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ABSTRACT

In this work, an advanced simulation study of reliability in millimeter-wave (mm-

wave) GaN Devices for power amplifier (PA) applications is performed by means of

a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal

of the study is to obtain a systematic characterization of the performance of GaN

devices operating in DC, small signal AC and large-signal radio-frequency (RF) con-

ditions emphasizing on the microscopic properties that correlate to degradation of

device performance such as generation of hot carriers, presence of material defects

and self-heating effects. First, a review of concepts concerning GaN technology, de-

vices, reliability mechanisms and PA design is presented in chapter 2. Then, in chap-

ter 3 a study of non-idealities of AlGaN/GaN heterojunction diodes is performed,

demonstrating that mole fraction variations and the presence of unintentional Schot-

tky contacts are the main limiting factor for high current drive of the devices under

study. Chapter 4 consists in a study of hot electron generation in GaN HEMTs, in

terms of the accurate simulation of the electron energy distribution function (EDF)

obtained under DC and RF operation, taking into account frequency and tempera-

ture variations. The calculated EDFs suggest that Class AB PAs operating at low

frequency (10GHz) are more robust to hot carrier effects than when operating under

DC or high frequency RF (up to 40GHz). Also, operation under Class A yields higher

EDFs than Class AB indicating lower reliability. This study is followed in chapter 5

by the proposal of a novel Π-Shaped gate contact for GaN HEMTs which effectively

reduces the hot electron generation while preserving device performance. Finally, in

chapter 6 the electro-thermal characterization of GaN-on-Si HEMTs is performed by

means of an expanded CMC framework, where charge and heat transport are self-

consistently coupled. After the electro-thermal model is validated to experimental

data, the assessment of self-heating under lateral scaling is considered.
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Chapter 1

INTRODUCTION

Wireless communications have become a ubiquitous element in modern society,

resulting in the upsurge of the telecommunications and radio-frequency (RF) markets

with a wide variety of applications and ever-more demanding requirements. In the

field of personal mobile technology, internet of things (IoT) and broadband internet

connections, one of the main goals is to provide high data transfer rates, such as

1Gbps in 5G cellular technology [1] and up to 8Gbps under the IEEE 802.11ad WiGig

technology [2]. In addition, since most of these applications are battery-powered there

is a strong need for high efficiency and portability. On the other hand, the evolution

of airborne, aerospace, satellite and defense applications require not only high data

rates, but also high power ratings and in the case of radar technologies high resolution.

The improved product-level performance correlates directly with stringent sys-

tem level specifications, since high data rates require wider bandwidths, portability

translates into smaller and more efficient components and the high power ratings call

for higher reliability and efficiency. All these needs have in common that can be

delivered in RF systems operating in super high frequencies (SHF) of 3 to 30GHz

and millimeter-wave (mm-wave) frequencies between 30 and 300GHz. This is why

considerable efforts have been directed over the last couple of decades to the develop-

ment of the technology necessary to implement efficient and reliable high-frequency

RF transmitters. In such systems, mm-wave transistors play an essential role as the

power amplifier (PA) or the output stage that feeds the antenna [3].
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Figure 1.1: Comparison of semiconductor material properties which enable high
power and high frequency operation [3].

Even though the semiconductor industry is heavily dominated by Silicon devices,

the system requirements of state-of-the-art RF transmitters have driven the develop-

ment of new microwave and mm-wave transistor technologies based on other materials

such as SeGe, GaAs, SiC and GaN, which offer better physical properties to achieve

the desired performance. Figure 1.1 shows a diagram comparing the relevant material

properties that enable high frequency and high power operation [3].

For the latter, transistors must have high breakdown voltage, which is a process

driven by the electric field. In this sense, wide bandgap materials like 4H-SiC and

GaN are suitable options because of the high critical electric field required for impact-

ionization. In addition, devices operating under high power conditions must be able

to withstand and dissipate high temperatures, which demands for high thermal con-
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Figure 1.2: Diagram of Power-Frequency range of different technologies of semicon-
ductor devices [4].

ductivity. From this point of view, SiC provides the best option. In terms of high

frequency operation, materials with high electron velocities are the most adequate,

and GaAs provides the highest, followed by SiC and GaN.

The intrinsic advantages provided by alternative materials have been exploited in

devoloping different device technologies suitable for a wide range of power-frequency

applications, as it is shown in figure 1.2 [4]. It must be noticed that even though

Si is outperformed by all the other materials, advanced devices built with Si such as

the laterally diffused MOSFET (LDMOS) transistors allow for improved performance

with respect to conventional Si-MOSFETs, enabling its operation in frequencies be-

low 3GHz and high power between 10 and 100W typical in power switching appli-

cations [5]. However, the properties of 4H-SiC are being exploited in cutting-edge

metal-semiconductor field effect transistors or MESFETs providing efficient power

switches with low on-resistance and significantly higher power operation [6].
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In terms of PAs for hand-sets necessary in personal mobile communications, SiGe

p-MOSFETs with low operating voltages of 2V to 3V for low power of 1W to 2W and

high frequency are very attractive because of its integration potential with the dom-

inant analog and digital Si CMOS technology. However, as frequency and linearity

requirements have become more demanding, GaAs devices such as the Heterojunction

Bipolar Transistor (HBT) and High Electron Mobility Transistor (HEMT) [7], have

been adopted as the mainstream technology for applications up to 5W.

For applications such as cellular base stations, satellite communications and radars

for self-driving automotive or defense, typical RF amplifiers require high power above

10W and frequencies of operation in the mm-wave range. In this case, GaN HEMTs

fabricated on both Si and SiC substrates are the most prominent technology [8], en-

abled by the ability to form heterojunctions in the AlGaN/GaN system. The wide

bandgap of this heterostructure results in high breakdown voltage, enabling transis-

tors to be biased at high drain voltages. This not only reduces the need for voltage

conversion but also improves the power conversion efficiency critical for PAs [3].

In addition, unlike the AlGaAs/GaAs heterostructure HEMTs that rely on a mod-

ulation doping layer to form a channel [9], III-nitrides heterojunctions like

AlxGa1−xN/GaN show high density of two-dimensional electron gas (2DEG) at the

heterointerface due to the presence of a strong polarization effect [10], providing high

carrier density and high electron mobility due to a reduced impurity scattering. The

combined effects of high carrier density and high mobility result in high current and

power densities even at high frequency operation [11; 12]. This in turn allows fab-

ricating devices with small periphery resulting in high output impedance and easier

matching with low loss circuits [13]. Furthermore, the high breakdown and high ther-

mal conductivity of substrates such as SiC allow for high temperature operation and

better noise performance than SiC MESFETs.
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Figure 1.3: Commercially available GaN HEMT products released by Cree Inc,
showing (a) Discrete 50V GaN HEMT devices for radar and military communications
and (b) High power MMIC for satellite communications.

In the last decade, extraordinary progress both at industrial and research level

have made AlGaN/GaN HEMTs technology commercially available [14; 15], with

a market size valued at USD. 974.9 million in 2016 [16], including both GaN on Si

HEMTs for power switching and GaN on SiC HEMTs for mm-wave PAs. A couple

of commercially available products recently released by Cree are shown in figures 1.3

(a) and (b) corresponding to discrete 50V GaN HEMT devices for radar and military

communications and a high power MMIC (monolithic microwave integrated circuit)

for satellite communications [17].

The development of the technology necessary to fabricate these devices is due to

major progress in improving the material growth quality and reducing its cost [18].

In addition, process flows for fabrication of devices were developed including passi-

vation techniques that minimize current dispersion [19], along with advanced contact

engineering including field plates that increase the RF power density [11]. The leap in

GaN processing technology is such that it has enabled the development at a research
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level of devices for sub-millimeter RF operation, in particular Hot Electron Transis-

tors (HETs) based on vertical AlGaN/GaN heterojunction diodes are being studied

as suitable candidates for terahertz operation [20; 21].

In terms of robustness of the technology, remarkable mean-time-to-failure values

of 107 h and greater have been reported [22], and some HEMT products have been

certified matching Si CMOS manufacturing metrics and process control [14]. De-

spite this significant achievement, reliability concerns are still a roadblock to fully

deploy the technology. This issue arises from the fact that niche applications of GaN

HEMTs often imply harsh operating conditions such as high temperature and power

dissipation, resulting in high electric fields and current densities both under DC and

high-frequency operation. In this sense, reliability concerns are still a challenge and

the subject of active research [23].

In terms of device failure of intrinsic GaN HEMT devices, two main degrada-

tion mechanisms are studied: trap generation induced by hot-electrons and high

temperature effects, and electric field-induced current degradation attributed to the

inverse piezoelectric effect [24; 25]. Under reverse-bias stress, HEMTs show perfor-

mance degradation in terms of high gate-leakage current, typically attributed to

defect-generation through inverse piezoelectric effect [22]. Under forward bias, cur-

rent collapse is associated to self-heating effects and defect generation induced by

hot-electrons [26]. Even though these phenomena have been widely studied experi-

mentally by means of DC life-time reliability testing, a deeper understanding of the

underlying physical mechanisms responsible for device degradation is still necessary,

in particular when the electrical stress is induced in RF operation. It is in this context

that advanced techniques for simulation of semiconductor devices and materials have

made important contributions and have been established as a powerful tool for the

study of physical mechanisms of operation and reliability.
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1.1 Modeling of Semiconductor Devices

Numerical simulations are widely used in industry and research because they al-

low for a higher level of accuracy than compact models, necessary to capture and

predict highly non-linear behavior of devices operating under high fields. In addi-

tion, simulations are a traditional surrogate for experiments in the presence of cost,

time or even experimental feasibility constrains. Furthermore, computer aided design

(CAD) provides an accurate way to advance the development of new technologies.

From this point of view, numerical simulations in the context of the broad topic of

computational science have been established as the third paradigm of science, adding

to theory and experiment [27].

Simulation of semiconductor devices involves several factors. First, it is necessary

to obtain the charge and potential distributions self-consistently, which is the realm

of electromagnetic theory in the form of Poisson’s equation, for which elegant and

efficient computational solutions have been developed [28]. Then, the transport of

carriers in the semiconductor material, or the way charge moves in the presence of

electric fields and potentials through a crystal, requires a physical model to be solved

in a self-consistent manner with the electrostatic problem. Finally, for accurate device

simulations boundary conditions must be included in order to capture the effect of

surfaces and contacts.

Under the semi-classical approach, a complete description of carrier transport can

be done in terms of the single-particle distribution function f
(

~r,~k,~t
)

, which gives

the probability of finding one carrier with crystal momentum ~k, at position in real

space ~r at time ~t. This definition can be extended to an ensemble of non-interacting

particles [29]. The distribution function describes the average distribution of carriers

in phase-space, e.g. in real and momentum space, and can be used to calculate
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meaningful physical quantities such as carrier concentration, energy, velocity and

currents by calculating averages on the ensemble [30]. In order to obtain f
(

~r,~k,~t
)

,

the Boltzmann Transport Equation (BTE) given by 1.1 must be solved [31]:

∂f

∂t
= −~v · ∇~rf − ~̇k · ∇~kf +

(

∂f

∂t

)

coll

, (1.1)

where ~v is the carrier velocity, and the last term on the right hand side of 1.1 is the

rate of change of f due to collisions. In simple terms, the BTE describes the time

evolution of the distribution function in momentum-space, accounting for all possible

mechanisms by which it can change, such as driving forces given by applied fields and

dissipative scattering forces. However, the BTE is a multi-dimensional, non-linear

differential equation and solving it is a cumbersome task [32]. The strategy used to

do so, be it analytical or numerical, defines the characteristics of a device simulator.

A widespread technique is the drift-diffusion method [33] based on the first mo-

ment of the BTE, where approximations applied to the BTE yield the well known

drift-diffusion current equations, which can be self-consistently solved with the elec-

trostatic problem, taking into account analytical carrier statistics [34]. The main

advantage of this method is its relative computational efficiency at the expense of

relying on significant simplifications that fail under relevant operating conditions of

state-of-the-art devices.

The hydrodynamic model is an improved version of the drift-diffusion approach

which allows to study non-equilibrium conditions, however it still relies heavily on

parameters such as energy relaxation times, mobility amd diffusion coefficients among

others, whose accuracy determine the validity of the predictions and results obtained

under this approach [35]. Nevertheless, this method is widely accepted as the industry

standard and several CAD packages such as Sentaurus TCAD tools by Synopsys are

commercially available.
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On the other hand, particle-based simulation based on the stochastic Monte Carlo

methods have been established as a highly accurate way to solve the BTE [36], be-

cause it mimics the physics of carrier transport, providing an insightful microscopic

description of device operation [30]. In this strategy, a population of carriers is repre-

sented by an ensemble of particles whose individual trajectories are tracked in both

momentum and real space as they move through a device following Newton’s laws,

under the presence of electric fields and dissipative forces. The latter are the scatter-

ing rates, which correspond to the last term on the RHS of 1.1, and are formulated

as a probability density function according to a quantum mechanical treatment [29].

Monte Carlo methods provide an exact statistical solution of the BTE, and from

the resulting distribution function physical observables can be derived through aver-

ages of the ensemble. Moreover, if the number of particles (or trajectories) considered

in the simulation is large enough, the averaged quantities of the ensemble (concentra-

tion, energy, velocity and currents) are a good approximation to the average behavior

of the carriers in a real device. The flowchart of the particle-based Cellular Monte

Carlo framework (CMC) used in this work [37] is presented in figure 1.4.

The algorithm begins with initializing carriers in real and momentum space, within

the simulation domain representing the semiconductor device. Then the total charge

is calculated by imposing the charge neutrality condition considering mobile carriers,

ionized impurities and other fixed charges, which is used to solve Poisson’s equation

to obtain electric field and potential maps in real space. Then, the field is kept

constant over a short time-step called the free-flight and carriers are allowed to move

ballistically following Newtown’s laws updating the carrier position in both real and

momentum space. The following step corresponds to the carrier dynamics portion of

the method, where a stochastic Monte Carlo procedure is used to select if the carrier

scatters, and if it does then the final momentum state is selected and updated.
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Figure 1.4: Flowchart of the particle-based Cellular Monte Carlo algorithm (CMC).

This process is iterated over all particles in the ensemble, which typically requires

4 to 5 free-flight steps before the charge and electric field are re-calculated, implying

the use of two different time-steps one for the free-flight and one for the Poisson

Solver. Choosing the free-flight time-step most be done so that all scattering processes

can be resolved, whereas the Poisson time-step should be chosen so that numerical

artifacts such as plasma oscillations are avoided [36]. The whole loop is iterated over a

simulation time long enough for the system to evolve into steady-state, where physical

observables are obtained by calculating averages over the ensemble during additional

simulation time.

Traditional Ensemble Monte Carlo (EMC) simulators have the disadvantage of

being inefficient or computationally expensive because the position of carriers in
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Figure 1.5: Full electronic-band structure (a) and Phonon dispersion (b) of Wurtzite
GaN (HCP) used in this work.

momentum-space have to be recalculated on the fly during the simulation, for ev-

ery particle in every scattering step, which requires searching for the final momentum

states that conserve energy throughout the entire Brillouin Zone (BZ). Additional

inaccuracies are introduced in EMC simulators because with the aim of reducing the

computational burden, parabolic band structures are used in the scattering rate calcu-

lations. These issues are overcome by the Cellular Monte Carlo method (CMC) [37],

where the total scattering probability rates due to all mechanisms, from every initial

state to every final state are previously calculated and stored in look-up tables. This

approach reduces the selection of the final state to the generation of a single random

number, increasing the efficiency in the scattering step of the algorithm reducing the

simulation time at the expense of higher memory requirements.

Furthermore, within the CMC framework full electronic-band structures and phonon

dispersion are used in the calculation of scattering rates for each material of interest,

resulting in high accuracy in the description of highly non-linear, out of equilibrium

transport of carriers under high electric fields. The calculation of band structures is

done with the empirical nonlocal pseudopotential method [38], whereas the phonon
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Figure 1.6: GaN scattering rates at T =300K used in this work.

dispersion relations are computed with the volume-shell approach [39]. Figures 1.5 (a)

and (b) show the calculated band structure and phonon disperssion of GaN-HCP

respectively. Concerning the scattering rates, within the CMC simulator scattering

processes due to deformation potential phonons, polar optical phonons, piezoelectric

(polar acoustic) phonons, ionized impurities, impact ionization and thread disloca-

tions are included in all simulations. The corresponding scattering rates for GaN are

shown in figure 1.6. Finally, quantum mechanical effects due to carrier confinement in

the 2DEG at the heterojunction interface, are accounted for by including the effective

potential approach [40], allowing for effects such as charge setback and energy level

quantization [41].

