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ESTIMATION OF TRANSLATION, ROTATION AND SCALING

BETWEEN NOISY IMAGES USING THE FOURIER MELLIN

TRANSFORM

Jérémie Bigot, Fabrice Gamboa & Myriam Vimond

June 2008

Abstract

In this paper we focus on extended Euclidean registration of a set of noisy images. We
provide an appropriate statistical model for this kind of registration problems, and a new
criterion based on Fourier-type transforms is proposed to estimate the translation, rotation
and scaling parameters to align a set of images. This criterion is a two step procedure
which does not require the use of a reference template onto which aligning all the images.
Our approach is based on M-estimation and we prove the consistency of the resulting
estimators. A small scale simulation study and real examples are used to illustrate the
numerical performances of our procedure.
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1 Introduction

A fundamental task in image analysis is the comparison of two images or multiple sets of
pictures. Generally, to compare similar objects, it is necessary to find a common referential to
represent them. In many applications, it is therefore required to perform image registration i.e.
to compute a function that warps an observed image to a given template (a reference image)
or that aligns multiple sets of pictures. There are many applications of image registration:
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among others we can cite face and pattern recognition, characterization of population variation
when comparing images arising from different subjects, construction of brain atlas. The
transformation may be parametric or nonparametric and constrained to be one-to-one. There
is a wide literature on the subject and many methods have been proposed (see e.g. Brown [5],
Glasbey and Mardia [16] for detailed reviews on image warping).

Choosing a proper definition of an image is a difficult task. There are several properties,
each one highlighting different properties of images. The images may be viewed as continuous
functions, sets of points on a picture (pixels or landmarks) or shapes. In practice, we always
observe noisy images. The observation noise may be due either to observations measures or
directly to the way the images are generated. This makes difficult the comparisons between
different images. Over the last decade, progress has been made in defining appropriate
distances between shapes or images to compare them. These distances are based on the use
of deformation costs and transformation groups to model the variability of natural images.
Originating in Grenander’s pattern theory the study of the properties and intrinsic geometries
of such deformation groups is now an active field of research (Beg et al. [3], Klassen et al.

[24], Marsland & Twining [27], Michor & Mumford [28], Trouvé & Younes [35]). Most of the
existing results are stated in a deterministic setting while results in a random framework that
are concerned with the estimation of deformations or a template image are scarce.

Techniques in the statistical framework for noisy images include the penalized likelihood
approach of Glasbey and Mardia [17], and the small deformations shape analysis using
Bayesian procedures in parametric models recently proposed by Allassonnière et al. [1]. Note
that in Allassonnière et al. [1], the template is not treated as an image, but is parameterized
in some fashion using some functional approximation method. Then a prior is set on the
parameters of the model, and a Bayesian estimation procedure using the EM algorithm is
performed. Goodall [18] has proposed a statistical parametric model and maximum likelihood
estimation for the Procrustes analysis of a set of shapes (i.e. landmarks) that differ by at most a
rotation, a translation and isotropic scaling, while a large overview of existing methods for the
statistical analysis of shapes can be found in Dryden & Mardia [12]. However, to the best of
our knowledge, none work present fulfill responses to the specific problem of estimating rigid
transformations between noisy images.

In this paper we focus on extended Euclidean registration of a set of images. We define
an extended Euclidean transform as a rigid transform composed of three basic transforms:
translation, scaling and rotation. When two images differ only by a translation, the phase
correlation technique is a well known technique based on the shift property of the Fourier
transform to estimate the translation parameter (Kuglin & Hines [20]). To account for rotations
and scaling, the images can be transformed into a polar or log-polar Fourier-type domain.
In these representations, rotation and scaling are reduced to translations and can then be
estimated using phase correlation. Various techniques have thus been proposed to match two
images that are translated, rotated and scaled with respect to one another. All these methods
are usually based on the Fourier transform (see e.g. Reddy & Chatterji [31], De Castro &
Morandi [10]), the pseudo-polar Fourier transform (Keller et al. [22], [23]) or the Fourier-
Mellin transform which is a Fourier-type transform defined on the similarity group that is
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invariant to scaling and rotation (Derrode & Ghorbel [9]). Generally, the estimation of the
extended Euclidean transform between two images is performed in two steps. First, one uses
the modulus of the Fourier transform expressed in polar coordinates to estimate the rotation
and the scaling differences between the two images. Then, in a second step, one of the image is
registered onto the other one using the estimated parameters for the rotation and the scaling,
and the translation displacement is found by using the classical phase correlation technique.

We propose to analyze one of these two steps procedures from a statistical point of view
to register a set of noisy images which are translated, rotated and scaled version of the
same but unknown template. Our contribution is twofold. First, we give a new criterion to
simultaneously register a set of images that does not require the use of a reference template
onto which the images are aligned. More precisely, the estimators of the warping parameters
are defined as the minimum of appropriate contrast functions. These contrast functions are
built from the "shift property" of the Fourier Transform and the Fourier-Mellin Transform.
Consequently, we show that a gradient descent algorithm can be easily implemented to
compute estimators of extended-Euclidean transforms. Secondly, we prove the consistency
(Theorem 4.1 and Theorem 4.3) of this two step procedure from an asymptotic point of view
when the images are observed with a Gaussian noise. The technique follows the classical guide
lines for the proof of convergence of M-estimators for parametric models as described e.g. in
van der Vaart [36].

In the next section, we present a semi-parametric model for the problem of extended
Euclidean registration for a set of images. We introduce some notations and we give some
mathematical details about this model. In particular we justify the use of a white noise model
which can be interpreted as a kind of continuous model for gray-level images. Then, we discuss
identifiability conditions for our model. In section 3, we recall the standard invariance property
of the Fourier transform for translation and we present the analytical Fourier Mellin transform
which is a Fourier type transform proposed by Ghorbel [15] that is invariant to scaling and
rotation. Then, in section 4, we propose a new criterion to simultaneously register a set of
images. In a first step, we estimate the scaling and rotation parameters, and in a second step we
find the shift differences between the images. We analyze this procedure from an asymptotic
point of view, and we prove the consistency of the resulting estimators. Section 5 addresses the
practical issues of the proposed estimation procedure. We conduct a short Monte Carlo study
on the efficiency and rate of convergence of the estimator, and we illustrate our methodology
on a real example. Furthermore, we discuss some possible extensions of the method in more
general contexts. We conclude the paper by a technical appendix that provides the proofs of
the results.

2 A parametric model for extended Euclidean registration

To motivate our parametric model for extended Euclidean registration, consider the following
real example of image registration. In Figure 2.1, we display images (possibly noisy) of two
butterflies with different shapes that have been observed with various size, orientation and
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location. The purpose of image registration is to recover the scaling, rotation and translation
parameters to align the images corresponding to the same butterfly (first or second row in
Figure 2.1).

(a) (b) (c) (d) (e) (f)

Figure 2.1: Images (a),(b) and (c) represent the same butterfly observed with various size,
orientation and location. Images (d),(e) and (f) represent another butterfly with a different
shape observed with various size, orientation and location.

2.1 Model assumptions

An extended Euclidean transformation is a parametric mapping φa,b,θ : R2 7→ R2 composed of
three basic operations: translation (or shift) by a factor b ∈ R2, scaling by a factor a ∈ R+, and
a rotation of angle θ ∈ [0, 2π[. For any vector x = (x1, x2) ∈ R2, φa,b,θ(x) can thus be written as

φa,b,θ(x) =
1
a

Aθ(x − b),

where Aθ is the 2 × 2 matrix given by

Aθ =

[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

.

A grey level image can be modelled by a real valued function g : R2 → R with a compact
support D ⊂ R2. For simplicity, we shall consider that D is a square of side length d > 0
centered at the origin. We denote by Lp(D) (p = 1, 2) the usual class of p-integrable
functions on R2 which are supported on D. This space is endowed with the norm ‖g‖Lp(D) =
(∫

D
|g(x)|pdx/(2π)

)1/p. Then, for any function g ∈ Lp(D), its deformation by an extended
Euclidean transform φa,b,θ : R2 → R2 is the function g ◦ φa,b,θ.

For a set of J noisy images, we consider the following white noise model : for j = 1, . . . , J

and x = (x1, x2) ∈ D

dYj(x1, x2) = f (φa∗j ,b∗j ,θ∗j
(x1, x2))dx1dx2 + ǫdWj(x1, x2), (2.1)

where Wj, j = 1, . . . , J are standard Brownian sheets on D, and ǫ is an unknown noise level
parameter. The function f : D → R is an unknown image and a∗j , b∗j , θ∗j , j = 1, . . . , J are
respectively unknown scaling, translation and rotation parameters that we wish to estimate.
The image f can thus be viewed as an unknown template onto which the images f j =

f ◦ φa∗j ,b∗j ,θ∗j
, j = 1, . . . , J should be registered. To properly define the transformed images f j,

we make the following assumptions:
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A1 the image f is zero outside a sub-domain Ω of D and satisfy certain regularity conditions
to be defined later.

A2 the scaling, translation and rotation parameters belong to a set C of the form

(a∗j , b∗j , θ∗j ) ∈ C = [amin, amax]× [−bmax, bmax]
2 × [0, 2π[, for all j = 1, . . . , J, (2.2)

where the values amin, amax and bmax are user-defined (strictly positive) parameters which
reflect our prior knowledge on the amount of mis-alignment between the images.

A3 the scaling, translation and rotation parameters are such that for any 1 ≤ j ≤ J the image of
the sub-domain Ω by the transformation φa∗j ,b∗j ,θ∗j

is contained in D i.e. for all (x1, x2) ∈ Ω

and all j = 1, . . . , J

φa∗j ,b∗j ,θ∗j
(x1, x2) ∈ D. (2.3)

With these assumptions (A1-A3), all the images f j belong to L2(D), and correspond to
translated, rotated and scaled versions of the same image observed on a black background
(if we choose to code a zero-valued pixel by the black color). This model corresponds therefore
to the real example that we have presented at the beginning of this section (see the first and
second rows of Figure 2.1).

We shall analyze the properties of M-estimators for the parameters a∗j , b∗j and θ∗j from
an asymptotic point of view i.e. when the noise level parameter ǫ tends to 0 in the model
(2.1). The white noise model (2.1) is a continuous model which has been proven to be a
very useful theoretical tool for the study of nonparametric regression problems for 2D images.
Since real images are typically discretely sampled on a regular grid, the model (2.1) may
seem inappropriate at a first glance. However, it has been shown by several authors that
asymptotic results obtained in the white noise model lead to comparable asymptotic theory
in a sampled data model such as the standard nonparametric regression problem with an
equi-spaced design. We shall not elaborate more on this point and we refer to Brown &
Low [6], Donoho & Johnstone [11] for a clean and extensive study of the relationship between
optimal procedures in continuous and sampled data models and further references. The white
noise model should be interpreted in the following sense: for any function g ∈ L2(D) each
integral

∫

D g(x1, x2)dY(x1, dx2) of the “data” dY(x1, x2) = f (x1, x2)dx1dx2 + ǫdW(x1, x2) is
a random variable normally distributed with mean

∫

D f (x1, x2)g(x1, x2)dx1dx2 and variance
ǫ2
∫

D (g(x1, x2))
2 dx1dx2.

