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Abstract

In the wide range of image processing and computer vision problems, line

segment detection has always been among the most critical headlines. De-

tection of primitives such as linear features and straight edges has diverse

applications in many image understanding and perception tasks. The re-

search presented in this dissertation is a contribution to the detection of

straight-line segments by identifying the location of their endpoints within a

two-dimensional digital image. The proposed method is based on a unique

domain-crossing approach that takes both image and parameter domain in-

formation into consideration. First, the straight-line parameters, i.e. loca-

tion and orientation, have been identified using an advanced Fourier-based

Hough transform. As well as producing more accurate and robust detection of

straight-lines, this method has been proven to have better efficiency in terms

of computational time in comparison with the standard Hough transform.

Second, for each straight-line a window-of-interest is designed in the image

domain and the disturbance caused by the other neighbouring segments is

removed to capture the Hough transform butterfly of the target segment.

In this way, for each straight-line a separate butterfly is constructed. The

boundary of the butterfly wings are further smoothed and approximated by

a curve fitting approach. Finally, segments endpoints were identified using

butterfly boundary points and the Hough transform peak. Experimental re-

sults on synthetic and real images have shown that the proposed method

enjoys a superior performance compared with the existing similar represen-

tative works.
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Chapter 1

Introduction

1.1 Motivation

Line segments are everywhere around us. Wherever you look there is an

object that can be easily distinguished from its surrounding environment

by its sharp and straight edges. Your laptop computer, mobile phone, the

room you are sitting in and the thesis that you are reading are all made of

a number of line segments with a certain length. In fact, most man-made

objects can be recognised by straight edges and boarders. In terms of our

visual perception, the length, location and angle of these line segments can

vary with respect to our point of view of the object.

In the field of image processing and computer vision, straight-line detec-

tion and segmentation are the techniques that allow a machine or intelligent

system to extract linear features and structures from a digital image or se-

quence of images. Extracted features, e.g. straight-lines and segments, can

later be used either by human users or intelligent computer systems to make

sense or decisions based on their initial desire.

This research is an attempt to highlight the problems and obstacles that

have challenged researchers in the past and recent years and to propose a

practical solution to alleviate some of the shortcomings.
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To begin, a brief review of the vast scope of research in the area is pre-

sented, starting from image processing to computer vision, showing how the

research presented in this thesis fits into this diversity.

1.2 Image processing and computer vision in

action

It has always been the researchers’ aim to make a machine that can see,

analyse, understand and respond to its surrounding environment based on its

visual perception. Computer vision and image understanding is the science

and technology that tries to fulfil these needs with the help of numerous

mathematical, statistical, geometrical, as well as other analytical techniques

and tools, to extract information from digital images and use that information

to solve the problems for which the system has been designed.

For a typical image processing or computer vision system, images play the

role of input data, streaming through the vision sensor, e.g. digital camera

or scanner. For a computer system, a digital image can be seen as a two-

dimensional (2D) discrete function f(x, y) or an array of digits, where x and

y represent rows and columns respectively.

Diversity of applications such as in medicine, astronomy, law enforcement,

and the film industry. has opened an enormous ground for researchers, sci-

entists, and engineers to work in. The continuum of research from image

processing to computer vision can be broken down into three major levels of

process:

1. Low-level process. This is a very early stage in processing an image

and usually is referred to as a pre-processing step. In a typical low-

level stage the input data is a digital image that goes through a series of

operations that result in an output image. In a system that is designed

for such operations both input and output are images.
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Examples: Noise removal, image sharpening/blurring, image enhance-

ment, image restoration, and edge detection.

2. Mid-level process. In a mid-level process, the image that has gone

through the low-level operations and been prepared according to the

requirements of the task will be used as the input for further investiga-

tions. In this stage, the main interest is to find attributes, correlations,

similarities and special features based on the purpose of the algorithm.

Thus the input is an image and the output will be the attributes.

Examples: Object detection, image segmentation, line detection and

segmentation, face detection, image registration, feature extraction,

and geometrical or arbitrary shape detection.

3. High-level process. This is where the perception and understanding

comes into the play. The attributes and features that have been pro-

duced in a mid-level process will be gathered, categorised, and utilised

as input data for the system. The expected output is a level of under-

standing that can be used for sense and decision making.

Examples: Face recognition, gesture recognition, scene understand-

ing, autonomous vehicle or robot navigation, text understanding, and

human-computer interaction.

Note that, here the level of process does not represent the level of com-

plexity of the algorithm but just the level that the operation is being per-

formed. Meaning that, a low-level process such as image enhancement can

be as complex as a perception task operated in a high-level stage.

As mentioned above, extracting linear features such as straight-lines and

segments can be considered as a mid-level process. Accordingly, the type

of operations conducted in this research and the algorithm proposed in this

thesis can be fitted into the second category of the processing levels.
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1.3 Line segmentation problem statement

Detection of line profiles and segments is one of the most important and, in

fact, primitive tasks in image analysis and has its application in biomedical

image processing, path detection for robot navigation, lane marker detection,

and road and stream detection in satellite images. For more than thirty years

researchers have contributed to build more robust and accurate algorithms

with faster performance. In fact, there is always a trade-off between these

two parameters, i.e. accuracy and speed, as they are two sides of the same

coin.

The Hough transform (HT) [1] and its extensions are among the most

well-known techniques for detection of straight lines in a digital image. It

has shown great performance in dealing with noisy and cluttered images. One

of the recent improvements on the standard HT is a unique Fourier-based ap-

proach [2] that results in higher accuracy of line detection in comparison with

the representative state-of-the-art techniques. It produces a high-resolution

parameter space through a, so called, multi-layer fractional Fourier trans-

form (MLFRFT). Multiple instances of fractional Fourier transform of the

same image provide more frequency samples that lead to higher accuracy

and better performance. However this technique is incapable of detecting

line segments and their endpoints, as it can identify only the location and

orientation of the straight lines passing through the segments. That has mo-

tivated the author of this thesis to build upon the foundation of the MLFRFT

approach and extend its capabilities from line detection to an accurate and

robust line segmentation technique.

Primary research question:

How does a system detect segment endpoints of the straight-lines captured

via the MLFRFT-based HT?
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Secondary research questions:

1. How does the MLFRFT perform if implemented in parallel?

2. How fast is the process of line detection using a MLFRFT-based HT?

3. How accurately can the boundary sinusoids of a HT butterfly be ap-

proximated?

4. How can the intersections of butterfly boundary points and the HT

peaks that localise the endpoints of a line segment be found?

5. How can overlapping butterflies be isolated when they appear in sepa-

rate Hough spaces?

6. How can the disturbance caused by non-collinear segments intersecting

with the target segments be eliminated?

7. Can an optimum solution to the line segmentation problem be found?

1.4 Thesis layout

This thesis is structured as follows:

• Chapter 2 provides an extensive literature survey by reviewing nu-

merous attempts to solve the line segment detection problem, with a

special focus on HT-based techniques. The main directions of the HT

research have been identified and the main problems have been high-

lighted. In the second part of this chapter three major categories of the

existing line segmentation approaches, i.e. bottom-up, top-down, and

domain-crossing, have been introduced and their specifications have

been evaluated. This provides an appropriate insight to the advan-

tages and disadvantages of each approach.
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• Chapter 3 starts with the fundamental idea of Fourier-based HT tech-

niques and the concept of the central-slice theorem in the frequency

domain. It highlights the problem of zero-padding and introduces the

multi-layer fractional Fourier transform (MLFRFT) as a solution to

that problem. The idea of having a non-integer frequency grid has also

been explained in detail using figures and descriptions. Parallel im-

plementation of the MLFRFT is investigated in this chapter together

with a comparison of the computational time required for line detection

using the standard HT and the MLFRFT-based HT. Finally a poten-

tial real-world application of the MLFRFT-based HT in lane marker

detection is introduced at the end of the chapter.

• Chapter 4 contains the main contributions of this research. It starts

from the concept of HT butterfly formation and the relationship be-

tween its boundary sinusoidal curves and each of the endpoints of a

line segment. A unique line segmentation method based on butterfly

boundary points (LSBB) has been proposed that has two main char-

acteristics: 1) the use of Robust Least Squares curve fitting for precise

approximation of boundary sinusoids; 2) using the intersection of three

points and the centroid of a triangle to localise the endpoint. In the sec-

ond part of this chapter, the algorithm has been extended to take into

account multiple line segments. Using a parallel windowing approach

(PWA), the complex and overlapping butterflies have been isolated to

a number of single butterflies by crossing over to the image domain and

applying a number of windows-of-interest. The effect of non-collinear

segments on the butterfly of a target segment has been removed with

the help of the disturbance elimination algorithm proposed in this chap-

ter.

• Chapter 5 includes the results of experiments conducted to evalu-

ate the performance of the proposed algorithm in comparison with the
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representative approaches. Detection accuracy and robustness to noise

have been studied and compared using ground-truth1 data. These ex-

periments were performed on both synthetic and real-word images re-

ported in the literature. Observations and findings are discussed at the

end of the chapter.

• Chapter 6 concludes the thesis by giving a summary of the work and

highlighting the main contributions of this research. It also underlines

the limitations of the method and provides a number of suggestions for

future investigation.

1For the purposes of this thesis, the term Ground Truth refers to an actual datum (or
pixel) in an image (e.g. end point of a line) as established by my direct observation and
measurement.
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Chapter 2

Literature Review

2.1 Introduction

Extraction of straight-line segments from a digital image has always been a

challenging and yet critical pre-processing stage for researchers in the field

of image understanding and computer vision. As a mid-level image process-

ing task, line segmentation has extensive applications in object recognition

[3, 4, 5], shape detection [6, 7, 8], power line detection [9, 10, 11], image

compression [12] and road or lane detection [13, 14, 15, 16]. Despite the

significant progress in the past two decades, there is still a rising demand

for methods that are swift in computation and precise in segment detection.

In fact, these criteria, i.e. speed and accuracy, are two sides of one coin

in practical applications such as medical [17], astronomical [18], surveillance

[19], and target tracking [20].

Numerous attempts from fundamentally distinctive views have been made

to tackle the problem. Representative works include line detection methods

based on the Hough transform [21, 1], subspace [22], wavelet transform [23],

ridgelet transform [24], chain code detection [25], hidden Markov models [26],

feature-adapted beamlet transform [27], and machine learning approaches

such as the Bayesian approach [28], Bayesian Ying-Yang harmony learning
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[29] and Principal Component Analysis (PCA) [30].

Among this diversity one method has captured the most attention and

established a strong foundation for many linear and curvilinear object detec-

tion algorithms over the past fifty years.

Proposed by Paul Hough [21] and further refined by Richard Duda and

Peter Hart [1], the Hough transform (HT) is indeed one of the most popular

methods for the detection of linear and curvilinear structures in 2-dimensional

(2D) images. It has demonstrated a robust behaviour to variant noise and

degraded environment. The HT has been used for many object recognition

applications such as the detection of straight-lines [31, 2, 32], circles [6, 33],

ellipses [4], triangles [34], rectangles [7] and predefined arbitrary shapes [8].

As for the purpose of this research, which is to propose a line segmentation

algorithm using a unique HT-based approach, only the first application will

be considered.

2.2 Hough transform for line detection

Line detection plays a key role in object recognition by detecting straight

edges. Therefore, much attention has been paid to straight-line detection

using the HT. In general, the HT maps every pixel in a binary image from

its 2D Cartesian coordinates (x, y) to a new 2D coordinate space (ρ, θ) using

the mapping function

ρ = x cos θ + y sin θ (2.1)

The new coordinate space is called Hough space, also known as parameter

space, and the process is called mapping from image or feature space to data

or parameter space. The Hough space consists of θ as the angle of the normal

from the origin perpendicular to a straight-line and ρ as the length of this

normal. θ and ρ are typically restricted to [0, π) and [−R
2
, R

2
] respectively,

where R =
√
m2 + n2 for an (m× n) pixels image.

For each pixel (x, y) in the image domain that goes through the mapping
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procedure, the HT calculates the value of ρ for every discretised value of θ

using Equation 2.1. Each iteration of Equation 2.1 generates a vote for a

particular cell in the (ρ, θ) space. An accumulator is allocated to count the

number of votes each cell receives. As a result, each pixel in the image domain

generates a sinusoidal curve in Hough space. Accordingly, the combination

of a number of collinear pixels in the image domain produces a number of

sinusoidal curves in the Hough space that have a common intersection point

at (ρj, θi). Detecting this common intersection point, i.e. the HT peak, we

can eventually detect the straight-line that represents that peak. A peak

detection needs to be performed to separate the potential candidates.

Therefore, the line detection problem in image space turns into a much

simpler task of peak detection in the Hough transform parameter space. It

is because of this characteristic that the HT shows a reasonable robustness

to noise and complex backgrounds. The HT process explained above is sum-

marised in Algorithm 1.

Algorithm 1 Standard Hough transform (SHT).

Require: : I(x, y) /* A binary image
Require: : δ /* Specify the resolution in θ axis, i.e, dis-

cretisation step
1: A← 0 /* Initialising the accumulator array
2: for all feature points in I(x, y) do
3: for all θi , i = 0→ π do /* given the δ
4: ρj ← x cos θi + y sin θi
5: A(ρj, θi)← A(ρj, θi) + 1
6: end for
7: end for

Figure 2.1 shows a single straight-line segment and a 2D and 3D repre-

sentations of its Hough space where the peak is clearly distinguishable. The

combination of the sinusoids and the common intersection point (ρj, θi), i.e.

the HT peak, is highlighted by the arrow in Figure 2.1(b).
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(a) (b)

(c)

Figure 2.1: 2D and 3D representation of the HT of a line segment. (a)
512×512 image of a single straight-line segment. (b) 2D HT representation
with a distinguishable peak at (ρj, θi). (c) 3D HT representation to highlight
the peak; the angle axis is in unit of degree and the distance axis is in unit
of 0.5 pixels.
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2.2.1 Research in Hough transform

Three major questions arise in respect of the HT algorithm explained above,

which are:

1. How to determine optimal ρ− θ resolution?

2. How to enhance the computational efficiency and memory storage?

3. How to isolate and detect the HT peaks accurately with minimal false

detection?

Enhancements on ρ− θ resolution

The first question is related to discretisation of the Hough space. It is im-

portant for both the accuracy and computational efficiency to determine a

sufficient resolution for discretising the Hough space. The higher the resolu-

tion the slower the process. Numerous works have tackled the problem such

as using gradient direction [35], interpolation in the Hough space [36], dy-

namically quantised spaces [37], trial and error [36], sensitivity function [38],

using information from the discretisation of image space [39], error propa-

gation [40], and weight of accumulation [41]. Instead of using uniform dis-

cretisation, Duan et al. [42] introduced a non-uniform discretisation of the

Hough space using angular and distance dependency of the minimum ρ − θ
spacing of neighbouring lines.

Enhancements on computational time and memory requirements

A large number of distinct variations of the HT were introduced to advance its

performance, mainly focusing on computational complexity and memory effi-

ciency of the standard Hough transform[43, 33, 44, 45]. Representative works

that appear in most of the related literature include Stephens’s probabilis-

tic Hough transform (PHT) [46], progressive probabilistic Hough transform
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(PPHT) [47, 48, 49], randomized Hough transform (RHT) [50, 51], hierar-

chical Hough transform (HHT) [52], elliptical Gaussian kernel-based Hough

transform (KHT) [45], and regularized Hough transform [31].

Stevens proposed the PHT [46] as a form of likelihood function and

showed a strong relationship between the HT and maximum likelihood method

[53, 54]. Quite different from the other variations of the HT that operate on a

discrete space, Stevens’s PHT is defined as a continuous mathematical func-

tion. Despite its accuracy PHT does not suggest a significant improvement

on the computational cost.

The RHT introduced a fast algorithm by its unique mapping strategy.

Unlike the SHT that maps each pixel to a number of curves, i.e. one-to-

many approach, the RHT randomly selects pairs of collinear pixels that have

a higher probability of being part of a line and maps them into one (ρ, θ)

coordinates in the Hough space, i.e. many-to-one approach. The RHT has

lower computational cost, smaller storage requirement and higher robustness

to noise than the traditional HT, however it cannot provide an effective solu-

tion to optimally select a subset of pixels to work with. This is particularly

important when the number of edge pixels increases.

The progressive probabilistic HT (PPHT) was introduced in [48] as an

improvement over Kiryati et al.’s probabilistic HT [55], which similar to

the RHT is based on random selection of a small subset of edge pixels. The

PPHT randomly selects pixels from the subset and updates the corresponding

accumulator cells. When a cell reaches a given threshold its corresponding

corridor in image space will be searched for the longest possible segment. The

PPHT is fast and suitable for real-time applications, however not a proper

choice for short segments. Galamhos et al. [56] extended this work by taking

gradient information into consideration to control the voting process that

enhanced both the accuracy and the efficiency of the PPHT.

The HHT suggested a method that minimises the likelihood of irrelevant

pixels selection by highlighting the actual distribution of feature points along
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a line. It splits the image into a number of sub-images through a quad-tree

decomposition process, referred to as pyramid structure, and performs the

HT on every low-level sub-image to find the line segments. Afterwards, the

identified line segments will be propagated upwards to be grouped based on

their hierarchy. Due to independence of every sub-image the algorithm can

be implemented in parallel. However, the HHT does not suggest an adaptive

parameter tuning and the constraints are subject to being predefined.

Enhancements on peak detection

A peak isolation algorithm can simply detect the local maxima in an N ×N
neighbourhood in the Hough space [57], given an odd number for N . But

determining the optimal value of N can be problematic. The larger the value

of N the higher the probability of missing adjacent lines, and the smaller the

value of N the higher the probability of repetitious detection. A global peak

detection can be used instead of a local neighbourhood approach. In [52]

Princen et al. used an iterative global peak detection approach where the

globally highest peak is detected first and its corresponding feature points

get eliminated. A HT is then applied and the process repeats iteratively until

all the peaks are found. In [58] an iterative “identify and remove algorithm”

was employed where each peak is removed from the Hough space after it is

identified. There are two cases: 1) when we have a desired number of lines to

be detected, the algorithm terminates after a certain number of iterations; 2)

when the number of expected lines is unknown so that iterations will continue

for every single peak above the threshold. Although the global peak detection

is more accurate and robust than the local method, its iterative accumulation

process is computationally expensive and it is only suitable for small-size

images. Peak detection using self-organising maps were suggested to reduce

the memory requirement of the HT [59]. More recent works focused on

generating solid and distinguishable peaks and the ways to search and identify

the true peaks with minimal false detection [31, 44, 45, 60]. These have major
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problems, in particular memory inefficiency and computational complexity.

Detection accuracy is directly proportional to the memory capacity. That

means in order to have an accumulator array with a high resolution in ρ and

θ coordinates, a higher capacity of memory storage is required.

HT butterfly analysis

One significant direction in HT research is HT butterfly analysis that con-

siders both the peak and the area surrounding the peak. This is particularly

important for segment endpoint detection. The term butterfly refers to the

shape of the peak and its associated sinusoidal curves. As shown in Fig-

ure 2.1(b), the combination of sinusoids that represent the line segment form

a butterfly shape around the peak. In fact, such butterflies contain valuable

information about a segment’s length, endpoint and thickness. Because ev-

ery single pixel of a line contributes to create its HT butterfly in a one to one

mapping process (refer to Equation 2.1), the resulting butterfly is capable of

providing highly accurate line-segment parameters.

Efforts have been made to parameterise the HT butterfly. Represen-

tative works include line segment descriptors [61, 62], multi-segmentation

[63, 64], peak enhancement using butterfly features [32, 65], HT neighbour-

hood [66, 67], butterfly self-similarity [68], and butterfly symmetry [69]. But-

terfly analysis for segment endpoint extraction forms a major part of the

methodology presented in this thesis and will be discussed in more detail in

Chapter 4.

2.2.2 Hough transform limitations

In general, there are three main problems associated with the existing HT-

based methods:

1. Computational complexity. Despite the efforts to improve the effi-

ciency of the HT, its heavy computational cost is still a major concern
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in real-time applications.

2. Edge detection. The HT is applicable only to binary images, hence

accurate edge detection is an important prerequisite. In addition to

imposing extra computational burden, edge detection may increase the

false detection error; when the noise-level is high, some of the true

feature points in an image can be ignored as noisy pixels and also some

false points may be seen as true feature points.

3. Detection of line segments. Despite the fact that the HT is an

accurate and robust technique for line profile extraction in noisy or

cluttered images, it is incapable of specifying the endpoints for a line.

It can identify only line-segments that pass through the entire image.

Therefore segmentation procedures have to be adapted in order for the

HT to identify the endpoints of a segment.

A number of works addressed the edge detection problem of the HT us-

ing Fourier-based HT techniques [70, 2, 71]. These methods rely on a unique

mathematical relationship between the Hough and the forward Radon trans-

form and will shape a significant portion of the algorithm proposed in this

research.

2.2.3 The Radon transform

Equivalently and due to the mathematical identity, the HT can be viewed as

special case of the forward Radon transform (RT) [72]. The Radon transform

is a process of iterative mapping of a 2D function onto its projections [73],

(translated article in [74]). Given a 2D function or image f(x, y), its 1D

projection is obtained by integrations along lines perpendicular to θ, where θ

is the projection angle relative to the x-axis and 0 < θ 6 π. A complete set of

projections can be obtained by applying different projection angles varying

from 0 to π. Combination of 1D projections forms a complete parameter
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space called as sinogram, also known as the Radon space. As a result of this

iterative process each point in image space maps to a sinusoidal curve in a

new parameter space. This is similar to the process of mapping each feature

point from Cartesian space to Hough space in the standard Hough transform

(SHT).

Note that the integrations are performed over lines parallel to the y′

axis in a (x′, y′) coordinate system that is rotated at angel θ using rotation

operator (
x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
(2.2)

Thus for a point (x, y) that is located at a distance ρ along the x′ axis

Equation 2.1 holds, and can also be written in vector notation:

ρ = r cosα cos θ + r sinα sin θ = r cos(α− θ) = r.n̂ (2.3)

where r = (x, y) = |r|]α = [r cosα, r sinα] is the position vector of a point

in rectangular coordinates and n̂ = 1]θ = [cos θ, sin θ] is the unit vector

perpendicular to the projection angle [70].

In theory, the RT obtains the projections by performing line integrals

along the variant angles of θ using an equation

Rθ[f(x, y)] = λ(ρ, θ) =

∫ ∫
f(x, y) δ(ρ− x cos θ − y sin θ) dxdy (2.4)

where λ(ρ, θ) is a one-dimensional Radon projection of f(x, y) at angle θ, R

is the Radon transform operator, and δ is the Dirac delta function.

In practice, the RT can be computed efficiently using the fast implementa-

tion of the Fourier transform to reduce the computational complexity. That

is based on a Fourier slice theorem and will be discussed in Chapter. 3.
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Relationship between the RT and HT

Despite the identity of the final result, these two linear transformations,

i.e. the HT and the RT, look at the same problem from slightly different

perspectives. The HT is the question of how a pixel (x, y) in image space is

mapped to a sinusoid in parameter space using Equation 2.1, i.e. the writing

paradigm. Having x and y as constants, vary θ and compute ρ. The RT is

the question of how a data point (ρ, θ) in parameter space is obtained from

line integrals in image space using Equation 2.4, i.e. the reading paradigm,

i.e. having ρ and θ, apply line integrals (compute the projections) along

the corresponding line. Therefore, the Hough transform can be seen as a

discretised version of the continuous Radon transform [75, 76].

