linearised

functional model, which allows the relationship between observations and result to

be calculated (Niemeier, 2007). In the case of a camera calibration this contains the

linearised version of the camera calibration equation used to extend basic collinearity

(Equation 2.6). It is also possible to combine different functional models to integrate

different measurements (Schneider, 2010). In a first iteration, approximate values (X0)

for the unknowns are required, which can be calculated due to the redundancy (Niemeier,

2007). Using the design matrix (A) and the approximate values it is possible to calculate

the initial observations L0 and the shortened observations (l)(Niemeier, 2007):

l = L− L0 (3.1)

L is the vector with the values of the blurred image. The weighting matrix P can

be used to give certain observations a higher or lower weight, dependent on the precision

of the observations. It is defined that all values on the main diagonal of the identity

matrix (I) are equal. With these values it is possible to calculate the parameter vector

(x̂) and improvement vector (v), which can be used to calculate an adjusted unknowns

(X̂)(Niemeier, 2007):

X̂ = X0 + x̂ (3.2)
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and adjusted observations:

L̂ = L+ v (3.3)

In the following iteration X̂ and L̂ replace X0 and L and the process is repeated until a

certain number of iterations is exceeded or the parameter vector is so small that changes

become insignificant (Niemeier, 2007).

Bundle adjustment is a special case of least squares estimate. The functional model

is comprised by the collinearity equation using photo coordinates as observation and

object coordinates as unknowns. After each iteration the unkowns are updated (X̂) but

updating the observations (L) is not required (Cooper and Cross, 1988). However, least

squares method provides the mathematical background for both, camera calibration

and calculation of 3D object coordinates. It is the aim that the algorithm identifies

appropriate parameters to minimise errors and inaccuracies, therefore reduce the influence

of blurred images in photogrammetric processing. The experiments presented here

demonstrate that the effect of blur is apparent, even if measurement redundancy is

small.

3.2 Dataset I - Influence of blur on camera calibration

Three datasets were used to quantify the impact of image blur on automatic image

processing. The first dataset was used to assess the influence of blur on camera calibration.

3.2.1 Setup and composition of dataset

The first dataset consisted of convergent images of a calibration field comprised of 54

coded targets and a Siemens Star located in the image centre (Figure 3.3). The Siemens

Star provides a direct visual way to evaluate both the amount and the direction of blur.

Coded targets were used to allow fully automated camera calibration. The calibration

field was fixed to the ceiling with the shake table located beneath. The white ceiling
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Figure 3.3: Setup of first dataset.

panels contained small ventilation holes which appear black and provide natural targets

of good contrast and allowed a full visual analysis of blur. Furthermore, the ceiling was

permanently accessible and visible to the shake table. Hence, the calibration field was

fixed permanently and could be used for various experiments, without any changes to

the field.

To acquire blurred pictures of the field, the camera was fixed on the shake table, facing

towards the ceiling. The camera-to-object distance was approximately 1.6m, which

required focusing of the 24mm lens. After focusing, the lens was fixed using tape and

not changed during the subsequent shaking process. Fixing the lens ensures that optical

errors caused by the lens are the same for all images and that the light’s internal optical
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path is the same for all images. The light path should be the same to ensure that any

changes in the calculated calibration can be attributed to blur and not due to changes

in the optical system.

With this experimental configuration approximately 2000 blurred images of the calibration

field were acquired. Of these 2000 images, 13 images with various extents of blur were

chosen to be analysed. The 13 images were equaly distributed over the complete available

range of camera displacement created by the shake table, between 0mm to 1.03mm. The

gap between 0.5mm and 1.03mm was caused by a gap in the dataset cause by the shaker

table. To complete an appropriate camera calibration with a strong geometry, stable

camera positions around the shake table were also established. A tripod was positioned

at four locations around the shake table (Figure 3.3(a), P1-P4). The camera was fixed

on the tripod, facing towards the calibration field and triggered using a remote shutter to

prevented the camera from experiencing any significant shake and helped ensure sharp

images. Images in four orientations were acquired including landscape, ±90◦ and 180◦.

In total 16 images were acquired under such stable conditions.

PhotoModeler requires six images, to achieve an acceptable camera calibration. The 16

images of the stable positions were reduced to a subset of five images, with an additional

image chosen from the 13 images acquired using the shake table (Table 3.1). The camera

calibration procedure was then implemented 13 times and it was clear that the degree

of blur of the single image influenced greatly the calibration results.

Table 3.1: A list of parameters for the camera calibration dataset.
Dataset 1

Camera to object distance 1.60m
Size of target 8mm
Number of coded targets 54
Focal length 25.35mm
Aperture f/8
Frames per process 1 blurred + 5 sharp image
Number of camera displacements 13
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3.2.2 Camera calibration with blurred images

The first test included an image from a stable shake table, free from any camera

displacement. This sharp, unblurred image was used to calculate an accurate camera

calibration without any influence of blur. The result of this calibration, using sharp

images only, was compared to the results of the calibration with blurred images. To carry

out the calibration, PhotoModeler detects, identifies and measures targets automatically

and carries out a self-calibrating bundle adjustment to determine best estimates to

describe internal camera geometry. The 13 tests demonstrated that increasing blur

causes target detection to fail, which makes subsequent identification and measurement

impossible. Initial problems occurred for a camera displacement of 0.263mm, when

only 53 of 54 targets were detected (Figure 3.4(a)). With a camera displacement of

0.3mm, eight targets remained undetected. With a camera displacement of 0.32mm,

only 38 of 54 targets were detected and identified. However, one of the detected targets

was incorrectly identified. Incorrect identifications caused the problem that targets are

incorrectly referenced between images, which causes a gross error in the calculation. At

a camera displacement of 0.38mm, 18 of 54 targets were detected only, with four being

incorrectly identified (Figure 3.4(b)).

The orange inset in Figure 3.4(b) shows a magnified target sheet with one correctly

detected target and one incorrectly identified target, at a camera displacement of 0.38mm.

The other four targets presented in the inset were not detected at all. In manual

identification the targets are clear and the code is still readable, however, automatic

detection methods are not able to detect all targets or identify them correctly. Figure

3.4(c) shows an image with a camera displacement of 0.53mm. Most of the targets

remain undetected and the few that are detected are identified incorrectly.

With a displacement of 0.38mm the automatic camera calibration procedure failed.

This was because the targets were identified incorrectly, the wrong integer was assigned

and referencing across multiple images was wrong. Figure 3.5(a) shows the number of

detected targets and how many of them were referenced using fully automated procedures.

To ensure that the camera calibration results were not just influenced by the decreased
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(a) Image with 0.26mm camera displacement.
Camera calibration possible.

(b) Image with 0.38mm camera displacement.
Camera calibration possible.

(c) Image with 0.53mm camera displacement. No
camera calibration possible.

Figure 3.4: Success of detection of targets in blurred images. The Siemens Star clearly indicates how
blurred the image appears to humans.

number of detected targets, semi-automatic detection and measurement of targets was

performed using the ‘sub-pixel target mode’ provided by PhotoModeler (Figure 3.6).

The ‘sub-pixel target mode’ is a tool which allows the operator to create a ROI which is

used to detect targets. Due to the reduction to a small area the detection algorithm is

more likely to find a target. However, the usage of the ‘sub-pixel target mode’ might also

allow higher acceptance of other structure that are similar to targets, which can cause

false detection. However, if the ‘sub-pixel target mode’ tool is not applied precisely on

the centre dot of a coded target (Figure 3.6(a)) then accurate detection and measurement

is not possible (Figure 3.6(b) and 3.6(c)). The ‘sub-pixel target mode’ tool has to be

applied precisely on the centre dot of a target (Figure 3.6(d)) to achieve precise detections

and measurements (Figure 3.6(e) and 3.6(f)).

Manual creation of the detection box, at the correct position with the right size is
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(b) Semi-automatic target detection and
referencing.

Detected targets

Correct referenced targets

Figure 3.5: Difference between automatic and semi-automatic detected and referenced targets for
camera calibration.

therefore prone to error and is also time consuming. Thus referencing these targets also

needs to be carried out manually because identification of the targets is not automated.

After this computer assisted intervention, all targets were detected and it was possible

to assess the impact of motion blur on camera calibration. This assessment can be

conducted under conditions similar to a camera calibration using sharp images (Figure

3.5(b)). Corrections calculated during the process can be distributed over all targets

and the variations from calculated results can be attributed to blur.

3.2.3 Result of camera calibration with blurred images

The problems that occurred in detecting targets demonstrates that blur has three ways

of influencing the level of automation achievable during camera calibration. First,

misidentification of targets, which can result in incorrect referencing of targets between

the images. Second, misdetections and subsequently mismeasurement which can influence

coordinate calculation. Third, zero or limited detection of targets, which reduces the

number of measurements used to calculate calibration parameters.

The third problem is connected to the target detection process. A detection algorithm

attempts to detect the edges of a target, these edges are then analysed if they fulfil
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(a) Indication of sub-pixel
targeting area.

(b) Result of detection and
measurement.

(c) Results based on similar
targeting areas.

(d) Indication of sub-pixel
targeting area.

(e) Result of detection and
measurement.

(f) Results based on similar
targeting areas.

Figure 3.6: Semi-automatic target detection and measurement on image with 1.03mm camera
displacement.

certain requirements (Section 3.1.1.1). One requirement is the target shape, which is in

this case a circle. However, because of perspective distortions circles can appear as an

ellipse, or can be distorted in other ways. To ensure that the algorithm does not ignore

these distorted targets, a ‘roundness’ parameter is defined. This parameter specifies how

much a target may be distorted before it is excluded. A second parameter then analyses

the size of the detected shape. If the detected shape is too small or too large it is not

considered as a potential target. In a blurred image the targets are distorted due to

motion blur. There are three thresholds that can result in the rejection of a target if
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exceeded. The edge detection might fail because of smear, which can be so strong that

the transition between target and background prevents an edge from being detected. If

there is no edge then no target can be found. A second cause for rejection can occur if an

edge is detected and connected to a distorted shape. The target is not accepted as round

and the edge rejected from further processing. A third exclusion cause is that the target

could become too large due to blur. If the target is larger than expected, the detection

algorithm will assume it is another structure and is rejected from further processing.

These thresholds determine if a target is rejected from subsequent processing.

A more problematic error is the misidentification of targets and their subsequent inclusion

in processing. The measurement of misidentified targets can affect the calculations and

cause incorrect results and misidentifications need to be excluded. Alternatively, the

identifying integer has to be corrected, which is preferred.

Besides the obvious influences caused by motion blur, it was also found that motion blur

generates small change in the estimation of camera calibration parameters, compared

with sharp images (Figure 3.7). The decreased accuracy of automatic target measurement

can be illustrated by the change of the principal point position (Figure 3.7(a) and 3.7(b))

and the variation in calculated image size (Figure 3.7(c) and 3.7(d)). Figure 3.7(a) and

3.7(b) demonstrate that the position of the principal point varies from the position

calculated for a sharp image set. This variation is ≈ 8µm larger than one sensor

pixel (≈ 6.1µm). Figure 3.7(a) and 3.7(b) show that the calculated image width has

a tendency to increase with larger blur. This can be explained perhaps by the shake

direction, which is along the x-axis. The failure of fully automatic detection and the

requirement of semi-automatic target detection also implies that greater blur will cause

increasing problems for automated photogrammetric processing.

The detection easily finds edges that are aligned in the direction of blur, because

these edges are less affected. In contrast, edges perpendicular to the blur direction

create a transitional smearing effect between the target and the background, making

the detection of edges difficult. Subsequent estimation of the middle, between the start

and end of the target, becomes inaccurate and the measured centre does not represent

the true target centre. Due to this incorrect detection, subsequent measurements are

imprecise, especially in the direction of blur. Measurements derived perpendicularly to



CHAPTER 3. BLUR DISTURBS 69

0 0.2 0.4 0.6 0.8 1
11.766

11.771

11.776
P

ri
nc

ip
al

 p
oi

nt
 in

 x
 (

m
m

)

Camera displacement (mm)

(a) Principle point in x direction.
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(b) Principle point in y direction.
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(c) Image width.
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Figure 3.7: Results of camera calibration with blurred images.

the blur direction remain uninfluenced. As these images are blurred along the x-axis,

x-coordinates are the most likely to be inaccurate. The image width is an example as the

scaling of the image is influenced by the incorrect measured x-coordinates. It is perhaps

surprising, that the principal point does not change its position on the x-axis but varies

by about 8µm on the y-axis. There is no obvious explanation for this observation other

than simply just six images are unable to provide ideal geometry for reliable camera

calibration. Another reason could be based on the close relationship between image

size and principal point. It could also be that Photomodeler distributes the effect cause

by blur in the image width only. Image size and principle point are close related so

that probably a clear seperation of errors between image size and principal point is not

possible.
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Photogrammetry carried out with targets enables measurement accuracies of 1/20 pixel

(Luhmann, 2014). As the variation in the principal point is larger than one pixel it can

be assumed that measurements of 1/20 pixel precision cannot be achieved with blurred

images. These imprecise measurements could influence subsequent calculations of 3D

coordinates, compared to calculations achieved with sharp images. However, as camera

calibration normally uses a larger set of calibration images, the influence of one blurred

image will be insignificant as outliers can be detected and excluded.

Parameters for the radial lens distortion (k1, k2) and decentering lens distortion (p1,

p2) were calculated during the calibration process. It was found that neither had any

blur related dependency. However, both problematic automatic target detection and a

change in the calibration results imply a deteriorating tendency with motion blur, as

may be expected.
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3.3 Dataset II - Influence of blur on 3D object coordinates

As the first dataset showed, blur does have an influence on camera calibration but effects

are minimal as a tripod is usually involved. For a UAV image flight the accuracy of

measured image coordinates and calculated 3D coordinates is more important.

Consequently, a dataset was created to analyse the influence of blur on calculated 3D

object coordinates.

3.3.1 Setup and composition of the dataset

The second dataset was dedicated to the calculation of 3D coordinates, using targets

appearing in blurred images. A Nikon D80 and in a second experiment, a Nikon D7000

DSLR camera, were fixed on the shake table facing a wall. An object was placed between

the camera and the wall and was prepared with 130 signalised, non-coded targets. The

targets helped to ensure that the same points on the object were measured and that

subsequently the influence of blurred images could be analysed. Vertical bars were

positioned on both sides of the object, each with three coded targets (Figure 3.8).

For this experiment a 24mm lens was used and focused on the object, which was

approximately 1.7m away from the camera. The focus was fixed so that it could not

change during the shaking process. The distance to the wall was 3.5m. Out of focus blur

was suppressed using an appropriate setting for the aperture f/14 (f/13 for D7000) to

achieve an appropriate depth-of-field. The film speed was set to 100 ISO and an exposure

time of 1/5 s (1/10 s for the D7000) was necessary.

328 images were generated, (178 for D7000) each acquired with a wider range of camera

displacements. The huge amount of manual measurements required, limited the total

number of processed images to a subset of 6 images, which were equally distributed over

the range of camera displacements from zero to 1.51mm (0 to 0.86mm for D7000).

The calculation of 3D coordinates in photogrammetry requires image coordinates to be

acquired from at least two different images. Therefore, an image from a second stable

position was included in the processing. This second image was taken from a position
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(a) Sketch of
experimental set up.

(b) Sketch of target point
composition.

(c) Photo of laboratory set up.

Figure 3.8: Set up of second dataset.

beside the shake table, using a tripod and external shutter button to prevent any camera

shake. The distance to the object was similar to the distance between the shake table

and the object, to ensure that no adjustment to the focal length was required. The

distance between the shake table camera position and the stable tripod camera position

was 0.82m.

The sharp image from the tripod was paired with each of the six blurred images and

processed using PhotoModeler (Table 3.2).

As stated, 2D image coordinates have to be measured in at least two images. For the

Nikon D80, 128 of the targets were visible from the shake table position as well as from

the stable camera position. As the obstructed targets were different for both images it
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Table 3.2: A list of parameters for the 3D object point dataset.
Dataset 2

Camera to object distance 1.70m
Size of target 9mm
Number of coded targets 6
Number of not coded targets 130
Focal length 28.86mm (40.11mm)
Aperture f/14 (f/13)
Frames per process 1 blurred + 1 sharp image
Number of camera displacements 6 (+1 blur repeated

used for manual target
measurements)

was possible to reference 126 targets only between both images. In the Nikon D7000

experiment, three targets were obstructed for the stable camera position and two for the

shake table. This resulted in only 125 common targets that could be referenced between

both images.

Additionally, both cameras underwent a camera calibration. This calibration was

undertaken after the shaking process, using only sharp images of a camera calibration

test field. The purpose of the camera calibration was to ensure precise knowledge

about the camera parameters and to achieve precise results for the calculated 3D object

coordinates.

3.3.2 Calculation of 3D coordinates with blurred images

At first automatic detection of targets was carried out using the sharp image. The

detection, identification and measurement of all six coded targets and the 128 uncoded

targets was successful. A few points were misdetected as targets, even when they

were not signalised, but manual intervention excluded them from further processing.

Automatic detection was also carried out using the blurred images from the shake

table and Table 3.3 presents the result of fully-automatic detection. Similarly to the

results found with the first dataset, the automatic detection of targets became more

unreliable with increasing blur. It would appear that detection and referencing becomes

increasingly impossible with increasingly blurred imagery (Table 3.3). It can be seen that
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Table 3.3: Influence of camera displacement on automatic detection and referencing of not signalised
targets for Nikon D80 camera.

Camera displacement
(mm)

Number of ’automatic
target marking’ targets
out of 128

Automatic referenced
targets out of 126

0 132 (4 not signalised) 125
0.20 130 (2 not signalised) 96 (4 incorrect)
0.32 135 (8 not signalised) 84 (3 incorrect)
0.49 126 (3 not signalised) 69 (4 incorrect)
0.99 0 80 (1 incorrect)
1.51 0 11 (7 incorrect)
1.51 (manual) 0 41 (3 incorrect)

the detection of signalised targets suffers significantly with larger camera displacements.

With a displacement larger than 0.49mm, detection fails completely. To ensure that

all possible targets could be processed PhotoModelers ‘sub-pixel target mode’ tool was

again used to detect the missing targets. Although initially it appeared successful,

Figure 3.9(a) shows that the detection of circles can be actually inaccurate, due to

blur. However, automated measurement generally derives a point close to the centre of

the blurred target and the tool returns a coordinate to a sub-pixel precision. Difficulties

encountered in automated target detection and measurement (Figure 3.9(b)), seem to be

caused by the appearance of two target silhouettes caused by a large degree of blurring.

Another explanation could be the combination of a black target, on a dark background.

The high contrast of a black target on white background causes during the blurring

that the target becomes paler. However, if the target is not just blurred with white

background but also blurred over a darker area it regains darkness and appears darker

but not as dark as the original black target. Figure 3.9(d) shows an example where the

right silhouette appears darker than the left due to the darker background to the right

of the target and two targets are detected. To analyse if semi-automatic measurement of

blurred images is more precise than operator inputs, manual measurements were carried

out. The most blurred image was taken and an operator measured all targets manually

without computational support. The measurement was conducted as accurately as

possible, in the middle of the blurred target, between both of the target silhouettes

(Figure 3.9(c)). It would also be possible to use automated methods such as those

presented by Boracchi et al. (2007), who calculated the middle between two targets

silhouettes and returned a measurement for the centre or the two round silhouettes.
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(a) De-
tection
in image
with
0.99mm
camera
displace-
ment.

(b)
Detection
in image
with
1.51mm
camera dis-
placement.

(c) Mea-
surement
in image
with
1.51mm
camera
displace-
ment.

(d) Appearance of two target silhouettes, which the automatic tool detects both.

Figure 3.9: Detection of blurred targets with PhotoModeler’s ’sub-pixel target mode’ tool.

A next critical step is target referencing between images. As expected, referencing targets

between images automatically becomes increasingly difficult as blur increases (Table 3.3).

Referencing targets between a sharp image form the stable position and a non-blurred
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image from the shake table returned 125 correct references from the 126 possible (four

targets were not available in both images). A camera displacement of 0.20mm returned

only 92 correct references and four incorrect references. With increasing blur the number

of correct references decreases significantly. Referencing is based on similarities between

both images, which are more difficult to find with increasing blur. The remaining

unreferenced targets were then referenced manually until all 126 targets were correctly

referenced between both images.

A similar experiment conducted with the Nikon D7000 camera experienced similar

problems to the D80 dataset and was solved in the same way (Table 3.4).

Table 3.4: Influence of camera displacement on automatic detection and referencing of not signalised
targets for Nikon D7000 camera.

Camera displacement
(mm)

Number of ’automatic
target marking’ targets
out of 128

Automatic referenced
targets out of 125

0 131 (6 not signalised) 103 (19 incorrect)
0.14 131 (6 not signalised) 96 (4 incorrect)
0.39 135 (8 not signalised) 101 (19 incorrect)
0.52 115 (2 not signalised) 68 (36 incorrect)
0.62 68 (2 not signalised) 61 (30 Incorrect)
0.86 0 102 (55 incorrect)
0.86 (manual) 0 125

After successful referencing of the targets it was possible to calculate the 3D object

coordinates for both the D80 and the D7000 dataset.

3.3.3 Result of 3D coordinate calculation with blurred images

The second dataset used to calculate 3D coordinates using motion blurred images,

supports the findings of the camera calibration dataset. A small degree of blur prevents

fully-automated detection and requires some computer-assisted, manual or semi-automatic

detection. With a camera baseline of 0.82m and a camera-to-object distance of 1.70m, an

appropriate intersection angle for precise coordinate calculation is provided. Coordinate

discrepancies between sharp and blurred image sets were calculated. This establishes

that computed coordinates are inevitably influenced by increased motion blur. For a
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(a) Blurred image of D80 with 0.49mm camera
displacement.

(b) Inset of blurred image of D80 with 0.49mm
camera displacement.

(c) Blurred image of D7000 with 0.52mm camera
displacement.

(d) Inset of blurred image of D7000 with 0.52mm
camera displacement.

Figure 3.10: Comparison of similar camera displacement for D80 and D7000.

0.49mm blurred image, the discrepancy was on average 0.11mm (Figure 3.11(a)), which

is small considering that one pixel has an approximate ground sampling distance of

0.35mm. However, images with smaller levels of blur can have discrepancies of up to

0.4mm, which is more than one pixel (Figure 3.10(a) and 3.11(a)). When blur is so large

that automatic target detection fails, the accuracy of calculated coordinates decreases

rapidly.

With the maximal camera displacement of 1.51mm, which is clearly visible to the

human eye (Figure 3.11(b)), the average discrepancy of the coordinates is 6.64mm.

This discrepancy is 19 times larger than for a camera displacement of 0.49mm (Figure

3.11(b)). Also, the maximal discrepancy of 20mm is 50 times larger than for a camera

displacement of 0.49mm (Figure 3.11(b)). The impact of blur is clear and is considered a

significant problem, particularly considering the GSD of just 0.35mm, which is 2
3 the size
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(b) Discrepancies for large camera displacements.
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1.15 mm 
manual target measuring

Figure 3.11: Discrepancies between blurred and sharp set for Nikon D80.

of the camera displacement. This test proves the deteriorating effect of image blur on

the results of automated photogrammetric processing. It was found that the discrepancy

between a sharp and manually processed image set was only 2.02mm. This is three times

smaller than for the semi-automated processed image set. The largest discrepancy with

less than five millimetres was much smaller. This shows that automatic measurement is

clearly inferior to manual measurement when visible blur is apparent.

Surprisingly, the results of the Nikon D7000 show similar results. With increasing camera

displacement the discrepancy between the sharp and the blurred set increases (Figure

3.12). However, due to the smaller pixels on the sensor, similar displacements result in

larger blur in the image (Figure 3.10). A displacement of around 0.5mm has an average

discrepancy of 0.11mm for the D80 and 0.21mm for the D7000 (Figure 3.11(a) and

3.12(a)).

It was also found that manual detection in the D7000 set produced inferior accuracies
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Figure 3.12: Discrepancies between blurred and sharp set for Nikon D7000.

Figure 3.13: Blurred target of D7000 with 0.86mm camera displacement.

than automatic detection. However, there were some subtle differences. The targets in

this image are smeared, they do not create two separate, but two overlapping dots. The

result is that the centre of the smeared target is significantly darker than the boundaries

(Figure 3.13). This might enable target detection and measurement methods to find the

centre of the target more accurately than a human operator. Methods for measuring the

centre of a target remain effective because the gravity centre can be established precisely

in the centre of the dark area.
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Furthermore, it is noticeable that discrepancies of both sets, the D80 and the D7000

set, describe a zig-zag curve (Figure 3.11 and 3.13). As both datasets were created

independently it is certain that the results are consistent. This could be caused by the

detection method, which sometimes detects the smeared dot more to the right or more

to the left. The side which is more often detected returns small discrepancies in the

calculations. The targets detected more to the other side of the targets however, have

larger discrepancies. It can be assumed that, if semi-automatic detection always measure

the same side of a target, the discrepancies will be significantly smaller.

A camera displacement of 0.86mm results in an average discrepancy of 0.42mm compared

to 0.2mm GSD for the D7000; for the D80 a camera displacement of 0.99mm results in

an average discrepancy of 1.39mm compared to a 0.4mm ground sampling distance. In

some applications an accuracy of 2 -3 pixels is acceptable. However, it can be assumed

that larger camera-to-object distances, with the same baseline and camera displacement,

will cause larger errors due to an increasingly smaller intersection angle. For UAV image

flight is it also important to consider that all images contain a certain amount of motion

blur due to the unstable camera platform. This means there is no perfectly sharp

picture available and the calculated 3D coordinates are calculated using two blurred

images. However, object coordinates are often calculated based on more than just two

image coordinate measurements. This redundancy can help to suppress the influence

of image blur and restore precise object coordinates. Nevertheless, it has been found

that blurred images remain a significant problem for accurately detecting targets, which

needs further investigation.



CHAPTER 3. BLUR DISTURBS 81

3.4 Dataset III - Influence of blur on target detection

While working with the two first datasets it was observed that the detection of targets

in blurred images is the main difficulty posed to automatic processing. Fully automated

detection of targets in blurred images fails even with a small amount of blur. Even

semi-automatic detection, which requires operator intervention, is difficult and time

consuming. The operator defines precisely a search mask around the proposed target

area to ensure a detection. However, even if the detection appears successful it can be

wrong and influence subsequent calculations. In extremely blurred images, where the

camera displacement is larger than the target (Figure 3.9(d)), fully manual measurements

appear to be the only method that ensures that measurements are made with reasonable

precision.

3.4.1 Setup and composition of the dataset

The third dataset was acquired to determine the influence of blur on automatic target

detection and to determine a threshold at which successful automatic detection fails.

Therefore, circular targets of different sizes were positioned at different distances to the

camera. The diameter of the targets were 0.4mm, 1mm, 1.9mm and 3.5mm. These

targets were positioned in front of the camera with camera-to-object distances of 1.7m,

2.1m, 2.7m and 3.2m. Three targets of the same diameter were positioned at each

distance, which resulted in a total number of 48 targets.

Two cameras were mounted on the shake table: a Nikon D80 with a 24mm lens and a

Nikon D7000 with a 28mm lens. The higher camera resolution and focal length of the

D7000 provided images with a higher geometric resolution than the D80 images. Both

cameras were shaken at the same time to ensure exactly the same blur to both cameras.

Due to the limited space on the table the D7000 needed to be fixed 100mm further

away from the targets. The focal length for the D80 was 25.97mm and 29.31mm for

the D7000 (Table 3.5). All these factors, including the larger camera-to-object distance,

different focal length and different pixel size were taken into account during subsequent

analysis. The aperture was set for both cameras to f/14 with a film speed of 100 ISO
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(a) Sharp image acquired with D80. (b) Blurred image acquired with D7000.

Figure 3.14: Setup of third dataset.

and a consequent exposure time of 1/5 s.

With this configuration, 135 images and 75 images were acquired with the D80 and

D7000 respectively, all cameras experiencing displacements less than 2.41mm. The

discrepancy in the number of images was created by the need to manually trigger the

D7000. Automatic camera triggering was possible for the D80 whilst manual camera

operation was used for the D7000. This caused the difference in the number of exposures

between cameras, with five times per shutter run for the D7000 compared to 10 times per

run achieved with the D80. The shake table was set to a long period of constant velocity

and both cameras were equipped with acceleration sensors. During post processing

it was possible to exclude all D7000 images that were not acquired during a period

of constant velocity (Section 2.2). Of the generated images, 14 images with different

camera displacements were chosen for detailed processing from the D80 image set. The

displacement for these images was between 0mm to 2.42mm. For the D7000, 15 images

were chosen, with a camera displacement between 0mm to 2.28mm (Table 3.5).

3.4.2 Target detection in blurred images

The 48 targets used to conduct this test were chosen to have redundant information

at different depth of the image. The pixel width of each target, at each distance was

manually counted in the sharp image (Figure 3.14(a)). This included, the outmost

left and right coordinate of the target which were also measured manually. These
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Table 3.5: A list of parameters for the dataset to analyse the influence of blur on target detection.
Dataset 3
Nikon D80 Nikon D7000

Camera to object distance 1.70m;2.10m;2.70m;3.20m 1.80m;2.20m;2.80m;3.30m
Size of target 4mm; 10mm; 19mm; 35mm
Number of not coded
targets

48

Focal length 25.97mm 29.31mm
Aperture f/14
Number of camera
displacements analysed

14 15

measurements were conducted by the same operator, on the same screen, with several

breaks to rest their eyes so helping to ensure consistent measurement quality. Target

width was calculated by using the difference between the measured left and the right

coordinate and the average of the three targets in each size (four sizes) at each distance

(four distances) determined (16 average values). Then it was calculated how large the

targets should theoretically appear in the image. Equation 2.2 was applied, using target

size in object space (tO) focal length (ck) and camera-to-object distance (h), generating

the theoretical target size in image space (tI), converted to pixels. This ‘theoretical

target size’ was compared to the target size measured in the image. The discrepancies

are represented in Table 3.6. For most targets these differences are around one pixel

and it can be accounted for by spectral mixing and chromatic aberration. Chromatic

aberration appears radial from the centre of a lens (Figure 3.15). To suppress the

influence of chromatic aberration on the counting process, which is carried out in the

horizontal direction in which the blur is being applied, targets were fixed in the centre

top of the image (Figure 3.14). This causes, chromatic aberration to occur at the top

and bottom of a target, but not on the left or right side of the target.

Automated target detection was then applied on the blurred images, to evaluate whether

each target was detected successfully. For detection, the ‘Automatic Target Marking’ tool

was used, which detects targets without any additional operator input. The detection

tool began missing targets with a camera displacement of 0.59mm (D80) and 0.42mm

(D7000). Detection of targets failed on all distances and target sizes with a camera

displacement of 1.95mm (D80) and 1.59mm (D7000). Each image was analysed and

the number of detected targets for each distance was evaluated. Unfortunately, the
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(a) Comparison for targets in D80 image. Counted and (theoretical) size in
pixels.

Target
diameter
(mm)

Camera to object distance (m)

1.7 2.1 2.7 3.2
4 12.3

(10.02)
9.6
(8.11)

7.6
(6.31)

6 (5.32)

10 27
(25.05)

21
(20.28)

15.6
(15.77)

12.6
(13.31)

19 51
(47.59)

39.6
(38.52)

29
(29.96)

24.6
(25.28)

35 94
(87.67)

72
(70.97)

51.6
(55.20)

44
(46.57)

(b) Comparison for targets in D7000 image. Counted and (theoretical) size in
pixels.

Target
diameter
(mm)

Camera to object distance (m)

1.8 2.2 2.8 3.3
4 18

(14.67)
13
(11.88)

11.6
(9.24)

8.6
(7.80)

10 38
(36.68)

29.6
(29.70)

23 (23.1) 19.6
(19.49)

19 72.6
(69.70)

58
(56.42)

43.6
(43.89)

36.6
(37.03)

35 133
(128.40)

104
(103.94)

76.6
(80.84)

66.6
(68.21)

Table 3.6: Comparison between counted and theoretical target size.
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Figure 3.15: Chromatic aberration (blue and red) on black target. Inset of a 35mm target with 1.7m
distance to the camera.

relationship between blur extent and successful target detection was only approximate.

Only rarely were all targets of the same distance and size detected in one image but were

then not detected in the subsequent more blurred image. Sometimes it even happened

that a target was not detected in a less blurred image, but was detected in the following

more blurred image (Section A.1). Due to the limited number of three targets, of one

size, at one distance, it was decided that detection failed when all three targets were not

detected any longer. The clear cut ensures that target detection would certainly fail for

targets in real images at this size and distance. At this point the target pixel width was

manually counted and was found to be larger than the original sharp target due to the

motion blur.

3.4.3 Results of target detection in blurred images

Despite some indistinct patterns in performance, it was possible to find the threshold at

which detection fails due to blur. By determining the practical pixel width in the blurred

image and comparing it to the theoretical sharp target width it was possible to identify

a linear dependency between sharp target size and blurred target sizes (Figure 3.16(a)).

