45 research outputs found

    Electrical characterization and modelling of lateral DMOS transistor:investigation of capacitances and hot-carrier impact

    Get PDF
    With the work reported in this manuscript we have essentially contributed to the electrical characterization and modelling of high voltage MOSFETs, more particularly DMOS architectures such as X-DMOS and L-DMOS able to sustain voltages ranging from 30V to 100V. The technology information and the investigated devices have been kindly provided by AMIS, Belgium (former Alcatel Microelectronics). In general, all the initial defined targets in term of the orientation of our work, as defined in the introduction chapter, have been maintained along the progress of the work. However, sometimes, based on the obtained results we have decided to pay more attention to some less explored topics such as the hot carrier impact of DMOS capacitances and the combined effect of stress and temperature, which initially were not among the planned activities. However, we believe that we have contributed to some of the planned targets. We experimentally validated the concept of intrinsic drain voltage; a modeling concept dedicated to the modeling of HV MOSFET and demonstrated its usefulness for the DC and AC modelling of HV devices. We proposed an original mathematical yet quasi-empirical formulation for the bias-dependent drift series resistance of DMOS transistor, which is very accurate for modelling all the regimes of operation of the high voltage device. We combined for the first time such a model with EKV low voltage MOSFET model developed at EPFL. We also have reported on models for the capacitances of high voltage devices at two levels: equivalent circuits for small signal operation based on VK-concept and large signal charge-based models. These models capture the main physical charge distribution in the device but they are less adapted for fast circuit simulation. In the field of device reliability, we have originally contributed to the investigation of hot carrier effects on DC and AC characteristics of DMOS transistors, with key emphasis on the degradation of transistor capacitances and the influence of the temperature. At our knowledge, our work reported in this chapter is among the first reports existing in this field. We have essentially shown that the monitoring of capacitance degradation if mandatory for a deep understanding of the degradation mechanisms and, in conjunction with DC parameter degradation, could offer correct insights for reliability issues. Even more, we have shown situations (by comparing two fundamental types of stresses) when the capacitance degradation method by HC is much more sensitive than DC parameter degradation method. Of course, some of the combined stress-temperature investigations were too complex to find very coherent explications for all the observed effects but our work stress out the interest and significance of such an approach for defining the SOA of high voltage devices, in general. Overall, our work can be considered as placed at the interface between electrical characterization and modelling of high voltage devices emerging from conventional low voltage CMOS technology, continuing the research tradition in the field established at the Electronics laboratory (LEG) of EPF Lausanne

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Gallium nitride high electron mobility transistors in chip scale packaging: evaluation of performance in radio frequency power amplifiers and thermomechanical reliability characterization

    Get PDF
    2017 Summer.Includes bibliographical references.Wide bandgap semiconductors such as Gallium Nitride (GaN) have many advantages over their Si counterparts, such as a higher energy bandgap, critical electric field, and saturated electron drift velocity. These parameters translate into devices which operate at higher frequency, voltage, and efficiency than comparable Si devices, and have been utilized in varying degrees for power amplification purposes at >1 MHz for years. Previously, these devices required costly substrates such as sapphire (Al2O3), limiting applications to little more than aerospace and military. Furthermore, the typical breakdown voltage ratings of these parts have historically been below ~200 V, with many targeted as replacements for 50 V Si LDMOS as used in cellular infrastructure and industrial, scientific, and medical (ISM) applications between 1 MHz and 1 GHz. Fortunately within the past five years, devices have become commercially available with attractive key specifications: GaN on Si subtrates, with breakdown voltages of over 600 V, realized in cost effective chip scale packages, and with inherently low parasitic capacitances and inductances. In this work, two types of inexpensive commercially available AlGaN/GaN high electron mobility transistors (HEMTs) in chip scale packages are evaluated in a set of three interconnected experiments. The first explores the feasibility of creating a radio frequency power amplifier for use in the ISM bands of 2 MHz and 13.56 MHz, at power levels of up to 1 kW, using a Class E topology. Experiments confirm that a DC to RF efficiency of 94% is easily achievable using these devices. The second group of experiments considers both the steady state and transient thermal characterization of the HEMTs when installed in a typical industrial application. It is shown that both types of devices have acceptable steady state thermal resistance performance; approximately 5.27 °C/W and 0.93 °C/W are achievable for the source pad (bottom) cooled and top thermal pad cooled device types, respectively. Transient thermal behavior was found to exceed industry recommended maximum dT/dt by over 80x for the bottom cooled devices; a factor of 20x was noted with the top cooled devices. Extrapolations using the lumped capacitance method for transient conduction support even higher initial channel dT/dt rates. Although this rate of change decays to recommended levels within one second, it was hypothesized that the accumulated mechanical strain on the HEMTs would cause early life failures if left uncontrolled. The third set of experiments uses the thermal data to design a set of experiments with the goal of quantifying the cycles to failure under power cycling. It is confirmed that to achieve a high number of thermal cycles to failure as required in high reliability industrial systems, the devices under test require significant thermal parameter derating to levels on the order of 50%