Aim of the proposed method

The method introduced in this thesis aims to focus on the second and third

problems in Section 2.2.2 without adding to current computational complex-

ity. To address the problem of binarisation and edge detection an advanced

Fourier-based HT has been adapted for use in this research. A full dis-

cussion is given in Chapter 3. To extract the segment endpoints a unique

image-domain windowing approach has been introduced. It requires crossing

over from Hough space to image space and applying an image domain filter-

ing in the direction of a detected line. Butterfly boundary analysis has been

adapted to isolated HT peaks. Chapter 4 explains the algorithm.

As mentioned earlier, the HT is a powerful tool to detect straight lines

but not line segments. An additional segmentation procedure needs to be

performed to extract the segments from the detected lines. To classify the

existing segmentation methods an extensive survey of various approaches is

given in the following sections.

32



2.3 Segmentation approaches

Popular line segmentation methods used in practical applications can be clas-

sified into three major groups, namely, bottom-up, top-down, and domain-

crossing approaches. The bottom-up approach starts with single pixels,

which grow to segments; whereas the top-down approach extracts straight

lines followed by segmentation. Domain-crossing methods take into account

both local features, from a bottom-up, and global features, from a top-down

approach. In the following, different characteristics of these approaches will

be surveyed.

2.3.1 Bottom-up approach

A bottom-up approach, also known as local approach, typically begins from

the pixel level and the line grows pixel by pixel to reach the requirement of

a true line segment defined by the algorithm. These approaches mainly use

gradient information to draw the line. State-of-the-art methods include Gioi

et al.’s line segment detector (LSD) [77], Akinlar and Topal’s Edge Drawing

(EDLines) [78], and Yang et al.’s two-orthogonal direction image scanning

(TODIS) [79]. Other works use a small matrix of eigenvalues [80, 81].

One of the first bottom-up frameworks was introduced by Nevatia and

Ramesh Babu [82]. The algorithm starts with a convolution-based edge

detection followed by a line thinning and threshold. Afterwards, a linear

approximation is used to link the edge points based on their gradient ori-

entations. Khan et al. extended the concept using a connected component

algorithm (CCA) [83]. A CCA groups together adjacent feature points with

similar gradient orientation into line support regions. The algorithm was

simple and fast, and hence later became the core of some of the well-known

bottom-up algorithms such as [84] and [77].

The LSD utilises Burns et al.’s iterative region-growing process [84]. Us-

ing image gradient magnitude and angle, each region starts from a pixel by
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setting the region’s angle to the pixel’s gradient direction. In the next itera-

tion the algorithm compares the gradient direction of adjacent pixels (in an

eight-pixel neighbourhood) with the region angle. If any neighbouring pixel

shares a similar angle within a certain tolerance it will be added to the grow-

ing region. Pixels belonging to a particular region will be labelled to avoid

revisiting. In the second phase of the LSD, Desolneux et al.’s [85] approach

was used to validate the result.

LSD has proven to be a breakthrough in line segmentation by outper-

forming other representative works such as Etemadi [86], Burns [84], the

progressive probabilistic Hough transform [49], and Desolneux [85]. It is fast

as it can process a (512 × 512) grayscale natural image in less than 0.30

seconds using an Apple PowerBook G4 1.5 GHz [77]. However, there are

two major problems involved with the LSD’s performance: 1) it is highly

sensitive to noise that misleads the region-growing process in connecting the

true segments; 2) it loses accuracy when facing dense intersecting straight

lines.

Yang et al. partially addressed the LSD’s shortcomings by introducing

two-orthogonal direction image scanning (TODIS) [79] but paid the price of

computational time. Unlike the LSD, TODIS works with binary images, thus

edge detection has to be applied in the first place. An image is examined in

both horizontal and vertical directions. A multi-scale scanning approach was

taken to label each candidate line segment. There are some issues due to the

multi-scale nature of TODIS. In smaller scales a long segment will mistakenly

appear as a number of short segments. Similarly, in larger scales a number

of collinear short segments may appear as one continuous long segment. In

addition, unlike the LSD, in TODIS each pixel may be visited more than

once and that has a negative effect on the computational time.

The EDLines [78] suggests a faster algorithm for line segment detection.

In terms of accuracy in segmentation, the results of EDLines are similar to

the LSD’s; however, the EDLines processes the same image ten times faster
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than the LSD. That makes the EDLines a perfect candidate for real-time

applications. In their algorithm Akinlar and Topal used the concept of Edge

Drawing (ED) [87, 88] to produce an accurate edge map. The underlying idea

is to use image gradient information to connect the edge pixels that belong

to the same segment. Unlike the other edge detection approaches such as

the Canny edge detector [89] that generates a binary edge map consisting of

arbitrary pixels, ED results in a number of related and joint edge pixels in a

shape of edge segments. This pre-processing step plays a key role in EDLines’

success by reducing the error caused by broken segments. However, for the

next step, i.e. line segment extraction they applied a simple Least Square

Line Fitting approach that causes inaccuracy in noisy situations and breaks

down the long segments.

In general, bottom-up approaches are computationally simple and easy

to implement. Plus, their local nature is well-suited for taking short line

segments into account. However, their local characteristic fails to maintain

the robustness in challenging situations such as when line segments intersect

or when there are rather long segments in an image. Due to the effect of noise

and image resolution such long segments appear as a series of disconnected

short segments. This sensitive behaviour in response to noise appears to be

the main drawback of the bottom-up approaches. Using global information

can help solve such problems. The top-down approach looks at the problem

from a rather different perspective.

2.3.2 Top-down approach

In the top-down approach, also known as the global approach, the true

straight-lines are firstly extracted before they are broken down into segments.

The Hough transform (HT) is one of the most well-known top-down tech-

niques for detection of line profiles [21, 1].

Most of the proposed HT-based line segmentation methods use the pa-

rameter space information during and after the HT voting process. For
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instance, the connective HT (CHT) utilises a probabilistic approach to in-

vestigate the connectively of the feature points [90]. After applying the HT,

a fixation point is selected using the information obtained during the accu-

mulation to vote for two 1D accumulators. The CHT suggest a faster com-

putation than the standard HT. To capture segment coordinates using the

fast Hough transform (FHT), Guil et al. [91] kept aside those feature points

that collaborate during the voting process. By arranging the image points

belonging to the same straight-line in a respective order, coordinates of the

segment endpoint can be captured by selecting the points that are further

away from each other. Nevertheless, the method is not perfectly designed for

line segments with a negative slope smaller than one or line segments that

are collinear.

The progressive probabilistic Hough transform (PPHT) suggested a fast

and efficient algorithm in [47, 48, 49]. However, there is a trade-off between

the speed and accuracy. The PPHT outperforms the standard HT in terms

of speed but results in lower accuracy and a large number of missing lines (i.e.

false negative). Moreover, it requires a large set of parameter adjustments

such as threshold that have to be delicately tuned. The problem with the

accuracy of the PPHT was addressed later in [41] at the expense of a high

computation and memory requirement.

The extended Hough transform (EHT) optimized the traditional 2D HT

with a third parameter [92]. In this 3D representation of the HT, each

individual column or row of the image space is plotted to a unique dual

2D HT. Later in [93], an optimized algorithm was proposed to reduce the

execution time during the voting process. However, similar to all other HT-

based methods, it requires prior edge detection to enhance the linear features

that brings additional computational time. In addition, edge detection may

cause inaccuracy in segmentation performance by neglecting true segments

due to inappropriate threshold selection.

Global searching algorithm embedded in the HT-based approaches showed
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a better robustness to variant noise. Furthermore, in the case of long seg-

ments, a global view helps to detect long lines as a single continuous segment,

unlike the local approaches that break them down. As a more tangible ex-

ample, this is similar to looking through a window with scratched glass from

a distance without noticing the blurriness caused by the scratches. However

if you get closer to the glass, the scratches will become more noticeable. Let

us compare the performance of the bottom-up and top-down approaches us-

ing natural images to better understand their differences. As a significant

limitation, due to its global nature, the HT usually fails to detect short seg-

ments. Because short lines generate smaller clusters in the accumulator array

and, therefore, it is more difficult to distinguish these small peaks from the

surrounding peaks.

Bottom-up vs. top-down

Performance of the above two approaches can be better explained in Fig-

ure 2.2. The first row shows an example where the global approach outper-

forms the local method. The image of an arrow degraded with Gaussian noise

has been tested with the EHT, as a representative of the top-down approach,

and the LSD, as a representative of the bottom-up approach in Figure 2.2(b)

and (c), respectively. Although not flawless, the EHT detects the segments,

especially the long lines, with an acceptable accuracy. In contrast, due to

the background noise the LSD fails to detect the true long segments despite

the simplicity of the image. Instead, it produces a number of collinear and

disjointed segments. The additive noise stops the growing region from ex-

pansion before reaching the true endpoint. However, in an image with rather

complex texture, without additive noise, in the second row, i.e. Figure 2.2(d),

the LSD performs better by detecting most of the segments with a greater

detail, see Figure 2.2(f). In contrast, the global nature of the HT-based

approach is incapable of detecting many of the short segments as shown in

Figure 2.2(e). This is when the LSD outperforms the HT-based approach.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Performance of the bottom-up versus top-down method. (a) Orig-
inal image of arrow (512×512). (b) Result of the EHT where long segments
are correctly detected. (c) Result of the LSD shows disconnections in the
segments due to background noise. (d) Original image of truck (911×850).
(e) Result of the EHT when it fails to detect many of the short segments.
(f) The LSD successfully detects segments as small as a few pixels length.
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From the machine learning viewpoint, the top-down method is a model

selection technique from parameter space to data or feature space, whereas

the bottom-up method is a regularisation technique from data or feature

space to parameter space. The optimal solution can be obtained using a

two pathway learning process, in which both top-down model selection and

bottom-up regularisation are considered. This leads us to the third category

of the methods which is the domain-crossing approach.

2.3.3 Domain-crossing approach

The domain-crossing approach utilises the information from both the image

and parameter space. It starts by mapping the feature points from the image

to the parameter domain and again using the image-domain data combined

with the parameter domain data to capture the line segments.

Song and Lyu speed up the HT voting process using image gradient pre-

diction [5]. After peak detection in Hough space, a unique line verification

method is used by crossing from Hough space over to the image space. In

this way, line thickness can also be distinguished as well as achieving a reduc-

tion in false detection. Despite its accuracy the method is computationally

expensive.

Bandera et al. suggest a more efficient algorithm in [94]. A random win-

dow randomised Hough transform is used in the global phase to construct

the Hough space and capture the line parameters, i.e. the peaks. A unique

mean shift clustering technique is utilised afterwards to highlight the peaks

and find the potential straight-lines. Crossing over to the image space, edge

pixels that are aligned with the detected lines are projected onto the lines to

approximate the true line segments in a local merging procedure. The idea

was further improved in slice sampling weighted mean shift (SSWMS) anal-

ysis [95]. Sequential sampling of the Hough space was suggested to enhance

the random sampling approach as well as a new likelihood function for the

local clustering. The SSWMS shows a better accuracy than the PPHT with
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faster execution time.

In [27], the beamlet transform has been viewed as a special case of the

Radon transform (RT). The underlying idea is to apply a feature-adapted

RT in a quadtree decomposition manner to obtain a feature-adapted beamlet

transform (FABT). The term feature-adapted comes from the convolution of

basis filters (i.e. second- or third-order edge and ridge detectors [96]) with the

corresponding image scale prior to RT computation. This filtering highlights

linear structures of the image and enhances the accuracy and performance of

the task. However, the FABT is also computationally expensive because all of

the convolutions must be applied in the time domain due to the indefinability

of the convolution theorem for the pseudo-polar Fourier transform.

Recently, a novel geometrical technique based on the neighbourhood of

straight-line segments in both the spatial and the parameter domains was

introduced [66, 67]. The neighbourhood of a line segment in the parameter

domain is defined in a lozenge-like quadrangle to approximate the neighbour-

hood of the segment in the image domain. Instead of two endpoints, Du et

al. used coordinates of the centre point to find the location of the segment

in the image. However, this method suffers from the traditional problem of

the HT-based techniques, i.e. detecting short line segments, where we face a

trade-off in the neighbourhood radius selection. That means segments with

shorter length have bigger approximation errors in comparison to those with

longer length.

2.4 Discussion

Table 2.1 gives an overview of the different approaches to line segment de-

tection discussed in this chapter.

The traditional point-to-segment extraction methods are computationally

efficient and simple to implement. That makes such methods suitable for real-

time object detection and tracking applications. Nevertheless, their focus is
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on local information such as gradient magnitude and angle at pixel level.

That makes noise an effective parameter in degrading their performance. In

addition, failing to consider global information results in discontinuity in the

case of elongated segments.

The traditional line-to-segment extraction methods work the other way

around. Their global nature reduces the effect of noise and increases their

robustness. That is also the reason that global approaches can detect large

objects more accurately. However, neglecting the local gradient information

in an image causes inaccuracy in extracting short line segments. In addition

to that, the computational burden of the global methods is considerable and

such methods are more appropriate for off-line image processing.

The domain-crossing approaches benefit from different properties in both

image space and transformed space to identify the line segments. They are

more robust to noise and occlusion due to their global nature as well as having

higher accuracy for short line segmentation because of their image-domain

line segmentation algorithms. However, they require a delicate design of

algorithm to speed up the line extraction process, and it is not well-suited

for real-time applications.

The proposed methodology

The research in this thesis aims to introduce a novel domain-crossing ap-

proach to line segment detection problems. The proposed methodology is

based on an advanced HT line detector, i.e. an HT using a multi-layer frac-

tional Fourier transform for the global image analysis, discussed in Chapter 3.

In the second phase, i.e. crossing over to the image domain, the proposed

method adapts an accurate image-domain window-of-interest to detect the

true segments and is discussed in Chapter 4.
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Table 2.1: An overview of the different approaches to line segment detection.
Categories Description Advantages Disadvantages
Bottom-up Region growth from pixel to seg-

ment. Representative works include
Nevatia and Babu [82], Kahn et al.
[83], Burns et al. [84], Gioi et al.
[77], Akinlar and Topal [78], and
Yang et al. [79]

Fast and
simple, ap-
propriate
for real-time
applications

Sensitive to
noise, breaks
down lengthy
segments

Top-Down Straight-line detection, followed by
segment extraction. Representative
works include Hough transform fam-
ily [1], Yuen et al. [90], Guil et al.
[91], Matas et al. [49], Nguyen et al.
[41], Cha et al. [92], and Chung et
al. [93].

Robust to
noise, suitable
for detecting
large objects

Slow, inac-
curacy in
extracting
short lines

Domain-
Crossing

Decomposition of lines through
transformed space. Representative
works include Song and Lyu [5],
Bandera et al. [94], Nieto et al.
[95], Berlemont and Olivo-Marin
[27], and Du et al. [66, 67].

Robust to
noise, more
accurate for
short segments

Slow
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Chapter 3

Advanced Fourier-based Hough

transform

In this chapter an advanced Fourier-based Hough transform, i.e. Hough

transform using multi-layer fractional Fourier transform (MLFRFT) is intro-

duced as the first stage in the line segmentation algorithm proposed in this

research. The aim is to, first, extract the potential straight-lines in the image

and detect the set of line parameters ρ and θ for every possible straight-line.

Each set of line parameters is used in the next stage (Chapter 4) to create

an image-domain window-of-interest to determine the endpoints of the line

segment. Therefore, accurate line detection is highly significant to assure

the validity of the segment detection. The computational complexity of the

MLFRFT has been compared with the traditional zero-padding method and

the standard Hough transform. In addition, to test the performance of the

MLFRFT approach, a new lane marker detection method is suggested at the

end of the chapter.
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3.1 Hough transform using Fourier method

As mentioned in Section. 2.2.3, Fourier-based HT methods rely on the math-

ematical identity of the Hough transform and the Radon transform (RT).

One of the main motivations is the use of greyscale image instead of binary

edge maps as well as benefiting from the fast implementation of the Fourier

transform. This will significantly improve the computational efficiency of

the HT. Experimental results conducted in this research show that the ML-

FRFT is approximately three times faster than the SHT. For instance, for a

greyscale natural image of size (512×512), the MLFRFT-based HT required

approximately 0.125 seconds to produce the Hough peaks whilst the SHT

required 0.373 seconds, (on a Dell machine, Intel Core i5, 2.4 GHz running

MATLAB. 8).

Central-slice theorem

In practice, the RT enjoys the unique property of the central-slice theorem in

the frequency domain for a fast and efficient implementation of the algorithm

[97, 98]. This is one of the most important characteristics of the RT because

it implies that the RT can be computed using the fast Fourier transform

with computational complexity of O(N2 log2N) for an image of (N × N)

pixels. Given a 2D discrete function f(x, y), the central-slice theorem shows

the equality of the result of the following two procedures.

• Project the function onto a line (1-dimensional space) of a certain angle

θ, and compute a 1D discrete Fourier transform (1D-DFT) of that

projection.

• Compute a 2D discrete Fourier transform (2D-DFT) of the function,

then take out a slice passing through its origin from the same angle θ.

Projection of a 2D function onto a line through θ is, in fact, the forward

RT of that function, i.e. Rθ[f(x, y)] in Equation 2.4. Therefore, the first
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statement means applying the 1D Fourier transform to the RT of that func-

tion. Comparing the two statements, it can be concluded that a slice through

the origin of the 2D-DFT spectrum of f(x, y) at angle θ is equivalent to the

1D-DFT of the Radon projection of f(x, y) at θ. Consequently, to obtain

a RT of an image f(x, y) in a fast and efficient manner it is easy to, first,

compute a 2D-DFT of the image and then compute a 1D inverse DFTs over

its central slices.

f(x, y)
2D−DFT−−−−−→ F (µ, η) −→ Central − slice theorem 1D−DFT−1−−−−−−−→ Rf(x, y)

To better explain the central-slice theorem in a mathematical notation,

let us consider Λ(v, θ) as a 1D-DFT of the Radon projection λ(ρ, θ), given

the Equation 2.4, defined by

Λ(v, θ) =

∫ [∫ ∫
f(x, y) δ(ρ− x cos θ − y sin θ) dxdy

]
e−j2πρvdρ

=

∫ ∫
f(x, y)

[∫
δ(ρ− x cos θ − y sin θ) e−j2πρv dρ

]
dxdy

=

∫ ∫
f(x, y)

[∫
δ(ρ− (x cos θ + y sin θ)) e−j2πρv dρ

]
dxdy (3.1)

Recalling one of the unique properties of the Dirac delta function, i.e.∫
δ(ρ− a) e−kρ dρ = e−ka, Equations 3.1 can be simplified as

Λ(v, θ) =

∫ ∫
f(x, y) e−j2π(xv cos θ+yv sin θ) dxdy (3.2)

Equation 3.2 is equivalent to a central-slice of the 2D-DFT of function

f(x, y) at angle θ. In other words, if we denote the slicing operator Sθ as

Sθ[f(x, y)](x′) = f(x′ cos θ, y′ sin θ) (3.3)
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and let F1 and F2 be 1D and 2D Fourier transform operators, respectively,

then the central-slice theorem states

F1{Rθ[f(x, y)]}(v) = Sθ{F2[f(x, y)](µ, η)}(v) (3.4)

where Rθ is Radon projection at angle θ, and µ−η are horizontal and vertical

axes in 2D Cartesian Fourier space. Equation 3.4 demonstrates that the 1D

Fourier transform of the Radon integral projection at angle θ is equal to the

slice taken from the origin of the 2D Fourier transform at the same angle.

It should be emphasised that the 2D-DFT is a linear one-to-one transfor-

mation from Cartesian spatial space to the Cartesian frequency or Fourier

space. The DFT functions implemented in computer programs produce a

Cartesian grid of rows and columns. As a result, taking out the slices through

the centre of such a spectrum would be problematic. Therefore to apply the

central-slice theorem, the Cartesian coordinate system of the Fourier space

has to be converted to a polar or circular coordinate system using interpola-

tion techniques such as the bilinear or nearest neighbour interpolation. Then

it would be easy to apply the 1D-DFT−1 to the rows of the polar grid.

In summary, instead of computing projections along all of the θ angles in

the spatial domain to obtain the RT, it is feasible to transfer the image to

the corresponding frequency domain by performing a 2D-DFT and interpo-

lating its Cartesian coordinates to polar. Parameter space is then computed

utilizing a 1D-DFT−1 along the distance axis (i.e. ρ direction) of the polar

frequency grid.

The above procedure is swift because in practice the fast Fourier trans-

form (FFT) reduces the computational cost from O((N2)2) operations to

O(N2 log2N) for an (N ×N) image. For a detailed description of the FFT

algorithm, please refer to Appendix A. Nevertheless, the FFT only produces

(N × N) frequency samples which may not be a sufficient sampling rate to

guarantee the required accuracy. In other words, frequencies of interest may

not fall into an (N × N) discretised plane. Such a problem, i.e. restriction
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in the number of frequency samples in the Fourier spectrum causes aliasing

effects and increases the probability of false detection. Therefore a higher

number of frequencies is required to assure full coverage of all possible fre-

quencies.

Zero-padding was suggested to increase the number of frequency samples

in the Fourier spectrum by upsizing the original image with zero-valued pixels

[70]. For instance, a zero-padded image will have the size of (bN×bN), where

b > 1 and typically is an integer of power of 2. This will result in (bN × bN)

samples in the Fourier spectrum. In other words, having more pixels in an

image means having more frequency samples in the Fourier spectrum. Since

the additional pixels are zero, they do not interfere with the original signal

and have no effect but increasing the number of frequency samples. However,

there are two major challenges associated with the zero-padding:

1. Imposing extra computation and memory requirement as a result of

upsizing the original image.

2. Interpolation error during the Cartesian to polar mapping. Note that

to apply the central-slice theorem, the rectangular coordinates are

mapped to circular or polar coordinates via an interpolation process,

i.e. bilinear or nearest neighbour interpolation.

The multi-layer fractional Fourier transform (MLFRFT) addressed the

above mentioned deficiencies with its unique frequency sampling approach.

Instead of adding zeros to the original image, the Fourier spectrum is cap-

tured via a union of multiple layers of the DFT. Moreover, Frequency sam-

ples of the MLFRFT grid are naturally closer to the polar grid, hence the

interpolation error is reduced. The MLFRFT is the basis of the proposed

segmentation algorithm and has been discussed in the following.
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3.2 Multi-layer fractional Fourier transform

FFT-based algorithms are incapable of performing polar or log-polar Fourier

transforms in an accurate and efficient manner. This causes a major prob-

lem for the Fourier-based HT as explained in the previous section. Efforts

have been made to tackle the problem. Basically, estimation of the Carte-

sian Fourier spectrum on a polar or log-polar grid can be achieved in two

ways: apply image warping [99] followed by the FFT computation [100]

or direct interpolation of the Cartesian samples into polar samples [101].

