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Zusammenfassung

Automatisiertes Fahren wird weithin als ein wichtiger Beitrag zur Lösung heutiger
und zukünftiger Herausforderungen im Bereich des Personenverkehres sowie des
Waren- und Gütertransports angesehen. Insbesondere im Kontext zunehmend be-
schleunigter Urbanisierung bietet die Automatisierung Ansatzpunkte zur Verkehrs-
flussoptimierung und Verwirklichung innovativer Mobilitätskonzepte. Aktuelle Ent-
wicklungen in automatisierten Fahrzeugsystemen für städtische Umgebungen zei-
chnen sich durch einen steigenden Automatisierungsgrad und sinkende Einschrän-
kungen an die Betriebsumgebung aus. Diese Trends führen zu erhöhten Anforderun-
gen an das maschinelle Situationsverständnis, welches zumeist durch die Anrei-
cherung mit zusätzlichen Karteninformationen, wie z.B. Verkehrsregeln, ergänzt
wird. Eine kartenrelative Fahrzeuglokalisierung verbindet diese räumlich referen-
zierten Karteninformationen mit der fahrzeugrelativen Umfeldwahrnehmung auf
Basis der im Fahrzeug verbauten Umfeldsensorik. Folglich ist eine hinreichend
genaue und zuverlässige Fahrzeuglokalisierung von fundamentaler Bedeutung für
den sicheren Betrieb automatisierter Fahrzeugsysteme. Herkömmliche, rein GPS-
basierte Lokalisierungssysteme wie sie in Navigationssystemen verwendet werden,
erfüllen die gestellten Anforderungen nicht mit der erforderlichen Zuverlässigkeit.
Aufgrund von Störgrößen wie Abschirmungseffekten und Mehrwegeausbreitung ist
die Signalqualität häufig einer starken Degradation unterworfen. Vor diesem Hin-
tergrund wird in der vorliegenden Arbeit ein System zur Fahrzeuglokalisierung auf
der Grundlage einer Assoziations- und Transformationsschätzung zwischen Mess-
ungen einer laserbasierten Sensorik (Light Detection And Ranging - LiDAR) zur
Umfelderfassung und hochgenauen Lokalisierungskarten entwickelt. Der Vorgang
zur Assoziations- und Transformationsschätzung wird nachfolgend als Registrierung
bezeichnet. Degradationseffekte GPS-basierter Systeme werden durch die Bebauung
in urbanen Bereichen begünstigt. Aus diesem Grund wird ein Schwerpunkt auf die
Unabhängigkeit von GPS Messungen gelegt. Zur zielgerichteten Entwicklung von
Lokalisierungssystemen auf Basis von Genauigkeitsanforderungen und Umfeldeigen-
schaften werden statistische Modelle erarbeitet. Beide Kernbeiträge werden im Fol-
genden näher ausgeführt.

Der erste Kernbeitrag dieser Arbeit besteht in der Entwicklung eines robusten
Verfahrens für die Registrierung von Sensorbeobachtungen und potentiell veral-
teten Lokalisierungskarten. Robustheit ist hier definiert als die Fähigkeit eines
Lokalisierungssystems, spezifizierte Leistungsanforderungen, wie z.B. Genauigkei-
tsanforderungen, auch unter widrigen Umfeldbedingungen zu erfüllen. Letztere
treten in städtischen Umgebungen besonders häufig aufgrund semi-statischer Ob-
jekte auf. Zu dieser Klasse von Objekten zählen insbesondere geparkte Fahrzeuge
entlang des Fahrbahnrands. Sobald diese in der Lokalisierungskarte oder der Sen-
sormessung verbleiben, kommt es zu Inkonsistenzen, welche spezieller Berücksichti-
gung bedürfen. Städtische Umgebung ist weiterhin durch ein hohes Maß an Hetero-



genität, z.B. verursacht durch Variationen zwischen breiten Haupt- und schmalen
Wohnstraßen mit hohen Vegetationsmengen, gekennzeichnet. Das zu diesem Zwecke
entwickelte Registrierungsverfahren basiert auf einer im Bereich der Bildverarbeitung
etablierten Methode auf Basis der Fourier-Mellin Transformation. Dieses beruht auf
der Fast Fourier Transform (FFT) für welche eine Vielzahl effizienter und deter-
ministischer Hard- und Softwareimplementierungen existiert. Damit ist deren Ein-
satz auch für echtzeitfähige Fahrzeugsysteme von großem Interesse. In mehreren
Schritten wird diese Methode auf den beschriebenen Anwendungsfall angepasst
und erweitert. Die vorgenommenen Erweiterungen führen im Vergleich zu be-
kannten Methoden zu einer signifikant erhöhten Robustheit gegenüber Inkonsisten-
zen und Unsicherheiten in der initialen Transformationsschätzung. Das entwick-
elte Lokalisierungssystem verfügt über analytische Redundanz durch die Verwen-
dung des zuvor beschriebenen spektralen Registrierungsverfahrens und eines pfeiler-
basierten Registrierungsverfahren. Für letzteres werden pfeilerförmige Objekte, z.B.
von Straßenlaternen und Lichtsignalanlagen, aus LiDAR Messungen extrahiert und
mit der Lokalisierungskarte assoziiert. Konsistenzprüfungen werden durchgeführt,
um Mengen konsistenter Fahrzeugposeninformationen auszuwählen. Konsistente
Informationen von der Registrierung und der odometriebasierten Eigenbewegungs-
schätzung des Fahrzeugsystems werden anschließend in einem erweiterten Kalman
Filter fusioniert. Eine zusätzlich entwickelte LiDAR-basierte Odometrie erhöht die
Präzision der Eigenbewegungsschätzung. Der Betrieb des Fahrzeugsystems in nicht
kartierten Bereichen, wie z.B. privaten Parkplätzen, wird mit einem vorgeschlagenen
spektralen Simultaneous Mapping and Localization (SLAM) Verfahren ermöglicht.
Dieses Verfahren arbeitet auf der Basis von LiDAR Scans und benötigt auch in
anspruchsvollen Umgebungen keine weiteren Messdaten. Als weiterer wichtiger As-
pekt der Fahrzeuglokalisierung wird die Initialisierung behandelt. Dazu wird ein
partikelfilterbasierter Ansatz mit Konsistenzprüfung entwickelt. Basierend auf der
verfügbaren Rechenleistung des Fahrzeugsystems wird ein Schwellwert für die Un-
sicherheit der initialen Posenschätzung definiert. Der spektrale Registrierungsansatz
wird bei dessen Unterschreitung verwendet. Dieser ermöglicht eine hochgenaue
Posenschätzung unter signifikanter initialer Unsicherheit der Transformationsparam-
eter. Nach erfolgreicher Registrierung wird in den regulären Betrieb des Lokalisie-
rungssystems gewechselt.
Als zweiter zentraler Beitrag wird ein anforderungsorientierter und modellbasierter
Ansatz für die Entwicklung von Systemen zur Fahrzeuglokalisierung erarbeitet. In
den meisten Anwendungsfällen automatisierter Fahrzeugsysteme müssen spezifische
Anforderungen an die Lokalisierungsgenauigkeit eingehalten werden. Diese stehen in
einem komplexen Zusammenhang mit den Eigenschaften des gegebenen Betriebsum-
feldes. Zu den Eigenschaften zählen auch die Dichte von Umfeldmerkmalen welche
zur Lokalisierung verwendet werden können, Ressourcenbeschränkung und Parame-
ter des zur Umfelderfassung verwendeten Perzeptionssystems. Zur Abbildung dieser
Zusammenhänge wird ein geschlossen analytisches Modell hergeleitet, welches es
erlaubt Parameter von Lokalisierungssystemen für eine gegebene Lokalisierungs-



genauigkeit und Betriebsumfeld zu bestimmen. Zu diesem Zweck werden Lokali-
sierungssysteme auf Basis von Bayes Filtern wie dem Kalman Filter betrachtet.
Als Ausgangspunkt der Fehlerfortpflanzung wird daher eine modifizierte algebra-
ische Riccati Gleichung ausgewählt, welche Fehlerwahrscheinlichkeiten bei der Re-
gistrierung berücksichtigt. Eine Schätzung des Registrierungsfehlers des spektralen
Registrierungsverfahrens wird aus der verwendeten Gitterauflösung abgeleitet. Für
den pfeilerbasierten Ansatz wird dazu eine Fehlerfortpflanzung über die Lösung
des Prokrustes Problems durchgeführt. Die Lösung des Prokrustes Problems er-
möglicht bei korrekter Datenassoziation die Berechnung der räumlichen Transfor-
mation zwischen zwei Eingangsmengen von Pfeilerkoordinaten. Für die Beschrei-
bung der Unsicherheit in der LiDAR-basierten Messung der Pfeilerkoordinaten wird
ein geschwindigkeitsabhängiges Modell hergeleitet. Die Vereinigung dieser Model-
le ermöglicht unter den gegebenen Annahmen eine statistische Beschreibung einer
Klasse relevanter Lokalisierungssysteme. Eine effiziente Auswertung des Modells
wird durch die geschlossen analytische Formulierung ermöglicht, welche zu einer
Senkung der Simulationszeiten gegenüber vergleichbaren numerischen Methoden
führt. Die Ergebnisse aus Simulationsstudien werden in einem iterativen Vorge-
hen für die Entwicklung des zuvor genannten Lokalisierungssystems verwendet.

Eine ausführliche Auswertung der entwickelten Lokalisierungsverfahren wird auf
der Basis eines herausfordernden und speziell ausgewählten Satzes von LiDAR- und
Odometriedaten aus 14.8 km Testfahrten in städtischem Umfeld durchgeführt. In
diesem sind Messungen aus einer Vielzahl unterschiedlicher städtischen Bereichen
enthalten, so z.B. dicht beparkte Wohnstraßen und ausgedehnte Kreuzungen. Dieser
Datensatz wird um Messdaten von 4 km einer Campus Umgebung ergänzt. Die
Ergebnisse zeigen, dass durch die beschriebenen Ansätze das Lokalisierungssystem
im Rahmen der untersuchten Anwendungsfälle erhöhten Robustheitsanforderungen
gerecht wird. Für das vorgeschlagene Verfahren wird zusätzlich gezeigt, dass die
Abhängigkeit von gründlich aktualisierten Lokalisierungskarten und Sensordatenver-
arbeitung in vielen relevanten Anwendungen reduziert werden kann. Die Korrekt-
heit und Genauigkeit der statistischen Modelle wird an mehreren Stellen durch reale
Ergebnissen des Perzeptions- und Lokalisierungssystems und Monte Carlo Simula-
tionen bestätigt. Der zentrale Beitrag dieser Arbeit besteht damit in der Entwick-
lung eines modularen Lokalisierungssystems mit integrierten Konsistenzprüfungen.
Durch den modellbasierten Ansatz können Entwicklungsentscheidungen unterstützt
werden, welche zu Lokalisierungssystemen mit erweiterter Robustheit für automati-
siertes Fahren in der Stadt führen.





Abstract

Automated driving contributes to the solution of current and future challenges in
personal mobility and transportation. In the context of increasing urbanization, it
provides new means for traffic flow optimization and enables innovative mobility con-
cepts. Current developments in automated vehicle systems for urban environments
are characterized by progressively increasing levels of automation and decreasing
restrictions on operation environments. These trends lead to higher requirements
for situational awareness that is commonly fostered by the incorporation of supple-
mentary map information like right of way rules. Vehicle localization links these
spatially referenced map information to the vehicle-relative on-board environment
perception. Consequently, the safe operation of automated vehicle systems depends
on the underlying localization system.

Given this motivation, a light detection and ranging (LiDAR) based localiza-
tion algorithm with enhanced robustness is developed in this thesis. Robustness is
here defined as the ability of a localization system to meet specified performance
requirements even under adverse environmental conditions. The latter often oc-
cur in urban environments, e.g., due to semi-static objects like parked cars which
can cause localization maps to be outdated. The environment is also character-
ized by high heterogeneity as exemplarily seen from variations between broad main
and narrow domestic roads with high amounts of vegetation. Contributions are
made by the development of a robust map matching procedure for dealing with
outdated localization maps and localization system initialization. As another effect,
the dependence on thoroughly updated localization maps and sensor data filtering is
generally relaxed. Analytical redundancy is introduced to the modular localization
system by utilization of a pole-based map matching modality for intersections and
robust spectral matching algorithm for the remaining areas. Consistency checking
capability is introduced in order to select sets of consistent vehicle pose informa-
tion. A developed scan-based odometry permits precise motion estimation and a
simultaneous localization and mapping (SLAM) algorithm enable the operation in
unmapped areas.

In this work, a requirement-driven approach is taken for localization system de-
sign. In most applications, specific localization accuracy requirements have to be
met while complex interrelations between environment characteristics, localization
requirements, resource constraints and perception system parameters complicate the
design process. To this point, a model-based framework for the design of localization
systems is developed as another key contribution. Therefore, a statistical localization
system model is derived which allows to determine localization system parameters
for given localization requirements. An efficient evaluation of the model is fostered
by its analytical formulation, leading to a significantly reduced simulation time in
comparison to numerical methods. The results from a simulation study based on the
derived model are considered within the iterative design of the proposed localization
system with enhanced robustness for urban automated driving.
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argmin minimizing argument

{.}Ii=i0 set with I − i0 members
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1 Introduction

Automated driving (AD) is widely considered a key technology for the solution of
current as well as future mobility and transportation challenges. Advanced driver
assistance systems like electronic stability control (ESC) and adaptive cruise control
(ACC) already nowadays contribute to the reduction of traffic accidents. AD has
the potential to further increase driving safety by providing enhanced functional
capabilities. An important cause of future challenges is the global trend of urban-
ization. According to the United Nations’ World Urbanization Prospects [oEA14],
the percentage of European people living in urban areas is going to increase from
73% in 2014 to 82% in 2050. This development leads to increased traffic density and
environmental stress in and around urban areas. At this point, AD enables macro-
scopic traffic flow optimization and future mobility concepts which could significantly
reduce the number of vehicles on the roads. These concepts include mobility on de-
mand services where a customer can get picked up by an automated taxi at a given
place at a given time. On the path towards urban automated driving, conceptual
and methodical challenges in the development of automated vehicle systems remain
to be solved. This thesis is concerned with the solution of some of these challenges.

1.1 Problem statement and research questions

An exemplary functional architecture of an automated vehicle system is shown in
Figure 1.1. The vehicle system is equipped with a sensor setup which allows to
observe its surroundings. Commonly, the sensor measurements are complemented
by additional information from digital maps, providing traffic rules or an electronic
horizon, covering areas and quantities the sensors cannot observe. These informa-
tion sources are combined to the environment model, the vehicle system internal
representation of its surrounding which includes static objects and other dynamic
traffic participants. Before a decision about the vehicle system behavior and mo-
tion can be made, the future actions taken by other traffic participants have to be
predicted. This step requires situational awareness which can be gained by inter-
pretation of the environment model. For example, an accelerating vehicle driving
on the neighboring lane influences the decision of initiating a lane change. Current
developments in urban automated driving (UAD) are characterized by progressively
increasing levels of automation and decreasing restrictions on operation environ-
ments. These trends lead to higher requirements for situational awareness and more
frequently necessitate the incorporation of supplementary map information into the
environment model. Map-free automated driving would require high perception ca-
pabilities of the automated vehicle system which might be infeasible with current
affordable sensor systems.

Since, the environment information is typically spatially referenced, i.e. they are
only valid for a given location in the map coordinate system, the map-relative pose
(position and orientation) of the vehicle has to be known. Determination of this
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Figure 1.1 A simplified version of the automated vehicle system functional ar-
chitecture outlined in [TKZS16]. Utilization of additional map information in the
environment model requires a minimum accuracy of the vehicle position and orienta-
tion estimate. Corrupted vehicle pose estimates can lead to a functional degradation
of the vehicle system and can have catastrophic impact if localization failures remain
undetected.

vehicle pose is denoted map-relative vehicle localization. In a last step, the behavior
and motion of the automated vehicle system is planned and executed on the ba-
sis of the environment model and vehicle control. Throughout this highly complex
procedure from sensor observations to motion execution, vehicle localization is of
fundamental importance. This is due to its function of linking the spatially refer-
enced map information and the static as well as dynamic objects that are extracted
from the sensor observations. Utilization of additional map information enables
well-grounded behavior planning which is paid by the dependence on the underlying
localization system for a safe operation of the automated vehicle systems.

Today’s navigation systems rely on global positioning system (GPS) signals for
vehicle localization during tour guiding. Standard GPS typically provides posi-
tion information with a typical accuracy between 5 m and 10 m. Centimeter-precise
position measurements can be obtained from sophisticated differential global po-
sitioning system (dGPS) systems. GPS-based localization has the advantage of
directly measurable vehicle positions at nearly every outdoor location. However,
GPS-based solutions are considered unsuitable for vehicle localization in urban envi-
ronments due to signal deteriorating multipath propagation and shadowing. To this
point, current localization approaches for environments with unmodified infrastruc-
ture commonly rely on highly accurate and up-to-date localization maps (compare
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Figure 1.1). Thereby, problems imposed by GPS-based localization can be omitted
and no infrastructure modifications are required. Thus, the main research question
to be answered throughout this thesis

Main research question

How can GPS-less vehicle localization for urban automated driving be
achieved on the basis of an in-vehicle sensor setup and a localization map?

Beginning from this main research question, further relevant research questions
arise when looking at the role of localization systems and their components in an
automated vehicle system. A fundamental input to the localization system is the lo-
calization map to which sensor observations are aligned for vehicle pose estimation.
The recording and maintenance of localization maps is complicated due to frequent
changes in urban environment and high costs for map updating from measurement
collected by specialized mapping vehicle systems. Consequently, a decreased depen-
dence on well-updated localization maps is beneficial. Hence, a promising approach
is to decrease the dependence on well maintained localization maps. An outdated
localization map and a cluttered LiDAR sensor observation is shown in Figure 1.2
which show the impact changes can have on the level of inconsistencies. This leads
to a further research question treated in this thesis:

rq1. How can the dependence of localization systems on thoroughly updated local-
ization maps and sensor data processing be relaxed?

A centimeter-precise vehicle position estimate as provided by dGPS systems are
commonly only required as a reference. Localization accuracy requirements are
highly scenario-dependent and vary within a broad range. In intersection areas, a
highly accurate vehicle pose estimate is widely considered mandatory and localiza-
tion failures might have a catastrophic impact. Infeasible perception and localiza-
tion system designs increase the likelihood of localization failures which, e.g., can
cause an insufficiently low extraction rate of environment information, and have
to be avoided. Furthermore, the efficiency of the localization system depends on
a plethora of design decisions whose outcomes are strongly coupled to the target
operation environment. In this context, this thesis deals with the following research
question:

rq2. Starting from localization accuracy requirements and operation environment
characteristics, how can the localization system design be supported and made
repeatable?

For initialization and once a failure state occurred, an initialization procedure has
to be executed in order to obtain a precise vehicle pose estimate or maintain a safe
vehicle state.
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LiDAR measurement
(recorded in 2016)

Localization map
(recorded in 2014)

Figure 1.2 Semi-static objects like building sites and parked cars frequently oc-
cur in urban environments. If these remain inside the localization map (grey) or
the sensor observation (blue), inconsistencies arise. In combination with high un-
certainty in the vehicle pose estimate, as encountered during system initialization
and recovery, the alignment of outdated localization maps and sensor observations
becomes a challenging task.

rq3. How to initialize or recover a vehicle localization system from imprecise priors
in challenging urban environments?

False optimism about the current localization accuracy during vehicle operation
can have catastrophic impact due to the introduction of false information to the
environment model. In this context, the detection of false alignments between sensor
observations and the localization map, i.e. map matching failures, is one prerequisite
for the avoidance of critical vehicle states

rq4. How can map matching failures be detected?

rq5. How can adaptations to the localization system architecture lead to increased
insensitivity against inconsistent sensor observations?
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In parking garages, the high accuracy requirement from the intersection example
can most likely be relaxed and an in-vehicle solution for simultaneous localization
and mapping (SLAM) might suffice for navigation. Ideally, the additional SLAM
capability would not lead to a considerable increase in the complexity of the local-
ization and navigation system.

rq6. How to add scan-based odometry and SLAM capability to the vehicle system
without significantly increasing the overall system complexity?

The key contributions in this thesis are made in order to answer these research
questions. In the following section, an overview over the key contributions is pro-
vided.

1.2 Key contributions

This thesis contributes to the field of map-relative localization and mapping in the
context of urban automated driving. The main contributions are made to LiDAR-
based localization systems with enhanced robustness against outdated localization
maps and inaccurate priors which are often encountered during system initialization
and recovery. The key contributions were presented at international pear-reviewed
conferences and in a book chapter. All publications are listed under Publications in
the Literature section.

Real-time capability, determinism, high tolerance against inconsistent sensor ob-
servations and imprecise transformation priors are favorable characteristics of map
matching algorithms for urban vehicle localization. A thorough evaluation of state of
the art map matching algorithms in the context of UAD is conducted and reasonable
extensions to the Fourier-Mellin transformation (FMT) based matching algorithm
are developed. Integration into a LiDAR-based odometry and SLAM framework
leads to high relative motion estimation accuracy. Accurate vehicle localization is
achieved by a combination of the developed algorithms in a localization system with
consistency checking capability. A further contribution deals with the question of
how robustness can be introduced at a higher level of the system architecture. To
this point, a particle filter base localization framework with global localization ca-
pability is considered and it is shown, how adaptations to the system architecture
lead to increased robustness. In this context the following key contribution is made
for answering rq1 and rq3 -rq5 :

kc1. A modular localization system with consistency checking capability
is developed ([RMZ17], [RSMZ16], [RSMZ15]).

• Ad rq1 : At a lower level of the system architecture, insensitivity against
outdated localization maps is achieved by FMT based map matching.
Here, a suitable existing algorithm is adapted to the requirements of
vehicle systems for UAD.
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• Ad rq3 : Initialization and recovery of vehicle localization systems is
achieved by a newly developed robust variant of the FMT based match-
ing algorithm. The evaluation shows a significantly increased insensitiv-
ity against inconsistencies between sensor observations and localization
maps than the standard algorithm. Due to manifold parameterization
possibilities, the algorithm is successfully employed within a variety of
localization system components.

• Ad rq4 : Map matching failures are detected by introduction of analyti-
cal redundancy by adding a pole-based map matching procedure to the
system architecture and consistency checking.

• Ad 5 : Increased insensitivity of a localization system against inconsistent
sensor observations is achieved by incorporation of a consistency checking
mechanism into the system architecture. In an example implementation,
3D LiDAR scans are divided into three layers for each of which a separate
localizer is instantiated. Consistency checking against odometry measure-
ments is then used to select layers which lead to consistent localization
outcomes.

• Ad rq6 : A spectral SLAM algorithm on the basis of FMT and rFMT
based matching is developed. Furthermore, accurate and reliable relative
motion estimation is enabled by the developed LiDAR-based odometry.

Furthermore, the model-based design of perception systems for localization is
addressed by the development of statistical models and their evaluation in Monte
Carlo simulations. It is argued in this thesis, that the design of localization systems
should be targeted at the required and not the best achievable performance. This
goal shall be achieved in a systematic and repeatable manner. To this point, the
proposed approach differs from the vast majority of approaches found in the state of
the art. Complex interrelations between environment characteristics, localization re-
quirements, resource constraints and perception system parameters, like sensor setup
parameters and feature detectors, complicate the design of localization systems. It
is argued, that knowledge of these interrelations can help to identify an advanta-
geous trade-off between robustness against stressful environmental conditions and
efficiency of the localization system implementation. It is argued, that statistical
models are well suited for the expression of the aforementioned interrelations in an
efficient manner compared to numerical models. Hence, the key contribution for
answering research question rq2 :
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kc2. The design of localization systems is supported and made repeatable on the ba-
sis of newly developed statistical models which are evaluated for model-based
localization system design ([RVMZ16], [RMH+16], [RJMZ16]). Error prop-
agation is performed from uncertain sensor observations and over feature ex-
traction, map matching and Bayesian ego vehicle pose tracking. The model
framework captures the environment characteristics, i.e. feature densities and
distributions, by utilization of stochastic point processes. This enables the
determination of minimum feature detection rates, feature detector selection,
sensor parameters and map matching rates for a given localization accuracy
requirement and environment.

1.3 Thesis outline

The thesis at hand is organized in four parts. A graphical overview is given in
Figure 1.3. Part I provides the knowledge base required throughout this thesis. It
contains definitions of relevant terms and the mathematical foundations (Section 2)
of following sections. The terms dependability and robustness are introduced and
considered for vehicle localization in connection with increasing automation levels. A
comprehensive summary of related work in the treated fields of research is developed
in Section 3. A discussion of open research challenges arising from the state of the
art ends this part and serves as the motivation for the key contributions developed
in this thesis.

The components of the proposed localization system are introduced in Part II
(rq1, rq3, rq4, kc1 ). This part starts with the introduction of the test vehicle system,
the sensor setup and a short overview over characteristics of the urban operation
environment. Consecutively, the concept of spectral registration is presented. Its
applicability to vehicle localization in urban environments is discussed based on a
thorough experimental comparison to other state of the art matching algorithms
(Section 6). A robust variant of the spectral matching algorithm is developed in
order to overcome the limitations of the standard algorithm (Section 6.3). This
development enables higher matching rates and initialization from inaccurate priors.

Statistical models of the localization system and their interrelations with environ-
ment characteristics are derived and experimentally evaluated in Part III (rq2, kc2 ).
The statistical models are developed in Section 7 & 8. Comprehensive simulation
studies and evaluations based on real measurement data are discussed and principles
for robustness-oriented localization system design are formulated (Section 9).

The localization system is developed in Part IV (rq1 - rq6, kc1 ). This part be-
gins with the development of a LiDAR-based odometry which makes use of spectral
registration. The latter is instrumented in a SLAM framework where the matching
approach is successfully utilized for scan matching and loop closing (Section 10).
Insensitivity to inconsistent sensor observations is added at architectural level to a
particle filter (PF) based localization approach, denoted adaptive Monte Carlo lo-
calization (AMCL), and results in the implementation of multilayer adaptive Monte
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Carlo localization (ML-AMCL) (Section 11.1). In the overall localization system,
ML-AMCL is utilized as a robust global prior (Section 11). Under the assumption
of inaccurate priors for the vehicle pose and highly inconsistent sensor observations,
a suitable extended Kalman filter (EKF) based localization framework is developed
(Section 11.2). Analytical redundancy is introduced by utilization of scan- and pole-
based map matching algorithms with broad basins of convergence. False matching
results are detected by consistency checking mechanisms. A concluding discussion
of the results presented in this thesis and future research perspectives are given in
Section 11.4.

Common concepts (Sec. 2) Related work (Sec. 3)

Preliminaries (Part I )

Components of a loca-
lization system (Part II )

LiDAR data
processing (Sec. 5)

Point cloud
registration (Sec. 6)

Scan-based
localization (Sec. 10.1)

Simultaneous localization
and mapping (Sec. 10.2)

Model-based localization
system design (Part III )

Statistical localization
model (Sec. 7 & 8)

Model-based
design (Sec. 9)

Localization
system evaluation (Sec. 11.3)

Part IV

LiDAR-based vehicle localization with
enhanced robustness for UAD (Sec. 11)

Figure 1.3 Outline of the thesis at hand.
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2 Common concepts

2.1 Localization

A sufficiently accurate estimate of the current map-relative vehicle pose is considered
mandatory for urban automated driving. The vehicle pose xk at time k contains a
position and orientation of the vehicle frame V relative to the map reference frame
M (Figure 2.1). Commonly, M is aligned with the global (e.g. WGS48) frame
G. Vehicle localization is then defined as the task of estimating xk from uncertain
sensor observations.

Current navigation systems provide global pose information on the basis of global
positioning system (GPS) measurements. However, this approach is widely consid-
ered insufficiently accurate and reliable for vehicle localization, especially in urban
environments where multi-path propagation and shadowing effects frequently occur.
Thus, vehicle localization is commonly based on exteroceptive, e.g. light detection
and ranging (LiDAR) and video, and proprioceptive, e.g. wheel speed and steering
angle, measurements. Therefore, localization systems entail a perception module, a
localization map (Section 2.1.1) and estimation algorithms. Localization approaches
can be categorized by the level of uncertainty in the utilized prior. In global local-
ization the initial pose is unknown. This approach is particularly challenging due to
ambiguities and computational complexity. If not stated differently, the availability
of a rough pose estimate, also denoted prior, is assumed. Map-relative pose estimates
are calculated from the registration (Section 2.1.2) of uncertain, i.e. noisy and clut-
tered, exteroceptive sensor measurements and the localization map. Relative motion

xV

yV

zV

(lk,1,dk,1)

(lk,2,dk,2)

(lk,3,dk,3)xM

yM

zM

tk

Θk

xG

yG

zG

Figure 2.1 Vehicle reference frame V (blue) in accordance to DIN ISO 8855
[ISO12]. Localization names the process of aligning V with the map frame M (gray)
based on the matching of sensor observation and a localization map. It is commonly
assumed, that the transformation between M and the global (e.g. WGS48) frame
G is known which enables the incorporation of GPS measurements if desired.
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estimates can be utilized for further refinement of absolute pose estimates and for
temporary unavailability of registration results. Relative pose estimation is subject
to drift and can therefore be used for limited distances.

Fusion of absolute and relative pose information is often conducted by Bayesian
filtering which is described in Section 2.1.3 and used throughout this thesis. Inconsis-
tent vehicle states can be detected by consistency checking methods (Section 2.1.4).
The accuracy in dynamic state estimation is bounded by the Cramér-Rao bound
introduced in Section 2.1.5 which forms an important basis for the derivation of
statistical localization system models in later sections.

2.1.1 Localization maps

A localization map m is a model of the operation environment. Environment infor-
mation is typically represented as sensor-specific sets of objects like points and lines
or in form of a grid map. A feature-based map contains a set of M features {mi}Mi=1

which can be observed by an appropriate perception system.
The utilized feature types have significant influence on the computational effi-

ciency and hardware requirements. Furthermore, it affects the selection of suitable
registration and localization algorithms. On the lowest level of abstraction, accu-
mulated sensor measurements like point clouds serve as localization maps, yield-
ing dense environment representations. As pointed out in [PCS15], this map rep-
resentation can increase the localization reliability. In order to enable a sparser
representation, geometric primitives like cylinders or plains can be extracted from
sensor measurements and used as features. A feature point might then represent
a reference point on a pole-shaped object such as a traffic sign post. In contrast
to LiDAR measurement points, the location of the pole can be repeatably mea-
sured. Repeatably detectable features are hereafter denoted as landmarks. Some
definitions in literature are narrower in the sense that some additional uniqueness
requirement is imposed upon the repeatably detectable feature. The extraction of
sparsely distributed geometric primitives also leads to an increased uniqueness of the
features. In the case of pole landmarks this means that a reference point of the pole
is repeatably detectable but different landmarks are not distinguishable. Further
meta-information about the point feature type and possibly about its surrounding
increases this uniqueness. Descriptors di are commonly utilized to describe the lo-
cal neighborhood of a feature point, leading to an increased uniqueness. Examples
for descriptors are ORB [RRKB11] for video and FLIRT [TBA14] for LiDAR mea-
surements. For artificial landmarks, QR codes can be used for achieving globally
uniqueness which simplifies the correspondence estimation step during registration
(Section 2.1.2).

A common assumption about localization maps is that these exclusively contain
representations of static environment entities. Due to suboptimal mapping proce-
dures, semi-static objects like parked cars and building sites, as well as artifacts from
dynamic objects or processing steps can be contained in the map. This clutter leads
to inconsistent sensor readings and hence threatens correct functioning of vehicle
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localization systems. The goal of localization systems with enhanced robustness is
the consideration of such inconsistencies. Registration algorithms (Section 2.1.2)
enable the alignment of sensor observations and localization maps.

2.1.2 Registration

Registration, also denoted as matching, is utilized in order to align a set of Nk noisy
point measurements Lk = {li}Nk

i=1 with covariance matrix Σl,i and a second data set.
Without loss of generality, it is assumed that Lk is given relative to V . Absolute
vehicle poses are estimated by map matching which is the task of matching a local
sensor observation with a localization map. The result of map matching is the map-
relative vehicle pose estimate zk = [xk, yk, θk] that forms the transformation between
V and M (Figure 2.1):

LMk = RkL
V
k + tk = RkLk + tk, (2.1)

Rk =

[
cos (θk) − sin (θk)
sin (θk) cos (θk)

]
, tk =

[
xk yk

]
.

Registration of consecutive sensor observations Lk−1 and Lk can be used to de-
scribe the movement of the ego vehicle. The transformation parameters are obtained
from a two step procedure which consists of correspondence estimation (data asso-
ciation) and transformation calculation (see Figure 2.1). A correspondence between
a map feature mi and sensor observation lj is modeled as a correspondence variable
cj = i, leading to a set of correspondence pairs

{{
lj,mcj

}}nk

j=1
, nk ≤ Nk [TBF05].

The implementation of this step has significant influence on the robustness and
computational efficiency of the registration algorithm (compare Section 3.1). For
an estimated set of correspondences, the transformation parameters are obtained by
optimization of a cost function J

(R, t) = arg min
R, t

J ({(li,mi)}ni=1 , (R, t)) . (2.2)

For known correspondences, the problem of minimizing quadratic cost function J is
known as the orthogonal Procrustes problem (OPP). Correspondence pairs can be
weighted in order to account for measurement noise. The weighted cost function is
given as

J =
n∑
i=1

‖Wi (Rli + t−mi) ‖2 . (2.3)

In literature, different variants and solutions for the minimization of J , i.e. the
solution of the OPP, can be found. A non-exhaustive overview is given in Table 2.1.
The choice of the weighting matrix Wi is used to weight the point correspondences.
Anisotropic measurement noise can be considered by defining Wi as a densely popu-
lated or diagonal matrix. By choosing W>

i Wi = Σ−1
l,i +RΣ−1

mi
R>, the most accurate
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Table 2.1 Different formulations and solutions of the orthogonal Procrustes prob-
lem.

Weighting strategy Solution

• Wi = 1
n
I (un-

weighted)
• Wi = wiI (scalar-

weighted (isotropic
noise))

closed-form
• singular value decomposition (SVD)

[AHB87]
• unit quaternions [Hor87]
• dual quaternions [WSV91]

• Wi = Σ−1
l,i +RΣ−1

mi
R>

(matrix-weighted
(anisotropic noise))

closed-form (approximate) and iterative
• approximate [WCR92]
• iterative [CT98], [KS91]

registration results can be obtained. For Wi = wiI = max (eig (Σl,i))
− 1

2 the scalar-
weighted and for Wi = n−1I the unweighted Procrustean problem is obtained. Both
formulations can be solved efficiently in closed-form. For high numbers of landmarks,
the optimization results of all three cost functions are similar.