    Robustness and durability aspects in the design of power management circuits for IoT applications

    Get PDF
    With the increasing interest in the heterogeneous world of the “Internet of Things” (IoT), new compelling challenges arise in the field of electronic design, especially concerning the development of innovative power management solutions. Being this diffusion a consolidated reality nowadays, emerging needs like lifetime, durability and robustness are becoming the new watchwords for power management, being a common ground which can dramatically improve service life and confidence in these devices. The possibility to design nodes which do not need external power supply is a crucial point in this scenario. Moreover, the development of autonomous nodes which are substantially maintenance free, and which therefore can be placed in unreachable or harsh environments is another enabling aspect for the exploitation of this technology. In this respect, the study of energy harvesting techniques is increasingly earning interest again. Along with efficiency aspects, degradation aspects are the other main research field with respect to lifetime, durability and robustness of IoT devices, especially related to aging mechanisms which are peculiar in power management and power conversion circuits, like for example battery wear during usage or hot-carrier degradation (HCD) in power MOSFETs. In this thesis different aspects related to lifetime, durability and robustness in the field of power management circuits are studied, leading to interesting contributions. Innovative designs of DC/DC power converters are studied and developed, especially related to reliability aspects of the use of electrochemical cells as power sources. Moreover, an advanced IoT node is proposed, based on energy harvesting techniques, which features an intelligent dynamically adaptive power management circuit. As a further contribution, a novel algorithm is proposed, which is able to effectively estimate the efficiency of a DC/DC converter for photovoltaic applications at runtime. Finally, an innovative DC/DC power converter with embedded monitoring of hot-carrier degradation in power MOSFETs is designed

    Particle-Based Modeling of Reliability for Millimeter-Wave GaN Devices for Power Amplifier Applications

    Get PDF
    abstract: In this work, an advanced simulation study of reliability in millimeter-wave (mm-wave) GaN Devices for power amplifier (PA) applications is performed by means of a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal of the study is to obtain a systematic characterization of the performance of GaN devices operating in DC, small signal AC and large-signal radio-frequency (RF) conditions emphasizing on the microscopic properties that correlate to degradation of device performance such as generation of hot carriers, presence of material defects and self-heating effects. First, a review of concepts concerning GaN technology, devices, reliability mechanisms and PA design is presented in chapter 2. Then, in chapter 3 a study of non-idealities of AlGaN/GaN heterojunction diodes is performed, demonstrating that mole fraction variations and the presence of unintentional Schottky contacts are the main limiting factor for high current drive of the devices under study. Chapter 4 consists in a study of hot electron generation in GaN HEMTs, in terms of the accurate simulation of the electron energy distribution function (EDF) obtained under DC and RF operation, taking into account frequency and temperature variations. The calculated EDFs suggest that Class AB PAs operating at low frequency (10 GHz) are more robust to hot carrier effects than when operating under DC or high frequency RF (up to 40 GHz). Also, operation under Class A yields higher EDFs than Class AB indicating lower reliability. This study is followed in chapter 5 by the proposal of a novel π-Shaped gate contact for GaN HEMTs which effectively reduces the hot electron generation while preserving device performance. Finally, in chapter 6 the electro-thermal characterization of GaN-on-Si HEMTs is performed by means of an expanded CMC framework, where charge and heat transport are self-consistently coupled. After the electro-thermal model is validated to experimental data, the assessment of self-heating under lateral scaling is considered.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Komponente na bazi silicijum karbida u elektronskim kolima velike snage