Interpolation-based methods received much attention due to accuracy and

small interpolation error of the non-uniformly sampling approaches such as

in [102, 103, 104, 105, 106]. Among them, the pseudo-polar Fourier transform

(PPFT) demonstrated significantly lower interpolation error with almost the

same computational complexity as the 2D-FFT [105, 107]. However, the

PPFT is not well-suited for images with large scale factor [108] as well as

hand-taken images. Pan et al. [109] addressed the shortcomings of the

PPFT-based approaches with a novel multi-layer Fourier approach as ex-

plained in the following.

3.2.1 1D fractional Fourier transform

Let us start from the traditional discrete Fourier transform and extend the

concept to an adaptable fractional Fourier transform. Given a discrete signal

{f(x)| − N
2

6 x 6 N
2
− 1} with N discrete samples, where N is an even

number, a 1D discrete Fourier transform (DFT) can be defined as

F (k) =

N
2
−1∑

x=−N
2

f(x) e−j2πxk/N (3.5)

where frequency samples are uniformly distributed in a [−π, π] plane. By

adding an adjustable parameter to the exponential component, a fractional
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Fourier transform (FRFT) can then be defined as

F γ(k) =

N
2
−1∑

x=−N
2

f(x) e−j2πxkγ/N (3.6)

where the additional parameter γ is a non-integer predefined fractional scaler,

and 0 < γ 6 1. It can be seen that frequency samples in the fractional Fourier

spectrum are uniformly distributed in a [−γπ, γπ] plane. When γ = 1 the

fractional Fourier transform acts similarly to the traditional DFT and the

frequency domain is scattered in the [−π, π] plane. This is a unique property

of the fractional Fourier transform that indicates the feasibility of having

non-integer frequency samples. Having said that F (γk) can be defined as

F (γk) =

N
2
−1∑

x=−N
2

f(x) e−j2πxkeγ/N . (3.7)

Hence given the right hand sides of Equations 3.6 and 3.7 are identical, it is

true to say

F γ(k) = F (γk). (3.8)

To better understand the concept of integer and non-integer Fourier spec-

trum let us consider the magnitude plot of F (k) as depicted in Figure 3.1.

Here N = 20, i.e. the number of discrete samples. Figure 3.1(a) shows the

distribution of the samples when γ = 1. This is the case when the DFT

and FRFT of a signal are identical and the Fourier spectrum is scattered

in the [−π, π]. By changing the γ to 0.6 we will have the same number of

samples but distributed in the [−0.6π, 0.6π] plane, as shown in Figure 3.1(b).

That implies a higher resolution frequency sampling with the same N . In

Figure 3.1(a) only 12 samples represent the frequency response of the signal

from −0.6π to 0.6π. However, using the fractional scaler it is possible to

have all 20 samples allocated to the [−0.6π, 0.6π] interval.
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(a)

(b)

Figure 3.1: The concept of integer and non-integer spectrum using 1D frac-
tional Fourier transform. (a) γ = 1 in Equation 3.6, the FRFT and DFT of
the signal are equal and the distribution is in [−π, π]. (b) γ = 0.6, the FRFT
provides higher resolution frequency sampling in [−0.6π, 0.6π].

Note that the number of possible samples is fixed at N and higher accu-

racy cannot be achieved by simply increasing N , because N is the number of

elements in the discrete input signal/function f(x). However a higher reso-

lution Fourier spectrum can be obtained by computing a number of FRFTs

of the original signal, each with different fractional scalers, and combining

the result. This is the fundamental concept behind the multi-layer fractional

Fourier transform and will be explained in Section 3.2.3.
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3.2.2 2D fractional Fourier transform

Extending Equation 3.6, a 2D fractional Fourier transform operator is defined

by

F γ(k1, k2) =

N
2
−1∑

x=−N
2

N
2
−1∑

y=−N
2

f(x, y) e−j2π(xγk1+yγk2)/N (3.9)

where {f(x, y)| − N
2
6 x, y 6 N

2
− 1}. Here f(x, y) is a 2D discrete signal

which, in our case, is a 2D digital image with N×N pixels. When γ = 1, the

frequency response of the signal is scattered in a [−π, π]× [−π, π] grid which

is the same as the response to the traditional 2D-DFT. For any other values

of γ between 0 and 1 the frequency response is in a [−γπ, γπ] × [−γπ, γπ]

grid. Similar to the previous example, Figure 3.2 shows an integer and non-

integer Fourier spectrum using a 2D-FRFT. The result for γ = 1 and γ = 0.6

is depicted in Figure 3.2(a) and (b), respectively.

In addition, Equation 3.9 implies that the 2D fractional Fourier trans-

form can be performed in an analogous manner as the traditional 2D-DFT;

computing the 1D transforms for every row and then computing the 1D

transforms for every column. Therefore, the FFT (fast Fourier transform)

algorithm can be used to reduce the computational cost from O((N2)2) oper-

ations to O(N2 log2N) for an (N ×N) image. It is therefore easy to extend

Equation 3.8 to a 2D version defined by

F γ(k1, k2) = F (γk1, γk2). (3.10)

3.2.3 2D multi-layer fractional Fourier transform (ML-

FRFT)

The idea of a multi-layer fractional Fourier transform (MLFRFT) is to apply

a number of FRFT, each with a different γ, and combine the results to make

a unified Fourier spectrum. If applied to an image, the resulting frequency
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(a)

(b)

Figure 3.2: Integer and non-integer spectrum using 2D fractional Fourier
transform. (a) γ = 1 in Equation 3.6, the 2D-FRFT and 2D-DFT of the
signal are equal and the distribution is in [−π, π]× [−π, π]. (b) γ = 0.6, the
2D-FRFT provides higher resolution frequency sampling in [−0.6π, 0.6π] ×
[−0.6π, 0.6π].
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response contains more frequency samples compared with the traditional one-

layer 2D-DFT. Therefore, one can obtain more information of pixel intensity

variation to increase both the performance and the accuracy. Moreover, the

resulting frequency samples are closer to the polar coordinates [109]. Hence,

the interpolation error, caused by the mapping from Cartesian to a polar

grid, is minimized.

Let us define L as the number of FRFT layers and i = 1, 2, ..., L. Given

the fractional coefficient γi, a MLFRFT grid is defined as a set of Pi when

Pi = {F(γik1, γik2)| − N

2
6 k1, k2 6

N

2
− 1} (3.11)

A union of L layers results in a complete set of frequency grids P by

P =
L⋃

i=1

Pi (3.12)

Equation 3.12 indicates that P , which is the resulting MLFRFT grid, has

L times more frequency samples compared with the traditional 2D-DFT. It

is clear that the higher the number of layers, the higher the resolution of the

resulting Fourier spectrum, i.e. (L × N × N) instead of (N × N) samples.

Figure 3.3 is a depiction of MLFRFT grid with three fractional layers. The

fractional coefficients are γ1 = 0.5, γ2 = 0.8, and γ3 = 1 in blue, green, and

red, respectively. A block diagram of the Radon transform using multi-layer

fractional Fourier transform is depicted in Figure 3.4.

Note that the MLFRFT takes an image from the spatial domain and

generates a pure frequency domain grid. The only difference between the

MLFRFT and the traditional DFT, in terms of their frequency-domain grid,

is the finer sampling of the MLFRFT as a result of the multi-layer approach.

Therefore, the central slice theorem still holds for the MLFRFT.

It has been shown in [109] that the multi-layer approach outperforms

other Fourier-based methods including the pseudo-polar Fourier transform
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Figure 3.3: Multi-layer fractional Fourier transform grid with three fractional
layers. γ1 = 0.5 (blue), γ2 = 0.8 (green), and γ3 = 1 (red).

[105]. In addition to its finer Fourier spectrum that improves the accuracy,

location of frequency samples in the MLFRFT grid are closer to the polar

coordinates. Such closeness will help reduce the interpolation error caused

during the Cartesian to polar mapping of the samples.

It should be emphasised that computation of each fractional layer is in-

dependent of other layers. Therefore, calculating the whole set of layers can

be carried out in parallel using multi-core CPU systems.

To obtain an even more precise spectrum, the MLFRFT can be extended

to have two adjustable parameters for each layer, instead of one. A different

set of scale factors can be used for the x and y axes for each fractional layer

L, defined as the generalised interpolated Fourier transform (GIFT) [71]:

F γ1,γ2(k1, k2) =

N
2
−1∑

x=−N
2

N
2
−1∑

y=−N
2

f(x, y) e−j2π(xγ1k1+yγ2k2)/N (3.13)
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Figure 3.4: Block diagram of the MLFRFT-based HT.

where 0 < γ1, γ2 6 1 are predefined fractional scalers for the x and y dimen-

sions, respectively. The resulting non-integer grid has specifically designed

frequency samples distributed in a [−γ1π, γ2π]×[−γ1π, γ2π]. Figure 3.5 shows

and example of such a grid with γ1 = 0.6 and γ2 = 0.8.

Although the GIFT suggests a more flexible frequency grid than the ML-

FRFT it does not provide a finer spectrum, but a type of customised grid

for specific application dependent tasks. Furthermore, the GIFT suffers from

tedious parameter tuning without a proper adaptable tuning method. There-

fore adjusting two different parameters for each layer based on trial and error

can be problematic. As a result MLFRFT has been adapted in this research

to achieve a high resolution Fourier spectrum that leads to higher a accuracy

Radon sinogram.
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Figure 3.5: 2D non-integer GIFT grid with two fractional scalers γ1 and γ2.
γ1 = 0.6 is the scale factor in the x axis and γ2 = 0.8 is a scale factor in the
y axis.
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3.3 Line detection using MLFRFT

Now that a high resolution Fourier spectrum has been generated thanks to

the MLFRFT approach, it can be utilised for detection of straight-lines in

a greyscale image. The aim is to obtain a set of distinguishable peaks in a

sinogram using the MLFRFT. Consider an input greyscale image f(x, y) with

(N×N) pixels. Applying a MLFRFT with L layers results in a (n×n) Fourier

spectrum where n is determined by the size of fractional layers. Note that,

to guarantee a full coverage of border frequencies in the Fourier spectrum,

γ = 1 will always be used as one of the fractional layers. The following steps

have to be performed to construct the sinogram.

3.3.1 Step 1. Interpolation of top-half grid

One of the interesting characteristics of the Fourier spectrum is the symmetry

of frequency samples to the origin of the grid. This property is particularly

useful for Cartesian to polar mapping of the samples and means it is sufficient

to map only the top-half of the Cartesian frequency grid from µ− η to polar

grid v−θ and then duplicate the result with a conjugate mirror to compensate

for the missing data. To discretise the θ from 0 to π, a predefined resolution

∆θ is defined as

∆θ =
π

h− 1
(3.14)

where h denotes a user-defined number of desired angles uniformly dis-

tributed in [0, π], i.e. θ = 0,∆θ, 2∆θ, ..., π. For instance, h = 256 means

0.012 rad (0.7◦) for each value of θ. h has to be sufficiently high to guar-

antee optimum pixel coverage. Each element of the polar v − θ grid at

(v =
√
µ2 + η2, θ = tan−1 η

µ
) is computed at the location of its Cartesian

coordinate and interpolation of its surrounding elements in the µ− η grid.
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3.3.2 Step 2. Peak enhancement

It is a common practice to perform edge enhancement to the input image

prior to the Radon transform computation using a 2D convolutional band-

pass filter. Such filtering enhances the high frequency components of the

Fourier spectrum and therefore highlights the sinogram peaks. Due to the

convolution property of the Fourier transform, filtering can be applied in

the frequency domain by a simple multiplication. Benefiting from the filter

theorem suggested in [98], the 2D filtering operation can be reduced to a 1D

filtering. Accordingly, the Radon projection of a 2D convolution of two 2D

functions f1 and f2 is equivalent to a 1D convolution of the Radon projections

of each of the functions. Figure 3.6 illustrates this concept.

Therefore, after computing the polar spectrum of the top-half of the ML-

FRFT spectrum, a 1D difference of Gaussian (DoG) filter is applied to en-

hance the peak structure of the sinogram. Because the Fourier spectrum of

the 2D-DoG is circular symmetric to its origin, a 1D-DoG is obtained via

taking a projection over angular slices about the origin of the 2D-DoG. The

2D-DoG is a second order bandpass filter defined by function h(x, y) as

h(x, y) = d2
e exp

( −d2
e

x2 + y2

)
− d2

i exp

( −d2
i

x2 + y2

)
(3.15)

where

de,i =
1

σe,i
√

2π
(3.16)

σe and σi are excitatory and inhibitory standard deviation of the Gaussian

filters. The best approximation occurs when the ratio between the σe and σi

is 1.6, suggested by Marr and Hildreth [110]. After simplification, the Fourier

transform of the h(x, y) is obtained as:

Λh(v, θ) = exp

(−v2

d2
e

)
− exp

(−v2

d2
i

)
(3.17)
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Figure 3.6: The Radon projection of 2D convolution of 2D functions f1 and
f2 is equivalent to the 1D convolution of the Radon projections of each of
the functions.

The proof of Λh(v, θ) is given in Appendix B. It can be seen that Λh(v, θ)

is independent of θ. That implies 1D operations along the distance axis, i.e.

v, can be applied instead of 2D filtering. Therefore, the original signal Λ(v, θ)

turns into a filtered signal using multiplication in the Fourier domain, given

as

Λg(v, θ) = Λ(v, θ)× Λh(v, θ) (3.18)

3.3.3 Step 3. Conjugate mirror

To recreate the missing data in the bottom-half grid that was removed before

Cartesian-polar mapping, it is easy to duplicate the result after 1D filtering

using a conjugate mirror. Note that because the elements in the frequency

domain are complex numbers, a conjugate of the top-half frequencies is ob-

tained and then frequencies are reflected using a simple matrix reflection.

3.3.4 Step 4. 1D-DFT−1

Finally to obtain the Radon transform a 1D-DFT−1 is applied to the con-

jugate mirrored Λg(v, θ) along its v axis, as explained in Section 3.1 and
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suggested by Equations 3.1 and 3.2. The result produces a sinogram with a

number of overlapping sinusoidal curves in a shape of butterfly, having inter-

section at the peaks. Such peak structures are much more consistent due to

the MLFRFT frequency sampling and 1D-DoG filter for peak enhancement.

A peak detection is performed to identify the prominent peaks. Each peak

corresponds to a potential straight-line in the image.

3.4 Evaluation on computational complexity

3.4.1 Parallel implementation of the MLFRFT

As noted in Section. 3.2.3, computing each of the fractional layers of the

MLFRFT is an independent process and can be carried out in parallel with

the other layers using multi-core CPUs. Although parallel computation of

the MLFRFT is theoretically feasible and has been highlighted as one of the

notable strengths of this method in both [109] and [2], empirical studies con-

ducted in this research show that the parallel implementation could increase

the computational time significantly.

Given the pseudo-code for the MLFRFT in Algorithm. 2, operations in-

side the for loop can be carried out in parallel using a multi-core computer

system. Depending on the number of available cores, the client splits the

task within the loop and allocates a number of parallel workers to take over

the iterations. Each iteration is carried out by one worker that receives the

required data from the client. Here the number of iterations depends on

the number of fractional layers, i.e. L, that is usually 3 or 4. Using MAT-

LAB’s Parallel Computing Toolbox and running the code for a (512× 512)

greyscale image on a CPU with two physical cores, a four-layer MLFRFT

requires 0.194 seconds. This is when the serial implementation for the similar

configuration requires 0.051 seconds. The difference is due to the following

two reasons: 1) having a small number of iterations inside the for loop, e.g.

four iterations in this case; 2) the code executed within the for loop is not

60



computationally heavy enough to overcome the communication overhead be-

tween the client and the workers. We should keep in mind that data transfer

from the client to the workers normally has a high computational cost. To

observe a real difference between parallel and serial computing, either the

number of iterations or the complexity of the task inside the loop has to be

increased. In our case, the complexity of the code cannot be increased as it is

a Fourier transform operation. Only by significantly increasing L, e.g. L >

100, can we start observing improvements of parallel computing over serial

computing. However, it is unnecessary for the MLFRFT to have more than

100 layers of FRFT.

Algorithm 2 Pseudo-code for the MLFRFT.

Require: : I(x, y) /* An input image
Require: : γ = [γ1, ..., γL] /* L = maximum number of layers

1: for all i , i = 1→ L do /* given γ

2: F γi(k1, k2)←∑N
2
−1

x=−N
2

∑N
2
−1

y=−N
2

f(x, y) e−j2π(xγik1+yγik2)/N

3: Pi ← F γi

4: end for

5: P ← ⋃L
i=1 Pi /* MLFRFT frequency grid

It is easy to observe the communication overhead between a client and

the workers in MATLAB by running a simple experiment and comparing the

computational time in serial and parallel mode. One of the most fundamental

operations for a compiler is adding numbers in a specified range. Suppose we

want to run an experiment of adding all of the natural numbers from a range

x1 to xn. For instance, running this experiment for x1 = 1 to xn = 1, 000, 000

requires 0.017 seconds in serial mode and 0.67 seconds in parallel mode with

two workers. It can be seen that for such simple operations, there is a

considerable communication cost between the client and the workers. This

is a measure that denotes how complicated the code inside the loop has to
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be in order to take advantage of the parallel mode.

Based on the above discussion, parallel computing cannot be suggested for

the MLFRFT in practical applications, due to the small number of required

FRFT layers, which is typically three or four.

3.4.2 Computational time comparison

Empirical studies have shown that the MLFRFT-based HT outperforms the

SHT in both detection accuracy and computational time. Evaluation on

detection accuracy of the 3-layer MLFRFT was reported in [2]. Here the

MLFRFT method has been tested against the SHT in terms of the processing

time. A set of Twenty-five greyscale images with equal size of (512 × 512)

has been used for this experiment. The computing configuration for the

experiments is as follows: MATLAB 8 running on Intel Core i5 CPU, 2.4

GHz with 8 GB RAM, Microsoft Windows 7. A 4-layer MLFRFT was used

rather than 3-layer, with γ1 = 0.5, γ2 = 0.7, γ3 = 0.9, and γ4 = 1, to achieve

higher accuracy in the sinogram. Table 3.1 shows the results.

It can be seen that the whole process of a typical 4-layer MLFRFT-based

HT requires approximately 0.125 seconds, including 0.059 seconds to com-

pute four fractional layers, 0.065 seconds for Cartesian to polar mapping

plus conjugate mirror, and 0.0012 seconds for the 1D-DFT−1. The SHT, by

comparison, requires approximately 0.373 seconds, including 0.31 seconds to

detect the edge map based on a Canny edge detector plus 0.063 seconds for

the HT voting process. The results indicate that the MLFRFT is approxi-

mately three times faster than the SHT. This to be added to the four times

greater accuracy than the SHT due to the 4-layer MLFRFT. The main cause

of difference in computing time is the compulsory edge detection required

prior to the SHT that takes the majority of computation. In addition to

imposing a significant computational cost to the system, edge detection may

increase false detections. When the noise-level in an image is high, some of

the true feature points in the image can be ignored as noise and also some
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Table 3.1: Computational time comparison between the MLFRFT-based HT
(with four layers) and the SHT. Twenty-five greyscale image of size (512 ×
512) has been tested on MATLAB. The MLFRFT-based HT is approximately
3 times faster than the SHT. The time unit is in seconds.
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false points may be viewed as true feature points. Thus, it can be concluded

that a MLFRFT-based HT with a sufficient resolution is more efficient than

the SHT.

Although the HT-based line detection is mostly reported in off-line im-

age understanding problems, it has also been suggested in many real-time

applications. Lane marker detection in driver assistance systems is one of

the real-time applications of the HT. The MLFRFT-based HT has been ap-

plied to benchmark road images [13] to test its performance in response to

real-world challenges.

3.5 Application to lane marker detection

For a human driver, road boundaries, lane marks, road colour and texture are

key navigational tools in any weather condition. Thus, one would expect an

autonomous system to benefit from the same guidelines and follow the same

principles as humans. That is why vision-based imaging has always been

one of the prominent sensing modalities for such systems. All of the existing

system perception problems can be categorised into two groups: namely,

lane and road detection and obstacle detection [15]. To incorporate line

detection with the MLFRFT-based HT method, only the former task has

been considered.

Lane marker detection

Lane detection and perception prevents unintentional departure from the

lanes by simultaneous detection and tracking of the position and orientation

of the lane markers and sending a warning messages to the driver. There-

fore, precise line detection and segmentation plays a vital role in the overall

performance of the system [13, 14, 15, 16]. Several works have addressed the

problem using HT-based methods [111, 16, 112, 113, 114, 13]. Among them,

the Advanced Lane Detector 2.0 (ALD 2.0) [13] showed a superior perfor-
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mance in dealing with real-time video sequences. The ALD is robust and

accurate, however, it is based on the SHT to extract the linear structures.

An image (frame taken from a video sequence) undergoes a three-step pre-

processing, and then binarisation prior to a low-resolution SHT and peak

detection. A two-step post-processing is performed afterwards to validate

the true lane markers. Apart from the pre and post-processing operations

to assure the quality and reliability of the lane detection, the SHT takes

the major responsibility in lane marker detection and that is straight-line

detection.

Therefore, the MLFRFT-based HT has been suggested to replace the

SHT. The principal aim is to incorporate the MLFRFT-based HT in the

lane detection to avoid the binarisation of greyscale images and improve the

computational time whilst guarantee the detection accuracy.

The lane detection consists of the following steps:

1. Region of Interest selection (ROI). This area is the portion of an image

that has the highest probability of encompassing the lane markers. The

Region of Interest is typically selected between the vanishing point and

the vehicle’s hood.

2. Temporal blurring. This is to assure that the SHT can detect the short

dashed lane markers when they appear. Temporal blurring connects

the broken lane markers by producing an average image of current

frame and a number of predecessor frames.

3. MLFRFT-based HT. The image is split into halves and the MLFRFT-

based HT is applied to each half separately.

4. Peak detection. The HT peak detection determines the potential straight-

line candidates for the lane markers.

Experiments were performed using the publicly accessible database pro-

vided by the authors in [13]. Diverse driving scenes and road conditions were
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Figure 3.7: Lane detection using MLFRFT-based HT in diverse driving
scenes and road conditions

chosen with distinct illumination levels. Figure 3.7 illustrates a number of

detection results obtain via the MLFRFT-based HT method.

The computational time is approximately 0.14 seconds for each frame. In

theory, 7 frames can be processed, however in some driving scenes, especially

in daytime where the level of illumination varies between the surrounding

objects, the processing time can go up to 0.2 seconds at the highest. As

a result, in average, three to four frames per second can be guaranteed to

be processed. Edge detection itself could at least double the amount of

computational time. As reported in [13], the ALD 2.0 processes each frame

in 0.8 seconds including the post processing steps.
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3.6 Summary

To perform line segmentation it is necessary to detect the position and ori-

entation (ρ, θ) of the potential straight-line segment before identifying its

endpoints. As the first step for the proposed domain-crossing approach to

line segmentation, i.e. the global phase, a MLFRFT-based HT was suggested

in this chapter due to the following two superior capabilities:

1. High-resolution frequency sampling as a result of the multiple instances

of non-integer frequency grid that leads to higher precision in line pa-

rameterisation than the SHT.