Figure 3.16 shows theoretical target size versus the size of targets when detection is no

longer possible. The best-fitting linear dependency was established using least squares
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(a) Linear axes scale. (b) Logarithmic axes scale.

Figure 3.16: Target size in a sharp image referenced to targets size in a blurred image when automatic
detection failed. (R2 = 0.9914)

matching and then used to formulate an equation that describes the degree to which a

target can be blurred before automatic detection is unsuccessful. A theoretical target

size in pixels (ts) can be determined using information about the target size in object

space (tO), focal length (ck), distance between the camera and target (h) and sensor

pixel size px. Furthermore, the blurred target size (tb) can be related linearly to its

theoretical equivalent ts:

ts = tOck
psh

tb ≤ 1.166 · ts + 16.794

ts . . .Theoretical target size in pixel

tb . . .Blurred target size in pixel

tO . . .Target size in object space

ck . . .Focal length

h . . .Camera to object distance

ps . . . Sensor pixel size

(3.4)
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Figure 3.17: Size of blurred targets related to camera displacement.

From the tests conducted, targets which have a theoretical width of ts, and appear

in the image with a width between ts and tb, can be automatically detected. In Figure

3.16(b) it is possible to see that the ratio between the theoretical and blurred target

sizes decreases for larger targets, which implies that there is a greater tolerance to the

blurring of small targets than large targets. This is an important finding but can be

practically explained by the circularity threshold used in the detection algorithm. This

threshold is based on the roundness of a target and how many pixels are part of a round

target. For large targets a small camera displacement will increase the percentage of

pixels that do not support a round target and it is not accepted as a target. However,

for a small target the percentage of pixels that do not support a round target is with

the same displacement much smaller so that it is still accepted as round.

The size of blur is a direct result of camera displacement. Larger displacements cause

targets to appear more smeared. Figure 3.16 illustrates how much displacement is

required for target detection to fail, and how wide the target appears in the image.

Comparing camera displacement with the size of the blurred targets proves that large

targets can be absolute blurred more than small targets before detection fails. This

means that they can experience greater camera displacements before detection fails.

Figure 3.17 shows how target size, camera displacement and camera-to-object distance

are related.
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The dependency between camera displacement and successful target detection is exponential,

which confirms that smaller targets tolerate more relative blur than larger ones, which

means that relative to their small size they can be blurred more than large targets. A

target with a theoretical width of 50 pixels can be detected until it becomes so blurred

that its width increases to 75 pixels, suggesting that a 50% blurring can be tolerated.

However, a target measuring 100 pixels can be smeared to 133 pixels before detection

fails, which is only an increase of just 33%. These examples suggest that the 50-pixel

target can only suffer a displacement of 25 pixels before detection is unsuccessful, whilst

the larger 100-pixel target can resist detection failure due to blur up to 33 pixels (Figure

3.16). This represents a difference of 8 pixels of additional camera displacement that

can be tolerated if larger targets are used (Figure 3.17). It also shows that an increasing

object-to-camera distance results in a flatter exponential function. The outliers, which

do not support the exponential function, represents the smallest targets with a size of

4mm. It would appear that the detection algorithm does not detect very small targets

because they have too few pixels in the image to be recognised as a target (Figure

3.18(a)). However, once blurred they are represented by enough pixels to be accepted

as a target (Figure 3.18(b)). Notwithstanding this, as the target becomes even more

blurred, detection fails again because the target shape becomes too elliptical and does

not appear as a circle (Figure 3.18(c)).

The exponential function (Equation 3.5) best represents the dependency between the

camera-to-object distance, displacement and blurred target size (Figure 3.17). This

function makes it possible to calculate the blurred target size (tb) as dependent on the

camera-to-object distance (h) and the camera displacement (d) for short camera-to-object

distances:

tb = 70000 · h−1.85 · e2d

(3.5)

Equation 3.5 is a based on a least squares matching (R2 = 0.9815) and has not been

investigated for distances much greater than 3m and should be treated with caution

for the increased camera-to-object distances that may be more common with UAVs.

The displacement d is the result of the camera velocity during exposure time (Equation
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(a) A sharp target consists
of too few pixels to be
detected.

(b) Increased number of pixels
enables detection.

(c) Too much blur do be detected.

Figure 3.18: Influence of blur on small targets.

3.6). Forward-motion displacement can be calculated using the exposure time and UAV

velocity. In the case of rotations, the calculation depends on the position of the rotational

axes. If the origin of the axes is coincident with the camera’s perspective centre, it is

possible to compute equation 3.6. As opposed to the roll ω and pitch φ, which only

depend on the flight altitude, the yaw κ depends on the distance between the nadir

position and the object s for which the displacement d is calculated:

d = vt · ex

d = h · tan vω/φ · ex

dκ = s · tan vκ · ex
(3.6)

where: dκ is the displacement in yaw; vt/ω/φ/κ are the respective velocities in translation,

roll, pitch and yaw; and ex is the exposure time.

Connecting equations 3.4 and 3.5 makes it possible to calculate the minimum target size
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t0 that should be used in a UAV image flight. To calculate it the following parameters

are required: object distances h known a priori; focal length ck; sensor pixel size px; and

camera displacements d (Equation 3.7). These are normally already part of the flight

planning process before every UAV image flight:

t0 = 70000 · h−1.85 · e2d · h− 16.794 · h · px
1.166 · ck (3.7)

However, the inverse calculation to determine the displacement based on the size of

a blurred target is not always valid. It would only be valid when the blurred target is

on the threshold between successful and unsuccessful detection because this equation

is based on the maximum detectable size of blurred targets. If a less blurred target is

used in this calculation, the real camera displacement will be larger than the calculated

one.

3.5 Dataset IV - Influence of blur on feature matching

The previous tests have demonstrated that photogrammetric target detection is influenced

by blur. However, use of photogrammetric targets is normally restricted to establishing

a coordinate system for a survey. The production of a dense digital surface model (DSM)

never uses targets but well defined natural features are identified using automatic feature

detection and referencing algorithms. These algorithms search for feature points, which

are identifiable in other images. After detecting features in two or more images, the

algorithm references the best match. Measuring 2D image coordinates for each feature

in all images provides the possibility to generate a dense DSM. As the previous datasets

have indicated, detecting targets is difficult with blurred images and it could be assumed

that feature detection and matching method are also influenced by blur. This final

test dataset has been used to assess the extent that motion blur affects detection and

matching of natural features.



CHAPTER 3. BLUR DISTURBS 91

3.5.1 Setup and composition of dataset

The images for this dataset were taken from the camera calibration dataset (Section 3.2)

using a subset of four images with 0 - 1.03mm camera displacement. One sharp image

was used, and detected feature points were referenced in the blurred images. Table 3.7

summarises the key characteristics of the image used.

Table 3.7: A list of parameters for the feature detection dataset.
Dataset 4

Camera to object distance 1.60m
Focal length 25.35mm
Aperture f/8
Frames per process 1 blurred + 1 sharp image
Number of camera displacements 4

3.5.2 Feature detection in blurred images

The first step in data processing involves feature detection achieved in each of the

four blurred images and in the sharp image. Feature detection was carried out using

OpenCV’s ‘SurfFeatureDetector ’-function which is the implementation of Bay et al.

(2006) (OpenCV Dev Team, 2014). SURF is a well-established method that has been

used for several years and is broadly accepted by the community. In a subsequent step

the detected features were matched between the sharp and each of the blurred images,

using OpenCV’s ‘BFMatcher ’. The function simply attempts to match every feature

of one image against every feature of the other image, accepting the ‘optimum’ result

(OpenCV Dev Team, 2014). Code 3.1 shows the program code implementation required

for feature detection and matching.

Listing 3.1: Feature detection and matching

1 // minHessian is a threshold to define if a feature is accepted or not.
2 int minHessian=400;
3 // Setting up feature detection method.
4 SurfFeatureDetector detector(minHessian);
5 // Definition of a vector to store features .
6 vector<KeyPoint> feature_blurred, feature_sharp;
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7 // Detection of feature points in a sharp and blurred image.
8 detector .detect(image_sharp, feature_sharp);
9 detector .detect(image_blurred, feature_blurred);
10 // Wrapper to make features accessible for BFMatcher.
11 SurfDescriptorExtractor extractor;
12 // Definition of matrix to store extracted information.
13 Mat descriptors_blurred, descriptors_sharp;
14 // Extraction of features to make them accessible for matching.
15 extractor .compute(image_sharp, feature_sharp, descriptors_sharp);
16 extractor .compute(image_blurred, feature_blurred, descriptors_blurred);
17 // Definition of vector to store matches.
18 vector<DMatch> matches;
19 // Setting up matching method.
20 BFMatcher matcher(NORM_L2SQR);
21 // Matching features between blurred and sharp image and storing the matches.
22 matcher.match(descriptors_sharp, descriptors_blurred, matches);

The basic algorithm will match all features, and therefore features in the destination

image can be matched with multiple features in the original image. To filter out

any incorrect matches, various filters need to be applied. These filters can be based

on knowledge about the expected approximate position, orientation and scale of the

features. For the laboratory dataset this information is available. The images are

taken from a similar position with the same orientation of the camera. Hence, image

coordinate, rotation and scale of the feature should be similar, with only small variations

in position rotation and scale, due to the camera displacement process.

Figure 3.19 shows an example of two images with detected and matched feature points.

Figure 3.19(a) shows two sharp images and correct matched features. Figure 3.19(b)

demonstrates that multiple targets on the original image (left) are matched to a few

features in the target image (right). This is shown by the divergent blue lines that

connect origin and target features (green). These matches are incorrect because both

images are acquired from the same position and with the same rotation and scale so the

connection lines should be parallel (Figure 3.19(a)).
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(a) Matching sharp and sharp image.

(b) Matching sharp and blurred image.

Figure 3.19: Matching (blue) feature points (green) between two images.

3.5.3 Results of feature detection in blurred images

A high number of feature points are detected in the sharp image but with increased

blur there is an obvious decrease of 80% in detected feature points. Matching these

targets and filtering out incorrect matches results in a significantly decreased number of

accepted targets (Table 3.8).

Table 3.8: Camera displacement vs. detected and correctly referenced feature points.
Camera
displacement
(mm)

Detected features (% of
features of sharp image)

Correctly referenced
features (% of detected
features)

0 12214 (100%) 12214 (100%)
0.38 8847 (72%) 1524 (17%)
0.53 7370 (60%) 224 (3%)
1.03 2645 (22%) 47 (2%)
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For real UAV images the parameters to assist the filtering process can be estimated using

GNSS and IMU sensors, which may provide data with an appropriate level of accuracy.

It would then be possible to estimate the image position of the blurred image, relative

to the position of the sharper image.

Figure 3.20 presents the results of feature matching for each level of blur after filtering

of incorrect results. It is possible to see that the number of features (green) decreased

significantly with increased blur and the number of correct matches is reduced. The

number of correct matches would still be enough to calculate parameters for a perspective

image transformation, but not sufficient for a dense DSM. Furthermore, the laboratory

images have an overlap of nearly 100%. Aerial images acquired by a UAV often provide

a much smaller image overlap, this means there is a further reduction in the number

of correctly matched features. The significant reduction of detected feature points and

the problematic matching of these points proves that blur has a significant influence on

feature detection and matching. It was found that minor blur, which is invisible to the

naked eye, still disturbs this process.

3.6 Discussion

This chapter demonstrates some of the challenges associated with working with blurred

images. Automatic processing procedures used in photogrammetry are clearly influenced

by small motion blur and not only does the number of random feature points decreases

significantly with blur but the number of detected signalised targets decreases also. Even

images which appear sharp visually can cause difficulties if a small amount of blur is

present. The number of measured targets directly influences the accuracy and ability

of subsequent calculations, including camera calibration and 3D coordinate calculations.

The detection of targets becomes more reliable with larger targets. These occupy more

pixels which helps to accurately calculate the target centre. Furthermore, the same

amount of blur causes a single small target to blur laterally, causing misdetection or

multiple detection. However, targets sizes cannot become too large as very large targets

are impractical for efficient photogrammetric field work.
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(a) Filtered matches between sharp and sharp image.

(b) Filtered matches between sharp and blurred image (0.53mm camera displacement).

(c) Filtered matches between sharp and blurred image (1.03mm camera displacement).

Figure 3.20: Filtered (blue) feature points (green) between two images.

If automatic target detection is not possible, semi-automatic detection of targets using

small ROIs can be successful. However, this is time consuming as these detection areas

have to be defined both manually and accurately. Even with well-defined detection

areas, detection procedures remain susceptible to increasing blur. Manual measurement

of targets always remains possible, but the results are not as accurate as automatic

measurements achieved using sharp images.
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A limitation of the detailed tests conducted in this study has been the focus on close range

images only. Care needs to be exercised in assessing the implications of these findings

for UAV imagery, where flight altitudes are much larger than the distances used in these

experiments, particularly where the camera displacements are larger due to the flight

velocity. The effect is that small changes in one coordinate measurement due to blur

will have correspondingly a larger effect on the calculated 3D coordinates. Furthermore,

for the laboratory test only one blurred and one sharp image were used, while for a

real UAV dataset it can be assumed that multiple images are available. However, for

UAV images it is unlikely that they are absolutely sharp so that the image coordinate

measurements are imprecise and would negatively influence subsequent calculations.

The human hand naturally introduce shake or jitter, with frequencies of 2 -10Hz and

amplitudes of up to 1mm. This creates the certainty that some blur is always present in

hand held images as reported by Stiles (1976). Sachs et al. (2006) also reports on a ‘drift

of the hand’ of up to 5mm / s, which increases low levels of blur in hand held images

even further. Based on the findings made here with much smaller camera displacements,

it can be assumed that the push of a shutter release button on a hand held camera can

cause significant blur in the image. This supports the commonly known rule across the

photographer community to suppress image blur, which states that it is necessary to use

shutter speeds faster than 1/focal length in seconds or at least 1/60 s (Emling, 2008).

For UAVs the shutter speed is chosen significantly faster as they are acquired outside in

daylight with shutter speeds of 1/250 s and faster.

Furthermore, this chapter supports findings that have been made using subjective human

experiences, such as the work by Johnson and Casson (1995) that proved that blur

influences acuity. The work described in this chapter has shown how blur influences

photogrammetric image processing and that in comparison to human perception, image

processing is more sensitive to blur. Also, it was shown that the detection of blurred

simple structures, such as round targets, caused problems for the automated processes.

Colombo et al. (1987) tested the ability of humans to detect structures in blurred images

and found there was a decreasing ability for subjects to read text as blur increased.

However, the legibility of text is a much more complicated task than the detection of

round targets.
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The results of this work support the desirability of excluding blurred images from

photogrammetric processing. Gülch (2012) recommends elimination of blurred images

as a first step in UAV image processing an issue resolved and explored upon in Chapter

4. The findings also support the work of Shah and Schickler (2012) who develop blur

correction methods specifically for UAV applications. Lelégard et al. (2012) states that

a blur larger than 2 pixels is a significant amount. However, the findings reported in this

thesis suggest that a blur of just 2 pixels is actually too small to influence the detection,

identification, referencing and measurement of targets.

3.7 Conclusion - Does blur disturb?

A range of difficulties are caused by image degradation in photogrammetry. Small

camera displacements create motion blur and have a significant impact on the accuracy

of subsequent calculations and processes. Even activating a shutter button on a hand

held camera can result in significant camera movement that causes image blur. Fully-

automated detection of targets in images that contain low levels of blur can be difficult

and can influence further processing. This problem can be solved by using semi-automatic

detection tools. A small amount of blur has no significant influence on calculation

results, when targets are detected and measured successfully. However, if blur increases

to such a degree that semi-automatic detection requires significant operator attention,

subsequent calculation will return significantly inaccurate results. In these cases manual

measurements can be carried out and still provide results with an acceptable accuracy.

This is even possible in highly blurred images but manual intervention is very time

consuming and prone to error. It is important to recognise that most of these tests

that were conducted used signalised targets. When natural feature points were used

fewer features were detected and referenced due to the influence of motion blur. The

influence of blur upon natural features in subsequent processing can be assumed similar

to those results achieved with signalised targets. Although blur might disturb most
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image processing procedures, it can also be exploited for some applications, as identified

by Boracchi (2009) and McCarthy et al. (2013). Boracchi (2009) uses blur to detect the

motion of ping-pong balls, whilst McCarthy et al. (2013) uses blur captured during long

exposures to detect the movement of structures subject to dynamic forces.



4 Blur detection

The previous chapter demonstrated that blur is a problem in photogrammetric image

processing and that the detection of blurred images might be a useful first step to help

solve the associated problems of blur. Photogrammetry in image processing may often

involve the use of hundreds of images, collected during a UAV image flight. However,

UAVs do not provide a stable platform which can result in blurred images in the datasets.

The manual detection and exclusion of blurred images is an intensive, time consuming

step that requires a human operator and is therefore prone to error. This chapter will

assess current blur detection methods that are used in the detection of blurred images

and then present a novel algorithm that was developed to detect and isolate blurred

images.

4.1 Literature review

The previous chapters explained that blur prevention and hardware modification often

provide information for deblurring images using image processing (Section 2.1.2.3).

Before attempting to deblur an image it is useful to identify whether or not an image

is blurred. Many studies do not include this preparatory step and only provide blurred

images, which are used to test deblurring algorithms (Section 2.2).

A widely used approach in image processing is blurring an image to smooth it and make

it more appealing from a purely visual perspective (OpenCV Dev Team, 2014). This can

be done with image filters like a Gaussian filter or a Median filter and gives the viewer

an impression of movement or draws their attention to specific objects (Nik Software,

2013). Detecting whether an image is blurred or sharp remains a complicated process

99
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(a) Sharp image without blurred
edge.

(b) Slightly blurred edge. (c) Blurred edge.

(d) Edge detection result shows
sharp edge.

(e) Edge detection result shows a
step gradient.

(f) Edge detection result shows a
flat gradient.

Figure 4.1: Example dataset with sharp and blurred edge. A high contrast between black and white
indicates a sharp image a low gradient a blurred image.

and has not been completely solved. There are a range of different approaches available

that are used to detect blur. It is important to distinguish between blur detection

approaches that necessitate additional data, such as another image or information from

other sensors. Methods that do not use additional data are called ‘no-reference blur

estimation’ (Crete et al., 2007). Many different approaches exist in this field, which deal

with the question: ‘What is blur and does it manifest itself in an image?’ This question

can be answered using two main methods that are used in ‘no-reference blur estimation’.

The first method detects blur based on edge detection and the second detects blur based

on frequency analysis.

4.1.1 Blur detection based on edge detection

Edge detection is a widely used method to detect blur (Joshi et al., 2008; Narvekar and

Karam, 2009; Ong et al., 2003). An edge in an image can be considered as a grey value

difference between neighbouring pixels. Edge detection calculates the gradient between

neighbouring pixels (Section 2.1.1.3), in sharp images this contrast is abrupt between two

contrasting grey levels (Figure 4.1(a)) and edge detection would return a well-defined

result for the edge (Figure 4.1(d)). With increasing blur the contrast decreases and

becomes flatter (Figure 4.1(b)) and the edge detection result returns a flatter gradient

over a larger area (Figure 4.1(e)). In case of largely blurred edges with very flat gradients

(Figure 4.1(c)) edge detection returns barely visible results, or even invisible results due

to this gradient being too flat (Figure 4.1(f)).
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A method for blur detection which was developed by Ong et al. (2003) involves four

steps. The first step is the calculation of the direction of the gradient. This describes

in which direction the edge is orientated and on which sides of the edge the brighter

and the darker values are located. The second step is edge detection itself. This is

carried out with a Canny Edge detection (Ong et al., 2003), which returns the edge

pixel but not the gradient between the neighbouring pixels. This is followed by the

calculation of the edge-spread, which derives an actual representation of the blur. This

is done by counting the pixels in both directions of the gradient from the position of

the local extreme, downwards as long as the gradient pixels decrease and upwards as

long as their intensity increases. The total number represents the edge-spread. The final

stage involves determining a measure of image-quality. This value is calculated using the

average edge-spread value of all the edges in the image and an additional parameter based

on subjective ratings, derived from a small group of human subjects (Ong et al., 2003).

The topic approach of Ong et al. (2003) describes how a blurring algorithm works, based

on edge detection. Most algorithms are similar, but include more advanced techniques.

A weakness of the Ong et al. (2003) method is that edge-spread is based on all edges,

independent of their orientation. Edges oriented in the direction of blur can influence

the result, even if they do not contain any useful information. The method by Narvekar

and Karam (2009) calculates the number of edge pixels in sub-images, derived from a

small part of the image. After counting the number of edges in the sub-image a decision

is made whether or not further processing of the sub-image is required, or if insufficient

information is available.

Just noticeable blur (JNB) is another method to determine if an edge is blurred or

not (Ferzli and Karam, 2009). The JNB is based on just-noticeable distortion (Jayant

et al., 1993) known as just noticeable difference (JND) (Ferzli and Karam, 2009). JND

is defined as the minimal amount of intensity that has to be changed, in order to be

noticeable by a sensor, relative to a background intensity (Jayant et al., 1993). The

required difference can also be described in terms of contrast. The JNB is the minimum

amount of perceived blur around an edge, given a contrast higher than the JND (Ferzli

and Karam, 2009). There are several other methods for blur detection based on edges,
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(a) Fourier transformation result
for sharp image shows many high
frequencies.

(b) Fourier transformation result
for minor blurred image shows
less high frequencies then (a).

(c) Fourier transformation result
for image suffering from major
blur shows no high frequencies.

Figure 4.2: Example of fast Fourier transformation on dataset with sharp and blurred edge shows
influence of blur on frequencies. Each of the figures is point symmetric in the centre.

but they are either similar to the previously presented method, for specific special cases,

or do not return sufficient results.

4.1.2 Blur detection based on frequency analysis

An alternative approach for blur detection which does not use edges involves analysing

the image in the frequency domain (Rahtu et al., 2012). An image can be represented as

a 2D function and described by its frequencies (Section 2.1.1.3). High frequencies do not

appear in blurred images (Liu et al., 2008). The more an image is blurred the less high

frequencies are present. Figure 4.2 shows the results of a fast Fourier transformation

(FFT) derived from the image conveyed in Figure 4.1(a), 4.1(b) and 4.1(c). The centre

is the origin of a coordinate system with lowest frequencies located in the centre and

higher frequencies appearing at the boundaries. Figure 4.2(a) demonstrates that more

high frequencies are present than in Figure 4.2(c), which is based on the blurred example

(Figure 4.1(c)) and this absence of high frequencies can be used to detect blurred

images.

Rahtu et al. (2012) uses the FFT to develop a blur resistant image analysis algorithm.

After transforming the image from the spatial to the frequency domain, it is possible

to divide the image into two components: magnitude and phase. Blur affects both



CHAPTER 4. BLUR DETECTION 103

magnitude and phase. Using the assumption that the frequency domain is also influenced

by textures and that the texture is not similar for the whole image, the analysis is only

carried out for small patches of the image, to minimize the disturbing effect of textures.

The main weakness of a FFT approach is the computation time to convert the image

from the spatial to the frequency domain and back again, which is significant longer

than applying image filter. It was found that the transformation took about 2 times

longer than applying standard image filters. Also, the analysis of the frequency domain

is more complicated than the spatial domain, due to the radial structure of a frequency

domain image. This requires transformations from Cartesian to radial coordinates and

an offset of the origin from the upper left image corner to the image centre. Another

problem is the visual interpretation of frequency images; their abstract nature requires

a trained interpreter.

Blur detection based on the frequency domain of an image is based on analysing the

number and magnitude of high frequencies in the frequency domain. The approach to

analyse the frequencies differs for the various methods available.

4.1.3 Blur detection based on various other methods

There are a range of other blur detection methods, which may combine aspects of the

edge or frequency approaches.

Edge sharpness detection A method developed by Crete et al. (2007) is based on

the human perception of blur. This recognises that humans find it difficult to perceive

differences between blurred and re-blurred images, but find it easy to distinguish between

a sharp image that has been re-blurred. Figure 4.3 shows re-blurred images of the

sharp examples Figure 4.1. The difference between the sharp image Figure 4.1(a)

and the re-blurred image Figure 4.3(a) is easy to detect by human eyes. However,

when comparing Figure 4.1(b) and the extremely blurred image Figure 4.1(c) to their

re-blurred images Figure 4.3(b) and 4.3(c) the small differences are hard to perceive by

the human eye. The differences between the blurred and re-blurred image are not as
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(a) Sharp image re-blurred. (b) Slightly blurred image
re-blurred.

(c) Blurred image re-blurred.

Figure 4.3: Example showing re-blurred images.

visible, as between a sharp and a blurred image. However, this theory can still be used

to detect blurred images.

Crete et al. (2007) uses the initial image and re-blurs this with a strong low-pass filter and

consequently analyses the variation of the neighbouring pixels for both images separately.

If variations between the original and the re-blurred image appear high, the original

image can be considered sharp. If there is only a small difference in the variation, this

suggests that the original image was already blurred. The algorithm involves six well

defined steps.

1. Blur the image vertically and separately blur the image horizontally.

2. Compute the absolute variation between pixels both vertically and horizontally

from the original. Compute the absolute grey value variation for the rows of the

vertically re-blurred image. Compute the absolute grey value variation for the

columns of the horizontally re-blurred image.

3. Calculate the difference between the vertical variation images and separately for

the horizontal variation images.

4. Summation of all pixel values for both original variation images and the calculated

difference images from step three.

5. Normalize the results retrieved in step four.

6. Select either the vertical, or the horizontal value as the blur value (dependent on

which one is larger).
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(a) 0 mm camera displacement,
Crete et al. calculated the value
0.3369.

(b) 0.08 mm camera
displacement, Crete et al.
calculated the value 0.3584.

(c) 0.30 mm camera
displacement, Crete et al.
calculated the value 0.5073.

(d) 0.53 mm camera
displacement, Crete et al.
calculated the value 0.5442.

(e) 0.91 mm camera
displacement, Crete et al.
calculated the value 0.4845.

(f) 1.03 mm camera
displacement, Crete et al.
calculated the value 0.4485.

Figure 4.4: Test results of Crete et al. (2007).

As a last step, the authors evaluate the algorithm with a human test to match the

computed blur value with a human related perception, the mean opinion score (MOS).

The results show that MOS correlates with the computed blur of the algorithm. The

algorithm has been made available online from Bao (2009) and was tested with images

of the shake table dataset. The algorithm was tested using images from the test dataset

with images corrupted by well-defined, one directional motion blur but the results were

disappointing. The most blurred image (Figure 4.4(f)) was classified as less blurred

than an image with three times less motion blur (Figure 4.4(d)). The extent of blur is

particularly visible in the vicinity of the Siemens-Star (Figure 4.4). Beside the calculation

time of several seconds, it was found that the algorithm returns unreliable results. Both

represent serious problems when using huge image datasets, hence this method was

believed to be unsuitable for blur detection in UAV image datasets.
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4.1.4 Summary

Most of the reviewed methods in this section are computing intensive, for example the

method proposed by Crete et al. (2007) and programmed by Bao (2009) took several

seconds up to a minute to process one image. This currently renders these methods

impractical and hence unusable for blur detection in UAV datasets containing hundreds

of images. The tests identified in the literature, are very often undertaken on small

image sets that have a wide range of backgrounds and a range of different blur sizes.

Often this blur is generated mathematically with image filters or exhibits out-of-focus

blur and not just motion blur. The results are often very subjective as they rely upon

human perception. It has been shown that a subjective evaluation of image sharpness

and blur is very dependent on the subjective observer (Sieberth et al., 2014). If the image

content varies, the evaluation of blur becomes difficult, especially if there is no image

for comparison. However, during a literature search it was found that most research

focuses on prevention of blur or blur correction. Blur detection is rarely considered an

independent topic.

4.2 Detecting Blurred Images

Deriving a statistic to represent the degree of blur in multiple images is rarely carried

out independently, although some measures are used in blur prevention and correction

for single images. Without quantification of blur on multiple images, the definition

of a threshold value and the automatic exclusion of blurred images from datasets is

impossible. Hence, an operator is required to manually identify blurred images and

exclude them. Human detection and quantification of blur is dependent on the operator

and is also prone to error. An automatic detection algorithm is therefore required, which

can quantify blur in large image datasets and make them comparable to one another.

The next section in this chapter will discuss the development of such an algorithm.
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(a) Image for comparison. (b) In comparison to (a) does it
appear sharper.

(c) In comparison to (a) and (b)
does this image appear sharpest.

Figure 4.5: Comparing of insets of UAV images.

4.2.1 The idea of the algorithm

An algorithm for blur detection was developed in this research. The algorithm is

related to the edge sharpness detection algorithm developed by Crete et al. (2007) but

significantly extends this and utilises concepts based on human perception. As previously

mentioned, a person can best detect a blurred image when it is being compared to another

image (Figure 4.5). If just Figure 4.5(a) is judged without using any comparison then is

difficult to identify if the image is sharp or blurred. When compared to Figure 4.5(b),

Figure 4.5(a) appears to be blurred and Figure 4.5(b) would be judged as sharp image.

However, comparing Figure 4.5(c) to Figure 4.5(b) reveals that Figure 4.5(b) is actually

blurred too. To enable a precise judgement the compared image should show the same

area or parts of the same area to make judgement of blurred or sharp image possible.

Instead of using different images it is also possible to use one input image and blur it

synthetically. The aim of the synthetic blur is to generate an image for comparison.

Figure 4.3 demonstrates that it is possible for a human operator to differentiate between

the sharp input image and the synthesised blurred image. However, if the input image

is already blurred the differentiation is more difficult or may be incorrect. A stronger

synthetic blur has to be applied to enable a human operator to differentiate between the

blurred and re-blurred image. The differences between the blurred and the re-blurred

image are an important support for a human to enable accurate visual blur detection.

The approach of using differences between an image and a re-blurred image can be

realised in an automatic algorithm and can be used to quantify blur in images (Section
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4.1.3). However, realising this in an automatic algorithm requires more detailed

processing steps (Section 4.2.2).

4.2.2 The algorithm

The blur detection algorithm aims to detect blurred images in UAV image datasets.

A UAV dataset consists mostly of images with a similar texture and colour, typically

representing fields, woods etc.. The two requirements of the algorithm should be that it

can process the dataset quickly and that it can detect blurred images reliably.

Input The input to the program is a folder containing all images in a dataset. This

folder can be specified by a folder path and accessed automatically. Each image in the

folder is available and calculations conducted, and clearly the files must contain raster

graphics so that the algorithm can process them. Beside the images themselves, no

additional information is required, although, an output directory should be provided, to

store results. With an input and output directory, all parameters are defined to run the

program.

Flow of the program With the input directory defined, each image can be processed by

the developed algorithm. The aim of the algorithm is to transfer the ‘human detection

of blur’ into a computer algorithm. As presented, humans often use a second image for

comparison to establish whether an image is blurred or not (Section 4.1.3). Figure 4.6

shows the basic steps of the program. These include:

1. Scaling down of the image resolution (Figure 4.7(b), Section 4.2.2.1).

2. Convert image to HSV colour space - comprise of a saturation, value, blue (SVB)

image (Figure 4.7(c), Section 4.2.2.2).

3. Apply low-pass filter (artificial blur) to a copy of the image (Figure 4.7(d), Section

4.2.2.3).
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Figure 4.6: Flow chart of developed algorithm.

4. Apply high-pass filter (edge detection) on both: low-pass filtered copy and original

SVB image (Figure 4.7(e), 4.7(f), Section).

5. Calculate difference between both high-pass filtered images (Figure 4.7(g)).
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(a) Original input image. (b) Scaled image. (c) RGB to SVB converted
image.

(d) Low pass filtered copy. (e) High pass filtered original. (f) High pass filtered copy.

(g) Difference image of high pass
filtered images.

Figure 4.7: Comparing of insets of UAV images.

6. Calculate standard deviation of difference image (Section 4.2.2.5.

The calculated standard deviation of the difference image is named ‘saturation image

edge difference standard-deviation’ (SIEDS). SIEDS is a single value representing how

much an image is blurred.

Output A small SIEDS value represents a small standard deviation in the difference

between the original SVB image and the low-pass filtered SVB image, while a large

SIEDS value represents a large standard deviation in the difference between the original
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SVB image and the low-pass filtered SVB image. The larger the SIEDS value, the more

likely the original input image was initially sharp, while a small SIEDS value indicates

that the input image was blurry. This result is similar to that of human perception. The

perceived difference between a sharp and a re-blurred image is larger than the difference

between a blurred and a re-blurred image.

A SIEDS value can be calculated for each image in the input directory and the calculated

SIEDS values enable a precise judgement of how much an image is blurred related to

other images in the set. However, the absolute calculated values will depend on the

processing steps and image content.

