43 research outputs found

    Estimation of Translation, Rotation, and Scaling between Noisy Images Using the Fourier–Mellin Transform

    Get PDF
    In this paper we focus on extended Euclidean registration of a set of noisy images. We provide an appropriate statistical model for this kind of registration problems, and a new criterion based on Fourier-type transforms is proposed to estimate the translation, rotation and scaling parameters to align a set of images. This criterion is a two step procedure which does not require the use of a reference template onto which aligning all the images. Our approach is based on M-estimation and we prove the consistency of the resulting estimators. A small scale simulation study and real examples are used to illustrate the numerical performances of our procedure

    A parallel windowing approach to the Hough transform for line segment detection

    Get PDF
    In the wide range of image processing and computer vision problems, line segment detection has always been among the most critical headlines. Detection of primitives such as linear features and straight edges has diverse applications in many image understanding and perception tasks. The research presented in this dissertation is a contribution to the detection of straight-line segments by identifying the location of their endpoints within a two-dimensional digital image. The proposed method is based on a unique domain-crossing approach that takes both image and parameter domain information into consideration. First, the straight-line parameters, i.e. location and orientation, have been identified using an advanced Fourier-based Hough transform. As well as producing more accurate and robust detection of straight-lines, this method has been proven to have better efficiency in terms of computational time in comparison with the standard Hough transform. Second, for each straight-line a window-of-interest is designed in the image domain and the disturbance caused by the other neighbouring segments is removed to capture the Hough transform buttery of the target segment. In this way, for each straight-line a separate buttery is constructed. The boundary of the buttery wings are further smoothed and approximated by a curve fitting approach. Finally, segments endpoints were identified using buttery boundary points and the Hough transform peak. Experimental results on synthetic and real images have shown that the proposed method enjoys a superior performance compared with the existing similar representative works

    Vehicle localization with enhanced robustness for urban automated driving

    Get PDF

    Low Complexity Image Recognition Algorithms for Handheld devices

    Get PDF
    Content Based Image Retrieval (CBIR) has gained a lot of interest over the last two decades. The need to search and retrieve images from databases, based on information (“features”) extracted from the image itself, is becoming increasingly important. CBIR can be useful for handheld image recognition devices in which the image to be recognized is acquired with a camera, and thus there is no additional metadata associated to it. However, most CBIR systems require large computations, preventing their use in handheld devices. In this PhD work, we have developed low-complexity algorithms for content based image retrieval in handheld devices for camera acquired images. Two novel algorithms, ‘Color Density Circular Crop’ (CDCC) and ‘DCT-Phase Match’ (DCTPM), to perform image retrieval along with a two-stage image retrieval algorithm that combines CDCC and DCTPM, to achieve the low complexity required in handheld devices are presented. The image recognition algorithms run on a handheld device over a large database with fast retrieval time besides having high accuracy, precision and robustness to environment variations. Three algorithms for Rotation, Scale, and Translation (RST) compensation for images were also developed in this PhD work to be used in conjunction with the two-stage image retrieval algorithm. The developed algorithms are implemented, using a commercial fixed-point Digital Signal Processor (DSP), into a device, called ‘PictoBar’, in the domain of Alternative and Augmentative Communication (AAC). The PictoBar is intended to be used in the field of electronic aid for disabled people, in areas like speech rehabilitation therapy, education etc. The PictoBar is able to recognize pictograms and pictures contained in a database. Once an image is found in the database, a corresponding associated speech message is played. A methodology for optimal implementation and systematic testing of the developed image retrieval algorithms on a fixed point DSP is also established as part of this PhD work

    Multi-Technique Fusion for Shape-Based Image Retrieval

    Get PDF
    Content-based image retrieval (CBIR) is still in its early stages, although several attempts have been made to solve or minimize challenges associated with it. CBIR techniques use such visual contents as color, texture, and shape to represent and index images. Of these, shapes contain richer information than color or texture. However, retrieval based on shape contents remains more difficult than that based on color or texture due to the diversity of shapes and the natural occurrence of shape transformations such as deformation, scaling and orientation. This thesis presents an approach for fusing several shape-based image retrieval techniques for the purpose of achieving reliable and accurate retrieval performance. An extensive investigation of notable existing shape descriptors is reported. Two new shape descriptors have been proposed as means to overcome limitations of current shape descriptors. The first descriptor is based on a novel shape signature that includes corner information in order to enhance the performance of shape retrieval techniques that use Fourier descriptors. The second descriptor is based on the curvature of the shape contour. This invariant descriptor takes an unconventional view of the curvature-scale-space map of a contour by treating it as a 2-D binary image. The descriptor is then derived from the 2-D Fourier transform of the 2-D binary image. This technique allows the descriptor to capture the detailed dynamics of the curvature of the shape and enhances the efficiency of the shape-matching process. Several experiments have been conducted in order to compare the proposed descriptors with several notable descriptors. The new descriptors not only speed up the online matching process, but also lead to improved retrieval accuracy. The complexity and variety of the content of real images make it impossible for a particular choice of descriptor to be effective for all types of images. Therefore, a data- fusion formulation based on a team consensus approach is proposed as a means of achieving high accuracy performance. In this approach a select set of retrieval techniques form a team. Members of the team exchange information so as to complement each other’s assessment of a database image candidate as a match to query images. Several experiments have been conducted based on the MPEG-7 contour-shape databases; the results demonstrate that the performance of the proposed fusion scheme is superior to that achieved by any technique individually

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Handbook of Computer Vision Algorithms in Image Algebra

    Full text link
    corecore