The notation Lk will be used for sets of pole-shaped features extracted from
LiDAR data, whereas scans are denoted sk instead. The covariance of the registra-
tion result is denoted Σz. The correctness of the correspondences is a fundamental
prerequisite for the validity of Σz. Accurate covariance estimation is an impor-
tant prerequisite for a successful deployment of matching algorithms in localization
and SLAM frameworks. Together with the estimates vehicle pose, the covariance
estimate is used for vehicle state estimation as described in Section 2.1.3.

2.1.3 Bayesian state estimation

Localization is an example of state estimation in the context of automated driving.
In this thesis, dynamic state estimation is considered in a probabilistic manner by
application of Bayesian filtering. The contents in this section are based on Thrun
et al. [TBF05]. The vehicle state is modeled as a random variable X which allows
to consider state uncertainties. The probability of the value X = x is described
by the probability density function (PDF) p(X = x). In the following, the shorter
common notation p(x) is used instead. Bayesian filtering uses this representation
in order to propagate vehicle state estimates over time. The Markov assumption
is fundamental to Bayesian filtering. Accordingly, all future states only depend on
the current state and, hence, are independent of all past states. Consequently, the
vehicle state at time step k is completely represented by the belief bel (xk). Based
on the Markov assumption, Bayes filters are utilized to recursively update the belief
function, also denotes as posterior distribution or posterior, given a set of uncertain
sensor measurements and the posterior from the preceding time step. The evolution
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Figure 2.2 Under the Markov assumption, the dynamic Bayesian network
[TBF05] models the evolution of the vehicle states xk (blue) in dependence on noisy
odometry (or control inputs) uk and map matching results zk.

and causality are modeled as a dynamic Bayesian network as shown in Figure 2.2.
A detailed derivation of the Bayes filter under utilization of the algorithm theorem
of total probability and the Bayes rule is given in [TBF05].

The Bayes filtering algorithm consists of a prediction (Equation 2.5) and a mea-
surement update (Equation 2.7) step [TBF05].

bel (xk) = p (xk | z1:k−1,u1:k) (2.4)

=

∫
p (xk|uk,xk−1) bel (xk−1) dxk−1 (2.5)

bel (xk) = p (xk | z1:k,u1:k) (2.6)

= ηp (zk|xk) bel (xk) . (2.7)

Vehicle motion is modeled by the motion model p (xk|uk,xk−1). The measure-
ment model p (zk|xk) captures the interrelation between sensor observations and
the absolute vehicle state. In order to obtain a probability density distribution, the
left side of Equation 2.7 is multiplied by the normalization constant η. The Bayes
filter equations can only be implemented for finite state spaces which is not the case
for vehicle localization in open environments. Nonetheless, approximate implemen-
tations can be derived and have gained exceptional popularity. The Kalman filter
(KF) is an efficient Bayes filter implementation which models the belief function
as a multivariate normal distribution (Gaussian) with mean µ and covariance P
[TBF05]

belKF (xk) = p(xk) det (2πΣk)
− 1

2 exp

(
−1

2
(xk − µk)>P−1

k (xk − µk)

)
. (2.8)

The major disadvantage of this representation is the fact that noise is modeled
as zero-mean Gaussian and only one hypothesis about the current vehicle state can
be represented. This unimodality can be problematic in the presence of ambiguous
sensor observations. Several extensions to the KF equations exist, including the
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extended Kalman filter (EKF) for nonlinear system and measurement models which
is considered in this thesis. The following nonlinear system model is considered
throughout this thesis.

xk+1 = g (xk,uk) + wk (2.9)

zk = h (xk) + vk (2.10)

uk = [∆x,∆y,∆θ] (2.11)

xk+1|k = g
(
xk|k,uk,0

)
(2.12)

=

 xk
yk
θk

+

 R

(
∆x
∆y

)
∆θ

 (2.13)

=

 xk + ∆x cos (θ)−∆y sin (θ)
yk + ∆x sin (θ) + ∆y cos (θ)

θk

 (2.14)

From Equation 2.9 and Equation 2.8 the following EKF equations can be derived
(a detailed derivation can be found in [TBF05]).

Pk+1|k = Ak+1PkA
>
k+1 + Qk+1 (2.15)

Sk = Pk+1|kC
>
t

(
Ck+1Pk+1|kC

>
k + Σz,k

)
(2.16)

xk|k = xk|k−1 + Sk
(
zk − h

(
xk|k−1

))
(2.17)

= Axk−1|k−1 + Kkεk (2.18)

Pk|k = (I− SkCk) Pk|k−1 (2.19)

with the system and measurement matrices A and C given as the Jacobians

A =
∂g

∂x

(
x̂k|k,uk,0

)
(2.20)

=

 1 0 −∆x sin (θ)−∆y cos (θ)
0 1 ∆x cos (θ)−∆y sin (θ)
0 0 1

 (2.21)

C =
∂h

∂x

(
x̂k|k,uk,0

)
. (2.22)

Information fusion at the level of map matching results lead to the simplification
C = I.

Multimodality can be achieved by utilization of particle filter (PF) which are a
special case of nonparametric filters and represent the belief as a set of L state
samples

belPF (xk) = Xk with (2.23)

Xk :=
{

x
[1]
k , · · · ,x

[L]
k

}
. (2.24)
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The samples are called particles and represent different hypotheses about the
current system state. The belief propagation is conducted in a three step procedure:

1. The prediction step for time k is done for each particle x
[i]
k−1 ∈ Xk−1 separately

by sampling from the motion model p
(
xk|x[i]

k−1,uk

)
. The result of this step

is a set Xk of particles which represents bel (xk).

2. Integration of measurements zk is done by weighting in accordance to the fit

between particle and measurement such that w
[i]
k = p

(
zk|x[i]

k

)
.

3. Resampling is conducted by drawing with replacement of L particles with a
probability given by the particle weight. The result is a set Xk of L unweighted
particles which represents bel (xk). This step is also denoted as importance
sampling [TBF05]. This step can lead to a convergence of all particles to one
hypothesis, resulting in an insufficient particle spread. This can be avoided by
deployment of adaptive resampling strategy like Kullback-Leibler divergence
(KLD) resampling [Fox01].

2.1.4 Consistency checking and change detection

Correctness of the pose estimate x̂k and the covariance Pk is commonly expressed
as the level of consistency between redundant measurement sources with a stated
test strength. Gustafsson [Gus00] distinguishes between whiteness-, likelihood ratio,
multiple model and algebraical consistency test based change detection. The system
model in Equation 2.9 is extended by a deterministic parameter fk which is subject
to changes in case of failures

xk = g (xk−1,uk−1, fk) + wk−1 yk = h (xk−1,uk−1, fk) + vk−1 . (2.25)

The signal model Yk is given as

Yk = CZk + Vk + CfFk (2.26)

where Zk denotes the available pose estimates, Vk the measurement noise and Fk

the faults. Consequently, the residuals can be defined as

εk = W (Yk −CZk) (2.27)

= Wνk . (2.28)

In the context of Bayesian filtering, consistency is given if [BSLK04]

• state errors are zero-mean Gaussian and the error magnitudes fit the covariance
given by the filter,

• innovations have the same characteristics as the state errors,
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• innovations have a zero-mean Gaussian noise characteristic.

For online application, the last two conditions can be tested. The second condition
can be tested based on the time-average normalized innovation squared statistic
[BSLK04]

ε̄2ν =
1

K

K∑
k=1

ν>k S−1
k νk . (2.29)

Under H0 the filter innovations are zero-mean Gaussian which corresponds to ε̄2ν
being χ2-distributed withK = nz degrees of freedom. By performing a χ2-test, it can
be evaluated whether H0 can be accepted with a given probability. H0 is accepted
if νk ∈ [r1, r2] with acceptance interval P {νk ∈ [r1, r2] |H0} = 1− α [BSLK04]. For
νk < r1 the covariance estimates are pessimistic or conservative, and optimistic for
νk > r2. The first case can lead to suboptimal estimation performance, but the latter
one could potentially cause catastrophic failures. If H0 is rejected, integrity alarm
is triggered. Depending on the width of the time window for averaging, a fast jump
detection is enabled. The limitation of this approach is the lack of detectability of
drifts. This limitation is often overcome by utilization of multiple model approaches
[WHLS15]. sequential probability ratio testing (SPRT) and its special case, the
cumulative sum (CUSUM) test [Pag54]. The one-sided SPRT is given by [Gus00]

gk = gk−1 + sk − d (2.30)

gk = 0 , and k̂ = k if gk < a < 0 (2.31)

gk = 0 , and ka = k̂ and alarm if gk > h > 0 . (2.32)

The CUSUM test is then obtained for a = 0. The test statistic gk is obtained by
summing up the distance measure sk and a drift compensation variable d. An alarm
is triggered if gk exceeds the threshold h and change time estimate is denoted ka.
The design of change detection methods requires to trade-off the false alarm rate and
the fast detection of faults. For faults detection in hybrid localization procedures,
the detection of a fault can be used as a triggering signal for the reinitialization
of a localization modality. This step underlines the importance of this trade-off,
since the initialization procedure is time consuming and might simultaneously lead
to decreased localization performance. An integrity measure is then given by the
result of the consistency check and the protection level ([WHLS15], chapter 26).

Alternatively, a set of consistent hypotheses can be found from a pairwise con-
sistency matrix Rc

k by means of spectral clustering [VL07]. Rc
k is built from the

set of residuals
{
rjk
}nr

j=1
which can be calculated from the Mahalanobis or any other

distance between two hypotheses

Rc
k =


1 r1

k r2
k

r1
k 1 r3

k

r2
k r3

k 1

 . (2.33)
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Consecutively, a spectral clustering algorithm like single cluster graph partitioning
[Ols08] is applied to Rc

k by calculation of its singular value decomposition. The
dominant eigenvector vk, belonging to the largest eigenvalue λmax,k = max (λi,k),
is considered in order to determine the set of consistent hypotheses. This set is
described by the indicator vector ik. It is determined by applying a threshold c to
vk [Ols08]

ij,k =

{
1 , if vj > c

0 , else
. (2.34)

Pairs of hypotheses corresponding to residual rj,k are in the consistency set if ij,k = 1.

2.1.5 Cramér-Rao bound

The state estimation accuracy for unbiased estimators like the previously introduced
Bayesian filtering framework is limited by the Cramér-Rao bound (CRB). For an
unbiased estimator x̂k (zk) of the vehicle state xk it holds

E [x̂k (zk)− xk] = 0 . (2.35)

The bound is then given by the calculation of the filtering Fisher information matrix
[HRFT04] Jk such that

cov (x̂k (zk)− xk) ≥ J−1
k . (2.36)

The CRB, also denoted Cramér-Rao lower bound (CRLB), is then given by Jk =
P−1
k . The state xk is assumed to be unknown and random. Consequently, the

posterior CRB is considered in the context of vehicle localization. For known state
sequences x1:k, the parametric CRB is used instead. The posterior CRB is given by
the solution of

Jk = −E [∆ ln p (Zk,Xk)] . (2.37)

For the considered case of non-linear systems with zero-mean Gaussian noise this
expression can be solved in closed-form. Tichavsky et al. [TMN98] propose the
following solution for the iterative calculation of Jk. Following the formulation
provided in [HRFT04], the solution is given as:

Jk+1 = D33,k − (D12,k)
> [Jk + D11,k]

−1 D12,k + JZ (k + 1) , (2.38)

D11,k = E
[
[∇xk

ln p (xk+1|xk)] [∇xk
ln p (xk+1|xk)]>

]
= A>k Q−1

k Ak,

D12,k = E
[
[∇xk

ln p (xk+1|xk)]
[
∇xk+1

ln p (xk+1|xk)
]>]

= A>k Q−1
k ,
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D33,k = E
[[
∇xk+1

ln p (xk+1|xk)
] [
∇xk+1

ln p (xk+1|xk)
]>]

= Q−1
k ,

JZ (k + 1) = E
[[
∇xk+1

ln p (zk+1|xk)
] [
∇xk+1

ln p (zk+1|xk)
]>]

= E
[
C>k Σ−1

z,kCk

]
= E

[
Σ−1

z,k

]
.

By inverting this recursion, the Riccati equations for the EKF are obtained.
In model-based design, a upper bound for state estimation uncertainty is of high

interest. For a set of worst case assumptions Qu ≥ Qk, ∀k and Σu ≥ Σz,k, ∀k
as well as constant system matrix A such a bound can be derived. Mirzaei et al.
[MMR07, MR11] proofed that in this case, the state uncertainty is always bounded
by the resulting CRB for k →∞.

2.2 Simultaneous localization and mapping (SLAM)

Simultaneous localization and mapping requires a robotic system to create a map of a
previously unknown environment and to perform localization in this map at the same
time. The following introduction to simultaneous localization and mapping (SLAM)
is mainly based on the work presented by Levinson et al. [LMT07]. Based on the
system model introduced in Equation 2.9, the following motion constraint can be
formulated

(xk − g (uk,xk−1))>Q−1
k (xk − g (uk,xk−1)) . (2.39)

This constraint is obtained by odometry and scan matching. These relative motion
constraints are interpreted as edges in a sparse Markov graph [LMT07]. Absolute
pose measurements zG,k from GPS can be incorporated by the following constraint
[LMT07]

(xk − (zG,k + bk))
> Γ−1

k (xk − (zG,k + bk)) . (2.40)

bk is the latent variable in the Markov chain based model of the systematic GPS
measurement uncertainty [LMT07]. It is modeled by a random walk of the form
bk = γbk +βk with Gaussian noise variable βk which has a covariance Bk [LMT07].
This model adds an additional constraint to the optimization problem

(bk − γbk−1)>B−1
k (bk − γbk−1) . (2.41)

Loop closures form additional constraints of the form [LMT07]

(xk + δsk − xs)
> L−1

sk (xk + δsk − xs) . (2.42)

The offset δsk is obtained from registration of the overlapping submaps around the
poses xk and xs with covariance Lsk.
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The poses xk are obtained from optimization of the overall cost function J [LMT07]

J =
∑
k

(xk − g (uk,xk−1))>Q−1
k (xk − g (uk,xk−1))

+
∑
k

(xk − (zG,k + bk))
> Γ−1

k (xk − (zG,k + bk))

+
∑
k

(bk − γbk−1)>B−1
k (bk − γbk−1)

+
∑
k

(xk + δsk − xs)
> L−1

sk (xk + δsk − xs) . (2.43)

Accumulation of the sensor measurements in an occupancy grid according to the set
of poses results in the map m. The solution of J can be obtained by standard least-
squares optimization or robust functions like the Huber kernel. The error terms in
Equation 2.43 can be rewritten as

e>k Σkek = ρ

(√
e>k Σkek

)
(2.44)

= ρ (εk) . (2.45)

For least-squares optimization, the kernel ρ2 is given as ρ2 (ε) = ε2. By replacing ρ2

by the robust Huber kernel

ρH (εk) =

{
ε2k , if |εk| < b

2b|εk| − b2 , if |εk| ≥ b
(2.46)

the quadratic influence of error terms can be reduced, yielding more robust opti-
mization performance. The Huber kernel can be incorporated into the optimization
process by weighting of the error terms [GKSK11]

(wkek)
>Σ−1

k (wkek) (2.47)

with

wk =

√
ρH (εk)

εk
. (2.48)

The utilization of robust kernels has been shown to be equivalent to switchable
constraints [LCN14] used to remove inconsistent edges. Consequently, the applica-
bility of robust optimization procedures is limited in the presence of loop closing
constraints which would be likely removed. Therefore, loop closing constraints are
often added as fixed edges which requires a thorough outlier rejection procedure
to avoid false loop closures. The optimization step can be performed offline or on-
line by iterative optimization. Throughout this work, the g2o optimization library
[KGS+11] is used for optimization.
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2.3 Dependability, robustness and automation levels

Increasing levels of automation have significant influence on the requirements con-
cerning the localization system performance. In this section, an overview over dif-
ferent classifications of automation levels is provided. Furthermore, definitions for
robustness and related terms are provided and discussed in the context of different
automation levels. Consecutively, the focus is narrowed and the role of robustness
in vehicle localization for highly automated driving is surveyed in the end of this
section.

Well recognized standardized definitions of automation levels for automated driv-
ing (AD) are provided by the Society of Automotive Engineers (SAE) and used
throughout this thesis. An overview over the automation levels defined by the SAE,
the German Federal Highway Research Institute (BASt) and the National Highway
Traffic Safety Administration (NHTSA) is given in [Int14] and restated in Table 2.3.
Systems with automation levels 0 (no automation), 1 (driver assistance) and 2 (par-

Table 2.3 A comparison of different common automation level definitions [Int14].

level 0 level 1 level 2 level 3 level 4 level 5

SAE

no
automa-
tion

driver
assis-
tance

partial
automa-
tion

conditio-
nal
automa-
tion

high
automa-
tion

full
automa-
tion

BASt
driver
only

assisted
partly
auto-
mated

highly
auto-
mated

fully au-
tomated

-

NHTSA

no
automa-
tion

function
specific
automa-
tion

combined
function
automa-
tion

limited
self-
driving
automa-
tion

full self-driving
automation

tial automation) require the driver to continuously monitor the environment. For
automation levels 0 to 3 (conditional automation), the human driver serves as a
fallback in case the automated vehicle systems fails. Automation levels 4 and 5
do not rely on the human driver as a fallback. A more detailed view on selected
automation levels is provided in Table 2.5.

Current technological developments aim at level 4 and 5 automated vehicle sys-
tems. This has significant implications on the required system capabilities. The
relaxed restrictions on the operation environment require the automated system to
deal with an even increasing manifold of use cases and environment characteris-
tics. Furthermore, the capability of failure detection and functional degradation is
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Table 2.5 Progression in automation levels is characterized by decreased restric-
tions on vehicle system use cases and increasing requirements concerning the capa-
bilities of the vehicle system. This can be seen from the automation level specific
minimum capabilities in [Int14].

capability level 1 level 3 level 4 level 5

transition time until human in-
tervention

no yes yes yes

failure detection and func-
tional degradation

no no yes yes

covered driving modes some some some all

emphasized. The combination of relaxed use case restrictions and less human in-
tervention forms the main challenge inherent to increasing automation levels. This
leads to the notions of dependability in general and robustness in particular which
are introduced in the following. Both are required for a safe execution of automated
driving tasks. Since the number of these tasks increases and the level of human
intervention decreases, both become more and more important with increasing au-
tomation levels. As discussed in the introduction of this work, map-relative vehicle
localization enables the usage of additional spatially referenced information from
digital maps in automated decision processes and is part of a vehicle system with
robustness requirements. Consequently, localization systems have to be depend-
able, once behavior decisions are made and executed based on the provided pose
estimates. An overview over important definitions is provided in Table 2.7.

Table 2.7 Definitions of relevant terms in the context of this work. The definitions
are cited from ISO 24765 [ISO10] and [LCI+04].

dependability
“trustworthiness of a computer system such that reliance
can be justifiably placed on the service it delivers” [ISO10]

availability
“the degree to which a system or component is operational
and accessible when required for use” [ISO10]

reliability

“the ability of a system or component to perform its re-
quired functions under stated conditions for a specified pe-
riod of time” [ISO10]

robustness

• “the degree to which a system or component can
function correctly in the presence of invalid in-
puts or stressful environmental conditions”
[ISO10]
• “the delivery of a correct service in implicitly-

defined adverse situations arising due to an un-
certain system environment.” [LCI+04]
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Availability and reliability are important aspects of dependability. Robustness
contributes to dependability by advantageously influencing the system reliability
and availability. Both definitions of robustness underline a limitation of robustness,
namely the availability and feasibility of assumptions concerning adverse situations.
In the previous sections, vehicle localization was defined as the task of inferring
absolute vehicle pose information from uncertain sensor observations. This process
of inference entails a manifold of explicit and implicit assumptions about the nature
of the sensor observations and their interrelation with the vehicle pose. Challenges
in vehicle localization typically arise from a mixture of these two sources of un-
certainty. Examples for uncertain models include the Markov assumption and the
belief function type that were mentioned in the previous section. Also map matching
algorithms entail assumptions, often expressed by heuristics like in iterative closest
point (ICP). It is in the nature of model assumptions, that open environments
cannot be exhaustively described. Furthermore, the assumptions can lead to in-
creased requirements concerning sensing and processing resources which might be
constrained. The robustness definitions according to [ISO10] and [LCI+04] entail
four formulations summarized as

• correct functioning,

• invalid inputs,

• (implicitly-defined) stressful environmental conditions

which are interesting for the thesis at hand and are now defined in the context of
localization. The explicit meaning of correct functioning is highly dependent on the
requirements of the intended use case. For the considered automation levels 4 and
5, the requirements arising from behavior planning are considered. These are ex-
pressed as a localization accuracy requirement (see Section 9.1) and by demanding
a detection capability for false vehicle pose estimates. Both shall be met during
automated operation in urban environments. The introduction of various charac-
teristics of urban environments in Section 4.2 showed the environmental conditions
which can be considered as stressful for localization systems. Examples are occlu-
sions, semi-static objects in the map and sensor measurements and heterogeneity.
These are the main aspects which are considered in this thesis. Implicitly, these
aspects are defined by utilization of a suitable map matching procedure which takes
inconsistent point cloud data as valid inputs. Thereby, the probability of invalid
map matching results to higher hierarchical layers of the localization system can be
reduced. Failures in data association, especially during map matching, can lead to
invalid inputs to the localization system, such as inconsistent information about the
vehicle pose. Ideally, the occurrence of invalid system inputs can be avoided since
outliers cannot always be detected. Hence, in this thesis failure avoidance instead of
compensation is fostered where possible. This is achieved during runtime by utiliza-
tion of the aforementioned matching algorithm (Section 6) and during design time
by a model-based design approach (Section 9).
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3 Related work

The presented related work is structured in categories which reflect the part-structure
of this thesis. Section 3.1 reflects contents from Part II by providing a survey on
matching algorithms and applications of these. Furthermore, a concept for regis-
tration algorithm categorization is elaborated. Localization systems are surveyed in
Section 3.2, providing the state of the art for Part IV. In consideration of Part III,
an overview over current localization performance models is given in Section 3.3.

3.1 Registration

Data association remains a fundamental challenge in automated driving and robotics
in general. During registration, this task occurs as correspondence estimation be-
tween two sets of input data. Given the correspondences, the transformation param-
eters can be calculated in closed form [LSL76, HJL+89] (unweighted, scalar weighted
OPP). Incorporation of additional knowledge about the uncertainty in the measure-
ment points can increase the matching accuracy. Consideration of anisotropic noise
as encountered in stereo video depth measurements, requires the utilization of opti-
mization procedures [BF00] or can be solved approximately in closed-form [WCR92]
(see Section 8.1.1). In practical applications, correspondences are commonly un-
known and must be estimated. The steps of point data registration are shown in
Figure 3.1. The proposed concept overview is used throughout this section to cat-
egorize state of the art registration algorithms. In the following subsections, state
of the art iterative and non-iterative registration algorithms are reviewed, where
different approaches for correspondence estimation are employed.

Scan
data

Feature &
desciptor
extraction

Correspondence
estimation

Cost function
minimization

Stopping
criterion
evaluation

stop

Transformation
estimate

Transformation
prior

Registration/
matching

Figure 3.1 The proposed concept for categorization of iterative point registra-
tion procedures (Section 3.1.1) and their distinction from dense or region-based
approaches (Section 3.1.2).
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3.1.1 Point-based registration

Point-based registration approaches are predominant in the area of robotics. In
point-based registration, the data association or point correspondence estimation is
explicitly addressed. Correspondence and transformation estimation is jointly con-
ducted in an iterative manner and commonly relies on strong assumptions on the
input data. The assumptions are typically formulated as distance and similarity
measures, cost functions and stopping rules (Figure 3.1). Variations of the assump-
tions and submodules of standard registration algorithms led to the introduction of
a solid body of different contributions.

The ICP algorithm [BM92] and its variants have gained great popularity. The
original ICP variant iteratively determines corresponding point pairs from two over-
lapping scans based on the Euclidean point-to-point distance and minimizes the
squared distances between corresponding point pairs. Modifications to the cost
function and similarity measures for point correspondence estimation have led to
the introduction of ICP variants with increased robustness. Modification of the
point-to-point distance include point-to-plane [CM91], measures based on local geo-
metric similarity in generalized ICP [SHT09] (Figure 3.2) and approximate solutions
[GY03]. The efficiency and robustness of correspondence estimation can be increased
by the introduction of search intervals [LM97]. Robust cost functions for the opti-
mization step have been fostered by introduction of M-estimation in [KKM03] and
robust cost function like the Huber kernel [Fit03]. The selection of suitable fea-
tures like corners or abstract features is of crucial importance for the performance
of correspondence-based registration algorithms. The extraction of features from
point cloud data has shown good performance in scenarios, where a sufficiently high
number of repetitively detectable features is available. This might not be the case
for highly heterogeneous operation environments. Under the assumption of a par-
tially planar environment like corridors, minimally uncertain maximum consensus
(MUMC) [PBVP10] extends the ICP approach to the usage of planes. According to
[Zha94], care should be taken when utilizing geometric primitives since the feature
extraction from point data introduces another source of uncertainty which might
lead to matching failures. A covariance estimate for point-based ICP is provided
in [Cen07a]. Comprehensive surveys on ICP variants can be found in [PCS15] and
[BSMW14].

Recently, the normal distribution transform (NDT) [BS03] came into the focus
of robotic scan matching applications. NDT like matching approaches address the
correspondence search by modeling the input point cloud data as sums of normal
distributions. Since, this model is piecewise smooth, standard optimization pro-
cedures can then be used for iterative data alignment. Thereby, NDT inherits all
advantages and disadvantages of iterative optimization procedures. In comparison
to ICP, the correspondence estimation between single points is addressed implicitly.
The original algorithm for 2D scan measurements has been extended to the 3D case
[MLD07]. Simultaneous matching of several scans using was introduced in [BS06].
Magnusson et al. provide a comparison between NDT and ICP in [MNL+09] with



3.1 Registration 27

Figure 3.2 Left image: iterative point correspondence estimation on the basis of a
plane-to-plane distance measure (image source: [SHT09], Segal et al.); Right image:
dense matching on the basis of the Hough-Radon transformation (image source:
[CC09], Censi), where the transformation parameters are found by a maximum
search in the correlation domain.

a focus on runtime and reliability. This comparison is expanded to ICP, MUMC
and NDT in [MVS+15] and shows the broader basin of convergence of NDT and
MUMC compared to ICP. The accuracy of NDT has been shown to be comparable
to ICP [SMAL11], although the results tend to vary for different data sets. Clus-
tering approaches have been introduced in order to deal with sparse and cluttered
sensor measurements. In [RBH+15] clustering is used to adapt NDT to the charac-
teristics of radar measurements. The authors of [SASL13] propose to use NDT for
localization within a Monte-Carlo localization framework. NDT and ICP perform a
local search for correct transformation parameters which leads to a high computa-
tional efficiency of this algorithm class. Since, the underlying optimization problem
is typically non-convex this local approach can lead to convergence against local
optima.

This problem is addressed by sample-based registration approaches. random sam-
ple consensus (RANSAC) [FB81] randomly draws samples of correspondence pairs
from the data and calculates the transformation parameters. Consecutively, the
sample sets are ranked by the score of the transformation model. Commonly the
score is expressed as the number of model-supporting points. In case of exhaustive
drawing, i.e. all possible samples are drawn, the fittest model can be selected. Olson
et al. introduced an approach based on single cluster graph partitioning (SCGP)
[Ols09, OWTL05] which overcomes some performance issues of RANSAC. Both
approaches are less sensitive to prior inaccuracy and noise. Depending on the size
of the input data, sample-based approaches are computationally demanding. Thus,
in practice a maximum number of iterations or a threshold for acceptable fitness
scores is commonly defined.

3.1.2 Dense registration

Dense or region-based registration methods solve the data association and error
minimization in one step (compare Figure 3.1). Hence, steps with high amounts of
assumptions, like feature extraction, correspondence search and error minimization
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can be omitted. This class of algorithms typically shows good performance under
the presence of severe noise in the input data and in heterogeneous operation en-
vironments. This class of algorithms has a long history in image processing and
pattern recognition [ZF03, Gos12].

A basic approach to dense registration is the application of correlation-like meth-
ods to the unmodified input data. However, according to Zitova et al. [ZF03], this
method is sensitive to noise in the input data. Hence, the initial application of a
transformation, e.g. Fourier transformation, to the input data was found to provide
more robust registration results [ZF03]. Additional transformations can be used in
order to achieve a decoupling between rotation and translation parameter estima-
tion. This is done by rotation- or translation invariant transformation of the input
data. To this point, state of the art dense registration algorithms often employ the
Fourier-Mellin transformation (FMT) [CM87] or the Hough-Radon transformation
([CC09], Figure 3.2). The transformation parameters are then found by evaluation
of a transfer function which correlates the input data. The transfer function can be
designed to maximize the signal-to-noise ratio (SNR) or other characteristics of its
output [KH90].

Fourier transformation based registration, also named spectral registration, of
translated images has been extended to rotation estimation by introduction of the
translation-invariant FMT [CM87]. The estimation of scale changes is considered in
[RC96]. An extension to 3D data is presented in [LL02, BB13]. The phase correlation
step is of significant importance for the matching quality. An overview over phase
correlation approaches is provided in [CDD94, KH90]. Subpixel methods can be
utilized in order to increase the matching accuracy [FZB02b]. Masking has been
shown to enhance the matching robustness [Pad12, FZB02a]. The computational
complexity of dense registration procedures is often stated as a major disadvantage.
Hence, several works contribute to more efficient implementations. Efficiency can be
gained, e.g., by approximate solutions for phase correlation [KBN04]. Hierarchical
registration strategies which start from coarse and progress towards fine resolution
are other means which have been applied in the medical domain [LA99].

Beside the FMT, the Hough-Radon transformation has been recently proposed
by Censi et al. in [CIG05] for registration of 2D range finder data. This approach
was extended to 3D range data in [CC09]. A similar method has been applied
to localization with radar data in [WRK+15, WBK+15]. The application of dense
registration algorithms is considered advantageous, if the existence of a minimum
density of specific features for correspondence-based registration is not given with a
sufficient probability.

3.2 Localization and SLAM

In this thesis, the focus is put on vehicle localization in urban environments relative
to an accurate localization map. To this point, the following review on related work
is concerned with map-relative vehicle localization in urban environments under
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Figure 3.3 Left image: a LiDAR intensity measurement based ground plane map
of an urban test track; Right image: a detailed view of an intersection scene with
other traffic participants (source of both images: [LT10], Levinson et al.). Due to
the sole utilization of ground plane features, the influence of non-static objects is
significantly reduced at the cost of the dependence on ground features.

special consideration of mechanisms for increasing the robustness of pose estimation.
The focus on urban environments is broadened where it is required.

Many works on vehicle localization originated from indoor robotics. In an early
contribution, Dellaert et al. introduce the Monte Carlo localization (MCL) ap-
proach [DFBT99]. MCL incorporates a particle filter (PF) for propagation of the
vehicle pose over time. Additionally, the PF enables global localization within the
computational capabilities of the robotic system. This approach has been more re-
cently extended to adaptive Monte Carlo localization (AMCL) which utilizes KLD
resampling in the PF [Fox01, TBF05]. As pointed out by Carlone et al. in [CB09],
the utilization of particle filters and robust variant come at the price of a loss in
accuracy while gaining robustness against false pose measurement updates. This
observation has also been stated by Huber et al. [Hub11] in the far more general
context of robust statistics. A thorough survey on earlier sate of the art can be
found in [GBFK98] with an extension to more recent works in [GF02].

Levinson et al. were under the first to introduce a probabilistic localization frame-
work explicitly developed for urban environments [LT10] based on 360 ◦ LiDAR
measurements. The influence of dynamic and semi-static objects is reduced to
a negligible level by exclusive utilization of ground plane features for localization
(Figure 3.3). Consequently, a static world can be assumed and is met with high
probability. A video-based approach can be found in [ZLS+14, LSZS13]. The au-
thors extract features from mono camera measurements and use them for estimation
of a map-relative vehicle pose (Figure 3.4). These map-relative pose estimates are
then refined by the fusion with precise IMU measurements. The density of the fea-
ture measurements leads to an increased robustness against outliers and occlusions.

The aforementioned approaches use dense data for localization. The utilization of
sparse landmark-based environment representations can lead to decreased computa-
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Figure 3.4 Dense visual feature with high dimensional descriptors used for lo-
calization with a monocular camera (image source: [LS12], Lategahn et al.). This
approach leads to high localization accuracy and storage as well as computational
costs.

tional costs. Early works on landmark-based localization approaches are introduced
in [LDW91, BG97]. Pink et al. use aerial images to extract landmarks for local-
ization [PMB09, Pin10]. In their work, road markings are automatically extracted
from high-resolution aerial images for map generation. A stereo-video camera is then
used to detect these landmarks during operation of the automated vehicle system.
Schlichting et al. propose to use poles and planes extracted from LiDAR measure-
ments for localization [SB14]. The level of abstraction can be further increased by
using semantic environment information as opposed to metrically accurate environ-
ment representation. Oberländer et al. propose to extract semantic information from
sensor observations and use these for localization in simplified, semantic localization
maps which have to be topologically correct but can be metrically approximate.
Depending on the metric accuracy and the number of semantic objects (e.g. poles)
in the map, parts of the navigation task have to be implemented reactively.

With the increasing interest in challenging operation environments, the research
focus shifted to the enhancement of robustness of localization systems. It is the au-
thor’s opinion, that there is no sharp transition between robust and non-robust local-
ization algorithms. Especially the introduction of probabilistic approaches [TBF05]
led to an increase in robustness in comparison to the formerly known state of the
art. Hence, in this thesis, the line is drawn between classical probabilistic approaches
and their combination with additional measures for increasing robustness.

As shown in, e.g., [LT10], the selection of features has significant influence on the
robustness of the resulting localization system against clutter caused by semi-static
and dynamic objects. In urban environments in particular and open environments
in general, a single feature type does commonly not suffice for accurate localization.
This observation has been recognized by many current state of the art algorithms and
led to the trend of hybrid localization frameworks. In [ZCO+11] visual landmarks
and range data are combined in order to achieve increased localization accuracy.
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The problem of high local differences in feature types has also been addressed in
[WSG10], where a combination of sparse feature-based and dense grid-based envi-
ronment representations is proposed for indoor operation and parking lots. The
authors of [Cho14] and [YYM+15] use different landmark types that are extracted
from LiDAR measurements. Matching results obtained from registration of sensor
observations and different map types are fused in order to obtain the overall pose
estimate. Since, these approaches utilize non-robust fusion procedures, the results
provided by the different information sources must be correct. An approach for a
safe fusion of information sources with unknown correlation is presented in [NDH16].

In [DRN+14] the need for several maps is overcome by utilization of a map in
combination with different sensor-modalities. Maximally stable extremal regions
are introduced to perform map matching. Another way of increasing the number
of sources for vehicle pose information is presented in [BGU13]. Absolute pose es-
timates are obtained based on runs of visual odometry measurements which are
registered with a topological map. All these approaches can be seen as means for
increasing the system-immanent level of analytical redundancy by feature diversi-
fication. Another redundancy-based strategy aims at decreasing the influence of
inaccurate models by utilization of sets of models and an adequate weighting. In an
exemplary approach, localization is performed by using GNSS and INS in combina-
tion with an interacting multiple model EKF [TMZIUMGS07].