Therefore, if
∫

D f (x1, x2)g(x1, x2)dx1dx2 represents a coefficient of f into some basis of
functions, then

∫

D g(x1, x2)dY(x1, dx2) is modeled as the sum of the true coefficient of f plus
some Gaussian noise. However, in our proofs of consistency for the estimators that we shall
propose, the Gaussian assumption can be substituted by an assumption on the moment of the
noise. Therefore, our procedure is somewhat robust to non-Gaussian noise.

In the context of inverse problems for 2D images, Candès & Donoho [7] have obtained nice
theoretical results by modelling noisy tomographic data within the white noise model. The
analysis of Candès & Donoho [7] yields estimators which are computationally tractable for
sampled data and which lead to very satisfactory results for real images as expected by their
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theoretical approach. Results such as those obtained by Candès & Donoho [7] are thus our main
motivation for using white noise models such as (2.1) to analyze registration problems for 2D
images from a statistical point of view. Moreover, when dealing with registration problems
for discrete images defined on a Cartesian grid, one usually faces the problem of interpolating
an image to calculate its deformation by a rigid transformation. Such interpolation problems
complicate significantly the asymptotic analysis of registration problems for sampled images.
Hence, we prefer to avoid this approach in order to focus on the statistical properties of our
estimators rather than on the bias introduced by the discretization of the problem.

2.2 Identifiability of the model

Let A denote the space [amin, amax]J × [−bmax, bmax]2J × [0, 2π[J . Note that if we replace α∗ =

(a∗1 , . . . , a∗J , b∗1 , . . . , b∗J , θ∗1 , . . . , θ∗J ) ∈ A by

α =





































a1
...

aJ

b1
...

bJ

θ1
...

θJ





































=







































a∗1 a0
...

a∗J a0

b∗1 + a1 A−θ1b0
...

b∗J + aJ A−θJ
b0

θ∗1 + θ0
...

θ∗J + θ0







































with a0 ∈]0, +∞[, b0 ∈ R2, θ0 ∈ [0, 2π[, then it is easy to see that the model (2.1) is
left unchanged with f replaced by f ◦ φa0,b0,θ0 . This model is therefore not identifiable. To
ensure identification, we further assume that the set of parameters A is reduced to the subset
A1 ×A2 ⊂ A such that

A1 = {(a1, . . . , aJ , θ1, . . . , θJ) ∈ [amin, amax]
J × [0, 2π[J , such that a1 = 1, θ1 = 0},

and
A2 = {(b1, . . . , bJ) ∈ [−bmax, bmax]

2J , such that b1 = (0, 0)}.

(a∗1 = 1, b∗1 = (0, 0), θ∗1 = 0) (2.4)

Note that with the above identifiability condition, we implicitly assume that the sub-domain Ω

and the constants amin, amax defined previously are such that amin ≤ 1 ≤ amax (see Assumptions
A1 and A2). All the images will thus have the same orientation as f1 since the scaling, rotation
and translation parameters for j = 2, . . . , J are defined with respect to the first image. However,
as we shall see in the next section, the condition (2.4) does not mean that the image f1 is
considered as a template on to which we align all the other images.
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3 Fourier transforms invariant to translation, scaling and rotation

3.1 The standard Fourier transform and its shift property for translation

For ω ∈ R2, we recall that the Fourier transform of a function g ∈ L1(R2) ∩ L2(R2) is defined
as

ĝ(ω) =
∫

R2
g(x)e−iω·x dx

2π
,

where ω · x denotes the usual scalar product between ω and x. Note that the Fourier transform
of ĝa,b,θ = g ◦ φa,b,θ is

ĝa,b,θ(ω) = a2eiω·b ĝ(aAθω). (3.1)

In particular, for a = 1 and θ = 0, we obtain the classical shift property of the Fourier transform
for translation,

ĝ1,b,0(ω) = eiω·b ĝ(ω). (3.2)

These two last properties are used thereafter.

3.2 The analytical Fourier-Mellin transform and its shift property for scaling and

rotation

The Fourier-Mellin transform is a Fourier-type transform defined on the similarity group.
Several authors have developed Fourier-type transforms for studying various specific groups
of transformations in the context of 2D or 3D image analysis. Some references on this topic
include Derrode & Ghorbel [9], Ghorbel [15], Lenz [25], Gauthier, Bornard & Silbermann [14],
Segman, Rubinstein & Zeevi [33].

Throughout this paper, we denote by Z the additive group of integers, R the additive group
on the real line, R∗

+ the multiplicative group of strictly positive reals and S1 the unit sphere in
R2. All these sets are locally compact groups. In what follows, it will be convenient to represent
any element of S1 by an element of the interval [0, 2π[. The direct product G = R∗

+ × S1 forms
a locally compact group of planar similarities whose Haar measure is given by dµ(r, θ) = dr

r
dθ
2π

where dr and dθ denote the standard Lebesgue measures on R∗
+ and [0, 2π[ respectively.

The measure dµ(r, θ) is the positive and invariant measure on G and the dual group of G is
Ĝ = Z×R. It is therefore possible to define a Fourier transform for functions defined on G (see
Rudin [32]). To be more precise, we define Lp(G) as the space of integrable (p = 1) and square
integrable (p = 2) real valued functions defined on G such that:

‖ f‖
p

Lp(G)
=
∫ +∞

0

∫ 2π

0
| f (r, θ)|p

dθ

2π

dr

r
< +∞

Let g ∈ L2(R2) be a 2D image such that g ∈ L1(G) when expressed in polar coordinates (i.e.
when we make the change of variables x1 = r cos(θ), x2 = r sin(θ) for (x1, x2) ∈ R2). The
standard Fourier-Mellin transform (FMT) of g is then given by

∀(k, v) ∈ Z× R,M̃g(k, v) =
∫ +∞

0

∫ 2π

0
g(r, θ)r−ive−ikθ dθ

2π

dr

r
. (3.3)
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As explained e.g. in Derrode & Ghorbel [9], the FMT may be difficult to compute in practice
since real images are generally not in L1(G). To see this, note that the FMT transform exists
for functions g(r, θ) which are equivalent to rσ in the neighborhood of the origin (r = 0)
for some constant σ > 0. However, a real image usually does not meet this condition since
in the vicinity of the origin the gray level of an image is generally different from zero. To
overcome these difficulties, Derrode & Ghorbel [9] and Ghorbel [15] have proposed to replace
the function g(r, θ) in equation (3.3) by the function gσ(r, θ) = rσg(r, θ) for some positive and
fixed constant σ whose choice will be discussed later. This re-weighting by the factor rσ leads
to the definition of the so-called Analytical Fourier-Mellin Transform (AFMT) for a function g

such that gσ ∈ L1(G):

∀(k, v) ∈ Z×R, Mg(k, v) =
∫ +∞

0

∫ 2π

0
g(r, θ)rσ−ive−ikθ dθ

2π

dr

r
. (3.4)

If
∫ +∞

−∞ ∑k∈Z |Mg(k, v)|dv < +∞, then the inverse AFMT can be used to retrieve g as:

∀(r, θ) ∈ [0, +∞[×[0, 2π[, rσg(r, θ) =
∫ +∞

−∞
∑
k∈Z

Mg(k, v)riveikθdv. (3.5)

Moreover, if gσ ∈ L1(G) ∩ L2(G), the AFMT preserves the energy of the function. More
precisely, the following Parseval relationship holds (see Rudin [32] for further details)

‖gσ‖
2
L2(G) =

∫ +∞

−∞
∑
k∈Z

|Mg(k, v)|2dv. (3.6)

Now, let a > 0 and θ ∈ [0, 2π[, and consider the function ga,θ defined as ga,θ(x) = g( 1
a Aθx)

for x ∈ R2. When we express the function ga,θ in polar coordinates, we easily see that its AFMT
is given by

∀(k, v) ∈ Z× R, Mga,θ (k, v) = aσ−iveikθMg(k, v) (3.7)

Hence, while the standard Fourier transform converts translation into a pure phase change
into the Fourier domain, equation (3.7) shows that the AFMT converts scaling and rotation
into a complex multiplication in the Fourier-Mellin domain. This relation can be seen as a shift
property of the AFMT for the similarity transforms.

4 A two-step procedure for the registration of a set of images

For
α = (a1, . . . , aJ , b1, . . . , bJ , θ1, . . . , θJ) ∈ A,

we could propose to minimize the following criterion inspired by recent results of Gamboa et

al. [13] and Vimond [37] for the estimation of shifts between curves:

Q(α) =
1
J

J

∑
j=1

‖ f j ◦ φ 1
aj

,b̃j,−θj
−

1
J

J

∑
j′=1

f j′ ◦ φ 1
a

j′
,b̃j′ ,−θj′

‖2
L2(R2). (4.1)
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where b̃j = − 1
aj

Aθj
bj. This criterion is closely related to Procrustes analysis which is classically

used for the statistical analysis of shapes (see e.g. Mardia & Dryden [26]) and the criterion
which has been proposed by Ramsay and Li [30] for the registration of a set of curves onto
a common target function. Here, the common template function is defined as the average of
the synchronized images by the transformations φaj,bj,θj

. Obviously, this criterion Q(α) has a
minimum at

α∗ = (a∗1 , . . . , a∗J , b∗1 , . . . , b∗J , θ∗1 , . . . , θ∗J )

such that Q(α∗) = 0. In practice, we observe noisy images, and we could therefore choose to
minimize the equation (4.1) by replacing the f j’s by the Y′

j s to obtain a simultaneous estimation
of the scaling, translation and rotation parameters. By using the principle of M-estimation
[36] with an appropriate denoising of the images, one could prove that the minimum of
the cost function (4.1) converges to the parameters α∗ when the level of noise ǫ tends to 0.
However, from a numerical point of view, to evaluate Q(α) for any set of parameters α we
need to calculate the deformation of the f j’s by the transformations φaj,bj,θj

which requires an
interpolation of the images. A simple minimization of Q(α) is certainly not obvious as it is
a highly nonlinear function of α and for instance a gradient-based algorithm would require
the evaluation of the derivatives of the images which can be very difficult in the presence of
noise. Therefore, to minimize such a criterion for real data, one needs to find an efficient way
to smooth the observed images to reduce the noise, and also to find some procedure to align
the images.