It must be emphasized that under high electric field conditions, carrier trans-

port in semiconductors lead to significant non-linear behavior of devices, which arise

from major changes in the shape of the carrier distribution function. The changes

in f
(

~r,~k,~t
)

correspond to far from equilibrium conditions which violate most of

the approximations used in methods other than Monte Carlo [29]. Additionally, the
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accuracy of the description of transport is directly correlated to the material prop-

erties considered in simulations. Since GaN HEMTs often operate in high electric

field regime, the CMC framework constitutes an appropriate tool for modeling and

characterization of these devices.

1.2 Overview of this Work

In this work, the assessment of physical mechanisms associated to reliability con-

cerns in mm-wave GaN devices for power amplifier (PA) applications is presented.

The study is performed by means of a full band Cellular Monte Carlo particle-based

device simulator (CMC) [37], which allows for the systematic characterization of the

performance of GaN devices operating in DC, small-signal AC and large-signal radio-

frequency (RF) conditions. From the device’s response under different operating

regimes, the microscopic properties relevant for transport are correlated to effects

such as deviations from ideal electrical response, generation of hot carriers, material

defects and self-heating associated to degradation of performance.

With the aim of providing the main concepts used throughout this study, Chapter

2 is dedicated to a brief review of the material properties of wurtzite GaN, followed

by the discussion of basic operation of GaN devices. In addition, the main reliability

concerns associated to this technology is discussed, and the fundamentals of power

amplifier operation and design are introduced. Next, chapter 3 is focused on the

the study of non-idealities in III-N heterojunction diodes that explain the limited

performance of the experimental IV characteristics with respect to those obtained by

simulations of the ideal layout, showing that variations of mole fraction in the barrier

and the presence of Schottky contacts are the dominant parameters responsible for

the deviations from ideal response.
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In chapter 4, a hot electron generation study in GaN HEMTs is presented in

terms of the electron energy distribution function (EDF), calculated under large-

signal RF power amplifier operation. While most studies are done for DC bias only,

here simulations are carried out under realistic PA conditions including the effect of

frequency and temperature variations. The results suggest that degradation due to

hot electrons is higher in DC than in RF Class AB PAs when the frequency is in

the X-band (10GHz) independently of the temperature, but the trend is reverted for

mm-wave frequencies (up to 40GHz). Also, it is shown that Class A operation would

lead to lower reliability than Class AB, because of a higher generation of hot carriers.

The methodology presented in chapter 4, is then used in chapter 5 to benchmark

a new Π-shaped gate contact proposed here for improved reliability of GaN HEMTs

which reduces the generation of hot electrons in DC and large-signal RF operation

without significantly degrading the device’s performance. The results show that in

all operating regimes the EDF is lower with a Π-gate contact than with a typical

T-gated device, which suggests improved robustness to failures from the generation

of traps induced by hot carriers. Design rules along with projections of small-signal

AC parameters were presented as guidelines for design and fabrication.

Finally, the self-heating effects observed in GaN-HEMTs on Si substrates is stud-

ied by means of electro-thermal simulations of the DC characteristics, obtained with

an expanded CMC framework. In this new approach, the thermal effects are included

through an energy-balance equation for phonons which self-consistently couples the

charge and heat transport. After validating the electro-thermal model with experi-

mental data showing excellent agreement, the model is used to assess the impact of

lateral scaling of the device in terms of self-heating effects, showing that on scaled de-

vices the improved electrical characteristics are accompanied by stronger self-heating

effects which require the development of thermal management strategies.
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Chapter 2

REVIEW OF GAN TECHNOLOGY AND POWER AMPLIFIERS

Group III-nitride semiconductors have drawn interest in research and industry in

the last decades [42; 43; 18]. The wide band gap of GaN and AlN of 3.4 eV and 6.2 eV

respectively, in addition to the ability to form lattice matched heterojunctions in the

AlGaN/AlN/GaN system, makes this a very attractive technology for applications

in power electronics and mm-wave power amplifiers (PAs). These materials become

intrinsic at higher temperatures than narrow band gap semiconductors and they can

sustain large current and voltage due to their high breakdown field. In addition, III-

nitrides heterojunctions show high density of two-dimensional electron gas (2DEG)

at the heterointerface without the need of modulation doping, due to the presence

of a strong polarization effect. This translates in higher electron concentration and

mobilities which makes the system suitable for high power and high frequency ap-

plications [10]. In this chapter, a brief review of the fundamental concepts relevant

for GaN technology is presented. First the polarization effects and principles of op-

eration of AlGaN/AlN/GaN devices is discussed, followed by a review of the main

aspects of HEMTs reliability. Finally, the principles of operation and design of PAs

is introduced.

2.1 Polarization Effects in GaN

In order to understand the material properties that allow high current densities

and high frequency operation in AlGaN/GaN devices, making GaN one of the most

studied and utilized wide band gap semiconductors, it is necessary to dwell in detail

into the characteristics of its crystal structure. While it is possible to grow GaN
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Figure 2.1: Crystal structure of GaN in Wurtzite form showing (a) Highlighted
Hexagonal Closed Packed (HCP) sublattice for cation Ga, and (b) Typical growth
planes, indicating the Ga-polar c-plane {0001} and the semi-polar {1122̄} plane.

in zincblend, the equilibrium crystal under conventional growth conditions is the

hexagonal wurtzite structure, as it is shown in figure 2.1 (a). Due in part to the

fact that GaN is difficult to grow in bulk form because of its high melting point of

2500 ◦C and the high equilibrium pressure of nitrogen, its growth is done on affordable

substrates like Si, SiC and sapphire (Al2O3), which impose the growth direction,

typically along the {0001} plane, known as the c-axis, which offers good stability

and morphology in diverse growth environments, as well as a strong spontaneous

polarization effect [44].

The wurtzite crystallographic structure is composed of two interpenetrating hexag-

onal closed packed (HCP) sublattices, one made up of anions and the other occupied

by cations, these being N and Ga respectively. The sublattice formed by cations is

displaced with respect to the anion sublattice by a factor u · c along the c-axis, where

c is the lattice parameter along the {0001} direction and u corresponds to a reduced

coordinate. If the HCP structure is not distorted, then the ratio c/a is equal to
√

8/3,

with a being the length of the hexagonal edge of the HCP cell structure, and u =3/8.
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However, in wurtzite crystals the value of u departs from the ideal 3/8. Additionally,

since along the c-axis direction planes of cations alternate with planes of anions, the

material has a direction of polarity with low symmetry. When crystals have a unique

polarity direction, e.g. a direction without symmetry elements relating the two ends,

they are pyroelectric and exhibit spontaneous polarization PSP [18], which is exactly

the case for wurtzite GaN grown along the polar c-plane in the {0001} direction, as

shown in figure 2.1 (b).

The direction of the PSP depends on the direction of polarity chosen during growth,

which for wurtzite GaN can be either Ga-polar or N-polar obtained along the direc-

tions {0001} and {0001̄} in that order [45]. Concerning the magnitude of the spon-

taneous polarization, it increases as the parameter u deviates from its ideal value,

because it gives rise to a nonzero dipole moment per unit volume, which is indepen-

dent of external electric fields. Specifically for GaN, AlN, InN and ZnO, the reported

PSP values are -0.029, -0.081, -0.032 and -0.074 C/m2 respectively [18]. For ternary

alloys of the type AlxGa1−xN , where x is the Al mole fraction, the spontaneous po-

larization is proportional to x and it can be found as the linear interpolation between

the GaN and AlN values [45]. Even though the polar c-plane is the preferred direction

of growth for a variety of applications, in the field of optoelectronics the presence of a

polarization vector is deleterious, hence other directions of growth are favored, such

as the semi-polar plane {1122̄} shown in figure 2.1 (b).

In addition to the pyroelectric nature of wurtzite GaN, pseudomorphicAlGaN/GaN

heterostructures also exhibit strong piezoelectric polarization effects due to strain in

the epitaxial layers induced by the mismatch of the lattice constants and thermal

expansion coefficients of AlN and GaN. During crystal growth, if the epitaxial layer

grown on top of the buffer is kept under a critical thickness, it undergoes strain

along the basal plane leading to a piezoelectric vector PPE parallel to the direction
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of growth, i.e. the c-axis in Ga-polar heterostructures. Following the formalism pro-

posed by Ambacher et al. [45], the piezoelectric polarization is given by:

PPE = 2
a− a0
a0

(

e31 − e33
c13
c33

)

, (2.1)

where a0 is the lenght of the hexagonal edge of the relaxed HCP cell, a is the lattice

constants of the strained layer, e31 and e33 are the piezoelectric coefficients, while c13

and c33 are the elastic constants. The positive direction of PPE is defined from the

anion N towards the cation which can be either Ga or Al. Furthermore, since the

inequality

(

e31 − e33
c13
c33

)

< 0, (2.2)

is valid for all mole fractions in the AlGaN alloy, then the piezoelectric polarization is

negative or parallel to the PSP vector under tensile strain, and positive or anti-parallel

to PSP under compressive strain. Furthermore, the parameters of equation 2.1 are

proportional to the mole fraction x of the alloy and can be found by semi-empirical

linear or quadratic interpolation expressions between the GaN and AlN values [45].

Then, the total polarization is given by:

P = PSP + PPE, (2.3)

which in the case of high polarization discontinuities across heterointerfaces, can be

associated to a polarization charge density defined as:

σP = −∇P [C/m2]. (2.4)

Considering Ga-polar heterostructures in the system AlGaN/GaN , 3 possible

cases of polarization induced charged at the heterojunction can be identified follow-
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Figure 2.2: Polarization vectors (Spontaneous PSP and Piezoelectric PPE) and
equivalent interface charge for Ga-polar AlGaN/GaN heterostructures under dif-
ferent growth conditions of the top layer: (a) AlGaN relaxed, (b) AlGaN Tensile
strain and (c) GaN Compressive strain, while keeping the bottom layer relaxed.

ing the previous description, and these are shown in figure 2.2. If a thick epitaxial

AlGaN layer is grown on top of a relaxed GaN buffer as shown in figure 2.2 (a), then

both layers are relaxed, resulting in only PSP vectors pointing towards the substrate.

Since PSP |AlGaN > PSP |GaN then an equivalent positive polarization charge σ is in-

duced at the heterointerface. On the other hand, if a thin AlGaN layer is grown on

top of a relaxed GaN buffer, then the top layer will be under tensile strain resulting in

both spontaneous and piezoelectric polarization, with parallel vectors PSP and PPE

which will induce a strong positive polarization charge at the interface, as shown in

figure 2.2 (b), significantly larger than that of case (a), because of the extra PPE com-

ponent. Finally, if a thin epitaxial layer of GaN is grown on top of a relaxed AlGaN

buffer, as shown in figure 2.2 (c), then the top GaN layer will be under compressive

strain resulting in anti-parallel PSP and PPE vectors, which in turn induce a total

negative charge density at the heterointerface.

During fabrication of heterojunctions in wurtzite GaN, in particular of the type

Ga-polar AlGaN/GaN under tensile stress of figure 2.2 (b), the strong positive po-

larization charge +σ induced on the AlGaN side at the interface is compensated

by free electrons mostly provided by surface donor states [18]. These free electrons
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reach high densities, creating a conductive confined layer typically referred to as a

2-Dimensional Electron Gas or 2DEG. The polarization induced 2DEG can reach

concentrations higher than 1013 cm−2 without the need of doping, resulting in high

electron mobility >1000 cm2V−1S−1 due to a reduced impurity scattering [10] which

can be exploited in the design of high frequency devices. Herein lies the relevance

of the polarization effects observed in wurtzite GaN heterostructures, which provide

a strong advantage with respect to the system AlGaAs/GaAs where the 2DEG is

formed by carrier injection from the AlGaAs barrier which is heavily doped.

2.2 AlGaN/AlN/GaN Devices

The development of technologies such as Metal Organic Chemical Vapor Deposi-

tion (MOCVD) and Molecular Beam Epitaxy (MBE), made possible the fabrication

of heterojunctions in the 1970s, which was motivated by the early studies of car-

rier transport parallel to a heterojunction done in the late 1960s [46]. In addition, the

first report on mobility enhancement in 2DEGs induced at the interface of heterojunc-

tions was reported for the AlGaAs/GaAs system in 1978 [9], which lead to developing

devices based on heterojunctions. In particular, the High Electron Mobility Transis-

tor or HEMT was first proposed in the AlGaAs/GaAs system in 1980 [47], where the

2DEG at the interface is formed by electrons injected from the heavily doped AlGaAs

barrier. Even though research on the growth of GaN had been done since the 1960s,

the lack of substrates halted the progress of this field. In fact, the first report on

mobility enhancement of carriers in polarization induced 2DEGs in AlGaN/GaN

heterojunctions was presented in 1991 [48]. It was not until 1994 that the microwave

capabilities of AlGaN/GaN HEMTs was demonstrated for the first time [49]. From

this point, the development of devices based on the AlGaN/AlN/GaN system has

skyrocketed. In the following subsections the principles of design and operation of
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GaN HEMTs is discussed, followed by a brief description of the novel Hot Electron

Transistors (HETs), which are related to chapter 2 of this study.

2.2.1 High Electron Mobility Transistors (HEMTs)

HEMTs based on the AlGaN/GaN heterostructure are the most emblematic de-

vices exploiting the advantages of wide band gap materials and strong polarization

effects. Figure 2.3 (a) shows the basic structure of a typical GaN-HEMT, which will

be used in this section to explain device performance by means of CMC simulations

using the real-space grid of figure 2.3 (b). The epitaxial stack consists of a Ga-polar

AlxGa1−xN/AlN/GaN heterostructure, where the Al mole fraction of the AlGaN al-

loy is x =0.29. A thin AlN interlayer, typically 1 nm to 3 nm thick, is incorporated

because it provides a stronger polarization charge inducing higher concentration of

carriers in the 2DEG. Furthermore, AlGaN/GaN heterostructures without AlN in-

terlayers suffer from of alloy scattering, which is caused by the perturbation of the

periodic potential due to the substituting atom in the alloy crystal structure, affect-

ing electron transport in the channel because of the partial penetration of the wave

function of the carriers into the alloy layer. In this sense, adding the AlN layer in-

creases the distance between the channel and the AlGaN barrier resulting in higher

mobility by reducing the effect of alloy scattering [50]. The top GaN cap layer is used

to provide a high quality surface and also to reduce gate leakage. Traditionally the

AlGaN barrier is unintentionally doped, i.e. no impurities are added to increase the

2DEG, however in some new structures the AlGaN layer is doped with Si to increase

the 2DEG concentration and therefore the current density [51]. It must be noted that

since the 2DEG is intrinsically formed in the heterostructure, Ga-polar HEMTs are

depletion devices. This represents no significant concern for mm-wave PAs, but it

constitutes a challenge for power-switching applications.
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Figure 2.3: Basic structure of a Ga-polar AlGaN/AlN/GaN HEMT showing (a)
device layout and (b) non-uniform grid used for CMC device simulations.

The epitaxial stack is terminated with a SiN layer for passivation of the surface,

which is a crucial step in HEMT design and fabrication [51]. As it was explained in

section 2.1, the strong polarization charge at the heterojunction interface is compen-

sated by free electrons that are donated from surface state donors during fabrication

of the epitaxial stack forming a 2DEG. If the donor surface states are left electrically

active, charge trapping /de-trapping can occur during device operation, producing

variations of charge at the surface that can accumulate or deplete the 2DEG causing

dispersion of the conductivity and therefore the current of the device. In addition,

some surface states are acceptor-like which when empty are negatively charged lim-

iting the concentration of the 2DEG. These effects can be eliminated by plasma

treatment of the surface and by depositing dielectrics like SiN for passivation [13].

Even though it is not shown in figure 2.3 (a), because all the simulations performed

in this work focus on the active region of the device, AlGaN/GaN is grown either by

MBE or MOCVD on thick substrates, typically 4H-SiC which provides high thermal

conductivity and therefore good thermal dissipation. Also Si substrates are of interest

for integration purposes. However, the lattice mismatch between these substrates

and GaN require the careful design of nucleation layers in order to grow high quality
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crystals. This is done by depositing AlN layers on top of the SiC or Si, before

growing the wurtzite GaN [13]. The effect of the lattice mismatch is the formation of

thread dislocation defects which reduce the mobility of carriers in the channel, as it

is explained in the reliability section 2.3.3 of this chapter. An essential technological

aspect regarding buffer design, is the compensation of n-type conductivity of the buffer

by means of Fe or C doping, which increases the 2DEG confinement and reduces the

short-channel effects [52].

Regarding the contacts, HEMTs are fabricated with ohmic source and drain con-

tacts employing Ti/Al/Ni/Au or Ti/Al/Ti/Au layers, that once deposited undergo

Rapid Thermal Annealing (RTA). On the other hand, the gate contact is Schottky

type made using Ni/Au or Pt/Au layers [13; 51]. Due to the inherently high elec-

tric fields present in GaN HEMTs, either under equilibrium because of polarization

dipoles or in DC and RF operation, the shape of the gate contact is a crucial design

parameter. The state-of-the-art devices are fabricated using a T-shaped gate contact,

which consists of a single stem which provides the channel length and a metal top with

lateral plates which help reduce the gate resistance. In order to increase the current

capability or total output current (not the intrinsic current density), the layout can

include multiple gate fingers and interdigitation [51].