An alternative strategy is the selection of landmarks which lead to desired in-
creases in localization performance. Early approaches instrumented machine learn-
ing procedures [Thr98, GI96] and several other approaches followed [SSSD06, LRS07].
The characteristics of the operation environment are averaged and consequently it
can not be accounted for significant heterogeneities. This approach has been ex-
tended to sensor and landmark selection in [TBCC07]. The selection of landmarks
to reduce the size of a localization map has been approached in [HS09]. Selection
of sensed landmarks for localization and mapping is closely related to the task of
the placement of artificial landmarks. The latter can be another option in some
application domains like indoor logistics [BMB11, BMKB13, RL00]. Closely related
is the field of measurement selection which is mainly concerned with the detection
of outliers.

The existence of corrupted measurements is a significant challenge in urban vehi-
cle localization. Corrupted measurements can occur at different stages of the signal
processing chain, including map matching results with a wrong covariance estimate
which might lead to wrong weighting in consecutive fusion steps and outlier feature
detections. To this point, redundancy as introduced in hybrid localization frame-
works can be used as basis for outlier detection and rejection.

Examples for the detection of outlier features include a parity space approach
[TSG08], outlier detection in the SLAM optimization process [CCD14] and in visual
odometry [BW16]. Another approach for the detection of outlying features based
on parity space is presented in [TSG08]. Integrity monitoring has a long history
in GPS-based navigation for aviation systems and is commonly denoted receiver
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autonomous integrity monitoring (RAIM). Recent research attempts are concerned
with the application of receiver autonomous integrity monitoring (RAIM) meth-
ods to vehicle navigation and localization in urban environments [ZBIG16, DB13,
MBIGB09, GB05, AAHAJ10, TENAH+14, KG17]. The localization systems mainly
use inertial measurement unit (IMU) and GPS pseudo range measurements as in-
puts and enable lane accurate pose estimation in many cases. Consistency checking
by evaluation of the quadratic error between predicted poses (wheel odometry) and
differences of consecutive absolute GPS measurements for increasing the localiza-
tion accuracy is proposed in [WWBN15]. An evaluation of different GPS based
localization sources is conducted in [SJ06] and used for mobile robot navigation.
It uses an approach similar to [LCJS04]. A diagnosis-based approach for failure
detection based on logistic regression has been proposed in [FTY+15]. The authors
use logistic regression for the detection of failures in a particle filter based local-
ization framework. Other diagnosis procedures use particle filter based approaches
for failure detection in an extraterrestrial rover [DWS+04] and for classical robotic
applications [PSB06].

As opposed to wheel odometry, solution for motion estimation on the basis of
LiDAR or other exteroceptive sensor measurements are independent of wheel slip-
page which likely occurs during operation in urban environments (compare Sec-
tion 4.2). Furthermore, LiDAR odometry has shown the potential to regularly
provide accurate motion estimates. LiDAR based odometry enables accurate esti-
mation of relative sensor movement. The core algorithms and the assumptions made
about the operation environment are similar to the ones used for map matching and
localization in general. The same holds for measures to enhance robustness. The
existence of planes is assumed in [GVI13] and an algorithm for fast plane detection
for LiDAR odometry is proposed. Outlier removal is achieved, e.g. by utiliza-
tion of RANSAC for correspondence estimation [AB13, KGL10]. Another popular
odometry framework is LOAM [ZS16]. Other approaches adapt algorithms known
from visual odometry [FS12] to LiDAR data [TB13]. Redundancy is increased by
combinations of different sensor modalities and signal processing algorithms [ZS15].

SLAM algorithms are of interest for vehicle system operation in unmapped areas.
Additionally, methods for consistency checking have been used for SLAM which
might as well be of great interest in localization. A comprehensive introduction to
SLAM algorithms can be found in [TBF05, DWB06, BDW06] and the references
therein. A commonly used optimization framework for SLAM graphs is found in
[KGS+11] and used in this thesis. SLAM has been used in areas with high density
of semi-dynamic objects for building temporary localization maps [MDHGB10]. In
[ATS+13, AGDT+14] covariance scaling is used for SLAM graph optimization. This
robust kernel method is capable of dealing with false edges in the graph. SLAM
graph optimization with switchable constraints [SP12] or removal of edges based
on spectral graph partitioning [OLT06] give similar results. A thorough review on
current robust SLAM backends can be found in [LCN14] and shows the equivalence
of some of these robustness enhancing methods. Spectral registration has been
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Figure 3.5 Indoor mapping on the basis of spectral registration. The presented
results indicate a good performance of spectral registration in the context of changing
environments (image source: [ORD13], Oberländer et al.).

applied to 2D SLAM for indoor environments [ORD13] (Figure 3.5) and SLAM
for underwater robotics [PBS+10, BB13]. First results presented by Oberländer et
al. indicate that spectral registration performs well when dealing with outdated
localization maps.

3.3 Localization system modeling

Localization systems consist of a whole signal processing chain containing sensing,
object detection, data association, registration and tracking algorithms. State of
the art approaches for modeling parts of these signal processing steps. In addition
to the system itself, the operation environment is of crucial importance and has to
be abstracted for gaining a comprehensive model of the whole localization system
in the context of its operation environment. Different models and model-based
design approaches are reviewed in this section. In this context, approaches for
localization system modeling, model-based design of localization systems in general
and perception systems in particular are surveyed in this section.

Censi published a covariance estimation approach for ICP based point cloud reg-
istration [Cen07a]. Since, ICP is an iterative algorithm it does not have a closed
form solution. Therefore, it is proposed to use the implicit function theorem in
order to calculate the covariance of the ICP estimate. In another publication Censi
introduces a model for the whole localization system based on range finder mea-
surements [Cen07b]. The operation environment is described based on its basic
geometry. Operation environment models based on stochastic geometry are popular
in the design of cellular and sensor networks. ElSawy et al. use stochastic point
processes in order to model the spatial distribution of network elements [EHH13] in
order to derive performance bounds for cognitive cellular networks.

In guided surgery systems, markers, also denoted as fiducials, are attached to
the surgical instruments and are commonly tracked by a vision-based system. This
task is closely related to point cloud matching and hence considered related work.
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Figure 3.6 Covariance estimation for landmark-based navigation along a prede-
fined trajectory has been used for the calculation of near-optimal landmark place-
ment (image sources:[BMKB13], Beinhofer et al.).

The goal is to provide assistance to the surgeon in order to reach the operation
area with the tip of the surgical instrument. Knowledge of the uncertainty in the
instrument tip location estimate is hence of fundamental importance. The work of
Fitzpatrick et al. [FWM98] has found wide attention where the authors consider the
case of unweighted point matching. Error propagation from the fiducial measure-
ments to the location estimates of the instrument tip is conducted. In [vdBAG11]
the authors utilize an error model to evaluate the quality of candidate driving paths.
The model captures uncertainties in sensor measurements and characteristics of the
utilized controller to execute a given path. Thus, it enables the calculation of the
a-priori probability distributions of the robotic system for a given controller and
path. This approach is utilized for near-optimal placement of artificial landmarks
for previously defined paths in [Bei14, BMB11, BMKB13]. Uncertainty accumu-
lation in scan matching based relative motion estimation is studied in [SHK+14].
Statistical models are derived for the case of matching results calculated by applying
the unweighted OPP to corresponding features from consecutive scans.

Mirzaei et al. introduce a probabilistic model for localization performance estima-
tion for multi-robot formations [MMR07] which extends previous works in [MR06].
It is assumed that at least one of the robots receives absolute pose measurements,
e.g. from GPS. Based on the assumed uncertainty in the global pose measurements
and the odometry measurements, upper bound for the state uncertainty are calcu-
lated. The results are obtained from calculation of the steady-state solution of the
algebraic Riccati equation of the utilized EKF. This model assumes the existence
of pose measurements in every time step. A more general perspective on lower state
uncertainty bounds is provided by works on general estimation problems. Hernan-
dez et al. compare different Cramér bounds for detection probabilities lower than
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one. This and comparable works form a possible basis for the derivation of sta-
tistical localization models. Bansal et al. study in an empirical fashion, how the
configuration of a camera system influences the localization performance [BBH14].
A similar approach in the context of visual odometry can be found in [PKB14].
Sensor planning is an important task in the field of industrial robotics. In [TAT95]
a thorough survey on this field of research is provided. The placement of sets of
cameras is studied in [FSK06] for active object detection. The authors propose to
use the Cramér-Rao lower bound as a performance criterion to rank different camera
arrangements.

3.4 Conclusion and open research questions

From the reviewed related work some commonly used strategies for map-relative
localization with enhanced robustness (compare Section 2.3) can be identified. The
following observations concerning map matching algorithms, hybrid localization sys-
tems and SLAM have led to the development of key contribution kc1 (Section 1.2).
Firstly, robustness of a localization system can be increased by adapting separate
algorithmic building blocks like map matching algorithms. Iterative registration
algorithms are widely used in robotic applications including urban automated driv-
ing. The often utilized heuristics and associated model assumptions, e.g. static
world and vertical world, lead to efficient implementations of the respective algo-
rithms. Deviations from the assumptions will, however, likely deteriorate matching
performance. Furthermore, accurate prior pose estimates are commonly assumed
to be known which might not be the case during system initialization or recovery.
To this point, some current SLAM frameworks incorporate non-iterative matching
procedures for dealing with challenging measurement data, like sonar measurements
for underwater SLAM or laser scans from indoor environments. The utilized data
are characterized by high noise levels, but due to the temporal proximity of their
collection, inconsistencies between data subsets are limited to a small amount. In
this point, the SLAM approaches differ from localization with outdated maps. First
respective results in [ORD13] indicate, that spectral registration can have advan-
tages for measurement data with high levels of inconsistencies. Approaches based
on the FMT showed accurate and noise insensitive matching performance.

Spectral registration on the basis of the FMT shows great potential for practical
application, since efficient software and hardware implementations of the fast Fourier
transformation (FFT) are available. To the knowledge of the author, the utilization
of spectral registration algorithms in the context of localization and mapping for
urban automated driving (UAD) has not been addressed. This includes the use case
of localization with partially outdated localization maps and high clutter rates in
sensor observations. It has to be shown, that spectral registration can be used in such
applications with significant non-Gaussian noise while meeting the requirements for
real-time operation in automated vehicle systems. Furthermore, the applicability of
different state of the art registration algorithms has to be evaluated for the context
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of robust vehicle localization for UAD. Due to the prevalent application domains,
algorithmic efficiency especially for registration of 3D data has not been in focus
of state of the art implementations. Place recognition procedures enable a rough
estimate of the global vehicle pose without necessitating a transformation prior.
Some state of the art particle filter based localization system, frameworks enable
global localization given the processing power to evaluate high amounts of particles.
Challenges arise once the vehicle pose has to be refined given an outdated map
and cluttered LiDAR scans. Fast, single-shot initialization without the need for an
initialization drive has been addressed by randomized methods like RANSAC. An
alternative, non-iterative and exhaustive algorithm for accurate pose initialization
is not known to the author. All registration approaches are potentially subjects to
failures. Reasons include sparse or ambiguous features and false data association.
Thus, frequently used solutions are the selection of features which lead to a sufficient
localization performance and the introduction of redundancy in the feature and
registration algorithm domain. Hybrid localization algorithms utilize a set of two or
more localization modalities, e.g. based on different features, algorithms or sensor
technologies, in order to increase the system availability and robustness. Hybrid
localization approaches commonly perform well if the number of different localization
modalities is high enough for the considered operation environment. This approach
to robustness enhancement might lead to challengingly high computational costs.
Consistency checking and outlier rejection is commonly not fostered in order to
further increase the robustness of the localization system. The results from the map
matching modalities are typically fused without the removal of invalid matching
results. Consequently, a biased fusion result due to corrupted matching modalities
cannot be effectively prevented despite the introduction of further modalities. On
the contrary, robust mapping procedures make extensive use of consistency checking
procedures which might be of interest for localization as well. The application of
methods from RAIM to GPS-based solutions for urban automated driving has been
shown to provide high reliability but insufficient accuracy.

The design of localization systems is mainly based on sole expert knowledge which
led to highly accurate and reliable localization system implementations. These re-
sults are often based on the utilization of high-dimensional descriptors in combina-
tion with frequently occurring feature types and sets of features. The localization
accuracy requirement for the target applications is often exceeded, neglected or the
localization system is adapted in an empirical manner. These design approaches fre-
quently lead to powerful, yet unnecessarily costly system designs and might result
in increased efforts during and less repeatability of the design process. For these
reasons, in some works single parts of the localization system or the operation en-
vironment were designed on the basis of numerical and statistical models, e.g. for
determination of minimal numbers of artificial landmarks and their placement. The
design and deeper understanding of whole localization systems on the basis of suit-
able statistical models has not been comprehensively conducted, to the knowledge
of the author. Hence, the key contribution kc2.
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4 Platform and operation environment

4.1 Test vehicle

The evaluation results and data sets in this thesis were recorded by utilization of
the perception system installed in the test vehicle shown in Figure 4.1. Included in
the sensor setup are light detection and ranging (LiDAR) sensors for environment
perception (Figure 4.2), a differential global positioning system (dGPS) for global
pose and sensors for motion measurement.

A Velodyne HDL-E64 LiDAR sensor [Velb] is mounted at the roof of the vehicle.
The opening angles of the Velodyne are 360◦ horizontally and 26.9◦ vertically with
an angular resolutions of 0.08◦ and 0.4◦, respectively. The vertical opening angle
is covered by 64 separate laser beams, resulting in 64 measurement layers. It is
configured to provide a full 360◦ measurement at a frequency of 10 Hz. All LiDAR
measurements are transformed into the vehicle frame by application of a known rigid
transform. Hence, without loss of generality and for better readability, exteroceptive
measurements are stated relative to the vehicle frame (compare Figure 2.1). In ad-
dition to the Velodyne sensor, six Ibeo LUX LiDAR sensors are mounted at bumper
height. Each sensor has four layers, a horizontal opening angle of 85 ◦, a vertical
opening angle of 3.2 ◦, 0.125 ◦ horizontal resolution and operates at a measurement
frequency of 12.5 Hz. Relative motion measurements are provided by wheel speed
and steering angle sensors. Global pose measurements are collected from a Genesys
ADMA Pro+ dGPS system [Gen]. The Adma dGPS system contains an inertial
measurement unit (IMU) as an additional source of relative motion estimates. The
latter combines acceleration sensors with a fibre optic gyroscope for angular rate

Figure 4.1 The test vehicle with a Velodyne HDL-64E (blue box) mounted on its
top. The six Ibeo LUX sensors (orange boxes) are mounted at bumper-height.
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measurements. dGPS and IMU measurements are fused in a filtering step to obtain
a pose estimation accuracy of up to 0.01 m.

(a) Sensor fields of view: left: setup of six Ibeo LUX LiDAR sensors mounted at
bumper height, right: Velodyne HDL-64E mounted at the top of the test vehicle.

(b) Ibeo LUX LiDAR sensor
with four scan layers are ar-
ranged around the vehicle con-
tour in order to cover a 360 ◦

FoV (image source: [Ibe]).

(c) Velodyne HDL-64E LiDAR
sensor with 64 layers (image
source: [Vela])

Figure 4.2 The partially redundant LiDAR sensor setup of the test vehicle covers
a 360 ◦ field of view around the vehicle.
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4.2 Operation environment

Urban environments comprise a great variety of different dynamic, semi-static and
static objects. Narrow roads with densely parked cars and bounded by tall buildings
are as representative to urban environments as extensive intersection areas. These
attributes account for a wide variety of challenges for localization systems, including

• high clutter rates due to, e.g., dynamic and semi-static objects such as parked
cars,

• occlusions,

• high localization accuracy requirements,

• regions of sparse features,

• heterogeneity (compare Figure 4.3),

• high curvatures and

• mixture of high and low speed sections.

Figure 4.3 depicts different sceneries from an urban environment in Stuttgart as
these are contained in the localization map (Section 5.2). Narrow domestic roads
are often characterized by densely parked cars beside both sides of the road, missing
road markings and dense vegetation like hedges. In some section, a good visibility
of house walls is given. Due to the heterogeneity of this road type, the applicability
of a universal feature type might be strongly limited. Narrow roads alternate with
expansive areas such as roundabouts and intersection. The depicted roundabout has
several areas with vegetation. Shapes of vegetation areas might serve as features
for localization. Additionally, many poles are existent in this scenery. Intersec-
tions usually have less distinct vegetation features. Interchangeably, poles and road
marking might serve as sole localization features. The localization requirements in
intersection areas might be higher than for narrow roads, where an accurate lateral
localization often suffices. Hence, localization in intersection areas can be challeng-
ing, particularly with high occlusion rates. Parking lots are a common scenery with
sparse features and high densities of semi-static objects, i.e. parked cars. Therefore,
operation in these areas potentially has lower localization accuracy requirements.

This non-exhaustive set of example sceneries from urban environments underline
the inhomogeneity of urban environments with respect to availability of feature
tapes, densities, occlusion rates and occurrence rate of semi-static objects.
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(a) An expansive roundabout with vegeta-
tion.

(b) A narrow domestic road with
densely parked cars and visible house
walls.

(c) A parking lot with dense vegetation and
sparse structures otherwise.

(d) An intersection with vegetation and
sparse structures otherwise.

Figure 4.3 Selected urban sceneries from a localization map for Stuttgart, Ger-
many characterize the heterogeneity of urban environments. These local differences
in the operation environment of an automated vehicle system render vehicle local-
ization a challenging task.
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4.3 Data sets

The evaluation results contained in this thesis are derived on the basis of self-
recorded data sets. All data sets for evaluation were collected from test drives with
the test vehicle (Section 4.1) and contain dGPS, GPS, LiDAR (Velodyne HDL-64E,
Ibeo LUX), IMU and wheel odometry measurements. This makes the contained data
comparable to those contained in the popular KITTI data set [GLU12]. Since an
outdated map is required for the evaluation of the localization procedure, a suitable
data set was recorded. The data sets were collected from an urban and a campus
environment.

The campus data set is recorded on the Robert Bosch Campus in Renningen,
Germany. The width of the roads is comparable to inner city residential roads.
Occlusions do not occur as often, since the number of dynamic and semi-static
objects is significantly decreased. The feature distribution is equally heterogeneous
as in urban environments. The campus data set contains data from a 4.0 km long
drive with nV = 10018 LiDAR scans from a Velodyne HDL-64E and nI = 12536
scans from the Ibeo LUX setup. An example path from the campus data set is
contained in Figure 4.4.

The urban data sets were recorded in Stuttgart-Feuerbach, Germany. This area is
characterized by narrow urban canyons and densely parked cars. The whole area is
also covered by a localization map which was recorded two years in advance (compare
Section 5.2). An overview over the urban data sets is given in Figure 4.5. It contains
a total of nV,sum = 31653 360 ◦ LiDAR scans from a Velodyne HDL-64E sensor and
nI,sum = 39772 360 ◦ scans collected from the Ibeo LUX sensor setup (compare
Section 4.1) which cover 14.8 km urban roads. The data sets differ in the length
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Figure 4.4 The campus data set.
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and number of the driven loops as well as the number of turns. Thus, the data sets
enable a comprehensive experimental evaluation of localization, matching, odometry
and mapping performances with regard to different trajectory characteristics.
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Figure 4.5 The urban data sets cover 14.8 km of inner-city roads.
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5 LiDAR data processing

In this work, vehicle pose estimation based on 2D LiDAR scans and localization
maps is considered. The scans and localization map are recorded in 3D and are
projected to the xy-plane. Therefore, points from vertical surfaces are extracted
and used for further processing. The functional architecture of the LiDAR data
processing procedure is shown in Figure 5.1.

Raw LiDAR measurement

3D LiDAR
scan s3

k

Point selection
(Sec. 5.1)

Motion
compensation

2D LiDAR scan
generation (Sec. 5.1.1)

Pole detection
(Sec. 5.1.2)

2D LiDAR
scan sk

Landmark
measurement lk

LiDAR data processing

Figure 5.1 The proposed LiDAR signal processing chain. Points from vertical
structures are selected once and used for scan projection and pole detection.

Given a speed limit of 50 km/h for urban highways and a LiDAR revolution fre-
quency of 10 Hz, a vehicle moves 1.4 m between the first and last point measurement.
Hence, the LiDAR scans have to be motion compensated before further processing
in order to avoid motion induced inaccuracies. This task is also denoted as deskew-
ing. The next step is the selection of a subset of all measurement points which
shall be used for localization. In this thesis, the utilization of geometrical instead
of intensity-based features is fostered which has the advantage of being less sensi-
tive to challenging weather conditions and presence of high reflectivity features like
road markings. Additionally, urban environments are particularly rich of locally
unambiguous structures like house walls. Therefore, points from vertical surfaces
are extracted from given LiDAR measurements which forms the basis for 3D LiDAR
scan processing (Section 5.1) .

5.1 Processing of 3D LiDAR scans

The main challenge is the high density of the 3D point cloud. To this point, a
method for point selection with increased efficiency is developed. A first procedure
uses normal vector estimation (Figure 5.3a) as basis for scan projection. This ap-
proach was developed in [RJMZ16], [Jat16] and extends existing approaches by an
adaptive point neighborhood selection. Based on the local point neighborhoods, a
normal vector for every scan point can be estimated. The radius for the neighbor-
hood is adapted to the distance of the point to the sensor frame origin. Additionally,
the velocity-dependent variation of the neighborhood radius can lead to increased
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(a)

(b)

(c)

Figure 5.2 All measurement points from a 360 ◦ LiDAR measurement are added
to a depth image (a). Parked cars and house walls are visible in the corresponding
intensity image (b). Segmentation in vertical and horizontal structures is achieved
by utilization of Equation 5.1 (c).

detection performance of small structures like curb stones. The measurement points
are added to a kd-tree structure to enable efficient local neighborhood search. This
approach gives good scan projection results at the cost of decreased runtime perfor-
mance for non-parallelized implementations.

To this point, a method on the basis of a two beam point selection criterion
(Figure 5.3b) is developed. For points on vertical surfaces (e.g. walls) and with the
range measurements r1, r2, the distance of the surface from the sensor and the beam
angles α1, α2, it holds

d = r2 cos (α2) = r1 cos (α1) (5.1)

0 = r1 cos (α1)− r2 cos (α2) . (5.2)

It follows the resulting condition for points in vertical surfaces:

r1 cos (α1)− r2 cos (α2) < ∆thr . (5.3)

This criterion can be efficiently applied to depth images which are created from
full 360 ◦ Velodyne spins as in Figure 5.2. For a better visibility of the objects in
the scan, the corresponding intensity image is shown in Figure 5.2b.

Due to measurement noise, the difference in Equation 5.3 differs from 0 which is
accounted for by definition of a threshold ∆thr. Threshold selection is conducted
by analysis of the errors induced by range measurement uncertainty and under the
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(a) Estimated normal vector (green) ori-
entations can be used as a basis for
point selection, yielding comparatively
high computational costs.

h2

h0

h1

r1

r2

d

α1

α2

(b) Efficient point selection is enabled
by the developed two beam (red) point
selection criterion. (left: LiDAR sensor,
right: vertical structure)

Figure 5.3 Prior to the projection of the LiDAR scan to the ground plane, point
selection is performed. In Figure 5.3a and Figure 5.3b two possible approaches are
presented.

assumption of uncertainty in the LiDAR sensor calibration

f :=
r1

r2

− cos (α2)

cos (α1)
(5.4)

∆thr =

∣∣∣∣ ∂f∂r1

∣∣∣∣∆r1 +

∣∣∣∣ ∂f∂r2

∣∣∣∣∆r2 +

∣∣∣∣ ∂f∂α1

∣∣∣∣∆α1 +

∣∣∣∣ ∂f∂α2

∣∣∣∣∆α2 (5.5)

= cos (α1) ∆r1 + cos (α2) ∆r2 + r1 sin (α1) ∆α1 + r2 sin (α2) ∆α2 . (5.6)

For an uncertainty in Velodyne HDL-64E range measurements of 0.06 m as stated
in [GL10] and an angular uncertainty of 0.01 ◦, the distance dependent threshold is
calculated. In a distance of 10.0 m the threshold is ∆thr,10 = 0.061 m.

5.1.1 Generation of 2D LiDAR scans

2D scans sk are created from selected points in a given z-range, defined by the
upper and lower bounds zu, zl. Point within this height range are projected to the
xy-plane. A high range of zl = −1.5 m and zu = 0.5 m in sensor coordinates is
chosen in order to maintain as much as possible structural information as possible
while removing treetops. An exemplary result from each scan projection approach is
shown in Figure 5.4. The normal vector based method yields the highest detection
performance of vertical structures. This advantage is partially compensated by the
increased computational complexity.

Both projection procedures are implemented in C++ and run in the robot oper-
ating system (ROS) under Ubuntu. On an Intel Core i7-4800MQ central processing
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(a) (b)

Figure 5.4 The results from the scan projection approaches based on: (a) esti-
mated normal vector orientations, (b) the point selection criterion

unit (CPU) (single core at 2.7 GHz), the average processing times for a data set
with 2749 LiDAR scans (0823-42, Section 4.3) were 145.40 ms for the normal vector
based procedure and 12.48 ms for the proposed projection approach. For the given
hardware and implementations, the two-beam point selection approach runs in real
time and is used throughout the following sections.

5.1.2 Detection of poles

In this subsection, the method used for the extraction of pole-like structures from
laser point clouds is summarized. The LiDAR measurement points are added to
a depth image (Figure 5.2) in which every row contains the data gathered by one
laser diode during a 360◦ spin. Points on vertical surfaces are selected based on the
criterion presented in Section 5.1.1 and all other points are removed. Segmentation is
conducted for the remaining set of points based on a connected component approach
[GMBN14, SS01] (Figure 5.5a). Segments of interest are selected based on the
respective height to width ratios.

For every segment, a random sample consensus (RANSAC) based procedure is
utilized in order to fit a circle model to the point xy-component of cloud data.
Therefore, n = 3 sample points are drawn at every iteration and the following cost
function is used to estimate the circle model consisting of radius r and center point
c

Jc =
n∑
i=1

‖Wi (|c− zi| − r)‖2 . (5.7)

The number of model-supporting points is used to evaluate the model fitness. Ad-
ditionally, only cylinder models with r < 0.2 m are considered valid which seems
feasible for most of the pole structures found in urban environments. Due to this
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(a)

(b)

Figure 5.5 Segmentation is performed for all points on vertical structures based
on a connected component approach (a). The set of segments is filtered by the
respective height-to-width ratios and a RANSAC-based algorithms is utilized to fit
a cylinder model to the data (b).

constraint, pedestrians are not classified as poles. The runtime was measured for
scan processing on a single CPU core. The pole detector has an average runtime of
75.3 ms for one Velodyne LiDAR scan for the considered data set 0823-42 with 2749
scans.

5.2 Processing of the localization map

Highly accurate localization maps are considered an important prerequisite for vehi-
cle localization. Throughout this work, a prerecorded map of an urban environment
in Stuttgart, Germany is used for the presented experiments. Map generation was
based on 3D LiDAR scans from two single-layer LiDAR sensors and a high precision
IMU. Both sensing planes were orthogonal to the driving direction and vertically
oriented in order to capture features with high vertical offsets as well as the ground
plane. The resulting map has a higher point density than maps created based on
Velodyne HDL-64E measurements from a single run. For further utilization of the
map in the 2D scan-based localization process, it has to be projected to the xy-plane.
Thus, points on vertical structures are selected based on estimated normal vector
orientations which yields the highest detection performance of vertical structures.
The selected points are then projected to the ground plane and added to a grid map.
In order to decrease random noise effects, a cell is marked as occupied if more than
five points are enclosed at a grid discretization of 0.1 m. All other cells are marked
as free or unobserved (Figure 5.6). Height information are stored in a height map
(Figure 5.6) and can be accessed by xy-coordinates. The z coordinates are created
from interpolation of the height values from the 3D map. For the pole-based local-
ization procedure, poles have to be extracted from the dense 3D LiDAR map. To
this point, it is resorted to manual extraction of the pole structures. The landmark
positions are then given by the center of a set containing five points at the base of
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the respective pole. All map information are accessible via a database, developed in
[Höf16].

Localization maps
- dense map m (gray) and
- pole-based map ml (blue)

Height map

Figure 5.6 The localization map with a dense 2D grid m and sparse pole-
landmarks ml. The height map contains z-coordinates which can be requested
from the developed map backend by the corresponding xy-coordinates.

5.3 Generation of a vehicle pose reference

Reference values for the map-relative localization systems have to be sufficiently
accurate and insensitive to systematic errors. The latter might be caused by a mis-
alignment between the reference frame, e.g. WGS84, of the reference system and
the map frame. Additionally, in urban environments, popular global positioning
system (GPS) based reference systems suffer from shadowing and multi-path propa-
gation. These effects can lead to decreased accuracy and false covariance estimates.
dGPS based evaluation of localization algorithms might lead to erroneous results
as well. Potential errors in temporal synchronization further increase this effect.
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Localization
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Point-based
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Scan sk
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Figure 5.7 The proposed system for the generation of reference vehicle poses for
localization system evaluation.

A possible option to mitigate problems imposed by GPS is to check the availabil-
ity of satellites and weather conditions during the intended time window for test
data recording. Additionally, the selection of a suitable test track with low urban
canyons can lead to good results. However, in this thesis, the selection of the test
track shall only be based on the environment characteristics that are interesting for
the generation of test cases and not on the requirements of the reference system.
Consequently, the evaluations in this thesis shall be based on a non-real time capable
GPS-independent reference system which is developed in this section.

The developed (Figure 5.7) approach is similar to [LT10], where the influence of
this misalignment is removed by looking at the differences between a reference graph
and the one created with the localization system. Similarly, Goshtasby proposes to
use a gold standard algorithm for the evaluation of image registration algorithms
[Gos12]. In the proposed localization reference generation framework, measurements
of a dGPS system are used to initialize the robust map matching algorithm developed
in Section 6.3 with a grid resolution of 0.1 m. The resulting transformation is used
as an prior for an pose refinement step on the basis of a robust iterative closest
point (ICP) variant [Fit03]. For the ICP based matching, the original 2D point
cloud of the localization map is utilized in order to gain an increased matching
accuracy. The settings of the ICP are chosen in order to provide accurate matching
result with high insensitivity to outliers, i.e. the maximum number of iterations
is set to 1000, the maximum residual for stopping the matching process is set to
10−16 and only correspondence pairs with an Euclidean distance of less than 0.1 m
are considered. Correct convergence of the ICP is ensured by visual inspection and
corrupted matching results are corrected manually. In order to evaluate arbitrary
localization results relative to the reference poses, interpolation of the reference
poses is conducted.



52 Registration of cluttered point clouds

6 Registration of cluttered point clouds

The registration of sensor observations and localization maps forms the basis for
map-relative vehicle localization. Many registration approaches are known from
literature and have been successfully adapted to and applied within a manifold of
application domains. In Section 6.1, an evaluation of the frequently used iterative
registration algorithms ICP and NDT in the context of urban automated driving
is conducted. This selection of registration algorithms is extended by a spectral
matching approach which is shown to have favorable characteristics compared to
well established iterative algorithms.

In Section 6.2, the registration algorithm is adapted to the field of urban vehicle
localization. Covariance estimation for the case of subpixel-accurate matching is
addressed. The characteristics of the spectral matching algorithm include a sep-
arate calculation of the rotation and translation transformation parameters. This
fact is instrumented in Section 6.2.2 for the development of 3D spectral match-
ing approach which outperforms other state of the art algorithms with respect to
computational efficiency. A robust variant of the well known spectral registration
algorithm is developed in Section 6.3 as an important key contribution. Further-
more, confidence measures are evaluated and their applicability to the assessment
of the current matching quality is discussed.

6.1 Point cloud registration for UAD

This section is concerned with the evaluation and discussion of state-of-the-art
matching algorithms in the context of urban automated driving (UAD). To this
point, qualitative map matching requirements arising from their utilization in ve-
hicle localization systems are derived first. Thereafter, the basin of convergence
of spectral registration, ICP variants and NDT is evaluated and discussed in the
context of the requirements imposed by the application domain. The result of this
section is the well-grounded selection of a suitable class of registration algorithms
which fits these requirements.

In the analysis of urban environment characteristics in Section 4.2, several as-
pects were identified which complicate the registration process. Outdated local-
ization maps and cluttered LiDAR measurements are dominant sources of noise.
Consequently, the following requirement is given:

• Registration algorithms shall be insensitive to noise.

Reusability of algorithmic building blocks has the potential to reduce the number of
components of the overall system. Relevant applications include, localization system
initialization and recovery from inaccurate priors. Hence, the second requirement:

• Registration algorithms shall be able to deal with priors of varying accuracy.

Vehicle localization systems have to be able to run in real-time which leads to the
following requirement:
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Table 6.1 The parameters used for evaluation. For NDT, G-ICP and ICP the
implementations from the Point Cloud Library [RC11] are used.

Algorithm Parameters

spectral registration
[CDD94]

• grid resolution: 0.1 m
• number of grid cells: N = 512× 512

Point-to-Point ICP
[BM92]

• convergence threshold: ‖∆ε‖ < 10−6

• maximum iterations: 1000

G-ICP [SHT09]

• number of point neighbors for statistic
calculation: 25
• convergence threshold: ‖∆ε‖ < 10−6

• maximum iterations: 1000

NDT [BS03]

• convergence threshold: ‖∆ε‖ < 10−6

• number of iterations: 1000
• cell size: 1.5 m
• step size: ‖∆s‖ = 0.05 for rotation and

translation estimation

• Registration algorithms shall be real-time capable and have a deterministic
runtime.

For the evaluation, publicly available implementations of point-to-point [BM92] as
well as plane-to-plane (G-) [SHT09] ICP and normal distribution transform (NDT)
[BS03] from the Point Cloud Library (PCL) [RC11] are utilized. For spectral reg-
istration, it is resorted to an own C++ implementation of the original spectral
registration algorithm proposed in [CDD94]. The data used for evaluation were col-
lected from a Velodyne HDL-64E and are described in Section 4.3. The matching
procedure parameters for ICP and NDT were selected similarly to [MVS+15] and
are listed in Table 6.1.

In the first experiment, the basin of convergence of the different matching algo-
rithms is evaluated. To this point, a scan s from the urban data set 0823-42 and
the corresponding submap from the localization map m as shown in Figure 6.1 are
selected. For the sake of clarity, only results for one scan-submap set are considered
here. However, experiments with additional data were conducted and agreed with
the results presented below. The reference pose is obtained based on the reference
generation procedure proposed in Section 5.3. Consecutively, the transformation
offsets ∆Θ, ∆x and ∆y are added to s. ∆Θ range from 0 ◦ to 70 ◦, ∆x and ∆y from
−5 m to 5 m. The ranges are selected as single-sided since the basin of convergence is
almost symmetric for negative angles and such that the basin of convergence of the
iterative algorithms is enclosed. This experiment enables the study of the sensitivity
to Gaussian and non-Gaussian noise of the different registration algorithms.
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The results presented in Figure 6.2 illustrate the significant differences between
the matching procedures. Although, the shape of the error surfaces might depend on
the structure of the scan, the results correctly represent the general characteristics
of the considered algorithms as observed from other test runs. Low offsets lead to
good matching accuracy for all approaches. Due to the discretization of the input
point clouds, spectral registration provides slightly less accurate transformation esti-
mates. The differences occur for higher offsets, where NDT and ICP lead to steeply
increasing errors in the matching results. Matching results obtained from spectral
registration have the same uncertainty, independent from the prior accuracy. Hence,
this algorithm is well suited for dealing with localization system initialization. For
the considered input data and algorithm parameterizations, generalized ICP has the
lowest sensitivity to inaccurate priors.