2. More efficient computational complexity, (three times faster than the

SHT). The MLFRFT can be computed in a similar fashion to the FFT

by simply adding the fractional scaler γ to the exponential component

of the Fourier transform. Thus complexity of O(N2 log2N) still holds

for the MLFRFT.

Utilising the MLFRFT was preferred instead of GIFT (generalised in-

terpolated Fourier transform), despite the more flexible design of GIFT’s

frequency samples. GIFT cannot deliver higher precision but only delivers a

customised frequency grid with tedious parameter tuning.

Due to the popularity of HT-based methods in lane marker detection in

driver assistance systems the MLFRFT was suggested as a replacement for

the traditional SHT.

Despite the fact that the MLFRFT is an accurate and efficient technique

to extract linear profiles in a noisy or degraded image, it is unable to distin-

guish between straight-lines and straight-line segments. It can only identify

straight-line parameters (ρ, θ) resulting in lines passing through the entire

image. To identify the segment endpoints a domain-crossing approach has

been introduced in the following chapter.
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Chapter 4

Parallel butterfly

decomposition for line

segmentation

The MLFRFT-based HT yields straight-line parameters (ρ, θ) for each po-

tential line segment. These lines have to be further processed to extract

segment endpoint information. In this chapter the notion of line segmen-

tation using butterfly boundary information is discussed and an accurate

algorithm (LSBB) is proposed based on Least Square curve fitting and the

intersection of three points. The idea has been further extended for multiple

segments in an image by a parallel windowing approach (PWA-HT) and a

robust disturbance elimination technique to remove the effect of spurious fea-

ture points. Experimental results are given in the next chapter to verify the

performance of the proposed algorithm and compare it with state-of-the-art

representative works.
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4.1 Line segmentation using butterfly bound-

ary (LSBB)

4.1.1 Fundamentals

From the HT point of view, each feature point in the image space corresponds

to a sinusoidal curve in the Hough space. Consequently, all of the points on

a straight-line represented by ρ0 = x cos θ0 + y sin θ0 in image space form

a butterfly shape illustrating a collection of sinusoids in the Hough space.

These sinusoids have one communal intersection point at the peak (ρ0, θ0).

Accordingly, the first and the last sinusoids trajecting through the boundary

of the butterfly represent the two segment endpoints. Therefore, the problem

of finding the endpoints in image space turns into the problem of finding two

boundary sinusoids in the Hough space. This is the principal idea behind

line segment detection using butterfly boundary points. Let us clarify the

concept of butterfly boundary sinusoids and explain the reason why finding

these sinusoids can lead us to detect the segment endpoints.

From image to Hough space

Consider the process of butterfly formation, starting from a single pixel and

then expanding the notion to a number of collinear pixels forming a con-

tinuous line segment. Figure 4.1 shows a step by step generation of a line

segment from a single pixel p1, (top-left), to a line segment L, (bottom-left).

The HT of each step is depicted in the right-hand side column of the figure,

where each newly generated sinusoid is labelled. The index of each feature

point pi is related to its sinusoid si. Accordingly, p1 generates the sinusoid

s1, p2 generates the sinusoid s2, and so on. In fact, the two extremes, p1

and p2 represent the two endpoints of the segment L. It can be seen how

the sinusoids of middle points, p3, p4 and p5 and the rest, fill in between the

boundary sinusoids s1 and s2 in the Hough space. Therefore, these sinusoids
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lying on the boundary of the butterfly contain significant information, useful

for endpoint detection.

From Hough to image space

Taking s1 in Figure 4.1 into consideration (top-right), each point (ρi, θi) along

this sinusoid represents a straight-line ρi = x cos θi + y sin θi in image space,

where θi is the angle of the normal to the line and ρi is the distance of the

normal from the origin to the line. Therefore, the combination of all lines

represented by s1 have one common intersection point in image space where

they all cross over each other, which is, in fact, p1.

Theoretically, the intersection of two points captured on a sinusoid are

sufficient to find their corresponding feature point in image space [62], how-

ever, this may not satisfy the required accuracy. Let (ρ1, θ1) and (ρ2, θ2) be

the coordinates of two points lying on s1, as shown in the top-right of Fig-

ure 4.1. The intersection of the straight-lines represented by these points, i.e.

l1 and l2, in image space is obtained by solving the following two simultaneous

equations with two unknowns:

ρ1 = x1 cos θ1 + y1 sin θ1 (4.1)

ρ2 = x1 cos θ2 + y1 sin θ2 (4.2)

where (x1, y1), the solution of the equations, is the coordinate of the target

feature point p1. Simply speaking, to detect p1 in image space it is sufficient

to pick up two points such as (ρ1, θ1) and (ρ2, θ2) along its sinusoid s1 and

find the intersection of the lines represented by them, l1 and l2, in image

space. The intersection of l1 and l2 occurs at the location of p1.
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Figure 4.1: Step by step generation of a butterfly.
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4.1.2 Endpoint detection

The concept of two points intersecting can be extended to every other sinusoid

of a butterfly. However, since we are interested only in identifying the two

endpoints, p1 and p2, two points have to be captured along each trajectory

s1 and s2, i.e. two sinusoids that lie on the boundary of the butterfly wings

(bottom-right image of Figure 4.1). Afterwards, the intersection of each two

points can be found in the image domain to detect the endpoints.

Consider a vertical line segment and its corresponding HT butterfly shown

in Figure 4.2 (a) and (b), respectively. (ρ0, θ0) represents the peak where all

of the sinusoids cross over each other. Let us define two column vectors θ1 and

θ2 on either side of the peak along the θ axis with ∆θ as an interval between

θ0 and each of the columns. Boundary points on the butterfly wings can then

be identified by seeking the rising and falling edges, i.e. the first and last

non-zero elements, along each of the column vectors. In our notation, (ρf1, θ1)

and (ρf2, θ2) are the two points corresponding to the first endpoint, hence the

subscript f . Similarly, (ρs1, θ1) and (ρs2, θ2) are the two points corresponding

to the second endpoint in the image domain, hence the subscript s. Once

boundary points are captured, simultaneous equations 4.1 and 4.2 can be

solved to localise the endpoint in image space.

4.1.3 Robust Least Squares curve fitting

In practice, acquiring such a clear butterfly is nearly impossible due to noise

and disturbance. This may result in having a number of adjacent sinusoids

at the location of the butterfly boundary and therefore causing confusion

in choosing the true boundary sinusoids. As a result, a Least Squares curve

fitting method is suggested in this research to approximate the true boundary

sinusoids when having a number of adjacent sinusoids.

Having multiple columns available on either sides of the peak, a number
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(a) (b)

Figure 4.2: (a) Perpendicular line segment. (b) The HT butterfly. Sinusoids
trajecting through the boundary correspond to segment endpoints.

of boundary points can be obtained. Let us define

(ρ1, θ1), (ρ2, θ2), ..., (ρk, θk) (4.3)

as a number of data points captured along each boundary sinusoid, where

k is the number of specified columns. These data points can be fitted into

a curve using a Least Squares curve fitting method. However, one of the

main disadvantages of least squares approaches, such as Linear Least Squares

and Weighted Least Squares, is their sensitivity to outliers. Outliers are

the extreme data points that should not be taken into consideration. As

for a butterfly, noise and disturbance can cause outliers to appear. The

problem is when the effect of these outliers gets magnified by squaring the

residuals and this degrades the fitted curve. As a result, to minimise their

influence a Robust Least Squares curve fitting based on bisquare weights

[115, 116] has been used in this research. This approach minimises a weighted

sum of squares, where the weight given to each data point depends on its

distance to the fitted curve. Points that are closer to the curve receive higher
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Figure 4.3: Using the intersection point of three line. Intersections be-
tween the line represented by the boundary points (ρf1, θ1), (ρf2, θ2), (ρs1, θ1),
(ρs2, θ2) and the target straight-line (ρ0, θ0) in the image domain represent
the endpoints.

weight, whereas points that are further away from the curve receive lower

weight [117]. Therefore, any two points selected on the approximated curves

(the first and last curves representing the boundary) would be sufficient to

represent the endpoints.

4.1.4 Intersection of three points

Detection accuracy can be further improved by using intersection points of

three lines for each endpoint. This is done by utilising the peak coordinates

(ρ0, θ0), without imposing any extra computational burden. Note that peak

information should not be neglected but used alongside the butterfly bound-

ary information. It is easy to further increase the reliability of the result by

introducing a third straight line. Because the peak corresponds to the line

passing through both of the endpoints, it can be considered as a valuable cri-

terion. Note that, as a part of the MLFRFT processing steps, this peak will
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be captured via the peak detection process; therefore, no extra computation

will be imposed to the system.

Figure 4.4: Figure 4.3 is cropped and the intersection area for pf is enlarged.
The intersection area forms a triangular shape. The true endpoint is defined
as the geometrical centre of the triangle.

Figure 4.3 shows the intersection of the lines corresponding to the bound-

ary points and the peak (coloured in red) in the image domain. In theory,

straight-lines represented by (ρf1, θ1), (ρf2, θ2) and (ρ0, θ0) have one commu-

nal intersection which is the first endpoint (pf in Figure 4.2(a)). The same

scenario applies for the straight-lines represented by (ρs1, θ1), (ρs2, θ2) and

(ρ0, θ0) to detect the second endpoint (ps in Figure 4.2(a)). However, in

practice, these lines do not meet at an exact point and a triangular shape

forms in the intersection area. This is due to rounding errors caused by

discretisation of the Hough space.

For instance, if we crop the Figure 4.3 and enlarge the intersection area

of pf , a triangular shape can be seen as shown in Figure 4.4. A fair ap-

proximation would be to choose the centroid of the triangle as the detected
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endpoint. Geometric barycentre or centroid of a triangle is the average (arith-

metic mean) position of the three vertices. Simply speaking, it is a single

point where the three medians1 of a triangle intersect. If (x1, y1), (x2, y2) and

(x3, y3) are three vertices of the triangle then the centroid is given by

c =

(
(x1 + x2 + x3)

3
,
(y1 + y2 + y3)

3

)
(4.4)

A formal statement for the LSBB algorithm is given as follows:

Step 1) Curve fitting. A number of adjacent sinusoids on each boundary

will be fitted into a single curve using a Robust Least Squares method.

This is done by choosing multiple columns along θ. Empirical studies

showed twenty columns on each side of the peak can provide sufficient

accuracy for curve fitting.

Step 2) Boundary point selection. Define the ∆θ and seek the rising

and falling edges along the two column vectors θ1 and θ2 and extract

(ρf1, θ1), (ρf2, θ2), (ρs1, θ1) and (ρs2, θ2).

Step 3) Solving simultaneous equations. Find the line intersections

of straight-lines represented by (ρf1, θ1), (ρf2, θ2), and (ρ0, θ0) in the

image domain. A triangular shape appears in the intersection area.

The target endpoint is found by locating the centroid of the triangle

using Equation 4.4.

Step 4) Repeat Step 3 for the second endpoint. Solving the simul-

taneous equations to find the intersections of (ρs1, θ1), (ρs2, θ2), and

(ρ0, θ0).

Step 5) Draw the segment. Connect the two endpoints to identify the

straight-line segment.

1Median of a triangle is a straight line cutting through a vertex and the midpoint of
the opposite side, and splits the triangle into two equal areas
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(a) (b)

Figure 4.5: (a) Mixed shape image. (b) Its overlapping sinogram.

Problem

Despite its accuracy, the LSBB algorithm is highly dependent on the num-

ber of lines in the image space and detection precision can be unfavourably

affected when the number of segments increases. This will lead to a complex

Hough space with superimposed butterfly wings. That is a recurrent problem

in image processing applications because there are typically many line seg-

ments in an image. For instance, Figure 4.5(a) shows a test image reported

in [70, 2, 71], consisting of a mixture of three distinguishable straight-line

segments and a circle, with its corresponding superimposed butterflies in

Figure 4.5(b). It can be seen, that the sinusoids of L2 are overlapped with

those of L1, L3, and the circle. Accordingly, seeking boundary points for each

peak will be a problematic task and will eventually yield false endpoints. In

fact, the essential condition for the LSBB algorithm is to have a transparent

single butterfly when the impressions of the other peaks are eliminated. This

suggests decomposing the Hough space in a way that, each butterfly appears

in a separate Hough space.
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Solution

Basically, each butterfly has to be treated separately. There are two ways

to do this: either operations in Hough space or enhancements in image space.

To apply operations in Hough space a typical solution could be to define a

“window-of-interest” around each peak and its surrounding sinusoids [63,

64]; however, it would not guarantee the complete elimination of adjacent

peaks and their overlapping sinusoids. Instead for each peak a window can

be defined in image space around the straight-line representing that peak.

The concept of neighbourhood of a straight-line can be used to construct

such a window in the image plane [67]. However, one must go through the

entire process of building a proper neighbourhood and compromise on the

radius selection for each segment. The neighbourhood approach also requires

tedious parameter tuning. In the following, a new window-of-interest in the

image domain is defined and the butterfly of each segment is isolated without

neighbourhood identification. Because computation of each window and its

corresponding butterfly is independent the algorithm can be implemented in

parallel.

4.2 Parallel windowing approach (PWA)

The aim is to isolate the butterflies in a way that each of them appears

in a separate sub-Hough space. Having the straight-line parameters (ρi, θi)

obtained via the MLFRFT-based HT, a set of windows can be defined in the

spatial domain to encompass the area surrounding the lines. Note that the

number of windows is equal to the number of peaks, i.e. one window for each

detected straight line.

Let us define L0 with the parameters (ρ0, θ0) as a straight-line passing

through the entire image. To form a window around L0, a predefined param-

eter µ is used as the width of this window. We can select µ as t + 2 pixels

where t is the maximum line thickness in pixels. The length of the window
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Figure 4.6: Illustration of window-of-interest in image plane for straight-line
L0. µ is the width of the window

is restricted to the image boundary. Figure. 4.6 illustrates the definition of

the window-of-interest in the image plane. It can be seen that the proposed

window forms a parallelogram encompassing the entire straight-line. To ac-

quire a sub-HT, only feature points inside the window will be mapped into

the Hough space, meaning that any other feature points outside the window

will be neglected in butterfly formation. The resulting Hough space has the

same size as the original HT, but it contains only the sinusoids that belong

to the feature points falling inside the parallelogram. A block diagram of the

PWA-HT process is drawn in Figure. 4.7.

It should be emphasized that, because computing each decomposed Hough

space is an independent process, it is easy to calculate the whole set of sub-

Hough spaces in parallel using multi-core CPU systems. Parallel implemen-

tation of the algorithm can help reduce the computational cost significantly.

This ability is one of the important characteristics of the proposed method.
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Figure 4.7: Block diagram of the proposed parallel windowing approach to
HT butterfly decomposition (PWA-HT) for line segment detection.

4.3 Disturbance elimination

Although the windowing approach is capable of removing the disturbing si-

nusoids caused by the feature points outside the window, it cannot guarantee

that all of the remaining feature points inside the window belong to the same

segment or to a number of collinear segments. In other words, the remaining

feature points inside the window may be either collinear or non-collinear.

Collinear feature points will contribute to the formation of the butterfly.

However, non-collinear feature points inside the window will cause disturb-

ing sinusoids. Such disturbance will degrade the detection accuracy and lead

to a false detection and therefore has to be excluded.

To clarify the problem, let us consider a test image and its corresponding

sub-HT as shown in Figure. 4.8. Figure. 4.8(a) shows a synthetic image with

segment L1 as the target straight-line segment, to be detected. Figure. 4.8(b)

shows the corresponding sub-HT when the effect of disturbing feature points

outside the window is eliminated thanks to the windowing approach.

It can be seen from Figure. 4.8(b) that, even after applying the image-
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(a) (b)

Figure 4.8: Problem of disturbing feature points inside the window. (a) Orig-
inal image with target segment L1. (b) Butterfly captured using windowing
approach. Sinusoids of L2 are still superimposing with those of L1.

domain window, sinusoids of L2, (the line which intersects with L1’s exten-

sion), still superimpose with those of L1. Consequently, seeking the rising

edge will mislead us to admit e2 (in Figure. 4.8(a)) as L1’s first endpoint

rather than the true endpoint which is e1. The problem occurs when the

target segment, or its extension, intersects with one or more non-collinear

segments within the image boundary. As a result, any non-collinear feature

points inside the window will also get voted, alongside the collinear feature

points, during the sub-HT process (see the shadow of L2 in Figure. 4.8(b)).

Therefore, the essential condition is to have the effect of any disturbing fea-

ture point inside the window excluded. This suggests an essential enhance-

ment and filtering technique to exclude the remaining non-collinear feature

points. This enhancement has to be performed after the MLFRFT-based

HT, thus, line parameters, i.e. ρi and θi are known. Basically, the algorithm

can be explained in two major steps:

Step 1) Seek the lines which intersect with the target segment or its ex-

tension. The intersection has to occur within the image coordinates.

This is straightforward because line parameters, i.e. (~ρ, ~θ), are known,

thanks to the MLFRFT-based HT. Having the parameters, straight-line
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equations can be constructed by ρi = x cos θi+y sin θi. Thus, intersect-

ing lines can be found by solving a series of simultaneous equations.

Algorithm 3 synthesizes the pseudo-code of how to find and store the

lines having intersection within image.

Step 2) For each intersecting line of every target segment construct a mask

window Wm with width rm. This time mask the feature points inside

the window by assigning every pixel to zero. Note that, such a window

plays the role of a mask-filter therefore the rm can be as small as 3 to

5 pixels. Algorithm 4 summarizes the procedure.

Algorithm 3 Find and store the lines having intersection within image

1: Input: ~ρ, ~θ /* From the MLFRFT-based HT /*
2: M = [0]n×n /* n is the total number of lines /*
3: for all i such that 1 ≤ i ≤ (n− 1) do
4: for all j such that (i+ 1) ≤ j ≤ n do
5: x← (ρi sin θj − ρj sin θi)/(cos θi sin θj − cos θj sin θi)
6: y ← (−ρi cos θj + ρj cos θi)/(cos θi sin θj − cos θj sin θi)
7: /* Gets the coordinates of the intersection point /*
8: if (x, y) is inside image coordinates then
9: M [i, j]← True

10: else
11: M [i, j]← False
12: end if
13: end for
14: end for
15: M ←M +MT

16: Output: M /* intersection matrix /*

Let us consider the target straight-line segment L (coloured in red) as

shown in Figure 4.9(a) and non-collinear segments L1, L2, and L3. L3 has

intersection with L, whereas, L2, and L3 are have intersections with ex-

tensions of L. Figure 4.9(b) shows the result of the windowing approach

without disturbance elimination. It can be seen that L1 and L2 affect the

82



Algorithm 4 Create the window (mask-filter) for each line and compute the
sub-HT.
1: Input: Original image I,
2: P = 0, H = 0
3: for all i such that 1 ≤ i ≤ n do /* for every straight-line/*
4: /* Construct the window Wi for straight-line (ρi, θi) /*
5: /* and exclude the feature points outside the window /*
6: /* Ii is the original image when masked with Wi

7: Compute Ii = I & Wi

8: P ← find(M [i]) /* Returns indexes of intersecting lines for ith line
/*

9: if P 6= 0 then
10: for all j such that 1 ≤ j ≤ length of P do
11: /* Construct the mask window Wm /*
12: Compute Ii = Ii & Wm

13: end for
14: end if
15: Compute Hi = hough(Ii) /* Returns the sub-HT for the ith target

segment /*
16: end for
17: Output: H
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(a) (b) (c)

Figure 4.9: Comparison between the sub-HT butterflies. (a) Synthetic image
of 512×512 pixels. (b) Butterfly captured without disturbance elimination.
(c) Butterfly captured via improved windowing approach.

butterfly’s significant edge. That will eventually lead to a large error. In

Figure 4.9(c) these sinusoids have been completely removed thanks to the

disturbance elimination algorithm explained above.

84



Chapter 5

Experimental results and

analysis

In this chapter the performance of the proposed algorithm is verified in terms

of endpoint detection accuracy and robustness in the presence of noise. The

experiments were conducted on synthetic as well as real-word images reported

in the recent literature.

5.1 Endpoint detection accuracy

This experiment aims to verify the segmentation accuracy and compare the

results with the ground truth location of the endpoints. An image of four

line segments with different thickness, i.e. 2 and 8 pixels, mixed with two

curvilinear objects has been chosen. Figure 5.1(a) shows the test image of

size (489 × 609) with its corresponding butterflies in Figure 5.1(b). It can

be seen that the sinusoids of line segments overlap with each other and with

those of the curvilinear shapes, making the detection of boundary points

a problematic task. The result of line detection using a MLFRFT-based

HT is shown in Figure 5.1(c) where all of the potential straight-lines are

found. Using the proposed parallel windowing approach, the butterflies are
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divided into four isolated and single butterfly Hough spaces. The four isolated

butterflies of S1, S2, S3, and S4, are depicted in Figures. 5.1(d), (e), (f), and

(g), respectively. Note that the sinusoids corresponding to the curvilinear

structures do not appear in the isolated butterflies, because these sinusoids

did not contribute to any peak. The result of endpoint detection using a

PWA-HT is shown in Figure 5.1(h).

Qualitative analysis given in Table 5.1 provides a better insight into the

accuracy of PWA-HT in endpoint detection. Obtained via the MLFRFT-

based HT, (ρi, θi) refers to the peaks in the Hough space, where −780 ≤
ρi ≤ 780 and −π/2 ≤ θi < π/2. Each of these peaks correspond to a

straight-line in the image domain as shown in Figure 5.1(c) . The location

of the endpoints for each segment is denoted in (x, y) coordinates where the

origin is set to the top-left corner of the image. The detected location of

the endpoints has been compared with the ground-truth data. Euclidean

distance from the detected endpoint to its ground-truth position has been

used to measure the error, i.e. deviation from ground-truth.

Based on the observations and keeping the size of the image and the length

of the segments in mind, the PWA-HT shows the average deviation from

ground truth data to be 2-3 pixels error for lines with thickness of 2 pixels

and 5-6 pixels error for the lines with thickness of 8 pixels. Minor deviation

of the detected endpoints from the ground-truth coordinates illustrates an

acceptable accuracy of the proposed butterfly isolation method regardless of

line thickness and having curvilinear structure. However, it is worth drawing

the reader’s attention to the sensitivity of accuracy to segments with different

thickness. Detection accuracy degrades as the width of the segment grows.

For the segments S1 and S2 with thicker width, deviation from the ground-

truth data is larger than the other two. This is indeed expected because

there does not exist one single pixel that represents an endpoint for a thick

segment but, instead, a number of pixels. Since the central pixel has been

chosen as the ground-truth position of each endpoint, the detected endpoint
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may not lie on the same pixel.