4.2.2.1 Input image scaling

High resolution images contain vast information and inevitably require long processing

time. The aim of the algorithm is to calculate the SIEDS value quickly in order to

process all the images of a UAV dataset in a reasonable time. One method used to

decrease calculation times is to reduce the number of pixels in the image (Figure 4.7)

and is achieved by down scaling the image resolution, which reduces the pixel count

(Code 4.1).

Listing 4.1: Scaling an image

1 //Function for rescaling the image with input of the image to scale and the scaling
factor . Scaling factor \(1=100\,\)\%

2 Mat Fresize(Mat in, double scale){
3 //Definition of the output image.
4 Mat out;
5 //Resizing of the image by factor ’ scale ’.
6 resize (in , out, Size() , scale , scale ) ;
7 //Returning scaled image back to function call .
8 return(out);
9 }

Scaling an image creates several advantages, beyond reducing calculation time, it also

significantly reduces the required computer memory. The reduction of the pixel count has
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another advantage. By scaling an image, multiple pixels are combined to just one pixel.

When these combined pixels contain the same colour, the newly combined pixel will

also have the same colour as all individual pixels. If the individual pixels have different

colours, then the newly combined pixel will be a result of the interpolation of the different

colours. When this newly combined pixel represents an edge it will have an impact on

determining whether an image is blurred or not. This is useful because homogeneous

areas cannot be used for blur detection. By reducing the number of pixels the number of

‘insignificant pixels’ representing homogeneous areas is also reduced. However, scaling

does not influence edges, which remain important for blur detection.

Furthermore, scaling the image has an advantage of reducing the influence of other

effects that appear similar to blur (Figure 4.8). Spectral mixing and optical errors such

as chromatic aberration appear similar to blur and these errors can be reduced by scaling

the image. In Figure 4.8(a) the effect of optical errors are clearly visible, the red and

blue contour lines around the target do not exist, but are an effect caused by chromatic

aberration. The effect of spectral mixing is also visible, as there is no strict edge between

black and white but a gradient from black via grey to white. By scaling the image it

is possible to reduce these effects. The observed gradient in Figure 4.8(a) occupies 8

pixels and scaling reduces this to just 3 pixels in Figure 4.8(b). The levels of scaling

needed in an image can be determined by assessing the number of pixels that are initially

influenced by these optical errors. In this study the influence of these effects was around

3 pixels in the centre of the image. Therefore, down scaling by a factor of three was

used to reduce the impact of these effects to just one pixel.

One side effect that needs to be considered during scaling is that the process reduces the

effect of motion blur. However, if a camera is displaced during image acquisition then

the effect of motion blur maybe obscured by other effects, such as optical errors. When

the effect of motion blur is smaller than the effect of optical errors, motion blur becomes

undetectable, as it disappears behind optical effects. However, excessive scaling may

result in total elimination of motion blur, making detection of blur impossible.

Scaling therefore clearly influences the detection of motion blur. If scaling is not used

then too many pixels have to be processed and the density of usable edge pixels will be

low. Subsequent calculations of the SIEDS value using only a small number of edges,
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(a) High resolution image. Chromatic
aberration and spectral mixing is clearly
visible (red and blue contours around
the target).

(b) Low resolution image after scaling.
Chromatic aberration and spectral
mixing is reduced to fewer pixels.

Figure 4.8: Effect of reducing image resolution.

compared to the pixel count, would result in the calculated standard deviation being

very small, because many pixels will be zero. Subsequently this makes it difficult to

use the standard deviation as a tool to differentiate between blurred and sharp images

precisely. Therefore it is very important to use the correct level of scaling to identify

smaller amounts of motion blur. However, by reducing the image resolution, the number

of pixels is reduced and subsequently the image processing procedures are much faster

than using the full resolution image. In this research the image was scaled down by

factor 3. The criticality of this parameter will be discussed further in Section 4.3.1.

4.2.2.2 RGB to HSV

The first processing step after scaling an image is the conversion of RGB to the HSV

colour space (Code 4.2, Figure 4.7). One of the main advantages with motion blur is

that it is not dependent on the wavelength (colour) of the light, hence colour information

is not significant for blur detection. Analysing an RGB image would require analysis

of each channel separately, which would take significantly longer calculation times. To

eliminate the colour information and reduce the image to just necessary information,

the three channel RGB colour image has to be converted to a HSV colour space.

Listing 4.2: Colour space conversion

1 //Function to convert RGB to SVB image. RGB image as input.
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2 Mat Fcalcsvg(Mat in){
3 //Creating a buffer for the SVB image. It needs to be the same size as the

input image and needs to have three channels.
4 Mat_<Vec3d> svb(in.size().height, in.size().width, Vec3d(0,0,0));
5 //Loop to access every element of the image matrix
6 for(int n=0; n<in.size().height; n++){
7 for(int m=0; m<in.size().width; m++){
8 //Accessing pixel of the matrix and storing RGB values.
9 Vec3d rgb=in.at<Vec3d>(n, m);
10 //Separating red, green, and blue value of the current pixel

and normalising them.
11 double b=rgb.val[0]/255;
12 double g=rgb.val[1]/255;
13 double r=rgb.val[2]/255;
14 //http://cs.haifa .ac. il /hagit/courses/ist/Lectures/Demos/

ColorApplet2/t_convert.html and
http://www.shervinemami.info/colorConversion.html

15 // r, g, b = [0, 1]
16 // h = [0,360], s, v = [0,1]
17 // if s == 0, then h = 0 (undefined)
18 //Definition of variable to store largest and smallest RGB

value.
19 double max=0;
20 double min=0;
21 //Detection of the largest and smallest intensity in either

red, green or blue .
22 if (r>=g && r>=b){
23 max=r;
24 }
25 else if (g>=r && g>=b){
26 max=g;
27 }
28 else if (b>=r && b>=g){
29 max=b;
30 }
31 if (r<=g && r<=b){
32 min=r;
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33 }
34 else if (g<=r && g<=b){
35 min=g;
36 }
37 else if (b<=r && b<=g){
38 min=b;
39 }
40 //Value is the largest intensity of red, green or blue .
41 double v=max;
42 //Calculation of the discrepancy between largest and smallest

grey value.
43 double delta=max−min;
44 //If red, green and blue are not equal and larger than zero

then saturation can be calculated .
45 if (delta!=0 && max!=0){
46 s=delta/max;
47 }
48 else{
49 s=0;
50 }
51 //Converting s, v, b = [0, 1] to [0, 255]
52 s=s∗255;
53 v=v∗255;
54 b=b∗255;
55 //Collecting saturation , value and blue in a vector .
56 Vec3d svbvector=Vec3d(s, v, b);
57 //Writing SVB vector at current position in SVB image.
58 svb(n, m)=svbvector;
59 }
60 }
61 //Returning SVB image to calling function.
62 return(svb);
63 }

The HSV colour space only contains the colour information in the hue channel (Section

2.1.1.1). Hue does not contain any important information and is not of interest for
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further processing. Both saturation and value contain information that are interesting

for further processing, as they are both influenced by the extent of camera displacement.

It has been observed that increasing image blur results in a reduction of saturation and

value. This observation can be used to detect whether an image is blurred or sharp.

For the developed algorithm it was deceide to use the saturation channel for further

analysis (4.2.2.5 and 4.3.2), however, most functions can only progress a single or

three channel image, which made necessary that the image matrix was kept as either

single or three channel image. Due to the aim to establish a calculation of an absolute

camera displacement it was decided to keep a three channel image, which could provide

additional information available in other than the saturation channel. To satisfy this

requirement, the value channel which is also influenced by blur (4.3.2) and the blue

channel, which is least influenced by ray bending, are added to the saturation channel.

These three channel create the newly created SVB (saturation, value, blue) image. An

SVB image cannot be converted back to an RGB image as there is no information

available about other colours than blue. This technique helps to speed up the calculation

process. Furthermore, the image now only contains information that is relevant for blur

detection. The fact that the image cannot be converted back to an RGB image is not

significant, as a true colour image is not required for the subsequent processing steps.

4.2.2.3 Re-blurring SVB image

After converting the colour space from RGB to SVB, subsequent image processing steps

can be conducted. As determined earlier the human brain can differentiate easily between

sharp and blurred images, but has difficulties in differentiating between a blurred and

an even more blurred image (Section 4.1.3). This ability was identified as a processing

step that can be realised in a computer algorithm. To enable a comparison between two

images a more blurred image than the original has to be created. This can be done by

applying a low-pass filter to the original input image.

Within the formulated algorithm there is a copy of a previously created SVB image

(Code 4.3, Figure 4.7).
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Listing 4.3: Creating copy of image matrix

1 //Image matrix to contain copy.
2 Mat copy;
3 //Copying SVB image.
4 svb.copyTo(copy);

A low-pass filter is applied to this copy, which is adding artificial blur to the image (Code

4.4). The copied image is now known to be more blurred than the original input image

and can be used by a human operator to determine if and by how much the original

image is blurred. Depending on the degree of added blur, it is easier to perceive the

additional blur and to determine if the original input image was indeed blurred.

Listing 4.4: Low-pass filtering of an image matrix

1 //Function to low−pass/blur/smooth filter an image. Image and blur kernel sizes are
required as input.

2 Mat Fsmooth(Mat in, int kernel){
3 //Creating image matrix for the output.
4 Mat out;
5 //Blurring the image.
6 blur(in , out, kernel) ;
7 //Return the low−pass filtered image
8 return(out);
9 }

The perception of additional blur largely depends on how much the original image was

already blurred and how strongly the image was re-blurred. Adding additional blur to

the copy will make the differentiation easier, as the discrepancy between the original

and the re-blurred image will be much larger. It would also be possible to differentiate

an image that already contains large blur from the re-blurred image and to detect small

camera displacements. However, if the input image only contains a small amount of

camera displacement it would be still possible to determine if the original image was

blurred but it would not be possible to determine the amount of blur. This could be

solved by re-blurring the input image with a small amount of additional blur, enabling

more precise differentiation between an image with small camera displacements and the

re-blurred image. However, the detection of severely blurred images will still be difficult
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because the discrepancy between the input image and the re-blurred image is too small.

The future use of the images will determine the amount of additional blur required.

The detection of blur needs to be fully automated and work independently from a human

operator. Until now, detection of blur still requires a human operator to compare the

original image and the re-blurred image and to make a judgement as to whether the

original image was blurred. To achieve full automation, additional image processing

steps are required to form the basis of a numerical measure of blur.

4.2.2.4 Edge detection and discrepancy calculation

Once an image containing additional blur has been created, a comparison can be carried

out. To detect blur in an image a human concentrates mostly on the edges which

are represented by the gradient between different grey values. The gradient between

different grey values enables a human to judge whether an image is blurry or not.

This approach can be implemented in a computer algorithm. To detect gradients in

an image automatically a high-pass filter has to be applied to the original and to the

re-blurred image, creating an edge image for both (Code 4.5, Figure 4.7). A high-pass

filter enables edge detection by calculating the gradient between neighbouring pixels

(Section 2.1.1.3).

Listing 4.5: High-pass filtering of an image matrix

1 //Function to calculate gradients in an image.
2 Mat Fcalcedges(Mat in){
3 //Creating the output image matrix.
4 Mat out;
5 //Calculating the gradients using a Laplace operator.
6 Laplacian(in, out, CV_64FC3);
7 //Returning the Laplace filtered image to the calling function.
8 return(out);
9 }

For this purpose, a 3 x 3 Laplace operator is used which calculates the gradient between

one pixel in the centre of the filter matrix and the four adjacent pixels. This high-pass



CHAPTER 4. BLUR DETECTION 119

filter is then applied to both, the original and the re-blurred image. Using a gradient to

judge whether an image is blurred or not, would require the comparison of the gradient

of each pixel to their neighbours. Additionally, it would be necessary to decide whether

a pixel is part of an homogeneous area or part of a blurred edge. Both would appear in

the edge image as low gradient. This approach is rather complicated, requires intensive

calculations and would increase the calculation time significantly.

To avoid these extensive calculations a simple discrepancy image is calculated, which

is the difference between the edge image of the original and the re-blurred edge image

(Code 4.6, Figure 4.7). This image shows the discrepancy between gradients calculated

for both, the original and re-blurred image. In homogeneous areas the discrepancy will

be close to zero while the discrepancy at the edges will be significantly greater than zero.

With the discrepancies calculated it is possible to finally calculate the SIEDS value.

Listing 4.6: Calculation of the discrepancy image.

1 //Function to calculate the discrepancy between both edge images. Input are both edge
images.

2 Mat Fdiff(Mat original, Mat reblurred){
3 //Creating an output image matrix.
4 Mat out;
5 //Calculation of the absolute difference between both edge images.
6 absdiff ( original , reblurred, out);
7 //Returning the calculated difference image to the calling function.
8 return(out);
9 }

4.2.2.5 SIEDS calculation

After calculation of the discrepancy image it is possible to carry out the last step to

determine a single floating point number, which quantifies whether the image is sharp

or blurred, the SIEDS value. For the SIEDS value it is important to understand

the expected results of the previous processing steps. The gradients in the low-pass

filtered image should be lower than the gradients calculated for the original image. Due

to the added blur the edges are supposed to be ‘smoother’ and the gradients flatter.
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Additionally, the extrema are ‘flattened’. Hence, the standard deviation of the gradients

should be smaller for the re-blurred image than for the original. However, neither the

standard deviation for the original edge image, nor the re-blurred edge image provides

a clear measure about the amount of blur in either image.

The discrepancy image is derived from the original and re-blurred edges. It is expected

that the gradients are smaller than in the original image. How much smaller the gradients

are depends on the amount of blur added to the re-blurred image and the amount of blur

that existed in the original. If the input image was sharp, then the re-blurred image will

have significantly smaller gradients. The discrepancy between the original and re-blurred

images will therefore be large. However, if the original image exhibited blur then the

re-blurred image will have similar but smaller gradients and the discrepancies between

them will be small.

As a result, the average gradient discrepancies will be smaller or larger depending on

the sharpness of the input image. Unfortunately, the average also depends on how many

gradients are available in the image, due to the large number of small values that appear

in the homogeneous areas. A rough texture with a large number of edges will create more

gradients and increase the average. In comparison, an image with limited texture will

return many values close to zero, hence a much smaller average. However, to improve

calculations it was decided to use the standard deviation instead of the average grey

value. This provides the advantage that the calculation is made independently of how

steep the gradients are, and instead uses gradient variation (Code 4.7).

Listing 4.7: Calculation of SIEDS

1 //Function to calculate the average, variance and standard deviation for each channel
of the SVB edge difference image. Input is SVB edge difference image, the file
name of the image, output file to store calculated values.

2 double Fcalcmean(Mat in, string imagename, ofstream &pData, double ∗rgvpx){
3 //Buffer variable to carry out the calculation of average, variance and

standard deviation.
4 double mean[18]={0};
5 //Loop to go through every pixel of the image.
6 for(int i=0; i<in.rows; i++){
7 for(int j=0; j<in.cols ; j++){
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8 //Accessing pixel of the matrix and storing SVB values.
9 Vec3d svb=in.at<Vec3d>(n, m);
10 //Buffer variable to store the currently processed value in

each channel
11 int buf=0;
12 //Loop through all three channels of the image
13 for(int n=0; n<3; n++){
14 buf=rgb.val [0];
15 //Calculation of running average.
16 mean[1+n∗6]=((mean[0+n∗5]∗mean[1+n∗6])+buf)

/(mean[0+n∗5]+1);
17 mean[3+n∗6]=mean[3+n∗6]+buf;
18 mean[4+n∗6]=mean[4+n∗6]+pow(buf, 2.0);
19 //Counter of every pixel .
20 mean[0+n∗6]++;
21 //Calculation of standard deviation.
22 mean[2+n∗6]=sqrt(1/mean[0+n∗6]∗

(mean[4+n∗6]−(1/(mean[0+n∗6]+1)∗
pow(mean[3+n∗6], 2.0))));

23 //Test if pixel had a larger value than zero (Was a
gradient available?).

24 if (gv.val [n]>0){
25 //Counter of pixels that have larger values

than zero.
26 mean[5+n∗6]++;
27 }
28 }
29 }
30 }//Calculation of values finished for the image.
31 //Storage of the calculated values in file . First element is the file name.
32 pData<<"#"<<imagename;
33 //Loop over all channels.
34 for(int n=0; n<3; n++){
35 //Output to file are the channel number, number of pixel greater than

zero, average value and standard deviation.
36 pData<<"#"<<n+1<<"#"<<mean[5+n∗6]<<"#"

<<mean[1+n∗6]<<"#"<<mean[2+n∗6];
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37 }
38 }

4.3 Results and limits of detection

The saturation image edge difference standard deviation (SIEDS) value is one single

value used to represent the amount of blur for a single image. The value is either large

when the image is sharp, or small when the image is blurred. Judgement as to whether

an image is blurred or sharp is dependent on all the values which have been calculated

for all images in a dataset. However, the settings of the algorithm will also have an

influence on how large or small the calculated SIEDS values are. Using a normalised

SIEDS value to determine a fixed threshold and to make datasets comparable is incorrect

because most datasets will not contain images distributed normally over the range of

motion blur. Some datasets might only contain small, acceptable blur for the complete

dataset while other might only contain larger blurs. Normalised SIEDS values of an

overall acceptable dataset would range SIEDS= [0, 1] and the same for a dataset of not

acceptable quality. However, the normalised values would cause the incorrect conclusion

that both datasets contain acceptable and not acceptable images (Section 6.1.1.1).

4.3.1 Critical parameters for the algorithm

Influence of image scaling The algorithm can be modified by changing critical

parameters which all have an influence on the calculation of the SIEDS value (Section

4.2.2). Modification of the scaling factor influences the calculation time for an image

dataset. The greater the reduction, the shorter the calculation time. However, scaling

images does not only influence the calculation time, but also the subsequently calculated

SIEDS value. To assess the impact of scaling on the calculated SIEDS value, a dataset

of 600 images was processed repeatedly, each run containing different extent of camera

displacement. Figure 4.9 shows the calculated SIEDS values for different camera

displacements and different scaled images. It is possible to see that without any image
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Figure 4.9: Influence of image scaling on calculated SIEDS.

scaling the calculated SIEDS value barely changed with increased camera displacement

(Figure 4.9).

By scaling the image to a third of the original size the calculated SIEDS value changed

significantly. It was found that the calculated SIEDS value is larger than without scaling.

Furthermore, not only is the value increased, but the difference between the largest and

smallest SIEDS value is 23 units. This is three times larger than for the unscaled images,

which only had a difference of 7 units between the largest and smallest calculated SIEDS

value. This large discrepancy enables precise differentiation between sharp images,

images with small camera displacements and images with larger camera displacements.

By scaling the image further the calculation time decreases further, while the calculated

SIEDS value increases. However, the difference between the largest and smallest SIEDS

value does not increase significantly and does not provide any advantages.

For the unscaled images the SIEDS value changed by just 7 units. Reducing the image

size by a third, the change in the SIEDS value increases to 23 units, 24 units for a fourth

and 26 for one eighth of the original image size. It is possible to see that the change in the

SIEDS value does not increase significantly with decreasing resolution. Scaling results

in a much faster calculation of SIEDS, but comes with the risk that small structures in

the image, which could be used for blur detection, are degraded to a degree that they

are not usable. Additionally, the laboratory images contain high contrast edges which

are not common in natural images.
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Figure 4.10: Influence of additional blur on calculated SIEDS.

Based on the quality of the equipment used, the effect of chromatic aberration, spectral

mixing, image scale and the contrast of the edges, it was decided that a scaling factor

of 3 should be used to return the best results.

Influence of additional blur Another setting that influences the calculation of the

SIEDS value is the amount of blur that is added to the copy of the image. To visualise

the difference in the calculated SIEDS values the images were degraded with different

extents of additional blur (Figure 4.10). It was found that adding different low-pass

filters increased the difference between the SIEDS value of a sharp image and of a blurred

image. However, it was also found that the increased difference was not significant. For

a 3 x 3 filter the difference is 23 units, while it is 24 units for a 9 x 9 low-pass filter. Even

for a larger 81 x 81 low-pass filter the change did not prove significant. Larger low-pass

filters also require longer calculation times and slow the calculation process.

4.3.2 Calculated SIEDS

The calculated SIEDS value is derived from the standard deviation of the saturation

channel. The use of the value channel of the SVB image or any of the original RGB

channels were also tested to see if they could be used instead of saturation (Figure

4.11). Figure 4.11 presents the “SIEDS” values calculated in dependency to camera

displacements. Beside the SIEDS value based on saturation, “SIEDS” values based on
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Figure 4.11: Different image channels used for SIEDS calculation.

the value and blue channel were calculated. The results showed that the difference

between the largest and smallest SIEDS value is much larger for saturation than for the

value and blue channels. The difference for the blue channel is about 16 units, while

it is 15 units for value channel. The gradient for the saturation is much larger with

23 units, which enables greater distinction between the sharp and the blurred images.

The saturation channel is most sensitive, which can be explained by considering blur in

more detail. When an edge is blurred, the contrast reduces, whilst the colour remains the

same. A change in contrast is represented in the saturation of colour, hence saturation is

most influenced by blur. This strong influence on the saturation channel again supports

the decision to select saturation as the best channel to quantify the sharpness of an

image.

By calculating the SIEDS value of one image it is not possible to judge if an image is

blurred or not. Just one single number does not have any significance. To be meaningful

it needs to be set in context with other SIEDS values of other, similar images. Other

similar images being acquired with the same camera and lens system at the same time

and of similar terrain. As presented in Section 4.3.1, a change in the image resolution

does affect the calculated SIEDS value. Based on this it can be assumed that cameras

with different resolution will return different SIEDS values, even when the images show

the same area, with the same amount of camera displacement. The different SIEDS

values would imply that the images contain different amount of camera displacement,

which would be incorrect. The same lens is important to ensure that the same optical
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errors influence the images. A lens of high optical quality will often return a larger SIEDS

value, due to the more accurate and sharper image produced by the lens. A lens of low

quality will return images of lower quality and hence the calculated SIEDS value will

be smaller. Differences caused by lens choice must not be misinterpreted when deciding

between sharp or blurred images. The same camera and lens is normally used for one

image dataset in photogrammetric processing, which reduces this particular difficulty.

To make a comparison between different SIEDS values, the images should be from the

same camera dataset, taken under similar conditions and display similar terrain. Similar

terrain implies areas that show one type of terrain (e.g. forest, agricultural). The

requirement that the images show similar terrain is needed for the approach based on

edges, which are inherently variable with different types of terrain. However, this is not

a problem as UAV flights are normally acquired over one type of terrain to analyse this

certain type of terrain. Large UAV datasets provide generally enough similar images to

enable a comparison between these and to define a threshold between sharp and blurred

imagery. Datasets with a variety of terrain can cause problems and should be avoided or

datasets pre-processed by separating images by their terrain. Subsequently calculation

of SIEDS values can be conducted on the separate image stacks.

The SIEDS value is not a random number. It is calculated as a value between zero and

a value less than a half the bit depth of the edge difference image, which would be for

a standard 8 bit image SIEDS= [0, 127). The zero value can only be reached if, either

every pixel of the image has the same grey value, or all neighbouring pixels have the

same gradient, similar to a chessboard pattern. If all pixels have the same grey value

then the image would not contain any edges (Figure 4.12). Without any edges blur

detection would become impossible. In case of a homogeneous chessboard pattern, each

pixel would have the same gradient, so that the difference between them is zero again

and the standard deviation is zero too (Figure 4.13).

This shows that homogeneous images or repetitive patterns would not be suitable for blur

detection using this method. This disadvantage should not be significant as UAV images

normally show large variations in patterns and colours. Furthermore, these two types

of images do not contain any useful information for photogrammetric procedures, as the

unique identification of features for coordinate measurement would not be possible.



CHAPTER 4. BLUR DETECTION 127

0

0

0

0 0

0

000

Original

Re-blurred (Average)

Edge detection (Laplace)

Edge difference

Scaled on co-domain 8 bit (0-255) 

Scaled on co-domain 8 bit (0-255) 

0

0

0

0 0

0

000

0

0

0

0 0

0

000

10

10

10

10 10

10

101010

10

10

10

10 10

10

101010

Figure 4.12: Calculation of SIEDS for homogeneous image would return 0.

The largest SIEDS value would be achieved with zero gradients for every first pixel and

the largest gradients for every second pixel in the edge difference image. The standard

deviation would be calculated as half the value between the largest and zero gradient.

For an edge difference image of 8 bit with the largest value 255 representing a steep

gradient the SIEDS value would be 127.5. However, an edge difference image containing

zero gradients for every first pixel and largest gradients for every second pixel is most

unlikely. Already the edge of the original and the re-blurred image, which are used to

calculate the edge difference, would have to be zero in the one image and the largest value

in the other image. However, the largest practically achievable SIEDS value is achieved

by assuming a steep edge caused by one pixel. This SIEDS value would then be 103,
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Figure 4.13: Calculation of SIEDS for homogeneous pattern would return 0.

which would be the maximum reachable value (Figure 4.14). However, natural images

do not produce these SIEDS values as they provide more diverse gradients. During the

development of the program it was found that values between 30−60 are more typical.
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Figure 4.14: Calculation of SIEDS for steep edge would return 103.
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4.3.3 Beyond SIEDS

The calculation of SIEDS values for images with known camera displacements reveals

that the calculated standard deviation does not change linearly with increasing blur.

However, it is obvious that the dependency between SIEDS and camera displacement is

continuous and can be described by a function. The function best describing the curve

is a special case of the damping function, the over-damped oscillation. (Equation 4.1).

b = e−δw
(
δx0
ω

sinh (ωw) + x0 cosh (ωw)
)

+ n

b . . .Blur.

δ . . .Damping ratio.

x0 . . . Start position.

ω . . .Angular frequency.

n . . . y-offset from zero

w . . .SIEDS, derived from image

(4.1)

A damping function describes an oscillation, which is damped (Deutsch, 2015). Due

to resistance the oscillation is reduced with every wave, which results in zero amplitude

after a certain period of time. A special case of the damping function is the overdamped

oscillation, which means that there is no complete wave before the end of oscillation. A

practical example for this kind of function are damped doors. After opening they close

but the rate of closure slows before they are shut.

It is not surprising that a damping function can be found in images affected by camera

displacement. Images are the visualisation of 2D signals (Section 2.1.1.3), blur damps

the signal and in the most extreme case, with an infinite camera displacement an image

would appear as an homogeneous coloured ‘blotch’. This ‘blotch’ would have the average

colour of the area photographed in the image. The SIEDS value would be large when

the image is sharp and high amplitudes are available. With increasing blur, edges in the
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Figure 4.15: SIEDS calculated for images blurred using Matlab.

image would disappear and the SIEDS value would decrease.

The damping function helps to visualise the relationship between camera displacement

and SIEDS. SIEDS can be used with the damping function to estimate the displacement

of the camera. It was also found that the determination of the other unknown variables,

the offset of the y-axis (n), the angular frequency (ω), the start position (x0) and the

damping ratio (δ) are possible, but dependent on various factors such as image size,

number of edge pixels, average grey value and others.

4.3.4 SIEDS for mathematical blurred images

It is also possible to analyse images which are blurred using mathematical methods such

as low-pass filters. The analysis found that images containing larger levels of blur return

smaller SIEDS values. This is similar to images containing blur introduced by physical

camera displacement. However, the relation between the mathematically applied blur

and the calculated SIEDS value does not represent a damping function (Figure 4.15).

By calculating the applied blur to SIEDS curves for the different exposure times it

is possible to see that the functions are more similar to a logarithmic function. The

reason for this is that mathematically blurred images reduce effects like noise, spectral

mixing and other hardware impacts. It is also not possible to do sub-pixel blurring

using mathematical blur methods. Sub-pixel displacement of the camera could provide

new information that cannot be made available using mathematical blurring methods.

Mathematical low-pass filters can also only use the information already captured in the

image but not information that the object would provide.
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4.3.5 Other methods to calculate SIEDS

There are also other methods to calculate SIEDS values, for example the standard

deviation can be calculated based on the input image, minus the re-blurred image,

without applying edge detection. The damping function was also applied here, but the

gradient between the sharp images and images with large camera displacements was too

small to guarantee correct differentiation between blurred and sharp image.

Another method to calculate SIEDS values includes application of the inverse process to

a low-pass filter applied on the input image. It has been investigated if high-pass filtering

instead of low-pass filtering could be useful. In this study, the copy of the original image

was not treated with a low-pass but a high-pass filter. After applying the high-pass filter

the high-pass filtered image was applied on the input image to generate an enhanced

image used as comparison. Then both, the input image and the edge enhanced image

were processed using a high-pass filter to find the edges and subsequent edge differences

calculated. It was found that this procedure produced similar results to using a low-pass

filter. However, the calculation of a high-pass filtered image and subsequent enhancing

of the input image requires one additional step in the procedure to the calculation

of SIEDS. This step takes additional time during the calculation procedure and was

considered unnecessary.

4.4 Discussion and future work

The idea of using edge sharpness for blur detection and quantification is not entirely

novel. Crete et al. (2007) used the edge sharpness approach in their research, however,

real blurred images were used, which showed that the method did not return reliable

results (Section 4.1.3). Despite some similarities to use additional blur for blur detection,

the Crete et al. (2007) method is different from the method presented in this research

(Table 4.1).

A similar approach is used also by Agisoft PhotoScan and their ’Estimate Image Quality’

tool. This tool estimates image quality and returns values between 0 for blurred to 1
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Table 4.1: Comparison of Crete et al. (2007) to developed method.
Step Crete (2007) Sieberth (2015)
1. Scaling Image
2. Convert to SVB
3. Blur the image vertically and

separately horizontally
Blur the image in both directions

4. Compute the variation between
vertically and horizontally pixels
from the original and from the
re-blurred images.

Detect edges in both, the original
and re-blurred images.

5. Calculate the difference between
the vertical variation images
and separately for the horizontal
variation images.

Calculate the difference between
the edge detection results.

6. Summation of all pixel values for
both original variation images and
the calculated difference images
from step three.

7. Normalize the results retrieved in
step seven.

8. Select either the vertical, or the
horizontal value as the blur value
(dependent on which one is larger).

Calculate the Standard deviation
for all pixels
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for sharp (Agisoft LLC, 2013). Agisoft PhotoScan "[...] estimates the quality by the

border sharpness, here each pixel has its own border." and "refers [the quality value] to

the area of highest quality" (Pasumansky, 2014). However, the main difference between

these two approaches is the conversion of RGB images to a different colour space, which

is necessary to exclude the unimportant colour information and reduces the important

saturation channel. Furthermore, the detection developed in this thesis is based on a

difference image calculated using images that have been processed using a high-pass

filter.

Compensation for rolling shutter or distorted images would be possible. A way to do

so would be by weighting the values during calculation of SIEDS based on the camera

and lens model. Another way would be by calculating the SIEDS not for the complete

image but only for areas of interest.

The calculation of the SIEDS value is dependent on the camera displacement described

by a damping function, that could be used to convert SIEDS to a physical value

representing the camera displacement. However, the parameters required by the damping

function and their dependencies should be researched further with various camera models,

different camera displacements and image content. This could perhaps establish a model

that would enable the calculation of actual physical camera displacement, based on a

blurred image.

4.5 Conclusion

This chapter focused on the detection of blur in images and explains the method

developed and demonstrate that it is possible to detect blur caused by linear camera

displacement. The method is based on human detection of blur. Humans use an image

for comparison in order to establish whether an image is blurred or not. By creating a

comparable image using a low-pass filter this method is independent of additional images

acquired from the same position with the same camera. However, the calculated SIEDS

(saturation image edge difference standard-deviation) value on its own does not provide

an absolute number to judge if an image is blurred or not. To do this the SIEDS values
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of other similar images have to be compared. However, the need for other SIEDS values

is not an issue, as the detection method is aimed at photogrammetric applications which

require more than just one image. The developed algorithm ideally suited for large UAV

imagesets as it is both, fast and reliable.



5 Blur correction

Blur correction is the next logical step after blur detection. This chapter will explain

how blurred images can be deblurred. However, deblurring is a topic often researched

and many different methods have been developed in recent years. To give an insight into

existing methods a literature review is presented, explaining the most common methods

used for deblurring. Subsequently, an algorithm will be presented which was developed

to deblur UAV images which include photogrammetric targets.

5.1 Literature review

Finding techniques to deblur images has been an active research topic since the beginning

of image acquisition. Since charge-coupled device (CCD) and

complementary metal-oxide-semiconductor (CMOS) image sensors have been available,

image enhancing has become a prime focus of research. Enhancing images to get sharper,

more detailed results, is often desired by the film industry and is ‘a dream’ for every

photographer. The film industry suggests that a sharp image provides information which

is accurate to sub-pixel level. For example, it is possible to make text legible that

would traditionally have been unreadable due to its too small size. This is sometimes

referred to as ‘super-resolution’. To create such ‘super-resolution’ images, additional

information has to be provided (Bascle et al., 1996). One application of ‘super-resolution’

imagery is in medical imaging necessary to support medical decisions (Park et al., 2003).