Our method provides an efficient solution to both the problem of aligning the images, and
to the problem of noise removal. It relies mainly on the Fourier transform of the data, the
shift properties (3.1) and (3.4) and Parseval equalities. Indeed in the Fourier domain, aligning
images only amounts to a modification of the amplitude and the phase of the observed Fourier
coefficients. Moreover, we carefully study the problem of noise removal by selecting only
low-frequency coefficients to perform both image alignment and image denoising, which is
necessary to obtain consistent estimators.

To be more precise, suppose first that all the bj’s are zero, i.e. the images differ only by a
scaling and a rotation. In this case, thanks to the shift property (3.7) of the AFMT for scaling and
rotation and from the Parseval relation (3.6) we derive that the criterion Q(α) can be written as
(if we take the L2(G)-norm instead of the L2(R2)-norm in the definition of Q(α))

Q1(α1) =
1
J

J

∑
j=1

∫ +∞

−∞
∑
k∈Z

∣

∣

∣

∣

∣

a−σ+iv
j e−ikθjM f j

(k, v) −
1
J

J

∑
j′=1

a−σ+iv
j′ e−ikθj′M f j′

(k, v)

∣

∣

∣

∣

∣

2

dv, (4.2)

with α1 = (a1, . . . , aJ , θ1, . . . , θJ). Similarly, if we suppose that all the aj’s are equal to one and
all the θj’s are zero (i.e. the images differ only by a translation), then due to the shift property
(3.2) of the Fourier transform for translation and by Parseval, we obtain that the criterion Q(α)

can be written as

Q2(α2) =
1
J

J

∑
j=1

∫

R2

∣

∣

∣

∣

∣

eiω·bj f̂ j(ω) −
1
J

J

∑
j′=1

eiω·bj′ f̂ j′(ω)

∣

∣

∣

∣

∣

2

dω, (4.3)

9



with α2 = (b1, . . . , bJ). Equation (4.2) shows that we only have to properly modify the phase
and the amplitude of the AMFT of the f j’s to calculate the value of the criterion Q1(α1), while
equation (4.3) shows that the calculation of Q2(α2) only requires to modify the phase of the
Fourier transform of the f j’s. Note that computing Fourier-type transforms and modifying the
Fourier coefficients to align the images is thus a simple way of interpolating and smoothing the
images. Moreover, we will show that the minimum of criterions similar to Q1(α1) and Q2(α2)

can be easily obtained by a gradient descent algorithm.
However, one cannot find a transformation which has a shift property simultaneously for

the scaling, rotation and translation parameters of an image. Hence, in the next section we use
a two-step procedure which relies on two M-type criterions inspired by the formulation (4.1)
using first the AMFT for the estimation of scaling and rotation, and then the Fourier transform
for the estimation of translations.

4.1 A criteria for simultaneously estimating scaling and rotation

Note that given our assumptions on the parameters a∗j , b∗j and θ∗j , we have that

Ŷj(ω) =
∫

D
e−iω·x dYj(x)

2π
= f̂ j(ω) + ǫŴj(ω), ω ∈ R2, (4.4)

with Ŵj(ω) =
∫

D e−iω·x dWj(x)
2π . If we consider the squared modulus of the Fourier Transform of

the data, then equation (4.4) becomes

|Ŷj|
2(ω) = | f̂ j|

2(ω) + ǫwj(ω), ω ∈ R2, (4.5)

with for all ω ∈ R2,

| f̂ j|
2(ω) = |a∗j |

4| f̂ |2(a∗j Aθ∗j
ω),

wj(ω) = 2ℜ
[

f̂ j(ω)Ŵj(ω)
]

+ |Ŵj|
2(ω),

where ℜ(c) denotes the real part of a complex number c. In order to simplify the notations, all
points (r, θ) of G is associated to its Cartesian coordinates ω = (r cos θ, r sin θ) ∈ R2, and vice-
versa. As we have taken the modulus of the Fourier transform of the images, the functions | f̂ j|

2

differ from | f̂ |2 only by a scaling and a rotation. If we apply the AFMT to the functions | f̂ j|
2,

where σ is chosen such that rσ| f̂ |2 ∈ L1(G) (for example σ = 2), then equation (3.1) implies
that for all v ∈ R, k ∈ Z

M| f̂ j|2
(k, v) = a∗j

4−σ+ivM| f̂ |2(k, v)eikθ∗j . (4.6)

Thus, for α1 = (a1, . . . , aJ , b1, . . . , bJ) ∈ A1, we propose to minimize the following criterion:

M(α1)=
1
J

J

∑
j=1

∫ 2π

0

∫ +∞

0

∣

∣

∣

∣

∣

a−4
j rσ| f̂ j|

2(
r

aj
, θ−θj)−

1
J

J

∑
j′=1

a−4
j′ rσ| f̂ j′ |

2(
r

aj′
, θ−θj′)

∣

∣

∣

∣

∣

2
drdθ

r2π
.
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Obviously, the criterion M(α1) has a minimum at α∗
1 = (a∗1 , . . . , a∗J , θ∗1 , . . . , θ∗J ), such that

M(α∗
1) = 0. Given our assumptions on the f j’s, the Parseval relation (3.6) for the AFMT and

equation (4.6) we have that the criterion M(α1) can also be expressed as:

M(α1) =
1
J

J

∑
j=1

∫

R
∑
k∈Z

∣

∣

∣

∣

∣

cj(k, v) −
1
J

J

∑
j′=1

cj′(k, v)

∣

∣

∣

∣

∣

2

dv, (4.7)

where
cj(k, v) = aj

−4+σ−ivM| f̂ j|2
(k, v)e−ikθj . (4.8)

However, due to the noise in the original images, we do not observe directly the cj(k, v)’s
but noisy coefficients. Moreover, the stochastic functions ω 7→ |Ŷj|

2(ω) are certainly
not integrable on R2. Thus, in order to satisfy integrability properties, the Fourier-Mellin
coefficients are estimated by:

Mǫ
|Ŷj|2

(k, v) =
∫ δǫ

0

∫ 2π

0
|Ŷj|

2(r, θ)rσ−ive−ikθ dθ

2π

dr

r
(4.9)

= Mǫ
| f̂ j|2

(k, v) + ǫMǫ
wj

(k, v), (4.10)

where

Mǫ
| f̂ j|2

(k, v) =
∫ δǫ

0

∫ 2π

0
| f̂ j|

2(r, θ)rσ−ive−ikθ dθ

2π

dr

r

Mǫ
wj

(k, v) =
∫ δǫ

0

∫ 2π

0
wj(r, θ)rσ−ive−ikθ dθ

2π

dr

r
,

and δǫ is appropriate smoothing parameter to be defined below. Then we define,

dǫ
j (k, v) = aj

−4+σ−ivMǫ
|Ŷj|2

(k, v)e−ikθj ,

and we propose the following M-type criterion

Mǫ(α1) =
1
J

J

∑
j=1

∫

|v|≤vǫ

∑
|k|≤kǫ

∣

∣

∣

∣

∣

dǫ
j (k, v) −

1
J

J

∑
j′=1

dǫ
j′(k, v)

∣

∣

∣

∣

∣

2

dv (4.11)

where kǫ and vǫ are also smoothing parameters to be defined below.
Obviously, the template image f should not be invariant to some rotation else one cannot

guarantee a unique minimum for the criterion M(α1). For any real function f , we have that
| f̂ |2(r, θ) = | f̂ |2(r, θ + π), and thus the criterion M(α1) is left unchanged if one replaces the
rotation parameter θj by θj + π. Hence, to guarantee the existence of a unique minimizer for
M(α1), we shall minimize this criterion over the set Ã1 defined by

Ã1 = {(a1, . . . , aJ , θ1, . . . , θJ) ∈ [amin, amax]
J × [0, π[J , such that a1 = 1, θ1 = 0}.

The invariance to rotation of an image can be characterized via the coefficients of its AFMT.
Since M| f̂ |2(2k + 1, v) = 0 for any k ∈ Z , we introduce the following definition:
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Definition 4.1 A function f ∈ L2(D) such that rσ| f̂ |2 ∈ L1(G) is said to be not rotation invariant
if there exists two relatively prime integer (k, k′) ∈ Z2 such that the functions v 7→ M| f̂ |2(2k, v) and

v 7→ M| f̂ |2(2k′, v) are not identically equal to 0.

Then, if the image f is not rotation invariant and satisfies some smoothness properties, the
following theorem provides the consistency of the M-estimator defined by

α̂ǫ
1 = arg min

α1∈Ã1

Mǫ(α1).

Theorem 4.1 Assume that f is not rotation invariant. Let s > 0 and assume that

∫

v∈R
∑
k∈Z

|M| f̂ |2(k, v)|2dv < +∞ (4.12)

∫

ω∈R2
| f̂ (ω)|2|ω|2sdω < +∞ (4.13)

σ < 2s + 2 (4.14)

Suppose that kǫ, vǫ and δǫ are such that as ǫ → 0

kǫ, vǫ, δǫ → +∞

δ−4−4s+2σ
ǫ kǫvǫ = O(1) (4.15)

ǫ2δσ
ǫ kǫvǫ = o(1), (4.16)

then α̂ǫ
1 converges in probability to α∗

1 for the standard Euclidean norm in RJ ×RJ .

A few remarks about the conditions of Theorem 4.1 can be made. First, since the function f

is supported on a compact set, f lies in L1(R2) ∩ L2(R2) and f̂ ∈ L2(R2). Thus there exist σ ≤ 2
such that rσ| f̂ |2 lies in L1(G) : the AFMT of | f̂ |2 is well defined.

The condition (4.12) means that rσ| f̂ |2 lies in L2(G). By Parseval equality, we may write
∫

v∈R
∑
k∈Z

|M| f̂ |2(k, v)|2dv =
∫

ω∈R2
| f̂ (ω)|4|ω|2σ−2 dω

2π
.

Observe when it is well defined, | f̂ (ω)|2 is the Fourier transform of the auto-convolution,

x ∈ R2 →
∫

ω∈R2
f (y) f (y − x)dy. (4.17)

So that, when σ ≥ 1, Assumption (4.12) implies that the function (4.17) lies in the Sobolev
space of order σ − 1. When σ < 1, Assumption (4.12) is a consequence of Assumption (4.13).
The condition (4.13) is a classical assumption on f namely that it belongs to a Sobolev space
of order s > 0. The condition (4.14) implies that σ should not be too large with respect to the
smoothness of f measured by the parameter s. Condition (4.14) is used in the proof of Theorem
4.1 to guarantee the existence of some integrals. Finally the conditions (4.15) and (4.16) gives
empirical conditions on the choice of the smoothing parameters kǫ, vǫ and δǫ to perform both
image alignment and image denoising. For example, if kǫ = ǫ−1+σ/(2+2s), vǫ = ǫ−1+σ/(2+2s)

12



and δǫ = ǫ−1/(2+2s), Condition (4.15) and Condition (4.16) hold. Additionally, we point out
that the criterion (4.11) provides consistent estimators even if the parameters kǫ and vǫ are held
fixed (they do not converges to infinity) provided that the corresponding limit criterion has a
unique minimum (see the proof in the appendix). Moreover, the above theorem also shows
that one can select only a finite set of Fourier-Mellin coefficients to perform the estimation.