Table 5.1: Evaluation on endpoint detection accuracy. Qualitative results of
Figure 5.1

Line segment S1 S2 S3 S4

Peak (ρi, θi) (-70,-41) (262,58) (-4,-61) (438,43)

First

Ground-truth endpoint (49,160) (37,288) (41,27) (78,563)

data Second

endpoint (415,583) (449,29) (448,253) (448,160)

Detected

First coordinates (53,157) (34,283) (43,28) (80,561)

endpoint Deviation from

Detection ground-truth 5 5.8 2.2 2.8

results Detected

Second coordinates (412,580) (446,33) (445,254) (447,158)

endpoint Deviation from

ground-truth 4.2 6.4 3.1 2.2
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(a) (b) (c)

(d) (e) (f) (g)

(h)

Figure 5.1: (a) Mixed shape and mixed thickness image of size (489 × 609).
(b) The overlapping butterflies. (c) Result of MLFRFT-based HT. (d)-(g)
Isolated butterflies of S1, S2, S3, and S4, respectively. (g) Detected segments
PWA-HT.
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5.2 Disturbance elimination

To evaluate the performance of the proposed algorithm with and without

the disturbance elimination technique explained in Section 4.3, a detailed

qualitative analysis has been performed in this experiment. A real greyscale

image of size (512 × 512) with ground-truth information of the number of

segments and the coordinates of the endpoints has been used, as shown in

Figure 5.2(a). Target segments S1 to S6 have been labelled for the sake of

clarity. The result of an MLFRFT-based HT is depicted in Figure 5.2(c),

where all of the straight-lines have been detected. L1 to L6 are the corre-

sponding straight-lines passing through S1 to S6, respectively. Algorithm 3

generates the line intersection matrix M given in Table 5.2, where lines that

are intersecting with each target segment are identified for further processing.

Table 5.2: Intersection matrix M as a result of Algorithm3. Lines that are
intersecting with each target segment are identified.

L1 L2 L3 L4 L5 L6

L1 0 0 1 1 0 0

L2 0 0 1 1 0 0

L3 1 1 0 0 1 1

L4 1 1 0 0 1 1

L5 0 0 1 1 0 0

L6 0 0 1 1 0 0

Figure 5.2(d)-(i) illustrates the result of the windowing approach without

applying the disturbance elimination method. Shadows of disturbing fea-

ture points that are visible around the butterfly wings will eventually lead

to a large deviation from the ground-truth endpoints. Taking the butterfly

of S1 in Figure 5.2(d) as an instance, the shadows surrounding the butter-

fly peak and the wings are the consequence of feature points of S3 and S4

which intersect with S1, (refer to Table 5.2). The results of line segmen-

tation without disturbance elimination is shown in Figure 5.2(p) where the

considerable effect of S3 and S4 on the endpoints of S1 and S2 is visible. Fig-
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ure 5.2(j)-(o) represent the result of the improved windowing approach using

the disturbance elimination algorithm, where the disturbing feature points

have been removed using Algorithm 4. The segmentation result is depicted

in Figure 5.2(q).

Table 5.3 provides a detailed comparison between the ground-truth in-

formation and the detected endpoint. Euclidean distance from the detected

endpoint to the true endpoint has been measured as the deviation criterion.

When the disturbance elimination is applied, the error is as small as two to

three pixels distance.

Table 5.3: Detailed comparison of the method with the ground-truth data.
The PWA-HT with disturbance elimination has a lower deviation from the
ground-truth (GT) data.

Line segment S1 S2 S3 S4 S5 S6

First

Ground-truth endpoint (46,452) (80,502) (315,206) (234,266) (233,264) (302,352)

data Second

endpoint (243,282) (290,335) (378,287) (301,352) (310,204) (379,290)

Detected

First coordinates (51,448) (84,497) (308,200) (233,260) (232,266) (300,353)

Without endpoint Deviation

disturbance from GT 6.4 6.4 9.2 6.0 2.2 2.2

elimination Detected

Second coordinates (332,218) (336,272) (383,294) (299,359) (316,200) (382,285)

endpoint Deviation

from GT 109.6 78.0 8.6 7.2 7.2 5.8

Detected

First coordinates (48,451) (79,502) (313,205) (235,265) (234,265) (301,354)

With endpoint Deviation

disturbance from GT 2.2 1.0 2.2 1.4 1.4 2.2

elimination Detected

Second coordinates (245,281) (289,337) (378,290) (301,351) (312,205) (378,291)

endpoint Deviation

from GT 2.2 2.2 3.0 1.0 2.2 1.4
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(a) (b) (c)

(d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

(p) (q)

Figure 5.2: Evaluation on disturbance elimination.(a) Original greyscale im-
age. (b) Overlapping butterflies. (c) Result of MLFRFT-based HT. (d)-(i)
Result of PWA-HT without disturbance elimination. (j)-(o) Result of the
PWA-HT with disturbance elimination. (p) Segmentation result before dis-
turbance elimination. (q) Segmentation result after disturbance elimination.
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5.3 Robustness in presence of noise

In this experiment, the robustness of the proposed method to different lev-

els of Gaussian white noise has been evaluated. An edge image reported in

[77, 78] with one step-change in the middle is used, and a comparison has

been made with three state-of-the-art line segmentation techniques, namely,

the LSD [77], EDLines [78], and Du et al.’s HT neighbourhood approach [67].

To generate the results produced by the LSD, a freely available package in

IPOL provided by the authors of the LSD has been used [118]. A similar

freely available package has been used for the EDLines algorithm obtained

from [119]. Unfortunately, the original implementation of the neighbourhood

approach were not freely available and could not be provided via the authors

in [67, 66] either. Therefore, the algorithm was implemented by the author of

this thesis using MATLAB. Implementation was based on the HT neighbour-

hood definition explained in [66] and the segmentation method explained in

[67].

Since the LSD and EDLines are parameter-less algorithms, default set-

tings were used without any changes. For the neighbourhood approach, the

following parameter tuning has been chosen for this and the rest of the exper-

iments presented in this chapter; neighbourhood radius r is set to 6 (as sug-

gested in [66]), minimum length of the segment l = 20 pixels, and collinear

segments distance d = 30 to compute the collinear segments resolution δθ

based on the formula in [67]. As for the proposed segmentation algorithm, a

four-layer MLFRFT with γ1 = 0.5, γ2 = 0.7, γ3 = 0.9, and γ4 = 1 was cho-

sen; and for the window, t = 2 as the maximum line thickness and ∆θ = 35◦

from θ0.

Figure 5.3 illustrates the original image of size (512×512) pixels mixed

with Gaussian white noise of mean = -0.2 and variance = 0.4, in the first

row, and mean = -0.9 and variance = 1.1, in the second row. In the first row

with a lower-density of noise, the LSD produced a number of disconnected

segments instead of one single continuous segment. This is indeed expected;
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the presence of noise on the vertical strip prevents the line-support regions

of the LSD to iteratively grow to a continuous segment. Therefore, only a

number of short segments can be generated. By increasing the noise density,

as shown in the second row, the LSD fails to detect even a single portion of

the segment; however, no false positive detection occurred.

In low-density noise, the EDLines produced a better result than the LSD

but still suffers from disjointed segments. That is due to the use of a default

5 × 5 Gaussian smoothing kernel in its first phase that generates misleading

gradient information for the pixels lying on the vertical strip. In high-density

noise, the EDLines detects some portions of the segment in a form of a

number of short segments; some with a slight deviation from the actual angle.

This is again because of the very high rate of pixel intensity changes along

the strip that cause wrong gradient information that adversely effect the edge

drawing procedure in EDLines. However, both the LSD and EDLines have

suggested the image resolution is cut in half in order to cope with the noise

sensitivity problem [77, 78].

The neighbourhood approach detects the segment without breaking it

down into short lines, in the first row. The global nature of the SHT, em-

bedded in this method ignores the effect of noisy pixels in the local view.

However, in high-density noise, it produces disconnected and disoriented seg-

ments with a few false positives. That is, in fact, due to the edge detection

prior to applying the SHT. When the noise-level is high, some of the true

feature points are ignored as noisy pixels and also some false points can be

seen as true feature points. Therefore, the result cannot be reliable for the

SHT to detect the correct peak.

The proposed method based on PWA-HT generates an accurate result in

low-density noise by detecting the entire segment as a single vertical strip

without producing any false positives. This is mainly due to being indepen-

dent of edge detection by using high resolution frequency sampling of the

MLFRFT-based HT to accurately detect the location and the orientation of
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Figure 5.3: Verification on noisy image. From left, original noisy image of
a vertical strip of size (512 × 512) with two levels of Gaussian white noise,
results produced by the LSD, the EDLines, Du et al.’s HT neighbourhood
approach, and the proposed PWA-HT, respectively.

the segment in the first place. The result in the second row also shows the

robustness of the algorithm to high-density noise. The vertical strip is fully

captured without losing the connectivity of the pixels. However, a few false

positive segments are found in the background. To alleviate the problem line

validation used in [77, 78] can be adapted. This can be considered in the

future work of this research. Overall, the proposed method demonstrates a

good precision, in terms of identifying the true segment accurately, in less

noisy data (see the top-right of Figure 5.3), whilst preserving the immutabil-

ity of precision in highly cluttered image by detecting the true segment.

A similar comparison has been conducted on the House image as reported

in [2] to examine the robustness the PWA-HT to noise. Figure 5.4(a) shows

the image of a house consisting of 11 straight lines occluded with white Gaus-

sian white noise of mean = -0.1 and variance = 0.3. Figure 5.4(b-f) shows

the result of line detection using the MLFRFT-based HT, line segmentation

using the PWA-HT, SHT, LSD, and EDLines, respectively. To obtain the re-
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(a) Original (b) MLFRFT-HT (c) PWA-HT

(d) SHT (e) LSD (f) EDLines

Figure 5.4: Robustness in presence of noise. (a) Image of House. (b) Result
of MLFRFT-based HT. (c)-(f) Line segmentation using the PWA-HT, SHT,
LSD, and EDLines, respectively.

sult of the SHT, MATLAB’s built-in functions hough, houghpeaks with the

maximum number of peaks set to 11 and houghlines with minimum seg-

ment length of 50 has been used. These parameters were determined based

on trial-and-error to obtain the perceptually best consequence.

From Figure 5.4, it can be seen that the PWA-HT is more robust to

noise than the other representative methods. Since the global information

is considered and accurate frequency sampling is applied, the PWA-HT is

capable of detecting noisy segments. When true line segments are corrupted

by noise, local information, such as gradient orientation, cannot be reliable.

That is why the LSD and the EDLines fail to detect the true endpoints of

the long segments. In addition, their thresholds are not adaptive but pre-

determined. Although the SHT detects seven segments with only a small
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Figure 5.5: A set of five selected samples from dataset of 175 image. J = 10
and d = 0.50

difference (few pixels) from the true location or coordinates of the endpoints,

the remaining five segments are considered as false positives.

To conduct a quantitative study on noise performance, a dataset of 175

synthetic images each containing J lines mixed with one or two curvilinear

structures where J = 8, 10, 13, 15, 20, 25, and 30 has been built. For

each value of J , 5 distinct manners of object occurrence have been ran-

domly chosen in terms of orientation and position. Then different levels

of noise density d have been added to evaluate the detection accuracy. d

varies from 0 to 0.5 for the salt and paper noise and affect approximately

d× the number of pixels. Figure 5.5 shows a subset of five selected images

from the dataset with J = 10 and noise density d = 0.50.

A comparison with the SHT, LSD, and PWA-HT is indicated in Fig-

ure 5.6. The results exhibit a moderate performance for the SHT. This fairly

consistent behaviour to variant noise is due to the HT’s voting process and

the minimum threshold value to distinguish the potential straight lines from

other image components. Nevertheless, edge detection prior to the SHT

causes a major inaccuracy in the final result by neglecting the true feature

points. LSD shows an absolute precision in less noisy data; however, it is

unable to preserve the accuracy in higher-density noise levels. These noises

affect the region growing process of the LSD. The proposed segment detec-

tor based on the PWA-HT demonstrates an adequate precision in less noisy

data while it preserves the precision immutability in even highly cluttered
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images. The reason can be found in the use of 1) The MLFRFT-based HT

to accurately detect the location and orientation of possible line segments in

the first place; 2) the parallel windowing approach to precisely remove the

effect of disturbing feature points in the image plane; and 3) The segment

detection algorithm based on the butterfly boundary analysis.
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Figure 5.6: Comparison between the average rate of line segment detection
in presence of noise using SHT, LSD, and PWA-HT for a dataset of 175
synthetic images. Results of the SHT, LSD, and PWA-HT are coloured in
blue, red, and green, respectively. d represents variant noise densities for the
salt and pepper noise.
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5.4 Evaluation on natural images

It this experiment, performance of the PWA-HT on a number of real-world

test images, reported in the literature, has been evaluated. Results are de-

picted in Figure 5.7 and Figure 5.8. The first column shows the original

images of a Truck, a Zebra, and an Office reported in [77, 78], a House [65],

two arrows [67], geometrical objects [70], and microscopic elements [120].

Segmentation results for the LSD, EDLines, Du et al.’s HT neighbourhood

approach, and the proposed PWA-HT are shown in the second, third, fourth,

and fifth columns, respectively. Details of this experiment such as the number

of detected segments by each method and processing time are summarised

in Table 5.1.

Figure 5.7 shows more complex texture images with significantly more

segments to be detected, whereas Figure 5.8 shows images with simple back-

grounds and one main feature.

Each of the selected images has unique characteristics to test the perfor-

mance of the representative methods. The Truck image in Figure 5.7 is a test

image with a chessboard pattern and geometrical structures such as squares,

rectangles, and other polygons. The Zebra has non-geometrical structures

with curved lines, and most of the detected lines correspond to straight-edges

but not real straight-lines. Similar to the Truck, the Office image also has

geometrical structure, but with bold lines and variable illumination levels.

The House image is a classical test image with a strong outline and sharp

edges that has an appropriate mixture of short and long segments.

The Arrow1 in Figure 5.8 is an image with a simple background and clear

and complete edges. The Arrow2 shows the case where the edges of the ar-

row on a public road are fragmented because of physical degradation. The

Objects image is an appropriate example to distinguish between the true

straight-lines and curvilinear structures in an image. It is expected that a

straight-line segmentation method will ignore any non-linear features in an

image, unlike the results of the LSD and EDLines shown in this example.
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And finally, the last image shows an electronic microscopic image of viruses

magnified by 150,000 times. This image particularly indicates that, despite

having a simple and unified background, any noise-like patterns and rough-

ness in the surface can degrade the detection results in local approaches.

The results show, in most of the cases, that the LSD generates more

segments than the other three methods. However, many of the identified

short segments are actually part of a single continuous segment that should

not be broken down into several segments. This effect is more visible in the

House, Arrow1, Objects, and Microscopic images. EDLines has a behaviour

very similar to the LSD, but with a considerably lower computational burden.

In contrast, the HT neighbourhood approach fails to detect many of the

true short segments (see the results for the Truck, Zebra, and Office). That is

because of the trade-off in selecting the neighbourhood radius r. A small ra-

dius will not guarantee complete coverage of the neighbourhood, while a large

radius fails to produce the short segments. Segments with shorter lengths

have bigger approximation errors in comparison to those with longer lengths

[66]. The HT neighbourhood approach also has the highest computational

complexity among the rest of the tested methods.

However, the PWA-HT showed a superior performance in terms of both

the number of detected segments and computational time, when compared to

Du et al.’s HT neighbourhood approach. Results show more short segments

can be detected in a lower processing time. That is due to the high resolution

frequency sampling of the MLFRFT used to generate high resolution peaks.

Also, note that the accuracy of the detected endpoints in the PWA-HT are

also higher than Du et al.’s approach (see the results for the House, Arrow1,

Object, and Microscopic images).
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Figure 5.7: Line segmentation on natural images I. From left column, original
images, results produced by the LSD, EDLines, Du et al.’s HT neighbourhood
approach, and the proposed PWA-HT, respectively.

Table 5.4: Time cost and number of segments.
Image informaiton LSD EDLines Du et al. PWA-HT

Description size No. of Time No. of Time No. of Time No. of Time
Seg. (sec) Seg. (sec) Seg. (sec) Seg. (sec)

Truck 911×850 799 0.42 587 0.03 70 1.71 227 1.53
Zebra 912×851 1704 0.66 1579 0.06 82 2.34 261 1.88
Office 909×914 613 0.46 616 0.05 72 1.84 155 1.36
House 888×701 231 0.37 190 0.03 29 1.56 47 1.31
Arrow1 512×512 66 0.18 48 0.03 18 1.29 18 0.98
Arrow2 512×512 176 0.16 152 0.02 14 1.05 23 0.72
Objects 512×512 88 0.16 50 0.02 6 0.87 10 0.64
Microscope 512×512 157 0.14 163 0.02 31 1.22 42 0.81
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Figure 5.8: Line segmentation on natural images II. From left column, orig-
inal images, results produced by the LSD, EDLines, Du et al.’s HT neigh-
bourhood approach, and the proposed PWA-HT, respectively.
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5.5 Discussion and analysis of findings

In this chapter, performance of the proposed parallel windowing approach to

the Hough transform using a multilayer fractional Fourier transform (PWA-

HT) was tested in terms of endpoint detection accuracy, robustness to noise

and disturbance, and detecting short segments in real-world images. The re-

sults of these experiments show some notable advantages as well as disadvan-

tages of the PWA-HT over the representative works that can be interpreted

in the following.

The main advantage of the proposed the PWA-HT over the representative

approaches is robustness to noise and disturbance in the image. PWA-HT

inherits its robustness to noise from the advanced MLFRFT-based HT. Use

of the multi-layer Fourier transform also helps reduce the computational bur-

den of the SHT suggested in Du et al.’s approach, due to being independent

of prior edge detection and use of the fast Fourier transform algorithm. Fur-

thermore, the disturbance elimination algorithm removes the effect of other

non-collinear segments by masking the feature points inside each window.

However, experiments on the step image (Figure 5.3) and the dataset of

175 images (Figure 5.6) show that the PWA-HT is incapable of maintaining

accuracy when we face a high rate of occlusion in the pixels. This yields

to false positive detection as observed in Figure 5.3. Results in Figure 5.6

demonstrates that when noise density is more than 0.4, i.e. more than 40

per cent of the pixels are occluded with salt and pepper noise, the PWA-HT

fails to maintain its robustness. Less than 80 per cent of the segments could

have been captured for the images of 30 lines with d = 0.5. Nevertheless, the

PWA-HT still outperforms the representative approaches such as the LSD

and EDLines, due to its global nature.

One of the main advantages of the local approaches, such as the LSD and

EDLines, over the PWA-HT and Du et al.’s neighbourhood approach is the

line segment validation procedure that is embedded inside their algorithm

[77, 78]. In the LSD and EDLines line segment validation is applied after
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identifying the potential candidate lines to avoid false detections. In fact, this

is the reason why the PWA-HT and the neighbourhood approach produces

a few false positives in Figure 5.3. To alleviate the problem a line validation

procedure has been suggested in the future work of this research.

Results on natural images revealed that despite the PWA-HT’s superior

performance over the HT neighbourhood approach it still fails to detect many

short segment in comparison to the LSD and EDLines. As discussed in Sec-

tion 2.3.2 this is, in fact, a very classical drawback of the HT-based methods

and is due to their natural global behaviour. A local approach alone is sensi-

tive to noise and produces disjointed segments. On the other hand, a global

approach fails to identify the short segments. The optimum solution could

be to take advantage of both approaches by combining them. This idea has

been further discussed in the future work section.
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Chapter 6

Conclusion and future work

6.1 Summary of the work done

In this research, a novel line segment detection method based on the infor-

mation in both image space and transformed space was proposed.

In the first phase, an advanced Fourier-based Hough transform was used

to identify every potential straight-line. That was done by utilising a 2D

multilayer fractional Fourier transform (MLFRFT), Cartesian to polar map-

ping of the frequency samples, and applying the central slice theorem. The

parameter space and the peak structure were further enhanced by a 1D-DoG

filter. Having a high resolution frequency grid yielded a high resolution pa-

rameter space with distinguishable peaks and butterfly boundary sinusoids.

The feasibility of parallel implementation of the MLFRFT was investigated

and the results revealed an interesting fact. For a typical four-layer ML-

FRFT, parallel computation of fractional layers increased the computational

time instead of helping to reduce it. That is due to the fact that the commu-

nication overhead between the client and the parallel workers is higher than

the complexity of the code inside the for loop (Section. 3.4.1). The execu-

tion time of the MLFRFT-based HT was compared with the SHT, which was

nearly three times faster in line detection when using the MLFRFT-based
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HT. A real-world application of line detection using the MLFRFT was sug-

gested in lane marker detection that has also shown a faster performance in

comparison with a traditional SHT-based method.

In the second phase, the identified straight-lines were further analysed for

segmentation. A line segmentation method using the HT butterfly bound-

ary (LSBB) was suggested in Section. 4.1. Each straight-line in the image

space corresponds to a butterfly in Hough space and sinusoids lying on the

boundary of the butterfly wings represent the endpoints of the segments. To

approximate the boundary sinusoids, a Robust Least Squares curve fitting

was used by obtaining multiple points along each boundary sinusoid. After-

wards, intersections of two boundary points and the peak were found in the

image space. These points form a triangular shape and the centroid of the tri-

angle was approximated as the location of the target endpoint. To apply this

concept to images with multiple line segments where butterfly wings overlap

with each other, a parallel image-domain windowing approach (PWA-HT)

was adapted. For each straight-line, identified in the first phase, a window

is created with a predefined width that surrounds the target segment and

neglects the other pixels outside the window. To further remove the effect

of non-collinear feature points inside the window a disturbance elimination

algorithm was proposed. Segments that intersect with the target segment or

its extension were identified and filtered out from the window. Afterwards

a sub-HT was applied to map only the feature points inside the window to

achieve a single transparent butterfly.

Experimental results revealed a superior robustness to noise in compari-

son with the other representative line segmentation techniques. The results

also showed the PWA-HT is faster than the state-of-the-art HT-based tech-

nique.
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6.2 Contribution of the thesis

In this work a novel domain-crossing approach to line segmentation was pro-

posed. The main contribution of this research can be summarised as follows:

1. Extending the MLFRFT-based HT from line detection to line segmen-

tation.

2. Investigation on parallel implementation of the MLFRFT-based HT.

3. Computational time comparison between the SHT and MLFRFT-based

HT.

4. Real-world application of the MLFRFT-based HT in lane marker de-

tection.

5. Utilising Least Squares curve fitting to approximate the HT butterfly

boundary sinusoids.

6. Intersection of three lines and centroid of the resulting triangle to lo-

calise segment endpoints.

7. Windowing approach to isolate the HT butterflies to each appear as a

single transparent butterfly.

8. Disturbance elimination algorithm to further enhance the resulting but-

terfly.

6.3 Limitations

The line segment detection method proposed in this thesis has shown a bet-

ter robustness to noise than the LSD and EDLines methods and performed

better, in terms of the detection of short lines, than Du et al.’s neighbour-

hood approach. However, it has to be underlined that the presented method
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is novel but some issues remain unresolved. Two major limitations of the

PWA-HT are as follows:

1. Highlighted by the experimental results, the proposed method fails to

avoid false detection caused by high density noise.