Modern structures for high power devices also include field plates that can be

connected to the source or the gate which diffuse the peak electric field in the channel,

enabling higher breakdown voltages [11]. In addition, shifting the gate placement

towards the source contact i.e. making LSG < LGD also reduces the peak electric

field and allows for higher breakdown. In the case of HEMTs fabricated on conductive

Si substrates, the source is ohmic-contacted to the substrate while the back-side of

the device undergoes metallization to ground the buffer, which is known as source-

via-grounding or SVG. The use of SVG designs reduces the on-resistance and the
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source parasitic inductance by eliminating source wire bonding for packaging while

also improving thermal dissipation, but more importantly it acts as a backside field-

plate which enhances breakdown voltage capabilities by reducing the peak electric

field in the device [53].

Now that a general picture of the complexity associated to the layout of GaN

HEMTs has been discussed, it naturally follows the study of DC and small-signal

AC characterization of a device. This is done here by means of CMC simulations

of the device layout presented in figure 2.3 (a), which despite of following the general

structure of an experimental device, it is not the intention of this section to provide a

full fit to a particular experimental device but merely a functional model of a HEMT.

This is done with the aim of providing a more detailed explanation of the simulation

approach of this work as well as the basic operation of the device. If the reader

is familiar with both of this aspects, the remaining of this section can be skipped

without missing essential contributions of the work.

In all the simulations presented in this work, the main focus is on the active area

of the device, meaning that detailed substrate layers are not included. The polar-

ization effect of AlGaN/AlN/GaN heterostructures is included as sheets of charge

placed at the corresponding interfaces, with densities calculated following Ambacher’s

formalism [45] as explained in section 2.1. The effect of passivation of surface states

is also included as an additional sheet of charge placed at the SiN/GaN interface,

which can be used to calibrate the 2DEG concentration and fit experimental devices.

Even though experimental studies to extract the polarization fields and charge values

of AlGaN/GaN heterojunctions have shown that Ambacher’s theoretical framework

lead to an overestimation of about 15% of the polarization charge [54], the accuracy of

this simulation approach has been demonstrated by electron holography studies [55].
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With respect to the simulation domain in real space, it is discretized with the

grid shown in figure 2.3 (b) which is highly inhomogeneous in both the vertical and

horizontal directions. This strategy allows to enhance the resolution in critical regions

such as the AlGaN/AlN/GaN barrier, the 2DEG region and the channel under the

gate, while reducing the computational effort in less relevant areas, i.e. areas with no

transport of carriers, such as the SiN passivation layer or deep down the buffer. The

dimension of the cells have to be carefully chosen to avoid numerical artifacts such

as plasma oscillations, which is done by keeping the maximum length shorter than

the Debye length calculated with the local carrier concentration [36]. Also, with the

aim of facilitating the convergence of the Poisson solver the variation between two

adjacent cells is no larger than 2x the length in any direction [28].

The contacts of the device are modeled as equipotential regions, meaning they

serve as boundary conditions for the Poisson solver. In the case of the source and drain

contacts, lateral regions are defined across the barrier to directly contact the 2DEG

emulating the ohmic behavior, while the doping is used to calibrate the experimental

contact resistance when a full fit to experimental data is intended. Even though in

the layout of figure 2.3 (a) a simple stem gate contact was used, complex structures

such as T-shaped gates can be defined and simulated. In order to capture the buffer

related effects such as threading dislocations and conductivity compensation, sheets

of charge and doping concentration of the buffer region can be used as parameters for

calibration with experiments, in particular of the threshold voltage of the device.

Figure 2.4 presents the band diagram of the simulated GaN HEMT at a DC bias

condition of drain voltage VDS =5V and gate bias VGS = -5V. In particular, the left

panel identified as (a) shows the 3D conduction band profile with the carrier concen-

tration as a contour, and it can be seen the accurate simulation of the barrier profile

and the formation of the 2DEG obtained with the CMC model. Furthermore, in fig-
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Figure 2.4: Band diagram of the simulated GaN-HEMT from figure 2.3 at DC bias
of VDS =5V and VGS = -5V. Panel (a) shows the 3D conduction band profile with
the carrier concentration as contour, while panel (b) shows the vertical profile of
the conduction band along with the carrier concentration, taken from a slice on the
source-to-gate access region.

ure 2.4 (b) is plotted the vertical profile of the conduction band along with the carrier

concentration, corresponding to a slice taken in the source-to-gate access region. In

particular, the effect of adding the AlN interlayer in the AlGaN/GaN barrier profile

is captured, characterized by a thin barrier with height of 2.8 eV and also a high

density 2DEG with a carrier concentration of 1.9x1020 cm−3, resulting in a density in

the order of 1013 cm−2.

A full DC characterization is presented in figures 2.5 (a) and (b) corresponding to

the IDS−VDS and IDS−VGS curves respectively, also known as the output and transfer

characteristics. The first property that is observed is the depletion mode behavior

of the device, which requires VGS = -10V to turn-off. This value is particularly high

because no buffer compensation was used in the simulations as it would be done in

an experimental device. Also, it must be noticed the high current densities achieved

as well as the high transconductance Gm shown in the right y-axis of panel (b).
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Figure 2.5: DC characterization of the simulated GaN-HEMT from figure 2.3 show-
ing (a) IDS−VDS and (b) IDS−VGS or output and transfer characteristics respectively.

With respect to the AC simulation method, it consists in calculating the Y-

parameters of the device over multiple frequencies. This is done by performing two

separate simulations where an AC small-signal, meaning small amplitude with respect

to the DC bias, is applied to either the gate or the drain of the device while keeping

the other contact with only a DC bias, which emulates an AC short-circuit. The type

of signal used is a multisinusoid, which consists in a linear combination of sines each

centered at a desired frequency while keeping the summation of their amplitudes in

the small-signal condition. Then, a fourier decomposition method is used to extract

the individual contributions, and calculate the current and power gain [56].

Finally, the small-signal AC characterization of the device is presented in figure 2.6

where the current gain and unilateral power gain are plotted as a function of frequency

calculated at a DC bias point corresponding to peak Gm. From this plot it is possible

to extract the cut-off frequency ft =95GHz, defined as the frequency for unity current

gain, and the maximum oscillation frequency fMAX =123GHz which corresponds to

unity power gain. These parameters constitute the most relevant metrics in terms

of frequency response, because ft measures the maximum frequency at which the
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Figure 2.6: Small-signal AC characterization of the simulated GaN-HEMT from
figure 2.3 showing short-circuit current gain and unilateral power gain curves as a
function of frequency, for extraction of ft and fMAX .

device can be switched, whereas fMAX represents the maximum frequency at which

the device can provide RF power. In both cases, this particular HEMT demonstrates

the high frequency capabilities of the GaN-HEMT technology.

2.2.2 Hot Electron Transistors (HETs)

In recent years there has been a resurgent interest in the development, at least at a

research level, of vertical GaN devices for ultra-high frequency operation in the range

of terahertz. The most prominent device in this field is the Hot Electron Transistor

(HETs) based on AlGaN/GaN heterojunctions, and significant progress has been

made both in fabrication and transport analysis [20; 21]. The layout of a HET is

shown in figure 2.7 (a). It is a 3 terminal device that can be understood as formed by

two back-to-back III-N hetorojunction diodes vertically stacked. It helps to think of

the HET as an unipolar version of a heterojunction bipolar transistor or HBT. The

top diode is formed by an AlGaN/GaN junction and it works as the emitter-base
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Figure 2.7: Hot Electron Transistor (HET) device showing (a) device layout and
(b) 2 dimensional band diagram along the vertical direction. Also indicated in (b)
a sketch of some carriers and their trajectories, along with the current components
under typical DC operation.

barrier, whereas the bottom diode is made of an InGaN/GaN stack and constitutes

the base-collector barrier.

In order to understand the principles of operation of this device, it is convenient

to examine the simulated conduction band profile of the stack shown in figure 2.7 (b),

where the sketch of a few carriers and their trajectories has been added. When a

positive voltage VBE is applied, the emitter-base barrier φEB is lowered allowing elec-

trons to be injected from the emitter into the base through tunneling and thermionic

emission, creating an emitter current IE. As the carriers cross the heterojunction

interface they gain high kinetic energy becoming hot, hence the name Hot Electron

Transistor, which allows them to traverse through the base. Here carriers can experi-

ment scattering, losing energy and getting stuck in the base represented by the purple

dot creating the base current IB, or they can reach the base-collector barrier with

energy higher than φBC as indicated by the blue dots, and cross that second barrier

being collected, creating the collector current IC . For this last process to happen the

base-collector barrier must be biased with a positive VCB voltage. In practice, biasing

HETs is done by forcing a small IB and applying a positive VCE as done in HBTs.
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In theory, the main advantage of a device as the HET here described rises from

the fact that a short base, in the range of 12 nm allows for extremely short transit

times enabling terahertz operation. The III-N heterostructure offers fundamental ad-

vantages for the implementation with respect to the AlGaAs/GaAs system, because

the polarization induced 2DEG at the top AlGaN/GaN emitter-base barrier provides

a highly conductive base without doping, reducing the scattering and increasing the

collection of electrons in the base-collector barrier. It must be highlighted that in

HETs the transport is perpendicular to the 2DEG unlike what is pursued in HEMTs.

Also, the wide band gap of AlN and ternary AlGaN alloys, as well as the high energy

separation between the Γ and the satellite valleys in GaN, allows for the engineering

of φEB barriers which inject high energy electrons into the base without these being

transferred to satellite valleys, enhancing the transfer of carriers to the collector.

A comprehensive study of hot electron transistors is out of the scope of this re-

search work. Nevertheless, the non-idealities of fabricated emitter-base diodes affect-

ing HETs performance are indeed studied in detail, and the results are presented

in chapter 3. The motivation for this work was the discrepancies observed between

CMC simulations and experimental data of the IE−VBE curves of emitter-base diodes,

which are correlated to the shift observed between CMC simulations and experimen-

tal data of the IC − VCE curves of HETs. In chapter 3 it is demonstrated that such

discrepancies can be explained in terms of mole fraction variations in the AlGaN

barrier and including non-ideal Schottky contacts at the emitter and base.

2.3 Reliability of GaN HEMTs

Due to the high power and frequency performance of GaN HEMTs, the technol-

ogy has become a prominent alternative in the field of power amplifiers for satellites,

radars and base stations for both civilian and military applications. This applica-
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tions demand for robust devices capable of operating under harsh conditions and no

maintenance, making reliability requirements a crucial aspect. Operation of GaN

HEMTs as power amplifiers bring about device failure mechanisms not observed in

Si or other compound semiconductors [23], since under typical conditions devices are

subjected to high temperature and power dissipation, high electric fields, high current

and high-frequency. In addition, GaN technology development relies on heterostruc-

tures exhibiting strong polar effects, that are grown in non-native substrates such as

Si, SiC or sapphire (Al2O3), resulting in high density of defects, along with thermal

and interfaces mismatches. In this section, the main degradation mechanisms of GaN

HEMTs as well as stress testing strategies are discussed.

2.3.1 Hot Electron Effects

One of the aspects that all technologies of modern semiconductor devices have

in common, from Si CMOS for digital applications to GaN HEMTs for RF power

amplifiers, is the fact that under typical operating conditions they are subjected to

extremely high electric fields. Let’s consider for example Intel’s Si-FINFET for digital

applications. Currently, Intel’s node has a critical gate length LG =14nm and an

operating drain voltage VDS = 0.4V resulting in an electric field of 2.8x105V/cm in

the active region of the device. Even though HEMTs are orders of magnitude larger

with typical access region length of LGD = 1µm, they also operate at significantly

larger voltages, say for example VDS = 28V yielding the same peak electric field of

Intel’s Si-FINFET.

Under high electric fields, devices operate far from equilibrium and their transport

is highly non-linear. Furthermore, carriers traveling through the channel are acceler-

ated by the high electric field region and may gain significant fractions of an electron

volt in kinetic energy. From a transport point of view, it can be shown that in this

31



case the effective temperature of the carriers is well above the lattice temperature,

assuming that the energy is distributed throughout the total distribution of carriers.

To illustrate this, let’s consider the case of two isolated energy levels in the conduc-

tion band separated by an energy ∆, so that a coupling phonon with ∆ eV must be

absorbed or emitted for a transition of electrons between the bands. The occupation

numbers of electrons is represented by distribution functions f(1) and f(2), so that

the latter corresponds to the upper energy band. The net rate of change in energy of

electrons sitting in the upper band is given by 2.5 [29]:

∂f(2)

∂t
= Ω12N∆f(1)− Ω21N∆f(2), (2.5)

where by detailed balance Ω12 = Ω21 and correspond to a set of constants, and N∆ is

the phonon Bose-Einstein distribution function. The rate given by 2.5 is essentially a

transport equation of f(2), simplified from the Boltzmaan Transport Equation (BTE)

given by equation 1.1 presented in chapter 1. The first term on the right-hand-side

(RHS) of 2.5 corresponds to an energy gain term, whereas the second is an energy

loss, that in equilibrium balance each other leading to the Boltzmann factor for the

ratio of occupancies.

When there is an applied electric field, the gain and loss terms in 2.5 are no longer

equal raising the average energy of carriers. This in turn increases the density of

electrons in level 2, leading to an out of equilibrium distribution of electrons f(2)

above its equilibrium value. Nevertheless, the system still reaches steady-state when

the dacay term is greater than the gain term, so that

f(2)

f(1)
>

N∆

N∆ + 1
= exp

(

−
~ω0

κBT

)

, (2.6)

where T is the lattice temperature and the RHS in 2.6 is the equilibrium Boltzmann
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factor. Evaluating a simple distribution function for f(E) with electron temperature

Te, from 2.6 it can be seen that the only way to reach steady-state condition is that

Te > T , hence the term hot electrons. This analysis also suggests that the electron

energy distribution function under high electric field is far from its equilibrium form,

typically assumed to be Maxwellian [29].

Concerning the development of GaN HEMTs, the effect of hot electrons has a

significant impact in device reliability. In simple terms, hot electrons are carriers

accelerated by the electric field gaining high kinetic energy. As these carriers travel

through the device the energy can be transferred to the lattice by means of colli-

sions, producing undesired effects such as heat generation by electron-phonon inter-

actions [57]. Since the peak electric field in devices is located in the drain-side of the

gate, most of the hot-electron generation takes place on the gate-drain access region

in channel and in the buffer, however the carriers do not remain confined there. If the

energy is high enough i.e. greater than an activation value, hot-carriers can overcome

or tunnel through potential barriers and be injected from the 2DEG channel into the

AlGaN barrier or they can be injected from the gate contact into the passivation layer

getting trapped there [58].

Furthermore, hot-carriers can even break atomic bonds and create interface states

or activate traps through dehydrogenation [59]. The presence of electrically active

traps is of high relevance because they enable mechanisms of trapping and de-trapping

of electrons producing different effects in the device performance, such as gradual,

permanent or recoverable degradation of parameters and increased noise due to charge

fluctuations. The degree of damage depends on aspects such as material quality,

fabrication process and electrical stress used to induce hot-electron generation [23].

The type of traps generated by hot electrons is correlated to the fabrication of the

device, since this process requires high densities of precursor imperfections associated
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to growth conditions, such as passivated point defects. By imperfections it is meant

atoms other than those of the crystal structure, such as hydrogen bonds at the sur-

face formed during passivation stages. Also, density functional theory studies have

characterized the typical precursors for trap generation in the buffer and AlGaN bar-

rier of devices fabricated by Metal-Organic Chemical Vapor Deposition (MOCVD) or

Molecular Beam Epitaxy (MBE) in ammonia-rich environments [60]. While substitu-

tional hydrogen in N antisites lead to acceptor-like traps, substitutional hydrogen of

Ga vacancies leads to donor-like traps [59].

Hot-electrons that are injected from the channel into the AlGaN barrier or into

the SiN/Barrier surface, are associated with generation of point defects acting as

deep level acceptor-like traps, which when occupied have an effective negative charge.

These traps can be located at the surface interface between the passivation layer and

the barrier, or in the AlGaN/GaN interface close to the channel. DC characteriza-

tion of hot-electron induced trapping/de-trapping phenomena results in dispersion of

parameters known as drain or gate lag. The negative charge of the occupied traps de-

pletes the 2DEG channel resulting in higher resistance, lower drain current and lower

transconductance Gm [26; 57]. Figure 2.8 reproduced here from the original research

by Meneghini et al. [26], shows the signature hot-electron degradation attributed to

acceptor-like trap generation in the AlGaN barrier in GaN HEMTs. In particular,

left and right panels identified as (a) and (b) in the figure correspond to the IDS-VDS

and the transconductance Gm-VGS curves in that order, of an experimental device

measured before and after electrical stress inducing hot electron generation.