Moreover, with stronger assumptions, the following theorem provides the ǫ−1-consistency
of the estimator.

Theorem 4.2 Let us denote by g(r, θ) the function rσ| f̂ (r, θ)|2. Assume that g is differentiable such

that the partial derivatives ∂θ g and ∂rg with respect the polar coordinates θ and r respectively are in

L2(G), and that,
∫

v∈R
∑
k∈Z

(|k| + |v|)|M| f̂ |2(k, v)|dv < ∞ (4.18)

∫

ω∈R2
| f̂ (ω)|2|ω|2sdω < ∞ (4.19)

s > 0 and 2σ < 2s + 2, (4.20)

and that f , ∂θ g are not identically equal to zero. Moreover assume that:

(σ − 5)(σ − 4)‖g‖2
L2(G) + ‖∂r g‖2

L2(G) 6= 0, and (σ − 4)2 1
J
− (σ − 4) > 0. (4.21)

Suppose that kǫ, vǫ, δǫ and ωǫ are such that as ǫ → 0

kǫ, vǫ, δǫ → +∞ (4.22)

δ−4−4s+2σ
ǫ kǫvǫ(kǫ + vǫ)ǫ−1 = O(1) and δ−2−2s+σ

ǫ ǫ−1 = O(1) (4.23)

ǫkǫvǫ(kǫ + vǫ)δσ
ǫ = o(1), (4.24)

kǫvǫ(kǫ + vǫ)δ−2s−2+3σ/2
ǫ = O(1) (4.25)

then ǫ−1(α̂ǫ
1 − α1

∗) converges in distribution to a centered Gaussian variable.

4.2 A criteria for simultaneously estimating shifts

In the previous section, we built an ǫ−1-estimator α̂ǫ
1 of α∗

1, with α̂ǫ
1 = (â1, . . . , âJ , θ̂1, . . . , θ̂J). For

α2 = (b1, . . . , bJ) ∈ A2, these estimators are used to align the images in the following way:

Ẑj(ω) = â−2
j Ŷj(â−1

j A−θ̂j
ω)eiwβ̃ j (4.26)

=

(

a∗j

âj

)2

f̂

(

a∗j

âj
Aθ∗j −θ̂j

ω

)

eiw(β̃ j−β̃∗
j ) + ǫâ−2

j Ŵj(â−1
j A−θ̂j

ω)eiwβ̃ j ,

where the following notation are used:

β j = a∗j
−1Aθ∗j

bj, β∗
j = a∗j

−1Aθ∗j
b∗j

β̃ j = â−1
j Aθ̂j

bj, β̃∗
j = â−1

j Aθ̂j
b∗j .

13



Then, we define the criteria Nǫ as

Nǫ(α2) =
1
J

J

∑
j=1

∫

|ω|≤ωǫ

∣

∣

∣

∣

∣

Ẑj(ω)−
1
J

J

∑
j′=1

Ẑj′(ω)

∣

∣

∣

∣

∣

2

, α2 ∈ A2, (4.27)

where ωǫ is appropriate smoothing parameter to be defined below. The following theorem
provides the consistency of the M-estimator defined by

α̂ǫ
2 = arg min

α2∈A2
Nǫ(α2).

Theorem 4.3 Assume that the assumptions of Theorem 4.2 hold and that f̂ is 1-Lipschitz i.e. that there

exists a constant C > 0 such that for all ω, ω′ ∈ R2

| f̂ (ω) − f̂ (ω′)| ≤ C‖ω − ω′‖.

Suppose that ωǫ is such that as ǫ → 0, then ωǫ → +∞ and ǫω2
ǫ = o(1). Then α̂ǫ

2 converges in

probability to α∗
2 = (b∗1 , . . . , b∗J ) for the standard Euclidean norm in R2J .

The interpretation of the above Theorem, in particular the meaning of the condition ǫω2
ǫ =

o(1) is as before. This gives a way to empirically choose the frequency cut-off parameter ωǫ

to both align and denoise the observed images. Again, with stronger assumptions, one can
prove the ǫ−1-consistency of the estimator α̂ǫ

2. The proof of this result is similar to the proof of
Theorem 4.2 but for reasons of space, we omit it.

5 Numerical performances and Perspectives

5.1 Simulations

In this section we report the results of some simulations to study the numerical performances
of our two-step procedure. All the simulations have been carried out with Matlab. We took a
simulated squared image f of size N × N as a reference (but unknown) template with N = 100.
The image f is displayed in Figure 5.2(a), and J = 6 deformed images are created with
various values for the scaling, translation and rotation parameters (see the bold numbers in
Table 1). For simplicity, we denote the value of the image f j at pixel (p1, p2) by f j(p1, p2) for

p1 = −(N − 1)/2, . . . , (N − 1)/2 and p2 = −(N − 1)/2, . . . , (N − 1)/2. Noisy images Y
j
p1,p2

are generated from the additive model

Y
j
p1,p2 = f j(p1, p2) + τz

j
p1 ,p2 ,

where τ is an unknown level of noise, and z
j
p1,p2 are independent realizations of normal

variables with zero mean and variance 1. An important quantity in the simulations is the
root of the signal-to-noise ratio defined by s2n = std( f )/τ, where std( f ) denotes the empirical
standard deviation of the pixel-values of the image f . We present results for s2n = 5 and
s2n = 1 (respectively a low and a high level of noise). A typical realization of a set of noisy
images for s2n = 1 is displayed in Figure 5.3.
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(a) (b) (c) (d) (e) (f)

Figure 5.2: Simulated images f j: (a) j = 1, (b) j = 2, (c) j = 3, (d) j = 4, (e) j = 5, (f) j = 6.

(a) (b) (c) (d) (e) (f)

Figure 5.3: Noisy images with s2n = 1: (a) j = 1, (b) j = 2, (c) j = 3, (d) j = 4, (e) j = 5, (f)
j = 6.

We have compared our two steps procedure with a direct minimization of the cost function
(4.1). To evaluate the criterion (4.1) for a given set of parameters, we use cubic spline
smoothing to reduce the noise in the observed images and bilinear interpolation to compute the
deformation of the smoothed images by a set of scaling, rotation and translation parameters.

In the next paragraphs, we describe the implementation of our two steps procedure. To
compute an approximation of the Fourier Mellin transform of a discrete image g defined on a
squared grid of size N × N, we have chosen to approximate first its Fourier transform ĝ on a
polar grid (rq1 , θq2) with rq1 = q1

N , θq2 = 2π
q2−1

N and

ĝ(rq1 , θq2) =
(N−1)/2

∑
p1=−(N−1)/2

(N−1)/2

∑
p2=−(N−1)/2

e−i(p1rq1 cos(θq2 )+p2rq1 sin(θq2 ))g(p1, p2)

for q1 = 1, . . . , N and q2 = 1, . . . , N. Faster and more accurate implementations of the discrete
polar Fourier transform have been recently proposed (Averbuch et al. [2]), but we have not
investigated this possibility as the goal of our simulations is to illustrate the good finite sample
properties of our method in terms of estimation rather than providing a fast algorithm. For any
(k, v) ∈ Z× R, a numerical approximation of the AFMT of |ĝ|2 is then obtained by

M|ĝ|2(k, v) =
N

∑
q1=1

N

∑
q2=1

|ĝ|2(rq1 , θq2)rσ−1−iv
q1

e−ikθq2 .

For simplicity, we have chosen σ = 1 since this guarantees the conditions (4.14) and (4.20) of
Theorems 4.1 and 4.2 for any s > 0 . Finally, to compute the criteria Mǫ(α) defined by equation
(4.11), it remains to choose the values of the smoothing parameters kǫ, vǫ and δǫ. Our sampling
of the polar Fourier domain corresponds to the choice δǫ = 1 and we have found that the
choices kǫ = 5 and vǫ = 5 yield satisfactory results for various values of the signal-to-noise
ratio. Of course it would nice to have data-dependent smoothing parameters but it seems that
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taking such small values for these parameters is a reasonable choice. Note that to approximate
the integral over v in (4.11), we simply use {−vǫ,−vǫ + 1,−vǫ + 2, . . . , vǫ} as a discretization
of the integration interval [−vǫ, vǫ].

For the set of noisy discrete images Y j, j = 1, . . . , J and for any vector of scaling and
rotation parameters α, the criteria Mǫ(α) can then be numerically evaluated using the above
approximation of the AFMT for |Ŷ j|2. To find the minimum of the criterion Mǫ(α) we use a
gradient descent algorithm with an adaptive step, i.e. the following iterative procedure

an+1
j = an

j − γn
d

daj
Mǫ(αn)

θn+1
j = θn

j − γn
d

dθj
Mǫ(αn)

where γn in the step (small enough number) at iteration n, with a standard stopping rule on
the value of the objective function Mǫ(αn). The above partial derivatives are given in Lemma
5.1. Note that for a fair comparison with our method we also use a gradient descent algorithm
for a direct minimization of the criterion (4.1).

Once estimators âj and θ̂j for the scaling and rotation parameters (with the identifiability
constraints â1 = 1 and θ̂1 = 0) have been found, we compute the registered Fourier transform
â−2

j Ŷ j(â−1
j A−θ̂j

ωq1,q2) with ωq1,q2 = (rq1 cos(θq2), rq1 sin(θq2)) for q1, q2 = 1, . . . , N using cubic
spline interpolation with vanishing conditions at the boundaries of the polar Fourier domain.
For any set of translation parameters α2 the criteria Nǫ(α2) is then numerically evaluated by
replacing the integration over the set of frequencies such that |ω| ≤ ωǫ in equation (4.27)
by the sum over the discrete frequency ωq1,q2 for q1 = 1, . . . , qǫ and q2 = 1, . . . , N. In our
simulations, we have found that the choice qǫ = 3 gives good results which corresponds to the
choice ωǫ = 3/N. Again we use the a gradient descent algorithm as described above to find
the minimum of Nǫ(α2).

For each value of the signal-to-noise ratio s2n (s2n = 1, 5) we have simulated M = 100
sets of J noisy images. For each sample, an estimation of the scaling, translation and rotation
parameters has been computed for each image with a direct minimization of the criterion
(4.1) and with our two steps procedure. In Table 1 we give the empirical mean and standard
deviation of these estimators over the M = 100 simulations. Note that we only give the results
for j = 2, . . . , 6 as the estimators for the first image (j = 1) are fixed (due to the identifiability
condition).