Another example is the use of ‘super-resolution’ mosaics created by videos captured

from UAVs (Wang et al., 2008). However, both techniques require highly overlapping

images acquired from slightly different positions, which are then merged to create a

higher resolution representation. Although relevant, super resolution imaging is quite

136
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different to image deblurring. Deblurring, in contrast to ‘super-resolution’, aims to

restore information in the image that has been degraded due to blur.

5.1.1 Blur correction

Blur correction is a step that is performed widely in image processing. Mathematically,

blur can be represented by a convolution of an image and deblurring is often called

‘image deconvolution’ (Jia, 2007; MacAdam, 1970; Rav-Acha and Peleg, 2000; Yuan

et al., 2007). If deconvolution is carried out without additional information from other

sensors or images and only based on the single blurred image, then this process is called

‘blind image deconvolution’. If additional sources of information are used it is described

as ‘non-blind image deconvolution’ (Kundur and Hatzinakos, 1996).

5.1.1.1 Point spread function and blur kernel

The easiest way to deblur an image involves an original sharp image, which shows exactly

the same scene as the blurred image. The original sharp image can be used to estimate

the point spread function (PSF) of the blurred image, using edge detection algorithms

(Charlmond, 1991). It is also possible to use image pairs to compute a blur kernel

(Yuan et al., 2007). In both cases a PSF is calculated, which represents how pixels

are distorted in an image (Nagy et al., 2004) (Figure 5.1(a)). The larger the spread of

the point function, the larger is the image blur. However, this blur definition can only

describe uniform blur, but not a more complex blur path. A more advanced approach

uses a blur kernel, which can represent up to four dimensional (3 space and 1 time

coordinate) (4D) movement of a pixel in time space (Figure 5.1(b)). It represents the

path of a pixel during image exposure. The longer and more complex this path, the more

complex the movement of the camera, respectively of the object. If the pixel was blurred

with varying speed, the result is represented by different grey values of the path. A slow

movement of the camera is represented by a high DN, whilst lower DN represents faster

movements. Figure 5.1(b) represents a blur kernel in which the image was blurred in an

‘s’ shape. Starting at the top left corner, motion speed was fast and then it slows down

towards the middle of the path. After accelerating again, it slowed again and finally
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(a) Example of PSF by Nagy et al. (2004)
showing a uniform blur.

(b) Example of a blur kernel by Tai et al. (2010)
showing a non-uniform blur in 3D (2 space, 1 time
coordinate).

Figure 5.1: PSF and blur kernel as representation of blur in an image.

stopped in the bottom right, which is represented by the highest DN.

Precise inertial measurement units (IMUs) and global navigation satellite systems (GNSS)

can be used to record actual camera displacement during image acquisition and to

generate appropriate blur kernels. Assuming an image exposure time of 1
400 s would

require an IMU of at least 800Hz to measure an approximate blur kernel for an image

(Grenzdörffer et al., 2012). A blur kernel based on two measurements can only provide

a linear representation of the motion and would not be able to represent more complex

motion. Unfortunately, even if linear representation of motion blur is sufficient to

represent typical UAV flight motion, such systems remain expensive and can rarely

be used since they would exceed the payload of typical micro UAV platforms.

5.1.1.2 Blind deconvolution

In contrast to non-blind deconvolution, blind deconvolution has only the blurred image as

an input to the process. No additional information is available, but the task of deriving

a sharp image remain. The ‘single image blind deconvolution’ approach calculates a

PSF or blur kernel using a single image to undertake deconvolution. Two methods for
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deconvolution are the Wiener deconvolution (Wiener, 1950) and the Richardson-Lucy

deconvolution (Lucy, 1974; Richardson, 1972), which both represent blind deconvolution

methods proposed decades ago. However, both methods remain popular because they

are simple and efficient. Both methods use Bayes’s theorem, from the field of probability

theory (Equation 5.1 (Leonard and Hsu, 1999)) (Fergus et al., 2006; Jia, 2007; Whyte

et al., 2010; Yuan et al., 2007).

P (A‖B) = P (B‖A)P (A)
P (B)

P (A) . . .Probability of A.

P (B) . . .Probability of B.

(A‖B) . . .Probability of A given that B is true.

P (B‖A) . . .Probability of B given that A is true.

(5.1)

Richardson (1972) states that the degraded image (h) is of the form f⊗g = h, where f is

the original image, g represents the PSF and ⊗ denotes the convolution operation. It is

assumed that f , g and h are discrete probability-frequency functions. Bayes’s theorem

can be used to calculate f using an iterative approach and requires an initial value

(f0). However, noise in the blurred image can create difficulties, which can generate

disturbance in the restored image. This problem remains unresolved (Fergus et al.,

2006). Another significant problem that occurs using these methods are ringing artefacts

which appear at high contrast edges. These approaches were examined and it was found

that photogrammetric processes are negatively influenced by ringing artefacts, due to

the appearance of additional structures, which appear similar to targets (Figure 5.2).

Target detection algorithms therefore have significant difficulties in detecting targets

correctly, due to these artefacts. This makes the use of these approaches, which create

ringing artefacts, impossible for use in automated photogrammetric applications.

More advanced methods are also based on the probability calculation used by the Wiener

and Richardson-Lucy deconvolution. Sun et al. (2014) uses image priors to conduct

deblurring. They aim to improve deblurring and increase the reliability even with noise
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Figure 5.2: Lucy-Richardson deconvolution result (10 iterations). Ringing artefacts are clearly visible

present in the blurred image (Shan et al., 2008). There are also many other methods for

blind deconvolution such as ’Fast Image Deconvolution using Hyper-Laplacian Priors’

Krishnan and Fergus (2009) or Michaeli and Irani (2014), who uses recurrence of image

patches. However, these methods are often computationally expensive and require

significant time and memory, which is a major disadvantage for large UAV image datasets.

However, the huge amount of images available in UAV datasets is an advantage, as the

additional images can be used by non-blind deconvolution methods instead.

5.1.1.3 Non-blind deconvolution

Non-blind image deconvolution methods can be carried out in various ways and require

additional knowledge. Additional information can be gained through a variety of methods

including, other overlapping images (Agrawal et al., 2012), precise IMU measurements

(Joshi et al., 2008), video cameras (Tai et al., 2008), fluttering shutters (Raskar et al.,

2006) or colour channel dependent exposure times (Lelégard et al., 2012). The main aim

of these methods is to establish either a blur kernel, which can be used for deblurring.

The approach which utilises overlapping images appears useful and is based upon the

idea that each overlap provides a small amount of additional information to generate a

deblurred or even a super-resolution image.

Raskar et al. (2006) developed an approach to allow overlapping but slightly misaligned

images to be used in deblurring. A small translation can be tolerated and interpreted as
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motion blur, it does not need to be aligned because it can be described in the computed

blur kernel. Larger translations still require conventional image alignment methods

(Raskar et al., 2006).

Another method that uses PSF was developed by Agrawal et al. (2012), it uses images

of a blurred moving object with an associated PSF. A discrete Fourier transformation

can be applied to the PSF. Due to the discrete Fourier transformation, the frequency

domain is ill-posed and contains frequencies without information that can be detected.

This can be done on images with different exposure times and information can be filled

with the frequencies of other transformed PSFs. This composite PSF in the frequency

space can then be inverted to the spatial domain and used for the deconvolution of the

blurred object. However, the assumption is made that whilst the object maybe blurred,

the image contains a static background. In addition, images require varying exposures

and need to be captured from the same position.

Another method using Fourier transformation was developed by Jung et al. (2009). Jung

et al. (2009) used the frequency domain of an image sequence to merge all frequencies of

the same region together. This method does not recover lost frequencies but can combine

existing frequencies. However, the approach by Jung et al.’s (2009) only works with

fully aligned image sequences. It can be assumed that they use mathematical blurring

algorithms or optical blur, to create the aligned image sequence, not real motion blur.

All of the methods described work with aligned images. However, deblurring of unaligned

images is rarely tested and problems are expected.

5.1.1.4 Unsharp mask

Another method which is not real deblurring in the sense of deconvolution, does not

require overlapping images, is fast and easy to apply and returns useful results, is the

image enhancement method called ‘unsharp mask’ (McHugh, 2015; The GIMP Help

Team, 2015). This technique improves the contrast at edges, which makes the image

appear sharper. The unsharp mask approach is based on image processing techniques,

such as edge detection and contrast enhancement and will be explained fully here.
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Figure 5.3: Unsharp mask image enhancement principle.

An edge in a blurred image is characterised by a softer gradient (Figure 5.3(b)) than

the original sharp edge (Figure 5.3(a)). However, when applying a low-pass filter to the

blurred image, the gradient becomes even flatter (Figure 5.3(c)). Subsequent calculation

of the difference between a blurred gradient and the low-pass filtered gradient, results in

a contrast enhanced and sharper appearing gradient (Figure 5.3(d), Code 5.1) (McHugh,

2015; The GIMP Help Team, 2015).

Listing 5.1: Unsharp mask method

1 //Function to apply unsharp mask approach. Input is only the blurred image.
2 Mat Funsharp(Mat in){
3 //http://stackoverflow.com/questions/19890054/

how−to−sharpen−an−image−in−opencv
4 //Definition of variables to store image matrix.
5 Mat out;
6 //Re−blurring the input image with 3x3 kernel and high standard deviation for

Gaussian equation.
7 GaussianBlur(in, out, Size() , 11);
8 //Calculating weighted sum of original and re−blurred image. The weighting of

the input image is 1.5 and −0.5 for the re−blurred image
9 addWeighted(in, 1.5, out, −0.5, 0, out);
10 //Returning the enhanced image to the calling function.
11 return(out);
12 }

This process is not real image deblurring in terms of the understanding of image deconvolution,
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(a) The original image. (b) The enhanced image.

Figure 5.4: Unsharp mask image enhancement example.

but it improves the image, enables better photogrammetric processing and improves

further deblurring. It is possible to see in Figure 5.4 that the blur in the enhanced image

and in the original image is still similar, but the improved contrast makes the image

appear ’sharper’. However, this approach appears to assist subsequent photogrammetric

processing (Table 6.4).

5.1.1.5 Summary

There are many image deblurring algorithms available, most utilising the original Wiener

and Lucy-Richardson deconvolution and the basic idea of using probability theory to

deblur images. However, these methods exhibit problems such as suppressing ringing

artefacts efficiently and are less successful if the image is noisy. Some algorithms may

return acceptable results, but they are often computationally expensive, take too long to

deblur one image and require a higher performance processor. Most deblurring methods

aim to simply restore a visually acceptable image. Photogrammetry requires a deblurring

method which restores points to their correct positions within an image, in order to keep

accurate image measurements.
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5.2 Processing blurred images

After detecting if an image is blurred or not, the blurred image can be excluded from

further processing. An alternative to exclusion is image deblurring to restore the image

and then re-use for subsequent photogrammetric procedures. It is also important to

minimise the number of excluded images to maintain a strong image configuration for

precise coordinate calculations. There are several possible approaches available to deblur

a photogrammetric image. One approach that can be used takes advantage of the image

overlap available with UAV image sequences. However, this requires the ability to detect

the overlap precisely, which is not always possible in the case of extensive blur. In such

cases another method is required to restore an image in a way that they can be used for

subsequent photogrammetric processing.

5.2.1 Frequency transfer method using image overlap

The frequency transfer method is one appropriate approach, which is similar to that

used by Jung et al. (2009) (Figure 5.5). This approach was implemented and will be

described in greater detail here. The method uses a sharp(er) overlapping image to

deblur a blurred image. Initially, the image overlap between the sharp and blurred image

has to be determined using feature detection or some other method. If the determination

of image overlap fails, this method cannot be applied and other algorithms have to be

used (Section 5.2.2).

Establishing the image overlap using feature detection and matching involves matching

a number of features in both the sharp and blurred image. After successful establishing

the relationship between the two images a perspective transformation is applied to the

blurred image. Then both, the sharp and the transformed blurred images are cropped

to just the overlapping area. Code sniplet 5.2 shows the calculation of parameters for a

perspective transformation which was implemented in the developed program.

Listing 5.2: Perspective transformation parameter from matched features

1 //Following ’Feature detection and matching’ code sniplet .
2 //Variables for key points/features .
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Figure 5.5: Flow of blur correction using Fourier transformation.
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3 std :: vector<Point2f> sharpvector;
4 std :: vector<Point2f> blurredvector;
5 //Looping through all matches and separating features for sharp and blurred image.
6 for(int i=0; i<match.size(); i++){
7 //Get the keypoints from the good matches
8 sharpvector.push_back(feature_sharp[match[i].queryIdx].pt);
9 blurredvector.push_back(feature_blurred[match[i].trainIdx].pt);
10 }
11 //Calculating the perspective transformation parameter based on RANSAC method.
12 Mat H=findHomography(sharpvector, blurredvector, CV_RANSAC);

After determining the transformation parameter the overlapping image areas were calculated

based on Code 5.3.

Listing 5.3: Calculating overlap area from perspective transformation parameters

1 //Function to calculate the overlapping area. Input is the matrix of the blurred image
and the transformation matrix.

2 Rect Froi1(Mat image, Mat H){
3 //Variable for the rectangle representing the overlapping area.
4 Rect roi ;
5 //Variable for the corners of the rectangle .
6 std :: vector<Point2f> obj_corners(4);
7 //Variable for top and bottom point of the rectangle .
8 Point top;
9 Point bottom;
10 //Setting rectangle as image corners.
11 obj_corners[0]=cvPoint(0, 0);
12 obj_corners[1]=cvPoint(image.cols, 0);
13 obj_corners[2]=cvPoint(image.cols, image.rows);
14 obj_corners[3]=cvPoint(0, image.rows);
15 //Variable for the transformed corners.
16 std :: vector<Point2f> scene_corners(4);
17 //Perspective transformation of the blurred image corners.
18 perspectiveTransform(obj_corners, scene_corners, H);
19 //Test if transformed coordinates are in or beyond blurred image boundaries.

This needs to be done to define the exact area that is available in the
image and not also the area outside the pictured area.
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20 if (scene_corners[0].y>=scene_corners[1].y){
21 top.y=scene_corners[0].y;
22 }
23 else{
24 top.y=scene_corners[1].y;
25 }
26 if (scene_corners[0].x>=scene_corners[3].x){
27 top.x=scene_corners[0].x;
28 }
29 else{
30 top.x=scene_corners[3].x;
31 }
32 if (scene_corners[2].x<=scene_corners[1].x){
33 bottom.x=scene_corners[2].x;
34 }
35 else{
36 bottom.x=scene_corners[1].x;
37 }
38 if (scene_corners[2].y<=scene_corners[3].y){
39 bottom.y=scene_corners[2].y;
40 }
41 else{
42 bottom.y=scene_corners[3].y;
43 }
44 //Saving the corner coordinates of the overlapping area.
45 roi .x=top.x;
46 roi .y=top.y;
47 roi .width=bottom.x−top.x;
48 roi .height=bottom.y−top.y;
49 if ( roi .height>image.rows){
50 roi .height=image.rows−1;
51 }
52 if ( roi .width>image.cols){
53 roi .width=image.cols−1;
54 }
55 //Returning the overlapping area to the calling function.
56 return(roi);
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57 }

Subsequently the perspective transformation can be conducted and the transformed

image can be cropped to just the overlapping area (Code 5.4).

Listing 5.4: Warping the image using perspective transformation

1 //Function to warp the blurred image. Input are the blurred image matrix, the
transformation matrix and the rectangle defining the overlapping area.

2 Mat Fwarp1(Mat image, Mat H, Rect roi){
3 //Variable for the perspective transformed overlapping area.
4 Mat matched;
5 //Size of output image required for warping function. Size set to same as

original.
6 cv :: Size size (image.cols , image.rows);
7 //Warping the image. Interpolation method is cubic interpolation .
8 warpPerspective(image, matched, H, size, INTER_CUBIC |

WARP_INVERSE_MAP, BORDER_CONSTANT);
9 //Cropping the transformed image to the overlapping area.
10 matched=matched(Rect(0, 0, roi.width, roi.height));
11 //Returning the overlapping image.
12 return(matched);
13 }

Then the images are transferred to the frequency domain using a Fourier transformation.

A disadvantage with the frequency domain approach is that any frequency operation

is only able to work on single channel images, which makes it necessary to apply this

method on each channel separately or to use a grey scale image instead of a three channel

colour image (Code 5.5).

Listing 5.5: Fourier transformation

1 //Function for Fourier transformation. Input is the overlapping image matrix.
2 Mat Ffft(Mat image){
3 //Variable for output of Fourier transformed image matrix
4 Mat out;
5 //http://stackoverflow.com/questions/10269456/

inverse−fourier−transformation−in−opencv
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6 //http://docs.opencv.org/doc/tutorials/core/discrete_fourier_transform/
discrete_fourier_transform.html

7 //Converting the RGB input image to a grey scale image.
8 Mat in;
9 cvtColor(image, in, CV_BGR2GRAY);
10 //Buffer variable .
11 Mat padded;
12 //Find optimal image size for Fourier transformation.
13 int m=getOptimalDFTSize(in.rows);
14 int n=getOptimalDFTSize(in.cols);
15 //Fourier transformations is more efficient for images of certain sizes . To

perform a fast transformation the input image is reduced to this size .
16 copyMakeBorder(in, padded, 0, m−in.rows, 0, n−in.cols,

BORDER_CONSTANT, Scalar::all(0));
17 //Fourier transformation return real and complex values which need to be stored .
18 Mat planes[]={Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
19 Mat complexI;
20 merge(planes, 2, complexI);
21 //Performing Fourier transformation.
22 dft(complexI, out, DFT_SCALE|DFT_COMPLEX_OUTPUT);
23 //Returning result of Fourier transformation to calling function.
24 return(out);
25 }

It is well established that high frequencies are absent in blurred images (Lelégard et al.,

2012) (Section 4.1.2). The absence of high frequencies can be compensated by enhancing

the blurred image using high frequencies extracted from the sharp image (Code 5.6).

Listing 5.6: Adding frequencies

1 //Function to add frequencies of two images. Input are the frequency images of sharp
and blurred image.

2 Mat Faddfft(Mat fft1, Mat fft2){
3 //Variable to store the added frequencies . At first similar to the blurred

frequency image.
4 Mat out=fft2.clone();
5 //Looping through all elements of the frequency matrix.
6 for(int i=0; i<fft1. size () .height; i++){
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7 for(int j=0; j<fft1. size () .width; j++){
8 //Testing if amplitude in the sharp image is larger than in the

blurred image.
9 if ( fft1 .at<Vec2f>(i, j)[0]>fft2 .at<Vec2f>(i, j) [0]) {
10 //If sharp image has larger amplitude then writing

sharp image amplitude to output matrix.
11 out.at<Vec2f>(i, j)=fft1.at<Vec2f>(i, j) [0];
12 }
13 else{
14 //If sharp image has smaller or equal amplitude then

writing blurred image amplitude to output matrix.
15 out.at<Vec2f>(i, j)=fft2.at<Vec2f>(i, j);
16 }
17 //Repeating procedure for the complexe values.
18 if ( fft1 .at<Vec2f>(i, j)[1]<fft2 .at<Vec2f>(i, j) [1]) {
19 out.at<Vec2f>(i, j)[1]=fft1 .at<Vec2f>(i, j) [1];
20 }
21 else{
22 out.at<Vec2f>(i, j)[1]=fft2 .at<Vec2f>(i, j) [1];
23 }
24 }
25 }//End of loop.
26 //Returning added frequency domain matrix to calling function
27 return(out);
28 }

Afterwards the enhanced frequency domain can be transformed back to the spatial

domain (Code 5.7).

Listing 5.7: Inverse Fourier transformation

1 //Function for inverse Fourier transformation. Input is the Fourier domain matrix
containing the added frequencies.

2 Mat Fifft(Mat fft){
3 //http://stackoverflow.com/questions/10269456/

inverse−fourier−transformation−in−opencv
4 //Variable for spatial domain image matrix.
5 Mat out;
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6 //Inverse Fourier transformation.
7 dft( fft , out, DFT_INVERSE|DFT_REAL_OUTPUT);
8 //Returning spatial domain image to calling function.
9 return(out);
10 }

If a grey scale image is used, the deblurred image can be used to replace the intensity

channel of the originally blurred image. Replacing the intensity channel is based on the

idea of pan sharpening (Laben and Brower, 2000). Pan sharpening replaces the intensity

channel of a colour image with the intensity channel of a high resolution grey scale image

to achieve a higher resolution colour image.

After the frequency operations, the overlapping area needs to be transformed using an

appropriate rotation, translation, scale and shear. Due to the fact that this deblurring

method is only deblurring the overlapping areas and not the complete image, the deblurred

area of the image needs to replace the overlapping area in the blurred image. The result

is a partially deblurred image (Figure 5.6).

Figure 5.6 shows the effect of Fourier based deblurring. It is possible to see that the

deblurred area of the image is much clearer and sharper than the area that has not been

deblurred. The photogrammetric targets can be clearly recognised, the target codes can

be correctly identified and the boreholes in the ceiling panels appear sharp. The inset

shows a magnified comparison between the deblurred upper part and the bottom part

of a target which contains a camera displacement of 1.03mm. This direct comparison

visualises how effective this deblurring approach is.

The frequency domain approach does not require knowledge about the path of camera

displacement that caused the blur. However, as it requires the detection of overlapping

areas, it is only applicable for camera displacements that do not significantly disturb

feature detection and matching. Larger camera displacements, which exhibit a more

complicated blur path can significantly influence the calculation of overlapping areas

and make the calculation of the overlap impossible. If it is not possible to calculate the

overlap when more advanced methods for image deblurring are required.
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Figure 5.6: Deblurring using Fourier approach on an image with 1.03mm camera displacement.

5.2.2 Edge shift - an overlap independent method

If image registration is unsuccessful, or no sharp image overlap is available then the

frequency transfer method cannot be used and a different approach needs to be applied.

A second method developed in this study focused on correcting edges in images, which

represent an important visual component and are essential for target recognition. Edges

indicate if an image is blurred or sharp (Chen et al., 2011) and help to identify how

much an image is blurred. This method requires knowledge of a bur kernel, or PSF to

deblur an image. However, it was found that existing deblur algorithms use the blur

kernel to restore a colour image aesthetically. The developed edge shifting approach

however, focuses on high contrast edges, but ignores colour information and image

aesthetic (Figure 5.7).

High contrast edges used by this algorithm can include photogrammetric targets, which

are often used for photogrammetric applications. In sharp images, targets are normally

detected, identified and measured automatically and subsequent image registration can

be conducted. Targets are designed to provide high contrast relative to the background,

which makes them perfectly suitable for target detection procedures. Blur degrades

these important high contrast edges. The degrading of the edge due to blur causes the

gradient to decrease, but also causes a displacement of the edge, which is shifted by the

size of the blur. Figure 5.8(a) represents the edges of photogrammetric targets in a sharp

image, but in a blurred image these edges are displaced (Figure 5.8(b)). The decrease of
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Figure 5.7: Flow of blur correction using edge shift.

(a) Edges of photogrammetric targets in a sharp
image.

(b) Displaced edges of photogrammetric targets in
a blurred image.

Figure 5.8: Displacement of edges in blurred images.

the gradient and the displacement of the edges can prevent automated photogrammetric

processes. However, even in blurred images, high contrast edges remain detectable,

provided they still appear stronger than other edges.
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Figure 5.9: Blur kernel created for blurred image.

The algorithm developed in this research aims to shift the displaced edges back to

their original position, providing the possibility to automatically detect the target and

identify the target number based on the target code. With identified target number

and measurement of the target, the calculation of image overlap or the calculation of

coordinates should remain possible.

To achieve the repositioning of edges to their original sharp positions the blur kernel

or PSF has to be known. Calculating the blur kernel is possible using a range of

algorithms and the algorithm developed by Shan et al. (2008) was implemented in this

study. Unfortunately, the full algorithm did not return any useful deblurring results and

deblurred images could not be used for further processing. Even after correspondence

with the author it was not possible to create an image that was acceptable deblurred.

However, the returned blur kernel (Figure 5.9) appeared to be correct and was used

to develop the novel edge shifting method that will be presented here. It should be

recognised that blur kernels can also be produced by precise IMUs measurements or

other image processing algorithms.

A high pass filter was initially applied to the blurred image, to detect the edges displaced,

due to the original camera movement during image acquisition (Figure 5.8(b)). To

restore the edges to their correct position, these edges needed to be displaced backwards

along the path taken during the blurring process. This path is represented by the blur

kernel.

To recover the original positions of edges each edge pixel had to be processed. The

direction of movement to restore the original position of the pixels has to be identified

by analysing the gradient of the edge. Figure 5.10 shows the blurred image (Figure
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(a) Photogrammetric
targets in a blurred image.

(b) Edges of
photogrammetric targets in
a sharp image.

(c) Edges of
photogrammetric targets in
the blurred image.

Figure 5.10: Direction of displacement of blurred edges.

5.10(a)), the edges of the sharp (Figure 5.10(b)) and blurred image (Figure 5.10(c)). It

can be seen that camera displacement during exposure appears to displace the edges

towards the darker pixels that represent the target bit pattern. Therefore, to restore

the original positions the edge has to be displaced in the opposite direction towards the

brighter area.

After establishing the direction of movement it has to be established how far the edge

pixel has to be moved to reach its desired position. This can be established by the

blur kernel which provides information about the extent of camera displacement and

the displacement of the edge. However, moving the edge the full extent of the kernel

path creates incorrect results, this is due to the fact that both, the edge on the left of

an object as well as the edge on the right of an object are moved in opposite directions.

Moving both edges by the full extent would therefore return incorrect results. Instead

of moving them the full extend are they moved just half the length of the blur kernel.

After repositioning the edges to their original positions, it is possible to recognise the

round targets. However, due to ‘ripping’ apart the left and the right edge of an object,

the edges are no longer connected (Figure 5.11(a)). This problem needs to be detected

and the holes filled to ensure that the contours of the circle are available. The detection

can be done by finding edge pixels which are moved in both directions. This is indicated

by brighter areas on both, the left and right of the pixel. After detection of such a pixel,

the pixel can be displaced and the distance between the movement to the left and to

the right filled with new edge pixels (Figure 5.11(b)). After filling the gap the contours
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(a) Targets with holes due to shifting.

(b) Shifting holes filled.

Figure 5.11: Holes cause by ’ripping’ apart edges.

are closed and target identification can be conducted. In this research target detection

was carried out using the contours of the targets. If these match a specific size and

shape they are accepted as targets, whilst objects that do not match a certain size or

shape are excluded. The target were defined to be circular in this study. Each circular

contour matching a certain size was then analysed and the binary target code read and

translated to a decimal number to identify the target. To measure the target centre, the

area of the target was selected and the first order image moment (gravity centre) was

calculated.

With the target identified and the coordinate measured, it is possible to conduct

subsequent photogrammetric procedures. For example, it is possible to incorporate

the coordinates in a bundle adjustment to calculate 3D coordinates for the targets.

Unfortunately, the edge shifting approach returns just an edge image without colour

information, which limits certain use of the deblurred image. However, it would also be

possible to achieve image registration, which would then enable the use of the frequency

transfer method to generate a deblurred colour image.
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5.3 Results and limits of correction

To prevent the negative influence of blurred images in post processing, blurred images

should be detected and deblurred. Even if image blur is small it can be too severe

for accurate detection and identification of photogrammetric targets and ground control

points. A method to improve the image quality through ‘deblurring’ is therefore valuable.

Two approaches have been investigated and their efficacy is examined here.

5.3.1 Fourier transformation approach

The frequency transfer method can correct some blur and is practicable if overlap

is available and one image is sharp. Incorporating high frequencies derived from a

sharp image into the blurred image appears successful. However, if the image used

for deblurring is itself blurred, then although the enhanced result maybe better than

the original blurred image, it will contain at least as much blur as the ‘sharper’ image

originally contained.

PhotoModeler was used in this research to test the quality of deblurred images, specifically

to detect and identify targets. An image with 1.03mm camera displacement was

deblurred initially using the Fourier approach that had been developed (Section 5.2.1).

Subsequent target detection was executed and proved to be successful as PhotoModeler

successfully detected 51 of 54 targets. In addition 49 of the 54 targets were correctly

identified. In comparison, it was not possible to detect any targets in the original blurred

image, demonstrating a major improvement (Figure 5.12, Section 3.2).

Feature detection and matching was also tested. A SURF algorithm was applied on

the deblurred image, which detected 11, 641 feature points. After matching and filtering

incorrect features, 291 features were accepted as correct (Figure 5.13). This value was

six times greater than that achieved using the original blurred image, demonstrating

that deblurring can bring major improvements.

Adding frequencies to a blurred image introduces noise after transforming back from

the frequency to the spatial domain. The insets in Figure 5.12 show a target sheet
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Figure 5.12: Detected and identified targets in deblurred image.

Figure 5.13: Detected and matched features in deblurred image.

and the Siemens star which both show that there is a pattern with brighter and darker

‘blobs’. This pattern is insufficient to influence post processing, but does affect the visual

appearance. This might prevent the use of the image for image mosaics or other visual

products.

After joining the frequency domain images, the final stage involving image transformation

can cause a ‘smearing’ effect. The image transformation is necessary to regain the

correct position through, rotation, shear, scale and shift, but the interpolation of the

correct pixel intensities for the rectified image can cause noticeable image degradation.

Furthermore, deblurring using overlapping images acquired from a moving platform

will always be limited by the sharpness of the image used for deblurring. Any slight
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blur in the overlapping image will be replicated in the final result because the critical

high frequencies are missing and cannot be integrated. A complete deblurring can only

be generated if there is a perfectly sharp image containing all high frequencies. This

frequency transfer is based on the original idea of Jung et al. (2009). However, the

newly developed method uses images which are not highly overlapping or taken from

the same camera point of view, which makes it widely applicable for aerial imagery.

Furthermore, it should be recognised that the Fourier approach is strictly only applicable

for flat areas, which do not exhibit significant height differences. In cases of significant

height variations, like high rise buildings or opencast pits, offsets will be generated due

to relief displacement (Campbell and Wynne, 2012). A way to solve this would split the

image into many small patches, which take account of the different heights.

This approach developed derived imagery suitable for further photogrammetric

processing. However, it cannot be guaranteed that subsequent measurements in the

deblurred image are of high or even sub-pixel accuracy. The geometric image

transformation leads to errors, which depend on the accuracy of the transformation

parameters. However, coordinate measurements are more likely to be successful using

automated tools. One approach to deblur an image that is geometrically correct could

be the edge shift approach.

5.3.2 Edge correction approach

The edge shifting approach appears to provide a method to restore high contrast edges in

blurred images. It provides the opportunity to deblur targets and to detect and identify

them (Figure 5.14). In Figure 5.14 it is possible to see that all 54 targets were detected.

Out of these 54 targets, 47 were assigned with their correct label, 2 with an incorrect

label. This is in contrast to the result achieved with PhotoModeler on the original blurred

image, which detected only 3 targets and identified all of them incorrectly. This result

shows a significant improvement (Section 3.2).

However, one of the main problems for this method is, that it requires a blur kernel. The

blur kernel was not established in the developed algorithm but instead derived by using
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Figure 5.14: Edge shifting result for image with 0.53 mm camera displacement. 54 targets detected; 49
targets identified; 2 identified incorrectly; 47 identified correctly with their correct labels.

the algorithm of Shan et al. (2008). This can be solved by assuming a simplified blur

kernel that is continuous and linear, or by using IMU and GNSS information recorded

by the UAV. It is also possible to use blur kernels calculated by other algorithms.

If a blur kernel can be provided then the algorithm is able to deblur high contrast edges.

High contrast edges are often used for image registration, as these can be clearly detected

and measured in different images in a sequence. Standard deblurring methods based

on the Wiener or Lucy-Richardson deconvolution, often produces ringing artefacts on

high contrast edges, making automatic detection of targets and features challenging. In

contrast, edge shifting does not produce these artefacts and makes automatic detection

possible. It is also faster than standard deconvolution methods because it concentrates

only on edges. However, the main problem is the loss of colour information, which would

need to be restored afterwards using for example, a flood fill method. However, colour

information is not always required for photogrammetric processing, which makes the

absence of colour less important. More significant problems are the many special cases

and exceptions, which can occur when applied to a wider range of imagery.

Handling these exceptions creates several challenges, such as the generation of gaps in the

shapes caused by the shifting process. Shifting of two edges in different directions appears

to ’rip’ them apart and leaves holes in the structures (Section 5.2.2). Furthermore, edges
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0<b<λ/2
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detected edge length of blur/shift
position of shifted edge

Figure 5.15: Edge shifting in blurred images. The left hand side exhibit waves degraded by different
amounts of blur specified by the equation in the centre column. The right hand side shows
real image examples.

which have completely disappeared cannot be recovered. Deblurring targets, which are

smaller than the introduced amount of blur is problematic because of the number of

special cases that need to be considered (Figure 5.15). Figure 5.15 shows the intensities

of one pixel line on the left side. The pixels are either completely black or white. With

increasing blur the intensities of the pixels change and this affects the positions of the

edges. While the blur b is smaller than half the length of the plateaus (λ)only the edges

change their pixel intensities. In the special case of b = λ/2, just one edge is detected

which would be separated in opposite directions. With λ/2 < b < λ the variation in

the intensity of the pixels decreases constantly. Dark pixels would become brighter and
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bright pixels would become darker. There would no longer be any white or black pixels

but only a range of grey values. Also the edges would change their positions again.