Effects of hot electrons are also associated to generation of acceptor-like traps in

the buffer and channel of the device. In this case, the negatively charge trap is close

to the channel which significantly depletes the 2DEG, increasing the on-resistance

or reducing the slope of the linear region of the IDS-VDS curve. It also increases
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Figure 2.8: Signature degradation of (a) drain current and (b) transconductance
caused by hot-electron effects in the AlGaN barrier of an experimental GaN HEMT.
The figure is reproduced from original research presented by Meneghini et al. [26].

the parasitic channel resistance resulting in reduced drain current and transconduc-

tance, whereas the threshold voltage is positively shifted. In addition, the excess

energy of the hot-carriers in the channel can be transferred to the lattice through

electron-phonon scattering raising the temperature of the device enhancing the cur-

rent collapse [22].

Another degradation mechanism corresponds to the injection of electrons from

the gate contact into the barrier, which in the path of crossing the AlGaN/GaN

heterojunction become hot and generate donor-like deep level traps at the interface

close to the channel. In this case, the gate leakage current is significantly increased

due to enhanced trap-assisted tunneling. Since the unoccupied traps yield positive

charge, an additional gate capacitance is added to the device that is detectable under

CV measurements. Some of the deleterious effects of the excess positive charge at

the AlGaN/GaN interface are threshold voltage shifting towards negative values due

to an increased 2DEG in the channel. It also enhances short channel effects such as
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drain-induce barrier lowering (DIBL) and punch through and due to higher electric

fields in the AlGaN barrier it may lead to lower breakdown [23].

The effects of hot electrons have been extensively studied under DC stress condi-

tions, with very few experiments performed on devices driven with RF signals. Since

the CMC framework is well suited to study non-equilibrium highly non-linear trans-

port, the research work presented in the following chapters focuses in the study of

hot electron generation under RF power amplifier operation of GaN HEMTs.

2.3.2 Self-heating Current Collapse

As it was mentioned in the previous section, the interaction of hot electrons with

the lattice through phonon scattering leads to the significant increment of the tem-

perature in the device. This effect, known as self-heating, is particularly strong in

GaN HEMTs because one of the dominant scattering mechanisms corresponds to

polar optical phonons [29], and also because non-native substrates create thermal

interfaces and provide thermal conductivities that affect the thermal dissipation of

the device [61]. Even though sapphire (Al2O3) was originally considered as a good

substrate, GaN on SiC became the dominant technology due to the higher thermal

conductivity and better thermal interface achieved 4H-SiC substrates, with cost as

a trade-off. The signature degradation of self-heating corresponds to the monotonic

reduction of drain current as the drain voltage increases, so that IDS goes below the

saturation current value, which is commonly referred to as current collapse. This

is shown in figure 2.9, reproduced from the original work presented by Zanoni [23],

which corresponds to experimental measurements of the IDS-VDS characteristics of a

GaN HEMT with strong self-heating current collapse.

In terms of reliability studies, self-heating effects are particularly challenging be-

cause experimental techniques currently available only provide direct information of
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Figure 2.9: Signature degradation of self-heating current collapse observed in the
IDS-VDS curves of an experimental GaN HEMT. The figure is reproduced from the
white paper presented by Zanoni [23].

the surface or backside of the device, while knowledge of the channel temperature

and spatial distribution is indirect. In fact, as of this writing there is no experimental

technique with the capability of providing sub-surface device temperature mapping

with the necessary lateral and depth resolution [23].

Among the experimental techniques for temperature mapping are infrared ther-

mography, photolomuniscence spectroscopy, scanning thermal microscopy, thermore-

flectance and microRaman spectroscopy. Recently, an advanced experimental set-

up combining thermoreflectance measurements with Raman spectroscopy carried out

from both the top on the gate metallization of the devices and from the backside

of the wafers, provided a complete thermal mapping of fabricated devices with high

lateral and depth resolution [62]. Despite the significant impact of these results, the

validity of the sub-surface mapping of the measured channel temperature in fully

processed devices is still under discussion. Furthermore, the set-up required to carry
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out such experiments is significantly more complicated than other techniques that

require calibration.

For these reasons, the accurate evaluation of the thermal effects in GaN HEMTs

relies heavily in advanced numerical and simulation techniques, which are compared

and calibrated to the available experimental data with the aim of obtaining infor-

mation concerning the channel temperature, and spatial resolution of the location of

hot-spots in the device [23]. For this reason, the available CMC particle-based device

simulator has been expanded to include thermal effects self-consistently coupled to

the highly accurate electrical simulations. This is presented in detail in the last chap-

ter of this work, where a GaN on Si experimental HEMT is characterized in terms

of electro-thermal simulations, and the modeled device is used to asses the effect of

lateral scaling.

2.3.3 Threading Dislocations

During the development of GaN technology, material quality has been a major

roadblock due to the lack of a native or lattice-matched substrate. This issue was

overcome by developing growth techniques on substrates such as Al2O3, SiC and Si,

which also allows to exploit the advantages of those materials such as high thermal

conductivity of the former, and high integration capability of the latter.

However, GaN layers grown on foreign substrates are subjected to biaxial strain

due to the large lattice mismatch of 2.5% and 3.6% for Al2O3 and SiC respectively,

reaching 11.947% for Si, in addition to large differences in the thermal expansion

coefficient [63]. This in turn results in the formation of defects in the crystal structure,

particularly of threading edge and screw dislocations (TDs), typically oriented parallel

to the c-axis of the material due to growth conditions, with densities ranging between

108 to 1012 cm−2 [64].
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In terms of AlGaN/GaN HEMTs, the presence of TDs in the buffer or channel

of the device results in degradation of electrical performance and affects long-term

reliability [65], because TDs behave as electrically active traps with positive or neg-

ative charge acting as centers of Coulomb scattering. This effect can be modeled as

a 2D scattering rate, that affects carriers moving perpendicular to a vertical line of

charges due to the presence of TDs [66]. This model has been implemented withing

the CMC framework as a thread dislocation scattering rate shown in figure 1.6 in

chapter 1, calculated using the approach developed by Weinmann et al. [55; 67].

The effect of TDs on device performance is illustrated in figures 2.10 (a) and (b),

corresponding to the transfer and output characteristics of the simulated

AlGaN/AlN/GaN HEMT device of section 2.2. The simulations were performed

at three different dislocation densities NTDs, distributed in the buffer and channel

of the device with a filling factor of 0.5. From the IDS-VGS curves calculated at

VDS =4V, it can be seen that as the concentration of dislocations increases the drain

current is significantly degraded going from 0.8A/mm to 0.2A/mm when NTDs goes

from 109 cm−2 to 1012 cm−2, which are typical values for SiC and Si substrates re-

spectively. The transconductance peak, not shown in the figure but calculated as

∂IDS/∂VGS, is also degraded from 0.2 S/mm to 0.05 S/mm, in turn degrading the

frequency response of the device. The output characteristic IDS-VDS at VGS =0V,

shown in figure 2.10 (b), also exhibits the same behavior, where not only the satura-

tion current degrades from 1.75A/mm to 0.6A/mm, but also the turn-on slope and

knee voltage are degraded as NTDs increases. Throughout this work, the effect of

TDs is included in all the simulations, with defect densities calibrated to available

experimental information. This is particularly important for HEMTs fabricated on

Si substrates.
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Figure 2.10: Effect of thread dislocations (TDs) in the electrical performance of
GaN HEMTs, shown with simulations of (a) IDS-VGS and (b) IDS-VDS curves at three
different TDs density NTDs.

2.3.4 Inverse Piezoelectric effect

HEMTs based on the AlGaN/GaN system, with or without AlN interlayers, are

intrinsically subjected to high electric fields. As it was discussed in section 2.1, the

lack of symmetry of the crystal structure in GaN and AlGaN produce high built-

in electric fields associated to a strong spontaneous polarization. Furthermore, the

lattice mismatch between AlGaN and GaN produce heterostructures with layers un-

der tensile stress, inducing a strong piezoelectric effect responsible for the conductive

2DEG at the heterojunction’s interface. Under high reverse bias voltage operation, so

that the potential VDG = VDS − VGS is large, the potential is dropped in a very short

region on the drain-side of the gate producing high electric fields across the barrier.

Since the materials are strongly piezoelectric, the external field induces large levels of

mechanical stress in the crystal structure, which adds to the intrinsic elastic energy

stored due the tensile strain of the heterojunction. If VDG exceeds a critical value, the

mechanical stress induced by the inverse piezoelectric effect produce crystallographic

defects, which are electrically active and degrade the performance of the device.
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Figure 2.11: Signature degradation of drain current (left axis) and gate leakage
current (right axis) in an experimental GaN HEMT caused by the inverse piezoelectric
effect. Figure reproduced from original research presented by del Alamo and Joh [69].

This mechanism was first proposed by del Alamo and Joh [68], as a theory to

explain the signature degradation of GaN HEMTs observed under electrical stress

consisting of high electric fields and no current, i.e. applying either high VDG or VGS

keeping the device off. The degradation of the device consists in the abrupt increase of

the gate leakage current IGoff , and the monotonic reduction of the maximum drain

current IDmax, as shown in figure 2.11 reproduced from the work presented by del

Alamo and Joh [69]. Their experiment consists in keeping the device off by applying

a high negative gate voltage VGS, and then stepping the voltage applied to the drain

in turn increasing VDG. It can be seen that for all values of VGS there is a critical

VDG from which the signature degradation is observed. These results could not be

explained in terms of hot electron induced traps, since they were independent of

current and horizontal electric fields. The inverse piezoelectric effect is essentially an
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electro-mechanical degradation mechanism, whose effects are well understood. For

this reason, it will not be given further consideration in this work.

2.3.5 Electrical-Stress Testing Conditions

The semiconductor industry relies on the ability to manufacture highly reliable

devices rated in terms of their useful life or mean time to failure (MTTF), which

for industry and commercial standards is in the order of 25 years or 2x105 h [70].

Since testing devices for several years is impractical, thorough protocols known as

long-term accelerated testing have been developed by the Si industry, which consist

of operating the devices under increased temperature conditions for a few thousand

hours while measuring a given set of parameters to determine performance. Then,

the data is used to extrapolate life time and extract the MTTF. Among these tests

the High Temperature Revers Bias (HTRB) is one widely used for power and RF

systems, where devices are operated under DC reverse bias while the environment

temperature is increased to achieve a junction temperature typically of 125 ◦C [51].

Even though the accelerated testing protocols are common for Si devices, the

validity of its results in GaN technology is a matter of discussion. Following industry

standard protocols such as HTRB yields unrealistically high MTTF estimates [51].

The reason for this is that many of the degradation mechanisms for GaN devices are

not accelerated by temperature, and in order to trigger them it is necessary to apply

specific bias conditions that can be either DC or AC [22]. This is why new protocols

focused on electrical stress instead of or in addition to increased temperature have

been developed, and are mainly designed as short-term life-time testing limited to

less than 100 h [23].

The electrical stress conditions of interest for GaN HEMTs are shown in fig-

ure 2.12 (a) where 4 bias points have been highlighted on the IDS-VDS plane of the
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simulated AlGaN/AlN/GaN HEMT introduced in section 2.2. The four basic con-

ditions are known as On-State, High-Power State, Semi-On State and Off-State each

of which enhances or minimizes a particular degradation mechanism. Figures 2.12 (b)

to (d) show the 3D band diagrams of the simulated HEMT with the x-component

of the electric field as a contour, under biasing conditions corresponding to the Off,

On and High-Power states respectively. Exploiting the capabilities of the CMC sim-

ulator, the figures also include a snap-shot of the electron distribution in real space

represented as spheres, whose colors correspond to the carriers energy. It must be

noticed that the 0 eV energy in the simulations is set to the top of the valence band,

hence thermalized electrons located at the bottom of the conduction band have an

energy equal to the band gap of the material, in this case 3.41 eV for GaN.

The Off-state condition, shown in figure 2.12 (b) for VGS =-20V and VDS =50V,

is characterized for presenting high electric field both in the channel and the barrier

while keeping low drain current, typically within leakage range. The degradation in

this condition is mainly due to the creation of traps induced by the inverse piezo-

electric effect. Performance degradation is typically smaller as compared to the high-

power case, and it has been observed to be reversible [69]. Even though the channel

is depleted of electrons and the current is very small, from the figure it can be seen

that the few electrons that reach the high-electric field region gain high kinetic energy

becoming hot, which allows the study of hot-electron effects and impact ionization.

However, there are other bias points where the concentration of hot electrons is higher.

The On-State corresponds to a point where the current is high, therefore a high

gate voltage is required, but the lateral electric field is kept low by applying low

drain voltage [22]. Figure 2.12 (c) shows the band diagram for this point simulated at

VGS =0V and VDS =12V. It can be seen that the field throughout the device is low

with values around -3.5x104V/cm with a hot-spot of -3.1x105V/cm located on the
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Figure 2.12: Electrical stress characterization of GaN HEMTs, showing (a) IDS-VDS

curves indicating stress bias points. Also, in (b) to (d) the electric field mapping is
presented on 3D band diagrams of the device for 3 stress bias points. The spheres
represent a snap-shot of real-space distribution of carriers with its corresponding
energy as a contour.

drain-side of the gate. In addition, most of the electrons are thermalized and mainly

confined to the channel with a small concentration in the buffer. Nevertheless, there

is a small population of carriers in the channel with energies up to 5 eV (1.6 eV above

the conduction band) located on the drain-side of the gate, which corresponds to

the peak electric field. For this reasons, the On-state stress has been used to study

hot-electron degradation with electroluminescence experiments [26], however other

operating conditions with higher electric fields have proven to be more appropriate.

In addition, self-heating and current crowding effects are also studied in the On-state

stress point.
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Figure 2.12 (d) corresponds to the High-Power state simulated at VGS =0V and

VDS =50V, so that both drain current and lateral electric field are high. Since

hot-electron generation depends exponentially on the electric field and linearly on

the current [69], in this case it can be seen that there is a high concentration of hot

carriers whose energy reach 2.4eV above the conduction band (6 eV in the figure).

These electrons are located both in the channel and the buffer in the drain-side of the

gate, where the electric field reaches its peak value of -1.2x106V/cm. Experimantal

studies have shown that permanent device degradation is induced after stress in these

operating condition, and it has been attributed to the presence of hot-electrons and

self-heating effects [22].

It must be noticed that under High-Power State the dissipated DC power reaches

high values, up to 95W/mm in the simulation, which is not desirable or even feasible

experimentally because it can cause thermal damage before any short or long term

degradation phenomena is observed. This limitation is overcome by stressing devices

in the Semi-On State, indicated in figure 2.12 (a) for VGS =-5V and VDS =30V, which

can be understood as an intermediate case between the High-Power and Off-State

cases. The main advantage of this set-up is that high currents and high electric fields

are simultaneously present while the total DC power dissipated is non-prohibitive.

Furthermore, several studies dedicated to hot-electron effects have demonstrated that

this state corresponds to the peak generation of hot carriers [26; 59].

Concerning test protocols, short-term testing is typically done on-wafer and the

acceleration is achieved by implementing stepped biasing strategies to electrically

stress the device, in addition to constant DC bias. There are 3 main testing protocols

where the voltage or current can be increased taking the device into the desired

state. These are shown in figure 2.13, and correspond to (a) step-stress, (b) step-

stress recovery and (c) stress-recovery cyclic stress loading. These techniques are
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Figure 2.13: Voltage or Current signal waveforms used in short-term life-time re-
liability testing, identifying the 3 main protocols (a) Stepped-Stress, (b) Step-Stress
Recovery and (c) Stress-Recovery Cyclic Stress loading.

used instead of increasing the temperature and have proven to yield more realistic

estimates of reliability under relevant operating conditions. In particular, recovery

cycle protocols are relevant since they lead to current and voltage transients enabling

the study of deep traps, already present in the device or created during the test,

which produce characteristic waveforms such as exponential recovery, increased noise

or gate leakage [22].

The stepped-stress protocols are crucial during all stages of technology develop-

ment of GaN HEMTs, since they provide in-depth information regarding the physical

mechanisms of degradation in a short time, without necessarily inducing catastrophic

failure. In terms of industry and commercially available products, short-term test-

ing is typically followed by conventional long-term life-time testing [70]. Finally, it

must be highlighted that nearly all the effort for reliability testing has been devel-

oped around DC biasing, and more protocols are required in order to include relevant

operating conditions such as RF-stress, particularly important for mm-wave power

amplifier operation. In this regard, a few studies have focused on hot-electron gen-

eration under RF operation by means of electroluminescence measurements [71; 72],

however a deeper understanding is still lacking and this is why a major effort of this

46



work is precisely directed to further explain the transport and physical mechanisms

of hot-carrier generation of GaN HEMTs operating under RF condition.