The results given in Table 1 show that our procedure performs very well for the estimation
of the parameters for all images. As expected the standard deviation is inversely proportional
to s2n, but it is always very small and the empirical means are very close to the true values.
The results obtained with a direct minimization of (4.1) are satisfactory for the estimation of the
scaling and translation parameters, but the estimation of the rotation is not very good for some
images. Moreover, these simulations show that the standard deviation of our estimators are
smaller. One of the drawbacks of a direct minimization of (4.1) by smoothing and interpolation
is its computational time which is quite large compared to a search in the Fourier domain.
We have tried to implement this direct minimization using downsampling of the images and
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Table 1: Empirical mean and standard deviation (in brackets) of the estimators âj, b̂j =

(b̂1
j , b̂2

j ), θ̂j over M = 100 simulations for various values of the signal-to-noise ratio s2n. Bold
numbers represent the true values of the parameters. The estimators, which are computed with
the original cost function (4.1), are marked with #

s2n j = 2 j = 3 j = 4 j = 5 j = 6
a∗j 1 0.8 0.7 0.6 1.1

âj 1 1.0183 (0.0096) 0.8181 (0.0080) 0.7169 (0.0091) 0.6150 (0.0087) 1.1182 (0.0126)
1# 1.0983 (0.0657) 0.8873 (0.0801) 0.7758 (0.0630) 0.6546 (0.0436) 1.1926 (0.0754)
5 1.0144 (0.0020) 0.8144 (0.0015) 0.7136 (0.0018) 0.6117 (0.0018) 1.1155 (0.0026)
5# 1.0407 (0.0182) 0.8241 (0.0126) 0.7216 (0.0107) 0.6183 (0.0090) 1.1329 (0.0172)

b1,∗
j 10 12 10 5 8

b̂1
j 1 9.8494 (0.9937) 12.1135 (0.8859) 9.9208 (0.8268) 5.0669 (0.8694) 8.0786 (1.3407)

1# 5.7089 (2.4988) 7.2506 (2.1544) 7.2647 (1.7269) 4.2156 (2.0557) 4.5981 (2.7619)
5 9.9342 (0.5550) 12.2087 (0.4991) 9.9960 (0.4208) 5.1820 (0.3394) 8.0946 (1.2855)
5# 6.9275 (1.2935) 10.9098 (0.8012) 9.0888 (1.0992) 4.6799 (0.5116) 6.7378 (1.2669)

b2
j 0 4 10 5 6

b̂2,∗
j 1 0.0618 (0.7259) 5.7963 (0.7836) 10.4611 (0.8580) 6.5932 (0.7247) 7.7587 (0.6854)

1# 3.9313 (2.5415) 4.7819 (1.8635) 7.2898 (1.5668) 4.6641 (1.6660) 5.0971 (2.6990)
5 0.0519 (0.3594) 5.8635 (0.1954) 10.2942 (0.2702) 6.6405 (0.2022) 7.7411 (0.1553)
5# 1.9357 (1.2829) 4.3582 (1.1497) 9.6215 (0.5310) 5.3261 (0.9161) 5.7736 (1.1782)

θ∗j 0 0.8 0.1 1 0.5

θ̂j 1 0.0768 (0.3056) 0.8049 (0.2013) 0.1751 (0.3048) 0.8561 (0.3768) 0.5314 (0.1613)
1# 2.0337 (1.3737) 1.3412 (0.6931) 0.4580 (0.4936) 0.6534 (0.9766) 0.7636 (0.8225)
5 0.0141 (0.0644) 0.8058 (0.0633) 0.1167 (0.0692) 0.9954 (0.0685) 0.5099 (0.0610)
5# 2.2372 (1.6292) 1.2330 (0.9403) 0.5284 (0.9350) 0.6904 (1.1277) 0.6889 (0.8373)

their gradient to reduce the computational cost but unfortunately subsampling yields worse
estimates. Finally note that the regularizing parameter for smoothing the images with cubic
spline has been chosen to obtain results as good as possible but we do not have any automatic
rule to choose it. To the contrary, our analysis provides some data-based choices for the various
regularizing parameters kǫ, vǫ, δǫ and ωǫ .

5.2 A real example

First, we return to the real example of the alignment of the butterfly images. We have used the
same methodology as described in the previous section with the same choices for the various
smoothing parameters. We align the three images of the first row of Figure 2.1 by choosing
the image in Figure 2.1(a) as the “reference image” in the sense that the alignment will be
performed with respect to the scale, orientation and location of this butterfly. We perform the
same kind of alignment for the three images of the second row of Figure 2.1 with Figure 2.1(d)
as the “reference image”. The result displayed in Figure 5.4 is very satisfactory as they are no
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difference between the images after the alignment. Note that to register the images we have
simply used a linear interpolation of the images.

(a) (b) (c) (d) (e) (f)

Figure 5.4: Alignment of the butterfly images.

Now, the two steps procedure is applied to a set of images which are more complex. We
align the six images of the first row of Figure 5.5 by choosing the image in Figure 5.5(a) as
"the reference images". It should be noted that these images do not fit exactly our mode since
they are not embedded in a black background. The result is displayed in the second row of
Figure 5.5: each image in the second row is the aligned image which is above. We observe
that the images are approximately aligned in scale and in rotation, but they are misaligned in
translation. This could be explained by the fact that the images are aligned on the average of
the synchronized images (this effect is less visible when J = 2), but clearly the results are not
very satisfactory.

Note that a qualitative measure of alignment could be derived from the value of the
criterion (4.1) after alignment of the images, but we have not tried to use this. A perspective is
to develop statistical inference, such as testing procedures, in order to decide if the images are
aligned or not. The test statistic may be defined from our criteria. We refer to [29], [19] [38],
which treat this question for nearby models.
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Figure 5.5: Alignment of the house images.

5.3 A synthetic example with clutter noise

The example shown in Figure 5.5 suggests that our approach does not perform well if the noise
is not gaussian but rather a clutter type noise. To study this, another synthetic example has
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been created with the simulated images of Figure 5.2 to which a white circle of small radius has
been added outside the support of the deformed template to represent a kind of clutter noise.
Gaussian noise is then added to these perturbated images, see Figure 5.6. For s2n = 1, 5, we
have simulated M = 100 sets of J noisy images. Again we have compared our approach with
a direct minimization of (4.1) using cubic spline smoothing and bilinear interpolation. Results
are given in Table 2. Both approaches generally fail in recovering the true parameters. Hence,
this tends to show that the proposed matching criterion (4.1) is certainly not very robust from
deviations of the ideal model (2.1).

(a) (b) (c) (d) (e) (f)

Figure 5.6: Simulated images with clutter noise and s2n = 5: (a) j = 1, (b) j = 2, (c) j = 3, (d)
j = 4, (e) j = 5, (f) j = 6.

Table 2: Simulations with clutter noise: empirical mean and standard deviation (in brackets)
of the estimators âj, b̂j = (b̂1

j , b̂2
j ), θ̂j over M = 100 simulations for s2n = 5. Bold numbers

represent the true values of the parameters. The estimators, which are computed with the
original cost function (4.1), are marked with #

s2n j = 2 j = 3 j = 4 j = 5 j = 6
a∗j 1 0.8 0.7 0.6 1.1

âj 5 1.0663 (0.0021) 0.9528 (0.0019) 0.8718 (0.0016) 0.8277 (0.0018) 1.1720 (0.0029)
5# 1.3134 (0.4041) 1.4004 (0.5314) 1.0881 (0.6529) 0.9606 (0.3887) 1.1768 (0.4759)

b1,∗
j 10 12 10 5 8

b̂1
j 5 -6.1134 (0.1416) -4.8594 (0.1489) -4.6419 (0.1563) -2.5379 (0.2103) 1.0387 (0.1662)

5# 4.8926 (1.4939) 6.9050 (5.4946) 6.1604 (1.2638) 4.1619 (1.0381) 8.2347 (1.2291)
b2

j 0 4 10 5 6

b̂2,∗
j 5 3.8804 (0.6389) -1.4111 (0.3152) 8.3201 (0.3139) 2.1259 (0.2667) 12.0945 (0.3421)

5# 0.7085 (1.9110) 2.0118 (2.1931) 8.2228 (0.8983) 5.6468 (1.0016) 8.7203 (0.9404)
θ∗j 0 0.8 0.1 1 0.5

θ̂j 5 0.8653 (0.0064) 0.5269 (0.0066) 0.6351 (0.0059) 0.3515 (0.0058) 0.4840 (0.0073)
5# 0.6917 (0.0527) 0.6302 (0.5071) 0.5230 (0.0398) 0.2375 (0.0399) 0.4284 (0.0359)

5.4 Perspectives

Developing a fully satisfactory theory for an asymptotic analysis as J grows to infinity remains
a challenge. Some works in this direction have been recently proposed in one-dimensional and
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two-dimensional settings. In such models, the scaling, rotation and translation are not fixed
parameters but are realization of random variables which makes the problem different. The
goal is then to estimate the template of the signals, and also to estimate of the law governing
such random deformation parameters. For more details, we refer to the papers by Chafaï and
Loubes [8], Bigot et al. [4], Ke and Wang [21], and Allassonnière et al. [1].

An interesting extension of this work would be to compare from a theoretical point of view
our two steps procedure with the direct minimization (4.1) by spline smoothing and bilinear
interpolation as investigated in our simulated experiments.

Finally, alignment methods for 3D images is also an active field of research in the domain of
medical images. These methods can be based for example on entropy measures (see Studholme
et al. [34] for a detailed review). Therefore, it would be interesting to extend the present
methodology based on Fourier transform to a 3D setting.

Appendix

Proof of Theorem 4.1

To simplify the notation we write α = α1 for α1 ∈ A1 and α∗ = α∗
1. The proof of this theorem

follows the classical guidelines of the convergence of M-estimators. We shall prove that M(α)

has an unique minimum at α = α∗, and that Mǫ converges uniformly (in α) in probability to M

i.e.
sup
α∈A1

|Mǫ(α) − M(α)| → 0 in probability as ǫ → 0.

Then, these two conditions ensure that α̂ǫ converges in probability to α∗ as ǫ → 0 (see e.g.
Theorem 5.7 in van der Vaart [36]).