Deblurring these edges by half the blur length would be incorrect. They would not have

to be shifted half the blur length but only half the blur length (b) minus half the length

of the original plateau (λ). The problem is detecting these edges. To detect them it

would be necessary to test if there is an edge in the opposite direction to the shift. It

would also require testing along the shift direction to see if there is another edge along

the blur path. If so, then the shift would have to be shorter than half the blur length.

An additional complication occurs if the blur length is larger than the original plateau

size. Then the amplitude is inverted which has to be considered during the shifting

process.

Deblurring real images with different edge intensities, directions and blur length remains

more challenging than in the high contrast test image. Despite these unsolved problems

it is possible to achieve edge shifting using photogrammetric targets. This enables

subsequent, sub-pixel accurate measurement of target coordinates, which can be used

for photogrammetry. Furthermore, it might be possible to incorporate different blur

in different positions of an image by calculating localised blur kernels. This would be

necessary for blurred objects located close to the camera, which appear more blurred

compared to objects further away.

This newly developed edge shifting method is completely different to previously published

methods, because it does not concentrate on restoring an aesthetically acceptable image

using probability theory (Lucy, 1974; Richardson, 1972; Shan et al., 2008; Wiener,

1950), but only edges. This provides the advantages of being fast as well as recovering

the edge information, which is critical for photogrammetric coordinate measurements.

Furthermore, this approach does not consume too much computational power and

provides fast results, which could be used for post processing. However, this approach

remains very complex, due to the number of exceptions for shifting edges.



CHAPTER 5. BLUR CORRECTION 163

5.4 Discussion

The deblurring methods developed in this research have some similarities and differences

to deblurring algorithms developed previously. The Fourier transformation approach is

a non-blind deconvolution method using image overlap for deblurring. Using image

overlap makes it different from other method, which use precise IMU measurements

(Joshi et al., 2008), video cameras (Tai et al., 2008) fluttering shutters (Raskar et al.,

2006) or colour channel dependent exposure times (Lelégard et al., 2012). Agrawal et al.

(2012) uses image overlap for deblurring. However, image overlap is used in their research

to establish a point spread function, which is different to the Fourier transformation

method developed upon this research.

The method published by Jung et al. (2009) is based on Fourier transformation for

deblurring. However, it is still different to the method developed here as it uses only

images for deblurring that are completely overlapping. The algorithm developed upon

this research is different to Jung et al. (2009) because it does not require images that

are completely overlapping. The large overlap, which is around 80% along track and

60% across track, should provide enough image material to carry out effective deblurring

using the frequency transfer method.

The edge shifting approach is a blind deconvolution method. However, it does not use

the models developed by Lucy (1974); Richardson (1972) or Wiener (1950) and does

not use the Bayes’s theorem, from the field of probability theory (Equation 5.1). This

makes the method developed in this study different to many other deblurring methods

developed previously (Fergus et al., 2006; Jia, 2007; Whyte et al., 2010; Yuan et al.,

2007). Many other methods for blind deconvolution such as ‘Fast Image Deconvolution

using Hyper-Laplacian Priors’ Krishnan and Fergus (2009) or Michaeli and Irani (2014),

use recurrence of image patches. These do not have any similarity with the edge shifting

approach developed in this research.

This high complexity is also the reason why the edge shifting approach was not applied

to the same image as used for the frequency transfer method. The frequency transfer

method was carried out on an image with 1.03mm camera displacement (λ/2 < b).
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The edge shifting approach was carried out on an image with just 0.53mm camera

displacement (b < λ/2). However, comparing frequency transfer and edge shifting

method directly would also not be sensible as the frequency transfer method requires a

second overlapping image and the result of deblurring strongly depends on the quality

of the overlapping image. The edge shifting method does not require an overlapping

image hence is not dependent on the quality of it. However, edge shifting requires a blur

kernel, which is calculated based on the image itself. The results of both algorithms are

dependent on the quality of the additional input data (overlapping image, blur kernel)

but also on the image content and complexity, which causes that either method can

return a more acceptable result even for the same blurred image.

5.5 Conclusion

Deblurring blurred images is a challenging topic and despite the availability of established

algorithms, none of them currently provides a fast and reliable deblurring algorithm

suitable for photogrammetric applications. This arises from the desire to achieve images

that are aesthetically pleasing rather than geometrically correct. Also the aim to achieve

this without using information of overlapping images or only using highly overlapping

images is disadvantageous for photogrammetry. Photogrammetry often provides large

datasets with overlapping images and these additional resources can be included in the

process of deblurring an image. The developed frequency transfer method has been

shown to successfully create images that can be used in subsequent photogrammetric

processing. Furthermore, it is an easy and fast method that does not require high

end computers. The edge shifting method has also been shown to provide a fast and

reliable method that returns results of an appropriate quality. Furthermore, this shows

that the concept of shifting blurred edges back to their original position works, but the

development of a complete algorithms that can consider all special cases requires expert

programming knowledge. This edge shifting approach appears to be a viable solution to

the problem of deblurring images.



6 Application to UAV imagery

Blur in images has been shown to disturb photogrammetric processing, but can be both

detected and corrected, particularly for laboratory images. However, laboratory images

are very different to real images captured during UAV image acquisition, especially the

camera to object distance and with camera displacements causing blur being typically

larger. The image content is also very different to laboratory images. To prove the

applicability of the developed methods described in previous chapters it is important to

test the algorithms using typical UAV imagery.

6.1 Processing

Processing photogrammetric images was conducted using a range of datasets, including

multiple datasets created by UAVs and for close range applications. The aim was to

analyse images that were not specifically generated for examining blur detection and

deblurring algorithms.

This chapter is divided in two key sections. The first (Section 6.1.1) is about blur

detection in real images, the second (Section 6.1.2) concentrates on deblurring of blurred

images. The step of analysing if blur disturbs was not possible prior to blur correction.

This is because there are no perfectly sharp images available, which could be used to

analyse the difference between sharp and blurred images during post processing.

165
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Fixed wing Rotary wing
(quad-copter)

Number images 195 97
Size 12Mega Pixel 10MegaPixel
Camera Canon IXUS 220HS Canon PowerShot S90
Focal length 4mm 6mm
ISO ˜160 ˜100
Shutter speed 1/500 1/320
Aperture f/2.7 f/4
Date 7 October 2012 13 September 2012
Processing time ˜1.4 seconds per image ˜1.4 seconds per image

Table 6.1: UAV datasets used for case application.

6.1.1 Blur detection

Detecting blur using more realistic imagery was conducted using both aerial and close

range datasets.

6.1.1.1 UAV datasets

Various UAV datasets acquired by different UAVs were processed, including both fixed

wing and rotary wing UAVs equipped with different cameras and using a range of camera

settings. Two datasets were analysed in more detail. The two datasets chosen were taken

with different UAV platforms, because fixed wing UAVs are expected to have a certain

amount of motion blur in each image due to the forward motion. However, rotary

wing UAVs can hover in one position, enabling acquisition of images without forward

motion. The rotary wing quad-copter was a kit set that used a Canon IXUS 500 HS,

10.1 Megapixel camera (Almond, 2013), while the fixed wing UAV utilised a SenseFly

Swinglet Cam system (Table 6.1) (Almond, 2013).

Table 6.1 provides an overview of the datasets. Both image sequences were acquired

on sunny days which allowed both fast shutter and film speeds ensuring optimal image

quality. Fortunately, the low aperture setting and reduced depth of field had minimal

impact because the terrain did not exhibit any significant height differences. Both

datasets were acquired of rural salt marsh in Abbotts Hall Farm (AHF) Great
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(a) Example image from fixed wing dataset. (b) Example image from rotary wing dataset.

Figure 6.1: Examples of real application UAV images.

Wigborough, Essex, on the North bank of the Salcott Creek, a tributary to the Blackwater

Estuary (Figure 6.1) (Almond, 2013).

Rotary wing dataset The first dataset was acquired using the quad copter and the

SIEDS values show a large range of values, which allows easy separation of sharp and

blurred images (Figure 6.2). Figure 6.2 demonstrates that the SIEDS value ranges

between 70 and 25 exhibiting a range of sharp and blurred images. To evaluate the

calculated SIEDS values appear sensible a random sample of images were chosen for

visual analysis. The four chosen examples show that overall, the dataset appears visually

to be of good quality, which can be closer assessed in the insets (Figure 6.3). The insets

are all located towards the periphery of the image (Section 6.1.1.1). Figure 6.3(a) is

visually the most blurred image. An increasing SIEDS values equates to an improving

visual quality. This demonstrates applicability of the calculated SIEDS value and how

well the blur detection method works. Furthermore, the fast calculation time of less

than 2 seconds on a consumer laptop, shows that this method is potentially applicable

during the actual image flight. This would enable the operator to decide immediately

whether it is necessary to repeat image acquisition.

Fixed wing dataset The dataset acquired with the fixed wing UAV appeared to exhibit

very high image quality also. However, application of the developed blur detection
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Figure 6.2: SIEDS calculated for rotary wing UAV images. The red mark shows the SIEDS value of
Figure 6.1(b). The green marks show the SIEDS value of Figure 6.3

algorithm allowed different levels of sharpness to be detected (Figure 6.4). Figure 6.4

demonstrates that the SIEDS value ranges between 65 and 15 exhibiting a range of sharp

and blurred images. To make the evaluation easier and meaningful three overlapping

images were used with different SIEDS values (Figure 6.5).

Figure 6.4 suggest that all images are reasonably sharp. However, Figure 6.4 also implies

that some images are of extraordinary quality, with SIEDS values above 60, while others

are with lower quality, with SIEDS values around 15. The images chosen for comparison

have SIEDS values suggesting that they are of similar quality, but the insets reveal

differences between the images. The red inset in Figure 6.5(a) appears to be less sharp

than in Figure 6.5(b), which was expected based on the result determined by the SIEDS

value. This confirms that SIEDS represents the quality of an image. However, the same

area in Figure 6.5(c) appears less sharp than Figure 6.5(b), even when the calculated

SIEDS implies that this picture is of better sharpness than the two previous images.

This can be explained by the position of the patch chosen for the inset. In Figure

6.5(b) the area of interest is towards the centre of the image while it is at the boundary

in Figure 6.5(c). It might be that the camera and lens used to acquire the images

introduces distortions at the image boundaries, causing the image to appear slightly
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(a) Image with SIEDS=25. (b) Image with SIEDS=32.

(c) Image with SIEDS=48. (d) Image with SIEDS=63.

Figure 6.3: Example images for calculated SIEDS for rotary wing UAV images. The insets show a more
detailed view.

out of focus. By choosing another patch (yellow inset), which is in the centre of Figure

6.5(c) and comparing it to the same area in 6.5(b), it reveals that Figure 6.5(c) is indeed

sharper.

SIEDS is a value calculated for the entire image, which is problematic when specific

areas of the picture are picked out. By processing just the small inset areas (marked

red) the SIEDS value changes significantly. The SIEDS value for Figure 6.5(b) is the

largest with 56, while Figure 6.5(c) (49) and 6.5(a) (47) are much smaller and the values

much closer together. This matches with observations when judging the images visually

(Table 6.2).
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Figure 6.4: SIEDS calculated for fixed wing UAV images. The red mark shows the SIEDS value of
Figure 6.1(a). The green marks show the SIEDS value of Figure 6.5

Image SIEDS complete image SIEDS inset
6.5(a) 42 47
6.5(b) 46 56
6.5(c) 53 49

Table 6.2: Comparison of SIEDS for complete image and image patches.

Inter-comparability SIEDS values are not inter-comparable. Dependent on the dataset

is the absolute calculated value either large or small, which does not imply whether the

image is sharp or not. Only the comparison within the dataset gives information of ‘how

blurry’ an image is. Figure 6.6(a) has a SIEDS value of 50, which is smaller than the

SIEDS value for Figure 6.6(b) with 58. However, also normalising does not return more

reliable inter-comparability. For both examples in Figure 6.6 is the normalised value

around 0.65, which would classify them as equally blurred. However, this cannot be

confirmed visually.
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(a) Image with SIEDS=42.

(b) Image with SIEDS=46.

(c) Image with SIEDS=53.

Figure 6.5: Example images for calculated SIEDS for fixed wing UAV images. The insets show a more
detailed view. The red insets show the same area in all three examples. The yellow inset
was only available in two images.
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(a) Image of fixed wing dataset. SIEDS=50.
Normalised value=0.65

(b) Image of rotary wing dataset.
SIEDS=58. Normalised value=0.65

Figure 6.6: Inter-comparability of UAV blur detection results. Neither the absolute SIEDS value nor
the normalised value can be compared effectively.

Terrestrial
Number images 111
Size 16Mega Pixel
Camera NIKON D7000
Focal length 85
ISO 1000
Shutter speed 1/20
Aperture f/5
Processing time ˜1.9 seconds per image

Table 6.3: Terrestrial datasets used for case application.

The lab based tests (Section 4) have demonstrated that detection of blurred images

is possible. However, this section has proven that it is also possible to process aerial

images and that the returned results can be used to separate sharp and blurred images.

However, terrestrial images might be similar to aerial images, which makes testing the

method on close range images an interesting opportunity.

6.1.1.2 Close range

The close range application involved an image sequence of vegetation, used to create

a 3D model. The 3D model was required to analyse water flow characteristics and to

investigate the potential of cheap endoscopic cameras to measure water flow, but was

not part of this project. The images are unusual because they contain a large amount
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Figure 6.7: SIEDS calculated for terrestrial images. The green marks show the SIEDS value of Figure
6.8

of blurred background pixels while only the centre of the image, which contains the

object, appears in focus (Figure 6.8(a)). This is caused by the dark light conditions in

the laboratory, requiring a wide aperture opening which causes a narrow depth of field

(Section 2.2.3). Furthermore, the images should not contain any motion blur because

they are taken with a fixed camera on a tripod of a stationary, fixed object.

The calculation of the SIEDS value took less than 2 seconds per 16Mega pixel image.

Visualising the calculated SIEDS values created a similar graph to the one achieved

with the UAV datasets (Section 6.1.1.1). However, the calculated SIEDS values exhibit

a narrower range of just 14 units (Figure 6.7). This can be explained by the large areas

which are out of focus, which is responsible for the lower SIEDS value.
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(a) Image with SIEDS=21.

(b) Image with SIEDS=27.

(c) Image with SIEDS=35.

Figure 6.8: Example images for calculated SIEDS for terrestrial images. The insets show a more
detailed view.
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In the overview in Figure 6.7, the vegetation appears in focus, however, the insets reveals

that the branches of the bush are not of the same level of sharpness. In Figure 6.8(a)

the branches are less sharp than in Figure 6.8(b). Figure 6.8(c) appears to be sharpest,

which confirms that the calculated SIEDS value represents the level of blur well.

6.1.1.3 Results of blur detection in real images

The visual confirmation of the results calculated by the blur detection program show

that the algorithm returns useful results. The calculation speed is reasonably fast. This

confirms that this method is applicable, not only in the office but potentially in the field

during image acquisition. This allows the user to acquire new images if necessary and

will then avoid the step of blur correction, which remains an unresolved topic in the

community.

6.1.2 Blur correction

Although detecting and removing blurred images in a UAV sequence is valuable, the

loss of individual frames may degrade the geometry of an image set, which is perhaps

critical. An alternative to blurred image exclusion is blurred image correction, where

instead of excluding blurred images it might be possible to correct them and restore

photogrammetric geometry. To test the deblurring method developed in this study an

image dataset was acquired using a fixed wing UAV (Figure 1.2(b) and Figure 6.9).

After executing blur detection, two overlapping images were chosen for further processing,

each with different SIEDS values. In a first test, feature detection and matching was

conducted on the dataset. It was possible to detect 2574 features in the sharp image

but only 1711 features in the blurred image (Figure 6.10, Table 6.4). The difference

may appear minor but is actually significant as the SIEDS values were similar. In a

subsequent step, deblurring was carried out using an unsharp mask (Section 5.1.1.4)

and the frequency transfer method (Section 5.2.1). To test if the images had improved,

another feature matching process was conducted using the sharp and the deblurred

images. It was found that the unsharp mask method returned a significant increase in
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(a) Blurred image acquired by UAV
(SIEDS=13.29)

(b) Sharp image acquired by UAV (SIEDS=14.85)

Figure 6.9: Two overlapping UAV images used for deblurring.

Figure 6.10: Feature matching in UAV images

Features detected Accepted matched
features

Sharp image 2574
Blurred image 1711 406
Enhanced image 2859 (67% improvement) 478 (18% improvement)
Frequency transfer image 1896 (11% improvement) 415 (2% improvement)

Table 6.4: Feature detection in deblurred images.

feature points detected by 67% to 2859 in the blurred image, which is more than the

features detected in the supposed sharp image. The deblur approach using the frequency

transfer method also increased the number of detected feature points by 11% to 1896

features. The unsharp mask method appears to be much better than the frequency

transfer method, at least in this case. However, the frequency transfer method was used

on a much smaller overlapping area and not the complete image (Figure 6.11) and most

of this area is occupied by green grass with limited features to detect (Figure 6.11(b)).
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(a) Enhanced image using unsharp mask.

(b) Enhanced image using frequency transfer method. In red the enhanced
area.

Figure 6.11: Feature detection and matching in enhanced images.

(a) Enhanced image using unsharp mask method. (b) Enhanced image using frequency transfer
method. In blue enhanced area.

Figure 6.12: Enhanced UAV images.

Figure 6.12 presents the deblurred images using the unsharp mask and frequency transfer

methods. The insets in Figure 6.12(a) show that the unsharp mask image is still blurred

and only has improved contrast to Figure 6.9(a). Figure 6.12(b) is sharper than Figure

6.9(a) because the frequency transfer method is more successful at deblurring the image.
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Both methods are reasonably fast, requiring less than 3 seconds to process the entire

16mega pixel image.

Image enhancement using the unsharp mask method improves the image without actually

deblurring it. This therefore appears to represent an interesting approach for

photogrammetric applications because it is simple, fast and applicable. By enhancing an

image using the unsharp mask method, the ability to detect targets increases significantly,

which makes photogrammetric post processing easier and faster. However, to deblur an

image fully it still needs to be processed using a deblurring technique. The frequency

transfer method appears to provide a method that is both fast and improves the image

quality.

6.2 Conclusion

The practical work described in this application-focused chapter proves that both, blur

detection and deblurring of UAV images is possible using the algorithms developed in

this study. The fast processing time of the blur detection method and the representation

of blur using a SIEDS value appears to be sufficient for real UAV image sets. Even high

quality images can be assessed in more detail and enable the operator to identify the best

quality images fully automatically. Manual filtering would be tedious and require many

working hours. It would be prone to error and probably negatively affect the eyes of the

operator. Full format aerial and terrestrial images can be assessed with this method and

differentiated to exclude blurred images.

Although desirable, tests reveal that a SIEDS threshold value cannot exist as absolute

values and are dependent upon image content, camera and lens. However, it is suggested

that SIEDS is used to filter the lowest quality images. The user decides depending on

location, geometry, coverage and image content if the image should be excluded. , or

that a selection of images representing the range of calculated SIEDS values is examined

by a human operator to establish a threshold for a dataset.

Not only is the detection of blurred images possible, but also the deblurring of images

where overlapping images are available. Unfortunately, applying the frequency transfer



CHAPTER 6. APPLICATION TO UAV IMAGERY 179

method to terrestrial images, with different points of view, can return incorrect results

and is therefore not applicable. However, the image can be improved by image

enhancement using the ‘unsharp mask’. The unsharp mask approach is a method that

could make photogrammetric post processing more successful, by increasing the contrast

in the image. It is recommended that this easy and very fast method should be included

in photogrammetric software.



7 Final conclusion

This thesis contributes to knowledge in the field of computer vision, image processing and

photogrammetry. Blur is a widely researched topic in computer vision, however, most

research concentrates on correcting blur and only rarely looks to determine the influence

of blur on image processing, or in photogrammetric applications. Blur detection is rarely

a totally independent topic and is often associated with blur correction. Mathematically

blurred images are often used to develop and test these algorithms. However, for the

research presented a newly developed method was used, which ensured that intentionally

blurred images were available for development. Furthermore, these images were used to

test existing algorithms to compare their results to results based on developments made

in this research.

In this thesis blur was examined in three different ways. At first, it looked at and

analysed how much blur ‘disturbs’ photogrammetric processing. It was found that even

small camera displacements can cause problems in photogrammetric post processing.

The main problem being that small camera displacements cause the failure of automatic

target detection. It was found also that automation of photogrammetric procedures was

problematic. However, semi-automatic or manual target detection remained possible and

the accuracy of semi-automatic measured targets appeared to be acceptable, when there

was only small camera displacement. Larger blur, which was clearly detectable by human

eyes, created greater challenges even when targets were measured manually. Based on

experiments using PhotoModeler, it was possible to state that blurred images compromise

semi-automatic detection tools by introducing errors, which affected subsequent calculation

of target coordinates, causing them to be inaccurate. This corruption effect was found

to be predictable and it was possible to establish equations to calculate thresholds for

acceptable camera displacements based on camera model, camera to object distance and

180
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other camera parameter. This equation enables a better understanding and planning of

UAV image flights.

A key focus in this thesis was the ‘detection’ of blurred images because detecting blurred

images in larger image datasets is a major challenge when using UAV images. The

process of looking at every image and detecting visually if an image is blurred is currently

carried out manually. Manual blur detection requires a lot of time, is exhausting for the

eyes and prone to error. An automatic algorithm to detect blurred images did not

exist before and was developed as part of this research. The new algorithm increases

processing speeds and is more reliable than manual human detection of blurred images.

The approach used showed that it is possible to detect even small differences in blur, by

computing a numerical measure of blur known as SIEDS. The high sensitivity enables

the exclusion of blurred images even for very small camera displacements, however a

limitation was that the processed images should show similar image content and needed

to be acquired with the same optical system in order to avoid misinterpretation that

could be caused by different SIEDS values. Despite these limitations the algorithm was

also applicable for terrestrial images and could therefore be used on a much wider range

of applications in the future. It was also possible to use the SIEDS value to calculate

the actual extent of the camera displacement or to calculate in real time if an image is

extensively blurred, or not. This allows the user the opportunity to obtain a replacement

image during image acquisition and therefore provide only images with acceptable levels

of sharpness.

The third and final area of research conducted was in the field of correcting blur

as excluding blurred images was not always desirable. In order to retain images for

processing, a number of techniques were used to enhance blurred images. One way

presented was image enhancement using an ‘unsharp mask’. This well-known approach

was used to improve the image and make photogrammetric processing more successful.

Another method used was to take the information provided by overlapping images and

use the frequency transfer method. This method enhanced the blurred image by using

the frequency content of the overlapping sharp image. Overlapping areas have to be

detected first in order to use this technique, which can be problematic due to the

existing blur. Furthermore, this method only corrected the overlapping area and the
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degree of deblurring in the blurred image will depend strongly on the amount of blur

that exists in the sharper overlapping image. Deblurring beyond the sharpness of the

overlapping image was not practicable and more advanced and other time consuming

image deblurring algorithms will be required.

The edge shifting approach developed in this research was found to be of value which

appears to be a novel approach for image deblurring. It returned good results with the

laboratory images that were tested but the approach has a high degree of complexity,

which may limit its application. However, deblurring high contrast images and restoring

photogrammetric targets was possible and did enable the identification and measurement

of the target coordinates. In order to make this method more applicable for non

laboratory applications, such as UAV images, more advanced programming is required.

7.1 Future work

This thesis contains new ideas and approaches for image blur detection and deblurring,

which can be further progressed and improved. In this context, several computer

algorithms were developed to detect whether an image is blurred and to correct blurred

images. Unfortunately, due to time limitations, the developed algorithms should only be

used by experienced users, because the algorithms were developed by an inexperienced

programmer and might fail due to incorrect inputs or corrupt data. This limitation could

be addressed in future work by improving the code, particularly catching and solving

exceptions that might occur.

A specific development would be to analyse the connection between calculated SIEDS

value and actual camera displacement. It was found that SIEDS and camera displacement

can be related to one another by a modified damping function (Section 4.3.3). However,

the relationship seems to be rather complex and dependent on a number of other factors.

These factors could be determined and a calculation of actual camera displacement based

on the SIEDS value could be made possible. If this link could be achieved then it would

be possible to determine camera displacement values for each image. Calculating camera

displacements for single images would then be possible. This would be of significant
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interest to a wider consumer market and could lead to industrial collaboration.

The novel edge shifting technique was developed based on high contrast laboratory

images. However, it is believed that it is possible to use this approach for real world

images to restore edges. This would be particularly interesting for photogrammetric

applications because they use edges for processing. Future research could analyse and

improve this approach to reconstruct geometrically correct images. It might also be

possible to restore colour images by deconvolving a colour image and enhancing it with

a corrected edge image.

Finally, this research has achieved the original aim of analysing, detecting and correcting

motion blur in digital images by accomplishing the objectives lined out in Section 1.2.

Essential literature was reviewed, motion blurred images generated and their influence on

photogrammetric processes was analysed. Furthermore, an algorithm for blur detection

was developed and correction methods applied to them.
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A Additional material

A.1 Blur disturbs

Table A.1: Number of detected targets (out of 3) in Nikon D80 dataset
0.59mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 3 2 3 2
10 3 3 3 3
19 3 3 3 3
35 3 3 3 3
0.78mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 3 3 3 3
10 0 2 3 2
19 3 3 3 3
35 3 3 2 3
0.95mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 0 2 3 3
10 0 0 1 2
19 1 2 3 3
35 3 3 3 3
1.11mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 0 3 3 2
10 0 0 0 1
19 0 0 3 3
35 3 3 3 3
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1.27mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 0 0 2 0
10 0 0 0 0
19 0 0 0 3
35 0 0 3 3
1.46mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 0 0 1 0
10 0 0 0 0
19 0 0 0 0
35 0 0 1 3
1.64mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 0 0 0 0
10 0 0 0 0
19 0 0 0 0
35 0 0 0 3
1.95mm camera displaced
Target size (mm) Camera to object distance (mm)

1700 2100 2700 3200
4 0 0 0 0
10 0 0 0 0
19 0 0 0 0
35 0 0 0 0
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Table A.2: Number of detected targets (out of 3) in Nikon D7000 dataset
0.42mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 3 3 3 3
10 3 3 3 3
19 3 3 3 3
35 3 3 3 3
0.51mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 2 3 3
10 3 3 3 3
19 3 3 3 3
35 3 3 3 3
0.72mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 2 3
10 1 2 3 3
19 3 3 3 3
35 3 3 3 3
0.82mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 3 2
10 0 0 3 2
19 3 3 3 3
35 3 3 3 3
1.00mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 2 2
10 0 0 0 0
19 0 2 3 3
35 3 2 3 3
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1.27mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 0 0
10 0 0 0 0
19 0 0 0 0
35 1 0 3 1
1.34mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 0 0
10 0 0 0 0
19 0 0 0 0
35 0 0 2 0
1.51mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 0 0
10 0 0 0 0
19 0 0 0 0
35 0 0 1 0
1.59mm camera displaced
Target size (mm) Camera to object distance (mm)

1800 2200 2800 3300
4 0 0 0 0
10 0 0 0 0
19 0 0 0 0
35 0 0 0 0
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Abstract

Unmanned aerial vehicles (UAVs) have become an interesting and active
research topic for photogrammetry. Current research is based on images acquired
by UAVs which have a high ground resolution and good spectral resolution due to
low flight altitudes combined with a high-resolution camera. One of the main
problems preventing full automation of data processing of UAV imagery is the
unknown degradation effect of blur caused by camera movement during image
acquisition. The purpose of this paper is to analyse the influence of blur on
photogrammetric image processing. Images with precisely known motion blur were
produced to determine the effect. It was found that even small blurs affect normal
photogrammetric processes significantly. Although operator intervention might be
time consuming, it can ensure that the results are still of acceptable accuracy.

Keywords: automation, blur, bundle adjustment, camera calibration, image
processing, photogrammetry, UAV

Introduction

A CONSTRAINT ENFORCED on the acquisition of early photographs used in photogrammetry was
a stable camera position and a stationary object as the basic requirements for sharp images.
Exposure times of many days were required to obtain an image (Maison Nic�ephore Ni�epce,
2013). Today, professional photographers use a tripod and remote shutter release to prevent
camera movement during image acquisition.

Unfortunately, unmanned aerial vehicles (UAVs) rarely provide a stable camera
position. UAVs are affected by wind, turbulence, sudden input by the operator and also by
the flight movement of the aircraft itself. However, their good manoeuvrability and flight
path control, combined with endurance, flight range and low cost, make UAVs an
appropriate platform for a range of different applications (Eisenbeiss, 2009). Nevertheless,
limited payload, regulatory restrictions and vulnerability of the UAV platform encourage the
use of low-cost sensors, which dictates the use of consumer-grade cameras (Eisenbeiss,
2011; Eisenbeiss and Sauerbier, 2011). Unfortunately, the problem remains that the high
spatial resolution of an image is often degraded due to motion blur. Fig. 1 represents an
image acquired using a fixed-wing UAV at an altitude of approximately 100m above
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ground. A Nikon Coolpix S800c was used with the film speed set to ISO 125, which was
chosen to achieve the best image quality with the least noise. The magnified insets in Fig. 1
represent blurred targets caused by forward motion of the UAV. However, rotational
movements appear to have an even larger influence on the image sharpness than
translational movements (Grenzd€orffer et al., 2012).

Image sharpness degraded by motion blur is, amongst other effects, visible by a
reduction in contrast, which can also be caused by noise or other processes influencing the
radiometry of an image. Many of these influences are part of the hardware processing after
the image is “on the camera sensor” and would influence a sharp image in the same way as
a blurred image. Expressing the sharpness of a motion-blurred image, using a modulation
transfer function (MTF) or similar sharpness curves, is problematic as they would return
different results depending on the direction of measurement. To overcome this problem,
motion blur is expressed in a scale-invariant manner as the physical movement of the
camera body in millimetres.

This paper describes the effect of image blur on automatic image processing. Motion-
blurred images have been generated to investigate their effect on automatic camera
calibration and the functionality of coordinate calculations. The purpose is to define a
threshold representing the maximum amount of image blur which is acceptable for
automatic processing.

Related Work

Photogrammetry is the science of reconstructing “the position, orientation, shape and
size of objects from pictures” (Kraus, 2007, page 1). Aerial photogrammetry uses object

Fig. 1. A 16-megapixel image acquired by a UAV. The three insets show 20-times enlargement of the targets.
Targets are blurred due to the forward motion of the UAV.
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information in images acquired by airborne platforms ranging from aircraft to balloons. A
major difference to close range photogrammetry is the normally unstable camera position
due to a moving platform. The recently developed UAVs, which are increasingly popular
for image flights, are especially vulnerable to wind and turbulence, and are sensitive to user
navigational input.

For a successful image flight it is necessary to carefully prepare a flight plan
beforehand. To provide appropriate image geometry for 3D measurements a recommended
image fore-and-aft overlap (forward – along track) of 60% and a lateral overlap (sidelap –
across track) of 20% should be used (Kraus, 2004; Luhmann et al., 2014). To calculate
accurate 3D coordinates (X, Y, Z) for an object point, it is necessary to precisely measure
the image coordinates (x, y) in at least two images. Today, fully automated data processing
is demanded by an increasing number of users.

A series of methods have been developed in previous work to detect if an image is
sharp or blurred. It is recognised that improving the image sharpness using deblurring
algorithms is an important topic in computer vision and image processing. A widely
used application for automatic blur detection is the “autofocus” system in cameras,
which should prevent the user from taking optically blurred images caused by an
inappropriate focal length setting (Kim and Paik, 1998). As optical blur can be
prevented using these systems, other methods are required to suppress blur due to
motion, which should be carefully distinguished as a discrete type of blur. Motion blur
is often caused by human hand movement (jitter). This jitter has frequencies of 2 to
10Hz with amplitudes of up to 1mm (Stiles, 1976). Sachs et al. (2006) note that there
is also a “drift of the hand” of up to 5mm/s and that commercial systems for shake
reduction use gyroscopes to prevent motion blur. Methods developed for aircraft use
precise inertial measurement unit (IMU) and global navigation satellite system (GNSS)
information to reduce angular and forward-motion blur (Pacey and Fricker, 2005). Such
systems are expensive and cannot always be used since these would exceed the payload
of typical UAV platforms. Furthermore, the IMU and GNSS sensors incorporated for
flight stabilisation are not accurate enough and lack sufficient acquisition frequency to
determine if an image is blurred or not. However, both sensors can provide additional
information for blur detection algorithms such as the approximate path followed when
the image was blurred.