(a) (b)

Figure 6.1 The scan (Figure 6.1a) from data set 0823-42 and the corresponding
submap (Figure 6.1b) used for experimental evaluation.

Implications of these results can be observed during motion estimation based
on consecutive LiDAR scans without incorporation of prior information about the
transformation parameters. In this case, narrow basin of convergence leads to im-
precise motion estimates and increased the probability of failures. On the contrary,
the spectral registration algorithm enables reliable relative motion estimation in
this application. In following sections, this characteristic of the spectral registration
procedure will prove as useful for the implementation of a self-contained scan-based
odometry and SLAM framework which do not rely on additional sensor measure-
ments. Thereby, redundancy is introduced to the localization system which de-
creases the sensitivity against failures of subsystems by decreasing the self-diagnosis
capability.

Throughout the conducted evaluations, spectral registration had a constant run-
time. This is opposed to the prior- and point data dependent runtime of iterative
registration algorithms. Parallelization and removal of a subset from the point cloud
can be used in order to reduce this effect. The removal of point measurements would
lead to a randomization of the matching procedure which could potentially increase
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Figure 6.2 The matching errors εt of the iterative procedures (ICP, G-ICP, NDT)
depends on the initial transformation offsets ∆x and ∆y. Application of spectral
registration omits this dependency.
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Figure 6.3 As for translation estimation, the rotation error εθ is independent of
the accuracy of the initial transformation for spectral registration.

the susceptibility to registration performance degradation. Consequently, in the set
of evaluated registration algorithms, inherently deterministic runtime behavior is
exclusive to spectral registration.

In conclusion, it can be stated that spectral registration enables a non-iterative
and deterministic transformation parameter estimation. Furthermore, no point cor-
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respondence estimation is required, hence, omitting a common pitfall of iterative
algorithms which commonly involve heuristics, e.g. for correspondence estimation.
Especially for inconsistent sensor measurements, iterative approaches inherit the risk
of convergence to local optima. For spectral registration, the amount of assumptions
concerning the input data is low in comparison to other state of the art algorithms.
The potentially loss of robustness due to high amounts of assumptions has already
been addressed in this and other works, including the comprehensive point cloud
survey by Pomerleau et al. [PCS15].

6.2 Spectral registration

In this section, the spectral registration approach according to [CDD94] is described
and adapted to the intended application for UAD. Furthermore, a method for covari-
ance estimation is developed. As discussed earlier in Section 6.1, matching based
on a complete correlation between the inputs has advantages over classical point
cloud registration procedures. A major disadvantage are the comparatively high
computational costs for correlation calculation. Hence, significant research on the
utilization of the Fourier phase of the input data has been conducted. An important
advantage of this approach is the existence of efficient hardware implementations
of the fast Fourier transformation (FFT). Due to the utilization of the spectral
phase, registration algorithms from this category are denoted spectral registration
procedures.

In the context of this work, scans and submaps are represented as binary occu-
pancy grids with the states occupied and free. Additionally, two scans from consec-
utive time steps are matched for relative motion estimation. It is a well known fact
in the image processing community, that the transformation between two translated
image functions can be obtained by phase correlation methods. By interpretation
of the input data as image function, these methods can be adapted to the described
input data.

An overview over the spectral matching algorithm is provided in Figure 6.4. In a
first step the discrete Fourier transformation (DFT) of the input images are calcu-
lated. The 2-dimensional DFT and its inverse are given as follows:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f (x, y) exp
(
−j2π

(ux
M

+
vy

N

))
(6.1)

f (x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v) exp
(
j2π

(ux
M

+
vy

N

))
(6.2)

Windowing of the input data reduces the impact of occupied grid cells at the edges
of the grid which can lead to artifact, potentially resulting in matching failures. To
this point, a Hanning window is utilized. Highly efficient hardware and software
implementations are available for the FFT which is of significant advantage since,
the main computational costs in spectral registration arise from calculation of the
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FFTs. The algorithm’s characteristics in combination with efficient implementa-
tions render it well suited for vehicle localization with real-time requirements.

For a given pair of input data sets r (x, y) (reference) and s (x, y) (sensed), the
Fourier transformed are denoted R (u, v) = F {r (x, y)} and S (u, v) = F {s (x, y)}.

Translational transformations of the input data occur as phase shifts in the fre-
quency domain. Matched filter (MF), phase-only matched filter (POMF) and the
symmetric phase-only matched filter (SPOMF) (Equation 6.3) allow the retrieval of
the translation parameters from the phase shift. The transfer or filter functions are
given as

HMF (u, v) =
R∗ (u, v)

|N (u, v)|2
(6.3)

HPOMF (u, v) =
R∗ (u, v)

|R∗ (u, v)| (6.4)

HSPOMF (u, v) =
R∗ (u, v)

|S (u, v)| |R∗ (u, v)| . (6.5)

After application of the filter function to S (u, v), the filter output C (u, v) is ob-
tained. The translation parameter estimates in pixels are then found by a maximum
peak search in the inverse Fourier transformed filter response c (xp, yp)

c (xp, yp) = F−1 {C (u, v)} (6.6)

= F−1 {S (u, v)H (u, v)} . (6.7)

The metric translation vector t is given by the product of the grid resolution ∆p

and tp

tp = arg max
x,y

(c (xp, yp)) (6.8)

t = ∆ptp . (6.9)

Since, the phase of the input data is rotation variant, this approach enables the
calculation of the translation between two inputs with insignificantly small rotational
offsets.

In order to overcome this limitation, the rotation parameter has to be calculated
in advance. Castro et al. addressed this problem in [CM87] by iteratively stepping
through all possible rotation angles and applying the phase-only matched filter. The
solution with the highest peak is then selected as the correct solution. Due to the
repetitive application of the filtering step, this approach has high computational
costs. An elegant extension for the calculation of rotation parameters has originally
been introduced in [CDD94]. The central idea is the calculation of a translation
invariant descriptor of the inputs and, thereby, decouple rotation and translation
estimation. One possible solution is the calculation of the Fourier-Mellin invariant



58 Registration of cluttered point clouds

descriptor (FMID) which is obtained by the Fourier-Mellin transformation (FMT)
with polar coordinates ρ, Θ and the image function f as follows [CDD94]

M (a, b) =
1

2π

+∞∫
−∞

0∫
2π

f (Θ, exp (ρ)) exp (−j (aΘ + bρ)) dΘdρ . (6.10)

The FMID is translation invariant and rotations occur as phase shifts. Thus,
the rotational offset between two inputs can be determined by the described filter
functions. Due to the periodicity of the FMID, the result is π-periodic. If no prior for
the rotation parameter is available, both rotation hypotheses have to be evaluated
by copying and rotating the moving scan as shown in Figure 6.4b. The result is
then given by the rotation hypothesis which is found by selection of the hypothesis
with the highest peak in the translation estimation step together with the respective
translation estimate.

The filter output gives a quasi-global matching result as shown for rotation esti-
mation in Figure 6.5, i.e. it can contain several peaks which correspond to different
transformation hypotheses. The distinctiveness of the peaks depends on the utilized
filter function and noise characteristics of the inputs. Consequently, the selection of
a filter function H which suites the input data is fundamental for the registration
procedures correct functioning. HSPOMF results in sharp and distinct peaks in c.
This can be seen from the comparison of the normalized filter outputs in Figure 6.5.
Due to the significant noise in the input data, the SPOMF filter function is selected
for utilization in the context of urban vehicle localization.

6.2.1 Accuracy improvement and estimation

For noise free input data and without discretization artifacts, the uncertainty in the
matching result is limited by the grid resolution and the grid dimension

σx,res = σy,res =
∆res

2
(6.11)

σΘ,res =
360◦

N
. (6.12)

This bound is often exceeded due to noisy sensor measurements and discretization
effects. By calculation of the subpixel-accurate peak coordinate xs, this limitation
can be partly overcome. In the following, the weighted centroid method is used
since it enables computationally efficient calculation of xs in comparison to most
other interpolation-based methods. xs is calculated from all pixels within the radius
K around the peak position (Equation 6.13). The gain in accuracy is evaluated in
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(a) Rotation estimation gives a π-ambiguous angle pair (θa, θb).
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(b) The best peak from both spectra is selected which gives the rotation and
translation estimate.

Figure 6.4 The Fourier-Mellin transformation is used in spectral registration to
decouple rotation and translation estimation. Firstly, a rotation estimate is obtained
(a). Consecutively, the input scan is rotated for translation estimation (b).
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(a) The input scan. (b) The input submap.
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(c) Comparison of different filter responses for rotation estimation be-
tween the input scan and the submap.

Figure 6.5 The filter function used to calculate the normalized filter responses for
the input scan and submap have significant influence on the detectability of peaks
in the filter response. Symmetric phase-only matched filtering maximizes the signal
to noise ratio, resulting in well separated peaks. The symmetry of the intersection
can be seen from the occurrence of several distinct peaks in the filter response.

Section 6.2.3.
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In mobile robotics and especially for SLAM and localization an accurate covariance
estimate of the utilized matching algorithms is of fundamental importance. To this
point, a covariance estimate is proposed as an extension to [PBB12] with respect to
the subpixel-accurate estimate of the peak coordinates. To this point, the rotation
and translation estimates are considered uncorrelated and a Gaussian is fitted to
c (x, y) within a given region around xs. For the 2-dimensional case, the estimate
can be obtained as follows and its extension to 3D is straight forward.

Cxs =
1

N

xt+K/2∑
x=xt−K/2

yt+K/2∑
y=yt−K/2

c (x, y)

c (xt, yt)
[x− xs y − ys]> [x− xs y − ys] . (6.14)

xt and yt denote the pixel coordinates of the peak in the filter output, K is the
window size, c (x, y) is the filter output at point (x, y) and N the number of pixels
in the input data.

6.2.2 3D spectral registration

The separation of rotation and translation calculation in the spectral registration
algorithm enables a re-parameterization of the algorithm between both estimation
steps. This characteristic is now utilized to extend the 2D to a 3D spectral matching
approach with scalable computational costs. The aspect of computational efficiency
has so far been widely neglected by the current state of the art what might be due to
the difference in application domains. The main challenge in 3D spectral registra-
tion is the computationally demanding calculation of the roll, pitch and yaw angles.
The main idea behind this 3D matching approach is the compensation of the global
roll and pitch angles which can be measured by utilization of IMUs. Afterwards,
the yaw-angle can be calculated in accordance to the 2D case.

Firstly, roll and pitch have to be compensated, e.g. by utilization of IMU mea-
surements or under the assumption of vertical structures in the vehicle surrounding.
3D LiDAR scans are rotated accordingly and projected to 2D using the criterion
presented in 5.1.1. The yaw angle is then calculated on the basis of the 2D scan. The
3D translation can now be calculated based on the rotation-compensated 3D scan.
Computational efficiency can be gained by decreasing the vertical resolution which,
however, results in decreased matching accuracy. The 3D FFTs are decomposed
into several 2D (horizontal slices) and 1D (vertical) FFTs. Hence, parallelization
can be used to decrease the runtime of the transformation step.

The separation of the estimation steps can be used for the development of various
hybrid matching algorithms. The term hybrid is chosen in order to express the
combination of different matching strategies for rotation and translation calculation.
In the authors opinion, this is an interesting direction for future research in point
cloud registration as it would enable the combination of point correspondence based
and dense matching.
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6.2.3 Experimental evaluation: runtime and accuracy

The evaluations in this section focus on the previously developed methods for the
improvements and adaptation of 2D and 3D spectral registration. Data set 0823-42
(Section 4.3) is used due to the high outdatedness of the corresponding localization
map and the coverage of heterogeneously structured areas. These include a round-
about with vegetation and narrow urban canyons. All algorithms are implemented in
C++ using methods from the OpenCV Library and run under the Robot operating
system (ROS). The computer used for evaluation runs Ubuntu 14.04 (64-Bit) and
is equipped with a Intel i5-4690 (4× 3.5 GHz) from which one core is used. Execu-
tion times are measured based on the system time and, therefore, are approximate.
An exact evaluation of the processing time is complicated, e.g. due to dynamic
frequency scaling and the parallel execution of other processes. Nonetheless, the
evaluation results show the gross-differences between the different approaches and
enable a well-grounded discussion of their respective effectiveness. The average run-
time and the standard deviations are determined based on the runtime for matching
each of the 2749 Velodyne HDL-64E LiDAR scans with a corresponding localization
submap. The runtime of the spectral registration procedure is evaluated for a grid
size of N = 512 and a resolution of 0.1 m of each grid cell. These setting correspond
to a edge length of 51.3 m which is feasible for the utilization with the given sensor
setup. The results are summarized in Table 6.3.

Table 6.3 Results from the runtime evaluation.

Algorithm T̄ / ms σT / s

standard 88.30 2.81

storage of FFT (submap) 53.60 3.87

windowing 62.68 3.73

subpixel accuracy (K = 3) 64.30 3.51

rotation from prior 48.19 3.29

The standard version of the spectral registration algorithm takes 88.3 ms with a
standard deviation of 2.81 ms for the calculation of the transformation parameters.
Since the LiDAR sensor runs at 10 Hz, the matching and data preprocessing is close
to real-time. By storing the FFT of the submap to be used during rotation and
translation estimation, the runtime reduces to 61.7 ms which enables map matching
in real time. Additional windowing and calculation of the subpixel accurate peak
positions, results in a runtime of 64.30 ms. The lowest runtime is achieved if only one
rotation hypothesis has to be evaluated, i.e. is a transformation prior is available.
Since, all implementations, except the standard case, run in real-time, the version
without prior incorporation is favored. This is due to the decreased requirements
concerning the transformation prior.
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The matching performance of the FMT implementations is measured in the num-
ber of inlier pose estimates. For this purpose, outliers are defined as measurements
with an error of more than 0.2 m relative to the reference described in Section 5.3.
GPS measurements were used as an initial guess for the transformation parame-
ters for each scans in data set 0823-42. The scans were then aligned to a submap
of the localization map. For 2317 poses a correct matching result could be calcu-
lated based on the optimized spectral registration algorithm which translates to a
matching matching rate of 84.3 %. The most frequent error sources are analyzed
in Section 6.3.1 and addressed by the introduction of a robust spectral registration
variant in Section 6.3. The average matching accuracy for the standard spectral
matching procedure is 0.12 m. The introduction of subpixel-accuracy leads to a
significantly increased accuracy of 0.06 m.

For evaluation of the proposed 3D spectral registration approach, it is compared
to the one presented in [LL02]. The results from Table 6.5 were determined based
on a pair of identical 3D LiDAR scans which were transformed. The runtime for the
standard algorithm is determined for a grid with an edge length of 128 voxels at a
resolution of 0.2 m. It can be seen from the results, that the calculation of the roll
and pitch angles is the main reason for the high computational complexity of 3D
spectral registration. Consequently, the compensation of the two rotational degrees
of freedom seems advisable.

Table 6.5 Runtime comparison of the proposed and the state-of the art 3D spec-
tral matching algorithm [LL02].

Algorithm tavg/s tmin/s tmax/s multi-core processing

2d/3d 0.35 0.34 0.37 enabled

2d/3d 0.90 0.89 0.93 disabled

3d 9.43 9.10 9.73 enabled
3d 12.82 12.55 12.97 disabled

The covariance estimation performance on the basis of Equation 6.14 is conducted
for a scan pair which was created by duplication of a scan from data set 0823-
42. One scan is transformed so that the real transformation parameters are known
and matched to the duplicated version. The evaluation results in Figure 6.6 were
derived for K = 20. It can be seen from the results, that the covariance estimate is
accurate for subpixel-accurate peak location calculation. For the standard matching
algorithm, the covariance estimate is optimistic and it can be observed that the
matching error varies between nearly discrete steps. Some results are very accurate,
some have the magnitude of one or two grid cell discretization. In this case, the
definition of peak-width intervals for determination of the discrete error level could
potentially be preferable to the continuous formulation proposed in [PBB12].
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Figure 6.6 The covariance model gives good estimates for subpixel-accurate scan
matching. In each evaluation step, a copied scan is translated and rotated, then reg-
istered with the original scan. Utilization of subpixel accuracy results in a significant
increase in matching accuracy.

Various example input patterns were considered to determine the dependence of
spectral registration performance on the existence of specific feature types and struc-
tures. The results are summarized in Figure 6.7. A prerequisite for reliable matching
is the existence of distinct line structures in the Fourier-Mellin transformed. These
are due to high frequencies in the Fourier spectrum which are mainly caused by line
structures. The line structures do not have to be clearly defined but can be noisy
as in the case of hedges. Sparse structures are a challenge for spectral registration.

Figure 6.7 Examples for the Fourier- (right from input pattern) and Fourier-
Mellin transformations (FMT) (right) of different input pattern (figures with white
background). Lines and corners lead to high frequencies and distinguished lines in
the transformed. Sparse structures as shown in the bottom left are challenging.
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6.3 Robust spectral registration

In this section, a spectral registration algorithm is developed which involves the eval-
uation of multiple transformation hypotheses, resulting in an increased robustness
against inaccurate transformation priors and noise. This algorithm is denoted ro-
bust FMT (rFMT) and leads to a significantly increased rate of successful matching
attempts as compared to the standard single-hypothesis algorithm (Section 6.2).
Spectral localization provides quasi-global matching results where hypotheses are
represented by peaks in the filter response. Consequently, multiple hypotheses can
be obtained by selection of several peaks. Challenges arise, once the highest peaks
do not correspond to the correct set of transformation parameters. Two example
scan-submap pairs are discussed in Section 6.3.1 that underline the limitations of the
single-hypothesis approach to spectral registration. In Section 6.3.2, a procedure for
the evaluation of multiple transformation parameter hypotheses is developed which
overcomes the discussed limitations.

6.3.1 Limitations of single-hypothesis spectral registration

Common causes of matching failures in spectral registration are given in Table 6.7
and exemplified in Figure 6.8. Figure 6.8 illustrates different pairs of scans (data set
0823-42) and submaps. For each pair, the scan and submap are shown according to
the prior rotation estimate and together with the set of filter outputs. In cases with
sharply defined peaks, the correct translation and rotation parameters are easily
obtained by selection of the highest peaks. For the following frequently occurring
two examples, this approach fails.

For the first data set, the peak in the SPOMF response for the rotation calcula-
tion is less pronounced and ambiguities occur. However, in this case, choosing the
highest peak still results in determination of the correct two rotation hypotheses.
On the contrary, the highest peak in the translation calculation step corresponds to
the false rotation hypothesis. This is due to the fact, that the overall noise in the
filter responses is high and the peaks for rotation hypothesis selection are of equal
height. Consequently, a limitation of the matching approach is reached if no rotation
hypothesis can be selected with a sufficiently hight probability which might be re-
lated to the distinctiveness of the peaks and the overall noise level. In this example,
the obtained pose estimate has an error of several meters. Another limiting case is
given by the the second example in Figure 6.8. The filter response from the SPOMF
for rotation estimation has a dense cluster of peaks. This cluster corresponds to
several similar rotation hypotheses. Nonetheless, the correct rotation hypothesis is
obtained during the translation estimation step. However, ambiguities occur in the
SPOMF output corresponding to the correct rotation hypothesis, leading to the se-
lection of an incorrect translation peak. Due to the peak layout, the resulting error
is smaller than the one encountered in example two. This failure type is harder to
detect due to the small error and consequently has an increased potential for having
a deteriorating impact on the pose estimation integrity.
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Figure 6.8 Dealing with multiple hypotheses from the filter outputs is of fun-
damental importance for robust point cloud matching as shown by the following
limiting cases. Case 1: The highest peaks in the translation estimation filter out-
puts ca and cb are of similar height. Due to noise, the wrong translation hypothesis
is selected. Case 2: Selection of a wrong side peak inf the rotation estimation step
(c) leads to an increased error in parameter estimation.
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Table 6.7 An overview over common error sources in spectral registration.

Processing step Error Causes

rotation hypothesis
selection

false peak selected
• ambiguities
• heavy clutter

false hypothesis se-
lection

• selection of the false
translation hypothesis

translation hypoth-
esis selection

false peak selected
• ambiguities
• heavy clutter

Therefore, the avoidance of this category of matching failures has a high priority.
The main causes for matching failures are summarized in Table 6.7. Ambiguities
in the SPOMF response often occur due to the corridor- (e.g. narrow roads) or
x-structure (e.g. intersections) of the vehicle surrounding. Despite the structural-
ambiguities, the correct rotation peak it typically clearly distinctive, but can have
small side-peaks. Within these dense clusters of peaks, the highest peak does fre-
quently not correspond to the correct peak. Especially for severe inconsistencies
between or small overlap of the input data, small deviations in angle estimation
can result in significantly increased noise levels in the translation filter responses
(similar to case 2, Figure 6.8). This error type significantly contributes to increased
matching failure rates. This observation is underlined by the results presented in
Section 11.3.1 and motivates the development of rFMT in this section.

In conclusion, the example cases underline the challenges in peak selection. Before
this study, these limiting cases for the spectral registration have by great extend been
neglected in literature. Due to their importance for UAD, these are further evaluated
in Section 6.3.2. As an important contribution in the next section, methods for
overcoming some of the limitations are developed and evaluated.

6.3.2 Multiple hypotheses evaluation

The examples from Figure 6.8 underline the significant difficulty introduced by mul-
tiple similar hypotheses and unveil the limitations of a peak selection solely based
on the information provided by the filter outputs. To this point, further means
are developed in this section for reliable peak selection and matching failure detec-
tion. Obviously, the introduction of prior knowledge can be used for narrowing the
hypotheses search space and thereby decreasing the impact of ambiguities. This ap-
proach effectively leads to a loss of the broad basin of convergence of the matching
algorithm and prohibits an application for localization system initialization (Sec-
tion 11.3.1). Additionally, the second example in Figure 6.8 shows that the distance
between hypotheses can be small, leading to high prior accuracy requirements.

Each transformation hypothesis can be evaluated based on point-based metrics
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which are used in point-based registration algorithms like ICP and RANSAC. The
information contained in the filter responses used for spectral registration typically
not equivalent. In the following, a general approach for the application of point-
based fitness metrics in spectral registration is developed. Transformation parameter
hypotheses can be extracted in an iterative manner from the filter outputs calculated
during the rotation and translation estimation steps. To this point, the highest peak
is searched and the peak is set to zero. This procedure is repeated until the required
number of hypotheses is reached. Typically, the peaks are broadened due to noise in
the filter input data. Therefore, it is argued that a neighborhood around the peak
shall be set to zero as well. The neighborhood size has to be carefully chosen in order
to avoid consideration of parts of broad peaks as distinct hypotheses and to avoid
rejection of densely clustered hypotheses. Alternatively, a gradient-based algorithm
leads to accurate results by setting all adjacent cells with a negative gradient to
zero. For efficiency reasons, it is resorted to a fixed neighborhood of 3× 3 grid cells
around the peak.

For an arriving LiDAR scan sk at time step k, a set Uk of Uk random sample
points

Uk = {uj}Uk

j=1 (6.15)

is extracted (Figure 6.9). The hypothesis set Hk

Hk = {hi}Hk

i=1 (6.16)

is selected. Uk is then transformed according to the Hk to obtain a set of transformed
sample point sets

PH
k = {Uk,i}Hk

i=1 . (6.17)

Consecutively, a nearest neighborhood search is used to determine the correspond-
ing points in the reference data (submap mk or scan sk−1). The efficiency of the
nearest neighbor search is crucial for the applicability of the hypothesis selection
procedure. To this point, a suitable procedure is developed in the following. For
the distinction of good and poor registration results, the consideration of a tight
neighborhood around the transformed sample point as shown in Figure 6.10 is suf-
ficient. The center of the neighborhood is obtained by a mapping between sample
point coordinates and grid cells of the current submap. If no occupied grid cell is
part of the neighborhood, the Euclidean distance is set to∞. A 7×7-neighborhood
is characterized by a good trade-off between computational costs and accuracy.

The correspondence pairs are then utilized to calculate the median distances di for
each hypothesis. Each hi ∈ Hk is then weighted according to the respective distance
di. Accordingly, rFMT is a hybrid matching algorithm which uses elements from
the dense registration domain for data association and means from the point-based
registration field for hypothesis weighting.
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Figure 6.9 An example scan with Uk = 50 randomly drawn sample points used
in rFMT as basis for the weighting of multiple transformation hypotheses.
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Figure 6.10 The sample points from the input scan are transformed in accordance
to the transformation hypotheses. The Euclidean distances are determined between
the map frame relative sample points from the scan and 7×7 grid cell neighborhoods.
This approach leads to accurate results and efficient implementations.



70 Registration of cluttered point clouds

6.3.3 Confidence measures

In order to increase the localization system robustness, confidence measures are
required which can be used to evaluate the current matching performance beyond
covariance estimation. Based on the current confidence, a threshold can be enforced
as mean for outlier rejection as shown in Figure 6.11. Several confidence metrics
have been introduced in the past for spectral image registration, including works in
[KH90] and an heuristic approach in [AAS15]. In most case the evaluation of the
confidence metrics has been conducted under the assumption of zero-mean Gaussian
noise. In the context of this thesis, the latter assumption does not sufficiently reflect
the noise characteristics of the utilized data and, therefore, a re-evaluation of existing
approaches and the point distance measure from Section 6.3.2 is performed.

data input

registration
parameters

Scan-based matching

confidence
measure

spectral
registration

threshold valid flag

matching
result t, R

Figure 6.11 The concept of confidence measure based matching result selection.

Quantification of the matching quality can be achieved by evaluation of the signal-
to-noise ratio (SNR) of the selected peak. The SNR is defined as [CDD94]

SNR =
c (xs, ys)−mean (c (x, y))

σc
. (6.18)

Alternatively, structural similarity (SSIM) [WBSS04] can be used to evaluate the
similarity of the transformed scan and the corresponding submap. SNR, SSIM
and the point distance measure based approach from Section 6.3.2 are now further
evaluated with respect to their applicability to outlier detection. The results for data
set 0823-42 in Figure 6.12 indicate a high correlation of SNR with the correctness
of the matching result. SSIM and the point distance based approach developed in
Section 6.3 showed superior performance for the selection of the best out of multiple
hypotheses. In comparison to the SNR, both measures are insensitive to incorrectly
selected peaks. Consequently, both are not well suited for outlier detection.

For the SNR-based outlier detection, all false matching results are detected for
a threshold of 12.06. By selection of this threshold and under consideration of the
corresponding false positive rate, the overall matching rate is 94.0% which is below
97.8% from Table 11.5. The runtime for calculation of the SNR and the point
distance is around 0.5 ms on average. The calculation of the structural similarity
takes several ms.

In conclusion, the evaluation results from the this section show that the confidence
estimation at matching algorithm level is well performing but is subject to limita-
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Figure 6.12 Receiver operating characteristic curve (ROC) for matching outlier
detection based on different confidence measures. The SNR gives the highest detec-
tion performance. Due to false rejections, the matching rate Pm is decreased while
the true rejection rate is increased. Consequently, robustness of map matching can
be achieved and scaled at the cost of a decreased matching rate.

tions. Consequently, the decision about accepting or rejecting matching results shall
be supported on a higher hierarchical level under consideration of redundant map
matching results. This approach will be elaborated in Section 11 in the context of
the development of a hybrid localization framework.

6.4 Conclusion

This section started with an evaluation of matching algorithms for challengingly het-
erogeneous urban environments, outdated localization maps and cluttered LiDAR
measurements. Especially the aspect of insensitivity against noise and inaccurate
priors motivated the selection of spectral registration as a mean for the enhance-
ment of localization robustness (compare Section 2.3). Adaptation of the matching
algorithm to the intended usage in the field of urban automated driving were made.
A robust spectral registration algorithm (rFMT) was developed which enabled the
consideration of multiple transformation hypotheses. This led to increased matching
performance and can be utilized as a basis for localization system initialization from
inaccurate transformation priors.
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The contributions in this section are part of key contribution 1 (kc1, Section 1.2)
and comprise the following contributions.

• The selection and adaptation of a spectral registration algorithm as central
component in a vehicle localization system for urban automated driving (rq1 ),
comprising

– the adaptation to the expected noise characteristics by selection of a
suitable filter function,

– covariance estimation and

– evaluation of confidence measures for the detection of matching failures.

• The developed robust spectral registration algorithm (rFMT) based on a hy-
pothesis selection procedure led to a significantly increased matching rate (rq1,
rq3, rq4 ).

• The development of a 3D spectral registration procedure yielded scalable com-
putational costs for point cloud alignment.

The evaluation of the spectral matching approach in Section 6.2.3 on the basis of a
challenging urban data set indicates its insensitivity to inconsistencies between sen-
sor measurements and the localization map. Accordingly, the main characteristics
of spectral registration can be summarized as follows

• high insensitivity to inconsistencies between the input data (rq1, Section 1),

• low requirements on prior accuracy which enables system initialization and
recovery (rq3, Section 1),

• deterministic runtime behavior and availability of well researched software and
hardware implementations for the most important algorithmic building blocks,

• quasi-global matching results and

– expressive confidence metrics (rq4, Section 1)

– hypotheses selection strategies (rq1, rq3, Section 1)

These characteristics enable to bridge the gap between place recognition and iter-
ative algorithms used for pose refinement. Furthermore, it covers important tasks
previously addressed by the latter procedures. Confidence estimation based on the
SNR showed good performance for the identification of valid matching results. High
probabilities of outlier removal on the basis of the SNR trades-off with suboptimal
matching rates due to the rejection of valid results. The probability of detecting
false matching results is smaller than one and hence further means have to be taken
in order to answer rq4 (Section 1). This question will be addressed by analytical
redundancy in combination with consistency checking in Section 11.2.
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Especially for areas with sparse structures (compare Figure 6.7) and depending
on the parameterization of the algorithm, the spectral matching approach can suffer
from degraded matching performance. In order to underline this argument, results
from a short experiment are presented. Robust spectral registration with a grid
resolution of 0.2 m is used in order to align LiDAR scans to the localization map.
Figure 6.13 contains the results for the urban data set 0823-42 (Section 4.3) which
was selected due to the compact occurrence of diverse challenges, fostering lucidity
for this short overview. Based on the SNR values, it is possible to identify areas in
which spectral matching delivers reliable matching performance. This is especially
given for narrow roads and generally in areas with dense structures. The amount
of clutter has no significant influence on the matching performance in these areas.
Given the beneficial characteristics of the spectral registration algorithm and the
discussed challenges, the following applications are further treated in this thesis:

• relative motion estimation (Section 10.1) contributes to the compensation of
matching failure clusters,

• simultaneous localization and mapping (Section 10.2) enables operation in
areas without valid localization maps and

• vehicle localization (Section 11) with redundant map matching procedures
leads to increased failure detection capability and enhanced robustness.

The distribution of the matching failures is of significant importance for the en-
vironment and localization system model, developed in Section 9 and following sec-
tions. In the evaluated data set, two major categories of matching failure sequences
can be distinguished:

1. approximately uniformly distributed failures and

2. clusters of failures.

The question of how the observed challenges in map matching affect the localiza-
tion system and influence the localization system design remains unanswered (rq2,
Section 1). More generally, it lacks a systematical approach for localization sys-
tem design which captures the operation environment characteristics, localization
subsystems and the actual localization requirements. To this point, the design of lo-
calization systems is treated in Part III as another key contribution (kc2, Section 1.2)
in this thesis. It is argued, that statistical models of the overall localization system
can support the design process. Therefore, statistical localization system models are
developed in Section 7 and Section 8. The statistical models also capture the dis-
cussed matching failure sequence characteristics. Comprehensive simulation studies
are conducted in Section 9 to derive important design parameters, like grid resolu-
tions and matching rate for spectral matching as well as odometry accuracy. Ad-
ditionally, strategies for adaptation of localization systems to the respective target
operation environment are discussed.
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(a) The SNR values significantly vary along the driven trajectory. Blue dots indicate
low SNR values and green dots high values above 40.0. Detailed views are shown in the
following figures.

(b) Significant inconsistencies between
sensor observation and submaps lead to
decreased SNR values.

(c) Weakly structured areas have a com-
parable influence on the matching per-
formance.

Figure 6.13 Spectral registration works well in areas with narrow roads and house
walls in proximity of the LiDAR sensor (compare Section 6.2.3), whereas in expansive
intersections, the matching becomes less reliable. This is indicated by a decreased
SNR in these areas which indicate degradations in map matching performance.
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7 Measurement and environment models

The design of localization systems remains a challenging task and requires high
amounts of expert knowledge. Statistical models foster the quantification and har-
monization of this valuable expert knowledge. Thereby, a model-based design ap-
proach can contribute to a localization requirement oriented system development.
Furthermore, the design process can be made more repeatable since the models can
be applied to a diverse set of localizer concepts and operation environments. Uti-
lization of statistical models can also lead to a deeper understanding of localization
systems and the impact of specific design decisions on system performance param-
eters. A model-based design approach can thereby provide an additional source of
ideas for approaching the remaining challenges in vehicle localization for urban au-
tomated driving (UAD). To this point, a statistical model framework for the whole
signal processing chain of a localization system (Figure 7.1) is derived in this and
the following section. It is resorted to analytical model formulations, facilitating a
general discussion of the interrelation between localization system design parame-
ters, operation environment characteristics and localization accuracy requirements
(as conducted in Section 9) in comparison to numerical models. The models are
given in closed-form which enables an efficient evaluation in simulation studies. The
described models have been published in [RSMZ15], [RSMZ16] and [RMZ17] to great
extend and offer the basis for answering research question 2 (rq2, Section 1.1).