2.4 Radio Frequency Power Amplifiers

A Power Amplifier (PA) is a circuit that transforms a low energy radio frequency

(RF) signal into a large signal with significantly higher power, by converting DC

input power into RF/microwave output power. In contrast to typical small-signal

amplifiers, PAs are intrinsically non-linear and they operate under large voltage and

current excursions over much of the device’s IDS(VGS-VDS) space. This requires a

non-linear analysis approach as well as the full consideration of non-linear effects in

simulations for its proper circuit design. The range of applications for PAs is varied

going from wireless communications to RF heating and imaging, translating into a

wide variety of frequencies from very low frequency (VLF) to millimeter-wave (mm-

wave) operation, with output powers varying from 10mW in short-range wireless

systems to 1MW in long-range broadcast transmitters [73].

The basic circuit typically used in wireless transmitter applications is with a single

active device in a common source topology [74] as shown in figure 2.14. The active

device can be a FET or a BJT, but for all the analysis presented in this work only

FETs will be considered. For correct operation a PA requires an Input Matching

Network stage (IMN) which transforms the impedance of the RF power source into

the input impedance of the transistor. IMNs are designed to provide maximum power

transfer into the active device and it is done by conjugate matching, which can be

implemented with lumped circuit elements (inductors and capacitors) or with trans-

mission line stubs for high frequency mm-wave operation. The input network also

plays an important role affecting the PA’s stability.
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Figure 2.14: Schematic of Power Amplifier (PAs) circuits.

The quality of the matching provided by IMN determines the input reflection

coefficient Γ given by 2.7 as:

Γ =
Zinput − ZS

Zinput + ZS

=

√

Pin
−
ref

Pin

, (2.7)

where Zinput is the input impedance of the transistor and ZS is the impedance of

the AC source. The reflection coefficient is sometimes given in dB as the input

Return Loss RL = 20 · log(Γ). The value of Γ is a complex number which provides

information on the amplitude and phase of the reflected wave, hence it can also be

defined as the ratio of the power of the reflected wave Pin
−
ref to the input power at

the source Pin, as indicated in the RHS of 2.7 [75]. Furthermore, the power delivered

to the device is then given by 2.8:

Pin
−
Del = Γ2 · Pin. (2.8)
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The gate bias circuit is essential to achieve the desired PA class of operation since

it establishes the DC gate voltage VGS used as DC operating point for the device, also

referred to as the quiescent operating point. The effect of the lumped or distributed

components used in this stage must be included when studying amplifier stability. In

a similar way, the drain bias circuit plays a crucial role in providing DC power PDC

to the active device. This network must behave as a stiff source so that there are

no variations of drain voltage VDD in time or with input signal level. Also, it should

present a high impedance at RF frequencies and a short circuit at DC. For these

reasons, the drain bias circuit is typically implemented with a large choke inductor,

which can also be used to facilitate the output matching of the device. This rules

are true except for the case of supply modulated PA architectures where the DC bias

varies over time with signal Vdd(t) which will not be considered in this study.

Concerning the Output Matching Network (OMN) its goal is to transform the

load impedance RL, generally 50Ω or an antenna, to the optimum impedance to

the transistor output RLopt. It must be highlighted that for PAs the value of RLopt

is not designed for a conjugate match as would be done for a small-signal linear

amplifier [74]. The OMN in most cases also includes a high-Q network to provide

the desired impedance to the active device at harmonic frequencies, which can be

done by shunt or series LC resonators or transmission lines. This design is known

as tuned-load and it is crucial for correct PA operation under a given topology. The

OMN also affects the stability of the amplifier.

The key attributes of a power amplifier are power, gain, conversion efficiency

and linearity, and in every design or topology there is a compromise between these

attributes. In order to characterize the performance of a given topology, certain

metrics or figures of merit (FOM) are defined for each of the attributes.
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Of high interest is the power delivered to the load at the fundamental frequency

Pout given by:

Pout =
V 2
out(rms)

RL

, (2.9)

where Vout(rms) is the rms value of the output voltage and RL is the load impedance,

typically 50Ω. In the case of modulated RF signals, the average output power must

be used, defined as:

Pout
−
Avg =

1

T

∫ T

0

p(t)dt, (2.10)

where p(t) is the instantaneous power. Concerning the DC power it is define as

PDC = IDD · VDD, where IDD and VDD correspond to the DC current and voltage,

determine by the quiescent bias point although for some topologies IDD can vary with

the input signal. If the architecture of the PA requires supply modulation then the

average DC power must be considered.

With respect to gain in PAs, the term gain in general refers to transducer gain

GT , which corresponds to the the small-signal gain S21, and it is defined as:

GT [dB] = 20 · log

(

Pout [W ]

Pin [W ]

)

= Pout [dBm]− Pin [dBm], (2.11)

where Pin corresponds to the total available input power at the source. If input

mismatch effects are to be included, then the power gain Gp is used, given by:

GP [dB] = 20 · log

(

Pout [W ]

Pin
−
Del [W ]

)

= Pout [dBm]− Pin
−
Del [dBm], (2.12)

where Pin
−
Del is the input power delivered to the active device, defined by equation 2.8.

This figure of merit is common in loadpull measurements as it accounts for mismatch

effects.
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The efficiency is a metric that is crucial for PA characterization, because it relates

the conversion of DC power to RF power. A widely used FOM is the drain efficiency

η which does not include the effect of bias currents and is defined as:

η [%] =
Pout [W ]

PDC [W ]
100. (2.13)

Another common metric is the Power Added Efficiency (PAE), which unlike the

drain efficiency considers the amplifier’s gain, and is given by:

PAE [%] =
Pout [W ]− Pin [W ]

PDC [W ]
100. (2.14)

An important aspect about the efficiency of PAs is the trade-off inherently associ-

ated with linearity. For high linearity, the simplest approach consists in using a high

quiescent bias point so that VDD and IDD are high enough to allow the full excursion

of the output voltage and current signals without clipping or distortion. However,

this approach leads to high PDC which in turn reduces both FOM for efficiency, par-

ticularly for low values of Pout. In some topologies this issue is overcome by either

allowing the dynamic change of PDC or by choosing a bias point with low PDC , at

the expense of lower linearity.

The sketch of the figures of merit for typical PA operation are shown in figure 2.15,

where the Pout in dBm, GT in dB and PAE in % are shown as a function of Pin also

in dBm. It can be seen that whereas Pout increases linearly with Pin up to a certain

point, the gain remains constant throughout the same range. However, as the non-

linear distortion becomes dominant there is a reduction in the slope of Pout at the

fundamental frequency and a monotonic reduction of gain, because at this point part

of the power is transferred to higher order harmonics. This is known as gain or power

compression, and a relevant metric for it is the P1dB defined as the point where Pout
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Figure 2.15: Sketch of figures of Merit for a typical power amplifier for single-tone
input, showing output power Pout and transducer gain GT on the left-axis, and power
added efficiency PAE in the right-axis as a function of the input power Pin. Also
indicated the 1dB compression point P1dB.

is 1 dB below the value it would have extrapolating the linear response. The PAE

increases monotonically in a non-linear fashion as Pin becomes larger, because the

ratio of RF power to DC power increases, until it reaches a peak efficiency point after

the device has reached compression, to then drastically drop. Even though this are

general trends, each PA topology will have a signature behavior for the FOMs.

The effect of non-linearities give rise to high order harmonics, i.e. signal com-

ponents located at multiples of the fundamental frequency, each one with specific

consequences in the performance of the PA. Even order terms produce self-biasing

effects through harmonics located close to DC or 0 frequency in the spectrum of the

output signal. Odd orders such as 3rd, 5th and higher create amplitude/amplitude or

amplitude/phase effects such as non-linear and non-monotonic gain. Traditionally, a

distortion analysis used for linearity is the Inter Modulation Distortion (IMD) which

is characterized by the surge of spectral content at undesired frequencies close to the
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fundamental that did not exist originally, when the input is a two-tone signal (two

sinusoids) at frequencies ω1 and ω2, non multiples of each other, closely spaced by a

frequency δ = ω2 − ω1. The cause for the spurious spectrum under two-tone input

testing is the non-linear mixing of the input signals.

In particular, for a two-tone signal with fundamentals located at frequencies ω1

and ω2 the undesired spectral components that appear too close to the desired signals

that cannot be filtered are termed 3rd order and 5th order IM products or IM3 and IM5

respectively. These components are located at higher and lower frequencies than the

fundamentals. A full analytical derivation can show that the exact location is given by

f3rd
−
h = 2ω1−ω2, f3rd

−
l = 2ω2−ω1, f5th

−
h = 3ω1− 2ω2 and f5th

−
l = 3ω2− 2ω1

corresponding to high and low terms of IM3 and IM5 products in that order [74].

The typical spectrum of the output signal of a PA under IMD analysis is sketched in

figure 2.16 (b).

From IMD tests several figures of merit can be derived. One of them is the

suppression S3 or S5 of IM3 and IM5 spectral components respectively relative to the

desired signal, defined as the ratio of their power in watts P(ω1,ω2)/P(f
−
IM3,f

−
IM5) or

their difference in dBm. Another FOM widely used is the intercept point where the

IM spectral components would theoretically be equal in power to the fundamental

components. The concept behind it relies on the fact that as Pin increases, the power

transferred to the spurious components IM3 and IM5 increases more rapidly than that

at the fundamentals ω1 and ω2. Therefore, with increasing Pin an intercept point

is reached and the corresponding input and output power at which this condition is

achieved constitutes the FOM. The formal definition is as follows: the intercept point

of IM3 products is given by coordinates IIP3 and OIP3 for input and ouput power

respectively, and in a similar way IIP5 and OIP5 for IM5 products.
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Figure 2.16: Sketch of Inter Modulation Distortion (IMD) measurements for a power
amplifier (PA) with a two-tone input signal separated by a small frequency δ = fω2−
fω1. Determining IIP3 and OIP3 can be done from measuring (a) output power
delivered to fundamental and harmonic frequencies vs input power sweep, and (b)
Output power spectrum of the PA for a given input.

Determining the exact coordinates (IIP3,OIP3) and (IIP5,OIP5) can be done in

a couple different ways. The first consists in sweeping the input power of the PA

and plotting Pout as a function of Pin measured at the fundamentals and also at the

corresponding IM3 or IM5 components, which results in in two curves whose slopes

will have a 3:1 or 5:1 ratio for IM3 and IM5 respectively. Then, by drawing the linear

extrapolation of both curves the intercept point can be found and the direct reading

of the value of Pin and Pout yields the (IIP3,OIP3) or (IIP5,OIP5) coordinates. This

is demonstrated in figure 2.16 (a) for the IM3 components.

Another way which is more convenient, both for experiments and simulations,

consists in calculating the spectrum of the output signal for a single high value of Pin

as shown in figure 2.16 (b). Then, identifying the IM3 and IM5 products allows to

calculate the IM suppression relative to carrier as:

S3 [dB] = Pout|ω1,ω2 [dBm]− Pout|(2ω1−ω2),(2ω2−ω1) [dBm], (2.15)
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S5 [dB] = Pout|ω1,ω2 [dBm]− Pout|(3ω1−2ω2),(3ω2−ω1) [dBm], (2.16)

It must be noticed that the measurement of the suppression can be done between

either of the input signals ω1 or ω2 and either of the high or low IM3, IM5 compo-

nents. With the values determined with equations 2.15 and 2.16, then it is possible

to calculate the values of OIP3 and OIP5 with the relations:

OIP3 [dBm] = Pout|ω1,ω2 [dBm] +
S3 [dB]

2
, (2.17)

OIP5 [dBm] = Pout|ω1,ω2 [dBm] +
S5 [dB]

4
, (2.18)

then the values of the input coordinates can be determined as

IIP3 = OIP3−G and IIP5 = OIP5−G for IM3 and IM5 respectively where G

is the gain.

Even though IMD studies are convenient and widely used, they present important

limitations for characterization of linearity in modern systems where the modulation

of the input signals is done simultaneously in amplitude, frequency and phase typical

with digital modulation schemes. In this case, the state-of-the-art technique is the

Adjacent Channel Power Ratio ACPR or Adjacent Channel Leakage Ratio ACLR [73].

In this test the input of the PA is a digitally modulated signal upconverted to a

desired RF carrier frequency, producing a band limited input. The PA distortions

create new spectral content within adjacent bands called regrowth. Then by deter-

mining the spectrum of the output signal, a ratio between the power in the adjacent

bands to the power in the main channel can be calculated. Furthermore, the spectrum

is usually compared to a mask defined by a standard body such as the FCC.
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Figure 2.17: Example of the output spectrum of a PA with a single carrier WCDMA
input signal band limited to 5MHz, evidencing the spectral regrowth used in Adja-
cent Channel Power Ratio (ACPR) measurments. A typical spectrum mask is also
included.

An example of this method is shown in figure 2.17 where the output spectrum

corresponding to a single carrier WCDMA input signal band limited to 5MHz is

plotted along with a protocol mask. It can be seen that non-linearities of the PA cause

spectral regrowth which translates into distortions of the the signal, nevertheless for

this particular case the output spectrum fits below the mask, implying that the PA

meets protocol specifications.

Concerning the PA topologies, these are defined as Classes named from A to

F each of which have different advantages and characteristic behavior in terms of

method of operation, efficiency and output power capability [76]. The definition of

the topology can be given in terms of the conduction angle θ, which is defined as

the period of the waveform where the device is conducting, and it can take values

between 0 < 2θ < 2π. Besides the conduction angle, a well designed PA will present

signature shapes of load-lines for each Class, which are nothing but the representation

of the output waveforms in the IDS-VDS space, e.g. the ac output current ids(ω) is

56



plotted as a function of the ac output voltage vds(ω). The load-lines play a crucial

role in the correct operation of each Class of PA, being also very useful to identify

the Class as well as the presence of mismatched parasitic components. Since all the

relevant definitions for power amplifier characterization have been discussed, in the

next subsections a brief description of two of the main PA topologies is presented.

The chosen topologies are Class A and Class AB because these are amongst the most

used in telecommunications, particularly with AlGaN/GaN HEMT devices, and they

will be used for characterization of reliability in the next chapters of this work.

2.4.1 Class A Operation

The main characteristic of a PA in Class A configuration is that the transistor

operates in the active region at all times, or in other words θ = 2π. In this sense,

the device is acting as a linear current source controlled by the gate bias and it is

not operated as a switch [73; 74]. This is achieved by selecting a quiescent or large-

signal operating point (LSOP) which corresponds to a DC value of VGS well above the

threshold voltage, near the center of the most linear portion of the transconductance,

resulting in a drain current IDD roughly half of the maximum saturation current of

the device. On the other hand, the DC drain voltage VDD is chosen to be half way

between the knee voltage VKnee and the maximum voltage usually taken to be the

device breakdown VBR, allowing for the full excursion of the output signals without

clipping even at peak power.

A typical implementation of a Class A power amplifier is shown in figure 2.18,

which corresponds to the schematic circuit used for DC and large-signal simula-

tions performed with the commercial software Advanced Design System (ADS) by

Keysight. From the figure it can be seen that the OMN is a simple LC circuit which

transforms the load impedance into the optimum impedance presented at the output
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Figure 2.18: Schematic of a Class A power amplifier circuit topology, simulated
with commercial software Advanced Design System (ADS) by Keysight.The active
device is simulated by using the analytical model by Statz, and the input and output
matching networks are identified.

of the device, which in this case for correct PA operation at freq = 1GHz corresponds

to RLopt = 15Ω. The active component was described by the analytical compact

model of microwave transistors proposed by Statz [77], and the output capacitance

CDS was included as lumped shunt capacitor C6 = 2pF shown in the figure. An

IMN was designed to minimize the reflected power of the input signal, also serving

the purpose of gate bias circuit. A choke inductor and a series output capacitor were

used as drain bias circuit.

The DC simulation of the transistor is shown in figure 2.19 (a), presenting the

typical IDS-VDS space for a device with constant transconductance Gm evidenced by

the fixed step in increments of drain current for increments of VGS. The large-signal

characterization was performed by means of a harmonic-balance simulation, and the

RF output drain current ids(ω) and drain voltage vds(ω) waveforms are plotted in

figures 2.19 (b) and (d) in that order, whereas the typical figures of merit are shown

in 2.19 (c). First, it can be seen that the OMN effectively transformed the load into

a purely resistive 15Ω impedance, evidenced by the closed, straight shape of the

load-lines also included in figure 2.19 (a).
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Figure 2.19: Characterization of a Class A power amplifier, obtained with simula-
tions of the schematic shown in figure 2.18. In the panels is presented (a) IDS-VDS

space along with load-lines, (b) ac current waveform ids(ω), (d) ac drain voltage
waveform vds(ω) and (c) typical figures of merit.