Unicity of the minimum of M(α): recall that

M(α) =
∫

R
∑
k∈Z

∣

∣

∣
M| f̂ |2(k, v)

∣

∣

∣

2 1
J

J

∑
j=1

∣

∣

∣

∣

∣

∣

(

aj

a∗j

)−4+σ−iv

eik(θ∗j−θj)−
1
J

J

∑
l=1

(

al

a∗l

)−4+σ−iv

eik(θ∗l−θl)

∣

∣

∣

∣

∣

∣

2

.

has a minimum at α∗ such that M(α∗) = 0. Assume that there exists α ∈ A1 such that M(α) = 0.
Since f̂ is not rotation invariant, (k, v) 7→ M| f̂ |2(k, v) is a non zero function. Let (k, v) be in
Z×R such that M| f̂ |2(k, v) 6= 0. Then, the condition M(α) = 0 implies that:

1
J

J

∑
j=1

∣

∣

∣

∣

∣

∣

(

aj

a∗j

)−4+σ−iv

e
ik(θ∗j −θj) −

1
J

J

∑
l=1

(

al

a∗l

)−4+σ−iv

eik(θ∗l −θl)

∣

∣

∣

∣

∣

∣

2

= 0.

This means that there exists λk,v ∈ C such that

(

aj

a∗j

)−4+σ−iv

eik(θ∗j −θj) = λk,v, ∀j = 1 . . . J. (5.1)
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Using the identifiability constraints (a1 = a∗1 = 1 and θ1 = θ∗1 = 0) we deduce that λk,v = 1.
Considering the complex modulus, we obtain that:

(

aj

a∗j

)−4+σ

= 1, ∀j = 1 . . . J.

If σ 6= 4, we deduce that for all j = 1, . . . , J, aj = a∗j . If σ = 4, since the function v′ → M| f̂ |2(k, v′)

is continuous and non null, there exist v0 and v1 such that v − v0 ∈ Q, v − v1 ∈ R \Q (because
Q and R \ Q are dense in R) and M| f̂ |2(k, v0) 6= 0, M| f̂ |2(k, v0) 6= 0. Then, from equation (5.1),
we have,

e−i(v−v0) log(aj/a∗j ) = 1 and e−i(v−v1) log(aj/a∗j ) = 1, j = 1 . . . J.

Necessarily, for all j = 1 . . . J, we have that log(aj/a∗j ) = 0. We deduce that for all j = 1, . . . , J,
aj = a∗j .

Moreover since f is not rotation invariant, we have that there exists two relative prime
integers k and k′ such that M| f̂ |2(2k, v) 6= 0 and M| f̂ |2(2k′, v) 6= 0, which implies from (5.1)
(since a = a∗) that for all j = 1, . . . , J

e
i2k(θ∗j −θj) = 1 and e

i2k′(θ∗j −θj) = 1.

Hence if there exists some j ≥ 2 such that θ∗j − θj 6= 0 then the above equations implies that
there exists two integers p and p′ such that

k

p
=

π

θ∗j − θj
=

k′

p′
.

Hence, unless θ∗j − θj = π, the above equation is a contradiction since k and k′ are two relative
prime integers. Hence, this implies that for all j = 1, . . . , J, θj = θ∗j (modulo πZ), which proves
the unicity of the minimum of M(α) (modulo πZ for the translation parameters). �

Uniform convergence of Mǫ: in the proof C will denote a constant whose value may change
from line to line. Recall that:

cǫ
j (k, v) = a−4+σ−iv

j e−ikθjMǫ
| f̂ j|2

(k, v),

sǫ
j (k, v) = a−4+σ−iv

j e−ikθjMǫ
wj

(k, v),

c̃ǫ =
1
J

J

∑
j=1

cǫ
j and s̃ǫ =

1
J

J

∑
j=1

sǫ
j .

and remark that Mǫ(α) is the sum of three terms using (4.9):

Mǫ(α) = Dǫ(α) + ǫLǫ(α) + ǫ2Qǫ(α), (5.2)
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where

Dǫ(α) =
1
J

J

∑
j=1

∫

|v|≤vǫ

∑
|k|≤kǫ

|cǫ
j (k, v)|2dv −

∫

|v|≤vǫ

∑
|k|≤kǫ

|c̃ǫ(k, v)|2dv

Lǫ(α) =
2ǫ

J

J

∑
j=1

∫

|v|≤vǫ
∑

|k|≤kǫ

ℜ

{

(

cǫ
j (k, v) − c̃ǫ(k, v)

) (

sǫ
j (k, v) − s̃ǫ(k, v)

)

}

dv

Qǫ(α) =
ǫ2

J

J

∑
j=1

∫

|v|≤vǫ
∑

|k|≤kǫ

|sǫ
j (k, v)|2dv − ǫ2

∫

|v|≤vǫ
∑

|k|≤kǫ

|s̃ǫ(k, v)|2dv,

where ℜ(x) denotes the real part of a complex number x. Let us notice that by applying the
Cauchy Schwarz inequality we have that:

|ǫLǫ(α)| ≤ 2{ sup
(α)∈Ã1

|Dǫ(α) − M(α)|+ sup
(α)∈Ã1

M(α)}1/2{ sup
(α)∈Ã1

ǫ2Qǫ(α)}1/2

Since the function M is continuous on the compact set Ã1, we have just to consider the uniform
convergence of Dǫ to M and the uniform convergence in probability of ǫ2Qǫ to zero.

First, we study the uniform convergence of Dǫ(α) to M(α). Since α belongs to a compact
set, and using the Cauchy Schwarz inequality, it suffices to prove that for a fixed 1 ≤ j ≤ J the
following term converges to zero:

(I) =
∫

|v|≤vǫ
∑

|k|≤kǫ

|Mǫ
| f̂ j|2

(k, v)|2dv −
∫

R
∑
k∈Z

|M| f̂ j|2
(k, v)|2dv.

Using the inequality |a|2 − |b|2 ≤ |a − b|2 + 2|(a − b)b| ∀(a, b) ∈ C2, we have

|(I)| ≤ (I − 1) + (I − 2) + (I − 3)

where

(I − 1) =

{

∫

|v|>vǫ

∑
|k|≤kǫ

+
∫

|v|>vǫ

∑
|k|>kǫ

+
∫

|v|≤vǫ

∑
|k|>kǫ

}

|M| f̂ j|2
(k, v)|2dv,

(I − 2) =
∫

|v|≤vǫ

∑
|k|≤kǫ

∣

∣

∣
Mǫ

| f̂ j|2
(k, v) −M| f̂ j|2

(k, v)
∣

∣

∣

2
dv,

(I − 3) = 2
∫

|v|≤vǫ
∑

|k|≤kǫ

|M| f̂ j|2
(k, v)|

∣

∣

∣Mǫ
| f̂ j|2

(k, v) −M| f̂ j|2
(k, v)

∣

∣

∣ dv.

Since Assumption (4.12) holds, the term (I − 1) converges to zero. Furthermore, due to
Assumption (4.13) and to Assumption (4.14), we have:

∣

∣

∣Mǫ
| f̂ j|2

(k, v) −M| f̂ j|2
(k, v)

∣

∣

∣ ≤
∫

|ω|>δǫ

| f̂ (ω)|2|ω|2s dω

δ2s+2−σ
ǫ

. (5.3)

Then, using the Cauchy Schwarz inequality and since δǫ → ∞, we have

(I − 2) + (I − 3) = o(kǫvǫδ−4s−4+2σ
ǫ + k1/2

ǫ v1/2
ǫ δ−2s−2+σ

ǫ ).
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From Assumption (4.15), Dǫ converges uniformly to M.
We show that ǫ2Qǫ converges uniformly in probability to 0. Let j ∈ {1 . . . J} be fixed. Using

the Cauchy Schwarz inequality and that the parameter (θ, a) lies in a compact set, it suffices to
consider the variable (I I):

(I I) = ǫ2
∫

|v|≤vǫ
∑

|k|≤kǫ

|Mǫ
wj
|2(k, v)dv.

Using the inequality |a + b|2 ≤ 2|a|2 + 2|b|2 ∀(a, b) ∈ C2, we have that:

(I I) ≤ 8(I I − 1) + 2(I I − 2),

where

(I I − 1) =ǫ2
∫

|v|≤vǫ
∑

|k|≤kǫ

|Mǫ

ℜ f̂ jŴj

(k, v)|2dv,

(I I − 2) =ǫ4
∫

|v|≤vǫ

∑
|k|≤kǫ

|Mǫ
|Ŵj|2

(k, v)|2dv.

We compute an upper-bound for the expectation of the term (I I − 1). First we have:

E|Mǫ

ℜ f̂ jŴj

(k, v)|2 =
∫

D

∣
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∣

∫ 2π

0

∫ δǫ

0

(

cos(w · x)ℜ f̂ j(ω)−sin(w · x)ℑ f̂ j(ω)
)

e−ikθrσ−iv drdθ

2πr

∣
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2

dx

≤ d2
∣
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∣

∫ 2π

0

∫ δǫ

0
| f̂ j(ω)|rσ−1 drdθ

2π

∣

∣

∣

∣

2

,

for ω = (r cos(θ), r sin(θ)), and where ℑ(c) denotes the imaginary part of a complex number
c. Since σ − 2 < 2s, and using the Cauchy Schwarz inequality, we obtain that:

E|Mǫ

ℜ f̂ jŴj

(k, v)|2 ≤ d2
∫

|w|≤δǫ

| f̂ j(ω)|2|ω|σ−2 dω

2π

∫

|w|≤δǫ

|ω|σ−2 dω

2π
. (5.4)

Then E|Mǫ

ℜ f̂ jŴj

(k, v)|2 = O(δσ
ǫ ). Similarly, we get:

E|Mǫ
|Ŵj|2

(k, v)|2 = O(δ2σ
ǫ ). (5.5)

Then, Assumption (4.16) ensures the uniform convergence in probability to zero of (I I)

because:
E(I I) = O(ǫ2kǫvǫδσ

ǫ (1 + ǫ2δσ
ǫ )).

�

Proof of Theorem 4.2

Again, the proof of this theorem follows the classical guidelines of the convergence of M-
estimators. Recall that the M-estimator is defined as the minimum of the criterion function
Mǫ(·). Hence, we get :

∇Mǫ(α̂ǫ) = 0,
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where ∇ is the gradient operator. Thanks to a second order expansion, there exists ᾱǫ in a
neighborhood of (a∗, θ∗) such that

∇2Mǫ(ᾱǫ) ǫ−1(α̂ǫ − α∗) = −ǫ−1∇Mǫ(α∗),

where ∇2 is the Hessian operator. In the sequel we will prove the following two results: the
gradient converges in distribution to a Gaussian variable (see Proposition 5.1), and the hessian
matrix converges uniformly in probability to an invertible matrix H (see Proposition 5.2). Then,
using Slutsky’s Lemma, Theorem 4.2 follows.