In this section, the detection of pole-features as described in Section 5.1.2 and
utilized in the proposed localization framework (Section 11) is considered. Map
matching on the basis of scans as described in Section 6 is treated beginning with

Localization system ( Part II & IV)

Perception
- Sensor setup

(Sec. 4.1)
- LiDAR data

processing
( Sec. 5)

Map
matching
( Sec. 6)

Pose
filtering

( Sec. 11)

Operation
environment
( Sec. 4.2)

Statistical model framework ( Sec. 7 & 8)

Measurement
models

( Sec. 7.2)

Map matching
model

( Sec. 8.1)

Pose filtering
model

( Sec. 8.2)

xk

Environment
formalization

( Sec. 7.1)

Figure 7.1 The developed statistical models cover the whole signal processing
chain of a localization system and capture the operation environment characteristics.
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Section 8.2, where the matching result is characterized by its uncertainty.
The measurement models form a direct link between the environment charac-

teristics, sensor properties and the utilized feature extraction algorithm. Exte-
roceptive sensors are utilized in order to provide a set of landmark observations
Lk = {li,k}nk

i=1 at every time step k. Every landmark observation li,k corresponds
to a mi,k ∈ ml which requires the detection and removal of false positive land-
mark detections from the sensor observation. This assumption is feasible since it
is achieved by a suitable matching algorithm with a sufficiently high probability.
The sensor field of view (FoV) S is defined by a maximum detection distance rmax
and an opening angle α. The location of a landmark relative to the sensor refer-
ence frame is given by the homogeneous transformation T (mi,k,xk). A landmark is
observed with the, potentially distance- and angle-dependent, detection probability
PD if ‖T (mi,k,xk)‖ < rmax and −α

2
≤ ∠T (mi,k,xk) ≤ α

2
.

li,k =

{
T (mi,k,xk) + ∆li,k T (mi,k,xk) ∈ S (ml)

∅ T (mi,k,xk) /∈ S (ml)
. (7.1)

The measurement error ∆li,k is characterized by a measurement noise Σli,k which is
considered Gaussian with zero mean. The derivation of statistical models for Σli,k is
described in the first half of this section. Each model states the expected covariance
of a sensor-relative landmark position measurement in Cartesian coordinates. A
measurement model for the light detection and ranging (LiDAR) based detection
of poles is developed in Section 7.2 and complemented by a model for stereo video
depth measurements in Section 7.3. In this thesis, the focus is put on LiDAR
based localization and the case of stereo-video based feature detection is exclusively
considered to underline the impact of its distinct measurement noise characteristics
on localization system parameterization.

Consideration of operation environment characteristics is of equally fundamental
importance for the model-based design of localization systems. A formalization of
the environment forms the connection between the modeled localization system char-
acteristics and the intended operation environment. An environment characteristic
formalization is developed in Section 7.1 and models the distribution of landmarks
relative to the vehicle system. These models in combination with the map matching
and sensor data fusion model in Section 8 are capable of describing the interrelations
between localization system parameters, operation environment characteristics and
localization performance. Thereby, a precise adaptation of a localization system to
the target operation environment under consideration of localization accuracy and
robustness requirements is achieved.

7.1 Environment formalization

The adaptation of localization systems to the intended operation environment is a
key aspect of robustness enhancement. Consequently, relevant environment charac-
teristics are to be formalized for consideration in the model framework. The latter
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Figure 7.2 The arrangement of infrastructural features like lane markings can be
considered deterministic and described by classical geometric models. Deviations
from building guidelines and feature types with less deterministic distributions (in-
dicated by blue dots) are captured by means of stochastic geometry.

allows to account for the interrelation of environment characteristics and the localiza-
tion performance. Urban environments in specific and road transport infrastructure
in general are structured environments. This classification relates to the fact, that
building guidelines exist which regulate the arrangement of infrastructure elements
like road marking, street lamps and traffic signs. Automated vehicle systems with
localization capacity often use measurements of sensor-relative infrastructure object
poses or other feature types as inputs. Additionally, the intended vehicle motion
is typically narrowly constraint by the road topology. And consequently, the de-
tection often occur in the same section of the sensor field of view. In this thesis,
two perspectives on suitable formalizations of feature distributions are developed
and incorporated into the Monte Carlo simulations used for model evaluation in
Section 9.

Road marking and other structured features often have well defined geometric ar-
rangements and can hence be modeled based on data from available standardization
documents (Figure 7.2). This environment abstraction is well suited for supporting
design decisions for parts of the urban operation environment. In order to capture
different environments, worst case assumptions about geometric dimensions can be
taken. The design of a road marking based localization system might then be based
on the assumption, that road marking occur at a minimum rate and the lane width
does not exceed a worst case assumption. The design task would be the derivation
of detection accuracy and rate requirements given a maximum lane width and road
marking density. Thereby, all sceneries providing richer information than the con-
sidered worst case can be subsumed. The worst case assumptions have to be made
cautiously, since there exists a strong correlation between the latter and perception
system requirements like sensor accuracy. By assuming a at least partially stochas-
tic point feature distribution, the environment model can be made more realistic.
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Furthermore, other point features like depth or contrast discontinuities might have
a more random distribution and can be modeled by means of stochastic geometry
which are introduced in Section 7.1.1.

7.1.1 Stochastic distribution models

The assumption of a deterministic distribution can be feasible for special types of
landmarks. Nonetheless, in real operation domains, landmark distributions are sub-
ject to stochastic variations. The latter arise from discrepancies between building
guidelines and actual placement of infrastructure elements. Other feature types
might be naturally characterized by stochastic distributions. In this thesis, stochas-
tic geometry is utilized for the incorporation of stochastic variations in geometric
arrangements from building guidelines and general feature distributions. One exam-
ple is the modeling of distance distributions between street lamps by an exponential
distribution with an average distance corresponding to some assumed average dis-
tribution [RSMZ15]. Stochastic geometry offers a sound basis for a more general
modeling of the stochastic nature of landmark distributions. Especially in the do-
main of communication and sensor networks, stochastic point processs (SPPs) have
been successfully applied to system parameter design. In this context, SPPs are
commonly used to formalize the distribution of transmission towers and sensors. In
this section, the applicability of SPPs for formalization of landmark distributions
are studied. In the case of point landmarks, this can be achieved by utilization
of stochastic point processes like the Poisson point process (PPP) [RSMZ16] (Fig-
ure 7.3).

PPP with the distribution are a widely used SPPs and enable the modeling of inde-
pendent identically distributed landmarks. One realization ξ of the PPP represents
a continuous model of a landmark arrangement in global state space. Realizations
ξ of the PPP are contained in the event space Ξ and are obtained by a two step
procedure. In a first step the number N of landmarks is drawn from a Poisson

Figure 7.3 Poisson point processes are used to model stochastic landmark distri-
butions with different densities (left: λ = 300, middle: λ = 100). Non-homogeneous
Poisson point processes can be used to model spatially varying landmark densities
as shown on the right.
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probability density function with the intensity parameter λ:

P (x) =
e−λλx

x!
. (7.2)

Consecutively, the N continuous landmark positions are considered as independently
identically distributed in space. Possible localization maps ξm are then given by a
PPP realization in the world state space W

ξm =
(
Nm,

{
mm

1 , . . . ,m
m
Nm

})
, ξm ∈ Ξ (W) . (7.3)

Landmarks are observed within the sensor field of view S ∈ W . In case of homoge-
neous PPPs, spatial samples are drawn from an uniform distribution, Consequently,
the map properties are spatially invariant and the probability of observing a given
number of landmarks is modeled as constant. A sensor observation ξl is then given
as

ξl =
(
Nl,
{
ll1, . . . , l

l
Nl

})
, ξl ∈ Ξ (S) . (7.4)

The intensity value of a point process can be estimated from real measurement data
as will be shown in Section 7.1.2. These estimated values can then be re-used for
the design of different localization systems for the same type of features.

7.1.2 Estimation of model parameters

The intensity value λ in the Poisson distribution (Equation 7.2) can be estimated
from the landmark data obtained in a map. Since, λ is defined in relation to a
unit area, the area for estimation, e.g. a 2 m broad stripe beside the road where
most of the poles are situated, has to be previously defined. In most environments
and for most feature-types the landmark density is subject to significant spatial
variation and can only be estimated for small patches or as an average value. In
such environments, a non-homogeneous PPP model can be preferable if a general
model is needed. In the following, homogeneous PPP are now considered and the
maximum likelihood estimate is calculated for a given landmark map (Figure 5.6).
For the Poisson distribution in Equation 7.2 it is easily found that the maximum
likelihood estimate of λ equals the observation x. The estimation procedure has
to be conducted once and can be reused for the design of different localization and
perception systems which use the considered map. For a 1.39 km long trajectory
(data set 0823-42, Section 4.3), an overall roadway width of 5.1 m and a width
of the area of landmark occurrences beside the roadway of 5 m the intensity λ =
121 (100m)−2 is obtained.
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7.2 Model of LiDAR-based pole detection

The detection of poles in LiDAR data is one step in the proposed hybrid localization
system (Section 11). To this point, a model for the uncertainty in pole detection
is derived in this subsection. Point measurements provided by a stationary LiDAR
sensor are characterized by a weakly distance independent measurement noise. The
latter is mainly caused by laser beam broadening due to imperfect beam focusing
and is further amplified by incorrect sensor calibration. This uncertainty type is
quantified in the following.

A basic approach for determining the position li,k of a pole is the fitting of a circle
to a set of measurement point (Figure 7.4). To this point, the z-component of the
overall point cloud is set to zero and samples of three points are drawn from the
points in the xy-plane. For every sample, a circle model u with the circle center
c (compare Figure 7.4) and r the circle radius is determined. u is obtained by
minimization of the quadratic cost function Jc

u = [cx, cy, r]
> = arg min

u
Jc (7.5)

= arg min
u

n∑
i=1

‖Wi (|c− zi| − r)‖2 (7.6)

= arg min
u

n∑
i=1

∥∥∥∥Wi

(√
(cx − zx,i)2 + (cy − zy,i)2 − r

)∥∥∥∥2

. (7.7)

The circle model with the most model-supporting point measurements is selected
and li,k is given by the corresponding circle center coordinates. For error propa-
gation from uncertain sensor measurements to Σli,k it is important to observe that
Jc (z; ũ) = 0 forms an implicit function connecting the input measurements and the
true circle parameters ũ. Hence, a covariance estimate can be found by applying
the implicit function theorem to Jc. Based on the implicit function theorem, the

z1

z2

z3

r

c
dh

rc

αh

pole lidar sensorpoint measurementpole center

Figure 7.4 The setting for the derivation of the error model for LiDAR based
pole detection.
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covariance estimate cov (u) is given as follows:

Σu =
n∑
i=1

(
∂2Jc
∂u2

)−1
∂2Jc
∂u∂z

Σz
∂2Jc
∂u∂z

>(
∂2Jc
∂u2

)−1

(7.8)

∂2Jc
∂u2

=


∂2Jc
∂c21

∂2Jc
∂c1∂c2

∂2Jc
∂c1∂r

∂2Jc
∂c2∂c1

∂2Jc
∂c22

∂2Jc
∂c2∂r

∂2Jc
∂rc1

∂2Jc
∂r∂c2

∂2Jc
∂r2

 , (7.9)

∂2Jc
∂u∂z

=


∂2Jc
∂c1∂x

∂2Jc
∂c1∂y

∂2Jc
∂c2∂x

∂2Jc
∂c2∂y

∂2Jc
∂r∂x

∂2Jc
∂r∂y

 .

For Wi = (1/n)I, Σu basically scales with 1/n, although the point distribution
on the circle surface also has an influence on the circle model accuracy.

In the pole detection procedure developed in Section 5.1.2, c is always calculated
from three measurement points and hence, the derived model has to be evaluated
for n = 3. Consequently, the measurement uncertainty Σl of a pole is assumed to
be constant and isotropic:

Σl = Σc
u =

[
σ2
x σ2

xy

σ2
yx σ2

y

]
(7.10)

≈ σ2
l I . (7.11)

Obviously, this is an approximation, since the LiDAR beams are not perfectly fo-
cused which results in a increase in the cross-range measurement uncertainty. This
uncertainty source is considered to be significantly smaller than other sources of
uncertainty and is therefore neglected.

An additional significant source of uncertainty is introduced during motion com-
pensation of the LiDAR scans. In an urban environment with a typical speed limita-
tion of 50 km

h
, the vehicle moves 1.4 m during a 360 ◦ rotation in 100 ms. Accordingly,

a velocity estimation error of 1 km
h

could potentially result in an additional pole lo-
cation measurement error of 0.3 m. This leads to an addition of the following error
term to Equation 7.8

εv,max =
|vk − v̂k|
3.6 kms

hm

100 ms . (7.12)

In practical application the motion-imposed error typically outweighs the error due
to the uncertainty in single LiDAR point measurements. It is worth noticing, that
cov (u) does not explicitly depend on the distance between the origin of the sensor
frame and the pole object. However, the number of measurement points on the pole



84 Measurement and environment models

surface does depend on the distance

n (rc) =
2r

dh (rc)
(7.13)

=
2d

rc tan (αh)
. (7.14)

For n = 3, r = 0.2 m and the horizontal angular resolution αh = 0.125 ◦ of the
Velodyne LiDAR sensor, the resulting maximum detection range rc,max ≈ 47.75 m.
However, this theoretical maximum range is typically irrelevant, since the outlier
rate significantly increases for higher distances. Consequently, the maximum range
is often defined independently from the theoretical range.

7.2.1 Experimental evaluation

The pole detector and error model evaluation is based on real pole measurements
which are extracted from 3D LiDAR measurements recorded with a Velodyne HDL-
64E. All results are obtained for one pole within the sensor field of view. The
evaluation is conducted for different distances between the static origin of the sen-
sor frame and the pole. At each distance approximately 2500 pole measurements
are recorded. Based on the measurement sets, the statistics of the pole detector
performance are derived. The results are listed in Table 7.1.

Table 7.1 Results from the pole detection accuracy experiment show an approx-
imately distance independent accuracy of LiDAR based pole detection.

d / m 11.84 15.88 20.33 25.79 31.85 36.43
σx / m 0.025 0.021 0.022 0.039 0.027 0.017
σy / m 0.018 0.016 0.017 0.021 0.022 0.019
nscans 2350 2518 2308 2476 2616 1967
PD 0.999 1.000 0.996 1.000 0.964 0.211

The experimental results indicate that the detection accuracy can be considered
approximatelydistance independent. In down-range direction the standard deviation
was σd,lm = 0.025 m which is slightly higher than the observed cross-range value
σc,lm = 0.018 m. The model is evaluated for the manually measured 0.15 m radius of
the pole and σl = 0.06 m ([GL10] state a similarly high value). The modeled value
for σlm = 0.016 m is slightly optimistic. The detection range decreases significantly
for pole distances higher than 32.0 m which is due the finite angular resolution of
the LiDAR sensor.
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7.3 Stereo video camera perception model

The detection of poles in video images is state of the art and not further treated
within this thesis. Once a pole is detected, the position of a predefined reference
point of the pole, e.g. its upper end, can be obtained from a depth measurement.
A model of the depth measurement is now obtained by modification of the model
presented in [Bad09]. Under the assumption assumption of a precise intrinsic cali-
bration, it can be written [RSMZ15]

Σli =
1

(c · bw)2 z
2
i,x

[
z2
i,xσ

2
d zi,xzi,yσ

2
d

zi,xzi,yσ
2
d z2

i,yσ
2
d + b2

wσ
2
u

]
. (7.15)

Image columns are denoted u, disparity d, base-width bw, measurement noise
variances σ2

d, σ
2
u in disparity and image column and the camera constant c. This

model can be further simplified [RSMZ15] (compare Equation 7.16) by assuming
that σd ≈ σu and zi,k,y � 0.5bw. The first assumption is justified by the observation
that d is estimated from noisy values of u. Furthermore, the second assumption
is reasonable, since landmarks are typically situated outside the driving tube and
hence, the lateral offset is several times larger than bw. These assumptions lead to
the following simplified model [RSMZ15]

Σli,k ≈ ξz2
i,k,x

[
z2
i,k,x zi,k,xzi,k,y

zi,k,xzi,k,y z2
i,k,y

]
, ξ =

σ2
d

(c · bw)2 . (7.16)

Example noise realization for the pole detection and the SVC model are given in
Figure 7.5 and show the difference between the approximately isotropic measurement
noise in LiDAR based pole detection and the highly anisotropic noise in SVC depth
measurement. The models perform well in both cases.
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Figure 7.5 All noise realizations and the 3σ region from model evaluation are
scaled by a factor of 5 for better visibility. For the SVC model, the parameters
σd = 0.12px, σu = 0.21px (in accordance to [KASS05]), c = 10 mm and bw = 0.12 m
as well as σl = 0.03 m for LiDAR based pole detection were selected.



86 Localization system models

8 Localization system models

In the signal processing chain of the considered localization system, the detection of
landmarks is followed by a map matching step. The error model for map matching
(Section 8.1) is derived by propagation of the landmark measurement uncertainty
to the map matching result. To this point, the solution of the orthogonal Procrustes
problem (OPP) which minimizes the quadratic cost function J (Equation 8.1) is
considered. This solution to the OPP enables the calculation of the transformation
parameters between two data sets {ml,k}ni=1 from the localization map and the sensor
observation {li,k}ni=1 under the assumption of known correspondences.

The absolute vehicle pose information from map matching is then fused with
motion estimates from odometry measurement in a Bayesian filtering framework.
This step is modeled by a Cramér-Rao like performance bound for map matching
probabilities smaller than one. The closed-form bound is developed and discussed
in Section 8.2. At this model stage, the performance of the spectral map matching
algorithm (Section 6) can be considered. This section concludes with the develop-
ment of a strategy for dealing with occlusions and landmark detection failures in
Section 8.3 to make the model realistic and applicable to real world scenarios.

8.1 Map matching model

In this subsection, a model for the map matching procedure is developed. The central
assumption for the derivation of the map matching model is the existence of a correct
correspondence estimates between a set Lk of landmark observations and landmarks
contained in the localization map ml. Furthermore, it is assumed that the transfor-
mation parameters are calculated based on the solution of the Procrustes problem
described in Section 2.1.2. The incorporation of additional information about the
sensor noise is achieved by weighting the correspondence pairs by a weighting matrix
Wi which leads to the quadratic cost function

J =
n∑
i=1

‖Wi (Rli + t−mi)‖2 . (8.1)

The scalar-weighted OPP is considered here and is obtained by the substitution
Wi = wiI in Equation 8.1. The solution for the scalar-weighted OPP is given in
Section 8.1.1 and followed by the derivation of the map matching error model in
Section 8.1.2. Based on real pole measurements and map matching results, the
model is verified in Section 8.1.3.

8.1.1 Solution of the orthogonal Procrustes problem

In a first step, a suitable formulation of the OPP as basis for the map matching model
derivation shall be selected. Therefore, three variants of the OPP formulations are
considered, the unweighted scalar- and matrix-weighted OPP. The accuracy of the
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different implementations is studied in Monte Carlo simulation for the landmark
distribution shown in Figure 8.1 and the stereo-video depth measurement model
(Section 7.3). The results in Figure 8.1 show, that the information about the noise
characteristic which is contained in the weighting factor leads to an increase in
accuracy.
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Figure 8.1 Top: simulated landmark distribution; Bottom: Incorporation of noise
information by a weighting factor leads to increased matching accuracy (σx, σy). The
scalar weighted cost function gives conservative estimates of the matrix-weighted
case and is therefore considered for the derivation of the map matching model. The
data were obtained from Monte Carlo simulations with utilization of the SC model.

The noise of LiDAR based pole measurements is approximately distance indepen-
dent and isotropic (Section 7.2). Hence, the results from all OPP solutions would
result in a similar accuracy. For the stereo video model (Section 7.3), weighting
results in an increased matching accuracy. In practical application the performance
difference between the solutions depends on the availability of accurate sensor noise
models. To this point, it is resorted to the scalar-weighted OPP for model derivation
since it gives a conservative estimate of the matching performance which accounts
for some imprecision in the sensor noise model.

In the case of anisotropic measurement noise, the choice wi = max (eig (Σl,i,k))
1/2

gives precise matching results. In the following, a closed-form solution of the scalar-
weighted Procrustes problem is derived by means of the Lagrangian multiplier
method. For the calculation of the translation parameters, the centroid coincidence
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theorem [WCR92] is applied first:

n∑
i=1

w2
imi =

n∑
i=1

w2
i (Rli + t) (8.2)

t = m̄−Rl̄ (8.3)

with the weighted centroids

l̄ =

n∑
i=1

w2
i li

n∑
i=1

w2
i

, m̄ =

n∑
i=1

w2
imi

n∑
i=1

w2
i

. (8.4)

This equation allows to cancel out the translation parameter from the cost function
by substitution of wi (Rli + t−mi) = wi

(
Rli + m̄−Rl̄−mi

)
in Equation 8.1

which results in

J =
n∑
i=1

∥∥∥Rl̃− m̃
∥∥∥2

, with l̃ := wi
(
li − l̄

)
, m̃ := wi (mi − m̄) . (8.5)

The orthogonality constraint on the rotation matrix is now enforced by defining the
Lagrangian function Λ with the Lagrangian multiplier λ

Λ (c, sλ) =
n∑
i=1

∥∥∥Rl̃i − m̃i

∥∥∥2

+ λ
(
c2 + s2 − 1

)
(8.6)

(8.7)

And the solution is obtained by solving the following set of equations

∇c,s,λΛ (c, sλ)
!

= 0 . (8.8)

Finally, it is solved for c and s

c =
f1√

f 2
1 + f 2

2

, (8.9)

s =
f2√

f 2
1 + f 2

2

, (8.10)

f1 =
n∑
i=1

l̃
>
i m̃i, f2 =

n∑
i=1

l̃
>
i Fm̃i, F =

[
0 1
−1 0

]
.

The translation parameters are then calculated by inserting Equation 8.9 and Equa-
tion 8.10 in Equation 8.3.
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8.1.2 Error propagation

Propagation of the measurement error Σl,i to the matching uncertainty Σz is now
performed for the solution of the scalar-weighted OPP [RSMZ15]. As the model
is intended to describe vehicle localization relative to a highly accurate map, the
point data in the map are assumed to be noise-free, yielding ∆mi = ∆m̃i = 0.
Accordingly, the perturbation in f1 and f2 are calculated as

∆f1 =
n∑
i=1

m̃>i ∆l̃i and ∆f2 =
n∑
i=1

m̃>i F∆l̃i . (8.11)

Consequently, the variance of the perturbation ∆f ∼ N (0,Σf ) is given as

Σf = cov

([
∆f1

∆f2

])
=

n∑
i=1

[
m̃i

Fm̃i

]
Σli

[
m̃>i m̃>i F>

]
. (8.12)

∆f is then propagated to the translation perturbation ∆t = (R + ∆R)
(̄
l + ∆l̄

)
−

Rl̄ . The dependence of ∆t on all transformation parameters is now expressed by

defining the stacked parameter vector p =
[̄
l
>
c s
]>

and rewriting ∆t as a function

of ∆p

∆t =

[
∆p>A∆p
∆p>B∆p

]
. (8.13)

In order to consider the correlations between ∆t and all transformation parame-
ters, the normal approximation of the quadratic form in Equation 8.13 is used for
estimation of Σ∆t

Σ∆t =

[
2tr (A1ΣpA1Σp) + 4p>A1ΣpA1p 2tr (A1ΣpA2Σp) + 4p>A1ΣpA2p
2tr (A1ΣpA2Σp) + 4p>A1ΣpA2p 2tr (A2ΣpA2Σp) + 4p>A2ΣpA2p

]
(8.14)

=

[
σ2
t11 σt12

σt21 σ2
t22

]
(8.15)

with the matrices

A1 =

[
0 F1

F1 0

]
, F1 =

[
0.5 0
0 −0.5

]
, A2 =

[
0 F2

F2 0

]
, F2 =

[
0 0.5

0.5 0

]
.

The expressions for σt12 and σt21 are valid for symmetric A1 and A2 which is always
given. Calculation of Σl̄, Σc,s and the cross-correlation between l̄ and [c s]> is
lengthy, but straight forward and is therefore not stated here. Several simplification
and transformation steps lead to the final result for the variance of p

Σp = cov (p) =
n∑
i=1

ΓiΣliΓ
>
i , (8.16)

Γi = wi

 wi∑
i w

2
i
I2×2

1
f21 +f22

[
f2

−f1

] [
x>i F

]
 . (8.17)
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An estimate of the rotational map matching error is then obtained from σc or σs.

8.1.3 Experimental evaluation

The derived model is evaluated in Monte Carlo simulations and based on real mea-
surement data. For simulative evaluation, 106 realizations of the zero-mean Gaussian
measurement noise were used in the Monte Carlo simulation. A fixed landmark ar-
rangement is defined and the point set is rotated by 0 ≤ ∆θ ≤ 180◦ (Figure 8.2).
The landmark measurement error is set to Σl = (0.05 m)2I. The results in Fig-
ure 8.2 show a good fit of the model with the simulated standard deviations for the
translational σz,x, σz,y and rotational matching result σz,θ.

The approach used for real data based evaluation of the map matching model
is closely related to the procedure from Section 7.2.1. Firstly, pole measurements
from a stationary LiDAR sensor are subdivided into two equally sized sets. The
measurements from the first set are used to remove false detections and to calcu-
late the average pole locations. The latter are used as a localization map for the
matching procedure as shown in Figure 8.3. Based on this map and the remaining
pole measurements, the map matching statistics in Figure 8.3 are calculated. The
estimated values for pole detection Σm

l and map matching Σm
z from the model eval-

uation fit the empirically determined data. The matching accuracy is 0.01 m which
is highly accurate in comparison to the results presented in Section 11.3. The evalu-
ation was conducted for the static case and hence, the results indicate the impact of
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Figure 8.2 Top: landmark distribution for simulation; Remaining figures: simu-
lation results. The Monte Carlo simulation and map matching model results comply.



8.1 Map matching model 91

the motion compensation error term in Equation 7.13. This observation underlines
the high significance of accurate motion compensation of LiDAR scans, particularly
if sparse features like poles are extracted, and motivated the development of an
accurate LiDAR odometry in Section 10.
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Figure 8.3 Top: vehicle-relative landmark distribution; Bottom: pole detections
(left) and map matching results (right) with empirical and modeled 3σ trust re-
gions. The evaluation of the map matching model was conducted based on real pole
detections from the campus environment.
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8.2 Vehicle pose filtering model

Absolute pose estimates provided by map matching procedures form the basis for
map-relative localization. Localization systems typically rely on the fusion of such
absolute pose estimates with relative motion estimates provided by an odometry
(Figure 7.1). Odometry measurements are typically provided at a fixed rate with a
high reliability. On the contrary, the availability of environment perception based
absolute pose measurements depends on the characteristic of the operation envi-
ronment and failures might occur at a higher rate as shown in Section 6. Based
on the odometry measurements, the pose estimation accuracy can be increased in
comparison to a single-shot map matching based localization procedure. Further-
more, it enables the compensation map matching failure sequences by integration
of motion estimates starting from the last valid absolute pose estimate. The fusion
step often involves the utilization of widely used Bayesian filtering algorithms which
are outlined in Section 2.1.3 and are utilized in the proposed localization system in
Section 11.

In this section, a performance bound for Bayesian filtering based localization
systems in closed-form is developed which considers fusion of map matching and
odometry results (Section 8.2.1). Additionally, it accounts for probabilities Pm < 1
of obtaining a valid map matching results at time k. Hence, the model is devel-
oped for the most frequently occurring type of localization systems and is capable
of comprehensively describing the localization system developed in Section 11. The
derived statistical model establishes the connection between the odometry and map
matching performance and the resulting localization performance. Thereby, impor-
tant aspects for the design of localization systems are captured by the model and
form the prerequisite for model-based design of localization systems (Section 9).
The contents from this section were published in [RSMZ16] and [RMZ17].

8.2.1 A closed-form upper bound for Kalman Filtering with intermittent
observation

The Cramér-Rao bound (CRB) [BSLK04] (Section 2.1.5) is well established for the
calculation of upper accuracy bounds in Bayesian state estimation problems as ve-
hicle localization. A central assumption in the derivation of the classical CRB is the
availability of a measurement at every time step k for conducting the measurement
update step. This assumption corresponds to the case of Pm = 1 in the context of
the developed localization system. As for localization, this assumption is often vio-
lated practical applications and therefore a discussion started more recently on how
to address this challenge in the context of Kalman filtering. A thorough overview
over this discussion can be found in [HRFT04] and a solid body of related literature
exists. In [HRFT04], the characteristics of the information reduction factor CRB
and the sequential enumerated (EN) CRB are discussed and compared. The infor-
mation reduction factor (IRF) CRB [NWBS01] considers an average matching rate
Pm up to a time k. The bound Pk is given by the inverse Fisher information matrix
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Pk = J−1
k which is stated in iterative form [HRFT04]

Jk+1 = PmC>Σz,kC−Q−>A
(
Jk + A>Q−1A

)−1
A>Q−1 + Q−1 . (8.18)

For Pm = 1 and by inverting this expression, the Riccati equation for the standard
Kalman filter is obtained. The utilized matrices correspond to the ones used in the
standard extended Kalman filter (EKF) (Section 2.1.3). In [HRFT04], the IRF CRB
is compared to the EN CRB which is calculated on the basis of explicitly defined
sequences S of map matching successes and failures. Evaluation is computational
demanding since it requires the calculation of Jk (S) for all possible S up to time
step k, resulting in an exponentially increasing number of 2k evaluation steps. The
EN CRB is then given by the expected value of all results for Jk (S). Due to the
computational costs, the accurate performance estimation based on the EN CRB is
not considered here. The results from Section 8.2.2 and [HRFT04] indicate that the
IRF CRB potentially provides optimistic performance estimates. To this point, an
alternative with a computational efficiency similar to the IRF CRB is elaborated in
Section 8.2.1.

A parallel development to the CRB for Pm < 1 has been taken in the research area
of dynamic system control with intermittent observations. Sinopoli et al. were the
first to introduce a set of equations for Kalman filtering with intermittent observa-
tions (KFIO) in [SSF+04] (see also [MS12], [SRA15], [HD07], [YX11]). Accordingly,
the existence of a map matching result at time k can be modeled as a binary random
variable γk following a Bernoulli process. This assumption reflects the observations
made in Section 6.4 and is of great significance for the applicability of the model
for treating occlusions as will be discussed in Section 8.3. Following [SSF+04], the
covariance of the matching result noise is described by the probability distribution
function

p (vk|γk) =

{
Σz , if γk = 1

σ2I , if γk = 0
.

The matching probability Pm,k is now defined as Pm,k = p (γk = 1). In the following,
a homogeneous Bernoulli process such that Pm,k = Pm, ∀k is considered. The
KFIO equations are now obtained for σ → ∞ [SSF+04]. Applied to the problem
of localization and with the variable names from Section 2.1.3, the KFIO equations
[SSF+04] are defined as

x̂k+1|k = Ax̂k|k

Pk+1|k = APk|kA
> + Q

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1

(
zk+1 −Cx̂k+1|k

)
Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k

Kk+1 = Pk+1|kC
> (CPk+1|kC

> + Σz,k

)−1
.
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In this formulation, the state covariance becomes stochastic since the arrival se-
quence of valid map matching results is random. For the derivation of the perfor-
mance bound, we are interested in the expected value of the state covariance denoted
as Pe

k which leads to the following modified algebraic Riccati equation (MARE)
[SSF+04]

Pe
k+1 = APe

kA
> + Q− PmAPe

kC
> (CPe

kC
> −Σz,k

)−1
CPe

kA
> . (8.19)

This MARE does not have any stochastic components which is the central prereq-
uisite for the following derivation of a performance bound.

The model formulation is now compared to the state of the art in CRBs for
Pm < 1. Niu et al. introduce the scaling factor CRB in [NWBS01] which considers
false detection probabilities smaller one by introducing a constant scaling factor for
the measurement uncertainty. In [BD09] it is proven, that the following relation
between the MARE, IRF and EN CRB holds

PIRF
k ≤ PEN

k ≤ PMARE
k .

This result is in agreement with [HRFT04] where the IRF CRB is found to be
optimistic. The EN CRB requires the enumeration of all possible detection sequences
which leads to an exponential increase in computation for increasing k. To this point,
the bound provided by the MARE is chosen here as a basis for system modeling and
a closed-form formulation is derived in consecutive paragraphs.

Its results are close to the ones provided by the EN CRB but can be obtained
significantly more efficient. The authors in [SSF+04] propose to obtain a upper
bound for the state uncertainty by iteration of the MARE or by the solution of a
semidefinite programming problem. In order to derive a closed-form solution for
the MARE for efficient evaluation in simulations, we now derive its steady-state
solution. The MARE (Equation 8.19) is equivalent to

Pk+1 = A
(
λPk + (1− λ) Pk − λPkC

> (CPkC
> + Σz,k

)−1
CPk

)
A> + Q .

From this point on, the transformations are widely equivalent to the ones used for
obtaining the steady-state solution of the Kalman filter Riccati equation [MMR07].
Application of the Kailath variant of the Woodbury identity [PP12] gives the fol-
lowing expression

Pk+1 = A
(
λPk

(
I3×3 + C>Σ−1

z,kCPk

)−1
+ (1− λ) Pk

)
A> + Q . (8.20)

Without consideration of the correlation between position and rotation uncertainty
A := I3×3 which leads to a simplification of Equation 8.20:

PQ
k+1 = λPQ

k

(
I3×3 + XPQ

k

)−1

+ (1− λ) PQ
k + I3×3,

X := Q1/2C>Σ−1
z,kCQ1/2, PQ

k := Q−1/2PkQ
−1/2 .
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Application of a singular value decomposition to X gives

X = Vdiag (en) V>

= VEV>

with eigenvalues en. Based on this definition, it can be written

PQ
k+1 = λPQ

k

(
I3×3 + VEV>PQ

k

)−1

+ (1− λ) PQ
k + I3×3

V>PQ
k+1V = λV>PQ

k V
(
I3×3 + EV>PQ

k V
)−1

+ (1− λ) V>PQ
k V + I3×3

PV
k+1 = λPV

k

(
I3×3 + EPV

k

)−1
+ (1− λ) PV

k + I3×3 .

For k → ∞ and time invariant Q, C and Σz,k it holds Pk+1 = Pk = Pss and
PV
k+1 = PV

k = PV
ss. Consequently, the following expression can be derived

PV
ss = λPV

ss

(
I3×3 + EPV

ss

)−1
+ (1− λ) PV

ss + I3×3 . (8.21)

Equation 8.21, it can be solved for the single entries of the n×m matrix PV
ss

PV
ss (n,m) =

λPV
ss (n,m)

1 + enP
V
ss (n,m)

+ (1− λ) PV
ss (n,m) + I3×3 (n,m)

0 = PV
ss (n,m)2 − PV

ss (n,m)

λ
− I3×3 (n,m)

λen

PV
ss (n,m) =

1

2λ
±
√

1

4λ2
+

I (n,m)

λen
.

This solution is now inserted into Pss to obtain the steady-state solution of the
MARE

Pss = Q1/2VPV
ssV

>Q1/2 . (8.22)

For the case of A 6= I3×3, Equation 8.22 provides optimistic covariance estimates.
The exact solution for the state covariance Pss is given as

PA
ss =

 Pss (1, 1)− c1,1 Pss (1, 2)− c1,2 −A (1, 3) Pss (3, 3)
Pss (2, 1)− c2,1 Pss (2, 2)− c2,2 −A (2, 3) Pss (3, 3)

A (1, 3) Pss (3, 3) A (2, 3) Pss (3, 3) Pss (3, 3)

 (8.23)

= λPss

(
I3×3 + C>Σ−1

z CPss

)−1
+ (1− λ) Pss + QA (8.24)

with the following relations

PA
ss = A−1PssA

−T (8.25)

QA = A−1QA−T (8.26)

c1,1 = Pss (3, 3) A (1, 3)2 (8.27)

c2,2 = Pss (3, 3) A (2, 3)2 (8.28)

c1,2 = Pss (3, 3) A (1, 3) A (2, 3) (8.29)

c2,1 = c1,2 . (8.30)
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For C = I3×3 (see Equation 2.22), A from Equation 2.21 and Σz,t =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
Θ

,

this expression can be easily solved in closed-form. This is done by considering the
components of Pss separately, starting with Pss (3, 3).