Algorithms used for blur detection often use edge detection or frequency analysis.
Edge detection methods focus on the spread and gradient of an edge (Ong et al., 2003;
Joshi et al., 2008; Narvekar and Karam, 2009). In the case of a widely spread edge of
low gradient it is first assumed that the image is blurred. This edge smear due to blur is
also used in image frequency analysis methods. When an image has extensively smeared
edges in the spatial domain it is characterised by the disappearance of high frequencies in
the frequency domain (Liu et al., 2008; Rahtu et al., 2012). A problem with most blur
detection methods is the presumption that the image is blurred. Another more important
problem is that these blur detection methods are developed using mathematically blurred
images without any relation to geometrical motion blur or random hand-held camera
shake. In such circumstances the amount of blur is unknown and has to be evaluated
subjectively. In an example presented by Shaked and Tastl (2005) (Fig. 2), image (a) is
declared sharper than image (b). However, image (b) is at a different scale and contains
more detail than (a), as it is possible to identify individual hair strains or differentiate
between the shirt collar and the shirt itself. It is obvious that although subjective
evaluation of blur is useful, it can be wrong. This explains the desire to develop a

Sieberth et al. Motion blur disturbs – the influence of motion-blurred images in photogrammetry
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measure of blur, by generating images with a precisely known image blur which is not
influenced by human perception.

Method Development

To quantify the impact of image blur on automatic image processing, images with a
precisely known blur are required. In the study described in this paper, three datasets were
produced using a shaker table (Fig. 3), which is a device normally used by construction
engineers to test the strength of building materials and their resistance against earthquakes
or other vibrating influences. In this study, a Nikon D80 camera was mounted on the shaker
table and shaken with a known amplitude and frequency. Exposures were synchronised to
this movement and images with precisely known blur could therefore be captured (Sieberth
et al., 2013).

The first dataset consisted of convergent images of a calibration field comprising 54
coded targets and a Siemens Star in the image centre (Fig. 4(a)). The Siemens Star provides
a directly visual way to evaluate both the amount and direction of blur. Coded targets were
used to allow for fully automatic camera calibration.

The second dataset consisted of images of a 3D model which include 130 signalised
targets and 6 coded targets. The coded targets were located around the 3D model to
establish a stable local coordinate system and to evaluate the accuracy of automatically
calculated 3D coordinates of the target points (Fig. 4(b)).

The third dataset consisted of differently sized signalised targets obtained with different
camera-to-target distances and acquired using both a Nikon D80 and a Nikon D7000

(a) (b)

Fig. 2. A portrait taken with different cameras in a similar scene by Shaked and Tastl (2005).
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camera (Fig. 4(c)). This dataset was used to assess the accuracy of detection of target
points.

Terminology

For analysing these datasets it is important to distinguish between the meaning of the
terms “measurement”, “detection”, “identification” and “referencing”. “Detection” is the
process of finding a target in an image. As targets used in photogrammetry are often of a
circular shape, a detection algorithm looks for round objects in the image. It finds the
boundaries of a circle and then uses techniques to calculate the centre of the circle
(Luhmann, 2014). The detection process can be carried out in two ways: fully automatic,

(a) (b) (c)

Fig. 4. Images used in the three datasets: (a) sharp image from the first dataset with the camera pointing
towards a ceiling; (b) sharp image from the second dataset with the camera facing horizontally towards a wall;

(c) sharp image from the third dataset with the camera also pointing horizontally towards a wall.

Fig. 3. Representation of the experimental set-up of the shaker table (Sieberth et al., 2013).

Sieberth et al. Motion blur disturbs – the influence of motion-blurred images in photogrammetry
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where the algorithm processes the complete image trying to find targets; or semi-automatic,
where the operator defines a region of interest and adjusts search parameters. The latter case
was the approach mostly adopted to detect targets in this study. The process of detection is
important as the results of the recognised target are subsequently used to calculate the centre
of the detected area and derive a “measurement” which is hopefully of sub-pixel precision
and represents the actual measured location of the target in the plane of the image.
However, if the target is not detected, or incorrectly detected, then no automatic
measurement is possible or the measured coordinates will be incorrect. If automatic
“measurements” are unsuccessful it is still possible to manually measure coordinates in the
image. However, manual measurements are rarely practicable and it is more important to
successfully detect a target to ensure automation and sub-pixel measurements.

With an automatically detected and measured target it might be also possible to carry
out identification. The term “identification” will be used in this paper to refer to the process
of assigning an identifying integer (ID) to a target. This is normally achieved automatically
using a coded bit pattern surrounding the target and the code needs to be clearly readable to
prevent incorrect identification (Shortis and Seager, 2014). An identified target can then be
referenced. “Referencing” is the process of connecting identical targets across multiple
images. This can be achieved by using the ID of identified targets.

Influence of Blur on Camera Calibration

The first dataset was used for automatic camera calibration calculation (Table I). To
generate a complete image set for camera calibration, images from four stable positions
around the shaker table were acquired, each with four different orientations (Fig. 5). These
16 calibration images were acquired with the camera mounted on a tripod and triggered
remotely to avoid the introduction of any blur from this source. Around 2000 images with
varying blur were taken using the shaker table. Of these 2000 images, 13 images with a
camera displacement ranging from no movement up to 1∙03mm were chosen for further
analysis.

The process of camera calibration was conducted using the software “PhotoModeler
Scanner” (Version 2013�0�3�1131 (64 bit) dated 17th July 2013), which required a minimum
of six images for processing. These six images were composed of a subset of five images
from the stable camera positions and a sixth image from the shaker table position. A total of
13 image sets with each of the chosen blurred images were processed. Either fully
automatic camera calibration was possible or manual intervention was required, depending
on the amount of image blur introduced by the shaker table. Intervention involved operator
input to semi-automatically detect and measure the blurred targets, which the algorithm was
unable to detect, identify and measure.

Table I. A list of parameters for the camera calibration dataset.

Dataset 1

Camera-to-object distance 1∙80m
Size of targets 8mm
Number of coded targets 54
Focal length 25∙35mm
Aperture f/8
Frames per process 6
Number of camera displacements analysed 13
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Automated camera calibration becomes increasingly problematic as PhotoModeler is
unable to automatically detect targets in the blurred image. Initial problems for fully
automatic target detection occurred with a camera displacement larger than 0∙263mm
(Fig. 6(a)), where the algorithm detected only 46 out of 54 targets. With a displacement of
more than 0∙377mm (Fig. 6(b)) the number of detected targets was reduced to a point
where calibration was no longer possible (Fig. 6(c)).

Additionally, referencing targets identified in the blurred images to targets detected in
the sharp images was incorrect due to wrongly identified target numbers. Fig. 7(a) shows

(a) (b)

(e) (f)(c) (d)

Fig. 5. Sketch of the shaker table set-up: (a) to (d) images from the four stable camera positions P1 to P4;
(e) Siemens Star in a sharp image; (f) Siemens Star of the most blurred image with 1∙03mm camera

displacement (168∙6 sensor pixels).

(a) (b) (c)

Fig. 6. Siemens Stars and coded targets affected by different motion: (a) camera displaced by 0∙263mm;
(b) camera displaced by 0∙377mm (the last fully automatically processed image); (c) with the camera displaced
0∙529mm it is not possible to carry out fully automatic camera calibration. The insets (bottom right in each

case) show the blur kernel calculated for these images.
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the number of detected targets and how many of them were referenced. Fig. 7(b) shows the
estimated position of the principal point; it appears that it changes its position with
increasing blur, although this may be due to the decreasing number of detected targets. To
ensure that the camera calibration results were not just influenced by the decreased number
of detected targets, semi-automatic detection and measurement of targets was performed
using the “sub-pixel target mode” provided by PhotoModeler (Fig. 8). Unfortunately,
identification fails completely because it is no longer possible to read the code. However,
the “sub-pixel target mode” tool can be applied precisely on the centre dot of a coded target
(Fig. 8(d)) for accurate detection and measurement (Figs. 8(e) and (f)).

If the search box of the targeting mode was not applied precisely (Fig. 8(a)), target
detection and subsequent target measurement were unsuccessful (Figs. 8(b) and (c)). Manual
creation of the detection box at the correct position with the right size is therefore prone to
error and is also time consuming. Thus, referencing these targets needs to be carried out
manually too. After this manual intervention, all targets have been detected and it was
possible to assess the impact of blur created by camera displacement alone. With all targets
correctly detected, calibrations can be conducted under conditions similar to a camera
calibration using sharp images. Corrections calculated during the process can be distributed
to all targets and variations in results can be attributed to blur.

Influence of Blur on Coordinate Calculation

A second dataset (Table II) was generated to assess the influence of blurred targets on
coordinate calculations. A Nikon D80 camera was calibrated and used to acquire data for
this specific study. A sharp image from a stable camera position beside the shaker table was
acquired. Afterwards the camera was fixed on the shaker table and 328 images with varying
blur were acquired. A subset of six images, with camera displacements from no movement
up to 1∙51mm were used. The 3D coordinates of control points, the sharp image from the
position next to the table and one of the six chosen blurred images from the shaker table
position were included to evaluate the influence of blur on coordinate calculations.

(a) (b)

Fig. 7. (a) Number of detected and referenced targets and its dependency upon camera displacement.
(b) Influence of camera displacement upon the calculated principal point position.
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At first, the coded control points had to be detected, identified and measured. In
addition to the detection and identification of the coded targets, it is now necessary to detect
the uncoded targets on the model (Fig. 4(b)). Similarly to the results found with the first
dataset, automatic detection of targets becomes unreliable with increasing blur. Eventually,
detection and referencing between sharp and blurred images becomes impossible. When
problems occurred using the “automatic target marking” tool, semi-automatic detection of
each point was performed using PhotoModeler’s “sub-pixel target mode” tool. Although
appearing successful, Fig. 9(a) shows that the detection of circles can be inaccurate due to
the blur. However, automatic measurement generally derives a point close to the centre of
the blurred target. Difficulties encountered in automatic target detection and measurement
shown in Fig. 9(b) seem to be caused by the appearance of two target silhouettes caused by

(a) (b) (c)

(d) (e) (f)

Fig. 8. Example of target detection on the most blurred image: (a) and (d) sub-pixel targeting area which was
used; (b) and (e) the result of the detection and measurement; (c) and (f) the result of similar tests with search
areas equivalent to those shown in (a) and (d). More successful detection and measurement can be achieved by

using smaller target areas (d).
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a large degree of blurring. An alternative explanation is the combination of a black target on
a dark background. Fig. 9(d) represents an example where the right silhouette appears to be
darker than the left because of the darker background at the right-hand side of the target.
Due to the motion, the black background is mixed with the target and appears as a second,
darker, target. This appearance of two targets can be solved by manual measurement
(Fig. 9(c)) or by using methods which detect both circles and calculate the middle between
both (Boracchi et al., 2007).

A critical aspect is target referencing between images. Referencing targets between
images automatically becomes increasingly difficult with larger blurs (Table III). This is
caused by the problem of finding similar features in both images to generate a unique
identification because blurring makes identification of suitable features more difficult.
Features are normally defined by edges but due to blurring they are not similar in both
images. Finally, 3D coordinates can be determined and the effect of various degrees of blur
can be established in the object space.

Influence of Blur on Target Detection

The third dataset was acquired to analyse the influence of blur on automatic target
detection (Table IV). Targets of different sizes were placed at different distances, and

Table II. A list of parameters for the coordinate calculation dataset.

Dataset 2

Camera-to-object distance 1∙70m
Size of targets 9mm
Number of coded targets 6
Number of uncoded targets 130
Focal length 28∙86mm
Aperture f/14
Frames per process 1 blurred + 1 sharp image
Number of camera displacements analysed 6 (+1 blur repeatedly used for

manual target measurements)

(a) (b) (c) (d)

Fig. 9. Example of PhotoModeler’s “sub-pixel target mode” tool on the most blurred images of the second
dataset: (a) detection with 0∙99mm camera movement appears to be successful; (b) detection with 1∙51mm
camera movement is strongly affected by blur; (c) manual measurement appears to be more accurate but is also
more time consuming; (d) appearance of two dots per target compromises the accuracy of the automatic detection.
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images with different camera models and lenses were acquired. Two cameras were mounted
on the shaker table: a Nikon D80 with a 24mm lens and a Nikon D7000 with a 28mm
lens. The higher camera resolution and focal length of the D7000 provided images with a
higher geometric resolution than the D80 images. Targets with diameters between 4 and
35mm were placed at distances between 1∙70 and 3∙20m from the camera (Fig. 10).

At first, the pixel width of each target at each distance was manually counted in the
sharp image (Fig. 10(a)). Then automatic detection of signalised points was applied which
proved to be successful for all targets except for the smallest targets at the greatest distance
(4mm targets at 3∙20m). At this distance the targets appear to be too small to be detected.

Then automated target detection was applied on the blurred images (Fig. 10(b)), to
evaluate whether each target was detected. If detection failed for all three targets of the
same size at the same distance, the target pixel width due to motion blur was manually
counted. The discrepancy between blurred and sharp target widths was related to the
displacement necessary to cause automatic detection to fail.

Evaluation of Experimental Results

The prime purpose of the experimental work and subsequent evaluation was to
investigate whether blur disturbs normal photogrammetric procedures or not.

Camera Calibration Dataset

The camera calibration dataset (dataset 1) demonstrates that blur certainly has an
influence on the level of automation achievable during camera calibration in two ways. First,
misidentification of targets occurs, which can result in incorrect referencing of targets between
the images. Second, misdetections and subsequently mismeasurement influences the
coordinate calculation. Processing 54 photogrammetric targets which are blurred resulted in a

Table III. Influence of camera movement on automatic detection and referencing of uncoded
signalled targets.

Camera
movement (mm)

Number of “automatic target
marking” targets out of 128

Automatic referenced targets
out of 126

0 132 (4 wrong) 125
0∙2012 130 (2 wrong) 96 (4 wrong)
0∙3176 135 (8 wrong) 84 (3 wrong)
0∙4923 126 (3 wrong) 69 (4 wrong)
0∙9900 0 80 (1 wrong)
1∙5134 0 11 (7 wrong)
1∙5134
(manual measured targets)

0 41 (3 wrong)

Table IV. A list of parameters for the dataset to analyse the influence of blur on target detection.

Dataset 3

Camera-to-object distances 1∙70m; 2∙10m; 2∙70m; 3∙20m
Size of targets 4mm; 10mm; 19mm; 35mm
Number of uncoded targets 48
Focal lengths 25∙97mm (Nikon D80); 29∙31mm (Nikon D7000)
Aperture f/14
Number of camera displacements analysed 14 (Nikon D80); 15 (Nikon D7000)
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small change in the camera calibration parameters compared with sharp images (Fig. 7(b)).
The decreased accuracy of automatic target measurement can be illustrated by the change of
the principal point position (Fig. 11(a)) and the variation in calculated image size (Fig. 11(b)).
The figure shows that the calculated image width has a tendency to increase with larger blur.
This can be explained perhaps by the shake direction, which is along the x axis.

A detection algorithm attempts to detect the edges of a target. It will find edges that are
aligned in the direction of blur easily, because these edges are less affected by blur. In
contrast, edges perpendicular to the blur direction create a transitional effect between the
target and background, making the detection of edges difficult. Subsequent estimation of the
middle, between the start and end of the target, becomes inaccurate and the measured centre
does not represent the true target centre. Due to this incorrect detection, subsequent
measurements are imprecise, especially in the direction of blur. Measurements derived
perpendicularly to the blur direction remain uninfluenced. As these images are blurred along
the x axis, x coordinates are the most likely to be inaccurate. It is, perhaps, surprising that
the principal point does not change its position on the x axis but varies by about 8 lm on
the y axis. There is no obvious explanation for this observation.

These variations in principal point position and estimated image size are insignificant
and were not considered as a problem. However, these imply a deteriorating tendency with
blur as may be expected. The failure of fully automatic detection and the requirement of
semi-automatic target detection also implies that greater blur will cause increasing problems
for automated photogrammetric processing.

(a)

(b)

Fig. 10. Example of blurred targets (4 to 35 mm diameter) at different distances: (a) images acquired with a
Nikon D7000 camera showing, on the right, a short distance (1�70m) image and, on the left, far distance
(3�20m) targets in a sharp image; (b) images acquired by a Nikon D80 camera showing equivalent targets in a

blurred image. The different sizes of the images are a result of different ground sampling distances.
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Coordinate Calculation Dataset

The second dataset used to calculate 3D coordinates also supports the findings of the
camera calibration dataset. A small degree of blur prevents fully automatic detection and
requires manually assisted or semi-automatic detection. A baseline of 0∙82m and distance of
1∙70m should provide an appropriate intersection angle for precise coordinate calculation.
However, the calculated coordinates are inevitably influenced by increased motion blur. As
expected, increasing blur creates larger discrepancies between the sharp and blurred
coordinates (Fig. 12). Images with a small but apparently invisible blur of up to 0∙5mm are
influenced less and create discrepancies in the object space of up to 0∙4mm (Fig. 12(a)).
The actual camera displacement of 0∙5mm, divided by the pixel size on the sensor, equals
82 sensor pixels of blur. A 1∙5mm camera displacement is clearly visible to the human eye.
This blur results in coordinate discrepancies of up to 20mm between sharp and blurred
images (Fig. 12(b)). In comparison, a fully manual target measurement results in a
discrepancy of only 2mm. This shows that, in the case of visible blur, automatic
measurement is clearly inferior to manual measurement.

It can be assumed that larger camera-to-object distances, with both the same baseline
and camera displacement, will cause larger errors due to an increasingly smaller intersection
angle. A test using the higher resolution Nikon D7000 camera shows the same result of
increasing discrepancies for increasingly blurred images.

Target Detection Dataset

While working with the first two datasets, it was observed that target detection in
blurred images can be time consuming if semi-automatic detection and measurement is
required. Tests reveal that relatively small camera displacements cause automatic target

(a) (b)

Fig. 11. Influence of image blur on camera calibration results. (a) The movement of the principal point.
Contrast this with Fig. 7(b), where the principal point makes a “jump” at a camera displacement of 0∙39mm.

(b) Change of the image size with camera displacement.
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detection to fail. The third dataset was used to determine a threshold beyond which blur
disturbs the automatic detection of signalised targets (Fig. 13). The theoretical pixel size of
a target is based on the focal length, the camera-to-object distance and the image sensor. In
practice, the pixel width of a target can be counted on the image. In a sharp image, the
theoretically calculated size and the actual size on the image should be equal. If the target is
blurred, the pixel width in the image becomes larger than the theoretical size.

From the data captured it is possible to find the threshold at which detection fails due
to blur. Determining the practical pixel width on the image and comparing it to the
theoretical target width should make it possible to identify a linear dependency between
sharp and blurred target sizes (Fig. 13(a)). The best-fitting linear dependency can be used to
formulate an equation that describes the degree to which a target can be blurred before
automatic detection is unsuccessful. A theoretical target size in pixels ts can be determined
easily using information about the target size in object space t0, focal length ck, distance
between the camera and target h and sensor pixel size ps. Furthermore, the blurred target
size tb can be related linearly to its theoretical equivalent ts:

ts ¼ t0ck
hps

tb � 1�166ts þ 16�794:
ð1Þ

(a)

(b)

Fig. 12. Discrepancy between blurred and sharp image sets. The impact of large camera displacements (b) is
20 to 70 times larger than with small camera displacements (a).
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From the tests conducted, targets which have a theoretical width of ts, and appear in
the image with a width between ts and tb, can be automatically detected. In Fig. 13(b) it is
possible to see that the ratio between the theoretical and blurred target sizes decreases for
larger targets. This implies that there is a greater tolerance to the blurring of small targets
than that of large targets. A possible explanation is the threshold used in the detection
algorithm. This threshold is based on the roundness of a target and how many pixels are
part of a round target. For large targets an increased number of pixels do not support a
round target and it is not accepted as a target.

The size of a blur is a direct result of camera displacement. Larger displacements cause
targets to appear more smeared. Fig. 13 illustrates how much displacement is required for
target detection to fail, and how wide the target appears in the image. Comparing camera
displacement with the size of the blurred targets proves that large targets can be blurred
more than small targets. Fig. 14 shows how target size, camera displacement and camera-to-
object distance are related. The dependency between camera displacement and successful
target detection is exponential, which shows that smaller targets tolerate more blur than
larger targets. A target with a theoretical width of 50 pixels can be detected until it becomes
so blurred that its width increases to 75 pixels, suggesting that a 50% blurring can be
tolerated. However, a target measuring 100 pixels can be only smeared to 133 pixels before
detection fails, which is only an increase of 33%. These examples suggest that the 50-pixel
target can only suffer a displacement of 25 pixels before detection is unsuccessful, whilst the
larger 100-pixel target can resist detection failure due to blur up to 33 pixels. This represents
a difference of 8 pixels of additional camera displacement that can be tolerated if larger
targets are used (Fig. 14). It also shows that an increasing object-to-camera distance results
in a flatter exponential function. The outliers, which do not support the exponential
function, are the smallest targets with a size of 4mm. It would appear that the detection
algorithm does not detect very small targets because they have too few pixels in the image

(a) (b)

Fig. 13. Target size in a sharp image referenced to target size in a blurred image where automatic detection
failed. Different camera models and lenses were used: (a) linear axes scale; (b) logarithmic axes scale.
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to be recognised as a target (Fig. 15(a)). However, once blurred they are represented by
enough pixels to be accepted as a target (Fig. 15(b)). Notwithstanding this, as the target
becomes more blurred, the detection fails again because the target shape becomes too
elliptical and does not appear as a circle (Fig. 15(c)).

The function best representing the dependency between the camera-to-object distance,
displacement and blurred target size, as shown in Fig. 14, is the exponential function shown
in equation (2). This function makes it possible to calculate the blurred target size tb as
dependent on the camera-to-object distance h and the camera displacement d for short
camera-to-object distances:

tb ¼ 70000h�1�85e2d : ð2Þ

Equation (2) has not been investigated for h � 3 m and should be treated with caution for
the increased camera-to-object distances that may be more common with UAVs. The
displacement d is the result of the camera velocity during exposure time (equation (3)).
Forward-motion displacement can be calculated using the exposure time and UAV velocity.
In the case of rotations, the calculation depends on the position of the rotational axes. If the

Fig. 14. Size of blurred targets related to displacement of the camera during shaking.

(a) (b) (c)

Fig. 15. Influence of blur on small targets: (a) sharp target consists of too few pixels to be detected; (b) the
same target when blurred, causing it to have an increased number of pixels; this target was detected by

PhotoModeler; (c) the same target when even more blurred and no longer detectable by PhotoModeler.
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origin of the axes is coincident with the camera’s perspective centre, a calculation is
possible using equation (3). As opposed to the roll x and pitch u, which only depend on
the flight altitude, the yaw j depends on the distance between the nadir position and the
object s for which the displacement d is calculated:

d ¼ vt � ex
d ¼ h tanðvx=uÞ � ex
dj ¼ s tanðvjÞ � ex

ð3Þ

where dj is the displacement in yaw; vt/x/u/j are the respective velocities in translation, roll,
pitch and yaw; and ex is the exposure time.

Connecting equations (1) and (2) makes it possible to calculate the minimum target
size t0 that should be used for the following parameters that are normally part of the flight
planning: object distances h known a priori; focal length ck; sensor pixel size ps; and camera
displacements d:

t0 � 70000h�1�85e2dh� 16�794hps
1�166ck : ð4Þ

However, the inverse calculation of determining displacement based on the size of a
blurred target is not always valid. It would only be valid when the blurred target is on the
threshold between successful and unsuccessful detection because this equation is based on
the maximum size of blurred targets. If a less blurred target is used in this calculation the
real camera displacement will be larger than the calculated displacement.

Discussion of Results and Implications for Photogrammetric Imagery

The study reported in this paper demonstrates that working with blurred images causes
a range of challenges. First, it is difficult for the human eye to quantify the amount of blur
in an image, especially if there is no image available for comparison. Second, automatic
processing is clearly influenced by small motion blur and the number of detected signalised
targets decreases. Even images of apparently high visual quality can cause problems if a
small amount of blur is present. The number of measured targets directly influences the
accuracy and ability of subsequent calculations including camera calibration and bundle
adjustment. The detection of targets becomes more reliable with larger targets, which
include more pixels to calculate accurately the target centre. Furthermore, the same amount
of blur causes a single target to blur laterally, causing misdetection or multiple detection.
However, very large targets are impractical for efficient photogrammetric data processing.

If automatic target detection is not possible, semi-automatic detection of targets over
small areas can be successful. However, this is time consuming as these detection areas
have to be defined manually and accurately. Even with well-defined detection areas, the
detection fails with increasing blur. Manual measurement of targets is possible but the
results are not as accurate as automatic measurements on sharp images.

A limitation of the detailed tests conducted in this study has been the focus on close-
range images. Care needs to be exercised in assessing the implications of these findings for
UAV imagery where flight altitudes are much larger than the distances used in these
experiments and camera displacements are larger due to the flight velocity. Furthermore, the
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ratios between the object distance and baseline are smaller than in the conducted
experiments, which results in glancing ray intersections. The effect is that small changes in
one coordinate measurement due to blur will have a correspondingly larger effect on the
calculated 3D coordinates.

This study supports the findings made using subjective human opinions. Johnson and
Casson (1995) proved that blur influences acuity. The current study also shows that blur
influences photogrammetric image processing. Compared with human perception, image
processing is more sensitive to blur. In addition, the detection of blurred simple structures,
such as round targets, causes problems for automatic processes. Colombo et al. (1987)
tested humans on the detection of structures in blurred images and found a decreasing
ability to read text with increasing blur. However, the legibility of text is a much more
complicated task than the detection of round targets.

This work supports the desirability of excluding blurred images from photogrammetric
processing. G€ulch (2012) recommends elimination of blurred images as a first step in UAV
image processing. The findings also support the work of Shah and Schickler (2012) who
develop blur correction methods specifically for UAV applications. Lel�egard et al. (2012)
state that a blur larger than 2 pixels is a significant amount. However, the findings reported
in this paper suggest that a blur of just 2 pixels is actually too small to influence the
detection, identification, referencing and measurement of targets.

Conclusions

A range of difficulties concerning photogrammetric applications is caused by image
degradation due to motion blur. Small camera displacements have a significant impact on
the accuracy of subsequent calculations and processes. Activating a shutter button on a
camera can result in significant camera movement causing image blur. Fully automatic
detection of targets in images containing small blurs can be difficult and can influence
further processing. This problem can be solved by using semi-automatic detection tools. A
small amount of blur has no significant influence on calculation results when targets are
detected and measured successfully. If blur increases to such a degree that semi-automatic
detection requires significant operator input, subsequent calculation will return significantly
inaccurate results. However, manual measurements can be carried out and results of
acceptable accuracy can be achieved, even in highly blurred images. It is also important to
recognise that the tests were conducted only using signalised targets. It can be assumed that
using natural feature points results in fewer detected features and feature referencing can be
erroneous or even becomes impossible. Using natural features for processing blurred images
would be an interesting topic for future work.

Although blur might disturb most image processing procedures it can be also exploited
for some applications, as identified by Boracchi (2009) and McCarthy et al. (2013).
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R�esum�e

Les drones sont devenus un sujet de recherche int�eressant et dynamique en photogramm�etrie. Les
recherches actuelles s’int�eressent �a des images acquises depuis des drones qui permettent une haute r�esolution
spatiale et spectrale grâce �a un vol �a basse altitude et �a des cam�eras �a haute r�esolution. L’un des principaux
probl�emes empêchant l’automatisation du traitement des images acquises par drone est la m�econnaissance de
l’effet du ph�enom�ene de fil�e produit par le mouvement de la cam�era durant l’acquisition des images. L’objet de
cet article est d’analyser l’influence du fil�e sur le traitement photogramm�etrique des images. Des images ont �et�e
produites avec un effet de fil�e parfaitement connu pour en d�eterminer l’influence. On constate que même des
fil�es tr�es limit�es affectent de mani�ere significative le traitement photogramm�etrique. Une intervention de
l’op�erateur, bien que coûteuse en temps, permet de garantir des r�esultats de qualit�e acceptable.

Zusammenfassung

Unbemannte Luftfahrzeuge (UAV) sind ein interessantes und aktuelles Thema in der photogrammetrischen
Forschung. Die mit den UAVs aufgenommenen Bilder weisen, aufgrund der geringen Flugh€ohe und der
Nutzung hochaufl€osender Kameras, eine hohe geometrische und spektrale Aufl€osung auf. Es wird angenommen,
dass die Bewegungsunsch€arfe die vollautomatische photogrammetrische Auswertung von UAV Bildern
beeintr€achtigt. Bisher ist jedoch unbekannt, in welchem Maße unscharfe Bilder den Prozess beeinflussen. Ziel
dieser Ver€offentlichung ist es, den Einfluss von Bewegungsunsch€arfe auf photogrammetrische Prozesse zu
untersuchen. Dazu werden Bilder mit genau bekannter Bewegungsunsch€arfe erzeugt, um deren Einfluss auf
photogrammetrische Operationen zu analysieren. Es wurde herausgefunden, dass schon eine geringe Unsch€arfe
den Verlauf photogrammetrischer Prozeduren negativ beeinflusst. Manuelle Eingriffe k€onnen zwar akzeptable
Ergebnisse sicherstellen, sind jedoch sehr zeitintensiv.

Resumen

Los veh�ıculos a�ereos no tripulados (UAV) se han convertido en un interesante y activo tema de
investigaci�on en fotogrametr�ıa. La presente investigaci�on est�a basada en im�agenes captadas desde UAVs que
tienen una alta resoluci�on espacial y buena resoluci�on espectral gracias a la combinaci�on de vuelos a baja
altitud con c�amaras de alta resoluci�on. Uno de los principales problemas que dificultan la automatizaci�on del
proceso de datos de im�agenes de UAV es el efecto de la degradaci�on en la definici�on ocasionado por el
movimiento de la c�amara durante la adquisici�on. El prop�osito de este trabajo es analizar la influencia de esta
falta de definici�on en el proceso de im�agenes fotogram�etricas. Se producen im�agenes con degradaci�on de la
definici�on causado por el movimiento conocida para determinar su efecto. Se encontr�o que incluso peque~nas
degradaciones de la definici�on afectan significativamente a los procesos normales fotogram�etricos. Aunque la
intervenci�on manual conlleva mucho tiempo sin embargo puede garantizar resultados aceptables.

摘要

无人机已经成为摄影测量领域一个非常活跃的研究方向,现在的研究主要集中在利用低空飞行无人机

配备的高分相机获取高空间分辨率和高光谱分辨率遥感影。现在阻碍无人机影像全自动化处理的主要问题

是在影像采集过程由于相机运动引起的模糊。本文分析了该类模糊对摄影测量影像处理的影响,结果表明,
小的模糊对摄影测量处理的影响是非常大的。虽然操作员人机交互可能比较耗费时间,但是齐可以确保处

理结果达到可接受的摄影测量精度。
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ABSTRACT: 
 
Unmanned aerial vehicles (UAVs) have become an interesting and active research topic in photogrammetry. Current research is 
based on image sequences acquired by UAVs which have a high ground resolution and good spectral resolution due to low flight 
altitudes combined with a high-resolution camera. One of the main problems preventing full automation of data processing of UAV 
imagery is the unknown degradation effect of blur caused by camera movement during image acquisition. 
 
The purpose of this paper is to analyse the influence of blur on photogrammetric image processing, the correction of blur and finally, 
the use of corrected images for coordinate measurements. It was found that blur influences image processing significantly and even 
prevents automatic photogrammetric analysis, hence the desire to exclude blurred images from the sequence using a novel filtering 
technique. If necessary, essential blurred images can be restored using information of overlapping images of the sequence or a blur 
kernel with the developed edge shifting technique. The corrected images can be then used for target identification, measurements 
and automated photogrammetric processing. 
 

1. INTRODUCTION 

A constraint enforced on the acquisition of early photographs 
used in photogrammetry was a stable camera position and a 
stationary object as the basic requirements for sharp images. 
Exposure times of many days were required to obtain an image 
(Maison Nicéphore Niépce, 2013}. Today, professional 
photographers use a tripod and remote shutter release to prevent 
camera movement during image acquisition. Unfortunately, 
unmanned aerial vehicles (UAVs) rarely provide a stable 
camera position. UAVs are affected by wind, turbulence, 
sudden input by the operator and also by the flight movement of 
the aircraft itself as well as vibrations of the engines. Hence, the 
acquired image sequence can contain blurred imagery which 
disturbs automatic post processing. Filtering these blurred 
images has to be carried out manually, which is exhausting for 
the eyes, prone to errors and time extensive. By filtering out 
blurred images the number of images is reduced and can 
negatively influence the result of post processing. This paper 
describes a series of experimental work: how a dataset of 
images was created with known blur characteristics; the effect 
of blurred imagery on photogrammetry and image processing; 
how to correct blurred images and subsequent image operations. 
 