Concerning the waveforms, both ids(ω) and vds(ω) are full sinusoids throughout

all the input powers considered. The FOMs show the signature behavior of Class

A operation: a linear Pout vs Pin relation at constant GT from Pin = 0dBm to

11 dBm which corresponds to the full power excursion before the PA is pushed into

compression. The PAE begins at very low values due to the high DC power required to

bias the device, reaching its maximum theoretical value of 50% before compression,

with a maximum peak output power of 29 dBm at 11 dBm of input power. For

Pin > 11 dBm, the PA is operated in overdrive, where clipping occurs in both current

and voltage waveforms with the advantage of increasing the Pout delivered to the

fundamental, also allowing for higher theoretical PAE of up to 60% [73; 74].
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In summary, Class A PA operation offers some inherent advantages. First and

foremost it is perhaps the most simple topology to design in terms of IMN and OMN

requirements. Also, it offers high linearity because the device is operated near the

center of the most linear portion of Gm and the output waveforms ids(ω) and vds(ω)

have full excursion without clipping for a large range of Pout − Pin. However, the

main disadvantages are high thermal dissipation and low conversion efficiency due

to the high DC bias point. For this reasons, Class A operation is rarely used in

mobile applications but is still a basic building block for applications such as output

stage in base stations transmitters or high fidelity amplifiers where portability is not

a requirement [73; 74].

2.4.2 Class AB Operation

In order to improve the efficiency of a PA, an effective strategy consists in reducing

the conduction angle so that the transistor is off for some portion of the load-line

excursion which reduces PDC , at the expense of increasing the higher order harmonics

resulting in lower linearity of the circuit. This is the principle of operation of PA

topologies such as Class B achieved with θ = π and Class C with 0 < θ < π for

which the maximum theoretical efficiency can be up to 78.5% and 100% respectively,

with the trade-off of having non-linear gain and significantly lower output power

than Class A topologies. Nevertheless, there is a sweet spot for maximum efficiency

while preserving linearity and output power, and it corresponds to deep Class AB

operation for which π < θ < 2π which is enabled by the subthreshold soft turn-on of

real transistors [74].

Under Class AB the quiescent bias point of the device is selected so that VGS

is close to but still higher than the threshold voltage, which sets the drain current

between 0 and 1/2 of the maximum saturation value, while VDD is chosen to be half
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way between VKnee and VBR as it is done fore Class A. By choosing this bias point,

PDC is kept low making this topology inherently more efficient than Class A PAs. In

addition, the efficiency is further improved because the transistor only operates in the

active region for less than half of the total excursion. Figure 2.20 presents the circuit

of a typical Class AB PA topology implemented in ADS for DC and large-signal

simulations, where the active device is the same used for Class A characterization of

section 2.4.1.

In terms of circuit complexity, the IMN and gate bias circuits remain constant

with respect to the ones used for Class A operation. The drain bias circuit is again

implemented with a choke inductor and a series capacitor with updated values. How-

ever, the main difference and added complexity is found in the OMN which can be

understood as a 2-stage circuit. First, the OMN includes a simple LC circuit for

impedance transformation, followed by a high-Q shunt LC resonator which is tuned

to the frequency of operation of 1GHZ. The shunt resonator is necessary to provide

a purely resistive load at the fundamental frequency, while providing a short-circuit

impedance (0Ω) for higher order harmonics [75], which is known as a tuned-load con-

figuration and its performance is directly proportional to the Q of the circuit. This

OMN is implemented to minimize the output power deviated from the fundamental

to higher harmonics resulting in higher linearity. The main difficulty for this design

is to implement the shunt LC resonator with high-Q because the lumped elements

become harder to fabricate as the Q of the circuit increases, which is necessary for

correct tuning of the harmonics. If the PA was to be operated at higher frequencies,

then quarter-wave transmission line stubs would be more appropriate to implement

the OMN.

The load-lines obtained with a harmonic-balance simulation are shown in fig-

ure 2.21 (a), on top of the corresponding IDS-VDS space, whereas the ac waveforms
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Figure 2.20: Schematic of a Class AB power amplifier circuit topology, simulated
with commercial software Advanced Design System (ADS) by Keysight.The active
device is simulated by using the analytical model by Statz, and the input and output
matching networks are identified.

are shown in figures 2.21 (b) and (d) corresponding to ids(ω) and vds(ω) in that order.

The output current waveform is a half-rectified sinusoid with a duty cycle slightly

larger than half the period, whereas the output voltage exhibits the full sinusoid ex-

cursion, highlighting the fact the there is no clipping for the Pin range. Furthermore,

neither of the waveforms present harmonic distortion, indicating excellent tuning of

the higher order harmonics to 0Ω impedance provided by the shunt LC resonator. In

addition, the load-lines are nearly a perfect straight line indicating good matching to

a purely resistive load. These results corroborate that the device is in fact operating

in the active region for slightly more than half of the full excursion.

From the FOMs shown in 2.21 (c), the main characteristics of Class AB operation

can be discussed. From Pin = 0dBm to 11 dBm GT decreases monotonically and it

is lower than that of Class A operation. Also, a reduction Pout is observed for the

same range as compared to Class A. However, the PAE is higher under Class AB

than under Class A throughout the entire range due to a lower LSOP and lower PDC .

When the device is driven into compression for Pin > 11 dBm, Pout reaches 29 dBm

as it did under Class A, with the advantage of higher PAE larger than 60%.
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Figure 2.21: Characterization of a power amplifier in Class AB topology with tuned-
load. The Results correspond to simulations of the schematic from figure 2.20, showing
(a) IDS-VDS space along with load-lines, (b) ac current waveform ids(ω), (d) ac drain
voltage waveform vds(ω) and (c) typical figures of merit.

To summarize, Class AB power amplifiers constitute an excellent topology for high

efficiency operation while preserving high output power and linearity. The higher

efficiency, with respect to Class A topology, arises from the inherently lower PDC

required to bias the device, which is controlled by the conduction angle. For these

reasons, Class AB is by far the more extensively utilized PA configuration in battery

powered and mobile communications, and also as a fundamental building block in

other PA architectures such as supply modulated PAs, envelope tracking and Doherty

PAs [74]. The main disadvantages are the relatively lower linearity with respect to

Class A operation, and the more stringent requirements for the OMN circuitry [73].
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2.5 Conclusions

A brief review of the main concepts concerning GaN technology and devices was

presented in this chapter. The objective was to provide the necessary context and

definitions necessary to fully comprehend the scope and contributions of this work,

as well as ease the understanding of the analysis presented in the next chapters.

First, the polarization effect that gives rise to the high current densities and high

mobilities of GaN devices was studied. Then the principles of design and operation of

AlGaN/AlN/GaN HEMTs were discussed by means of CMC simulations of a typical

Ga-polar HEMT, while also providing details of the CMC simulation framework.

Then a short description of HET devices, necessary to understand the contribution

of chapter 3 was introduced. This was followed by a review of the main aspects

of HEMTs reliability, focusing on those relevant to this work such as hot electron

effects, self-heating and electrical-stress operating conditions. Finally, the principles

of operation and design of PAs were presented, making emphasis in the Class A and

Class AB operation used in the subsequent chapters.
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Chapter 3

STUDY OF NON-IDEALITIES IN III-N ISOTYPE HETERJUNCTION DIODES

In this chapter, a simulation study of the non-ideal effects in polarization-dipole

induced isotype heterojunction diodes, proposed as the emitter-base junction for Hot

Electron Transistors (HETs), is presented. First, simulations of the IV character-

istic of the diode under forward bias are performed with the Cellular Monte Carlo

particle-based device simulator (CMC), using the experimental layout of the ideal

structure, showing that the simulated IV curves significantly differ from the reported

experimental data. The CMC results are then validated by means of hydrodynamic

simulations performed with the commercial software Sentarus by Synopsys (TCAD),

showing excellent agreement with the CMC curves, suggesting that non-ideal effects

must be included. A further analysis is then carried out with hydrodynamic simu-

lations only, where physically meaningful non-ideal effects are proposed and studied.

The results show that when variations in the mole fraction of the AlxGa1−xN/GaN

barrier and the effect of Schottky contacts are included in the model, the experi-

mental data is successfully reproduced. In the context of the development of HETs

technology, this work provides valuable information about the factors limiting the

device’s performance.

3.1 Introduction

Isotype heterojunctions in the AlGaN/GaN system are a basic building block for

several applications, such as High Electron Mobility Transistors (HEMTs), ultraviolet

photodetectors, gas sensors, high-voltage rectifiers, varactors [78] and, more recently,

HETs which are being considered for high power, high frequency applications [20;
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21]. HETs were originally proposed a few decades ago and, due to difficulties in

the fabrication of high quality crystals of wide band-gap materials in those early

stages, very few successful attempts of HETs have been reported. Nevertheless, the

AlGaAs/GaAs system enabled the fabrication of hot-electron launching structures

traditionally used in the study of transport properties of high-energy carriers.

Shur [79] was the first to propose the AlGaN/GaN heterostructure to overcome

issues found in the AlGaAs/GaAs system which hamper the development of HETs

such as a limited range of injection energies, small barrier height difference between

emiter-base and base-collector junctions and increased impurity scattering. The large

band gap of AlN and GaN , as well as the large ∆Ec=1.8eV between them, allows

engineering adequate emitter-base (EB) and base-collector (BC) barriers. Addition-

ally, the strong polarization effect in this system provides a highly conductive base

without doping which in theory enables ballistic transport of carriers and therefore

high-frequency operation. Furthermore, the injection energy range is also increased

due to the higher intervalley separation (1.3eV for GaN as compared to 0.3eV for

GaAs), allowing the injection of electrons with higher energies before the transfer

to satellite valleys becomes relevant and limits the current gain. The first common

base characteristic of HETs fabricated in the AlGaN/GaN sytem has been recently

demonstrated by Dasgupta et al. [20].

Since Hot electron Transistors seem to be a promising technology for high-frequency

devices, efforts have been directed to engineer and fabricate heterojunctions based on

AlGaN/GaN . Among these, Gupta et al. [80] reported optimized AlGaN/GaN , and

InGaN/GaN diodes to be used as the emitter-base and base-collector structures re-

spectively for HET applications. Within this context, this work presents a study of

the EB heterojunction diodes, where non-ideal effects are proposed and discussed in

order to explain the experimental device performance.
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The simulated structure is shown in figure 3.1 and corresponds to the ideal lay-

out of the experimental device fabricated at the University of California Santa Bar-

bara [80]. The dipole-induced barrier is achieved with a thin, 4 nm layer of

Al0.45Ga0.55N unintentionally doped (UID), on top of a n+ (ND =5x1018 cm−3),

200 nm thick GaN substrate. An UID 35 nm region of Al0.15Ga0.85N is placed on top

of the barrier to reduce the reverse leakage current. A smooth transition between

the Al0.15Ga0.85N layer and the 50 nm n+ GaN layer is achieved by means of a n+

15 nm graded region, i.e. a region where the mole fraction is gradually increased. All

layers were grown by metal organic chemical vapor deposition (MOCVD) [50; 81] on

Ga-Polar Bulk GaN substrate. Finally, a step of reactive ion etching followed by

Al/Au deposition was done with the aim of fabricating n−type ohmic contacts.

It must be noticed that this design was optimized to be used as the emitter-

base launching structure (EB diode) required in HET devices. In this regard, the

Al0.45Ga0.55N layer was intended to be AlN , since AlGaN/AlN/GaN structures

show higher mobility as well as higher sheet charge concentration in the 2 Dimen-

sional Electron Gas (2DEG) [82]. However, it has been reported that pure AlN lay-

ers cannot be fabricated with Metal-Organic Chemical Vapor Deposition (MOCVD)

due to Ga incorporation during the growth process [83]. Nevertheless, high Al mole

fraction in the AlGaN barrier still produces a conduction band discontinuity and a

polarization-dipole between the Al0.45Ga0.55N/GaN layers which lead to a high bar-

rier in the conduction band [43], suitable for the injection of electrons from the emitter

into the base. Furthermore, a high concentration 2DEG is induced in the GaN base,

close to the interface, which increases the base charge reducing its sheet resistance.
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Figure 3.1: Experimental device layout corresponding to the ideal structure of the
emitter-base diode. The emitter and base contacts are included.

3.2 Characterization of Experimental Device with Ideal Layout

The experimental device was first studied by means of CMC simulations, using

the ideal structure shown in figure 3.1, with the emitter and base contacts placed

at the top and bottom of the stack, respectively. The polarization dipole charge σp

present at the AlGaN/GaN interfaces, as well as the bands discontinuities ∆EC and

∆EV where calculated following Ambacher’s formalism [45; 84].

Figure 3.2 shows the equilibrium conduction band profile (Vbe= 0.0V) and the

concentration of electrons along the vertical (y) direction. The band shows a barrier

height φb =1.7 eV, followed by an accumulation region where a 2DEG is formed right

at theAl0.45Ga0.55N/GaN interface, with a charge sheet concentration of 8x1013 cm−2.

It should be noticed that the Al0.15Ga0.85N/Al0.45Ga0.55N interface produces a thin
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Figure 3.2: Profile of the conduction band in thermal equilibrium (Vbe=0.00V), along
with the concentration of electrons (right-axis) as obtained with CMC simulations.

barrier 4nm thick and approximate height of 0.5 eV, suggesting tunneling as one of

the charge transport mechanisms besides thermionic emission.

Figure 3.3 shows the evolution of the band profile as Vbe is increased (positive

voltage applied to the base contact while the emitter is grounded). At low bias

(qVbe << φb), all the applied voltage is dropped across the barrier, modulating the

barrier height seen by electrons injected from the emitter into the base. This leads to

the rectifying IV characteristic shown in figure 3.5. As the bias is increased, some of

the voltage drops across the Al0.15Ga0.85N barrier and the current begins to saturate.

Finally, at high bias (qVbe > φb) the current saturates, and its value is high enough

to make the base resistance non negligible, which produces band bending in the base.
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Figure 3.3: Evolution with bias of the conduction band profile along the y-direction
of the EB diode as obtained with CMC simulations.

Recalling that this diode has been designed to work as a “launcher” of hot-

electrons or EB diode for application in HETs, it is important to point out the

potential of particle-based simulations to study such devices. As an example, fig-

ure 3.4 shows the 3D conduction band at Vbe =1.25V along with a snap-shot of the

electron distribution in real space in the device, where spheres correspond to the

simulated super-particles and their colors indicated the carrier’s energy.

From figure 3.4, it can be seen that at the given bias, electrons are injected from

the emitter into the base of the device by means of direct tunneling and thermionic

emission, creating a population of hot-electrons that is different to that of the electrons

at the bottom of the conduction band at equilibrium. As the injected electrons transit

across the base, they lose energy through inelastic scattering events, so that some of

them thermalize while others maintain their high kinetic energy. In the case of a

HET, a second barrier (base-collector) would be placed at some distance after the
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Figure 3.4: Conduction Band in 3D and a snap-shot of the electron distribution in
real space at Vbe=1.25V. The color of each super-particle corresponds to its energy.

EB barrier, and only the electrons with energy higher than the barrier would be

collected. The CMC capability of handling two populations of electrons allows the

study of charge transport and electrical characteristics relevant for the design of HET

devices such as the mean free path of electrons, the critical base thickness for high-

frequency operation and the effect of the BC barrier height on transfer coefficient,

among others [21].

Figure 3.5 shows the IV characteristic of the EB diode obtained with CMC simu-

lations along with the experimental data. One limitation of the CMC is that current

densities typically under 10A/cm2 are in the order of magnitude of the numerical

statistical noise and cannot be resolved for this geometry. As an example of this, the

current point at Vbe =0.75V is shown. Additionally, the simulation results show a
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notorious discrepancy with respect to the experimental data. The simulated IV curve

has a lower turn-on voltage, a steeper slope at low bias (or lower ideality factor n)

and a saturation current several orders of magnitude higher.

In order to validate the CMC results, hydrodynamic simulations were performed

with software TCAD, showing an excellent agreement with those obtained with CMC.

The observed discrepancies between simulations and experimental data can be ex-

plained by considering several non-idealities of the experimental device. It must be

highlighted that since hydrodynamic simulations are based on the analytical solu-

tion of the drift-diffusion equations, it is possible to resolve small currents accurately

which is a characteristic necessary to reproduce the full range of the IV curve of the

EB diode. Furthermore, the effect of Schottky barriers can also be included within

the hydrodynamic approach. For these reasons, the study of non-idealities presented

in the following sections is performed with TCAD simulations only.