By choosing Qk = Qu, Σz,k = Σu
z such that Qk ≤ Qu, ∀k and Σz,k ≤ Σu

z,k, ∀k
it can be shown that Pe

ss ≤ Pe,u
ss , ∀k. The correctness of this bound is verified in

Section 8.2.2 by means of simulation studies.

8.2.2 Simulative evaluation

In this evaluation section, the proposed bound is evaluated in Monte Carlo simu-
lations and compared to two variants of the CRB. The results in Figure 8.4 were
calculated for the following parameters:

Pm = 0.84, Σu
z =

(0.2 m)2 0 0
0 (0.2 m)2 0
0 0 (0.1 ◦)2

 , (8.31)

Qu =

(0.0167 m)2 0 0
0 (0.0167 m)2 0
0 0 (0.2 ◦)2

 , A =

1 0 0
0 1 1.67
0 0 1

 . (8.32)

Pm is chosen in accordance to the map matching rates for standard spectral registra-
tion in Section 11.3.1 and upper translational and rotational map matching errors
of 0.2 m and 0.1 ◦ are assumed. Odometry measurements are assumed to have a
standard deviation of 1 % of the driven distance which gives 0.0167 m for a velocity
of 60 km/h and a LiDAR measurement frequency of 10 Hz.
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Figure 8.4 The simulation results of the proposed closed-form bound. Its closed-
form formulation leads to a runtime performance increase of an order of magnitude
during model evaluation in Section 9.
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The values obtained by iterating the MARE converge against the proposed closed-
form bound as seen in Figure 8.4. By iteration of the MARE, the bound is reached
after approximately 20 iterations for translational performance estimation. Hence,
utilization of the closed-form solution leads to a significantly decreased number of
iterations during model evaluation. Considering the commonly used number of 105

and more measurement noise and landmark distribution realizations during Monte
Carlo simulation, this leads to a significantly increased efficiency of the evaluation.
Evaluation of the IRF CRB leads to state covariance estimates which are approx-
imately a factor two smaller than the proposed bound. While the MARE based
bound seems feasible in the context of the localization results presented in Sec-
tion 11.3, the IRF CRB seems to be optimistic. This result is in agreement with
[HRFT04] and [BD09] who present similar simulation outcomes. The evaluation
results further motivate the usage of the proposed close-form performance bound
for model-based design in Section 9.

8.3 Occlusions and missed detections

Challenges arise where temporal or spatial correlation between consecutive mea-
surements exist. These are frequently caused by occlusions. An example is the
partial occlusion of the sensor FoV by a truck driving next to the ego vehicle, po-
tentially leading to low feature observation rates which result in sequences of map
matching results with degraded accuracy. Nonetheless, the consideration of occlu-
sions and missed landmark detections is required in order to ensure the applicability
of the statistical models to real world scenarios. Especially the localization model
(Section 8.2.1) assumes an independently and identically distributed occurrence of
degradation events. The limited expressiveness for bundled appearance of false or
inaccurate estimates is not specific to the considered application and the previously
developed models of vehicle localization systems. In fact, Huber [Hub11] and other
authors described it as significantly important and mainly unresolved in the broad
context of (robust) statistics. To this point, a comprehensive overview over degra-
dation scenarios and respective modeling strategies is elaborated in this section.

An overview over frequently occurring perception degradation scenarios is pro-
vided in Figure 8.5. Prolonged partial occlusions of the sensor FoV and challenging
weather conditions like rain and fog effectively lead to a decreased FoV. In this
thesis, these effects are considered by adaptation of the sensor FoV during the de-
sign process. Transition effects occurring during variation of the occlusion scenario
are considered small and are hence neglected. The system designer has then to
separately specify the localization performance requirements for the different levels
of FoV deterioration. A possible strategy is the definition of a worst case scenario
until which the localization and, hence, the automated vehicle system is intended
to provide full functionality. Starting from this basic design, degraded system op-
eration modes could be designed. Prolonged periods of map matching failures can
be treated separately by specification of odometry accuracy requirements. For sen-
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sors with high mounting positions, such as the utilized Velodyne LiDAR sensor
(Section 4.1), the probability of missed detections is significantly higher than the
occlusion probability if high features like house walls or poles are considered. In
this case it is assumed that the missed detections are uniformly distributed in time
and space and are uncorrelated. This type of missed detections is considered at
the sensor model during numerical integration. If required, missed detection prob-
abilities can be modeled by other probability density functions which can be easily
incorporated into the numerical integration step. Adaptation of the FoV and uni-
formly distributed missed detections are considered in Section 9, for model-based
localization system design on basis of the previously developed statistical models.

Figure 8.5 Decreased detection ranges due to bad weather conditions (left) and
long sequences of partially occluded sensor field of view (middle) are addressed by
an adaptation of the sensor field of view (blue areas). Random missed detection
(right) are captured by the sensor model.
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9 Model-based design

This section is concerned with the derivation of localization system design parame-
ters like the selection of feature types, detection ranges and accuracy by utilization
of the developed statistical models. Vehicle localization in stressful open environ-
ments as well as the design of suitable localization systems remain challenging tasks,
even after decades of research. The incorporation of additional spatially referenced
information from digital maps into the behavior planning process of an automated
vehicle system necessitates a sufficiently accurate and robust vehicle pose estimate.
Localization accuracy requirements typically arise from the intended use case for
which the additional information source shall be used. The derivation of localiza-
tion requirements is exemplified for a right turn scenario in Section 9.1.

In this section, a model-based approach (Figure 9.1) for the requirement-driven
design of localization systems is elaborated which is conceptually different from
commonly utilized experience- and test-based development procedures. Most local-
ization systems found in literature were designed purely based on the knowledge and
experience of the expert developers. The resulting implementations are evaluated
and, if possible or desired, parameterized under consideration of the localization
performance requirements. It is argued here, that starting a system design process
from the actual performance requirements, can yield advantageous system designs,
e.g. with respect to efficiency and robustness. Furthermore, this requirement-driven
approach contributes to a repeatable and efficient design process.

A great challenge in this approach is the manifold of influencing factors for vehicle
localization system design decisions and their impact on localization performance.
To this point, the interrelations between operation environment characteristics, per-
ception parameters and localization performance were modeled in the two previous
sections (7 and 8). The statistical models are used with different sets of fixed input
parameters in order to derive a feasible set of remaining localization system design
parameters. Therefore, Monte Carlo simulations are used if required and other-
wise, the solutions are directly calculated. The results from this section indicate,
that many aspects of localization system design that are known by expert devel-
opers can be qualitatively and quantitatively described by the proposed models.
Hence, the results underline that the examination of statistical models can lead to
a deeper theoretical understanding of the whole system and thereby provide ideas
and approaches for further improvements and optimizations, e.g. data rates and
computational performance. The general concept is summarized in Figure 9.1 and
an overview over the contents in the following sections is given hereafter.

Hybrid localization algorithms can lead to system implementations with enhanced
robustness. Failures of single redundant subsystems can be detected and compen-
sated. Beside other beneficial impacts, the utilization of different feature types and
matching approaches leads to a higher probability of obtaining a correct and accu-
rate absolute vehicle pose estimate. This advantage is commonly counteracted by
the well known disadvantage of reduced computational efficiency of redundant sys-
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Perception
parameters
- sensor parameters
- sensor field of view
- sensor configuration

Requirements
- loc. accuracy (Sec. 9.1)
- robustness
- ressource constraints

Operation
environment
- feature types
- feature density
- feature distribution
- occlusion probability

Statistical model framework (Sec. 7 & 8 )

Localization system parameters
- map matching performance requirements (Sec. 9.2)
- feature detector selection (Sec. 9.3.1)
- feature detection rate requirements (Sec. 9.3.1)
- sensor parameters (Sec. 9.3.2 & 9.4.2)
- feature detection accuracy requirements (Sec. 9.4.1)

Figure 9.1 Feasible localization system design decisions are based on the local-
ization requirements and constraints such as available bandwidth for data transfer.
Statistical models are used in this section to support the design process by quantifi-
cation of expert knowledge about the interrelations between design parameters and
constraints.

tem architectures. Consequently, during the development of the vehicle localization
system, a trade-off between the gain in robustness by the introduction of redundancy
and the computational costs involved has to be found. Thus, it is argued here that
model-based approaches can support to find such a beneficial trade-off. In this con-
text, the interrelation of matching rates, matching accuracy and the localization
performance are discussed and respective requirements are derived in Section 9.2.
As another important aspect of efficiency and robustness, the derivation of landmark
density requirements and the selection of suitable detection algorithms is considered
in Section 9.3. Additionally, the influence of vehicle-relative landmark arrangements
is discussed. In addition to the selection of feature detectors, the choice of intrinsic
sensor parameters is of crucial importance for the development of perception sys-
tems. The derivation of accuracy requirements for LiDAR based detection of specific
feature types is discussed in Section 9.4.1. Intrinsic sensor parameters are derived
for stereo video camera based localization. The impact of the sensor field of view on
the localization accuracy is discussed in Section 9.3.2. A discussion of the presented
results and their contribution to the design of the localization systems introduced
in Part IV is given in Section 9.5.
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9.1 Localization requirements

The definition of localization requirements are strongly coupled to the design of
the automated vehicle system. The intended level of automation (Section 2.3) de-
termine the requirements concerning normal system operation and availability of
safety strategies within defined boundaries. Requirements commonly enclose accu-
racy of the pose estimate and the availability of correct estimates under well defined
circumstances.

For normal vehicle operation, localization accuracy requirements for UAD typi-
cally arise from associating the ego vehicle and other traffic participants to driving
lanes. This is of special significance for joining priority roads as well as for the
detection of oncoming traffic for overtaking and at left turns. Lane marking detec-
tion could enable the association problem on the sole basis of the automated vehicle
system. However, the required high detection ranges would likely result in poten-
tially infeasible sensor requirements and might not be possible for specific sensor
setups. Thus, map-relative localization in combination with dynamic object detec-
tion is commonly utilized. This approach leads to a summation of the detection
and localization errors for highly accurate maps. Thereby, the localization require-
ments are increased compared to the assumption of zero noise in dynamic object
detection. In the work at hand, both uncertainty sources are taken into account for
localization requirement derivation. In the following, a right turn scenario is consid-
ered for the derivation of localization requirements and results are derived for the
setup shown in Figure 9.2. The localization requirements are highly sensitive to the
detection distance d which depends on the use case. In the right turn scenario, the
ego vehicle is standing at the turning point and the system has to decide whether
to accelerate or wait for another vehicle to pass. For a velocity of 50 km/h, an ego
vehicle acceleration of 2 m/s2 and a non-cooperative behavior of the approaching
vehicle, a result of d = 87 m is obtained. This result also includes dead time and
a gap between the ego and the approaching vehicle of 1.5 s. The requirement for
the lateral detection accuracy of 1.25 m for 2.5 m broad lanes is now symmetrically
divided into error contributions of εl,max = εod,max = 0.625 m from localization and
dynamic object detection. The error contribution from localization εl is the sum
of the orientation εo = d tan (εΘ) and position εx estimation error contributions.
The approximation εl,max ≈ εx + dεΘ,rad suggests an asymmetric assignment of error
contributions. To this point, εo is required to be less than 0.35 m and εx less than
0.25 m. The requirement for εo corresponds to εΘ ≤ 0.23 ◦.

Requirements concerning the vehicle pose estimation accuracy are complemented
by availability requirements. The latter occur in several different scenarios. The
matching rate is an important parameter during regular operation of the localiza-
tion system. It has to be sufficiently high in order to meet the localization accuracy
requirements. Potentially higher requirements arise from scenarios where an ini-
tialization of the localization system has to be conducted. This is typically the
case at the beginning of a automated drive where an accurate pose estimate has
to be determined or verified. Furthermore, intended safety strategies might require
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d

intended path
map frame

vehicle frame (est.)

true position

zero noise observation
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εlεod

Figure 9.2 A common root cause for demanding localization accuracy require-
ments is the association of dynamic objects to lanes, as in the depicted right turn
scenario. Object detection and localization uncertainties contribute to the lane-
relative object perception uncertainty εod + εl.

a initialization capability or increased accuracy requirements for critical areas in
the operation environment, like intersections. The same argumentation holds for
scenarios where a system crash requires fast reinitialization. These scenarios are
discussed in later sections. It is argued, that the utilization of the developed statis-
tical models contribute to the identification of localization system design parameters
which lead to a fulfillment of the localization requirements. Furthermore, the models
can contribute to find the parameters which foster an efficient way of achieving the
localization requirements as compared to other parameter choices.

9.2 Matching rate and accuracy requirements

In literature there is an ongoing discussion on the often map matching algorithm in-
herent trade-off between accuracy and robustness manifested as increased matching
rates compared to the non-robust counterparts. The current trend of data transmis-
sion based on wireless communication technology forms another source of motivation
for this section. In the context of automated vehicle vehicle operation, many ap-
proaches include a wireless transmission of localization map data to the vehicle.
Therefore, the loss of localization map fragments has to be added to the set of
possible causes of map matching failures which has significant implications on the
localization system design. The aforementioned topics are now addressed by evalua-
tion of the interrelation between the matching probability Pm and the map matching
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Statistical model framework

Measurement
models
(7.2)

Map matching
model
(8.1)

Pose filtering
model
(8.2)

Environment
formalization

(7.1)

landmark
densities

fixed set of
parameters

matching
performance
requirements

localization
requirements

odometry
requirements

Figure 9.3 Overview over the statistical model evaluation strategy for the deriva-
tion of map matching and odometry requirements.

accuracy. An overview over this section is given in Figure 9.3.
A given localization accuracy requirement as derived in Section 9.1, necessitates

a minimum rate of information gain about the absolute vehicle pose. In the latter
context, the matching rate and accuracy as well as the accuracy of vehicle mo-
tion estimation are the main parameters. An increased matching rate counteracts
a decrease in matching accuracy and vice versa. The impact and the interrelation
between these two major influencing factors are discussed in Section 9.2.1. Further-
more, the role of relative motion estimation is discussed in Section 9.2.2.

9.2.1 Interrelation between matching rate and accuracy

The results presented in this section quantify the interrelation between matching
rate Pm and map matching accuracy Σz. For the sake of readability, the evaluation
of the localization system model from Section 8 is conducted on the basis of the
parameters proposed in Section 8.2.2. This choice corresponds to a drive with a
steering angle of 0◦. The most significant simulation outcomes for the translational
localization accuracy components σx and σy are summarized in Figure 9.4. The data
in the upper row of Figure 9.4 illustrate the interrelation between the translational
(σt

z) and rotational matching accuracy (σΘ
z ), the matching rate Pm and the resulting

localization accuracy σx, σy of the absolute vehicle pose estimate. The σx indicates
a high accuracy while map matching requirements arise from σy. The surface is
divided by a curve, indicating the localization accuracy requirement of 0.25 m and
shown in the lower right figure. All combinations of matching rate and accuracy
on the left side of the curve are sufficient in order to meet the localization accuracy
requirements. Accordingly, a matching rate of approximately 78% in combination
with an average map matching error of σt

z = 0.1 m is sufficient. Cutting the rotation
estimation accuracy in map matching to half from 0.1◦ to 0.2◦, the requirements
for Pm rises to 90% for the same σt

z. An increase in the map matching frequency
from 10 Hz to 20 Hz leads to significantly decreased map matching requirements
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(Figure 9.5).
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Figure 9.4 The trade-off between accuracy and matching rate is fundamental for
map matching algorithm selection. The rotational matching accuracy has greater
influence on the localization accuracy than the translational. These results indicate
that the area covered by a scan shall be sufficiently high which is an important
observation for the selection of a grid dimension and resolution pair for spectral
registration based localization.

This observation holds for regular operation of localization systems and equally
distributed and random map matching failure occurrences. In summary, for normal
operation of the localization system, the matching accuracy can be low compared
to the localization accuracy requirement for high matching rates and high accuracy
can compensate low matching rates - as long as the matching failures are random.
The role of relative motion estimation is further discussed in the following section.

9.2.2 Odometry accuracy

The results in this section describe the interrelation between map matching per-
formance requirements and the odometry accuracy. According to the results in
Figure 9.6, the odometry significantly contributes to the localization accuracy. Due
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Figure 9.5 Increased map matching frequencies significantly contribute to relaxed
map matching performance requirements.

to the additional information from relative motion estimation which is fused with
the map matching results, the matching accuracy requirement are decreased. To
this point, the rotational accuracy σθu have a stronger impact than the transla-
tion estimation performance σt

u. This can be observed from significantly decreased
map matching requirements for higher precisions in rotation estimation, whereas an
increase in translation estimation accuracy results in minor requirement changes.
Minimum odometry accuracy can be derived for a given map matching accuracy
and rate. For the design of the scan-based odometry in Section 10.1, the focus is
put on the reduction of rotation errors which is a particular challenge due to the
utilization of discretized scan data for spectral registration.
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Figure 9.6 The rotation estimation accuracy has significantly higher impact on
the localization accuracy than the translational accuracy. This observation will be
considered during the development of a scan-based odometry in Section 10.1.

In addition to the beneficial influence on localization accuracy, odometry mea-
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surements can compensate prolonged periods of map matching failures. In order to
compensate for prolonged map matching failures, the map matching requirements
can be increased, such that the pose estimate at the beginning of the matching fail-
ure sequence is highly accurate. Consequently, the allowed gain in uncertainty from
motion would be extended. Otherwise, an accurate odometry can reduce the amount
of uncertainty induced by motion and thereby extend the operation range of the ve-
hicle system. The decision about the compensation strategy has to be considered
during design and can lead to asymmetric accuracy requirements, e.g. if a highly
accurate odometry was required in combination with an inaccurate map matching
procedure. Since, prolonged failures of map matching shall be an exception, the
strategy with an accurate odometry is chosen in this work.

9.3 Landmark distribution requirements

The accuracy of vehicle pose estimates provided by a localization system strongly
depends on the available density of features and their vehicle-relative arrangement.
The feature distribution has to be sufficiently dense, while excessively high fea-
ture densities lead to unnecessarily high storage space demands, communication
bandwidth requirements and computational costs (SLAM: ∼ O(N2)). Therefore, a
localization map is not a complete representation of the urban environment, but is
a model which entails a set of descriptive features. In this section, the interrelation
between landmark densities, arrangements and localization system parameters are
studied based on the introduced statistical models as shown in Figure 9.7.

Statistical model framework

Measurement
models
(7.2)

Map matching
model
(8.1)

Pose filtering
model
(8.2)

Environment
formalization

(7.1)

landmark
density

requirements

localization
requirements

sensor
field of view

Figure 9.7 Overview over the statistical model evaluation strategy for the selec-
tion of feature detectors and a discussion on the impact of changes to the sensor
fields of view.

The influence of landmark density and matching performance is shown in Fig-
ure 9.8 and were obtained by Monte Carlo simulation with 106 point process realiza-
tions. For this evaluation, matching performance is expressed as the 90% quantiles
of the map matching accuracy σt

z, σ
θ
z and matching rate Pm. The landmark density

is modeled by the intensity λ of a homogeneous PPP. Two PPP realizations for
different λ are shown in the top row of Figure 9.8.
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Figure 9.8 Influence of the landmark density on the map matching accuracy and
matching probability.

For homogeneous Poisson point processes, the matching probability Pm can be
approximated in closed-form under the assumption that at least nmin = 3 landmarks
have to be visible for obtaining a map matching result. The intensity λS denotes
the point process intensity normalized to the area S covered by the sensor FoV.



108 Model-based design

Then Pm has the upper bound

Pm = P (n ≥ nmin) = 1−
nmin−1∑
l=0

P (l) (9.1)

= 1−
nmin−1∑
l=0

(∫
S λ (s) ds

)l
l!

exp

(
−
∫
S
λ (s) ds

)
(9.2)

= 1−
(

1

0!
+
λS
1!

+
(λS)2

2!

)
exp (−λS) .

For nmin = 4 the lower bound is obtained. These bounds can be used for an efficient
calculation of design parameters without the necessity of Monte Carlo simulations.

The results in Figure 9.8 are intuitive, since higher landmark densities lead to in-
creased map matching performance and decrease the feature detection requirements.
Nonetheless, efficient system designs shall consider the landmark densities as a de-
sign parameter. The latter can be adapted to the capability of other submodules
like the sensor setup to avoid asymmetric requirement assignments. This is accom-
plished by the model-based selection of feature detection algorithms that enable the
detection of landmarks, characterized by a sufficiently high density in the operation
environment. The selection of detection algorithms is studied in Section 9.3.1. The
influence of vehicle-relative landmark arrangements on the map matching accuracy
is studied in Section 9.3.2. The field of view of the perception system typically has
significant influence the number of landmark detections. This aspect is studied in
Section 9.3.2 as well.

9.3.1 Detector selection

The density of landmarks for localization is limited by the operation environment
as long as no artificial landmarks are available. Typically, the number of detectable
landmarks is significantly higher than required by the localization system. Hence,
the derivation of minimum landmark densities is here interpreted as the task of
selecting a set of landmark detectors. This approach allows to combine different
sparse or heterogeneously distributed landmark types to an average cumulative den-
sity which meets the requirements. On the perception side, the density of detected
landmarks is also influenced by detection performance of the detectors.

The interrelations between the localization performance and landmark densities
are studied under the assumption of landmark distribution according to a homoge-
neous Poisson point process. The results are shown in Figure 9.9. In this example,
utilization of one landmark type with intensity ψ1 = 30 per unit area of 1000 m−2

does not suffice in order to meet the localization accuracy requirement. The com-
bination of two detectors for landmark types 1 and 2 enables a sufficiently high
localization accuracy σt. The choice of this landmark detector set requires a mini-
mum detection rate of 86%, including missed detection and occlusions as caused by
other traffic participants. Depending on the mounting position, traffic density and
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Figure 9.9 The robustness of a localization system against occlusions is coupled
to the available landmark density which can be influenced by the selection of detector
algorithms. The densities per unit area of 1000 m2 are selected as ψ1 = 30 ,ψ2 = 15
and ψ3 = 15. Utilization of all landmark detectors leads to a robustness against a
missed detection rate of 35%.

weather conditions, this design can likely lead to localization failures. Consequently,
the localization system would be sensitive to small occlusion and missed detection
rates. From a robustness perspective, the utilization of a combination of the three
hypothetical landmark detectors is advisable. By the additional increase in land-
mark density, the allowed false negative rate is increased by more than 20%. This
underlines the inherent trade-off between efficient system design and robustness.
High landmark densities and detector performances can be traded for increased lo-
calization robustness. Statistical models can be utilized in the proposed manner to
identify feasible sets of detectors for the intended accuracy and robustness level.

For the pole-based map matching approach presented in Section 11, a microscopic
view on the problem is taken by consideration of the actual use case. The matching
modality is utilized in order to localize within intersection areas where the pole
landmark density is commonly sufficiently high. The important design parameter
in this case is the sensor FoV whose role is discussed in Section 9.3.2.

9.3.2 Influence of the sensor field of view

For pole landmark based localization for intersection areas, the landmark detection
range of the Velodyne is influenced by several aspects. The first limitation is im-
posed by the sensor design, namely the limited angular resolution which leads to a
maximum detection range for pole objects. This limitation subsumes the maximum
LiDAR detection range which is far higher. Beside the physical limitations, the false
positive and missed detection rates increase with the detection range. This likely
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Figure 9.10 An increased detection range r can lead to an improved matching
rate Pm and enables the detection of landmarks in further distances. The latter has
a positive influence on the angular matching error εθ and can reduce the impact of
feature measurement uncertainty σl. As a consequence, the maximal range for the
pole detection is expanded despite the increased amount of false positive detections
to be processed.

leads to higher numbers of landmark measurements in general and an increased
false detection rate in particular. Both aspects account for increased computational
costs and false data association results might become more likely. In order to de-
cide whether the benefits of a high detection range justify the arising disadvantages,
a qualitative and quantitative understanding of the benefits is elaborated in this
section.

First important results are summarized in Figure 9.10. Increased r likely lead to
more landmark detections and matching rates Pm (top left figure in Figure 9.10).
Differently put, a matching rate requirement can be achieved by increased detection
ranges (top right figure), given a respective landmark distribution. Additionally, the
vehicle-relative landmark arrangement has an influence on the matching accuracy.



9.3 Landmark distribution requirements 111

0 10 20 30
0

20

40

60

x / m

y
/
m

r = 15m

landmark

0 10 20 30
0

20

40

60

x / m

y
/
m

r = 20m

0 10 20 30
0

20

40

60

x / m

y
/
m

r = 25m

0 10 20 30
0

20

40

60

x / m

y
/
m

r = 30m

Figure 9.11 The sensor field of view has significant influence on the achievable
localization system performance (green area: 360◦ opening angle; orange area: 90◦

opening angle at θ = 0◦).

As shown in the lower row of Figure 9.10, the angular matching error εθ becomes
smaller with increasing distance d between the sensor and landmarks. This influence
is weakened by sensor technologies with detection errors which increase with d, such
as stereo-video systems (Section 7.3). Localization requirements might justify the
expansion of the detection range in order to make use of this effect for respective
landmarks types. For r > 20 m, the slope of the curves decrease, yielding minor
further accuracy gains. Another significant influence of the sensor FoV can be seen
from exemplary landmark arrangements shown in Figure 9.11. For safety purposes,
localizability in the whole intersection area and for all vehicle orientations is consid-
ered favorable. Accordingly, a FoV of 360◦ in combination with a detection range of
at least 20 m is required for a good coverage in the considered example. In summary,
additional advantages of increased FoVs can outweigh disadvantages. To this point,
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the detection range for pole-based map matching will be chosen as r ≥ 20 m.

9.4 Derivation of sensor parameters

One aspects of perception system design is the selection of sensor parameters for the
support of sensor selection and the design of new sensors. An overview is provided
in Figure 9.12. The derivation of pole detection accuracy requirements is conducted
in Section 9.4.1. Parameters for a stereo video camera are derived in Section 9.4.2.
The results were obtained under the following adaptations to the map matching
model (Section 8.1).

Statistical model framework

Measurement
models
(7.2)

Map matching
model
(8.1)

Pose filtering
model
(8.2)

Environment
formalization

(7.1)

landmark
densities

perception
system

parameters

localization
requirements

Figure 9.12 Overview over the statistical model evaluation strategy for the
derivation of perception system parameters.

To enable an efficient evaluation of the measurement models from Section 7.2 and
Section 7.3, these are rewritten as follows:

Σl = ξ

[
σ2
x,ξ σ2

xy,ξ

σ2
yx,ξ σ2

y,ξ

]
. (9.3)

The scalar factor ξ can be interpreted in different ways. As part of the stereo
video (SVC) depth measurement model, it entailed sensor parameters (compare
Section 7.3)

ξ =
σ2
d

(c · bw)2 . (9.4)

In the case of LiDAR based pole detection it takes the role of a covariance scaling
factor ξ = σ2

l which can also be applied to the SVC model. Consecutively, the
map matching accuracy model from Equation 8.14 is simplified to allow for a fast
derivation of ξ. Lengthy, but straight forward calculation leads to the following
formulation

0 = at11ξ
2 + bt11ξ − σ2

t11 ,

0 = at22ξ
2 + bt22ξ − σ2

t22 ,

0 = at12ξ
2 + bt12ξ − σ2

t12 ,

0 = at21ξ
2 + bt21ξ − σ2

t21 . (9.5)
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With

Σp =

[
E11 E12

E21 E22

]
(9.6)

from Equation 8.16, the coefficients in Equation 9.5 are given as

at11 = trace(D1E22D1E11) + trace(D1E12D1E12)

bt11 = ([ck sk]D1E12 + x̃>k D1E22)D1x̃k + ([ck sk]D1E11 + x̃>k D1E21)D1[ck sk]
>

at12 = at21 = trace(D1E11D2E22)

bt12 = bt21 = ([ck sk]D1E12 + x̃>k D1E22)D2x̃k + ([ck sk]D1E11 + x̃>k D1E21)D2[ck sk]
>

at22 = trace(D2E22D2E11) + trace(D2E12D2E12)

bt22 = ([ck sk]D2E12 + x̃>k D2E22)D2x̃k + ([ck, sk]D2E11 + x̃>k D2E21)D2[ck sk]
> .

Accuracy requirements for the translation t are expressed by inserting the bounding
variances σ2

t11,b, σ
2
t22,b and σ2

t12,b. The parameter ξ is then obtained for the given
requirement by the solution of the quadratic equation. This formulation has the
advantage over the previous model formulation that the sensor parameter ξ can be
directly calculated for a given localization requirement by solving the set of quadratic
equations.

9.4.1 Landmark detection accuracy

Once a decision about the landmark type for localization and the sensor setup
has been taken, it can be of interest to determine the sensor parameters which
lead to the goal localization accuracy with a sufficiently high probability. For the
derivation of pole feature detection accuracy requirements, a worst case landmark
configuration is used as reference. Feasible configurations depend on the utilized
feature type and other design aspects like a potentially required recovery capability
in intersection areas or safe operation modes in case of system faults. For this
experiment, a configuration of three proximate pole landmarks is considered as it is
often encountered in narrow intersections (Figure 9.13). The low distances between
sensor and landmarks are particularly challenging for rotation estimation and are
therefore considered part of a possible worst case scenario. The vehicle shall be
able to localize from a single map matching step at every possible pose in the whole
intersection area with an accuracy of 0.25 m and 0.5 ◦. For brevity, it is assumed
that all landmarks from the reference configuration are detected by the perception
system. The experimental results are given in Figure 9.13.

A maximum landmark detection error of 0.05 m is derived from the angular match-
ing accuracy requirement (Figure 9.13, left) which is considerably higher than for
the translational component (Figure 9.13, right). The static error for pole detection
during vehicle standstill was determined as 0.025 m in Section 7.2.1 and consequently
the requirement is met for a standing vehicle. The difference of 0.025 m corresponds
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Figure 9.13 The minimum pole detection accuracy of σreq,minl = 0.04 m for the
considered landmark arrangement is driven by the vehicle orientation estimation ac-
curacy requirement of 0.23 ◦ (right). Sole consideration of translational localization
accuracy requirements of 0.25 m result in relaxed requirements (left).

to the maximally allowed error in motion compensation of the LiDAR scan. Accord-
ing to Equation 7.12, the velocity estimation error has to be below 0.45 km/h for
an angular motion estimation error of 0.12◦. For a velocity of 50 km/h, this require-
ment does approximately corresponds to a maximal odometry drift of 0.9%. The
calculated parameters depend on the considered worst case landmark arrangement
and requirements for vehicle localization. To this point, the results might be overly
pessimistic, especially if scan matching and odometry measurements are available
as additional sources of vehicle pose information. Nonetheless, the high impact of
errors in LiDAR scan motion compensation on the localization accuracy remains
significant. Consequently, the landmark detection accuracy requirements support
the results from Section 9.2.2. These results will be considered by the design of an
accurate scan-based odometry procedure in Section 10.1.

9.4.2 Intrinsic sensor parameters for robust localization

A more microscopic view on perception requirements than provided in the last sec-
tion is is elaborated in the following. Intrinsic sensor parameters are calculated for
the case of partially occluded FoV and missed landmark detections. As a basis for
the subsequent contents, a strategy for consideration of perception errors and degra-
dation was discussed in Section 8.3. The results from this section support the design
of perception systems which are robust against adverse environment conditions and
perception errors. Sensor parameters are derived for a stereo video camera that is
modeled as described in Section 7.3. Furthermore, it is assumed that the vehicle
moves in a straight line between dashed lane boundary markings similar to the lines
depicted in Figure 7.2. For map-relative localization, the starting and ending points
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of the line segments are matched with a suitable localization map. Thereby, a sim-
plified version of the popular lane marking based localization system from [SKF13] is
simulated. Missed detection lead to a detection probability Pd < 1 and map match-
ing failures as caused by missing feature detections to Pm < 1. Occlusions of parts
of the sensor FoV are represented by an adaptation of the FoV during evaluation.

For the simulation study, an upper bound for motion estimation covariance Qu ≥
Qk, ∀k is defined as a diagonal matrix with the entries σu,x = 0.361m, σu,y =
0.01m and σu,θ = 0.1◦. The values of σu,x and σu,y were calculated based on the
assumption of a matching rate of 10Hz, a velocity of 130km/h and an error of 1% of
the driven distance. The localization requirement is set to 0.2 m orthogonal to the
driving direction, hereafter denoted as x-direction. The uncertainty due to camera
calibration is set to σd = 0.25 and σu = 0.50. The models in Section 7 and Section 8
are evaluated by execution of the following steps:

1. Feature distributions are modeled on the basis of a deterministic model for the
size of and distance between the road markings.

2. Different sensor FoVs are evaluated in combination with the assumed sensor-
relative feature distribution. Occlusions are modeled by splitting the FoV in
half and assuming an individual range for each half (r1, r2 in Figure 9.14). The
result is a FoV dependent map matching probability Pm (Figure 9.14, upper
left).

3. The required map matching performance Σz,max is derived for a given Pm,
motion estimation covariance Qu and A (y-component shown in Figure 9.14,
upper right).

4. The 95% percentile of the sensor measurement covariance scaling factor (Sec-
tion 7.3) ξ95 is calculated for Σreq

z . From ξ95, suitable values for the base width
bw and the camera constant c can be derived. For brevity and as a descriptive
example, ξ95 is inserted in Equation 7.15 and landmark detection accuracies
are calculated in the subsequent step.

5. The maximum measurement uncertainty σcr,reql (cross range: Figure 9.14, lower

left) and σdr,reql (down range: Figure 9.14, lower right) are obtained from ξ95

for a reference point at (10 m, 1.5 m) in sensor coordinates.

Varying detection rates lead to distinct map matching accuracy requirements
σy,reqz . Again, the FoV has a significant influence on the resulting accuracy re-
quirements. This can be seen from the lower maximum standard deviation in map
matching. The effect of PD on the feature detection accuracy requirements σdr,reql in
direction towards the sensed object and σcr,reql orthogonal to this direction depends
on the sensor FoV. From the results it can be seen that the detection range has a
significant influence on the arising perception requirements. For decreasing r, the
probability of detecting a sufficient number of landmarks for map matching is de-
creased as well. Consequently, the assurance against partial occlusions of the sensor
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field of view leads to significantly increased parameter requirements. According to
the simulation results, the detection rate decrease of 10% has small impact on the
accuracy requirements.
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Figure 9.14 The sensor FoV has significant influence on the sensitivity of the map
matching rate λ against the feature detection probability PD. In this simulation run,
the opening angle was set to 40◦. Occlusions cause a decreased field of view and
consequently lead to increased feature detection probability requirements.
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9.5 Conclusion

This part was concerned with the derivation of statistical models of localization
systems and operation environments. The contents from this section demonstrated
how these models can enable the quantification of expert knowledge and a system
design starting from localization requirements. Hence, the research question 2 (rq2,
Section 1) could be answered.