2. RELATED WORK 

Photogrammetry is the science of reconstructing 'the position, 
orientation, shape and size of objects from pictures' (Kraus, 
2007). To provide appropriate image geometry for 3D 
measurements a recommended along track overlap of 60% and 
a lateral overlap of 20% should be used (Kraus, 2004; Luhmann 
et al., 2006}. To calculate accurate 3D coordinates (X, Y, Z) for 
an object point, it is necessary to precisely measure the image 
coordinates (x, y) in at least two images. Today, fully 
automated data processing is demanded by an increasing 
number of users. Blur is expected to influence the accuracy and 
ability of image coordinate measurements, which is analysed in 
this study. 
 

A series of methods have been developed in previous work to 
detect if an image is sharp or blurred. It is recognised that 
improving the image sharpness using deblurring algorithms is 
an important topic in computer vision and image processing. A 
widely used application for automatic blur detection is the 
'auto-focus' system in cameras, which should prevent the user 
from taking optically blurred images caused by an inappropriate 
focal setting (Kim et al., 1998). As optical blur can be 
prevented using these systems, other methods are required to 
suppress blur due to motion, which should be carefully 
distinguished as a discrete type of blur. Motion blur is often 
caused by human hand movement (jitter). This jitter has 
frequencies of 2-10 Hz, with amplitudes of up to 1 mm (Stiles, 
1976). Sachs et al. (2006) note that there is also a 'drift of the 
hand' of up to 5 mm/s and that commercial systems for shake 
reduction use gyroscopes to prevent motion blur. 
 
Methods developed for aircraft include precise inertial 
measurement unit (IMU) and global navigation satellite system 
(GNSS) information, to reduce angular and forward motion blur 
(Pacey and Fricker, 2005). Both sensors can provide additional 
information for blur detection algorithms such as the 
approximate path followed when the image was blurred. Precise 
IMUs are also used to generate blur kernels which represent 
how an image is blurred. The kernel visualises how a point in 
an image would be blurred, which path it would have taken and 
which motion speed it would have had. IMUs used by most 
UAVs are too imprecise to establish a basic precise blur kernel. 
Assuming an image exposure time of 1/400 s would require an 
IMU of at least 800 Hz to measure a basic blur kernel for an 
image (Grenzdörffer et al., 2012). A blur kernel based on two 
measurements would be only a linear representation of the 
motion and would not represent more precise motion. However, 
even if linear representation of motion blur is sufficient to 
represent typical UAV flight motion, such systems are 
expensive and cannot always be used since these would exceed 
the payload of typical micro UAV platforms. Furthermore, the 
IMU and GNSS sensors incorporated for flight stabilisation are 
not accurate enough and lack sufficient acquisition frequency to 
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determine if an image is blurred or not. This makes detection of 
motion blur during the post processing stage often necessary. 
 
Blind blur detection algorithms normally use edge detection or 
frequency analysis. Edge detection methods focus on the spread 
and gradient of an edge (Joshi et al., 2008; Narvekar and 
Karam, 2009; Ong et al., 2003). In the case of a widely spread 
edge of low gradient it is assumed that the image is blurred. 
This edge smear due to blur is also used in image frequency 
analysis methods. When an image has extensively smeared 
edges in the spatial domain, it is characterised by the 
disappearance of high frequencies in the frequency domain (Liu 
et al., 2008; Rahtu et al., 2012). A problem with most blur 
detection methods is the presumption that the image is blurred 
and that these methods are developed using mathematically 
blurred images without any relation to geometrical motion blur 
or random hand held camera shake (Levin et al., 2009). In such 
circumstances the amount of blur is unknown and has to be 
evaluated subjectively. It is obvious that although subjective 
evaluation of blur maybe useful as fast and omnipresent method 
to evaluate images, it can be wrong. This explains the desire to 
develop a measure of blur, by generating images with a 
precisely known image blur which is not influenced by human 
perception. Using a blur kernel to represent blur is possible. 
However, comparing the blur between different images based 
on blur kernels is difficult due to the complexity, their shape 
and extent (Sieberth et al., 2013). 
 
There are various methods for image deblurring which have 
been published over the last decades. Image deblurring 
approaches can be separated into blind and non-blind 
deconvolution. Non-blind image deconvolution uses a-priori 
knowledge about the blur in the image. Blind deconvolution has 
only the blurred image and no additional information but the 
task of deriving a sharp image remains. Wiener deconvolution 
(Wiener, 1950) and Richardson-Lucy deconvolution (Lucy, 
1974; Richardson, 1972) are blind deconvolution methods 
proposed decades ago and remain popular because they are both 
simple and efficient. A significant problem that occurs using 
these methods are ringing artefacts at high contrast edges (Fig. 
1). More advanced methods are often based on a probability 
calculation, which is also used by Wiener and Richardson-Lucy 
deconvolution such as for example (Sun et al., 2014). They aim 
to improve deblurring and the capability to work reliably, even 
with noise in the blurred image (Shan et al., 2008). There are 
also many other methods such as (Krishnan and Fergus, 2009) 
who does 'Fast Image Deconvolution using Hyper-Laplacian 
Priors' or (Michaeli and Irani, 2014) who uses recurrence of 
image patches. 
 

 
Figure 1. Image deblurred with Lucy-Richardson deconvolution 
(10 Iterations). The ringing artefacts are clearly visible. 

 
Non-blind image deconvolution methods can be carried out in 
various ways and requires additional knowledge. Additional 
information can be gained through a variety of methods 
including, other overlapping images (Agrawal et al., 2012), 
precise IMU measurements (Joshi et al., 2008), video cameras 
(Tai et al., 2010), fluttering shutters (Raskar et al., 2006) or 
colour channel dependent exposure times (Lelégard et al., 
2012). The main aim of these methods is to establish an 
appropriate blur kernel, which can be used by established 
deblurring algorithms. 
 

3. PRACTICAL WORK 

The practical work described here is focused on three different 
problems associated with blur. First, how blurred images were 
created; second, how blur disturbs photogrammetic image 
processing; and finally, how blur may be corrected. 
  
3.1 Generating blurred images 

A mathematical low-pass filter could be used to simulate 
motion blur but would decrease noise and other hardware 
influences and return a non-realistic result (Sieberth et al., 
2013). Instead of using image processing a shaker-table was 
used to acquire motion blurred images, which are influenced by 
typical degrading effects introduced by the camera hardware 
(Fig. 2). 
 

 
Figure 2. Shaker table with camera mounted on it. 

 
A shaker table is a platform used by construction engineers to 
investigate the likely response of a building to vibrating 
influences like earth quakes. It can be displaced with a known 
magnitude and frequency and movement of objects mounted on 
it can be monitored with displacement and acceleration sensors. 
Here the device was used to mount a camera (Fig. 2). If the 
device is fitted with acceleration sensors, it is possible to 
determine precisely when the camera shutter opened and closed 
due to vibrations caused by the shutter movement. This can be 
combined with the displacement sensor allowing an accurate 
displacement of the camera to be calculated for each image 
(Fig. 3). However, the vibrations caused by the moving shutter 
remain small and do not significantly influence the camera 
(Sieberth et al., 2013). By using the displacement sensor, 
camera displacement can be measured precisely during image 
exposure. This precise measure provides a higher control for 
further processing. 
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Figure 3. Image exposure with camera displacement. 

 
3.2 Blur disturbs photogrammetry 

A set of generated motion blurred images was used to analyse 
the effect of blur on photogrammetric data processing. This was 
achieved by processing blurred images, of high contrast targets, 
using photogrammetric and image processing procedures (Fig. 
4). A range of typical photogrammetric procedures were 
examined and tested. The first concentrated on camera 
calibration used to determine the interior geometry of the 
camera (Sieberth et al., 2014b). The second procedure assessed 
the detection and registration of feature points in sharp and 
overlapping blurred images (Sieberth et al., 2014a). 
 
3.3 Blur correction 

After quantifying how much feature detection is influenced by 
blur and if image overlap can be calculated successfully, it can 
be decided which technique for deblurring can be used. One 
method developed for deblurring in this research uses 
information provided by an overlapping image determined after 
image registration. However, if an appropriate image overlap is 
unavailable, deblurring needs to be carried out using an 
independent approach. 

 

Figure 4. Sharp and blurred image (1.03 mm camera 
displacement) of the dataset. 

 

3.3.1 Frequency transfer method using an overlapping 
image 
The first method, using an image overlap is the frequency 
transfer method. This method uses a sharp overlapping image to 
deblur a blurred image. A perspective transformation is applied 
to the blurred image and both the sharp and the transformed 
blurred image are cropped to just the overlapping area. Then the 
images are transferred to the frequency domain using a Fourier 
transformation. It is well established that high frequencies are 
absent in blurred images (Lelégard et al., 2012). The absence of 
high frequencies can be compensated by enhancing the blurred 
image using high frequencies extracted from the sharp image. 
Afterwards, the enhanced image is transferred back to the 
spatial domain. As this frequency operation only works on 
single channel images, it is either possible to apply this method 
on each channel separately or to use just a grey scale image. If a 
grey scale image is used, the enhanced image can replace the 
intensity channel of the originally blurred image (Fig. 5). The 
approach relies upon an overlapping sharp image to correct the 
blurred image (Sieberth et al., 2014a) and if unavailable then an 
alternative approach is required. 

 
Figure 5. Deblurring using frequency transform method with 
1.03 mm camera displacement. 

 
3.3.2 Edge shift - an overlap independent method 
If image registration is unsuccessful or no sharp image overlap 
is available then the frequency transfer method cannot be used 
and a different approach needs to be applied. The developed 
edge shifting approach focuses on high contrast edges. Suitable 
high contrast edges can include photogrammetric targets, which 
are often used for photogrammetric applications. They can 
normally be detected, identified and measured automatically in 
every image and the image registration can be conducted. Blur 
can prevent this automated process. These high contrast 
boundaries enable edge detection methods to find an edge in the 
image even if it is blurred. However, the blur causes a 
displacement of the edge (Fig. 6(b)), which is shifted by the 
size of the blur (Fig. 6). Shifting the displaced edges back to 
their original position provides the possibility to automatically 
detect the target and identify the target number based on the 
target code. To measure the target, the area of the target can be 
masked and the image moment (gravity centre) can be 
calculated, to represent the centre of the target (Fig. 6(c)). 
Using the target ID and coordinate measurement, allows the 
registration and orientation of the image. Unfortunately, the 
edge shifting approach returns just an edge image without 
colour information. However, after image registration it is 
possible to use the frequency transfer to generate a colour 
image when an overlapping image exists, which is sharper than 
the just processed image alone. 
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(a) Original sharp targets. 

 
(b) Blurred targets (0.53 mm camera displacement). 

 
(c) Restored targets with target number in the centre, binary 

code and measurements (centre of target was neglected) 
Figure 6. Distortion of targets and target code due to blur to 
elliptic shapes. 

 

4. RESULTS AND DISCUSSION 

The presented methods are effective and compensating for 
various stages of motion blur. All methods involved in this 
progress return novel and interesting results, which are 
explained further below. 
  
4.1 Motion blurred images 

Generating blurred images using a shaker table provides an 
accurate method to produce images with known characteristics. 
The fitted acceleration sensors are sensitive enough to recognise 
camera displacement and also the much smaller shake of the 
camera body caused by the shutter opening and closing. It was 
found that the vibration caused by the shutter is not significant, 
so that it can be neglected from further blur calculations 
(Sieberth et al., 2013). For further calculation of blur, the shaker 
table provides the opportunity to create many images with 
different blur characteristics under stable laboratory conditions. 
The same scene can be photographed with the same light 
conditions and with a displacement defined a-priori. However, 

one feature of the shaker table is that it is only able to simulate 
blur in one direction. This is appropriate because blurred 
images due to flight motion only contain one directional 
movement and not complicated blur paths. Forward motion as 
well as pitch and roll result in linear motion blur in the image. 
However, the combination of yaw rotation with forward motion 
would cause an almost linear blur. Only rotations around the 
yaw axis would cause a radial blur. Linear motion is also 
supported by the short exposure time used by UAVs and it can 
be assumed that complicated motions rarely influence the 
camera. A disadvantage is the limited displacement range of the 
table, which is less than 150 mm. In contrast to potential 
displacements created by UAVs, this displacement is very 
small. Although, real UAV images exhibit larger displacements, 
these occur at larger camera to object distances. Fortunately, 
these are equivalent to smaller displacements acquired at short 
object distances. Based on this assumption, the conducted 
laboratory experiments can be considered as representative. A 
major advantage of the methodology used is that the dataset is 
characterised by images with real motion blur, in contrast to 
other datasets which contain mathematically generated motion 
blur (e.g. 'LIVE Database for image and Video Quality 
Assessment' (Sheikh et al., 2005)). The images created using 
the shaker table contain known blur defined by the camera 
displacement. This provides a higher control for following 
processing steps as calculated blur kernels can be compared to 
the true camera displacement. 
 
4.2 Blur disturbs 

After generating images with known motion blur, a range of 
tests were conducted. The first aimed to analyse whether and by 
how much blur disturbs normal photogrammetric processes 
(Sieberth et al., 2014b). It was found that it is difficult for the 
human eye to precisely quantify the amount of blur and assess 
whether it will disturb procedures adversely. This becomes even 
more difficult if there is no sharp image available for visual 
comparison. Even images of apparently high visual quality can 
cause problems, if a small amount of blur is present. The 
number of measured targets directly influences the accuracy 
and ability of subsequent calculations (Fig. 7). Measurements of 
blurred signalised targets become inaccurate and incorrect (Fig. 
7(a)) therefore degrading subsequent procedures such as the 
calculation of the principal point (Fig. 7(b)). It can be assumed 
that detection and measurement of unsignalised targets is worse 
and again negatively influences the results. Additionally, 
feature detection algorithms are also affected, which can be 
identified in terms of both the number of detected features and 
correctly referenced features (Table 1). 
 
Camera 
displacement [mm] 

Detected feature 
points 

Correct referenced 
feature points 

0 12214 (100%) 12214 (100%) 
0.377 8847 (72%) 1524 (17%) 
0.529 7370 (60%) 224 (3%) 
1.028 2645 (22%) 47 (1.8%) 
Table 1. Camera displacement while camera shutter is open vs. 
detected and correctly referenced feature points. 

Table 1 presents how many features were detected in images 
containing different camera displacements. With increasing 
displacement the number of detected features decreases. 
Furthermore, Table 1 does show how many of the detected 
features were referenced correctly to features detected in a 
sharp image. The number of correct referenced features 
decreases significantly with increasing camera displacement. 
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(a) Detected and referenced 
targets. 

 
(b) Influence of camera 
displacement during image 
exposure upon the calculated 
principal point position. 

Figure 7. Negative influence of blur on target detection and 
camera calibration (Sieberth et al., 2014b). 

The results supports the findings of Johnson and Casson (1995) 
who proved that human perception is influenced by blur. 
Furthermore, it shows also that blur influences photogrammetric 
image processing and in contrast to human perception, image 
processing procedures are more sensitive to blur. The detection 
of blurred simple structures such as round targets certainly 
causes problems for automatic procedures. 
 
Colombo et al. (1987) tested humans on the detection of 
structures in blurred images and found a decreasing ability to 
read text with increasing blur. However, the legibility of text is 
a much more complicated task than detection of round targets. 
 
The results support the desirability to exclude blurred images 
from photogrammetric processing. Gülch (2012) recommends 
elimination of blurred images as a first step in UAV image 
processing. The findings also support work of Shah and 
Schickler (2012) who developed blur correction methods 
specifically for UAV applications. Lelégard et al. 2012 states 
that blur larger than 2 pixels is significant. Our findings would 
contradict this, suggesting that a blur of just 2 pixels is actually 
too small to influence detection, identification, referencing and 
measurement. 
 
4.3 Blur correction 

To prevent the negative influence of blurred images on post 
processing, blurred images should be detected and deblurred. 
The frequency transfer method appears suitable to correct some 
blur, if overlaps are available and one image is sharp. If the 
image used for deblurring is itself blurred, then the enhanced 
result maybe better than the original blurred image but will 
contain at least as much blur as the 'sharper' image originally 
contained. Adding frequencies to a blurred image also 
introduces some noise after transforming from the frequency 
domain back to the spatial (Fig. 5). In the subsequent step of 
image transformation, which is necessary to regain the correct 
position, the rotation, shear and scale and the interpolation of 
the correct pixel intensities for the rectified image, can cause a 
'blurring' effect. It could also happen that the transformation 
parameters of the images are unknown, which makes deblurring 
using an overlapping image, impossible. Overlapping images 
are often available in photogrammetric procedures, however, it 
can also happen that not enough overlapping images are 
available and the frequency transfer method cannot be applied. 
This frequency transfer is based on the idea of Jung et al. 

(2009). However, our method presented here uses images which 
are not highly overlapping or taken from the same camera point 
of view, which makes it applicable for aerial imagery. 
 
The newly developed edge shifting approach is a method to 
deblur images containing high contrast edges. High contrast 
edges are often used for image registration, as these can be 
clearly detected and measured in image sequences. Standard 
deblurring methods like Wiener deconvolution or Lucy-
Richardson deconvolution, produces ringing artefacts on high 
contrast edges making automatic detection of features 
significantly difficult (Fig. 1). In contrast, edge shifting does 
not produce these artefacts and makes automatic detection 
possible. It is also faster than standard deconvolution methods 
because it concentrates on edges only. However, the main 
problem is the loss of colour information, which needs to be 
restored afterwards by using a flood fill method. More 
significant problems are the many special cases and exceptions 
which occur. Handling these exceptions creates a range of 
challenges. It is possible that the shifting process generates 
holes in the shapes. This is caused by shifting two edges apart 
from one another, which gives the appearance of 'ripping' them 
apart. Furthermore, edges which have completely disappeared 
cannot be recovered. Deblurring targets which are smaller than 
the blur also need to be considered as special cases. Deblurring 
real images with different edge intensities, directions and blur 
length remains more challenging than in the high contrast test 
image. Despite these unsolved cases it is possible to achieve 
edge shifting using photogrammetric targets, to enable sub-
pixel accurate measurement of target coordinates. Furthermore, 
it might be possible to incorporate different blur in different 
positions of an image by calculating localised blur kernels. This 
would be necessary for blurred objects close to the camera, 
which appear more blurred compared to objects further away. 
The method developed here is completely different to 
previously published methods, because it does not concentrate 
on restoring colour information using probability theory (Lucy, 
1974; Richardson, 1972; Shan et al., 2008; Wiener, 1950) but 
only edges. This provides the additional advantage of being 
much faster than methods previously published. 
 

5. CONCLUSION 

The study reported in this paper shows that it is difficult to 
generate blurred images that contain a known path and amount 
of camera displacement. However, a shaker table was found to 
be suited and preferred to simply simulating blur using a low 
pass filter. Precisely blurred images are required to analyse if 
and when blur degrades a photogrammetric processing. It was 
shown that even small camera displacements have a significant 
impact on the accuracy of subsequent photogrammetric image 
processing. A threshold can be defined, which can be used to 
filter blurred images and/or apply deblurring algorithms 
(Sieberth et al., 2014b). If deblurring is necessary or required, 
then overlapping images can be used to achieve reasonably 
sharp results for further processing. If overlapping images are 
unavailable then it is still possible to use the 'edge shifting' 
approach for image deblurring. This novel approach can restore 
images, provided that high contrast edges are available. 
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ABSTRACT: 
Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is 
based on images acquired by a UAV, which have a high ground resolution and good spectral and radiometric resolution, due to the 
low flight altitudes combined with a high resolution camera. UAV image flights are also cost efficient and have become attractive for 
many applications including change detection in small scale areas. 
 
One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by 
camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, 
turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can 
degrade the accuracy in automatic photogrammetric processing algorithms. 
 
The aim of this research is to develop a blur correction method to deblur UAV images. Deblurring of images is a widely researched 
topic and often based on the Wiener or Richardson-Lucy deconvolution, which require precise knowledge of both the blur path and 
extent. Even with knowledge about the blur kernel, the correction causes errors such as ringing, and the deblurred image appears 
“muddy” and not completely sharp. In the study reported in this paper, overlapping images are used to support the deblurring 
process, which is advantageous. An algorithm based on the Fourier transformation is presented. This works well in flat areas, but the 
need for geometrically correct sharp images may limit the application. Deblurring images needs to focus on geometric correct 
deblurring to assure geometric correct measurements. 
 

                                                                 
*  Corresponding author. 
 

1. INTRODUCTION 

Constraints enforced on the acquisition of photographs for 
photogrammetry normally include a stable camera position and 
a stationary object. Unfortunately, lightweight small scale 
unmanned aerial vehicles (UAV) rarely provide a stable camera 
position. UAVs are easily affected by wind, gusts, turbulence or 
sudden operator inputs. However, their good manoeuvrability 
and flight path control combined with endurance, flight range 
and low cost make UAVs applicable for a range of different 
tasks (Eisenbeiß, 2009). The limited payload, regulatory 
restrictions and vulnerability of the UAV platforms encourage 
the use of low cost sensors, which often dictates the use of 
consumer grade cameras (Eisenbeiß, 2011). Unfortunately, the 
problem remains that the high spatial resolution of an image is 
often degraded due to motion blur. Since optical blur can be 
reduced using automatic focusing methods, motion blur remains 
a challenge. Resolving motion blur is an important and often 
researched topic in signal and image processing. The focus of 
many deblurring methods is often on spectral, radiometrical and 
geometrical deconvolution, which requires extensive 
calculations. 
 
1.1 Aims and Objectives 

Photogrammetry is defined as finding ‘position, orientation, 
shape and size of objects from pictures’ (Kraus, 2007). This is 
achieved by measuring coordinates of objects appearing in 
images. These measurements are mostly based on edge 
detection in the images because edges can often be detected and 
identified in overlapping images. In blurred images edges can 

disappear, change their position or become difficult to identify 
due to the degrading effect of motion blur (Fig 1). 
Most methods use one blur kernel which represents the camera 
path during image acquisition. Using this general blur kernel for 
all pixels in the image is inaccurate because objects with a short 
camera to object distance are blurred more than objects further 
away. Also sensor rotation can change the blur kernel as the 
kernel is shorter for objects close to the rotation axis and larger 

    

    (a)  (b) 

   

    (c)  (d) 
 

Figure 1. Example of a photogrammetric target. (a) Sharp image 
without any camera movement during image exposure. (b) The 
target is easy identifiable due to the well-defined edge between 
black and white. (c) Image blurred due to motion during image 
exposure. (d) The target is difficult to identify due to the 
difficulty to define the target outline. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-321-2014 321



 

for objects far away from the rotation axis. This needs to be 
considered for generating a precise deblurring method capable 
of working in 3D. 
This paper aims to analyse how much blur influences the 
detection of image overlap using image processing. 
Furthermore, image deblurring approaches suitable for 
photogrammetric purposes will be examined and discussed. 
 

2. RELATED WORK 

Aerial photogrammetry uses object information in images 
acquired by airborne platforms ranging from aircrafts to 
balloons. A platform recently developed and increasingly 
popular for image flights are lightweight UAVs, which are 
vulnerable to gusts, turbulence and are sensitive to operator 
inputs. 
For a successful image flight it is necessary to carefully prepare 
the flight plan beforehand. To provide appropriate image 
geometry for 3D measurements a recommended image overlap 
of 60% along track and 20% across track should be used (Kraus 
2004, Luhmann 2006). To calculate precise 3D coordinates for 
an object point, it is necessary to precisely measure the image 
coordinates in at least two images (Kraus, 2004). Additionally 
the exterior orientation and interior parameter of the camera are 
required. These parameters are required to fulfil the collinearity 
equation, which enables the 3D coordinates of points to be 
determined (Luhmann, 2006). 
To carry out point measurements in multiple images 
automatically, feature points (signalised and unsignalised) need 
to be identified across frames. This is today based on the Scale-
Invariant Feature Transform (SIFT), Speed-Up Robust Features 
(SURF) or similar algorithms. These algorithms detect suitable 
candidate features in the images, which are invariant to scaling, 
translation and rotation (Lowe, 2004, Bay et al., 2006). Similar 
features detected in two overlapping images can be referenced 
between them using least squares matching or other similar 
methods (Brown, 1992). Due to blur the same features can 
appear differently in the images and matching these becomes 
increasingly difficult. Even measuring well defined targets 
using automatic measurement methods and matching them 
between two images is influenced or even impossible (Sieberth 
et al., unpublished). These difficulties suggest the need to 
explain the influence of blur in photogrammetric processes. 
There are various methods for image deblurring which have 
been published over the last decades. Image deblurring 
approaches can be separated into blind and non-blind 
deconvolution. Non-blind image deconvolution uses a-priori 
knowledge about the blur in the image. Blind deconvolution has 
only the blurred image and no additional information but the 
task of deriving a sharp image remains. Wiener deconvolution 
(Wiener, 1949) and Richardson-Lucy deconvolution 
(Richardson, 1972, Lucy, 1974) are blind deconvolution 
methods proposed decades ago and remain popular because 
they are both simple and efficient. A significant problem that 
occurs using these methods are ringing artefacts at steep edges. 
More advanced methods are often based on a probability 
calculation, which is also used by Wiener and Richardson-Lucy 
deconvolution. They aim to improve deblurring and the 
capability to work reliably, even with noise in the blurred image 
(Shan et al, 2008). 
Non-blind image deconvolution methods can be carried out in 
various ways and requiring additional knowledge. The 
additional information can be gained through other overlapping  
images (Agrawal, 2012), precise IMU measurements (Joshi, 
2008), video cameras (Tai et al., 2008), fluttering shutters 
(Raskar et al., 2006) or colour channel dependent exposure 

times (Lelégard, 2010). The main aim of these methods is to 
establish an appropriate blur kernel, which can be used by 
established deblurring algorithms. 
 

3. METHOD DEVELOPMENT 

3.1 Feature Detection 

To analyse how critical motion blur influences feature 
detection, images with precisely known blur were generated. 
Blurred images were acquired using a Nikon D80 SLR camera, 
and a shaking table using a methodology described more fully 
in a paper by Sieberth et al. (2013). Briefly, this involved 
generating four images with different camera displacements 
each of between 0 to 1 mm. Then these images were processed 
using the SURF function provided by OpenCV 
(SurfFeatureDetector), to detect feature points in the images 
(OpenCV, 2014). In the following step a “brute force matching 
method” (BFMatcher) was used to connect detected feature 
points. The connection was made between the feature points in 
the sharp image and each of the blurred images. The connection 
lines between sharp and blurred image should be parallel as 
shown in Figure 2 (a). Many of the returned matches were 
incorrect and additional filtering of the matches was required. 
Figure 2 shows the sharp image on the left and a blurred image 
on the right, with blue lines show the connection between sharp 
and blurred feature points. Figure 2 demonstrates that 
increasing camera displacement influences both the number of 
feature points and correctness of feature matching. In (b) and (c) 
the connections are converging on a few features which must be 
incorrect because the blurred image is made with the same 
orientation and from the same position as the sharp image and 
shows the same scene. Filtering out the incorrect matches can 
be done using an approximate position and orientation of the 
images. In real UAV images this can be extracted from recorded 
GNSS and IMU data. Using the flight altitude and the camera 
perspective centre for both images the offset between the 
images can be calculated. By using this method it can be 

(a)

(b)

(c) 

Figure 2. Influence of image blur on automatic feature detection 
and connection using SURF and brute force matching. Left 
image is a sharp reference image. Blue lines and circles indicate 
feature points (a) Right image without camera displacement. (b) 
Right image with 0.377 mm camera displacement. (c) Right 
image with 1.028 mm camera displacement. 
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estimated at which position the matched feature should be in the 
blurred image. If the matched feature is found at a different 
position, this match can be assumed to be incorrect and ignored. 
If the feature was matched at the right position, the orientation 
of the feature has to match with the orientation given by the 
IMU. However, it is important to recognise that GNSS and IMU 
can only provide an approximate value for the translation and 
rotation of the images. This problem can be tackled by defining 
an appropriate threshold for the discrepancy between calculated 
and actual position, rotation and scale of the matched feature. 
Figure 3 demonstrates the number of acceptably matched 
feature points, which is significantly less than the total matches 
made. These matches can be considered correct as the 
connection lines between sharp and blurred image are parallel. 
Even with this small number of matches it is still possible to 
calculate transformation parameters to detect the relative 
translation and rotation of sharp and blurred image. These 
transformation parameters are necessary to define the image 
relationship required to carry out standard photogrammetric 
measurements. If it is not possible to match enough features 
between the sharp and blurred image, feature detection can 
perhaps be improved by enhancing the blurred image. 
 
3.1.1 Improving Feature Detection 
Enhancing the blurred image can result in improved results for 
image processing and this does not require additional 
information. A fast, easy and reliable method to achieve this 
was investigated using an “Unsharp Mask Filter”. This 
approach blurs the input image and then subtracts the input 

image from the result (GIMP, 2014). An enhanced image can be 
generated, which appears sharper than the original input image 
and with stronger contrast (Fig 4). Figure 4 represents a 
Siemens star to visualise the blur. Figure 4 (a) demonstrates that 
before enhancement it is easily possible to see the blur, 
especially in the centre of the star.  Figure 4 (b) demonstrates 
that after enhancement the image appears sharper, but at the 
centre of the star it is possible to see that blur remains. The 
apparent higher contrast gives the impression of sharpness. 
However, with higher contrast it is possible that feature 
detection algorithms find feature points easier.  
 
3.2 Image Deblurring 

The effectiveness of initial feature detection, controls which 
image deblurring technique is best used. If the overlap 
calculation is successful, the information provided by the 
overlapping image can be used for deblurring. If the overlap is 
not successfully calculated, deblurring requires a different 
approach. 
 
3.2.1 Fourier Domain Approach 
 
A Fourier transformation can be adopted if points are 
successfully matched. As all images are taken from a moving 
platform it can be assumed that all images contain a certain 
amount of blur due to forward motion. However, some contain 
significantly more blur due to gusts, turbulences or operator 
inputs. If there is an overlap between a sharp and blurred image, 
then the overlap area in the blurred image can be deblurred. 
In the first step the overlapping areas need to be transformed so 
that they have the same rotation, translation scale and shear. 
The parameters for this can be based on the results of SURF 
matching or manual feature detection and matching. After this 
the deblurring process can commence. 
The frequency domain of the overlap is calculated for both 
images using a discrete Fourier transformation (DFT). The 
frequency domain of the more blurred image contains less high 
frequency elements than the sharper image. As both images 
show the same area, deblurring can be conducted by integrating 
the high frequencies of the sharper image into the frequency 
domain of the blurred image. 
Transforming the frequency domain representation of the 
blurred image, (now enhanced with the high frequencies of the 
sharper image,) back to the spatial domain, then generates a less 
blurry image. As DFT is only possible for grey scale images it is 
necessary to either correct all channels separately or calculate a 
single grey scale representation. If a one channel grey scale 
image is used a final step transferring this back to a three 
channel colour image is required. The approach used is based 

(a)

(b)

(c) 

Figure 3. Results of automatic feature detection and connection 
using SURF and Brute Force matching after filtering out 
incorrect matches using sensor position. Left image is a sharp 
reference image. Blue lines and circles indicate connected 
feature points, green indicate detected feature points, red 
indicates image overlap. (a) Right image without camera 
displacement. (b) Right image with 0.377 mm camera 
displacement. (c) Right image with 1.028 mm camera 
displacement. 
 

       
(a)              (b) 

Figure 4. Figure (a) shows the blurred image before 
enhancement. (b) represents image (a) after enhancement. The 
image appears with stronger contrast but not sharp. 
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on the idea of pan sharpening by replacing the intensity channel 
of an image with the deblurred image (Laben, 2000).  
After the deblurring process, the overlapping area needs to be 
transformed using an appropriate rotation, translation, scale and 
shear. As this deblurring is only possible for the overlapping 
area and not the complete image, the deblurred area of the 
image needs to replace the overlapping area in the blurred 
image. The result is a partially deblurred image (Fig 5). 
 
3.2.2 Edge Correction Approach 
 
Another approach developed in this study focused on correcting 
edges in images, which represent an important visual 
component. Edges indicate if an image is blurred or sharp 
(Chen, 2011) and help to identify how much an image is 
blurred. Also point spread functions and blur kernels can be 
calculated, based on edges or are part of additional information 
provided in other ways. 
Knowing this, the image can be reduced to its edges by using a 
standard edge detection algorithm like a Laplace filter or 
similar. In a blurred image, the edges are displaced from their 
‘sharp’ position due to motion of the camera during exposure 
(Fig 6 (b)). Also the intensity of the detected edge in a blurred 
image is much less than in a sharp image. This shift can be 
reversed by knowing the blur kernel so that the edge can be 
shifted back to its original position (Fig 6 (c)). How large the 
blur kernel is can be determined using overlapping images, 
IMU data or outputs of point spread calculation methods. 
Figure 6 (a) presents edges detected in a sharp image and Figure 
6 (b) how the edges appear in a blurred image. The blurred 
edges are not round but oval. Figure 6 (c) is a re-sharpened 
image using the edge shift approach. It is possible to identify 
that the targets in the re-sharpened image are now circular in 
shape. Additionally, it is possible for the human brain to 
interpret elements of the original code. The errors which appear 
in this edge corrected image will be discussed further in the 
results section (4.2.2). 
 