3.3 Mole Fraction Variations in the AlxGa1−xN/GaN Barrier

As it was mentioned before, the heterojunction diode under study was designed

to be the EB junction in a HET. The optimal structure for such applications consists

of an AlGaN/AlN/GaN stack instead of the typical AlGaN/GaN structure. It

has been reported by Dasgupta [43] that a high mole fraction of Al in AlGaN/GaN

barriers induces a higher sheet charge at the interface. However, the centroid of the

2DEG wave function is drawn closer to the heterointerface where alloy scattering

and interface roughness scattering are higher [85], leading to lower mobilities in the

2DEG [82]. The mobility degradation issue can be overcome by adding a thin AlN

interlayer that reduces the effect of the scattering mechanisms by drawing the 2DEG

away from the AlGaN layer, in addition to providing higher sheet charge densities

and lower sheet resistance [82; 43].
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Figure 3.5: IV characteristic in semi-log scale of emitter-base diode, showing exper-
imental data along with simulation results obtained by CMC, and TCAD Sentaurus
simulations.

Mazumder et al. [83] have recently reported that growing pure AlN interlayers in

AlGaN/AlN/GaN heterostructures by MOCVD is not possible due to the uninten-

tional incorporation of Ga during the growth process. The high temperature required

for MOCVD (T > 1100C) leads to evaporation of Ga species from both the GaN

substrate and unintentional deposits of GaN on the reactor. Besides, as the thickness

of the AlN interlayer is increased, the structural quality of the AlN/GaN junction

tends to degrade due to the presence of threading dislocations [86]. In their exper-

iments, Mazumder et al. [83] used Atom Probe Tomography (APT) to characterize

AlGaN/AlN/GaN heterostructures grown by MOCVD, showing that for an AlN in-

terlayer of 2 nm, the incorporation of Ga resulted in a mole fraction of approximately

x =0.47. These results suggest that there is a significant uncertainty regarding the
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exact mole fraction in the AlxGa1−xN/GaN barrier obtained during the fabrication

of the EB diode. Therefore, variations in the mole fraction constitute a physically

meaningful non-ideal effect and its impact is studied with TCAD simulations.

Figure 3.6 shows the equilibrium band profile in the vertical direction and the

electron density for two values of mole fraction x=0.45 and 0.50, as obtained with

hydrodynamic simulations. It can be seen that for the Al0.50Ga0.50N/GaN junction

with higher mole fraction, the barrier height results in 2 eV, compared to 1.7 eV

obtained with x =0.45. As the Al mole fraction increases, the band gap and the

polarization charge increase as well, inducing a larger barrier and higher electron

density of 2.4x1019 cm−3 for x =0.50, compared to 2.0x1019 cm−3 for x =0.45. These

results are in agreement with those previously reported [83], where a barrier height

of 2.1eV was obtained by Hall measurements on MOCVD grown AlGaN/AlN/GaN

heterostructures.

The IV characteristic computed for both mole fraction values is shown in figure 3.7

along with the experimental data. The turn-on voltage for the structure with x =0.50

is larger by approximately 0.4V compared to that obtained with x =0.45, which is

in good agreement with the experimental curve. For low bias (qVbe < φb), the applied

voltage drops entirely across the barrier. Since the barrier seen by electrons on the

emitter side is higher for x =0.50 than for x =0.45, the structure with larger mole

fraction yields smaller currents when the same bias is applied. At high bias where

the saturation current is reached, the barriers no longer control the current flow and

both structures yield the same current.

Whereas increasing the mole fraction of the barrier shifts the turn-on voltage, it

has no effect in changing neither the slope of the curves at low bias nor the saturation

current at high voltages, and the discrepancy with the experimental data remains

the same in this regard. One possible explanation for the difference of 4 orders of
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Figure 3.6: Vertical profile of the conduction band in equilibrium (left-axis) for
AlGaN with mole fractions x =0.45 and 0.50. The corresponding concentration of
electrons is also shown in the right-axis.

magnitude in the current at high voltage, is the effect of a parasitic series resistance

Rs. Hence, the contact resistance parameter Rs was then included in the model.

This attempt is shown in figure 3.8, where the simulated IV curves of the structure

with stack Al0.50Ga0.50N/GaN and values of RS =0Ω, 104Ω, 106Ω and 107Ω are

plotted along with the experimental data. It can be seen that the current density

is significantly reduced so that with the highest resistance value, the simulation and

experimental results show the same saturation current density.

However, this simplistic explanation neglects other effects of the physics of this

heterojunction stack. First of all, a parasitic series resistance of 10MΩ is unrealistic.

Furthermore, with high Rs the simulated IV curve shows a nearly constant value
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Figure 3.7: IV characteristic in semi-log scale, showing experimental data,
along with simulation results for mole fraction values x =0.45 and 0.50, at the
AlxGa1−xN/GaN barrier.

from Vbe =1.5V to 4V, whereas the experimental curve shows two clearly different

slopes, one from Vbe =0.8V to 1.6V and another one from 1.6V to 4V. The current

in the range from 4V to 5V is not treated as a third slope because its value is

artificially limited by the experimental setup. These observations suggest the presence

of additional barriers that affect the current control of the main structure, and non-

intentional Schottky contacts both at the emitter and the base provide a physically

sensible explanation for the experimental data [87].
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Figure 3.8: IV characteristic in semi-log scale of the EB diode showing experimen-
tal data, along with TCAD simulation results for different values of parasitic series
resistance RS in the contacts.

3.4 Effect of Emitter and Base Schottky Contacts

As it has been modeled by Chen et al. [87] and Lv et al. [88], the double slope ob-

served in forward-biased IV characteristics of heterojunction diodes can be explained

by considering the effect of all the barriers present in the device, usually a Schot-

tky Metal-Semiconductor and an AlGaN/GaN barrier. In the case under study, the

contacts of the experimental device were fabricated by reactive ion etching to reach

the bottom contact layer followed by Al/Au deposition, and ideally both emitter and

base contacts should have an ohmic behavior. However, for this device structure an-

nealed contacts cannot be used [80], which might lead to undesired Schottky behavior

both in the emitter and the base. In order to understand the independent effect that
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Figure 3.9: Vertical conduction band profile at equilibrium, where a Schottky con-
tact is placed at the emitter with barrier height φ2=0.45eV.

Schottky contacts have on the device performance, the emitter and base Schottky

contacts were included in the simulated device.

Figure 3.9 shows the equilibrium band profile along the vertical direction, includ-

ing a Schottky contact in the emitter and an ideal ohmic base contact. The band

diagram suggests that the structure can be understood as two diodes in series, back

to back: the Al0.50Ga0.50N/GaN with barrier height φ1 and saturation current Is1,

and the Schottky contact with barrier height φ2 and saturation current Is2.

When a small bias Vbe is applied so that qVbe < φ1−φ2, the AlGaN/GaN diode is

forward biased whereas the Schottky diode is reverse biased. Figure 3.10 (a) depicts

the band diagram for this case at Vbe =1.0V with and without Schottky contact for

comparison purposes. At this point, since φ1 >> φ2, the current through the device
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is comparable to Is1 which is several orders of magnitude smaller than Is2, making the

resistance across the AlGaN/GaN diode several orders of magnitude higher than that

of the Schottky contact. This results in the applied voltage being entirely dropped

across the AlGaN/GaN interface.

Note that both band profiles depicted in figure 3.10 (a), with emitter contact ohmic

and Schottky, are identical except for the presence of the Schottky barrier at the

emitter indicated as φ2a, yielding the same current density for both devices at the

given bias point, as it can be seen in figure 3.11, where the IV characteristic of the

EB-diode is shown for different Schottky barrier heights φ2. When the condition

qVbe > φ1 − φ2 is reached, the voltage dropped across the barrier φ1 pushes the

Schottky barrier further into reverse bias regime, then the current through the device

increases and becomes comparable to Is2, and the Schottky barrier at the emitter

begins to dominate. This situation is portrayed in figure 3.10 (b), for qVbe =1.5V,

showing both the ohmic and Schottky emitter contact conduction band profile.

It can be seen in figure 3.10 (b) that electrons injected from the Schottky contact

into the emitter see an effective barrier towards the base higher by a factor of q∆V ,

than the one seen by electrons in the ohmic case for the same bias. This is due to

the reverse bias voltage dropped across the Schottky contact, which pulls down the

conduction band in the Al0.15Ga0.85N region on the emitter side. In turn the current

is reduced by nearly 3 orders of magnitude as shown in figure 3.11, comparing the

cases φb =0.00 (ohmic), and φb =0.45 eV at Vbe =1.5V.

As a higher bias is applied, the current is no longer dominated by the AlGaN/GaN

barrier and the Schottky barrier dominates suppressing the saturation current. Since

the Schottky diode is reverse biased, the barrier height lowering effect was included

in the simulation setup, in order to capture the image force effect and the thermionic-

field emission current [7; 78], as depicted in figure 3.10 (b) with φ2b < φ2a < 0.45 eV.
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Figure 3.10: Vertical conduction band profile with and without emitter Schottky
contact for a) Vbe =1.0V and b) Vbe =1.5V, with Schottky barrier height φ2 =
0.45 eV, while keeping an ohmic base contact.
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Figure 3.11: IV characteristic in semi-log scale, showing experimental data along
with simulation results including the effect of a Schottky contact at the emitter, for
different barrier heights.

The IV curves in figure 3.11 show that this approach based on a non-ideal Schottky

contact at the emitter is in excellent agreement with the experimental data at high

positive bias from Vbe =1.8V, not only in terms of the intensity of the current density,

but also in its slope or ideality factor n, which is modulated by the dependence of

the barrier height on voltage introduced with the barrier height lowering effect. It

must be highlighted that this result could not be achieved by adding a parasitic series

resistance, since in that case the current would not be modulated by a barrier.

In the case of a Schottky contact in the base, the behavior of the device is different

to that observed for the emitter Schottky contact. Figure 3.12 corresponds to the

equilibrium conduction band profile of the diode under study with a base Schottky
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Figure 3.12: Vertical conduction band profile at equilibrium, with a Schottky con-
tact placed at the base with barrier height φ2 =0.65 eV, while keeping an ohmic
emitter contact.

contact with barrier φ2 =0.65 eV. Once more, the band profile suggests the presence

of two diodes in series, one given by the Al0.50Ga0.50N/GaN structure with barrier

height φ1 and saturation current Is1, and the other by the base Schottky contact with

barrier height φb2 and saturation current Is2.

In contrast to the emitter case, when a small bias Vbe is applied so that

qVbe < φ1 − φ2, both the AlGaN/GaN diode and the Schottky diode at the con-

tact are forward biased. Figure 3.13 (a) shows the band diagram for Vbe =0.5V with

and without the base Schottky contact. At this bias point, the current through the

device is comparable to Is1 which is smaller than Is2 because φ1 > φ2, making the

resistance across the AlGaN/GaN diode larger than that of the Schottky contact

and all the voltage is dropped across the AlGaN/GaN interface.
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Figure 3.13: Vertical conduction band profile with and without base Schottky con-
tact for a) Vbe =0.50V and b) Vbe =1.5V, with φ2 =0.65 eV.
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Figure 3.14: IV characteristic in semi-log scale showing experimental data, along
with simulation results including the effect of a Schottky contact at the base, with
different barrier heights.

Hence, both band profiles with ohmic and Schottky base contact are the same, as

well as the simulated currents at low bias as shown in figure 3.14. When the applied

voltage increases, the current through the device becomes comparable to Is2. From

this point, the Schottky diode resistance is no longer negligible and some voltage will

drop across the contact. This situation is presented in figure 3.13 (b) for Vbe =1.5V,

showing both the ohmic and Schottky base contact conduction band profiles.

Unlike the emitter case, from figure 3.13 (b) it can be seen that the voltage drop

at the base, indicated as ∆V1, reduces the voltage across the Al0.50Ga0.50N/GaN

barrier. As a consequence, the barrier seen by electrons in the emitter towards the

base is higher by a factor ∆φ1 in this case than with an ideal ohmic base contact.
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Figure 3.15: Semi-log IV characteristic, showing experimental data along with the
simulated curve corresponding to a structure with Al0.50Ga0.50N , φbase =0.65 eV,
φemitter =0.45 eV.

The factor ∆φ1 depends only on the voltage drop ∆V1, indicating that the

Al0.50Ga0.50N/GaN barrier is being modulated by the voltage drop in the Schot-

tky contact. As further positive bias is applied, the Schottky contact goes further

into forward bias and the AlGaN/GaN barrier will reach saturation at higher Vbe

than in the ohmic case, but the saturation current density will remain in the same

order of magnitude for both cases.

This can be observed in the IV characteristics shown in figure 3.14 where the

experimental data is plotted along with simulation results for three different Schottky

barrier heights of the base contact. As explained before, the slope of the IV curve at

low bias depends on the base Schottky barrier height. In particular, the IV curve for
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φb =0.65 eV is in excellent agreement with the experimental data from Vbe =0.8V

to 1.6V, whereas the saturation current value remains several orders of magnitude

higher than the experimental one, independently of the Schottky barrier height at

the base. Finally, when all the non-idealities described are put together in the model,

an excellent agreement between simulation and experimental data is reached for the

full extension of the IV curve. Figure 3.15 shows the fitted IV characteristic with the

following parameters: Al0.50Ga0.50N , φbase =0.65 eV, φemitter =0.45 eV.

3.5 Conclusions

In this work, a simulation study of isotype heterojunction diodes was presented.

CMC simulations of the forward biased IV characteristic of the diode using the ideal

layout of the device were presented and validated with hydrodynamic simulations

performed with the commercial software TCAD Sentaurus by Synopsys, showing ex-

cellent agreement. However, as the simulated IV curves differed significantly from

the reported experimental data, a further analysis including non-idealities was done

with hydrodynamic simulations only. When variations in the mole fraction of the

AlxGa1−xN/GaN barrier and the effect of Schottky contacts were included in the

model, the experimental data was successfully reproduced by simulations. In the

context of the development of HETs technology, this work provides valuable informa-

tion about non ideal effects that might be deleterious to the performance of HETs.
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Chapter 4

HOT ELECTRON GENERATION UNDER LARGE-SIGNAL RF OPERATION

OF GAN HEMTS

In order to assess the underlying physical mechanisms of hot-carrier related degra-

dation such as defect generation in millimeter-wave (mm-wave) GaN power amplifiers

(PAs), a study of the electron energy distribution function under large-signal radio

frequency (RF) conditions in AlGaN/GaN high-electron-mobility transistors is pre-

sented here. The study is performed with a full band Cellular Monte Carlo particle-

based device simulator (CMC) self-consistently coupled to a harmonic balance circuit

solver [89].

Simulations of a Class AB power amplifier at 10GHz show that the peak of hot

electron generation is up to 43% lower under RF drive than it is under DC conditions,

regardless of the input power or temperature of operation. However, at mm-wave op-

eration up to 40GHz, RF hot carrier generation reaches that from DC regime and

even exceeds it up to 75% as the amplifier is driven into compression. Increasing the

temperature of operation also shows that degradation of DC and RF characteristics

are tightly correlated and mainly caused by increased phonon scattering. In addition,

due to the popularity of Class A PAs, a comparative study between amplifier topolo-

gies is performed, indicating that devices operating in Class A circuit configuration

are more vulnerable to hot electron degradation due to higher hot-carrier concentra-

tion as compared to Class AB. The accurate determination of the electron energy

mapping is demonstrated to be a powerful tool for the extraction of compact models

used in lifetime and reliability analysis.
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4.1 Introduction

The remarkable performance of GaN high-electron-mobility transistors (HEMTs)

have made them a prominent technology in the field of integrated RF power amplifiers

(PAs), limited only by cost, thermal management, and reliability concerns. Many

studies have been done on HEMT reliability [22], and hot electron degradation is

consistently cited as one of the most relevant mechanisms [26]. Under electrical stress,

hot carriers with energy higher than an activation threshold can create electrically

active traps by dehydrogenation of passivated point defects [90]. Recently [59; 91], it

was shown that determining the electron energy distribution function (EDF) using

a multi-band Ensemble Monte Carlo device simulator, can be used to explain the

degradation observed during DC lifetime testing in terms of the threshold voltage

shift and reduced transconductance. However, most of the studies are limited to DC

operation only, and have been proven to fail in predicting RF reliability [92].

While in some experimental reports [93; 94] degradation under RF stress was found

to be more severe than in DC conditions, in other works [95] the degradation was com-

parable or even higher in DC regime, with hot-electrons as the proposed mechanism

in both cases. To the best of the author’s knowledge, the only study of hot elec-

tron concentration under RF conditions was done by means of electroluminescence

measurements [71; 72], with the limitation that an accurate quantitative estimate of

the carrier energy distribution has not been obtained to date. As of this writing,

the correlation between DC and large-signal RF reliability testing is still a topic of

active research, and a deeper understanding of the underlying physical mechanisms

of hot-carrier generation under large-signal RF is necessary.

In this chapter, the study of hot electron generation under large-signal RF oper-

ation is performed by means of the accurate simulation of the EDF, which enables
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a qualitative description of hot-carrier induced defect generation associated to the

degradation of device performance. In this approach, the CMC simulation model

of a GaN HEMT is first calibrated to experimental DC curves of a fabricated de-

vice [96]. Then, RF simulations are performed by means of CMC simulations [37],

self-consistently coupled with with a harmonic balance circuit solver based on the ac-

tive load-line technique [89]. This technique exploits the accuracy of full-band Monte

Carlo simulations in the description of highly non-linear, out of equilibrium carrier-

dynamics, while allowing for realistic in-circuit operating conditions.