For the example of a right turn scenario at an intersection, a localization accu-
racy requirement of 0.25 m was derived. In order to achieve this target accuracy,
a manifold of localization system parameters have to be designed. The following
significantly important design parameters for localization systems were identified:

• map matching accuracy,

– data discretization (e.g. grid resolution for spectral registration)

– feature detection accuracy

– feature detection rate

– matching algorithm selection (e.g. selection of cost functions)

• map matching rate,

• odometry accuracy and

• sensor parameters.

– field of view

The discussion of angular odometry accuracy underlined its high impact on the lo-
calization accuracy. Consequently, a decrease of angular errors in scan-based odom-
etry is fostered in Section 10.1. Additionally, research question 6 (rq6, Section 1)
of how to add an efficient scan-based odometry to the localization system will be
emphasized.

It was shown, that the impact of the average matching rate Pm depends on the
matching failure distribution. Clusters of matching failures have to be compensated
by odometry measurement and can drastically increase the respective accuracy re-
quirements. On the contrary, equally distributed matching failures have a less sig-
nificant impact. This observation underlined the advantages of hybrid localization
approaches for vehicle pose estimation in urban environments (Section 11.2). In
heterogeneous operation environments, diverse localization modalities lead to an in-
creased probability of achieving the required matching rate and matching failures are
more likely to be approximately uniformly distributed. Nonetheless, computational
costs increase with the number of localization modalities. In order to decrease the
number of required modalities, map matching algorithms with high tolerance against
stressful effects commonly encountered in urban environments might be used. Due
to the increase in robustness, the rate of matching failures can be reduced, yielding
higher matching rates for each localization modality. Obviously, this is a trade-off
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between robust matching algorithms with potentially less efficient runtime behavior
than the non-robust counterparts and the overall number of required localization
modalities. To this point, the combination of spectral and pole-based matching will
be used in Section 11.

The required matching rate Pm is correlated with the accuracy of relative pose
estimation. Consequently, there is another trade-off between accuracy requirements
for map matching and odometry measurements. From a system design perspective,
it is proposed to choose the odometry accuracy based on a threshold for maximally
tolerable distances without availability of global pose updates. Alternatively, the
requirement from scan motion compensation can be utilized. The proposed model
was utilized to derive map matching and odometry parameters. One example is the
selection of a suitable spacial discretization of the grid map used for spectral map
matching. Given a suitable pre-processing of the sensor observations, the accuracy
of the LiDAR-based map matching is limited by the grid resolution. By adaptation
of the rid resolution to this requirement, the computational costs and storage re-
quirements can be improved.

In conclusion and as an answer to research question 2 (rq2, Section 1), statis-
tical models can provide valuable insights into the design of localization systems.
Complex interrelations between design parameters can be captured, quantified and
utilized during localization system design.
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10 LiDAR-based odometry and SLAM

An accurate and robust estimation of the vehicle motion is a fundamental component
of localization and mapping systems. This has been underlined by the model-based
studies conducted in Section 9 as well. Beside the often utilized wheel odometry,
light detection and ranging (LiDAR) scan based odometry can contribute to a gain
in accuracy, redundancy and for omitting performance degradation through wheel
slippage. To this point, a scan-based odometry is developed in Section 10.1 which
makes use of the spectral registration procedure from Section 6.3. In addition to
the compensation of missing absolute pose estimates, the localization system has
to be able to operate in unmapped areas. Therefore, simultaneous localization
and mapping (SLAM) is used in order to extend the operation environment of the
vehicle system. The latter is relevant in areas where potentially no maps exist, e.g.
private ground including parking lots, and the realization of safety strategies, e.g. in
case of map errors or communication failures. The SLAM framework makes use of
the spectral registration algorithm for the introduction of relative motion and loop
closure constraints and is described in Section 10.2. The utilization of the spectral
registration algorithm for scan-based odometry and SLAM leads to an overall system
implementation consisting of a low number of submodules as compared to most
algorithms from the state of the art where specialized algorithms are required for
different tasks. In combination with an efficient hardware implementation of the
spectral registration procedure, a overall localization and mapping framework with
high efficiency and comparatively low architectural complexity is realizable.

10.1 Scan-based odometry

The role of accurate relative motion estimation in vehicle localization was underlined
in Section 9. Sharp turns, wheel slippage and low velocities are frequently encoun-
tered during operation of an automated vehicle system in urban environments and
pose a challenge to wheel odometry. In such situations, relative motion estimation
based on LiDAR scans or alternative sensor measurements has the advantage of
being insensitive to these influences. In order to account for potentially imprecise
wheel odometry, a scan-based odometry is developed in this section. The scan-based
odometry makes use of the spectral matching procedure introduced in Section 6 and
uses LiDAR scans as only inputs.

The most basic method for relative motion estimation is the matching of consec-
utive scans for every time step k. This approach suffers from inaccurate results in
comparison to more sophisticated algorithms and high sensitivity to punctual scan
matching failures. The introduction of local loop closure constraints between scans
of a scan history

Sk = {sk−j}Sj=0 (10.1)

leads to increased estimation accuracy and enhanced robust against partial occlu-
sions and weakly structured environments. By accumulation of LiDAR scan se-
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quences to a more detailed local map, negative effects caused by inaccurate motion
compensation of the scans and errors in scan registration between two time steps can
be reduced. To this point, every new scan is matched against Sk instead of a single
scan. In the following, a scan-odometry is developed which makes use of the distinct
characteristics of spectral registration. An important advantage of correlation-based
procedures like spectral registration is the independence of the matching error from
the transformation prior. Furthermore, the transformation errors are typically in the
order of magnitude of the grid discretization of the input scans. This is of special
interest for the rotational transformation component which leads to a fast accu-
mulation of pose estimation errors as the trajectory length grows. Based on these
observations, it is argued that the registration of a current scan sk with a scan sk−1−h
in distance −(h+ 1) leads to more accurate motion estimates as h is increased. For
a gain in efficiency, the matching of scan pairs {sk, sk−1−h} or {sk,Sk−1−h} with high
offset can be conducted. Thereby, the highest information gain to computational
cost ratio is achieved. Different parameterizations of the odometry framework and
for the spectral registration algorithm are experimentally evaluated in the following
section.

10.1.1 Experimental evaluation

The scan-based odometry is evaluated on the basis of the urban data sets presented
in Section 4.3. Due to the special challenges (Table 10.1) for scan-based odometry,
data sets 1018-11 and 0816-31 are selected for a detailed evaluation and comparison
of different odometry parameterizations. 1018-11 is the longest urban data set and
is used in order to test the sensitivity to broad roads and the mixture of high and
low curvatures. 0816-31 is an interesting data set for the evaluation due to the high
number of sharp turns.

Evaluation is conducted relative to the reference vehicle poses which were deter-
mined using the method presented in Section 5.3. The Euclidean distance between
endpoints of the reference and odometry trajectory is evaluated and averaged over
the whole trajectory. This commonly used evaluation method gives an approximate
impression of the odometry accuracy and the differences between the respective im-
plementations. This evaluation is only approximate since the matching errors along
the driven trajectory can cancel each other out which is not captured by this evalua-
tion strategy. Nonetheless, it enables a comprehensive analysis of the strengths and
weaknesses of the different odometry parameterizations and utilized sensors sets.

Figure 10.1 contains an overview over odometry results for different choices of the
number S of accumulated scans, the maximum detection range r, grid resolution
∆g and the distance h + 1 to the scan from which the matching result with the
highest weighting was obtained. Quantitative results for the two considered data
sets are stated in Figure 10.2. From the results of the first part of data set 1018-
11 in Figure 10.1, it can be observed that a lower position drift δ is achieved by
matching against accumulated scan data. For 1018-11, the position drift decreased
from 0.832% to 0.374% for otherwise unchanged parameters. At some sections of
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Table 10.1 Overview over the data sets (Section 4.3) used for the experimental
evaluation and their characteristics.

Data set Characteristics

1018-11
• roundabout
• broad main roads
• mixture of high and low curvatures

0316-31 • most turns

the trajectory, scan accumulation can compensate a reduced scanner range and grid
resolution.

By utilization of accumulated scans for matching, the drift for a decreased scanner
range of 20m was reduced from well above 2% to 0.877% which is similar to the drift
for r = 30 m and no accumulation. However, such parameterizations are prone to
drastically increased local errors in intersection and other expansive areas. In the
case of data set 1018-11, a decreased grid resolution and scanner range has no
negative impact, whereas the intersections in the remaining part of the trajectory
are not well handled and a significant increase in orientation drift occurs. For data
set 0316-31, the drift for parameter sets with ∆g > 0.1 m was always well above 2%
which is most likely due to the high number of turns. Discretization of the input
scans leads to increased position drifts for road curvatures, as seen in the right part of
the trajectory in Figure 10.1. This effect is compensated by an increase in h. While
the impact is low for sharp turns like at the beginning of the trajectory, mentionable
differences occur for small curvatures as encountered in the second half of the shown
trajectory. Without the utilization od local loop closures, small curvatures would
lead to a fast growth in pose estimation uncertainty, because the estimated rotation
is biased against zero. Consequently, the best setting which gives the most accurate
and reliable motion estimates is given for high detection ranges and grid resolution,
matching against accumulated scan data and the introduction of local loop closures.
This parameterization led to a drift of 0.21% for data set 1018-11 and 0.72% for
0316-31. A comparison between wheel and the scan-based odometry is shown in
Figure 10.3. The results indicate, that scan-based odometry can lead to increased
increased motion estimation accuracy in the presence of frequently occurring sharp
turns.

A Velodyne scan from the considered data set is shown in Figure 10.4 together
with an accumulated scan from the Ibeo sensor setup with six sensors. Based on
both data sources, the odometry data are calculated for data set 1018-11. The
respective best results are shown in Figure 10.5. The performance of the Ibeo is
comparable to the Velodyne-based odometry with a detection range of 20 m or with
a decreased grid resolution between 0.2 m and 0.3 m. One reason for this observation
is the higher point density of the Velodyne sensor. Furthermore, the Velodyne is
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Figure 10.1 Selected odometry results for data set 1018-11. The accumulation
of scans leads to a reduced error in angle estimation. Negative effects of discretiza-
tion for small changes in angle can be significantly reduced by the introduction of
constraints between non adjacent scans (h > 0, local loop closures).

mounted at the top of the vehicle and, therefore, occlusions have smaller impact
on the maximum detection range. The latter observation is significant, hence the
studies in Section 9.3 on the influence of landmark configurations on the matching
accuracy become relevant in this case. The increased insensitivity of the maximum
detection range due to the high mounting position of the Velodyne sensor to oc-
clusions by other traffic participants contributes to the matching accuracy. With
a suitable parameterization, good odometry performance can be achieved for ur-
ban environments with frequently occurring sharp turns (Figure 10.3). In summary,
the higher number of point measurements and increased insensitivity of the maxi-
mum detection range due to the high mounting position of the Velodyne sensor to
occlusions by other traffic participants contributes to the matching accuracy.
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Figure 10.2 Local loop closures and utilization of accumulated scans for motion
estimation result in the highest estimation accuracy (left: 1018-11; right: 0316-31).
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Figure 10.3 The results for data set 0316-31 underline the good performance of
scan-based odometry in the presence of high numbers of sharp turns in comparison to
wheel odometry. (source of satellite image: Google, Imagery c©2017, DigitalGlobe,
GeoBasis-DE/BKG, GeoContent, Landeshaupstadt Stuttgart)
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Figure 10.4 Due to the low mounting position, the Ibeo sensor setup suffers
from occlusions caused by near-distant objects. Consequently, the likelihood of
high-range measurements which significantly contribute to the rotation estimation
accuracy (compare Figure 9.10) is decreased.
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Figure 10.5 The best results obtained from the Velodyne- and Ibeo-based odom-
etry for the 3.01 km long trajectory in data set 1018-11. (source of satellite im-
age: Google, Imagery c©2017, DigitalGlobe, GeoBasis-DE/BKG, GeoContent, Lan-
deshaupstadt Stuttgart)
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10.2 Spectral SLAM

Simultaneous localization and mapping (SLAM) enables the operation of mobile
robots in previously unknown environments. In the context of urban automated
driving (UAD) such cases might likely occur on private ground such as parking
garages. Therefore, a SLAM framework on the basis of the spectral registration al-
gorithm from Section 6 is introduced in this section. The proposed SLAM framework
uses an ordered sequence of 2D LiDAR scans as input and does not require odom-
etry or other motion sensors. Optimization is conducted based on the optimization
framework provided in [KGS+11]. A robust kernel is used for graph optimization.

Place recognition is of crucial importance in mapping applications as it enables
the recognition of previously visited places. Thereby, it allows to establish trans-
formation constraints between current and previous observations. In the context
of simultaneous localization and mapping, this task is denoted loop closing. With-
out loop closing, the accuracy of the absolute vehicle pose estimate would decrease
without a bound and the map would become globally inconsistent. With increasing
number of accurate and correct loop closures, the map and pose estimate becomes
more accurate and less prone to drift.

Especially for large loops, loop closing in real-time remains a challenging task.
This is mainly due to the accumulation of errors in relative motion estimation. In
this section, a real-time loop closing strategy based on spectral matching is intro-
duced. Due to the broad basin of convergence of the matching algorithm, loop
closing hypotheses can be generated from inaccurate priors. To this point, the
SLAM graph is in every time step checked for key frames within a predefined search
radius which might have an overlap with the current observation. Two poses xk and
xa with a ≤ k are considered neighbors if their Euclidean distance dk,a is smaller
then the threshold dmax. For each key frame in this neighborhood, a transformation
is calculated based on the spectral matching procedure as shown in Figure 10.6.
The broad basin of convergence of spectral registration leads to reliable loop closing
performance. Furthermore, the robust spectral registration procedure, developed
in Section 6.3 is utilized. Due to the potentially catastrophic impact of false loop
closures on the mapping process, a consistency check is performed for this set of
hypotheses. Therefore, the consistency requirement is expressed by a threshold on
the Euclidean distance between the translation hypotheses. The set of consistent
constraints is given as the subset with the highest number of members which all
fulfill the consistency requirement. By requiring at least 3 consistent loop closing
constraints, the likelihood of false loop closure constraints is decreased. The consis-
tent constraints are then averaged and a constraint is added to the SLAM graph.
For the reduction of uncertainty accumulation in the vehicle pose estimate, local
loop closure constraints between consecutive key frames are added as well.

Throughout the last decade the update of localization maps has found increas-
ing interest throughout the research community. Although not being part of this
thesis, it shall be mentioned here, that the broad basin of convergence of spectral
matching algorithm can also be incorporated into map update procedures. Interna-
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Figure 10.6 Spectral registration is used for loop closure hypotheses generation.
Candidate key frames are matched and the results checked for consistency. Due to
the broad basin of convergence of the spectral registration procedure, the transfor-
mation prior can be inaccurate.

tional standardization documents as ISO 17572-3:2015-01 define a map-independent
geo-referencing approach for sensor measurements, e.g. based on consumer grade
GPS measurements, which can then be used for map updating. One advantage of
this approach is the avoidance of closed loops in the data processing chain. More
specifically, the update of a potentially corrupted localization map shall not depend
on the map itself and the utilized localization system.

10.2.1 Experimental evaluation

The evaluation of the spectral SLAM approach is based on data sets 0823-71 and
0316-61. Data set 0823-71 is characterized by a long loop and a challenging loop
closure in an area with sparse structures and was chosen as a test of the drift per
driven distance and the loop closing performance for large loops. 0316-61 contains
the most loop closures and was chosen to test the loop closing reliability. Relative
motion constraints are solely based on scan matching results obtained from spec-
tral registration. Consequently, wheel odometry is exclusively used for LiDAR scan
deskewing. Spectral registration is also successfully used for loop closing. The result
of the mapping run is compared to the localization map described in Section 5.2.
Since, this map was recorded using a highly accurate IMU sensor and LiDAR sen-
sors and contains several loop closures, it is considered accurate and suitable as a
reference for the evaluation of the developed SLAM framework.

The results (Figure 10.7) show that the map which was created from the single test
run are similar to the prerecorded localization map. It can be seen, that significant
changes between the two maps occurred. The high amount of dynamic objects in the
measurement data did not lead to mapping failures. Loop closing was successfully
established in a challenging intersection area from an initial offset of 4.57 m after
driving the entire loop as shown in Figure 10.8. This corresponds to a drift of
0.18% of the driven distance. The mapping is executed at a real time factor of 1.43
running on robot operating system (ROS) under Ubuntu. A computer with an Intel
i5-4690 (4× 3.5 GHz) central processing unit (CPU) and 32 GB RAM was used for
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the calculations.

Table 10.3 Overview over the data sets (Section 4.3) used for experimental eval-
uation and their characteristics.

Data set Characteristics

0823-71

• loop closure in expansive intersection
area
• roundabout
• long loop

0316-61 • most urban loop closures

campus-4

• most loop closures
• longest trajectory
• high heterogeneity (vegetation, free

space, building canyons)

Figure 10.7 The map built from a single test drive (data set 0823-71) and with
FMT-SLAM (blue) plotted over a three year old version of a highly accurate lo-
calization map (light gray). All constraints in the SLAM graph were created by
spectral registration.

The accuracy of the resulting map is measured in two different way. Firstly, the
estimated trajectory is aligned with the reference trajectory for the considered data
set (Section 5.3). Since, a reference pose for each key frame in the SLAM graph exists
and the correspondences are known, the transformation between both trajectories
can be directly calculated by solving the orthogonal Procrustes problem (OPP).
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Figure 10.8 A detailed view of the challenging loop closing area contained in data
set 0823-71 (blue: start of counterclockwise test drive). Loop closing was achieved
on the basis of spectral registration from an initial offset of 4.57 m that corresponds
to an average position drift of 0.18% over the trajectory.

The localization map is considered more precise than the newly recorded one due to
highly accurate inertial measurement unit (IMU) measurements which were used for
recording and the high amount of global loop closures. Consequently, the accuracy
of the mapping run can be accurately estimated as the standard deviation over all
Euclidean distances between corresponding position pairs after alignment. For data
set 0823-71, the standard deviation is 0.87 m and 0.62 m for 0316-61. Secondly,
the estimated trajectory is manually aligned with the collected differential global
positioning system (dGPS) measurements. Then, a robust iterative closest point
(ICP) variant is used for refinement of the alignment and the resulting mean squared
error is used as measure for mapping accuracy. This approach is independent of the
localization map and enables a comparison to the results from the campus data set
for which no prerecorded map exists. The error for data set 0823-71 is 0.98 m and
0.81 m for 0316-61. In both cases, the results show that loop closures led to an
increased mapping accuracy, showing the conformity of the evaluation results.
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Figure 10.9 The calculated map of the campus is in agreement with the satellite
image. The alignment with the WGS48 coordinate frame was conducted in a post-
processing step. (source of satellite image: Google, Imagery c©2017, DigitalGlobe,
GeoBasis-DE/BKG, GeoContent)
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Figure 10.10 The scan-odometry prior is calculated with a scanner range of 30 m.
Areas with sparse structures and curvatures lead to an increased drift in the esti-
mated vehicle pose in comparison to the urban data sets. Nonetheless, all loop
closures where detected correctly. Due to the high number of loop closures, the
optimized trajectory is highly accurate.
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The Campus environment contains significantly more loop closings than the urban
data set and more heterogeneities. Special challenges are expansive free spaces in the
middle of the campus and high amounts of vegetation. The length of the driven tra-
jectory is 3.7 km (Campus-4, Section 4.3). For this mapping run, the scanner range
for the scan-odometry measurements is set to 40 m in order to deal with expansive
free spaces. Despite the large field of view, the scan-odometry has a higher drift
as for the previously considered urban data set which is due to the combination of
sparse structures and high curvatures. Loop closures and scan matching constraints
are again calculated on the basis of the spectral matching procedure. After several
loop closures, the estimated trajectory is consistent with the dGPS signal as shown
in Figure 10.10. The resulting map of the campus is shown in Figure 10.9 and plot-
ted over a satellite image of the area. The map contains the main structures from
the campus environment. The accuracy is again measured relative ot the dGPS
trajectory. The standard deviation is 0.34 m and hence more accurate than for both
urban data sets which is likely due to the high amounts of loop closures. In all cases,
the mapping accuracy is high enough for the operation in areas like parking garages,
where no high localization accuracy requirements are given.

10.3 Conclusion

In this section, a scan-based odometry and SLAM framework on the basis of spectral
registration was developed. Different parameterizations of the matching algorithm
were used to adapt it to the operation environment and to the specific application.
Experimental evaluation was conducted with a selection of challenging data sets
from urban environments. Problems arising from the discretization of the input
scans were addressed in the odometry system by accumulation of scan data and
introduction of local loop closures. For the Velodyne LiDAR sensor, an odometry
position drift of 0.21% could be reached which is sufficiently accurate in the context
of vehicle localization (compare Section 9). The Ibeo-based solution suffered from
low measurement ranges due to occlusions which led to increased angular errors. As
outlined in Section 9, angular uncertainty has significant influence on the localization
performance and shall be kept at a low value. For a data set with a high number of
sharp turns, the scan-based odometry outperformed a wheel odometry from wheel
speed and steering angle sensor measurements. In the SLAM framework, relative
motion constraints were exclusively based on scan matching and hence did not re-
quire proprioceptive sensors except for scan deskewing. Furthermore, robust spectral
registration was utilized for the calculation of loop closing hypotheses. Thereby, real-
time loop closing with deterministic outcomes, i.e. no randomization and heuristics
are introduced to the system, was enabled. The experimental evaluation with data
sets from urban and campus environments showed the reliable loop closing perfor-
mance even in challenging intersection areas and high initial transformation offsets
after long loops. The accuracy of the mapping result was found to be sufficiently
high for operation in parking garages or comparable operation environments.



133

11 LiDAR-based vehicle localization

The fundamental importance of map-relative vehicle localization has been outlined
in this thesis, starting from the introduction and underlined by the respective def-
initions as well as the context provided in Section 2.3. The utilization of suitable
subsystems, like the spectral registration approach (Section 6) and accurate odom-
etry as well as SLAM (Section 10) contributes to the achievement of this goal.
Model-based design on the basis of newly developed statistical models (Section 9)
was introduced as an additional component for increasing the localization system
robustness by a quantification of expert knowledge.

In this section, previous results are combined for the development of a framework
for map matching based vehicle localization with enhanced robustness (Figure 11.1).
To this point, spectral registration (Section 6) is utilized for the alignment of LiDAR
scans and outdated localization maps (Section 5) as a first source of absolute vehicle
pose estimates. In order to increase the matching failure detection performance
and decrease the probability of prolonged periods without valid matching results,
analytical redundancy is introduced. This is approached by adding a pole-based map
matching modality for the alignment of detected pole-features (Section 5.1.2) and the
corresponding localization map. The sparsity of pole features as compared to other
feature types like Harris corners and the relinquishment of elaborated descriptors,
yield a resource efficient vehicle pose estimation modality. Furthermore, pole-based
map matching is shown to perform well in intersections and parking lots, where
spectral registration might suffers from sparse structures (Section 6.4).

Localization system

Map matching

Pose prior
generation (Sec. 11.1)

Initialization /
recovery (Sec. 6.3.2)

LiDAR scan
sk

Localization
map m

Landmark
detections lk
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registration
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Consistency checking
& fusion (Sec. 11.2.3)

Pose estimate xk

Odometry
uk (Sec. 10.1)

Figure 11.1 The system architecture of the proposed localization system on the
basis of scan- and pole-based map matching. Map matching failures are detected in
a consistency checking step.
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Due to the orthogonality, the combination of both approaches is well suited for
an usage in a redundant localization system. The results from both map match-
ing modalities are checked for consistency against runs of odometry measurements.
Consistent matching results are selected and fused to obtain an accurate vehicle
pose estimate. This localization framework is developed in Section 11.2.

Another contribution is concerned with the calculation of vehicle pose priors which
have a outstanding role in vehicle localization systems. The design of the proposed
localization system is conducted with a strong focus on the avoidance of localization
failures. Nonetheless, recovery strategies for the case of localization failures are
of crucial importance for the safe operation of automated vehicle systems (compare
Section 2.3). Therefore, a recovery and initialization procedure on the basis of robust
spectral registration algorithm (Section 6.3) is proposed due to the encouraging
results presented in Section 11.3.1. For its applicability, a rough initial pose estimate
is required which is then refined during the recovery step. Solutions from the state
of the art include GPS/INS-based systems which incorporate receiver autonomous
integrity monitoring (RAIM), place recognition and infrastructure-based systems
that provide pose information to vehicle systems. Many of the aforementioned
approaches are characterized by low localization accuracy, high computational costs
or lack availability. To this point, a localization map based framework for global
prior acquisition is developed in Section 11.1. The focus is put on the efficiency
and robustness of the prior and accuracy is considered as less important. The
pose refinement is left to an efficient initialization procedure (Section 6.3.2) and
the LiDAR based localization framework developed in Section 11.2. Experimental
evaluation results are presented in Section 11.3.

11.1 Vehicle pose prior generation

The main challenge in the generation of vehicle pose priors is the need to perform
global localization during initialization. Global localization denotes the task of ve-
hicle pose estimation under the absence of prior information. A global positioning
system (GPS) provides a convenient source of absolute vehicle pose estimates but is
often subject to degraded availability and precision in urban environments. In cases
with GPS availability, initialization can be conducted on the basis of robust spectral
registration. Otherwise, particle filter based localization approaches enable global
localization, given the computational capacity to evaluate high amounts of parti-
cles. Once, initialization is conducted, the number of particles can be significantly
reduced during tracking of the vehicle pose. To this point, a GPS-independent sys-
tem for the generation of vehicle pose priors in urban environments on the basis of
a particle filter based localization framework is developed in this section. The well
known Monte-Carlo localization algorithm (Section 2.1.3) is utilized and its applica-
bility to cluttered sensor measurements and outdated localization maps is extended.
Accuracy of the result is traded in for computational efficiency by utilization of a
small particle set.
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Figure 11.2 In a data preprocessing step, 3D LiDAR scans are divided into a
set of layers. Each layer is an input for a separate instantiation of the AMCL
procedure. Consistency checking between the resulting set of pose estimates and
runs of odometry measurements is conducted. Consistent estimates are fused by
covariance intersection to obtain a vehicle pose estimate.

In the following, a framework for global prior generation, called multilayer adap-
tive Monte Carlo localization (ML-AMCL) is developed. An overview over the
ML-AMCL framework is provided in Figure 11.2. The basic idea of ML-AMCL is
to perform a consistency check for separate localization system instances which use
different measurement subsets as inputs. The outcomes are subsequently compared
to a local reference. Under the assumption of a linearly increasing error in relative
motion estimation, e.g. based on wheel or LiDAR odometry, short runs of odometry
measurements can be used as a local references. On the contrary, errors in abso-
lute localization often do not occur as linear drifts but as a high-frequent jumps.
Consequently, these errors can often be detected by evaluation of residuals relative
to the local reference. The developed algorithm was published in [RJMZ16] and is
described in the following.

In a first step, 3D LiDAR measurements are divided into a set of measurement
subsets, i.e. a set of layers {zik}

L

i=1 which are then projected to the xy-plane (see
Figure 11.3). Although applied to LiDAR data and AMCL, this approach can be
used in combination with other sensor technologies and localization frameworks as
well. A 3D LiDAR scan is shown in Figure 11.3 which entails characteristics that
are symptomatic for urban data sets. Firstly, the scan contains measurement points
originating from static objects like house walls and poles that are well suited for
localization in urban environments. Secondly, the amount of clutter, i.e. measure-
ments due to dynamic and semi-static objects, e.g. parked vehicles, are entailed.
These measurement characteristics complicate the localization task as it causes in-
consistencies between sensor observation and localization map. The utilization of
layers instead of other scan partitioning strategies is chosen based on the obser-
vation, that occlusions in urban environments often occur up to a specific height,
commonly due to parked or driving cars (see Figure 11.3). However, measurement
points from lower layers like curb stones and fences often contain valuable structural
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Figure 11.3 Multilayer adaptive Monte Carlo localization (ML-AMCL)
[RJMZ16] follows the intuition, that inconsistencies between sensor observation
(gray) and the localization map are limited to measurement subsets. In urban
environments, parking cars are a significant source of inconsistencies and hence, the
scan is divided in horizontal layers (red, green, blue) which are used in separate
localization algorithm instances. Consistency checking is utilized to identify valid
localization results that are fused by covariance intersection.

information (see Figure 11.4) and, therefore, shall not be neglected. This is where
the key contribution of ML-AMCL is made by providing a strategy for the dynami-
cal selection of measurement subsets which enable localization with the underlying,
potentially non-robust localization system (i.e. AMCL). This aspect is discussed
and analyzed in the context of the state of the art in the following paragraph.

Current localization systems are often highly specialized for a specific operation
environment. In the process of specialization, assumptions about the expected en-
vironment characteristics are incorporated into the localization system design. This
is typically done by implicit or explicit assumptions on the measurement signals and
the respective choice of signal processing algorithms. Many state of the art local-
ization algorithms instrument the static world assumption and therefore might not
sufficiently account for inconsistencies between LiDAR scans and the localization
map. Signal processing algorithms are typically utilized in order to remove dynamic
and semi-static objects from the sensor measurements. The remaining objects are
then used for localization. Once the clutter removal fails, inconsistencies between
the observed and mapped environment representation occur. Depending on the
localization algorithm characteristics, this can lead to localization failures.

This event can be partially prevented by selection of specific subsets of the avail-
able sensor measurements in which clutter is unlikely to occur. In this context, the
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Figure 11.4 The frequency of occurrence of static localization features like curb
stones and house walls often varies between the scan layers (red, green, blue). There-
fore, ML-AMCL decides on the removal of layers based on their momentary usability
for localization and not by static rules.

point measurements with an origin on the ground plane can be a suitable measure-
ment subset. The authors in [LT10] use this observation to remove all dynamic
and semi-static objects by extraction of the ground plane and rejection of all re-
maining measurements. While this approach seems feasible for highways and main
roads with sufficient road markings, in urban environment it is likely to be overly
pessimistic (compare Figure 11.4). This approach trades in the adherence to the
static world assumption for the need of distinctive features on the ground plane. In
urban environments, the latter requirement is frequently not met and whole areas
without road marking might not be covered. Additionally, information about static
structures like house walls are lost. Another approach for semi-static object would
be the selection of measurements above the height of parked cars. Thereby, some
valuable structures like low walls are at the height of parked vehicles and would
thereby be erased from the measurement as well. Further works use machine learn-
ing approaches in order to learn static selection criteria for measurement subsets or
feature types, e.g. in [SSB09]. In the context of the previously discussed solutions,
it is argued that a static selection of measurement subsets can lead to insufficient
adaptation to and coverage of heterogeneous operation environments. To this point,
an approach is developed which enables the consideration of the whole measurement.
This approach can be beneficial in order to prevent excessive information loss and
contains comparatively mild assumptions about the clutter characteristics.

The set of scan layers is incorporated into a separate instance of the target local-
ization system. Each AMCL instance takes a 2D localization map m, 2D LiDAR
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scans sik and odometry measurements uk as inputs. The map is considered to be
2D with no separate layers. This assumption is realistic, since in most cases only
one map is provided and the utilization of several layers would result in increased
computational costs and bandwidth requirements for handling and transmitting the

additional amount of data. AMCL instances provide sets of pose estimates
{
x̂iki
}L
i=1

and covariance estimates Σx,ki . Every estimate is evaluated against the odometry
measurements between the latest two absolute pose update at ki − 1 and ki. The
odometry measurements arrive at a significantly higher rate 1/Tu than the pose es-
timates. Hence, the delay caused by waiting for the next odometry measurement is
sufficiently low and the odometry measurement is calculated by linear interpolation.

uki = uku−1 +
(
uku − uku−1

) ti − tu−1

Tu
, tu−1 < ti < tu . (11.1)

After calculation of uki , the motion between the last time steps is determined as

∆u
ki

= uki − uki−1
(11.2)

and serves as reference for the difference of absolute pose estimates

∆x
ki

= xki − xki−1
. (11.3)

The subsequent step is the determination of a set with Fk ≤ L (here: L = 3) pose
estimates which are consistent with the odometry measurements. This step can
be compared to the detection of outlying pseudo-range measurements in GPS/INS
based navigation. Detected outliers are removed from the overall fusion step. For a
fast detection of outliers, a simple threshold is applied to the Mahalanobis distance
ε between ∆x

ki
and ∆u

ki

Ski = Q (Ti) + Σx,ki−1 + Σx,ki (11.4)

∆ki = ∆x
ki
−∆u

ki
(11.5)

εk,i = ∆>kiSki∆ki . (11.6)

If εk,i exceeds the threshold εth, the corresponding pose estimate xk,i is rejected.
An alternative implementation would be a majority vote between the interpolated
outcomes of the AMCL instances. However, this approach would increase the sensi-
tivity against influences of inconsistent observations existent in several measurement
subsets and causing a correlation between the pose estimates. One example is the
scene from Figure 11.3, where semi-static objects, i.e. parked cars are contained in
the lower two layers. For these layers, the objects might lead to consistent, yet false
localization results. In this case, a majority vote would have outvoted the correct
results corresponding to the highest layer.

After the selection step, the set of consistent pose estimates is fused in order to
obtain the overall pose estimate x̂k. The aforementioned correlations between the
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pose estimates are considered by the selection of a suitable fusion procedure. To
this point, covariance intersection (Equation 11.7) is utilized for fusion

x̂k = Pk

(
Fk∑
i=1

wiΣ̂
−1

x,ki
x̂i

)−1

(11.7)

Pk =

(
Fk∑
i=1

wiΣ̂
−1

x,ki

)
. (11.8)

The weights wi are subject to the constraint

Fk∑
i=1

wi = 1 (11.9)

and are found by optimization.

Prolonged periods of faulty pose estimates from an AMCL instance are an indi-
cator for filter divergence and as a consequence a reinitialization can be advisable.
This aspect of the ML-AMCL approach differs from previous works on GPS/INS
navigation and necessitates a reinitialization decision for each AMCL instance has
to be made. In order to detect small drifts and limit the rate of unnecessary reini-
tialization steps, a variant of the sequential probability ratio testing (SPRT), the
cumulative sum (CUSUM) test [Gus00] (compare Section 2.1.4) is employed. Firstly,
the test statistic gki is calculated as the sum of gki−1 and εk,i which is compensated
by the drift constant d

gki = gki−1 + εk,i − d (11.10)

gki = 0 , and k̂i = ki if gki < 0 (11.11)

gki = 0 , and ka,i = k̂i and reinitialization if gki > εsth > 0 . (11.12)

If the test statistic is smaller than zero, it is set to zero and the time is stored as
a time k̂i of a potential failure occurrence. If the threshold εsth is exceeded, the
reinitialization of the respective AMCL instance is triggered. The time of the local-
ization failure occurrence is denoted ka,i. The information from the layer selection
step can be utilized in other procedures, such as a pose refinement step on the basis
of non-robust map matching procedures (see [RJMZ16]).
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11.2 Precise vehicle localization

A vehicle localization system with enhanced robustness (compare Figure 11.1) is
developed in this section. Therefore, robustness is mainly considered as decreased
dependence on updated localization maps, explicit consideration of the heterogeneity
of urban environments and insensitivity to map matching failures. The latter is
fostered by utilization of an accurate scan-based odometry introduced in Section 10.1
and consistency checking. Insensitivity against inconsistent sensor observations is
achieved by spectral registration (Section 6) and a suitable state of the art point
matching algorithm applied to pole measurements (Section 5.1.2).