    Get PDF
    Silicon has been the number one choice of materials for over 40 years. It has reached an almost perfected stage through extensive research for so many years; now it is cheap to be manufactured and performs very reliably at room temperature. However, as modem electronics move to a more advanced level with increasing complexity, materials other than silicon are under consideration. Several areas where Silicon shows shortcomings in high temperature environments and high voltage conditions. The Silicon devices need to be shielded – cooled, are limited to operation at low temperature and low blocking voltage by virtue physical and electric properties. So silicon devices are restricted and have focused on low power electronics applications only, these various limitations in the use of Si devices has led to development of wide band gap semiconductors such as Silicon carbide . And because there is an urgent need for high voltage electronics for advanced technology represented in (transportation - space - communications - power systems) in which silicon has failed to be used. Due to various properties of Silicon carbide like lower intrinsic carrier concentration (10–35 orders of magnitude), higher electric breakdown field (4–20 times), higher thermal conductivity (3–13 times), larger saturated electron drift velocity (2–2.5 times),wide band gap (2.2 eV) and higher, more isotropic bulk electron mobility comparable to that of Si. These properties make it a potential material to overcome the limitations of Si. The fact that wide band gap semiconductors are capable of electronic functionality, particularly in the case of SiC. 4H-SiC is a potentially useful material for high temperature devices because of its refractory nature. So Silicon Carbide (SiC) will bring solid-state power electronics to a new horizon by expanding to applications in the high voltage power electronics sectors. It is the better choice for use in high temperature environment and high voltage conditions. Silicon carbide is about to replace Si material very quickly and scientifically will force Si to get retired. The superior characteristics of silicon carbide, have suggested considering as the next generation of power semiconductor devices. And because our study will concentrate on the use of semiconductors on high voltage unipolar power electronics devices. DIMOSFET will be..

    Design of miniaturized radio-frequency DC-DC power converters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 321-325).Power electronics appear in nearly every piece of modern electronic hardware, forming an essential conduit from electrical source to load. Portable electronics, an area where a premium is placed on size, weight, and cost, are driving the development of power systems with greater density and better manufacturability. This motivates a push to higher switching frequencies enabling smaller passive components and better integration. To realize these goals this thesis explores devices, circuits, and passives capable of operating efficiently into the VHF regime (30-300 MHz) and their integration into power electronic systems of high power density. A good integrated power MOSFET presages high-density converters. Previous VHF systems were demonstrated with bulky and expensive RF Lateral, Double-Diffused MOSFETs (LDMOSFET). We show that through a combination of layout optimization and safe operating area (SOA) extension integrated devices can achieve near-parity performance to their purpose-built RF discrete cousins over the desired operating regime. A layout optimization method demonstrating a 2x reduction in device loss is presented alongside experimental demonstration of SOA extension. Together the methods yield a 3x reduction in loss that bolsters the utility of the typical (and relatively inexpensive) LDMOS IC power process for VHF converters. Passive component synthesis is addressed in the context of an isolated VHF converter topology. We present a VHF topology where most of the magnetic energy storage is accomplished in a transformer that forms an essential part of the resonant network. The reduced component count aids in manufacturability and size, but places difficult requirements on the transformer design. An algorithm for synthesizing small and efficient air-core transformers with a fully-constrained inductance matrix is presented. Planar PCB transformers are fabricated and match the the design specifications to within 15%. They are 94% efficient and have a power density greater than 2kW per cubic inch. To take full advantage of good devices and printed passives, we develop an IC for the isolated converter having optimized power devices, and integrated gate driver, controller, and hotel functions. The chip is assembled into a complete converter system using the transformers and circuits described above. Flip-chip mounting is used to overcome bondwire parasitics, and reduce packaging volume. The final system achieves 75% efficiency at 75 MHz at 6W.by Anthony D. Sagneri.Ph.D
    corecore