4. RESULTS AND DISCUSSION 

The accuracy of the non-blind deconvolution methods used here 
depends upon which algorithm is used and the quality of the 
additional information. This additional information is 
dependent upon the feature detection and matching which is 
itself influenced by blur. It is important to reassess both, the 
feature detection and deblurring approaches used. 

 
4.1 Feature Detection 

As expected, it was found that with increasing blur the total 
number of detected feature points decreases (Table 1). For 
example, a camera displacement of 0.377 mm during exposure, 
results in just 72% of the original feature points being detected. 
Human hand jitter has frequencies of 2-10 Hz with an amplitude 
of up to 1 mm (Stiles, 1976) which is a likely cause for much 
motion and has to be considered as a significant influence. 
The results after filtering out the incorrect matches using IMU 
and GNSS information, show that blur has an extreme influence 
on matching methods. Only a fraction of features were correctly 
connected between sharp and blurred image. In the case of a 
blurred image with a 1 mm displaced camera, only 47 matches 
were accepted (Table 1). 
 
Camera 
displacement [mm] 

Detected Feature 
Points 

Accepted Feature 
Points after Filtering 

0.0 12214 (100%) 12214 (100%) 
0.377 8847 (72%) 1524 (17%) 
0.529 7370 (60%) 224 (3%) 
1.028 2645 (22%) 47 (1.8%) 
Table 1. Impact of increasing image blur and feature detection. 
With increasing image blur the number of detected and accepted 
feature points reduces rapidly. 
 
The feature detection shows that blur influences image 
processing, which confirms findings made by Sieberth et al. 
(unpublished). The more an image is blurred the fewer features 
are detected using SURF and the number of matched features 
becomes increasingly incorrect. However, the test images were 
taken with a short camera to object distance which questions the 
applicability for larger camera to object distances, which are 
around 100 m for typical UAV image flights. Therefore the 
camera displacement for a typical UAV image flight should be 
calculated. Normal UAV flight speed is supposed to be 54 km/h 
and an image exposure time of 1/400 s (used by Grenzdörffer et. 
al (2012)), implies that the camera should experience a 
displacement of 37 mm during exposure. This is 70 times more 

  
Figure 5. A deblurred patch is presented in the centre of the 
image. It is possible to see the photogrammetric targets are 
sharper and better to read and the boreholes in the ceiling panels 
are good to see. The inset shows a comparison between the 
deblurred upper part and the bottom part of a target which 
contains a camera displacement of 1mm and visualizes how 
effective the deblurring is. 

   

 (a)              (b) 
 

 

   (c) 
Figure 6. Figure (a) represents edges of circular targets in a 
sharp image. (b) shows the same edges in a blurred image. They 
do not appear as circles any longer. (c) is a preliminary result of 
the deblurring process based on the blurred edges (b) and 
knowledge about the blur path. 
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than in the laboratory test with a displacement of 0.53 mm. The 
camera to object distances in the lab test was 1.8 m, 55 times 
shorter than normal UAV flight altitude of 100 m. The ratios 
show that the lab tests are actually comparable with a typical 
UAV image flight because the camera displacement is as many 
times larger as the camera to object distance. Furthermore, this 
calculation does not consider that angular movements of UAVs 
which are much faster and cause more extensive image blur 
(Grenzdörffer et al., 2012). The test images also provide a 
texture with high contrast enabling SURF to find many feature 
points. SURF is the recommended method for UAV images 
(Gülch, 2012) but will experience problems with blurry images 
of low contrast areas (e.g. grass). Additionally, image overlap in 
the test image is nearly 100% but will be around only 60% in 
real scenes. This reduced overlap will reduce the feature points 
which are available in both images and reduces the chance for 
correct calculation of transformation parameters. In addition, 
the laboratory images do contain only linear movement without 
angular rotations. This simplifies the feature matching which 
will be significantly more difficult with more challenging 
camera displacements and rotations.  
Enhancing the blurred image certainly improves the image. 
Instead of only 2645 features, twice as many features can be 
found and matched in an image with as much as 1 mm camera 
displacement. Out of these 5844 matched features 91 matches 
were accepted as correct, twice as many as before. This shows, 
that fast and easy to compute image enhancements can improve 
significantly the image quality necessary for photogrammetry. 
 
4.2 Deblurring 

Even if blur is insufficient to prevent successful image 
matching, it may be too severe for accurate detection and 
identification of photogrammetric targets and ground control 
points. A method to improve the image quality through 
“deblurring” is therefore valuable. Two approaches have been 
investigated. 
 
4.2.1 Fourier Approach 
 
The Fourier approach (Section 3.2.1) inserts high frequencies 
derived from a sharp image into the blurred and appeared 
successful (Fig 5). Figure 5 shows that photogrammetric targets 
in the deblurred patch can be identified easily and in 
comparison to targets in the remaining blurred part of the 
image, they are now sharp and have high contrast. A deblurred 
image for feature detection and matching is presented in Figure 
7. The blurred image had a camera displacement of 0.53 mm. 
After deblurring, SURF returns 11725 feature points. After 
matching and filtering incorrect features, 1124 were accepted as 
correct. This is five times more than with the original blurred 
image. 

However, the approach using Fourier transformation is only 
applicable for flat areas, which do not exhibit significant height 
differences. In cases of significant height variations, like high 
rise buildings, tall trees or opencast pits, offsets will be 
generated due to relief displacement (Campbell and Wynne, 
2012). A way to solve this is by using many small image 
patches, which take account for different heights. 
Adding frequencies to a blurred image also causes some noise 
after transforming from the frequency back to the spatial 
domain. In the subsequent step of image transformation 
necessary to regain the correct position, rotation, shear and 
scale, the interpolation of the correct pixel intensities for the 
rectified image can cause a ‘blurring’ effect. Furthermore, 
deblurring using overlapping images acquired from a moving 
platform will only be as good as the ‘sharper’ image. If the 
overlapping image is completely sharp then the deblurred 
images will be sharp. If the overlapping image is slightly blurry 
the deblurred image will be blurry too because the critical high 
frequencies are missing and cannot be integrated to the blurred 
image. A complete deblurring can only be generated if there is a 
perfectly sharp image containing all high frequencies. 
From a photogrammetric point of view this approach achieves 
images suitable for further processing. However, it cannot be 
guaranteed that subsequent measurements in the deblurred 
image are of high or even sub-pixel accuracy. Due to the 
geometric image transformation, errors can be introduced which 
depend on the accuracy of the transformation parameters. This 
shows the demand for a geometric correct approach, which 
guarantees correct photogrammetric measurements. This could 
be possible by using the edge shift approach. 
 
4.2.2 Edge Shifting Approach 
 
The edge shifting approach is a novel method developed here 
and shows promising results. The main problem is the disregard 
of colour information, which needs to be restored afterwards. 
This should be acceptable as the colour just needs to refill the 
shapes generated by the shifted edges. A more significant 
problem are the many special cases and exceptions, which can 
occur. Handling these exceptions is connected with a range of 
difficulties. It is possible that the shifting process generate holes 
in the shapes (Figure 6 (c)). This is caused by shifting two edges 
apart from one another and effectively ‘ripping’ them apart. 
Furthermore, edges which have completely disappeared cannot 
be recovered. The complexity of real images with different edge 
intensities, directions and blur length is much higher than in this 
high contrast test image. 
However, deblurring of high contrast areas can also be usable 
for aerial images because aerial photogrammetric targets 
normally provide high contrast. It should be possible to achieve 
edge shifting with photogrammetric targets and get acceptable 
results which can be then accurately measured. Subsequent 
target measurements can return sub-pixel accuracies due to a 
sub-pixel precise shifting process. Furthermore, it might be 
possible to incorporate different blur in different positions of an 
image by calculating localised blur kernels. This would be 
necessary for blurred objects close to the camera, which appear 
more blurred compared to objects further away from the camera. 
Theoretically this approach is achievable and does not consume 
too much computational power. However, this approach is very 
complex due to the complexity and exceptions for shifting 
edges. It will be difficult to implement such an approach. 
 

  
Figure 7. SURF feature detection applied on a deblurred image. 
On the right a sharp image. On the left a deblurred image which 
had a camera displacement of 0.53 mm.  
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5. CONCLUSION 

This study has shown that image blur caused by camera 
displacement during image exposure has a clear and significant 
influence on photogrammetric processing. Successful feature 
detection and matching becomes increasingly difficult with 
increasing image blur. Enhancing a blurred image might 
improve feature detection at low computational cost and is easy 
to implement. Reversing image blur in a photogrammetrically 
correct and precise way is more difficult and cannot be solved 
with conventional deblurring methods. The described approach 
here using Fourier transformation returns good deblurred result 
for flat areas. However, the dependency on sharp images for 
deblurring makes this approach difficult to apply. Additionally, 
the unavailability of 3D object coordinates required to correct 
blur explicitly for varying camera to object distances, limits this 
approach. The problem of geometrically correct deblurring 
might be solvable using the edge shift approach. However, this 
approach will need further development. 
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ABSTRACT: 
 
Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is 
based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to 
the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become 
attractive for many applications including change detection in small scale areas. 
  
One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by 
camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, 
turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can 
degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently 
achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data 
processing an automated filtering process is necessary, which must be both reliable and quick. 
 
This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image.  
A “shaking table” was used to create images with known blur during a series of laboratory tests. This platform can be moved in one 
direction by a mathematical function controlled by a defined frequency and amplitude. The shaking table was used to displace a 
Nikon D80 digital SLR camera with a user defined frequency and amplitude. The actual camera displacement was measured 
accurately and exposures were synchronized, which provided the opportunity to acquire images with a known blur effect. Acquired 
images were processed digitally to determine a quantifiable measure of image blur, which has been created by the actual shaking 
table function. Once determined for a sequence of images, a user defined threshold can be used to differentiate between “blurred” 
and “acceptable” images. 
 
A subsequent step is to establish the effect that blurred images have upon the accuracy of subsequent measurements. Both of these 
aspects will be discussed in this paper and future work identified.  
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Research involving UAV’s is a current research topic 
(Aerometrex, 2012). The evolution from manned to unmanned 
aerial vehicles has progressed rapidly using advancing 
technology, faster and more powerful computers, increasing 
knowledge about aerodynamics and the development of newer, 
lighter and more robust materials. The removal of an on-board 
human makes a UAV both time and cost efficient. Pilot 
training, registration and airport fees are not required and the 
usage of SLR cameras instead of aerial imaging systems 
reducing costs significantly. UAV’s are of particular interest for 
military use as human life is not endangered (Shane and 
Shanker, 2011). 

1.1 Motivation 

One of the main problems influencing image quality, beside the 
flight altitude and the camera model, is the blur of the image. 
Blur caused by the forward movement of the UAV can be 
computed using the following equations: 
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where  c = focal length 
 H = flight altitude 
 ex = exposure time 
 l = pixel size 
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 L = ground sample distance 
 v = vehicle velocity 
 m = forward movement during exposure 
 b = blur in pixel 
 

 
Figure 1. Sketch of image blur due to UAV movement. Not 

included are angular rotations which introduce a bigger blurring 
effect. 

  

 
Figure 2. Motion blur example in high resolution UAV image. 

 
Image blur introduced by the forward motion of the UAV can 
degrade the quality of data, even if a very short exposure time 
and high flight altitude is used (Fig1 and 2) for example a flight 
altitude of 100m, a flight speed of 11m/s and an exposure of 
1/100s generates blur equal to 4 pixel. 

 

Figure 3. Target cannot be detected automatically if it is 
significantly blurred. 

 
However, turns and turbulences cause a more significant blur 
effect on image quality. These blurred images cannot be 
processed using automatic image processing software because 
the software can fail to identify control targets or tie points (Fig 
3). Manual processing therefor becomes necessary, which is 
time consuming and prone to error.  

If an automated procedure could be developed to filter out 
blurred images, data processing efficacy would be improved. 

1.2 Aims and objectives 

The main aim of this study is to filter out blurred images from 
datasets automatically prior to image processing using a 
developed software algorithm. As an initial step, images with a 
defined blur have been captured, which have been used to 
develop and test a new algorithm. This algorithm is capable of 
quantifying image blur, which is used to compute a threshold 
value. This threshold value can be used for detecting and 
excluding blurred images from flight datasets. It is recognised 
that the on-board autopilot of a UAV can be used to improve 
flight quality and additional data derived from Global 
Navigation Satellite System (GNSS) and Inertial Navigation 
System (INS) could be used in identifying blurred images. 
However, the strength of the approach developed here is that 
only images are required. 

1.3 Current research 

This paper describes the current development of an algorithm to 
detect motion blur in images. Existing blur detection algorithms 
often require additional information associated with both the 
image and image acquisition. Many of these are using 
information of INSs (Shah, 2012), whilst others include a video 
camera (Ben-Ezra and Nayar, 2004, Tai et. al., 2008, Agrawal 
et. al., 2012). An INS which is included in the UAV autopilot 
does normally not have a measuring frequency that is high 
enough to calculate a blur kernel. An additional video camera is 
often too heavy and requires additional modification and 
calibration for the calculation of a blur kernel. A blur kernel 
represents precisely the three dimensional movement of a 
camera during image acquisition. It can be used to separate 
images with a small blur, from images with a larger movement 
(big blur). Also other hardware modifications like “Forward 
Motion Compensation” (Pacey and Fricker, 2005) or image 
stabilisation are difficult to include in a light weight UAV or a 
low cost camera. In the case of a “Forward Motion 
Compensation” the whole camera, the film or the sensor is 
moved in the direction of travel during image acquisition to 
compensate blur effects. Image stabilisation uses a mathematical 
model to compensate the motion blur effect. Both methods are 
only efficient for small blurs but cannot compensate significant 
image blur caused by UAV turns or turbulences. Other 
detection algorithms modify the exposure time to detect blur 
effects, which is difficult to realise for low cost high resolution 
cameras. A modification can be done for each of the RGB 
channels, which results in a different amount of blur for each 
channel (Lelégard et. al., 2010). Another approach is the usage 
of an unblurred reference image (Paramanand and Rajagopalan, 
2012, Charlmond, 1991), which cannot be used for moving 
UAVs. Other algorithms which are not based on additional 
information or hardware modifications work often with edge 
detection (Ong et. al., 2003, Joshi et. al., 2008, Narvekan and 
Karam, 2009) and frequency analyses (Clark Jones, 1958, Liu 
et. al., 2008). Blurred edges are not well defined in an image, 
which can also be seen in the frequency space by a decreased 
number of high frequencies. The number of high frequencies is 
reduced and the number of low frequencies is increased. These 
algorithms apply higher control using an existing dataset of 
known camera movement and the resulting blur, which is 
difficult to achieve for UAV imagery. 
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2. METHODOLOGY 

The main problem of existing algorithms is that the blur in the 
images cannot be quantified, which prevents defining a 
threshold value to automatically exclude blurred images from 
datasets. An operator is required to manually identify blurred 
images, which is subjective. The subsequent sections describe 
the development of a new automated method to quantify image 
blur. 
  
2.1 Image blurring using a shaking-table 

To acquire images with a defined blur the movement of the 
camera and the point of time of the image exposure have to be 
known, which can be achieved using a shaking table. The 
movement of this table can be controlled with high precision. 
Normally it is used by construction engineers to test the strength 
of building materials and their resistance against earthquakes or 
other vibrating influences. Usually the table moves with a very 
high frequency but a low amplitude, which represent 
acceleration and velocity. The displacement can be measured 
accurately using a laser sensor. Additionally, the acceleration of 
the table and consequently objects on the table can be 
determined using acceleration sensors (G-Sensor). 
By fixing the camera on the table and measuring both the 
displacement and the acceleration of the platform, images with a 
known blur can be generated (Fig 4). A test field comprised of 
fixed photogrammetric targets was established on a horizontal 
ceiling located approximately 1.7m above the shaking table. 
The camera was equipped with a 24mm lens providing an image 
scale of 1:70. A horizontal camera displacement of a single 
pixel (6.1μm) produced by the shaking table equates to a blur of 
0.4mm in the object space. 
 

 
Figure 4. Shaking table setup. 

 
Additionally, a G-Sensor is attached to the camera body in 
direction of the movement of the table. A second one is attached 
to the camera body to ensure that the camera is only moving in 
one direction and a third sensor is attached to the platform. 
These sensors are primary used to gather additional information 
and control of the movement of the table and the camera. 
The movement of the table is based on a user defined input 
function describing the velocity (amplitude) of the platform. It 
is synchronised with the camera shutter to acquire images at a 
time of constant velocity (Fig 5), which generates homogenous 
blurred images. Additionally, measurements acquired using the 
displacement sensor can be compared to observations 
determined using the G-Sensor. It is noticeable that the G-
Sensor measures a high acceleration immediately after the 
camera trigger signal, due to open and closing of the mirror. 

 
Figure 5. Shaking table signal with camera triggering signal.  

 
No additional camera movement was registered by the G-
Sensor, showing that the camera is not affected by vibrations 
during image exposure (Fig 6). The image exposure is between 
the two signals in green (positive, start of exposure, negative, 
stop of exposure), delayed after the real triggering signal but 
during a period of constant displacement. 
 

 
Figure 6. Measurements and camera release during shaking 

process. 
 
After the shaking process, the signals can be evaluated and the 
movement of the camera during the exposure can be calculated. 
The producible blur is limited by both, the minimal movement 
speed (0.001m/s) and maximum displacement (0.15m) of the 
platform and needs to be combined with the time of image 
exposure. A longer exposure time requires a slower movement 
of the table and consequently a shorter exposure time requires a 
faster movement of the table platform. This provides the 
opportunity to generate images with both, different blur and 
different brightness, which is based on the exposure time. 
Additionally, background textures were projected onto the 
ceiling to vary the image content (Fig 7). 
The complete dataset involved capturing nearly 2000, images 
consisting of 7 different exposure times and 10 different 
background textures. To visualise the blur a special test pattern 
was used. This pattern consists of lines of different width and 
orientation as well as a Siemens-Star (Fig 7). The advantage of 
the star is characterised by the possibility to increase 
visualization of the direction of movement in contrast to using a 
simple circular target. 
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Figure 7. Comparison of produced blurred images with 

movement of camera and image exposure time. Pixel resolution 
0.43mm. 

 
2.2 Image blurring by image processing 

Another method used for this paper to generate blurred images 
is the use of image processing software with image filters, for 
example a Gaussian filter. The aim of these filters is to 
“smooth” the image by blurring it. This results in an image 
distortion, which can appear similar to true optical blur. 
MATLAB also provides a specific filter, which simulates 
motion blur. The filter represents a vector, which is defined in 
both size and direction of movement (MathWorks 2013). This 
filter has been applied on images without any a-priori 
movement, which assures that no additional blur is introduced 
by the movement of the camera (Fig 8). 
 

Figure 8. Comparison of produced blurred images with 
MATLAB filter. 

 
2.3 Blur detection 

Images with a known blur, generated using the methods 
described in section 2.1 and 2.2 were processed to compute a 
“blur value” using a newly developed mathematical algorithm. 
However, it is necessary to investigate and exclude unwanted 
systematic effects. 
To ensure that the movement of the mirror does not influence 
the computed blur in the images, the G-Sensor measurements of 
the camera body were analysed. Integrating twice over the time, 
acceleration was converted to distance and the camera shake 
visualised. This generated a movement of just 0.7∙10-5μm, in 
comparison to a pixel size of 6μm. It would therefore be 
concluded that the movement caused 
 

Figure 9. Camera shake due to mirror movement. 

by the mirror is insignificant and the computed blur for each 
image was based on the actual value measured by the laser 
displacement sensor (Fig 9). 
After ensuring that the mirror movement is not significantly 
influencing the image blur, it is possible to analyse the images 
and calculate a value which is related to the blur using the 
developed mathematical method. This blur related value is 
called “sieds”. Figure 10 represents the sieds and demonstrates 
that the calculated sieds depends on the movement of the 
camera. 
 

 
Figure 10. Camera displacement in comparison to sieds. 

 
The distribution of the results indicates that the calculated sieds 
is related to image blur via a modified damping function (Eq 2). 
 

( ) ( ) nwxwxeb w +
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0                  (2) 

 
where  b = blur 
 δ = damping ratio 
 x0 = start position 
 ω = angular frequency 
 n = y-offset from zero 
 w = sieds, derived from image 
 
To set the unknown parameters for the damping function, which 
are damping ratio (δ), start position (x0), angular frequency (ω) 
and offset from the y-axis (n), it is required to include other 
information provided in the image, which are independent of 
the amount of blur. A blur independent value is the average 
grey-value of an image. 
The calculation of the sieds is also possible for the images 
blurred by image processing. But this graph represents a 
logarithmic function and not a damping function (Fig 11). 
 

 
Figure 11. Evaluation of simulated motion blur with MATLAB. 
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The intercept on the y-axis is much higher, except for 1/10s 
exposure, than in the images blurred with the shaking table. An 
explanation can be found through closer examination of the 
blurred results. It is possible to see clear differences in the 
centre of the images. In the real blurred image (Fig 12a) the 
centre is the darkest part of the smeared dot. In the MATLAB 
blurred image it is (Fig 12c) not the centre of the dot which is 
darkest, but there are two shadows which appear around the 
centre. It is known that the shaking table image (12a) was 
acquired during a constant velocity, whilst the still image (Fig 
12b) was captured without any movement. By comparing this to 
the MATLAB processed image (12c), it appears that the image 
was not blurred with a constant velocity but with acceleration. 
 

Figure 12. Difference between real blur with constant velocity 
(a), still image (b) and simulated MATLAB blur with 

acceleration (c). 
 

2.4 Discussion 

By calculating the blur independent parameters and including 
these in the modified damping function together with the 
computed blur related sieds, it is possible to calculate the blur 
for an image. A first test of this process was conducted using a 
mixed dataset of images with a known blur, which demonstrates 
that it is possible to calculate blur for images. 
However, these results demonstrated this is not as accurate for 
short exposures as for images with a longer exposure time (Fig 
13).  
 

 
Figure 13. Relative error of the calculated blur. 

 

 
Figure 14. Absolute error of the calculated blur. 

This is perhaps expected as images with a short exposure do 
only contain small blurs. Closer examinations of Figure 10 
reveals why it is more difficult to calculate small blur effects 
precisely. In the area of small blur the gradient of the damping 
function appears very flat. Small variations in the computed 
sieds have a large impact on the final estimated blur. 
A closer examination of the absolute values reveals that the 
images with an exposure of 1/200s are set to zero but all the 
other calculated blur values are close to the real blur (Fig 14). 
In the 1/10s exposure, the calculated blur fits closely to the real 
blur of the images. Although the mean error of 7.65μm 
(compared with 6.1μm pixel size) shows that the calculation 
based on the images is very precise. 
The algorithm was also applied on a real UAV image dataset. 
This demonstrates that the worst images are blurred to an 
equivalent of 95px (Fig 15). 
 

 
Figure 15. Results for a real UAV image dataset. 

 

Figure 16. Blur detection result for image sequence. 
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The graph shows that it is possible to differentiate images with a 
different amount of blur. The examples from Figure 2 are 
classified with 34px and 0px blur. To give an impression which 
kind of blur can be differentiated a second example is shown in 
Figure 16. 
This demonstrates how effective the blur detection algorithm 
can be to detect blur in images. Even images with a very 
homogenous background, where a human cannot identify blur 
without a reference image, the algorithm is capable to detect 
blur. The calculation speed for nearly 200 images, with 3600px 
to 2700px is just three minutes using a laptop with 4 (2.5GHz) 
CPUs and 4GB RAM. This is clearly acceptable. 
 

3. CONCLUSION 

This paper has outlined the development of an algorithm to 
detect blurred images in UAV image datasets. This makes it 
possible to exclude these blurred images or use blur correction 
algorithms to improve further data processing. 
The algorithm does not contain any GNSS or INS data and does 
not include any information about the neighbouring images. 
This represents a very benefit of the developed algorithm and 
allows application beyond simple UAV image filtering. 
The main problems which are not solved yet are the influence 
on the calculation due to the image size and the correlation of 
the detected blur size to a real movement of the camera. The 
algorithm does also not contain any blur kernel calculations 
which are normally required to correct blur in images. The 
algorithm is efficient, being fast and reliable and separates 
blurred images in a UAV image dataset, as long as the images 
have the same size and the same exposure time. 
 
3.1 Future work 

For the future is it planned to improve the accuracy of the blur 
calculation by taking account of the image size and other 
influencing factors and correlating the calculated movement to 
real world values. Additionally information of the low cost 
GNSS and INS sensors will be included to see if improve 
results justify the increased system complexity.  
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C Patent

In context of this research the novelty of the blur detection method was analysed.
Loughborough University Enterprise Office guided and supported the steps that had
to be carried out. It is still in the evaluation process if a patent application is filed.
The actual step is to contact companies and evaluate if there is any demand for a blur
detection algorithms. If there is demand for the program the next step would be the
improvement of the program and start of the patent filing process.

C.1 Coarse patent search

The patent search was conducted on national and international basis. Table C.1 shows
the search carried out with ESPACENET the search engine of the European Patent
Office (EPO). The database includes patents of the EPO as well as of the member
state patent offices. Additionally, several patents of the World Intellectual Property
Organisation (WIPO) and other non European states are in the database. The database
of the United States Patent and Trademark Office (USPTO) was also searched (Tabel
C.2). The results of the search were examined based on a fast read of the abstract.
567 patents were examined this way. For 183 patents was a more detailed examination
required:

• RU2312395 (C1)
• WO2007057808 (A3), WO2007057808
(A2)
• US6628842
• JP2005141497 (A), JP4133746 (B2)
• US7961953
• WO2012080643 (A1)
• US8200024
• US8406510
• JP2004336752 (A), US7379091 (B2)
• JP2007184787 (A)
• US7257273
• US7711199
• US5103254
• US7295232
• CN102572466 (A)

• CN102801993 (A), US2012301012
• DE102011083745 (A1)
• JP2004336751 (A)
• JP2012195668 (A)
• JP2013066142 (A), EP2565843
• US2011069190 (A1)
• US2011081088 (A1), US8290281 (B2)
• US2012162527 (A1)
• US6344876
• US6493023
• US6798910
• US7061524
• US8139884
• US8159552
• US8260077
• US8280182
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• US8284296
• US8295565
• US8433153
• WO03012725 (A1)
• WO2005114577 (A1)
• WO2010105212 (A1)
• WO2013148566 (A1)
• CA2142570 (A1)
• CN101765019 (A), CN101765019 (B)
• CN101873508 (B), CN101873508 (A)
• CN102480633 (A)
• CN102521821 (A)
• CN102595171 (A)
• CN102986221 (A)
• EP2284764 (B1), EP2284764 (A1)
• EP2642245 (A1)
• GB2485478 (A) also US8532421
• JP2005328117 (A), JP4389656 (B2)
• JP2007180912 (A)
• JP2007240733 (A)
• JP2008236645 (A)
• JP2009217076 (A), JP5178250 (B2)
• JP2010220023 (A)
• JP2011044839 (A)
• JP2011103631 (A)
• JP2011130268 (A)
• JP2013019886 (A)
• JP2013074397 (A)
• JP2013105078 (A)
• JP3143484 (B2), JPH04268873 (A),
US5258783
• JP4466430 (B2), JP2006279359 (A)
• JP4697461 (B2), JP2008118289 (A)
• JP4883468 (B2), JP2007129491 (A)
• JP4915166 (B2), JP2008040705 (A)
• JPH01215547 (A)
• JPH03254286 (A)
• JPH04315379 (A), JP2819852 (B2)
• JPH04318776 (A)
• JPH0556329 (A)
• JPH0865656 (A), JP3471436 (B2)
• JPH09312861 (A)
• JPS53126952 (A)
• JPS57129421 (A)
• JPS62209686 (A)
• KR20020014986 (A)

• KR20020056631 (A), KR100658601
(B1)
• KR20070071786 (A)
• KR20120019164 (A)
• TW201023000 (A), US2010079602
• US2002003581 (A1), US7042507 (B2)
• US2002109701 (A1), US6618054 (B2)
• US2004024296 (A1)
• US2004120598 (A1), US7181082 (B2)
• US2007024627 (A1), US7483550 (B2)
• US2007070250 (A1), US7570309 (B2)
• US2009273676 (A1), US8204335 (B2)
• US2011037861 (A1), US8363115 (B2)
• US2011090345 (A1)
• US2012300025 (A1)
• US2013162629 (A1)
• US2013194486 (A1)
• US2013250060 (A1)
• US3938386
• US4523842 (A)
• US4772117
• US5311132 (A)
• US5596366
• US5600574, MX9604557
• US5623705
• US5634145
• US5712474
• US5745801
• US5748994
• US5758202
• US5758203
• US5771403
• US5831671
• US5881324
• US5943169
• US5973319
• US5978598
• US6067419
• US6122447
• US6163651
• US6219468
• US6263161
• US6285799 (B1)
• US6366735
• US6393215
• US6408135
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• US6426755 (B1)
• US6522837
• US6734903
• US6754445
• US6778210
• US6922524
• US6985126 (B2), US2003146885 (A1)
• US7066597
• US7110024 (B1)
• US7260270
• US7283676 (B2), US2003118233 (A1)
• US7317445 (B2), US2005168492 (A1)
• US7403710
• US7469099
• US7519231 (B2), US2008013861 (A1)
• US7542088
• US7596307
• US7606477
• US7636107
• US7769219
• US7773825
• US7796872
• US7826731
• US7884854 (B2), US2009015719 (A1)
• US8014583 (B2), US2010208961 (A1)
• US8027582, JP2011128623
• US8049782
• US8063920 (B2), US2008042953 (A1)
• US8068639
• US8085305
• US8098333 (B2), US2009002559 (A1)
• US8150250
• US8184123 (B2), US2009309895 (A1)

• US8213504
• US8218888
• US8259226
• US8274570
• US8284295
• US8289438
• US8319898
• US8331713
• US8369697
• US8405708 (B2), US2010002073 (A1)
• US8411195
• US8462266
• WO0188854 (A3), WO0188854 (A2)
• WO0215786 (A1), WO0215786 (A9)
• WO0215788 (A1), WO0215788 (A9),
US2004024296
• WO0229718 (A2), WO0229718 (A3)
• WO03044740 (A1)
• WO2005001541 (A1)
• WO2008131438 (A2), WO2008131438
(A3)
• WO2010104549 (A1), US8405770
• WO2013107037 (A1)
• WO9848381 (A1)
• JP2011128623 (A), US8027582
• MX9604557 (A), US5600574
• US2008309771 (A1), US8284295
(B2), US8284295
• US2011063494 (A1), US8284296
(B2), US8284296
• US7397500, JP2004336751
• US8532421, GB2485478

C.2 Detailed patent search

More detailed examinations were based on the abstract and a search for specific key
words on the complete patent text. The key words represented essential steps of my
method. A variety of keywords are:

• blur;
• edge;
• grad. . . for gradient;
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• degra. . . for degradation, degrading;
• high. . . for highpass, high-pass;
• low. . . for lowpass, low-pass.

If this search returned significant results the patent was compared in detail against
the method proposed in this research. A minor similarity was given in 16 %, major
similarities in 4% of the examined patents. No patent was completely similar and
significant differences were found with all.

• WO2007057808 (A3), WO2007057808 (A2)
• US6628842
• JP2005141497 (A), JP4133746 (B2)
• US7961953
• WO2012080643 (A1)
• US8200024
• US8406510

Patent number RU2312395 seams to have similarities but was only available in russian.
Because of this it was not possible to examine this patent in more detail.
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ppendix

# Searchtype Searchfield Keyword Hits Used
11 Advanced Title&Abstract digital image motion blur detection 8 6

Advanced Title&Abstract image quality measure 967 Not worked through
12 Advanced Title&Abstract digital image quality measure 76 14

Advanced Title&Abstract blur 144 Fast harvest and based
on results of first 2
pages results included
in advanced search

IPC G06T7/00
Advanced Title&Abstract blur 171 Fast harvest and based

on results of first 2
pages results included
in advanced search

IPC G06K9/00
Advanced Title&Abstract blur 474 Fast harvest and based

on results of first 2
pages results included
in advanced search

IPC G06T5/00
Advanced Title&Abstract blur 1667 Not

applicable
Adjustment of optical
system relative to
image or object surface
other than for focusing

IPC G03B5/00
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D Program documentation

For the program code please see the attached digital versatile disc (DVD).
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