2. Unlike the LSD and EDLines it cannot be considered as a high speed

real-time algorithm but an accurate and robust line segmentation tool

worthy of serious consideration.

6.4 Potential applications

According to the experiments and the performance comparison conducted

in this research a number of potential application areas can be identified for

the proposed algorithm. The PWA-HT would be a preferred method over

local approaches for segment detection in noisy and occluded environments

because of its robustness and reliability. It is also suitable for use in inexpen-

sive systems, e.g. with low resolution cameras, and limited computational

sophistication.

Depending on the processing time required by the task, the PWA-HT can

be used in slow real-time applications. For example, when a processing rate

of one frame per second or less is acceptable, the PWA-HT can be a suitable

candidate. Slow-movement robots used in rescue missions and still medical

images such as in magnetic resonance imaging (MRI) or positron emission

tomography (PET) are among the potential applications of the proposed

method.

6.5 Suggestions for future work

The future work of this research can be categorised as the following:
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1. Parallel Least Squares. In the current algorithm a Robust Least

Squares curve fitting approach is used due to its insensitivity to out-

liers and optimised implementation on MATLAB’s Curve Fitting Tool-

box. Forty points were used to approximate the curve (twenty points

on each side of the peak). For the future work of this research, more

recent developments on such curve fitting approaches can be consid-

ered including Parallel Least Squares curve fitting [121]. Using parallel

methods more boundary points can be taken into consideration with-

out increasing the computational cost. This will increase the accuracy

of the fitted curve.

2. Line validation. As shown in the experiments, a high degree of noise

can cause false positive segments to be generated. One of the major

extensions to this work could be to avoid false segments being detected.

A number of works have addressed this problem using line segment val-

idation and verification techniques, such as in [77, 78, 5]. Line segment

validation can be performed after identifying the potential segments

via the PWA-HT.

3. Combining local and global approaches. Although more short

lines can be detected with the PWA-HT than the HT neighbourhood

approach, there is still a considerable difference between the proposed

method and the representative local approaches in terms of the num-

ber of detected short segments. Local methods can easily detect short

segments without false detection. A new direction to this research can

be to make use of local image scanning suggested in [77] and incor-

porating the region growing technique to seek for the short segments

outside the windows. This can be done after the PWA-HT, to de-

tect every other short segment that could not be identified during the

process. Furthermore, in the disturbance elimination stage, the region

growing can be applied inside the window to detect and filter out any
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Figure 6.1: Block diagram of the future work and extensions to this research.

disturbances caused by the short segments that are not distinguishable

by the MLFRFT-based HT. Note that the local approaches are rela-

tively fast and considered as real-time algorithms. Therefore, the extra

computational cost would be bearable.

4. Implementation in a lower-level programming language. Last

but not least, computational time might be further improved by trans-

lating the source code of the proposed algorithm from MATLAB, which

is a high-level programming language, to a low or intermediate-level

programming language such as C or C++ . Note that, the LSD and

EDLines are based on C (low-level) and C++ (intermediate-level) lan-

guages respectively. The C++ implementation of the current algorithm

is on progress at present and experiments on the MLFRFT have already

shown a promising result.
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Figure 6.1 illustrates a block diagram of the suggested future work and

extensions to this research.

6.6 Epilogue

With the fast progress of research and applications in image understanding

and computer vision, the need for accurate line detection and segmentation

is increasing. The work presented in this thesis has been an attempt to

contribute to one of the primitive and yet important steps in many object

recognition and feature detection tasks, i.e. line detection and segmentation.

On one hand, the proposed algorithm illustrated promising outcomes with

good accuracy. On the other hand, it highlighted the gaps and limitation that

are worthy of future investigation. It also provided grounds for improvement

and expansion of this work.
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Appendix A

Fast Fourier transform

A.1 Forward transform

The fast Fourier transform (FFT) is a computationally optimised algorithm

for calculating the discrete Fourier transform (DFT). Let us consider the

continuous Fourier transform as a form of integral given by

F (u) =

∫ ∞

−∞
f(x)e−j2πuxdx (A.1)

where f(x) is a continuous function in the time domain. As a result of an

imaginary component j the transform yields to a complex domain, refereed

as the Fourier or frequency domain. Recalling that the imaginary exponent

could be written as:

ejθ = cos θ + j sin θ (A.2)

For a digital signal that has been sampled from its continuous form f(x)

into a discrete form f(n), a DFT is defied as:

F (k) =
N−1∑

n=0

f(n) e−j2πnk/N (A.3)
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Here {f0, f1, ..., fN−1} are discrete samples of input signal f(n) and

{F0, F1, ..., FN−1} are the corresponding result of the DFT. N is the total

number of available discrete components in f(n) and is usually a power of 2.

Therefore, to implement the algorithm using a computer program it is

sufficient to write a double loop code and calculate the sums of the products

of input samples and imaginary exponents. The complexity of such operation

is of O(N2) order. However, the complexity can be reduced to the order of

O(N log2N) using the algorithm explained in the following.

Let us consider the DFT of a signal with N = 8 samples given as:

F (k) = f(0) + f(1) e−j2πk/8 + f(2) e−j2π2k/8 + f(3) e−j2π3k/8

+ f(4) e−j2π4k/8 + f(5) e−j2π5k/8 + f(6) e−j2π6k/8 + f(7) e−j2π7k/8 (A.4)

Equation. A.4 can be split into two similar sums by separating the odd

and even elements and factoring out the e−j2πk/8 from f(1) component.

F (k) =

[
f(0) + f(2) e−j2π2k/8 + f(4) e−j2π4k/8 + f(6) e−j2π6k/8

]

+ e−j2πk/8
[
f(1) + f(3) e−j2π2k/8 + f(5) e−j2π4k/8 + f(7) e−j2π6k/8

]
(A.5)

We can repeat the simplification by factoring out e−j2π2k/8:
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F (k) =

[(
f(0) + f(4) e−j2π4k/8

)
+ e−j2π2k/8

(
f(2) + f(6) e−j2π4k/8

)]

+ e−j2πk/8
[(

f(1) + f(5) e−j2π4k/8

)
+ e−j2π2k/8

(
f(3) + f(7) e−j2π4k/8

)]

(A.6)

Equation. A.6 shows there are log2 8 = 3 levels of summation, i.e. the

deepest level in parenthesis, the middle level in brackets and the outer or

the last level. Also, for every level the exponential component is the same.

Equation. A.6 can be further simplified as:

F (k) =

[(
f(0) + f(4) e−jπk

)
+ e−jπk/2

(
f(2) + f(6) e−jπk

)]

+ e−jπk/4
[(

f(1) + f(5) e−jπk
)

+ e−jπk/2
(
f(3) + f(7) e−jπk

)]
(A.7)

Note that one of the interesting properties of a complex number ejθ is the

periodicity at every 2π radian and can be used to speed-up the computation.

Given that

ejθ = ej(θ+2π) (A.8)

Period for each of the exponential terms inside the parenthesis in Equa-

tion. A.7 is k = 2. Meaning that summations inside the parenthesis are the

same for k = 0, 2, 4, 6 and for k = 1, 3, 5, 7. That means on the deepest

level, inside the parenthesis, 4× 2 = 8, i.e. number of summations times the

period, operations are required. Also, as another characteristic of complex

numbers, since k = 1, 3, 5, 7 corresponds to half of the period π, exponent
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multiplier is the same as for k = 0, 2, 4, 6 but with the opposite sign (positive

sign for even terms and negative sign for odd terms).

− ejθ = ej(θ+π) (A.9)

Similarly, the period for each of the exponential terms inside the brackets

is k = 4. Meaning that summations inside the brackets are the same for

the pairs k = 0, 4; k = 1, 5; k = 2, 6 and k = 3, 7. This implies 2 × 4 = 8

operations are needed for the middle level, inside the brackets. Note that the

second half, i.e. odd terms, can be calculated by changing the signs of the

exponent multiplier in first half, because the distance between k and k + 2

is π. Therefore, the factor for k = 0, 4 is +1; for k = 2, 6 is -1; for k = 1, 5 is

−j and for k = 3, 7 is j.

Finally, for the outer level there is one summation for every f(k) compo-

nent, and the period of the exponent multiplier is 8. Which implies 1×8 = 8

operations where the second half of them is achieved by changing the signs

in the first half.

As a result, on every level of computation there are 8 summations. Mean-

ing that for N samples there are log2N levels and N summations required

on each level. That yields to O(N log2N) order of number of operations.

On the other hand, having a constant number of summations on every level

means that the data can be processed in-place. This is the underlying idea

of the fast implementation of the DFT algorithm which is called the FFT.

Given the above explanation, a formal statement of the FFT algorithm

is as follows:

Let us study the steps involved in the algorithm for the previous exam-

ple when N = 8. The first step is to reorder the discrete elements of the input

function from their natural order {f(0), f(1), f(2), f(3), f(4), f(5), f(6), f(7)}
into {f(0), f(4), f(2), f(6), f(1), f(5), f(3), f(7)}.

In practice it is easy to reorder the elements by swapping the bits of the

binary numbers. This is similar to applying an arithmetic mirror.
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Algorithm 5 Formal statement of the FFT algorithm

1: Prepare the input discrete function for summations by rearranging its
elements

2: for every summation level do
3: for every exponential factor of the half-period do
4: Calculate the exponential factor
5: for every summation of this factor do
6: Calculate product of the factor and the second term of the

summation
7: Calculate the summation
8: Calculate the difference
9: end for

10: end for
11: end for

Table A.1: Reordering the numbers in binary by swapping, (mirroring), the
bits.

original order binary form after mirroring new order
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Summation levels in the first for loop include parenthesis, brackets and

outer level. In general, this leads to iterations on pairs, quads, octets and so

on.

The second for loop refers to the iterations on components of the first half-

period and the second half-period, (taking differences instead of summations

for the first half). Note that the period of the deepest level is 2, hence the

half-period is 1, which means this cycle will be executed only once. Similarly,

the period for the second level is 4, hence the half-period is 2 and the cycle

will be executed 2 times.
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The next step is to calculate the exponential factor which is the imaginary

exponent.

The innermost loop calculates the product of the exponential factor and

the second term of the summation, where the exponential term changes its

sign but not its absolute value, i.e. magnitude, according to Equation. A.9.

To perform an in-place processing a butterfly scheme can be utilised as shown

in Figure A.1

Figure A.1: The FFT butterfly scheme.

The bottom term is multiplied by an imaginary exponent and then the

sum of the terms is stored in place of the upper term and the difference is

stored in place of the bottom term. For our example with N = 8 samples

the butterfly is depicted in Figure A.2.
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Figure A.2: Butterfly scheme for N = 8 samples.

A.2 Inverse transform

The inverse Fourier transform of a continuous function is defined as:

f(x) =

∫ ∞

−∞
F (u)ej2πuxdx (A.10)

and its discrete counterpart is

f(n) =
1

N

N−1∑

k=0

F (k) ej2πnk/N (A.11)

Therefore, the difference between the forward and the inverse transforms,

i.e. Equation. A.1 and Equation. A.10, is just a change in sign of the expo-

nential factor. That means, with a slight modification, the algorithm for the

forward transform can also be used for the inverse transform.
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A.3 Remark

Most of the FFT algorithms that are being used in computer programs to-

day as well as the above implementation are based on the “Cooley-Tukey”

algorithm that was proposed in 1965 and became popular several years after

that [122]. Cooley and Tukey reinvented the original algorithm, proposed by

Gauss in 1805, and described a way to perform it efficiently on a computer

system. One of the latest implementations of the FFT based on this algo-

rithm is the FFTW [123] which is a freely available C subroutine library and

can be found at http://www.fftw.org/.
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Appendix B

Proof of DoG filter

A 2D difference of Gaussian filter in spatial domain is defined as:

h(x, y) = d2
e exp

( −d2
e

x2 + y2

)
− d2

i exp

( −d2
i

x2 + y2

)
(B.1)

where

de,i =
1

σe,i
√

2π
(B.2)

, σe and σi are excitatory and inhibitory standard deviation of the Gaussian

filters. A 2D Fourier transform on h(x, y) can be expressed as:

F2

[
h(x, y)

]
= H(X, Y ) = exp

(−P 2
x + P 2

y

d2
e

)
− exp

(−P 2
x + P 2

y

d2
i

)
(B.3)

To take angular slice in polar grid, H(X, Y ) can be substitute by Λh(v, θ):
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Λh(v, θ) = H(X, Y )|in polar grid

= exp

(−(v cos θ)2 + (v sin θ)2

d2
e

)
− exp

(−(v cos θ)2 + (v sin θ)2

d2
i

)

= exp

(−v2

d2
e

)
− exp

(−v2

d2
i

)
(B.4)
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UND: Unite-and-Divide Method in Fourier and Radon
Domains for Line Segment Detection

Daming Shi Senior Member IEEE, Junbin Gao, Payam S. Rahmdel Student Member IEEE,
Michael Antolovich, and Tony Clark

Abstract—In this correspondence paper, we extend our previously
proposed line detection method [1] to line segmentation using a so-
called ”unite-and-divide” (UND) approach. The methodology includes
two phases, namely the union of spectra in the frequency domain,
and the division of the sinogram in Radon space. In the union phase,
given an image, its sinogram is obtained by parallel 2D multilayer
Fourier transforms, Cartesian-to-polar mapping and 1D inverse Fourier
transform. In the division phase, the edges of butterfly wings in the
neighborhood of every sinogram peak are firstly specified, with each
neighborhood area corresponding to a window in image space. By
applying the separated sinogram of each such windowed image, we
can extract the line segments. The Division Phase identifies the edges
of butterfly wings in the neighborhood of every sinogram peak such
that each neighborhood area corresponds to a window in image space.
Line segments are extracted by applying the separated sinogram of each
windowed image. Our experiments are conducted on benchmark images
and the results reveal that the UND method yields higher accuracy,
has lower computational cost and is more robust to noise, compared to
existing state-of-the-art methods.

Index Terms—Line Segment Detection, Radon Transform, Hough
Transform, Fourier Transform.

I. INTRODUCTION

In our daily lives, we localize and recognize objects based on a
variety of line segments, such as corridor guidelines and road edges.
In image processing and computer vision, line segments are the most
important primitive features for object localization and recognition
and are used to solve many problems, such as the detection of
cracks in materials and searching satellite images [2], [3]. However,
in many practical applications, such as image-guided surgery and
military target tracking [4], [5], the requirement of both speed and
accuracy means that there is a need for more efficient and effective
line segment detection methods. Hence, developing new methods to
extract line segments quickly and accurately is still a challenging
topic in computer vision [6].

Existing line segment detection methods fall into three categories,
namely, the top-down approach, the bottom-up approach and the
domain-crossing approach. The top-down approach extracts straight
lines followed by segmentation; whereas the bottom-up approach
starts with single pixels, which grow to segments. The domain-
crossing approach takes advantage of different properties in both
image space and transformed space to detect line segments.

The most commonly used top-down method is the extraction of
straight lines through the Hough transform [7], [8], followed by
detecting the position of endpoints in a straight line. Guil et al [9] use
the fast Hough transform to obtain a straight line, order the feature
points of each straight line, then determine the line segment endpoints
based on the distance of feature points after a clustering procedure.
However, this method cannot deal with a line whose negative slope is
less than −1 and multi-segment lines. Also, if the parameter threshold

Daming Shi, Tony Clark and Payam S. Rahmdel are with the School of
Science and Technology, Middlesex University, London NW4 4BT, UK (e-
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Junbin Gao and Michael Antolovich are with the School of Computing
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of the Hough transform is not chosen properly, the algorithm will
result in a pseudo-line or missing segments.

Cha et al. [10] extend the traditional 2D Hough transform to 3D
in order to find segment endpoints and lengths. In this method, a
Hough transform is used for each individual column or row in image
space to obtain a double Hough space, resulting in the traditional
Hough transform being converted from finding lines to finding line
segments using multi-point voting. This method still has the problems
inherent in the Hough transform, such as requiring a binary image
and the difficulty in selecting an appropriate parameter threshold. In
addition, after extending to 3D, the time cost to detect line segments
increases dramatically [11].

Burns [12] presents a linear-time segment detection method based
on the gradient direction of boundary points instead of gradient
values, which is a bottom-up methodology. In a similar fashion,
Desolneux et al [13] address the problem of calculating a local
orientation map that is robust with respect to quantization noise,
and then using local gradient information to find the meaningful
alignment of possible line segments. Unfortunately, the Desolneux
method is very time-consuming, as it tests every possible line segment
in the image. To present a fast algorithm, Grompone von Gioi et al.
[6] developed a practical and fast line segment detection program
that cumulates most of the advantages of the Desolneux method by
controlling pseudo-segments based on the Helmholtz principle [14].

Domain-crossing approach to line segmentation. From the point
of view of machine learning, out of the three line segment detection
approaches, the top-down method is a model selection technique
from parameter space to data/feature space, whereas the bottom-
up method is a regularization technique from data/feature space to
parameter space. The optimal solution can be obtained using a two-
pathway learning process, in which both top-down model selection
and bottom-up regularization are considered. This indicates that
the domain-crossing approach is capable of obtaining the optimal
solution by using both model selection and regularization crossing
different spaces.

Research results relating to the domain-crossing approach include
feature-adapted beamlet transform (FABT) [15], and the most recent
Du et al’s neighborhood method [16], [17]. FABT is used for line
segment detection and extraction of the curve structure using multi-
scale analysis. Berlemont et al. [15] consider the beamlet transform
as a special case of Radon transform, because they both calculate line
integrals in one image. The basic idea is that the Radon transform
is applied to the multi-scale method to calculate the FABT. Adaptive
feature refers to the application of local filters (such as the Canny
filter) before the Radon transform in order to highlight line structure
in an image and to improve the accuracy and effectiveness. However,
empirical studies show that the Radon transform cannot detect lines
accurately in smaller scaled images, especially, when the image
size is smaller than 32 × 32. Du et al. [16] have investigated the
neighborhood between image space and parameter space in order
to improve the traditional Hough transform. A neighborhood in
parameter space corresponds to a diamond-shaped quadrilateral in
image space. The difficulties of the method arise from the choice of
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the radius of the neighborhood, which has a greater impact on short
line segment detection.

The contribution of this paper is to propose a novel domain-
crossing approach for efficient and accurate line segment extraction.
The approach detects lines using the union of spectra in the Fourier
domain. Line segments are detected by analyzing the division of
sinogram in Radon space. The remainder of this paper is organized
as follows. In Section II, our Unite-and Divide (UND) method
is described in detail. Section III reports the experimental results,
followed by our conclusions in Section IV.

II. UNITE-AND-DIVIDE ALGORITHM

The frequency space of an image can be obtained with a Fourier
transform, but there is no spatial information kept in frequency space.
We can combine frequency space and image space according to
the needs of specific features, by using another transformation as
a medium. In detecting line segment features, the Radon transform
can be used as this medium based on the projection-slice theorem
[18].

There are two problems with the domain-crossing approach to
line segment detection. The first, how to increase the number of
frequencies for analysis in the Fourier domain without substantially
increasing computational cost; the second, how to segment lines
quickly and correctly. A unite-and-divide method (UND) is proposed
to address these two problems.

A. Union of Spectra

Given an N×N image, its multilayer fractional Fourier transform
can be performed by, see [19],

Fα(k1, k2)

=

N
2
−1∑

n1=−N
2

N
2
−1∑

n2=−N
2

f(n1, n2) exp

{
−j 2π

N
(n1αk1 + n2αk2)

}
(1)

where {f(n1, n2)| − N/2 ≤ n1, n2 ≤ N/2} is a 2D image in the
case of line detection, and 0 < α ≤ 1 is a real number. The N ×N
frequencies of Fα(k1, k2) are scattered in [−απ, απ]× [−απ, απ].
According to Equation (1), the combination of MLFRFTs with
different α values results in a high-resolution grid. In other words,
one can get the Fourier transform of an input image by combining
multiple Fαs. Note that the computation of each Fourier layer is an
independent operation and can be carried out in parallel.

Sinogram can be generated via crossing from Fourier domain to
the Radon domain by the following steps: 1) mapping the Cartesian
frequency samples to Polar grid 2) apply 1D inverse Fourier transform
to the Polar grid. Each peak in the Radon space corresponds to
a potential line in image domain. To detect the maximum peaks,
an iterative identify and remove algorithm has been employed [23]
where each peak is removed from the sinogram after it is identified.
There are two circumstances involved in this method: 1) when we
have a desired number of lines to be detected, algorithm terminates
after certain number of iterations 2) when the number of lines is
unknown so that iterations will continue for every single peak above
the threshold.

B. Division of Sinogram

The sinogram detection peaks are obtained in the previous phase of
Spectrum Union. These peaks in Radon space may identify straight-
lines at certain angles and distances to the origin, however they cannot
detect the endpoints of the line segments. In fact, the sinogram is
composed of a number of butterfly-shaped waveforms centered at

(a)

(b)

Fig. 2: Illustration of a line segment and its corresponding sinogram.
(a) a segment with two endpoints. (b) Sinogram with peak corre-
sponding to line position and butterfly-wings’ boundaries correspond-
ing to the two endpoints.

each peak. Segment endpoint information is contained in the butterfly
edges on both sides of the peak i.e. the boundary of the butterfly wing.

To clarify this concept, let us consider an example of single
segment image and its sinogram as shown in Figure 2. From the
Radon transform point of view, each feature point in the image plane
corresponds to a sinusoidal curve in the Radon space. Consequently,
all of the points along the straight line ρ0 = x cos θ0 + y sin θ0 form
a butterfly shape in the Radon space, intersected at peak (ρ0, θ0)
as shown in Figure 2. In other words, the Radon transform maps
every single feature point from its image plane representation into a
waveform representation in a respective order. This means the first
and the second endpoints of the segment (i.e., points A and B in
Figure 2a) produce the first and the last boundary sinusoids of the
butterfly (i.e., Sf and Sl in Figure 2b) respectively. The two arrows
in Figure 2b are emphasizing on the two corresponding boundary
sinusoids.

However, there are usually tens of hundreds of interwoven seg-
ments in real world images that result in overlapping butterfly-shaped
waves in Radon space, making it impossible to find the boundary
sinusoids for each butterfly-shaped wave. This is where it comes the
need for dividing the overlapping butterfly wings into a number of
single butterfly sinogram so that finding the boundary sinusoids will
be an easy task. This is achievable by introducing a spatial domain
window to divide the butterflies.

Spatial domain window for sinogram division: Spectra-union
method generates accurate straight lines but without endpoint iden-
tification. Having the precise line parameters i.e. distance ρ and
angle θ a rectangular image domain window can be designed where
the target straight line plays the role of diameter for the window.
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Fig. 1: The Unite-and-divide method

Size of the window is bounded by the line’s outermost endpoints.
A Gaussian filter can be conducted afterwards to emphasize on the
linear structures and identify pixels align the line direction while
masking the surrounding regions inside the window. Such an image
domain filter in line direction will significantly improve the sinograms
quality. Finally, a subsequent Radon transform can be obtained for the
window to generate the desired single butterfly sinogram, from which
boundary sinusoids are easily identifiable and capable of leading us
towards the segment endpoint extraction.