This combination of matching algorithms is motivated by the observation that ur-
ban areas road sides can often be categorized by their respective density of structure
(Figure 11.5). Sparse structures as encountered in intersection areas are commonly
accompanied by pole-shaped objects like traffic sign and traffic light posts and pole-
based map matching is therefore well suited for vehicle pose estimation. In densely
structured areas, spectral registration provides good matching results while making
mild assumptions on the quality of the measurement data and the localization map.
The combination of scan- (Section 11.2.1) and pole-based vehicle pose estimation
(Section 11.2.2) is used in a hybrid vehicle localization system (Section 11.2.3) and
accounts for the heterogeneity of the urban environment.

11.2.1 Scan-based map matching

Narrow inner-city roads with densely parked cars as shown in Figure 11.5 and missing
road markings are a great challenge in vehicle localization. The spectral matching
algorithm (Section 6) is considered for the scan-based map matching in such densely
structured environments. Two operation modes are defined:

1. Standard mode (accurate prior is used): standard spectral registration with
utilization of prior for pose estimation

2. Initialization mode: utilization of robust spectral registration under consider-
ation of inaccurate vehicle pose priors

The standard mode shall be as efficient as possible while providing the required
matching accuracy. The latter has been addressed in Section 9.2. Accordingly, for
a localization accuracy requirement of 0.25 m, a grid resolution of 0.2 m suffices to
compensate map matching failure rates of over 30 %. The initialization mode utilizes
the proposed robust spectral registration algorithm in combination with a 0.1 m grid
resolution. Thereby, it can be assured that the initialization of the vehicle pose is
accurate enough for compensation of consecutive map matching failures. In areas
with increased dependability requirements such as intersections, the initialization
mode or any other parameterization between both proposed modes could be used.
The introduction of automated parameterization is an interesting starting point for
future work.
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Figure 11.5 The localization maps for scan-based (gray) and pole-based (blue)
localization. Pole-features are often encountered in expansive intersection areas
where scan-based map matching is prone to degradation. On the contrary, poles
might not be available between the intersection areas.

11.2.2 Landmark-based map matching

Expansive areas in urban environments are often characterized by the existence of
pole shaped objects like posts of traffic signs and traffic lights (compare Figure 11.1).
Nonetheless, long road segments without poles, as seen in Figure 11.5, might render
purely pole-based localization infeasible. In this work, pole-based map matching
is introduced as an efficient method to increase the robustness of the scan-based
localization system. This section is intended to give a short overview over the utilized
registration approach on the basis of a state of the art correspondence estimation
procedure.

The detection of poles is based on the algorithm developed in Section 5.1.2. The
number of detected landmarks in one time step is typically smaller then ten. Due to
the sparseness of pole landmarks, a matching procedure with exhaustive correspon-
dence search is preferential, since it decreases the probability of false data association
and is computationally feasible for the expected number of pole measurements. For
a given set of correspondences, the registration parameters are calculated by the
solution of the scalar-weighted OPP (Section 8.1.1). This decision is feasible, since
the measurement covariance for the LiDAR-based pole detection is weakly distance
dependent and approximately isotropic as shown in Section 7.2.1. The weighting
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matrix in the cost function J

J =
n∑
i=1

‖Wi (Rzl,i + t−mk,i)‖2 (11.13)

is chosen as Wi = wiI =
(√

max eig (Σli)
)−1

I. The incorporation of additional

information of measurement noise leads to an increase in matching accuracy. Now,
it is left to determine an efficient procedure.

As opposed to point measurements in scans, accurate correspondences between
the extracted environment features and the map can be established. To this point, a
comparison between random sample consensus (RANSAC) [FB81] and single cluster
graph partitioning (SCGP) [OWTL05] is conducted.

For RANSAC, the number of drawn correspondence pair samples is often set to
three [HMHS14]. From the three samples, the transformation parameters are esti-
mated and the fitness score for the respective parameter set is calculated. This pro-
cedure leads to increased runtime requirements. This effect is decreased by adapting
the number of iterations which, however, increases the probability of not drawing the
correct set of correspondences. SCGP in general or single cluster graph partitioning
(SCGP) [OWTL05] in specific can be used as well and is proposed as a beneficial
alternative for the given use case of correspondence estimation for sparse landmarks.
For SCGP, only two samples are drawn and the mean squared error is minimized.
The resulting mean squared errors are added to a consistency matrix from which,
by means of eigenvalue decomposition, the set of consistent correspondence pairs is
determined (compare Section 2.1.4). This procedure makes the matching algorithm
more computationally efficient than standard RANSAC. This leads to implementa-
tions which favor an exhaustive search over the correspondence space and thereby
to higher probability of finding the correct set of correspondences.

11.2.3 Hybrid vehicle localization

In this section, the scan- and pole-based matching procedures are combined in a
localization framework with consistency checking capability. Consistent matching
results are fused in an extended Kalman filter (EKF), yielding efficient pose esti-
mation and precise vehicle pose estimates. The proposed map matching procedure
combination has advantages over a solely scan-based approach which justify the uti-
lization of an additional pole-based matching procedure given the high matching
rate of spectral registration:

• increased detectability of matching failures due to the gain in analytical re-
dundancy (compare results from Section 6.3.3)

– increased failure detection rate

– decreased false rejection rate

• increased matching rates due to
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– partial orthogonality of the matching procedures

– decreased false rejection rate

• decreased impact of short-term localization failures due to the utilization of
matching algorithms with broad basin of convergence

• avoidance of errors in synchronization of map matching results due to the
utilization of a single sensor modality

The positive impact of aforementioned aspects on the localization robustness has
been studied during model-based localization system design throughout Section 9.
Accordingly, the matching rate has a considerable influence on the localization per-
formance and the perception accuracy requirements. Hence, the matching rate
should be increased in order to enhance the localization robustness and potentially
decrease the perception system requirements. The performance of local confidence
measures like the signal-to-noise ratio (SNR) for detection of outlying map match-
ing results is limited. The enforcement of a SNR threshold for map matching result
rejection would result in a decreased matching rate due to false positives. Another
significant influencing factor was identified by evaluation of the statistical localiza-
tion system models:

• convergence to a spatially uniform distribution of matching results leading to

– increased average localization accuracy

– decreased length of matching failure sequences (relaxed odometry accu-
racy requirements)

Furthermore, the calculation of vehicle pose estimates on the basis of pole mea-
surements can be efficiently integrated in the signal processing chain for spectral
registration based localization and, consequently, results in only slightly increased
computational costs.

Generally, matching failures can be distinguished by their frequency of occurrence
and require different diagnostic approaches. Jumps can be detected by classical hy-
potheses tests. Low-frequent drifts require the evaluation of time series of residuals
as conducted in Section 11.1. Under the assumption of a approximately bias-free
odometry, the utilization of map matching algorithms with broad basin of conver-
gence decreases the likelihood of slow drifts in the vehicle pose estimate. Therefore,
the residuals from one time step are considered for consistency checking which cor-
responds to a jump detection. In the consistency checking step, the odometry is
used as a local reference. Due to the drift of the odometry measurements, the global
odometry pose does prohibit the calculation of residuals between absolute poses.
Consequently, differences of poses are considered for consistency checking that can
be obtained from runs of odometry measurements and map matching results (FMT
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index spectral registration)

∆FMT
k =

∥∥xFMT
k − xFMT

k−1

∥∥
2

(11.14)

∆SCGP
k =

∥∥xSCGPk − xSCGPk−1

∥∥
2

(11.15)

∆u
k = ‖uk − uk−1‖2 . (11.16)

The distance between the motion hypotheses is then expressed by the following
differences dti in the translation estimates

dt1 = |∆FMT,t
k −∆SCGP,t

k | (11.17)

dt2 = |∆FMT,t
k −∆u,t

k | (11.18)

dt3 = |∆SCGP,t
k −∆u,t

k | . (11.19)

Additionally, the respective differences dΘi for the orientation estimates could be
considered. A spectral clustering algorithm is then used in order to determine the
set of consistent hypotheses (see Section 2.1.4). The consistency checking step re-
quires an accurate temporal calibration between the measurement sources. This
is achieved by utilization of the same LiDAR scan for map matching and relative
motion estimation.

11.3 Experimental evaluation

This section contains the evaluation results for the prior generation on basis of
ML-AMCL in Section 11.3.2 and the LiDAR localization in Section 11.3.3. In both
cases data sets 0823-71 and 0316-11 are used (Table 11.1). Data set 0823-71 is
challenging due to the high outdatedness of the corresponding localization map,
including several building sites (the example in Figure 1.2 was taken from this data
set). Furthermore, it contains the highest number of intersection which makes it
well suited for demonstrating the orthogonality of the pole- and scan-based map
matching in the proposed localization framework. Data set 0316-11 is slightly more
diverse with respect to road widths (the narrow road example in Figure 4.3d was
taken from this data set) and vegetation then data set 0823-71 at a decreased level
of outdatedness. These data sets are selected to provide the highest challenges for
the localization algorithms. In this aspect, the other data sets are subsumed.

The localization map (compare Section 5.2) was recorded more than 2 years before
the evaluation data sets (Section 4.3). During the mapping process, no procedures
for the detection and removal of semi-static objects were incorporated. The remain-
ing clutter in the map complicates the localization procedure. Since, changes to the
localization map can occur at high frequencies, in practical application it cannot be
guaranteed that measurements originating from semi-static, dynamic objects and
other artifacts remain in the map. To this point, the ability of a localization system
for dealing with such clutter is an important aspect of its robustness. Hence, it is
argued that the cluttered map is a suitable proving ground for the robustness of
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Table 11.1 Overview over the data sets (Section 4.3) used for experimental eval-
uation of the localization frameworks and their characteristics.

Data set Characteristics

0823-71

• expansive intersection area
• high outdatedness of the localization

map (building sites)

0316-11
• narrow urban canyons
• expansive intersections

a localization system and is used as such in the following sections. In the case of
LiDAR based localization, evaluation of robustness is conducted by comparing the
localization accuracy for an outdated and updated version of the same localization
map. Localization is further complicated by utilization of a different LiDAR sensor
setup for localization and mapping. All algorithms are implemented in C++ and
are running in real-time on the Robot operating system (ROS) under Ubuntu. As
the basis for all results, reference vehicle poses were calculated as described in Sec-
tion 5.3. By utilization of the same data for reference generation and localization,
errors in time stamp synchronization can be omitted. The vehicle pose initialization
on the absis of robust spectral registration is evaluated in the following section.

11.3.1 Vehicle pose initialization and recovery

During the initialization of an automated vehicle system and in cases of localization
failures, the calculation of a precise vehicle pose estimate from an inaccurate prior
is of crucial importance. In these scenarios, a high availability of a precise vehicle
pose estimate outweighs the real time capability of the matching system. Selected
particle filter (PF) based localization procedures and SLAM frameworks are able to
perform initialization, but typically require to move the vehicle in order to gather
additional environment information (compare respective results in [ORD13]). Es-
pecially for the recovery of vehicle systems which are in a safe state, e.g. after
stopping upon detection of a localization failure, moving the vehicle might not be
possible. Furthermore, a direct system initialization without the need for driver
intervention might provide additional safety and comfort to the passenger. In this
context, rFMT can be beneficially utilized for initialization and recovery of local-
ization systems. Due to the aforementioned decreased runtime requirements, higher
grid dimensions and resolutions can be used. Transformation priors are generated
from adding Gaussian noise with a standard deviation of 10 m to the reference trans-
formation in order to simulate the initialization from an inaccurate GPS prior. The
two urban data sets were selected to have the fewest overlap in order to capture a
manifold of different areas. The initialization capability of the robust spectral regis-
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tration algorithm is evaluated in an experiment with data sets 0823-42 and 0316-31
(Table 11.3, Section 4.3).

Table 11.3 Overview over the data sets (Section 4.3) used for experimental eval-
uation of the initialization capability of rFMT.

Data set Characteristics

0823-42
• high outdatedness
• roundabout
• narrow urban canyon

0316-31
• longest loop without self overlap
• narrow urban canyon

In the following, results for an example implementation of the developed prior-free
hypothesis selection procedure is evaluated and discussed. Firstly, a set of Uk = 50
point measurements is selected from the scan sk and different numbers of hypotheses
are chosen. The evaluation results are given in Table 11.5.

Figure 11.6 Initialization and recovery of accurate vehicle pose estimates (vehicle
position: black triangle; transformed scan: yellow) from inaccurate transformation
priors (blue), as obtained from GPS or ML-AMCL, is enabled by robust spectral
registration.
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Table 11.5 The results from the pose recovery rate (Pr) evaluation for data sets
0823-42 and 0316-31 (Section 4.3). The proposed hypothesis selection procedure
was evaluated for Pk = 50 sample points.

Hypotheses set
Pr / %

0823-42 0316-31

single hypothesis (SNR) 84.3 82.7
Hk,rot = 2, Hk,trans = 4, Hk = 16 96.0 95.3
Hk,rot = 2, Hk,trans = 8, Hk = 32 96.3 95.6
Hk,rot = 4, Hk,trans = 2, Hk = 16 97.1 97.6
Hk,rot = 6, Hk,trans = 4, Hk = 48 97.8 97.7
Hk,rot = 8, Hk,trans = 2, Hk = 32 99.2 99.3

accurate prior 99.9 99.9

The evaluation for Pk = 50 sample points for all sets of hypotheses takes less
than 0.5 ms. According to the results, the hypothesis for translation hypotheses are
more distinctive compared to the rotation hypotheses (compare Section 6.3.1). This
observation can be explained by the frequent occurrence of walls or other structures
beside the road which potentially lead to ambiguities in the rotation parameter do-
main. Especially in intersection areas as shown in Figure 6.5, the rotational trans-
formations are typically characterized by a π/2 periodicity due to the structural
ambiguities and additional side peaks as shown in Figure 6.8. This effect can be
seen from the recovery rate for Hk,rot = 4 and Hk,trans = 2 of 97.1% which is 1.1%
higher than for Hk,rot = 2 and Hk,trans = 4 at the same absolute number of hypothe-
ses. The best result among all considered parameterizations of 99.3% are obtained
for Hk,rot = 8 and Hk,trans = 2. In all cases, the matching rate is significantly in-
creased in comparison to the single-hypothesis algorithm. The incorporation of prior
information about the transformation parameters leads to a matching rate of 99.9%.
Consequently, the incorporation of an accurate prior results in the best matching
performance. The remaining number of outliers can be due to cases with extremely
noisy or corrupted LiDAR scans. The robust version of spectral registration leads
to comparable results, hence enabling a highly available system for recovery and
initialization from inaccurate transformation priors. Thereby, the registration algo-
rithm contributes to the goal of robust vehicle localization in challenging operation
environments and under the assumption of imperfect measurement and localization
map data processing.

11.3.2 Multilayer adaptive Monte Carlo localization

For the experimental evaluation of the ML-AMCL framework, the publicly available
ROS AMCL package [Ger] is used which implements an extended version of the
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Monte Carlo localization approach introduced in [DFBT99]. The ML-AMCL is
evaluated on an urban test track with high buildings, narrow roads and an outdated
localization map. GPS measurements are utilized for initialization of the AMCL
instances. In order to evaluate the gain in robustness for ML-AMCL relative to
AMCL, the localization accuracies are compared. For AMCL, the whole 3D scan
s3
k is projected to the xy-plane as described in Section 5.1.1. For ML-AMCL, s3

k is
divided into three layers which are then separately projected to the xy-plane. For
the AMCL, a minimum and maximum particle number of 300 and 3000 was selected
which were divided by three for ML-AMCL.

The comparison of accuracies is conducted on the basis of the empirical cumu-
lative density functions (ECDF) of the vehicle pose estimation errors as shown in
Figure 11.7 for data set 0823-71. It can be observed, that for ML-AMCL, the ECDF
has a steeper incline than for AMCL. Consequently, the experiments indicate an in-
creased precision of the ML-AMCL in direct comparison to AMCL. The evaluation
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Figure 11.7 In the presence of outdated localization maps and cluttered LiDAR
scans, ML-AMCL leads to an increased accuracy in pose estimation as compared
to AMCL. This can be seen from the empirical cumulative density functions. ML-
AMCL results in a sharper decline of the curve than AMCL. This observation is
equivalent to a lower rate of pose estimates with high uncertainty for ML-AMCL.

of the layer-specific results in Figure 11.8 shows that the top layer is selected in
84.5 % of the time steps. The lower and middle layer are selected in 54.1 % and
59.8 % of the selection steps. These results were expectable since inconsistencies fre-
quently occur due to building sites or other traffic participants which infrequently
occur above the mounting height of the sensor. For the data set 0361-11, the appli-
cation of ML-AMCL did not result in a considerable accuracy gain which might be
due to the decreased outdatedness of the corresponding localization map.
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Figure 11.8 The results for the upper two layers are similarly accurate, whereas
the utilization of the lower layer leads to a lower localization performance.

The results presented and discussed in [RJMZ16] indicate that the information
from layer selection can lead to increased accuracy in consecutive pose refinement
steps on the basis of non-robust matching procedures. In the experimental eval-
uation, this information is used to construct a 3D scan used for map matching
with G-ICP. Due to the rejection of layers with high amounts of inconsistent sen-
sor observations, the matching results have an increased accuracy as compared to
the utilization of the whole scan. The applicability of ML-AMCL for measurement
selection benefits from similar sensitivity characteristics of the utilized localization
framework and matching algorithm.

11.3.3 Hybrid vehicle localization

The proposed localization framework makes use of pole- and scan-based map match-
ing procedures. The results in Figure 11.9 show the good matching rate for pole-
feature registration in intersection areas. In this aspect, pole-based localization is
orthogonal to scan-based matching which has the most matching failures in intersec-
tion areas (compare Section 6.2.3). In some areas, both matching algorithms did not
give valid matching results. Therefore, the accurate LiDAR scan odometry or wheel
odometry is required. If the distances between valid matching results are too long,
the robust spectral registration algorithm can be utilized for recovery. Thereby, the
gain in efficiency is decreased, but the functioning of the localization system can
be ensured. This strategy is especially interesting, if energy shall be saved, e.g. in
electric vehicles, and therefore a low matching performance is used. If required, the
matching performance is increased at the cost of additional energy consumption.
At this point, the adaptivity of the spectral matching algorithm is of significant
advantage.

The scan processing parameters are set to a scanner range of 20 m and a grid
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Figure 11.9 Results from the matching of pole-features (Pm = 51.3%) and scans
(Pm = 63.6%) for data set 0823-71. An accumulated matching rate of 87.9% is
achieved.

resolution of 0.1 m which enables a fast execution of the map matching procedure
on the target system. Due to the selected setting, the matching rate is decreased
to Pm = 63.6% for data set 0823-71 and 76.2% for 0316-11. The introduction of
pole-based map matching with Pm = 51.3% (0823-71) and Pm = 48.1% (0316-11)
leads to an increased overall matching rate 87.9% (0823-71) and 91.3% (0316-11).
The empirical cumulative density function (ECDF) in Figure 11.10 contains the
results from both data sets and shows the higher matching accuracy of the spectral
matching approach in comparison to the pole-based matching. The mean matching
error for spectral registration is 0.098 m with a standard deviation of 0.058 m for
0823-71 and 0.095 m as well as 0.056 m for 0316-11. Additionally, more than 90 %
of the considered matching results had an accuracy of higher than 0.20 m which,
in combination with the high matching rate, yields a sufficiently high localization
accuracy.

The robustness of the localization procedure against inconsistencies between sen-
sor observations and the localization map is evaluated. To this point, the vehicle
pose estimation errors for the outdated localization map and an updated version are
compared. A submap from both localization maps is shown in Figure 11.11. For
localization algorithm with a perfect robustness against the inconsistencies between
the data set and the localization map, it is expected that the localization accuracy
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Figure 11.10 Results from scan-matching are characterized by a higher accuracy
than pole-based matching (combined results for data sets 0823-71 and 0316-11).

is identical in both cases.

Figure 11.11 Two different versions of the localization map are used to evalu-
ate the localization robustness against outdated maps. To this point, an outdated
localization map (left image) and an updated version thereof are used.

Figure 11.12 contains the results from two different test runs. Firstly, the local-
ization is conducted on the basis of the outdated localization map which contains
building sites and parked cars. This test run resulted in a mean error of 0.092 m
with a standard deviation of 0.06 m for data set 0823-71 and 0.071 m with a stan-
dard deviation of 0.05 m for data set 0316-11. Additionally, the localization was
conducted on the basis of the updated version of the localization map, where the
semi-static objects are removed. The accuracy was slightly increased, resulting in a
mean error of 0.087 m with a standard deviation of 0.06 m for data set 0823-71 and
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Figure 11.12 Results for the localization accuracy from the proposed LiDAR
based localization procedure with enhanced robustness (data sets 0823-71 and 0316-
11). The accuracy for localization with an outdated and updated localization map
show no significant differences. Therefore, the proposed system can be considered
robust against outdated localization maps.

0.069 m with a standard deviation of 0.05 m for data set 0316-11. The similarity
of the results from both test runs is evaluated on the basis of the ECDF shown in
Figure 11.12. show only small deviations between the ECDF.

Consequently, the robustness of the proposed localization algorithm against incon-
sistencies is found to be given. In summary, the highest localization accuracy and
efficiency is reached for updated maps accurate priors for map matching which leads
to the highest matching rate (Section 11.3.1) and lowest runtime (Section 6.2.3). Ro-
bustness is gained at the cost of runtime performance. In the case of the proposed
hybrid localization framework, the additional costs for robustness are kept at a low
level and the level of robustness can be adapted to the intended use case or current
situational context.



11.4 Conclusion 153

11.4 Conclusion

Vehicle localization with enhanced robustness for UAD was addressed in this part.
The developed systems were based on the components previously described in part
II and the design principles and parameters derived in part III were considered.
Different parameterizations of the spectral registration algorithm enabled a vari-
ety of different applications, including map matching, scan matching, initialization
and loop closing. The introduced LiDAR scan based odometry showed accurate
motion estimates with 0.21% average position drift per driven distance. From the
results it could be observed, that the mounting height and angular resolution of the
utilized LiDAR sensors has significant influence on the achievable accuracy. The
higher detection range of the Velodyne sensor enabled a more accurate orientation
estimation than the Ibeo sensors which have to deal with frequent occlusions due
to their mounting at bumper-height. Higher detection ranges also rendered possi-
ble the matching of scans from several time steps which lead to a further increased
orientation estimation accuracy. The latter is fundamental as uncertainty in orien-
tation estimation accumulate to high errors, especially for long trajectories. In a
SLAM framework, the good scan matching performance was further instrumented
to establish high amounts of local and global loop closing hypotheses. Without in-
corporation of additional sensor readings, the developed extensions of the spectral
registration method enabled accurate mapping of urban and campus environments.
Due to the determinism of the transformations involved in spectral registration, the
mapping results for a given data set are identical between two runs. Since, the same
matching algorithm with different parameterizations could be used, the additional
efforts for adding scan-based odometry and SLAM capability to the overall localiza-
tion was kept negligible. Hence, an answer to research question 6 (rq6, Section 1)
could be given.

The localization framework on the basis of pole- and scan-based map matching,
resulted in pose estimates with the required localization accuracy of 0.1 m and a
standard deviation of 0.06 m. The initialization and recovery of accurate vehicle
pose estimates was based on the developed robust spectral registration algorithm
(Section 6.3). By application of this algorithm, the recovery rate of precise vehi-
cle pose estimates from inaccurate GPS measurements was increased from 82.7%
for the state of the art implementation to 99.3% for the proposed algorithm. For
localization, the resolution of the grid for map matching was selected according to
the accuracy requirement. Thereby, the size of the localization map could be re-
duced to less than 1 MB for an area of several square-kilometers. The decreased
grid resolution led to a decreased matching rate in intersection areas. Hence, the
combination with pole-based map matching procedure served two main purposes.
Firstly, it increased the matching rate in intersection areas, where an accurate lo-
calization result is mandatory and the spectral matching algorithm shows some
disadvantages. Secondly, it was used for the introduction of analytical redundancy
to the localization system, enabling increased consistency checking capability. Con-
sequently, the answer to research question 4 (rq4, Section 1) of how to detect map
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matching failures given in Section 6.4 was further elaborated. The overhead for the
pole-based matching step is small due to the sparsity of the landmarks. In com-
bination with the orthogonality to scan-based matching, this makes the utilization
of scan- and pole-based map matching a well suited combination for localization in
urban environments. By consideration of consistent information, an efficient EKF
based implementation of the fusion of relative and absolute pose measurements did
suffice for a high level of localization robustness. The ML-AMCL approach devel-
oped in Section 11.1 served as an answer to research question 5 (rq5, Section 1).
For ML-AMCL, the LiDAR scans are separated into layers and running several
AMCL instances with the different layers as an input. Consistency checking against
odometry measurements was then used to identify the scan layers which provided
consistent localization results. These results were then fused by means of covariance
intersection. The experimental evaluation was conducted with data sets from areas
with highly outdated localization maps which included building sites and a high
number of parked vehicles. The changes to the AMCL system architecture lead to
increased insensitivity against outdated localization maps which was manifested as
an increased localization accuracy. The ML-AMCL reliably provided vehicle pose
priors, accurate enough for a pose refinement with spectral matching.

A final conclusion and combined discussion of the results of this thesis are given
in the following section. Based on this discussion, the main research question from
Section 1 is answered and future research perspectives are provided.



155

Conclusion and future work

The main goal of this thesis was the development of a system for map-relative ve-
hicle localization in urban environments with enhanced robustness. The research
was guided by the main research question, formulated in the introduction: How
can GPS-less vehicle localization for urban automated driving be achieved on the
basis of an in-vehicle sensor setup and a localization map? Along this guideline, the
key contributions were made. This led to the development of a model-based design
framework and a localization system which is intended to meet the requirements
imposed by the automated operation of vehicle systems. This explicitly includes
the requirement of providing an enhanced level of robustness against adverse en-
vironment conditions frequently encountered in urban areas. It was argued that
the utilization of model knowledge supports the design of localization systems that
are intended to meet specified performance requirements while avoiding overly pes-
simistic design decisions.

The key contributions, a discussion of the overall results and concluding remarks
are summarized in the following section. This section allows to give an answer to
the main research question. A perspective for future research directions is provided
in the consecutive section.

Conclusion

Contributions to increasing the robustness of localization system have been made
throughout this thesis. The developed system architecture entails robust map
matching, analytical redundancy as well as recovery and consistency checking capa-
bility as core components.

Data association remains a fundamental problem in automated driving and vehi-
cle localization in specific. In the context of map-relative vehicle localization, data
association occurs when the correspondences between sensor observations and the
localization map or between several sets of sensor observations have to be deter-
mined. This task becomes more challenging as the inconsistencies between the data
sources increases. This is often given for outdated localization maps and respective
sensor observations. Furthermore, urban environments are heterogeneous that can
be encountered when driving from an area with dense vegetation to a road with
house wall on both sides of the road. A comparison of different matching algorithms
was conducted in this thesis in order to determine a well suited class of algorithms for
this challenging task. On this basis, it was proposed to utilize spectral registration
based on the Fourier-Mellin transformation (FMT). This approach was based on
the fast Fourier transformation (FFT) for which efficient software and hardware im-
plementations for real-time operation are available which distinguishes it from other
correlation-based registration procedures. The selection was further motivated by
the observation that the algorithm has the potential to deal with inconsistent input
data and varying structural properties of the vehicle surrounding. This approach
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was adapted to the requirements of automated driving (AD) (rq1, kc1, Section 1).
For the task of vehicle pose initialization from inaccurate pose information, a robust
spectral registration algorithm was developed (rq1, kc1 ). The developed algorithm
led to a significant increase in the matching rate from approximately 80 % to above
99 %. Different parameterizations of the spectral registration algorithm lead to sig-
nificant changes in the algorithm characteristics. This enables a broad utilization of
the developed registration algorithm. Thus, the robust registration algorithm was
used for initialization of the localization system (rq3, kc1 ) and for map matching
during normal operation beside other applications.

The required localization accuracy has great impact on the localization system
design. Consequently, the development of the localization system started with an
analysis of the localization requirements. The resulting accuracy of approximately
0.2 m translational accuracy was used as basis for the derivation of localization sys-
tem design parameters. Due to complex interrelations between design parameters,
the urban operation environment and the resulting localization accuracy, statistical
model were developed to support design decisions (rq2, kc2 ) and gain a deeper un-
derstanding of localization systems. The model was obtained by error propagation
from uncertain sensor observations to the end of the whole signal processing chain
of the localization system. Important model parameters are the map matching ac-
curacy and the matching rate. Beside other applications, this approach was utilized
to determine minimum feature detection rates and accuracies. Additionally, the
matching rate requirements were utilized to support threshold selection for the de-
tection of invalid map matching results based on the signal-to-noise ratio (SNR). By
enabling the quantification of expert knowledge, utilization of the statistical model
framework contributed to an enhancement of the localization robustness. Simulta-
neously, the gain in robustness can be traded against computational efficiency, e.g.
by increasing or decreasing the accuracy of the map matching algorithm.

The model-based design step underlined the importance of accurate motion esti-
mation for cases of prolonged map matching failure sequences. Therefore, a light
detection and ranging (LiDAR) scan based odometry was developed on the basis of
spectral registration (rq6, kc1 ). Experimental evaluations on the basis of challeng-
ing urban data sets resulted in an average position drift of 0.21%. For data sets
with high numbers of sharp turns, the scan-based odometry outperformed classical
wheel odometry. It was shown that the mounting height of the LiDAR sensor has
a decisive influence on the motion estimation accuracy. For low mounting heights,
occlusions led to a decreased detection range which had negative influence on the
turning angle estimation accuracy. LiDAR scans are the only required inputs and
thereby, the approach is well suited as a source of motion estimates independent
of the wheel odometry that might suffer from wheel slippage. For vehicle system
operation in previously unmapped areas like parking garages, a SLAM framework
was developed. With different parameterizations of the spectral registration algo-
rithm, consecutive LiDAR scans could be matched and loop closure hypotheses be
generated. The resulting mapping accuracy was shown to provide sufficiently accu-
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rate results in challenging urban environments. By utilization of the same matching
algorithm throughout several processing steps in the localization system, a low num-
ber of different algorithms could be achieved. This might have positive influence on
the system complexity and could thereby form a further contribution to robustness
improvement.

The developed multilayer adaptive Monte Carlo localization (ML-AMCL) frame-
work (rq5, kc1 ) enabled the generation of global vehicle pose estimates. Separate
instance of a localization algorithm were executed in parallel and subsets of the
current LiDAR measurement were used as inputs. Consistency checking against
sequences of odometry measurements then enabled the identification of consistent
localization results which were fused to the final localization output. Thereby, the
sensitivity against inconsistent sensor observations could be reduced relative to the
standard adaptive Monte Carlo localization (AMCL) implementation. A pose re-
finement step on the basis of spectral registration and pole-based map matching was
then executed to obtain an accurate estimate of the vehicle pose. Undetected invalid
map matching results can cause localization system failures and shall be avoided.
In areas with sparse structures like expansive intersections, the spectral registration
procedure tends to show performance degradation. Therefore, analytical redundancy
and consistency checking capability were introduced to the localization system to
increase the availability of valid matching results and detect invalid results (rq4,
kc1 ). The selection of matching algorithms for densely and sparsely structured ar-
eas has proven to be a promising approach, due to the orthogonality of the respective
approaches. This led to the incorporation of a pole-based map matching approach
which was well suited for localization in intersection areas. Experimental evalua-
tions showed, that the resulting localization algorithm gives almost identical results
for significantly outdated and updated localization maps. This result indicates the
robustness of the developed approach against outdated localization maps.

In conclusion, the main research question can be positively answered on the ba-
sis of the previously described contributions. A global estimate of the vehicle pose
was provided by ML-AMCL. Localization system initialization and recovery can be
reliably performed by utilization of the proposed matching procedure. The newly
developed localization system was then used for increasing the vehicle pose estima-
tion accuracy. Challenges of urban environments were addressed by robust data
association and consistency checking. The goal was not to achieve the centimeter-
precision of a differential global positioning system (dGPS) system, but to meet the
localization accuracy requirements. This was enabled by the model-based design of
localization system parameters.

Future work

The development of automated vehicle systems begins to speed up as more research
institutes and companies start new related activities. Connectivity and increased
environment perception capabilities, fostered by machine learning, are two influential
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directions of development. Both have an impact on future research perspectives for
vehicle localization.

Connectivity might open up new interesting research perspectives for automated
driving in general and vehicle localization in particular. Currently, communication
technology starts to enter modern vehicle systems. Therefore, it is argued that
connected vehicle systems can and will greatly contribute to further increase the
performance of today’s localization systems. By enabling the communication be-
tween different vehicles and with infrastructure elements, an additional source of
vehicle pose information can be made accessible. First research results strengthen
this hypothesis. The introduction of communication technology to the automated
vehicle system in general and the localization system in specific, leads to new chal-
lenging questions regarding system robustness and functional safety. These new
challenges include data security which is mandatory for avoiding external attacks of
any kind.

Environment perception is likely to further improve throughout the next years by
the introduction of innovative sensor technologies and their combination. This de-
velopment is accompanied by new results in the area of signal processing. The latter
is more frequently left to machine learning based approaches, allowing for a better
situational awareness as well as an increased amount of extractable information from
uncertain sensor observations. Consequently, the dependence on additional infor-
mation from digital maps that motivated the importance of vehicle localization in
Section 1 might be reduced. Thus, this trend could lead to reduced requirements on
the localization accuracy. Thereby, the focus is shifted from highly accurate vehicle
pose estimation to the fusion of heterogeneous information sources, their temporal
synchronization and calibration.
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Querführungsassistenz für alltäglich wiederkehrende Fahrhandlungen
des ruhenden Verkehrs. In 14. Braunschweiger Symposium (AAET),
Automatisierungs-, Assistenzsysteme und eingebettete Systeme für
Transportmittel, 2013.



160 Supervised theses

Supervised theses

[Jat16] Inga Jatzkowski. LiDAR reference localization for automated driving. Mas-
ter’s thesis, Leibniz University Hannover, 2016.

[Lat16] Liana Lattin. Radar-based mapping in urban environments. Master’s the-
sis, Hochschule Esslingen, 2016.
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for a 6-dof spectral registration method as basis for sonar-based
underwater 3d slam. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 3049–3054, May 2012.

[PBS+10] M. Pfingsthorn, A. Birk, S. Schwertfeger, H. BÃ1
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