Proposition 5.1 and Proposition 5.2 require the calculation of the first and second derivative
of Mǫ. After some calculus, we have the following lemma:

Lemma 5.1 Let 2 ≤ j, l ≤ J be two integers such that j 6= l. For α ∈ Ã1, the first and second order

partial derivatives of Mǫ are:

d

daj
Mǫ(α)=

2ℜ
J

∫

|v|≤vǫ

∑
|k|≤kǫ

−4 + σ − iv

aj

{

|dǫ
j (k, v)|2 − dǫ
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}

dv,

d
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ikdǫ
j (k, v)d̃ǫ(k, v)

}

dv,

d2

da2
j

Mǫ(α)=
2ℜ
J

∫
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∑

|k|≤kǫ

(−4+σ−iv)(−5+σ−iv)
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j

{

2|dǫ
j (k, v)|2−dǫ
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}

dv

−
2ℜ
J

∫
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∑
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| − 4+σ−iv|2

a2
j

2|dǫ
j (k, v)|2dv,
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dajdal
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J2

∫
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∑
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ajal
dǫ

j (k, v)d̃ǫ
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dθ2
j
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∑
|k|≤kǫ

k2
{

dǫ
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j (k, v)|2/J
}

dv,

d2

dθjdθl
Mǫ(α)=
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∫
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∑
|k|≤kǫ

k2dǫ
j (k, v)d̃ǫ

l (k, v)dv,
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J

∫
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k

aj

{

i
−4+σ+iv

J
|dǫ

j (k, v)|2+i(4−σ+iv)dǫ
j (k, v)d̃ǫ(k, v)
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dθjal
Mǫ(α)=
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∫

|v|≤vǫ
∑
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ik
−4+σ+iv

al
dǫ

j (k, v)d̃ǫ(k, v)dv.

Proposition 5.1 Under assumptions and notations of Theorem 4.2, the random variable ǫ−1∇Mǫ(α∗)

is tight.

Proof of Proposition 5.1: First, using the notations of the proof of Theorem 4.1, we show that

ǫ−1∇Mǫ(α∗) = ∇Lǫ(α∗) + oP(1).

At the end, we prove that the vector ǫ∇Lǫ(α∗) is tight.
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From Lemma 5.1, and after straightforward computations, we obtain that for j = 2 . . . J:

d

daj
Dǫ(α∗)=
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J

∫

|v|≤vǫ

∑
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Notice that:
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Then, we get:
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∣
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d
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+O
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∫
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∣

∣

∣
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.

Due to Assumption (4.19) and to Assumption (4.20), the inequality (5.3) holds. Consequently,
we get:

d

daj
Dǫ(a∗, θ∗)= o

(

v2
ǫkǫδ−4s−4+2σ

ǫ + δ−2s−2+σ
ǫ

)

,

d

dθj
Dǫ(a∗, θ∗)= o

(

vǫk2
ǫδ−4s−4+2σ

ǫ + δ−2s−2+σ
ǫ

)

.

Since Assumption (4.23) holds, we deduce that ǫ−1∇Dǫ(α∗) converges to 0.
From Lemma 5.1, we obtain for j = 2 . . . J:

ǫ
d

daj
Qǫ(α∗)=

2ℜ
J2 ∑

l=1...J
l 6=j

∫

|v|≤vǫ

∑
|k|≤kǫ

−4+σ−iv

a∗j
sǫ

j (k, v)s̃ǫ
l (k, v)dv (5.6)

+
2ℜ
J

(1 −
1
J
)
∫

|v|≤vǫ
∑

|k|≤kǫ

−4+σ−iv

a∗j
|sǫ

j (k, v)|2dv, , (5.7)

ǫ
d

dθj
Qǫ(α∗)= ǫ

2ℜ
J2 ∑

l=1...J
l 6=j

∫

|v|≤vǫ

∑
|k|≤kǫ

{

iksǫ
j (k, v)s̃ǫ

l (k, v)
}

dv. (5.8)
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Using the computations (5.4) and (5.5) in the proof of Theorem 4.1, we get that:

(5.7) = OP

(

ǫkǫvǫδσ
ǫ (1 + ǫ2δσ

ǫ )
)

.

Since Assumption (4.24) holds, (5.7) converges in probability to 0. Similarly, we get:

E|(5.6)|= O
(

ǫkǫv2
ǫδσ

ǫ (1 + ǫ2δσ
ǫ )
)

,

E|(5.8)|= OP

(

ǫk2
ǫvǫδσ

ǫ (1 + ǫ2δσ
ǫ )
)

.

Then it results that ǫ∇Qǫ converges in probability to 0 from Assumption (4.24). Consequently,
using the equation (5.2), we have:

ǫ−1∇Mǫ(α∗) = ǫ∇Lǫ(α∗) + oP(1).

From Lemma 5.1, we obtain that for j = 2 . . . J:

d

daj
Lǫ(α∗)=

2ℜ
J

∫

|v|≤vǫ
∑
|k|≤kǫ

−4+σ−iv

a∗j

{

cǫ
j (k, v)(sǫ

j −s̃ǫ)(k, v)−(cǫ
j −c̃ǫ)(k, v)sǫ

j (k, v)
}

dv,

d

dθj
Lǫ(α∗)=

2ℜ
J

∫

|v|≤vǫ

∑
|k|≤kǫ

ik
{

cǫ
j (k, v)s̃ǫ(k, v) − c̃ǫ

j (k, v)sǫ
j (k, v)

}

dv.

From Equation (5.3), we have:

cǫ
j (k, v) = M| f̂ |2(k, v) + o(δ−2s−2+σ

ǫ ) ∀j = . . . J.

Moreover, using the result of the proof of Theorem 4.1, the following properties hold:

E|sǫ
j (k, v)| = O(δσ/2

ǫ + ǫδσ
ǫ ) ∀j = . . . J.

Then, the partial derivatives of Ln may be rewritten as:

d

daj
Lǫ(α∗)=

2ℜ
J

∫

|v|≤vǫ

∑
|k|≤kǫ

−4+σ−iv

a∗j

{

M| f̂ |2(k, v)(sǫ
j −s̃ǫ)(k, v)

}

dv

+ oP(kǫv2
ǫδ−2s−2+3σ/2

ǫ (1 + ǫδσ/2
ǫ )),

d

dθj
Lǫ(α∗)=

2ℜ
J

∫

|v|≤vǫ

∑
|k|≤kǫ

ik
{

M| f̂ |2(k, v)s̃ǫ(k, v) −M| f̂ |2(k, v) sǫ
j (k, v)

}

dv,

+ oP(k2
ǫvǫδ−2s−2+3σ/2

ǫ (1 + ǫδσ/2
ǫ )).

Since E|Mǫ
|Ŵj(ω)|2

(k, v)| = O(δσ
ǫ ), we have that

sǫ
j (k, v) = a∗j −4 + σ − ive−ikθ∗j Mǫ

2ℜ{ f̂ jŴj}
(k, v) +OP(ǫδσ

ǫ ).

Consequently from Assumption (4.18) and Assumption (4.24-4.25),

d

daj
Lǫ(α∗)=

2ℜ
J

(Va,j −
1
J

J

∑
l=1

Va,l) + oP(1),

d

dθj
Lǫ(α∗)=

2ℜ
J

(
1
J

J

∑
l=1

Vθ,l − Vθ,j) + oP(1),
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where

Va,l =ℜ
∫

|v|≤vǫ

∑
|k|≤kǫ

−4+σ−iv

a∗j

{

M| f̂ |2(k, v)a∗l
−4+σ+iveikθ∗l M

2ℜ{ f̂lŴl}
(k, v)

}

dv

Vθ,l =ℜ
∫

|v|≤vǫ
∑

|k|≤kǫ

ikM| f̂ |2(k, v)a∗l
−4+σ+iveikθ∗l M

2ℜ{ f̂lŴl}
(k, v)dv.

Then, it suffices to study the convergence of the two centered variables Va,l and Vθ,l (for a fixed
l = 1 . . . J)

Let g denotes the function rσ| f̂ |2(r, θ), and h denotes the function rσ f̂ (r, θ). From
assumption (4.20), these functions are in L2(G). Let ∂rg and ∂θ g be respectively the partial
derivatives of g respect to the polar coordinates r and θ. After straightforward computations
and using the inverse AFMT, we obtain:

Va,l =
∫

D
dWl(x)

2
a∗j

〈

(−4 + σ)g − ∂rg,ℜ
(

he
iω· 1

a∗
l

Aθ∗
l

x
)〉

L2(G)

+ oP(1),

Vθ,l =
∫

D
dWl(x)2

〈

∂θ g,ℜ
(

he
iω· 1

a∗
l

Aθ∗
l

x
)〉

L2(G)

+ oP(1).

Then we deduce that,

var
(

d

daj
Lǫ(α∗)

)

=
16

a∗j
2 J4 ∑

l 6=j

∫

D

〈

(−4 + σ)g − ∂rg,ℜ
(

he
iω· 1

a∗
l

Aθ∗
l

x
)〉2

L2(G)

dx

+
16(J − 1)2

a∗j
2 J4

∫

D

〈

(−4 + σ)g − ∂r g,ℜ
(

he
iω· 1

a∗
j

Aθ∗
j

x
)〉2

L2(G)

dx,

var
(

d

dθj
Lǫ(α∗)

)

=
16
J4 ∑

l 6=j

∫

D

〈

∂θ g,ℜ
(

he
iω· 1

a∗
l

Aθ∗
l

x
)〉2

L2(G)

dx

+
16(J − 1)2

J4

∫

D

〈

∂θ g,ℜ
(

he
iω· 1

a∗
j

Aθ∗
j

x
)〉2

L2(G)

dx.

As Assumption (4.25) holds, this completes the proof of Proposition 5.1. �

Proposition 5.2 Let Aloc
1,ǫ denote the following space:

Aloc
1,ǫ =

{

(a, θ) ∈ Ã1, ‖(a − a∗, θ − θ∗)‖ ≤ ‖(âǫ − a∗, θ̂ǫ − θ∗)‖
}

.

Under assumptions and notations of Theorem 4.2, there exists an invertible matrix H such that

sup
(ᾱǫ)∈Aloc

1,ǫ

‖∇2Mǫ(ᾱǫ) − H‖ = oP(1)

Proof of Proposition 5.2: After computations, using Lemma 5.1, the matrix H is the value of
the Hessian matrix of M in point α∗.
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We study locally the Hessian matrix of Mǫ. The sequences ᾱǫ are in Aloc
1,ǫ. Notice that for

η > 0:

P



 sup
β∈Aloc

1,ǫ

∥

∥

∥∇2 Mǫ(β)−∇2 M(α∗)
∥

∥

∥ > 2η



 ≤ P



 sup
β∈Aloc

1,ǫ

∥

∥

∥∇2Mǫ(β)−∇2 M(α∗)
∥

∥

∥ > η





+ P



 sup
β∈Aloc

1,ǫ

∥

∥

∥
∇2 M(β)−∇2 M(α∗)

∥

∥

∥
> η





As in proof of Theorem 4.1, the assumptions of Theorem 4.2 ensure the uniform convergence
in probability of ∇2Mǫ to the Hessian matrix of M on Aloc

1,ǫ. Thus, the first term of inequality
converges to 0 with n.