C. The UND algorithm

A formal statement for the UND algorithm is given as follows:
1) Union of Spectra. Compute a number of Fourier transforms

with different α using Equation (1), and then combine them to
form a united spectrum.

2) Crossing from Fourier domain to Radon domain. Map the
united spectrum from a Cartesian grid to a polar grid using the
linear interpolation method, and then apply 1D inverse FFTs
to the spectrum. Each of the 1D inverse FFTs corresponds to
a sinusoid in the Radon domain according to the central slice
theorem.

3) Division of Sinogram. Detect the maximum peaks in the
sinogram, which correspond to the straight lines in the image.
Each straight line may contain a multiple number of segments.

4) Crossing from Radon domain back to image domain. Each
peak in the sinogram corresponds to a straight line in the
image domain, which is the diagonal line of a window. Apply
Gaussian filters along the diagonal to highlight the multi-
segment line but mask the areas on its both sides.

5) Segment detection in single-line sinogram. Obtain the sino-
gram for each sub-window in step 4). Segments can be detected
by analyzing the discontinuity of the butterfly wings. Each edge
in the butterfly wing corresponds to the endpoint of a segment.

6) Repeat step 4) and step 5) until all the butterflies are processed.
7) End.

III. EXPERIMENTAL RESULTS

In this section, the accuracy, robustness and computational time of
our proposed method is verified with experiments on mixed-thickness

Fig. 3: Image of lines with different thicknesses

lines [1], noisy images [20], and a natural image [6].

A. Verification of accuracy

The objective of this experiment is to demonstrate that the UND
method can detect line segments with thicknesses greater than one
pixel without pre-requisite edge detection. The test image is shown in
Figure 3; and Table I gives the positions of the detected line segments
which are specified by the distance ρ, the angle φ to the origin
and the two endpoints (x0, y0), (x1, y1). The origin is set to the
bottom left the image. The last row in the table gives the detection
errors, which are the absolute values of the difference between the
true endpoint coordinates and their detected counterparts. The results
reveal that UND is capable of detecting line segments accurately from
the images with insensitivity to the thicknesses of lines.

TABLE I: Positions of the Segments Detected by the UND

Lines 1 2 3 4 5 6
ρ 1.41 22.62 31.11 12.72 28.28 53.74
φ -82.27 56.25 106.17 56.25 -68.21 -107.58

(x0, y0) (20,19) (14,55) (28,59) (35,102) (54,74) (19,80)
(x1, y1) (91,40) (75,14) (99,69) (92,84) (107,96) (67,106)
errors (1,1) (1,1) (0,0) (0,0) (0,1) (0,0)

(0,0) (0,1) (0,0) (1,0) (0,0) (0,1)
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(a) (b) (c) (d) (e)

Fig. 4: Segment detection from an 11-line image with noise. (a) Original image. (b) Lines detected by HT-MLFRFT. (c) Segments detected
by SHT. (d) Segments detected by LSD, (e) Segments detected by UND.

B. Robustness to noise

In this section, we examine the robustness of our line detection
method to noise. We have performed the experiment as reported
in [1]. Figure 4(a) shows the image of a house consisting of 11
straight lines with white noise. Figure 4(b) shows line detection, but
not segmented, from our previous work. Figures 4(c-e) compare the
segment detection results among the SHT, LSD, and our proposed
UND.

From Figure 4, one can see UND is more robust to noise than
all the other methods. When true line segments are disconnected by
noise, local information, such as gradient orientation, is not capable of
detecting segments properly. Since sampling in the frequency domain
is not accurate enough, SHT cannot fully retrieve the connection
information in image space. LSD does not perform well, because its
thresholds, such as the gradient magnitude, are not adaptive but pre-
determined. Since the global information is considered and accurate
sampling is applied, UND is capable of detecting broken segments.

C. Line segment detection from natural images

A number of natural images reported in [6] are used to verify
the performance of our proposed UND for line segment detection.
In these experiment, the peak threshold for SHT and UND is set to
0.8∗pMax, where pMax is the maximum peak value in the sinogram.
The main purpose of this experiment is to compare the performance
of line segment detection among the representative methods such as
SHT [21], RHT [22], LSD [6], HT neighborhood approach and UND
in terms of computation time and line detection results, as shown in
Figure 5 and Figure 6. In SHT and RHT we simply cut the lines to
segments based on connected-ness.

Figure 5 shows that LSD enjoys a level of performance superior
to all the other methods, and that our proposed UND is the best
among the Hough transform family. From time to time, RHT cannot
detect short lines because of its random sampling strategy. SHT
often produces false detections, since edge orientation information
is not employed in line detection. The advantage of robustness to
noise can have problems. In the experiment with noisy images,
UND performs very well because it is not sensitive to abrupt
connections/disconnections. However, the noise-like short lines in
this experiment are easily influenced by the other foreground pixels.
Accordingly, short lines may not form peaks in the sinogram, which
is why UND cannot detect some short segments.

However, Figure 6 shows that the UND has a better performance in
detection of short segments when comparing to the recently proposed
HT neighborhood approach [16]. This is due to the trade-off in
selecting the neighborhood radius. Small radius will not guarantee
the complete coverage of the segment while large radius fails to
undertake the short segments. Segments with shorter lengths have

bigger approximation errors in comparison to those with longer
lengths. Effects of this compromise can be observed in the result
generated from the images of truck and zebra. In addition, despite the
fact that the LSD generates more segments than the UND, sometimes
it breaks down a true long segment and fails to retain the continuity
of the line.

In terms of speed, RHT is the fastest in the Hough transform
family, but our UND is faster than SHT. Although the speed of LSD
is reported elsewhere with a different computer configuration (Apple
PowerBook G4 1.5GHz [16]), it can be deduced that UND should
be slower than LSD.

IV. CONCLUSIONS

In this research we propose a domain-crossing methodology called
UND, in which Radon transform is carried out after the union
of multiple sets of spectra; and the segments are detected in the
divided sinogram. Since both the union and division phases can be
implemented in parallel, this method enjoys high accuracy but low
computational cost. We tested the UND-based line segment detection
method with noisy and real images. The results show that our method
outperforms the representative line segmentation methods such as
SHT, RHT and LSD.
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Fig. 6: Experiments on real images. From left to right are original images, results of line segmentation using LSD, HT neighborhoud and
UND respectively.
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Comment on “Collinear Segment Detection Using HT
Neighborhoods”

Payam S. Rahmdel, Daming Shi, Senior Member, IEEE, and Richard Comley

Abstract—A novel application of the Hough transform (HT) neigh-
borhood approach to collinear segment detection was proposed in [1]. It,
however, suffered from one major weakness in that it could not provide an
effective solution to the case of segment intersection. This paper analyzes
a vital prerequisite step, disturbance elimination in the Hough space,
and shows why, this method alone, is incapable of distinguishing the
true segment endpoints. To address the problem, a unique HT butterfly
separation method is proposed in this correspondence, as an essential
complement to the above publication.

Index Terms—Collinear segment detection, Hough Transform, distur-
bance elimination, segment intersection.

I. INTRODUCTION

Extraction of straight line segments from a digital image is one
of the most salient tasks in image understanding and computer
vision. The Hough transform (HT) is a well-known technique for
the detection of linear and curvilinear structures in an image [2],
[3]. Despite its accuracy and robustness to variant noise, the HT
is incapable of specifying the endpoints for a line segment. It can
identify only straight lines but not segments.

Most of the proposed HT-based line segmentation methods use the
Hough space information during and after the HT voting process. For
instance, the connective HT (CHT) utilizes a probabilistic approach to
investigate the connectively of the feature points [4]. After applying
the HT, a fixation point is selected using the information obtained
during the accumulation to vote for two 1-D accumulators. The
progressive probabilistic Hough transform (PPHT) suggested a fast
and efficient algorithm [5], [6]. The PPHT outperforms the standard
HT (SHT) in terms of speed but results in lower accuracy and a large
number of missing lines (i.e., false negative). Moreover, it requires
a large set of parameter adjustments such as threshold that have to
be delicately tuned. The problem with the accuracy was addressed
in [7] but paid a high cost in terms of computation and memory
requirement. An extended Hough transform (EHT) was introduced
by optimizing the traditional 2-D HT with a third parameter [8]. In
this 3-D representation of the HT, each individual column/row of
the image space is plotted to a unique dual 2-D HT. Later in [9],
an optimized algorithm was proposed to reduce the execution time
during the voting process.

HT butterfly analysis considers both the peak and the area sur-
rounding the peak. Efforts have been made to parameterize the
HT butterfly [10], [11]. Recently, Du et al. proposed a set of new
definitions for the HT neighborhood [12], which reveals a unique
correlation between the neighborhood of straight-line in the image
space and its corresponding neighborhood of the HT butterfly in
the Hough space. Subsequently, the ideology was further developed
and specialized for collinear line segmentation using the information
concealed in the butterfly wings and seeking the rising and falling
edges along the predefined resolution δθ [1]. However, as the authors
in [1] declared, the essential prerequisite is to have a transparent
butterfly which only contains the sinusoids of collinear feature-points,

Payam S. Rahmdel, Daming Shi, and Richard Comely are with the School
of Science and Technology, Middlesex University London, London NW4 4BT,
UK (e-mail:{p.rahmdel, d.shi, r.comley,}@mdx.ac.uk)

i.e., collinear segments. That implies any non-collinear feature-point
inside the image-domain window will degrade the detection accuracy
and lead to a false detection, and therefore has to be excluded.

It should be emphasized that the methodologies presented in both
[1] and [12] are highly dependent on having a single-peak transparent
butterfly (or sub-HT as it is called in [1]) for each segment. There-
fore, eliminating occlusion caused by non-collinear segments is an
inevitable task and failing to operate this step flawlessly will produce
unreliable results, i.e., wrong endpoints.

Despite the authors’ appreciable concern to address this problem,
the method proposed in [1] fails to isolate the disturbing feature-
points completely and therefore fails to detect the true endpoint
coordinates. In the following, we further analyze this problem and
propose a reliable solution to overcome this issue.

II. PROBLEM STATEMENT

The disturbance elimination proposed in [1], i.e., window of inter-
est, is capable of excluding the feature-points outside the window.
However, this cannot guarantee that the remaining feature-points
inside the window are all collinear. To clarify the problem, let us
consider a test image and its corresponding sub-HT as shown in
Fig. 1. Fig. 1(a) shows a synthetic image with segment L as the
target straight-line segment, to be detected. Fig. 1(b) shows the
corresponding sub-HT when the effect of disturbing feature-points
is eliminated thanks to the windowing approach. Fig. 1(a) and (b)
are duplicates of Fig. 10 and 11, reported in [1], respectively.

It can be seen from Fig. 1(b) that, even after applying the image-
domain window, sinusoids of L2, (the line which intersects with
L’s extension), still superimpose with those of L. Consequently,
seeking the rising-edge along the predefined δθ will mistakenly lead
us to admit e2 (in Fig. 1(a)) as L’s first endpoint rather than the
true endpoint which is e1. Reducing the neighbohood’s radius r
cannot alleviate the error either, because, there is always a trade-
off in choosing a proper radius; a small radius leads to ignorance of
short segments [12]. The problem occurs when the target segment,
or its extension, intersects with one or more non-collinear segments
within the image boundary. As a result, any non-collinear feature-
points inside the window will also get voted, alongside the collinear
feature-points, during the sub-HT process (see the shadow of L2 in
Fig. 1(b)). Therefore, the essential condition is to have the effect
of any disturbing feature point inside the image-domain window
excluded.

Despite the novelty of the windowing approach suggested in [1],
it is unable to eliminate the disturbance when one or more segments
intersect with the target segment or its extension. This suggests
an essential enhancement and filtering technique to exclude the
remaining non-collinear feature-points. That motivated us to propose
an improved windowing approach, to be considered as an essential
complement to Du et al.’s approach.

III. IMPROVED WINDOWING APPROACH

Similar to [1], this enhancement has to be performed after the first
HT, thus, line parameters, i.e., ρi and θi are known. Basically, the
algorithm can be explained in two major steps:



2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, JULY 2013

(a) (b)

Fig. 1: Problem of windowing approach. (a) Original image with target segment L. (b) Sinogram captured using Du et al.’s windowing
approach. Sinusoids of L2 are still superimposing with those of L.

Step 1) Seek the lines which intersect with the target segment
or its extension. The intersection has to occur within the image
coordinates. This is straightforward because line parameters, i.e.,
(~ρ, ~θ), are known. Having the parameters, straight-line equations can
be constructed by ρi = x cos θi+y sin θi. Thus, intersecting lines can
be found by solving a series of simultaneous equations. Algorithm. 1
synthesizes the algorithm in pseudo-code.

Step 2) For each intersecting line of every target segment construct
a mask window Wm with radius rm. But this time mask the feature-
points inside the window by assigning every pixel to zero. Note that,
such a window plays the role of a mask-filter therefore the masking
radius rm can be as small as 3 to 5 pixels. Algorithm. 2 summarizes
the procedure.

Algorithm 1 Find and store lines having intersection within image

1: Input: ~ρ, ~θ /* From the HT /*
2: S = [0]n×n /* n is the total number of lines /*
3: for all i such that 1 ≤ i ≤ (n− 1) do
4: for all j such that (i+ 1) ≤ j ≤ n do
5: x← (ρi sin θj − ρj sin θi)/(cos θi sin θj − cos θj sin θi)
6: y ← (−ρi cos θj + ρj cos θi)/(cos θi sin θj −

cos θj sin θi)
7: /* Gets the coordinates of the intersection point /*
8: if (x, y) is inside image coordinates then
9: S[i, j]← True

10: else
11: S[i, j]← False
12: end if
13: end for
14: end for
15: S ← S + ST

16: Output: S /* Intersection matrix /*

IV. LOCATION OF INTERSECTION

There will be two possibilities in terms of where the intersection
occurs. Either the intersection occurs with the target segment itself
or with its extension. Each of these scenarios has a different effect
on the butterfly’s shape.

A. Intersection with extension of the target line

In this case, the non-collinear lines can be easily eliminated using
the mask-filter without affecting the feature-points of the target

Algorithm 2 Create the window (mask-filter) for each line and apply
the sub-HT.

1: Input: Original image I ,
2: P = 0, H = 0
3: for all i such that 1 ≤ i ≤ n do /* for every straight-line/*
4: /* Construct a window W as suggested in [1] /*
5: /* and exclude the feature-points outside the window /*
6: /* Ii is the original image when masked with W
7: Compute Ii = I & W
8: P ← find(S[i]) /* Returns indexes of intersecting lines for
ith line /*

9: if P 6= 0 then
10: for all j such that 1 ≤ j ≤ length of P do
11: /* Construct the mask window Wm /*
12: Compute Ii = Ii & Wm

13: end for
14: end if
15: Compute Hi = Hough(Ii) /* Returns the sub-HT for the

ith target segment /*
16: end for
17: Output: H

segment. Let us consider the target straight-line segment L shown
in Fig. 2(a). L1 and L2 are two non-collinear segments having
intersections with L’s extension. Fig. 2(b) shows the result of Du
et al.’s disturbance elimination method. It can be seen that L1 and
L2 affect the butterfly’s significant edge. That will eventually lead to a
large error. In Fig. 2(c) these sinusoids have been completely removed
thanks to the improved windowing approach explained above.

B. Intersection with the target line

Eliminating feature-points of a line which has an intersection with
a target segment, (e.g. L3 in Fig. 2(a)), may split a continuous
target segment into two collinear segments. Accordingly, the resulting
butterfly wing will have a discontinuity in its sinusoids, (e.g. a
white gap in the butterfly wings in Fig. 2(c)). To avoid breaking the
segment into two, a radius smaller than dr , (the collinear segment
distinguishing distance [1]) is chosen. If rm > dr , the result will be
two collinear segments instead of one continuous segment. Therefore,
choosing rm < dr can guarantee the correct detection of a continuous
segment.
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(a) (b) (c)

Fig. 2: Comparison between the sub-HT butterflies. (a) Synthetic image of 512×512 pixels. (b) Butterfly captured via Du et al.’s method.
(c) Butterfly captured via improved windowing method proposed in this paper.

V. EXPERIMENTS

A detailed qualitative analysis has been made to compare the
performance of the proposed algorithm with Du et al.’s method. A real
gray-scale image of size (512× 512) with ground-truth information
of the number of segments and the coordinates of the endpoints has
been used as shown in Fig. 3(a). Fig. 3(b) shows the edge map where
the target segments S1 to S6 have been labelled for the sake of clarity.
The result of an SHT using MATLAB’s hough() function is depicted
in Fig. 3(c). L1 to L6 are corresponding straight lines passing through
S1 to S6, respectively. Algorithm.1 generates the line intersection
matrix given in Table. I, where lines that are intersecting with each
target segment are identified.

TABLE I: Result of Algorithm.1. Lines that intersect with each target
segment are found.

L1 L2 L3 L4 L5 L6
L1 0 0 1 1 0 0
L2 0 0 1 1 0 0
L3 1 1 0 0 1 1
L4 1 1 0 0 1 1
L5 0 0 1 1 0 0
L6 0 0 1 1 0 0

Fig. 3(d)-(i) illustrates the result of Du et al.’s disturbance elim-
ination method with radius r = 6. Shadows of disturbing feature
points are visible around the butterfly wings, that eventually lead to
large deviation from the ground-truth endpoints. Taking the butterfly
of S1 as an instance (Fig. 3(d)), the shadows are the consequence
of feature points of S3 and S4 which intersect with S1, (refer to
Table. I). The result of Du et al.’s method is shown in Fig. 3(p)
where the considerable effect of S3 and S4 on the endpoints of S1

and S2 is visible. Fig. 3(j)-(o) represent the result of the improved
windowing approach, where the disturbing feature points have been
removed using Algorithm. 2. The segmentation result is depicted in
Fig. 3(q).

Table. II provides a detailed comparison with the ground-truth.
Euclidean distance from the detected endpoint to the true endpoint
has been measured as the deviation criterion.

VI. CONCLUSION

This paper highlighted a major problem of two recently proposed
interrelated publications of this Transactions, [1] and [12]. The
enhancement proposed in this paper can be seen as an essential
complement to the above publications. The MATLAB source code
will be made available to all the readers upon request.
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(p) (q)

Fig. 3: (a) original gray-scale image. (b) edge map with labelled segments. (c) result of SHT. (d)-(i) result of Du et al.’s method. (j)-(k)
result of the Algorithm.2. (p) Du et al.’s segmentation result. (q) segmentation using the proposed method.

TABLE II: Detailed detection comparison of the methods with the ground-truth data. The proposed method has a lower deviation from the
ground-truth.

Ground-truth Du et al. [1] Proposed method
First endpoint Second endpoint First endpoint Second endpoint

Line First endpoint Second endpoint Detected Deviation from Detected Deviation from Detected Deviation from Detected Deviation from
segment coordinates coordinates coordinates ground-truth coordinates ground-truth coordinates ground-truth coordinates ground-truth
S1 (46,452) (243,282) (51,448) 6.4 (332,218) 109.6 (48,451) 2.2 (245,281) 2.2
S2 (80,502) (290,335) (84,497) 6.4 (336,272) 78.0 (79,502) 1.0 (289,337) 2.2
S3 (315,206) (378,287) (308,200) 9.2 (383,294) 8.6 (313,205) 2.2 (378,290) 3.0
S4 (234,266) (301,352) (233,260) 6.0 (299,359) 7.2 (235,265) 1.4 (301,351) 1.0
S5 (233,264) (310,204) (232,266) 2.2 (316,200) 7.2 (234,265) 1.4 (312,205) 2.2
S6 (302,352) (379,290) (300,353) 2.2 (382,285) 5.8 (301,354) 2.2 (378,291) 1.4
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Abstract—In this paper, a novel line segmentation algorithm
is proposed as an extension to our previous works, i.e., line
detection using multilayer fractional Fourier methods. First,
a multilayer Fourier-based Radon transform (RT-MLFRFT) is
applied to detect the location and the orientation of the straight
lines. Afterwards, a set of windows-of-interest in spatial domain
is designed to decompose the complex Radon space to a number
of Radon spaces with a single transparent butterfly. This is to
eliminate the effect of the neighbour RT peaks and guarantee the
correct segment detection. Experimental results show that the
proposed method enjoys superior performance compared with
existing similar representative works.

I. INTRODUCTION

Extraction of straight line segments from a digital image
is one of the most salient tasks in image understanding
and computer vision. A significant number of straight line
detection techniques have been proposed by the computer
vision community. All of the existing methods can be classified
into two groups: namely, top-down and bottom-up approaches.
The former extracts lines that are broken down to segments,
whereas the latter accumulates pixel by pixel to form seg-
ments. Recently proposed line segment detector (LSD) is a
decent example of bottom up approaches [1]. The Hough
transform (HT), on the other hand, is indeed one of the most
well-known top-down techniques for detection of line profiles
in a typical image array [2]. It is based on transforming a given
image from the spatial space to its corresponding parameter
space. The so-called Hough space consists of θ as the angle
of the normal from the origin to a straight line and ρ as the
length of this normal. Using this definition, each line in the
image space can be identified by ρ = x cos θ + y sin θ where
x and y are the coordinates of the corresponding feature point
in the spatial domain.

Despite the fact that the HT is an accurate technique for line
profile extraction in noisy or cluttered images, it is incapable
of specifying the endpoints for a line. It can identify only lines
that pass through the entire image.

Extended Hough transform (EHT) optimized the traditional
2-D HT with a third parameter [3]. In this 3-D representation
of the HT, each individual column/row of the image space
is plotted to a unique dual 2-D HT. Later in [4], optimized
algorithm was proposed to reduce the execution time during
the voting process. However, it requires a prior edge detection

to enhance the linear features. Recently, a novel geometrical
technique based on the neighborhood of straight line segments
in both the spatial and parameter domain was introduced [5],
[6]. The neighborhood of a line segment in the parameter
domain is defined in a lozenge-like quadrangle to approximate
the neighborhood of the segment in the image domain. Never-
theless, for the short segments accurate neighborhood radius
selection is a tedious job. Segments with shorter lengths have
bigger approximation error in comparison to those with longer
lengths. Instead of using the HT in binary image, the Radon
transform (RT) can be replaced in a grayscale image. Feature-
adapted beamlet transform provided a practical solution to
detect linear profiles using RT in a multi-scale manner [7].
However, linear filtering prior to RT requires a considerable
computational expense.

Therefore, the principal aim of this research is to propose
an accurate and reliable algorithm to extract the endpoints of
a line segment after RT computation. The remainder of this
paper is organized as follows: Section II is a review of the
Fourier-based RT proposed in our previous work followed by
our segment detection approach in Section III. Multi-segment
detection using windows of interest in the spatial domain
is shown in Section IV. Experimental results are given in
Section V prior to our conclusion in Section VI.

II. RADON TRANSFORM USING MULTILAYER
FRACTIONAL FOURIER TRANSFORM

Equivalently and due to the mathematical identity, the HT
can be obtained via the RT [8] because it performs a number
of line integrals along the variant angles of θ using equation

Rf(x, y) =

∫ ∫
f(x, y)δ(x cos θ + y sin θ − ρ) dxdy

where Rf(x, y) is the 2-D forward Radon transform of the
f(x, y). Straight line detection using an advanced Fourier-
based RT was introduced in [9],[10]. The Fourier spectrum
of an image was constructed through a multilayer fractional
Fourier transform (MLFFT) [11], defined as

F γ(X,Y ) =

N
2 −1∑

x=−N
2

N
2 −1∑

y=−N
2

f(x, y)× e−j2π(xγX+yγY )/N
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Fig. 1. (a) Sinogram of a line segment captured via RT-MLFRFT. (b) Two
representative straight lines L1 and L2 of two random boundary points P1

and P2. (c) Selection of the two columns along θ

where {f(x, y)| − N
2 6 x, y 6 N

2 − 1} and 0 < γ 6 1
is a fractional scaler for each layer of DFT. The resulting
frequency response of the image contains more frequency
samples compared with conventional one-layer 2-D DFTs.
Therefore, one can obtain more information of pixel intensity
variation to increase both the performance and the accuracy of
the RT. Furthermore, these its frequency samples are closer to
Polar coordinates in comparison to those in a 2-D DFT. Thus,
the interpolation error is reduced during the Cartesian to Polar
mapping procedure.

Despite the fact that the RT using MLFRFT is an accurate
and robust technique for extracting any line profiles in a noisy
and cluttered image, it is unable to distinguish between the
straight lines and straight line segments. This method can
only identify lines passing through the entire image. In the
following, we show how it is possible to identify the endpoints
of the lines by seeking the boundary information of the Radon
butterflies.

III. RADON BOUNDARY ANALYSIS

Each feature point in the image plane corresponds to a
sinusoidal curve in the Radon space. Consequently, all of
the points in a straight line ρ0 = x cos θ0 + y sin θ0 form a
butterfly shape in the Radon space, intersected at peak (ρ0, θ0)
as shown in Fig. 1(a). Let us focus only on the boundary of
the sinogram and investigate its ability to provide us with the
required information to find endpoints of the line segment. In
fact, this information is laid on the first and the last sinusoids
(i.e., Sf and Sl) crossing the peak at (ρ0, θ0) in Fig. 1(a).

Similarly, each sinusoidal curve in Radon space represents
a number of straight lines intersecting on a common feature
point in the image plane. As a result, one can randomly choose
at least two points along a sinusoid and draw the corresponding
straight lines in the image plane. The intersection of the two
lines would be the location of the target feature point. In other
words, to capture the coordinates of a feature point in image
space one must obtain at least two points from its corre-
sponding sinusoid and, in image plane, find the intersection
of the two lines representing the two sinusoid’s points. In
Fig. 1(a), P1 and P2 are two randomly selected points along
the butterfly’s boundary. Straight lines L1 and L2 in Fig. 1(b)
are representatives of P1 and P2 in the image plane. Finally,
intersection point F1 is the target feature point, which in this
case is one of the endpoints of line segment. This scenario can
be applied to all other sinusoids in a sinogram. Since we are

interested only in finding the endpoints of the line segment
therefore, we need to consider those two sinusoids that are
lain on the boundary of a butterfly wing. In fact, sinusoids Sf
and Sl are representatives of this boundary. Thus, in this case,
F1 can be considered as one of the endpoints of our segment
since P1 and P2 are located on the sinusoid Sf .

To extract the true parameters from the boundary sinusoids,
we chose two columns on either side of the peak in the θ
direction with ∆θ as the interval between θ0 and the column.
Fig. 1(c) shows this concept. The aim is to find the coordinates
of P1, P2, P3, P4. This is feasible by seeking the indexes of
rising and falling edges along the columns.

In fact, P1 and P2 are responsible for two straight lines
crossing the first endpoint; similarly, P3 and P4 are responsible
for two straight lines crossing the second endpoint. We can
then find the intersection of P1,P2 and P3,P4 to obtain
the endpoints of the line segment. Algorithm 1 provides a
summary of the algorithm.

Algorithm 1 Segment detection using Radon boundary infor-
mation
Input: Image I (n× n pixels), ∆θ

1: [C1, C2] = 0 , [P1, P2, P3, P4] = 0
2: Compute S = R(I)
3: /* S is the 2-D Radon transform sinogram /*
4: /* extract the line parameters (ρi, θi) /*
5: C1←column(S, [θ1 = θ0 + ∆θ])
6: C2←column([S, [θ2 = θ0 −∆θ)])
7: /* Column(S, θ) returns the corresponding /*
8: /* column vector θi from the matrix S /*
9: /* index(C) returns the [PF , PL], the vector indices /*

10: /* of the two boundary points /*
11: [P1, P3]← index(C1)
12: [P2, P4]← index(C2)
13: (x1, y1)← intersection ([P1, θ1]), [P2, θ2])
14: (x2, y2)← intersection ([P3, θ1]), [P4, θ2])
15: /* intersection(k1, k2) retunes the intersection /*
16: /* of k1 and k2 in the image plane /*
Output: (x1, y1) and (x2, y2), coordinates of segment the
endpoints

Also, a set of four simultaneous equations can be solved
to compute the coordinates of the endpoints from P1,P2

and P3,P4 [12]. However, the detection precision can be
unfavourably affected when the number of segments increases.
This will lead to having a complex sinogram and superimposed
butterfly wings. This is a recurrent problem in the image
processing applications since there are typically tens of line
segments in an image. In fact, the essential condition prior to
applying the segment detection algorithm would be to have a
transparent single butterfly sinogram when the impressions of
the other peaks are eliminated. In this way, a typical solution
could be to define a ”window-of-interest” around the HT peaks
[13]; however, it would not guarantee the complete elimination
of adjacent peaks and their overlapping sinusoids. To apply
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Fig. 2. (a) Mixed shape image. (b) its overlapping sinogram. (c), (d) and (e)
Three isolated butterflies

Fig. 3. Illustration of window-of-interest in image plane for straight line L.
α is the width of the window.

this window in the image plane, the authors in [6] used the
segment’s neighborhood. However, to obtain such a window
one must go through the entire process of building a proper
neighborhood and compromise on the radius selection for
each segment. In the following section, we will discuss how
to choose an appropriate window-of-interest from the image
plane without neighborhood identification.

IV. WINDOWING APPROACH FOR BUTTERFLY BREAK-UP

A. Window definition

Fig. 2(a) shows a benchmark image, consisting of a mixture
of three straight line segments and a circle [14], [9], [10],
with its corresponding superimposed butterflies in Fig. 2(b).
It can be seen, that the sinusoids of L2 are overlapped with
those of L1, L3, and the circle. Accordingly, seeking boundary
information would be a problematic task. However, if we could
decompose the sinogram in a way that, each butterfly appears
in a separate Radon space, the precession of the Algorithm 1
can be guaranteed. In this way, we define a set of windows
in spatial space pointing out that the number of windows are
equal to the number of Radon peaks derived via the multilayer
approach. Having the parameters of the straight line (i.e.,
orientation and location) after RT-MLFRFT, an image domain
window can be defined as a rectangular area around the line.
A predefined parameter α is the width of this window. We
can select the α as t+ 2 pixels where t is the maximum line
thickness in pixels. The length of the window is restricted
to the image boundaries. Fig. 3 illustrates our definition of
window-of-interest in the image plane.

B. Window implementation

For each Radon peak a window is created. By applying
the RT to each windowed image a sub-RT is then computed.
The resulting sub-RT has the same size as the original RT but
it contains only the sinusoids that are belong to the feature
points within the window. Fig. 2(c), 2(d) and 2(e) shows
three transparent sinograms decomposed from their complex
sinogram in Fig. 2(b) using the proposed window-of-interest.
The butterfly corresponding to the circle would not appear in

Fig. 4. Block diagram of the proposed line segment detection algorithm

this decomposition because its sinusoids did not contribute in
the peak detection process after RT-MLFRFT. A block diagram
of the process is drawn in Fig. 4.

It should be emphasized that, implementing the algorithm
in a parallel way can reduce the computational time. Since
computing each sub-RT is an independent process, it is easy
to calculate the whole set of sub-RTs simultaneously using
multi-core CPU systems.

V. EXPERIMENTAL RESULTS

In this section the performance of the proposed algorithm
is investigated in terms of segment detection accuracy and
robustness in presence of noise. These experiments are based
on our own data set and those reported in the literature.

A. Experiments on synthetic data set

Here we built a data set of 175 synthetic images each
containing J lines mixed with one/two curvilinear structures
where J = 8, 10, 13, 15, 20, 25, and 30. For each value of J ,
5 distinct manners of object occurrence have been randomly
chosen in terms of orientation and position. Then different
levels of noise density d have been added to evaluate the
detection accuracy. d varies from 0 to 0.5 for the salt and
paper noise. Fig. 5 shows a subset of five selected images
from the data set with J = 10 and noise density d = 0.50.
A comparative study of this experiment with extended Hough
transform (EHT) [4], line segment detector (LSD) [1], and the
algorithm proposed in this paper is indicated in Table I. The
results exhibit a moderate performance for the EHT. This fairly
stable behaviour to variant noise is due to the HT’s voting
process and the minimum threshold value to distinguish the
potential straight lines from other image components. Never-
theless, edge detection prior to EHT causes a major inaccuracy
in the final result by neglecting the true feature points. LSD
shows an absolute precision in less noisy data; however, it
is unable to preserve the accuracy in higher noise levels.
These noises affect the region growing process of the LSD.
The proposed segment detector based on the RT-MLFRFT
demonstrates an adequate precision in less noisy data while it
preserves the precision immutability in even highly cluttered
images. The reason can be found in the use of 1) RT-MLFRFT
to accurately detect the location and orientation of possible line
segments [9]; 2) Windowing approach described in Section IV
to precisely remove the effect of redundant feature points in
the image plane; and 3) Segment detection algorithm based
on the butterfly boundary analysis presented in Section III.



TABLE I
AVERAGE RATE OF LINE SEGMENT DETECTION ACCURACY IN PRESENCE

OF VARIANT NOISE (%).

J 8 10 13 15 20 25 30

d = 0
EHT 98 98 98 98 95.5 95.5 95.5
LSD 100 100 100 100 100 100 100

Proposed
method 98 98 98 98 95.5 95.5 93.3

d = 0.30
EHT 93.3 93.3 93.3 91 91 88 88
LSD 75 73 73 73 70 70 69

Proposed
method 97 97 95.5 95.5 95.5 93.3 93.3

d = 0.50
EHT 88 85 86 84 82 81 81
LSD 55 55 54 53 53 51 51

Proposed
method 92 92 90.3 89 89 87.3 87.3

Fig. 5. A set of five selected samples from data set of 175 image. J = 10
and d = 0.50

B. Experiments on real data

For this experiment we applied our proposed segment
detection algorithm to a satellite image shown in Fig. 6. The
comparison has been made with Du’s neighborhood approach.
For the neighborhood’s predefined parameters we chose radius
r = 3 pixels, minimum length of the segment l = 20
pixels, and collinear segment distance d = 30 to compute the
collinear segment resolution δθ. As for the proposed segment
detector we chose the ∆θ = 20 degree from θ0. The result
shows the proposed method has been able to detect most
of the significant lines as well as short segments while the
neighborhood approach could not consider the short lines
(e.g., border of the small buildings around the main building).
However, in the case of collinear segments, when two or three
lines share an exact angle (e.g., Fig. 6(c), the three segments of
the roof border on the right-hand side of the main building) the
neighborhood approach performs better. The current algorithm
is designed in a way that the segment with the largest number
of pixels is captured and the effect of other collinear features
is eliminated. This issue will be considered in our future work.

VI. CONCLUSION

In this paper, we presented a method to find line segments
from the peaks generated via Radon transform. Regardless of
undesirable extra parametrisation we sought boundary infor-
mation of sinogram butterflies. In fact, the first and the last
sinusoid of a peak lead us to the location of the endpoints.
Accurate extraction of boundary information relies on having a

(a) (b) (c)

Fig. 6. Comparison between Hough transform neighborhood approach and
the proposed method. (a) The original satellite image. (b) and (c) Results of
the proposed method and neighborhood mapping respectively.

transparent butterfly when the influence of other sinusoids are
eliminated. This extraction will be negatively affected when
we face increases in the number of segments. Therefore, a
windowing approach in the image domain was conducted
after the RT-MLFRFT for multi-segment images with com-
plex parameter space. Since all the windowing operation are
independent, parallel computing using multi-core CPUs can
be used to reduce the computational time.
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Abstract—In this paper a new approach to the lane marker
detection problem is introduced as a significant improvement for
a semi/fully autonomous driver assistance system. The method
incorporates advanced line detection using a multilayer fractional
Fourier transform (MLFRFT) and a state-of-the-art advanced
lane detector (ALD). Experimental results have shown a consid-
erable reduction in computational complexity over ALD.
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tional Fourier transform, Hough transform, line detection.

I. INTRODUCTION

A. Background

It has always been a goal for engineers to get to the point of
accident free driving. Developing a full autonomous navigation
system to assist the driver by alerting him/her in hazardous
situations or even take part of the driving task has been an
active field of car accident research for the past two decades
[1], [2]. Driver assistance systems help drivers to better prepare
in unpredictable instances and react instantly when necessary.
More and more semi-autonomous features are getting added
together to push the boundaries towards full autonomous driver
assistance systems. Various sensing modalities are adapted to
these systems. Monocular and stereo cameras, light detection
and ranging (LIDAR) [3], inertial measurement unit (IMU)
and global positioning system (GPS) are the most dominant
modalities.

For a human driver, road boundaries, lane markings, road
colour and texture are key navigational aids in any weather
condition. Thus, one would expect an autonomous system
to benefit from the same guidelines and follow the same
principles as humans. That is why vision-based imaging has
been always a prominent sensing modalities for such sys-
tems. All of the existing system perception problems can be
categorised into two groups: namely, lane/road detection and
obstacle detection [1]. To incorporate line segment detection
method, presented in this research, only the former task will
be concerned.

B. Lane marker detection

Lane detection and perception prevents unintentional de-
parture from the lanes by the simultaneous detection and
tracking of the position and orientation of lane markers and
the sending of warning messages to the driver. Therefore,
precise line detection and segmentation plays a vital role in
the overall performance of the system. Without a doubt, the
Hough transform (HT) is a reliable candidate to fulfil this

task. Several works have addressed the problem using Hough
transform (HT) based methods [4], [5], [6], [7], [8], [9].
Among them, a recently proposed Advanced Lane Detector
(ALD) [9] showed a superior performance when dealing with
real-time video sequences. The proposed framework is robust
and accurate, however, for its main job, i.e., line extraction, it
relies on the standard Hough transform (SHT). Meaning that
edge detection (binarization) is a significant prerequisite step
for the procedure.

Problems of edge detection: 1) Edge detection requires
a significant amount of computational time that is a major
concern in a real-time application. 2) It may increases the
false detection; when the noise-level is high, some of the true
feature points in image can be ignored as noise and also some
false points may be seen as true feature points.

Therefore, HT based on multilayer fractional Fourier trans-
form (HT-MLFRFT) is adopted in this research [10] without
the need of edge detection. The principal aim of this paper
is to incorporate a HT-MLFRFT with the ALD to avoid the
problems of edge detection whilst guaranteeing the detection
accuracy.

The remainder of this paper is organized as follows: Section
II gives an overview of lane detection framework. In Sec-
tion III advance multilayer Fourier-based HT is introduced
to improve the computational time. Section IV shows the
experimental results followed by the conclusion in Section V.

II. CONVENTIONAL LANE DETECTION FRAMEWORK

In the following, a brief description of each step is pre-
sented, (also shown in Fig. 1). A formal statement of the lane
marker detection process is given as follows, (For more details
see [9]):

Step 1) Pre-processing. It consists of three major tasks.
1) Region of interest selection. This area is the portion of

image that has the higher probability of encompassing
the lane markers. Region of interest is usually selected
between the vanishing point and the vehicle’s hood.

2) Temporal blurring. This is to assure that the HT can
detect the short dashed lane markers when appear.
Temporal blurring connects the broken lane markers by
producing an average image of current frame and a
number of predecessor frames.

3) Bird’s eye view. Inverse perspective mapping (IPM)
transforms an image from camera perspective view to
bird’s eye view. In camera view, the width of lane



markers changes depending on its distance to the cam-
era. Also, instead of non-parallel lines, bird’s eye view
provides parallel line separated in specific distance.

Step 2) Hough transform.
1) Edge detection. Because the HT is only applicable on

binary images, edge detection has to be performed in
advance to obtain a binary image.

2) Standard Hough transform. The image is split into
halves and HT will be applied to each half separately.

3) Peak detection. The HT peak detection determines the
potential candidate for the lane marker.

Step 3) Post-processing. It consists of two major tasks.
1) Sampling the detected lines. Each candidate line has to

be sampled by a predefined resolution.
2) 1D template matching. At each sample point, 1D tem-

plate matching will be applied to estimate the best
matching pixel.

Step 4) Locate and track the lane markers.
1) Least square estimation. To minimize the error and

locate the best matching straight line, a linear least
square estimation (LSE) is applied.

2) Kalman filter. Kalman filter helps to predict the line
estimation when lane marker disappears in some frames.

Fig. 1. Block digram of lane marker detection

Despite the accuracy of the presented framework its main
step, i.e., Hough transform, is highly dependent on accurate
edge detection. As explained in Section I, failing to operate
this step in an appropriate manner will degrade the overall
detection results.

However, a Hough transform based on multilayer fractional
Fourier transform (HT-MLFRFT) does not require prior edge
detection [10]. HT-MLFRFT showed a superior robustness
in dealing with noisy images and can be applied directly
to a greyscale image. This can decrease the computational
complexity and improve the real-time performance of the
system.

III. HOUGH TRANSFORM USING MULTILAYER
FRACTIONAL FOURIER TRANSFORM

A. Forward Radon Transform

Equivalently and due to the mathematical identity, the
Hough transform can be obtained via the Radon transform
[11] as it perform line integrals along the angles of θ using
equation

Rf(x, y) = λ(ρ, θ)

=

∫ ∫
f(x, y)δ(x cos θ + y sin θ − ρ) dxdy (1)

where Rf(x, y) is a 2-D forward Radon transform of 2-D
function f . This technique is based on the unique property of
Fourier slice theorem in frequency domain for parameterisa-
tion of straight line [12]. Meaning that, the result of a 2-D
discrete Fourier transform (DFT) of a given function (image)
f(x, y) is equivalent to a 1-D inverse Fourier transform of the
Radon transform of the same function.

f(x, y)
2D−DFT−−−−−−→ F (X,Y ) −→ Fourier slice theorem...

...
1D−IDFT−−−−−−−→ Rf(x, y)

Therefore, instead of calculating line integrals along the θ in
the spatial domain it is feasible to 1) transfer the image to its
corresponding frequency domain by performing 2-D DFT; 2)
interpolate the Cartesian coordinates to polar; 3) apply the 1-D
DFT along each rows, i.e. in ρ direction, of the corresponding
2-D array. However the result of the DFT or so called one-layer
DFT arises the problem of aliasing and therefore increases the
problem of false detection.

B. Multilayer approach to Fourier transform

Based on the theory of multi-layer fractional Fourier trans-
form introduced by Pan et al. [13] for image registration, Shi et
al. proposed an advanced technique for the Hough transform
based straight line detection [10], [14]. In their method the
spectrum of an image consists of different layers of the Fourier
transform. The MLFRFT of f(x, y) is defined as

Fα(X,Y ) =

N
2 −1∑

x=−N
2

N
2 −1∑

y=−N
2

f(x, y)

× exp(−j2π(xαX + yαY )/N) (2)

where {f(x, y)| − N
2 6 x, y 6 N

2 − 1} and 0 < α 6 1 is
a fractional scaler for each layer of transform. The resulting
frequency response of the image has more frequency samples
compared to the traditional one-layer 2-D DFT. Therefore, one
can achieve more information of pixel intensity variation to
increase both the performance and the accuracy of the HT.
The process of HT using MLFRFT is depicted in Fig. 2.

Due to the natural behaviour of MLFRFT its frequency do-
main samples are closer to Polar coordinates in comparison to
the 2-D DFT frequency samples. Thus, the interpolation error
is reduced during the Cartesian to Polar mapping procedure.



Fig. 2. Block diagram of lane detection using multi-layer Fourier-based Hough transform.

The method presented in [14] i.e. generalized interpolated
Fourier transform (GIFT) is even more precise. As shown in
Eq. 3, for each layer of Fourier transform different scale factor
is used in x and y direction. GIFT is computed by

Fα,β(X,Y ) =

N
2 −1∑

x=−N
2

N
2 −1∑

y=−N
2

f(x, y)

× exp(−j2π(xαX + yβY )/N) (3)

where 0 < α, β 6 1 are predefined scalers for x and y
dimension of the image. For more details please refer to [10]
and [14].

As a result, HT-MLFRFT has been replaced in our research
to address the problem of edge detection. Thus, the block
digram depicted in Fig. 2 has been replaced with the Step
2, i.e., Hough transform, explained in Section II.

IV. EXPERIMENTAL RESULTS

To examine the efficiency of the proposed methodology and
to make a reliable comparison, experiments were performed
using the publicly accessible database provided by the authors
in [9]. Diverse driving scenes and road conditions were chosen
with distinct illumination levels. Fig. 3 illustrates a number of
detection results obtain via the proposed methodology.

The computational time on a Dell machine, Intel Core
i5, 2.4 GHz, were 0.12 seconds in average for each frame.
Therefore, approximately eight frames per second can be
processed. However, in some driving scenes, especially in
daytime where the level of illumination varies between the
surrounding objects, the processing time can go up to 0.2
seconds, at the highest. As a result, five frames per second can
be guaranteed which will provide a sufficient accuracy in terms
of video processing. If edge detection were included this would
at least double the amount of computational time. Table I

shows a comparison between the proposed lane detection
method and the ALD.

TABLE I
COMPUTATIONAL TIME COMPARISON BETWEEN THE PROPOSED LANE

DETECTION AND THE ALD.

Proposed method ALD
0.12 sec/frame 0.80 sec/frame

V. DISCUSSION AND CONCLUSION

We introduced a new approach to the lane detection problem
based on our previously proposed Fourier-based line detection
approach. The proposed approach shows a superior perfor-
mance due to the following reasons; 1) being independent
of prior edge detection; 2) the use of Fourier-based HT
to detect accurately the location and the orientation of the
potential lines. Because the standard HT is only applicable
for binary images, an adaptive threshold algorithm has been
used for ALD to convert the grayscale image to black and
white and highlight the prominent edges. In addition to the
extra computational time that the edge detection requires,
some of the significant segment information may also get
eliminated during the edge detection and threshold process.
However, our proposed method is based on a multi-layer
Fourier transform which can accept a grayscale image as
its input. Therefore, prior edge detection is not required. In
addition to its time efficiency, the high-resolution frequency
response will guarantees a sufficient accuracy in detecting all
the significant image features as well as line profiles.



Fig. 3. Lane detection using HT-MLFRFT in diverse driving scenes and road conditions
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