Since ∇2M is continuous in (a∗, θ∗), there exists δ > 0 such:

∇2M (B(α∗, δ)) ⊆ B
(

∇2M(α∗), η
)

.

Consequently, we have the following inclusion of event
(

sup
β∈A1ǫ

∥

∥∇2M(β) −∇2M(α∗)
∥

∥ > η

)

⊆ (‖α̂ǫ−α∗‖ > δ) .

Thus from the Theorem 4.1, the second term of inequality converges to 0 too.
Furthermore, using the notation which are introduced in the proof of Proposition 5.1, the

matrix H is equal to

H =
2
J

(

Ha 0
0 Hθ

)

,

where Ha and Hθ are defined as:

Ha = ((σ − 5)A−2
diag −

σ − 4
J

a−1aT
−1)(σ − 4)‖g‖2

L2(G) + (A−2
diag −

1
J

a−1aT
−1)‖∂r g‖2

L2(G),

Hθ = (IJ−1 −
1
J
IJ−1 IJ−1 = diag(1 . . . 1)T)‖∂θ g‖2

L2(G).

Adiag = diag(a∗2 . . . a∗J ), IJ−1 = diag(1 . . . 1) are diagonal J − 1 squared matrix. IJ−1 =

(1, . . . , 1)T and a1 = AdiagIJ−1 are two vectors of RJ−1.
If ∂θ g is not an identically null function, the matrix Hθ is invertible,

H−1
θ = (IJ−1 + IJ−1)‖∂θ g‖−2

L2(G)
.

Furthermore, we may rewrite the matrix Ha as,

Ha = A−2
diagγ0 − A−1γ1,

where γ0 = (σ − 5)(σ − 4)‖g‖2
L2 (G)

+ ‖∂r g‖2
L2(G)

and γ1 = ( (σ−4)2

J ‖g‖2
L2(G)

+ 1
J ‖∂r g‖2

L2(G)
). This

matrix is invertible if, and only if:

γ0 6= 0 and γ1(J − 1) − γ0 6= 0.
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Then from Assumption (4.21), Ha is invertible, and

H−1
a = γ−1

0 A2
diag −

γ1γ−1
0

γ0 − γ1(J − 1)
aaT ,

where a = (a∗2 , . . . , a∗J ) ∈ RJ−1. �

Proof of Theorem 4.3

The proof of this theorem is similar to the proof of Theorem 4.1. To simplify the notations, we
write b = α2 for α2 ∈ A2 and b∗ = α∗

2 . Let

N(b) =
∫

R2
| f̂ |2(ω)



1 −

∣

∣

∣

∣

∣

1
J

J

∑
j′=1

e
iω·(β j−β∗

j )

∣

∣

∣

∣

∣

2


 dω.

We shall prove that N(b) has an unique minimum at b = b∗, and that Nǫ converges uniformly
(in b) in probability to N. Then, these two conditions ensure that α̂ǫ

2 converges in probability to
b∗ as ǫ → 0 (see e.g. Theorem 5.7 in van der Vaart [36]).

Unicity of the minimum of N(b): first one can remark that

N(b) =
∫

R2
| f̂ |2(ω)



1 −

∣

∣

∣

∣

∣

1
J

J

∑
j′=1

e
iω·(β j−β∗

j )

∣

∣

∣

∣

∣

2


 dω.

has a minimum in b∗ such that N(b∗) = 0. Assume that there exists b ∈ A2 such that N(b) = 0.
Given our assumptions on f and f̂ , we have that f̂ is a continuous and non zero function.
Hence, there exists an open set U of R2 such that U ⊂ supp( f̂ ) and

1 =

∣

∣

∣

∣

∣

1
J

J

∑
j=1

J

∑
j=1

e
iω·(β j−β∗

j )

∣

∣

∣

∣

∣

2

, ∀ω ∈ U,

which corresponds to the case of equality of the Cauchy Schwarz inequality. This means that
for all ω ∈ U, there exists λω ∈ C such that

∀j = 1 . . . J, e
iω·(β j−β∗

j ) = λω.

Using the identifiability constraint (b1 = b∗1 = 0) we deduce that λω = 1 for all ω ∈ U. Then
we deduce that:

∀ω ∈ U, ∀j = 1 . . . J, ω · (β j − β∗
j ) ≡ 0 (2π).

Assume that there exists j such that β j − β∗
j 6= 0. Since the rational numbers and the non

rational numbers are dense in R, there exist ω ∈ Q2 ∩ U and λ ∈ R \ Q such that ω 6= 0 and
λω ∈ U. Consequently, there exist k ∈ Z and k′ ∈ Z such that

ω · (β j − β∗
j ) = (2π)k and λω · (β j − β∗

j ) = (2π)k′ ,
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which is a contraction. Hence, β j = β∗
j for all j = 1, . . . , J which implies that b = b∗ and proves

that N(b) has a unique minimum. �

Uniform convergence of Nǫ: Let N(b) = N1 + N2(b) with N1 =
∫

R2 | f̂ |2(ω)dω and

N2(b) =
∫

R2
| f̂ |2(ω)

∣

∣

∣

∣

∣

1
J

J

∑
j′=1

e
iω·(β j−β∗

j )

∣

∣

∣

∣

∣

2

dω.

We may rewrite the criterion Nǫ(b) as

Nǫ(b) =
1
J

J

∑
j=1

∫

|ω|≤ωǫ

|Ẑj(ω)|2dω −
∫

|ω|≤ωǫ

∣

∣

∣

∣

∣

1
J

J

∑
j=1

Ẑj(ω)

∣

∣

∣

∣

∣

2

dω.

The firm term in the above sum does not depend of the variable b, and we shall prove that it
converges to N1. Hence, it suffices to study the uniform convergence of the second term in the
above sum to prove the uniform convergence of Nǫ to N. First, remark that

∫

|ω|≤ωǫ

∣

∣

∣

∣

∣

1
J

J

∑
j=1

Ẑj(ω)

∣

∣

∣

∣

∣

2

dω = Dǫ(b) + ǫLǫ(b) + ǫ2Qǫ(b),

where

Dǫ(b) =
∫

|ω|≤ωǫ

∣

∣

∣

∣

∣

∣

1
J

J

∑
j=1

(

a∗j

âj,ǫ

)2

f̂

(

a∗j

âj,ǫ
Aθ∗j −θ̂j,ǫ

ω

)

e
iω·(β̃ j−β̃∗

j )

∣

∣

∣

∣

∣

∣

2

dω,

Lǫ(b) = 2ℜ
∫

|ω|≤ωǫ





1
J

J

∑
j=1

(

a∗j

âj,ǫ

)2

f̂

(

a∗j

âj,ǫ
Aθ∗j −θ̂j,ǫ

ω

)

eiω·(β̃ j−β̃∗
j )





×

[

1
J

J

∑
j=1

e−iω·β̃ j

â2
j,ǫ

Ŵ

(

1
âj,ǫ

Â−θ̂j,ǫ
ω

)

]

dω,

Qǫ(b) =
∫

|ω|≤ωǫ

∣

∣

∣

∣

∣

1
J

J

∑
j=1

eiω·β̃ j

â2
j,ǫ

Ŵ

(

1
âj,ǫ

Â−θ̂j,ǫ
ω

)

∣

∣

∣

∣

∣

2

dω.

for α1 = (â1,ǫ, . . . , âJ,ǫ, θ̂1,ǫ, . . . , θ̂J,ǫ) As in the proof of Theorem 4.1, it suffices to prove the
uniform convergence in probability of Dǫ to N, and the uniform convergence in probability of
ǫ2Qǫ to 0. We may rewrite the difference between Dǫ and N2(b) as

Dǫ(b) − N2(b) =Dǫ(b) −
∫

|ω|≤ωǫ

| f̂ (ω)|2

∣

∣

∣

∣

∣

1
J

J

∑
j=1

eiω·(β j−β∗
j )

∣

∣

∣

∣

∣

2

dω

−
∫

|ω|>ωǫ

| f̂ (ω)|2

∣

∣

∣

∣

∣

1
J

J

∑
j=1

e
iω·(β j−β∗

j )

∣

∣

∣

∣

∣

2

dω.
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Since Assumption (4.19) holds, the second term, which is deterministic, converges uniformly
to 0. Using Cauchy-Schwarz inequality and the inequality ||a|2 − |b|2| ≤ |a − b| + 2|b||a − b|,
∀(a, b) ∈ C2, the first term converges uniformly in probability to 0 if, and only if, for all
j = 1, . . . J the following terms converges uniformly in probability to 0,

(I I I)j =
∫

|ω|≤ωǫ

∣

∣

∣

∣

∣

∣

(

a∗j

âj,ǫ

)2

f̂

(

a∗j

âj,ǫ
Aθ∗j −θ̂j,ǫ

ω

)

e
iω·(β̃ j−β̃∗

j ) − f̂ (ω)e
iω·(β j−β∗

j )

∣

∣

∣

∣

∣

∣

2

dω.

Since âj,ǫ and θ̂j,ǫ are ǫ−1-consistent estimators of a∗j and θ∗j , the delta method (see e.g. van der
Vaart [36]) implies that

(

a∗j

âj,ǫ

)2

− 1 = OP(ǫ) and
a∗j

âj,ǫ
Aθ∗j −θ̂j,ǫ

− I2 = OP(ǫ).

where I2 is the 2 × 2 identity matrix. Moreover given that the function f̂ is 1-Lipschitz, we
have:

(I I I)j = OP

(

∫

|ω|≤ωǫ

ǫ2|ω|2 + ǫ| f̂ |2(ω) + ǫ2|ω|2| f̂ |2(ω)dω

)

.

Consequently (I I I)j converges uniformly to zero because Assumption (??) holds. Hence Dǫ

converges uniformly in probability to 0.
Using the Cauchy-Schwarz inequality, ǫ2Qǫ is uniformly bounded by the sums of the

following variables

(IV)j = ǫ2
∫

|ω|≤ωǫ

1
â4

j,ǫ

∣

∣

∣

∣

Ŵj

(

1
âj,ǫ

A−θ̂j,ǫ
ω

)∣

∣

∣

∣

dω j = 1, . . . , J.

Since âj,ǫ is consistent and using a substitution rule, for a fixed j = 1, . . . , J we have

(IV)j = O(ǫ2)
∫

|ω|≤ωǫ/amin

∣

∣Ŵj (ω)
∣

∣ dω.

Consequently, ǫ2Qǫ converges uniformly to zero. Finally, the arguments used to prove that
(I I I)j converges to zero, can also be used to derive that 1

J ∑
J
j=1

∫

|ω|≤ωǫ
|Ẑj(ω)|2dω converges to

N1, which finally proves that Nǫ(b) converges uniformly to N(b). �
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