This study demonstrates that at low frequencies of operation in Class AB configu-

ration, the peak hot electron generation under RF is lower than that in DC conditions

for all input powers and temperatures of operation, suggesting a lower degradation

under RF drive. However, as the frequency of operation is increased reaching the

millimeter-wave band, the electron EDF reaches that of DC, and even exceeds it at

high energies when the amplifier is driven into compression, which implies a more

severe degradation under RF than in DC conditions. In addition, it is quantitatively

shown that DC performance degradation at high temperatures of operation is tightly

correlated to the degradation of the RF figures of merit (FOM), and mainly caused

by increased phonon scattering in the channel of the device. Finally, a comparative

study between power amplifier classes is presented, showing that hot electron gen-

eration under Class A is higher than under Class AB configuration suggesting that

devices are more susceptible to degradation under Class A topology.

4.2 GaN HEMT Model Validation

The experimental device modeled in this study is shown in figure 4.1. It consists of

an Al0.29Ga0.71N/AlN/GaN epitaxial structure on SiC, with thicknesses of 15.4 nm

and 1 nm for the AlGaN and AlN layers respectively. The device is capped with a
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Figure 4.1: Device layout of the fabricated GaN HEMT used in the CMC model.

3 nm GaN layer followed by 120 nm of SiN passivation. The gate contact is T-shaped

with 140 nm of metallurgical length, and the source-gate and gate-drain access region

lengths are 930 nm and 1930 nm respectively. In all simulations, the carrier dynamics

is modeled within the CMC framework [37] by tracking carriers in the first Brillouin

zone, considering scattering processes due to deformation potential phonons, polar

optical phonons, piezoelectric (polar acoustic) phonons, ionized impurities, impact

ionization, and thread dislocations.

The electronic band structure is obtained by an empirical nonlocal pseudopoten-

tial method, with material parameters previously calibrated for wurtzite GaN [97],

whereas the phonon effects are computed with the volume-shell approach [39]. The

device domain in real space is simulated by a particle-based dynamic kernel self-

consistently coupled with a 2D multigrid Poisson solver [98]. The polarization-induced

charge due to the high polarization discontinuity across the heterojunction interfaces

has been calculated following Ambacher’s formalism [45], and placed as charge sheet
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Figure 4.2: Experimental and simulated (a) output and (b) transfer (along with
Transconductance Gm) characteristics.

layers at the appropriate heterointerfaces, which effectively reproduces the charge

distribution inside the device, creating a high density 2D electron gas (2DEG) at the

AlN/GaN interface [55].

The validation of the CMC model with the DC experimental data of the output

and transfer characteristics is presented in figures 4.2 (a) and (b), respectively, showing

excellent agreement at low gate voltage. However, since self-heating effects are not

included in this study, the drain current is overestimated for values above 0.8A/mm

as reported previously [99]. By means of small-signal AC simulations, the values of

cut-off frequency ft =104GHz and maximum oscillation frequency fMAX =234GHz

were determined.

4.3 Large Signal RF Characterization

Conventional AC small-signal modeling fails to predict the performance of power

amplifiers, because under large-signal operation the active device presents a highly
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non-linear response which is affected by the external load and the output matching

network (OMN). Nevertheless, it is possible to accurately characterize the device as

a power amplifier by self-consistently coupling the time-domain solution of the active

non-linear device obtained from the CMC simulator with a harmonic balance solver

that provides a frequency domain solution of the external circuitry formed by the load

connected to the drain through a high-Q OMN. The extrinsic network is implemented

by using the active load-line technique [89], such that the equivalent impedance of the

circuit is emulated with sinusoidal voltage generators connected in series to the drain,

one per each desired frequency component (fundamental and n-harmonics).

The simulation begins with an initial guess for the amplitude and phase of the load-

line generators to emulate a target load impedance ZLtarget. After a CMC solution is

obtained, the actual synthesized load impedance ZL is determined in post-processing

for each frequency component by

ZL(ωn) = |ZL(ωn)| e
j(ZL(ωn))

=
vD(ωn)

iD(ωn)
=

|vD(ωn)|

|iD(ωn)|
ej(∠vD(ωn)−∠iD(ωn)), (4.1)

where vD(ωn) and iD(ωn) are the complex phasors of the drain current and volt-

age sinusoids at frequency ωn. The difference between the synthesized and target

impedance is compared to a predefined tolerance, and if the target is not achieved,

another CMC simulation is run with adjusted values for the amplitude and phase of

the voltage generators, calculated by

|v′D(ωn)| = |vD(ωn)|

(

|ZLtarget(ωn)|

|ZL(ωn)|

)

, (4.2)

∠v′D(ωn) = ∠vD(ωn) + (∠ZLtarget(ωn)− ∠ZL(ωn)) . (4.3)

This process is iterated until convergence to the target impedance is achieved for

all the frequencies. The RF characterization of the experimental device was performed
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Figure 4.3: Power amplifier characterization under Class AB (RF) operation,
showing (a) dynamic load-lines and (b) FOM, for freq = 10GHz and tuned-load
ZLoad = 100Ω.

for a Class AB configuration with a large signal operating point (LSOP) of VGS = -3V,

VDS =18V and IDS =250mA/mm, at freq =10GHz with a tuned-load impedance

ZLoad = 100Ω for fundamental and 0Ω for higher harmonics. The dynamic load

lines are shown in figure 4.3 (a) along with the typical figures of merit (FOM) in

figure 4.3 (b). Class AB with tuned-load operation was chosen for the study because

it is one of the preferred PA topologies due to the high output power and high power

conversion efficiency, evidenced by the simulated values of Pout =29dBm and power

added efficiency PAE =49% for an input power of Pin =15dBm.

4.4 Hot Electron Generation

In order to establish a comparative baseline for the hot electron generation under

RF, we first study the EDFs for DC bias points indicated with solid dots (1) to (6)

in figure 4.3 (a), which describe the full excursion of the dynamic load line for input

powers from 0dBm to 10 dBm. The resulting EDFs, calculated in a region on the

drain side of the gate over 100 ps, are shown on a semi-log scale in figure 4.4, where
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Figure 4.4: Electron energy distribution function for the DC bias points (1) to (6)
indicated in figure 4.3 (a) with solid dots.

the 0 eV energy corresponds to the top of the valence band, and carriers at the bottom

of the conduction band have an energy of 3.41 eV equal to the band gap of GaN.

For all bias points the EDF is a nearly Maxwellian distribution only for low ener-

gies (E < 4 eV ), then a significant tail of high energy electrons is observed, including

the transfer from the Γ point to satellite valleys at approximately 5.5 eV, evidencing

the highly non-linear transport effects of high-energy carriers. The tail of hot-carriers

reaches a minimum in the off-state point (1) for VGS = -7V, and it increases with VGS,

reaching its peak at VGS = -2V, VDS =16V shown with curve (4), which is known

as the semi-on condition, where high electric fields and moderate carrier densities are

simultaneously present [59]. As VGS continues to increase until it becomes positive as

in curve (6), known as the on-state, the drain current increases but the lateral electric

field is lowered, making the tail of hot electrons decrease substantially, even below

the value corresponding to the LSOP (3).
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The resulting energy distribution functions under DC conditions can be explained

in terms of the electron motion within the device. In particular, figures 4.5 (a), (b)

and (c) show a close-up of the profile along the channel of the x-component of the

electric field Ex, the concentration of electrons and the total scattering, respectively.

From the figures it can be seen that bias point (4), which corresponds to the peak of

hot electron generation, presents a high electric field peak in the channel, in addition

to a high concentration of electrons which are accelerated as they transit under the

gate gaining significant amounts of kinetic energy that is not transferred to the lattice

evidenced by the low scattering hence becoming hot carriers.

When the device operates under bias point (6), which corresponds to the peak of

drain current of figure 4.3, a high concentration of electrons is present in the channel.

However, the low electric field and the high occurrence of scattering under the gate

prevents the carriers from gaining much energy which translates into a lower concen-

tration of hot carriers as compared to bias point (4) as indicated in figure 4.4. Finally,

under bias point (1) the device presents the highest peak electric field under the gate,

but since the channel is depleted of electrons (hence the discontinuity in plots (b) and

(c) which are in semi-log scale), there are no carriers to be accelerated. It most be

noticed that even though the channel is fully depleted of carriers, the buffer has a low

concentration of electrons which drift from source to drain due to the high electric

field, producing a leakage current. In the process they gain kinetic energy becoming

hot, which explains the non-zero EDF for bias point (1) shown in figure 4.4. This

analysis suggests that points (4) and (3) constitute the appropriate upper and lower

EDF comparative values, respectively, between DC and RF modes of operation.

Aiming to obtain a statistically significant EDF under RF operation at 10GHz,

simulations were run for 200 ps or 2 full cycles of RF signal with 8x104 super-particles.

The EDF was built during the last simulated cycle by updating the field every 1.5 fs
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(Poisson solver time step) and normalized to the number of iterations. Figure 4.6

presents the resulting EDFs at three different input powers of 5 dBm, 13 dBm and

18 dBm, along with the DC comparative curves. It can be seen that the peak RF

distribution is reached at 5 dBm, which corresponds to a load-line excursion around

the semi-on DC condition. However, the hot electron generation is 43% lower than

the DC peak for energies higher than 5.5 eV. At lower energies the DC LSOP curve

sets the lower limit for the peak RF distribution.

As the input power increases, the swing of the dynamic load line takes the device

away from the semi-on state, into the on-state and off-state represented by the DC

operating points (6) and (1) respectively, which in turn results in a hot electron

concentration 39% and 49% lower than the DC LSOP case for Pin =13dBm and

18 dBm respectively, for E < 6.3 eV. At higher energies, the RF distribution matches
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the LSOP case at 13 dBm and it goes above it by 19% in deep compression. In terms

of reliability, these results suggest that devices operating under DC electrical stress are

potentially more susceptible to hot-electron degradation effects than when operating

under Class AB RF power amplifier at low frequencies, since a higher concentration

of energetic carriers can create electrically active traps.

4.5 High Frequency RF Operation

Since the studied device has a cut-off frequency of 104GHz, the analysis was ex-

tended by performing simulations under Class AB operation up to 40GHz, keeping

the LSOP and tuned-load ZLoad constant. The characterization of the device at the

two frequencies of freq =10GHz and 40GHz is shown in figures 4.7 (a) and (b), corre-

sponding to the load-lines and typical figures of merit, respectively. From figure 4.7 (a)

it can be seen that at the high frequency of 40GHz the load-line deviates from the

purely resistive behavior (straight line) observed at 10GHz, due to the higher output

capacitance CDS which in turn presents a low-impedance difficult to perfectly match

for tuned-load conditions. Since the load impedance is not perfectly matched, some of

the power is delivered to higher order frequency harmonics rather than to the funda-

mental one. The lost of power towards harmonics reduces the PAE and gain at high

frequency as shown in figure 4.7 (b), in comparison with the performance observed

at 10GHz. Nevertheless, the power amplifier still presents high output power which

makes it viable for mm-wave operation.

In terms of hot-electron generation, the energy distribution functions at three

different frequencies are shown in figures 4.8 (a) and (b) for two values of output

power Pout =26dBm and 30 dBm, respectively. For low output power 26 dBm below

the compression point, figure 4.8 (a) shows that the hot carrier distribution increases

with the frequency of operation, approaching the DC peak generation for all energies.
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Figure 4.7: Frequency study of power amplifier characterization under Class AB
(RF) operation, showing (a) dynamic load-lines and (b) FOM, at frequencies of
freq =10GHz and 40GHz and tuned-load ZLoad =100Ω.

In particular, at 25GHz the EDF is 45% lower than the DC peak as compared to

64% at 10GHz for 4 < E < 7 eV, whereas at 40GHz the RF distribution matches the

DC counterpart, even surpassing it by 25% for energies higher than 6.5 eV. As the

PA is driven into compression as shown in figure 4.8 (b), it is observed that unlike the

X-band case, hot carrier generation increases with the input power (or output power)

at higher frequencies, particularly for energies higher than 6 eV, where operation at

25GHz matches the DC peak generation, meanwhile at 40GHz it is 75% higher than

in DC.

These results imply that hot electron degradation under RF power amplifier op-

eration depends not only on the input power but also in the frequency of operation.

Furthermore, the results suggest that at high frequency and high power the degrada-

tion of devices due to hot-electron effects is stronger than that under DC conditions,

which is in good agreement with RF degradation experiments [94]. From a physics

point of view, the increment in hot-carrier concentration is due to the high output
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capacitance which causes the broadening of the load-lines as the frequency and power

increase. The dynamic load-line swing under these conditions broadens, deviating

from a straight line into an ellipse as shown in figure 4.7 (a), pushing the device into

a high-power state where high current and high electric field are present simultane-

ously. This condition results in higher generation of hot electrons even in DC, as

demonstrated in figure 4.9 showing the EDFs computed for DC bias points indicated

in figure 4.7 (a) as (I) and (II) located on the 40GHz load-line. Also shown in fig-

ure 4.9 for comparison the EDFs for DC bias points (3) and (4) corresponding to the

load-line at 10GHz. It can be seen that the points located on the 40GHz load-line

result in higher generation of hot electrons with respect to the points located on the

10GHz load-line. Experimentally, this state is often studied under RF pulsed con-

ditions only, because in DC operation the high power dissipation can lead to device

destruction.

4.6 High Temperature Operation

The effects of temperature on the performance of the device under RF conditions

were also studied for Class AB operation at freq =10GHz by means of isothermal

simulations. In this approach, the corresponding scattering rates are calculated at

a constant lattice temperature. The DC and large-signal power amplifier charac-

terization results for T =300K and 500K are shown in figure 4.10, depicting the

dynamic load-lines along with the IDS-VDS curves in (a) and the RF figures of merit

in (b). Concerning the DC performance, it can be seen that as the temperature in-

creases from 300K to 500K, the DC saturation current IDsat at VGS = 1V goes from

1.8A/mm to 1.4A/mm, representing a 23% reduction, whereas Ron increases by the

same amount. On the other hand, at low VGS, the degradation is only significant for

high VDS.
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Figure 4.9: Electron energy distribution function for the DC bias points (I), (II)
and (3), (4) indicated in figure 4.7 (a) with solid dots, corresponding to DC points
along the load-lines at 40GHz and 10GHz respectively.

The DC performance degradation can be explained in terms of changes in trans-

port quantities such as the carrier velocity and scattering rates due to increased

phonon scattering in the 2DEG channel at high temperatures [100]. This is pre-

sented in figures 4.11 (a) and (b), showing the total electron scattering rate and the

x-component of the carrier velocity, respectively, obtained at T =300K and 500K

in a region under the gate along the channel. As the temperature increases, the total

scattering increases due to the thermal energy gained by the crystal atoms. This in

turn reduces the electron velocity and hence the current.

In terms of RF performance, at 500K the power gain and the output power drop

by 4.31 dB (27%) and 4.3 dBm (21%), respectively, significantly degrading the PAE

by 40% from Pin =0dBm to 15 dBm, whereas in compression (or high input power)

the degradation is less than 5%. It should be noted that the degradation of DC and
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Figure 4.10: Effect of temperature in Class AB operation for freq =10GHz and
ZLoad =100Ω showing (a) IDS-VDS curves along with load-lines, and (b) figures of
merit.
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Figure 4.12: Temperature dependence of the distribution function for Class AB
operation at Pin =5dBm, for freq =10GHz and ZLoad =100Ω.

RF performance are tightly correlated. As DC parameters IDsat and Ron degrade,

the swing of the dynamic load-line is reduced, as shown in figure 4.10(a), where the

10 dBm load-line at 500K (dotted line) shows a smaller excursion than that at 300K

shown in figure 4.3 (a). This in turn reduces Pout and the PAE of the amplifier.

Finally, the RF electron EDF up to 700K is shown in figure 4.12 for Pin =5dBm.

In RF regime, the distribution function at low energies (E < 4.5 eV) increases with the

temperature, being 30% and 72% higher than the DC peak at 300K, for T =500K

and 700K, respectively. This implies higher trap generation for defects with low

activation energies as suggested by Mukherjee [91]. On the other hand, the tail of

high energy electrons (E > 5.5 eV) consistently decreases with temperature, due to

increased phonon scattering at high temperatures [100]. For all cases in the X-band,

the RF hot electron generation is lower than the DC peak at 300K, regardless of the

input power or the temperature variations.
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4.7 Comparison between Class A and Class AB Operation

In terms of power amplifier design, the Class AB topology is by far the most widely

used design both as a stand-alone PA and as a fundamental building block of other

PA topologies for both wireless and base station applications due to its high efficiency

and low thermal dissipation. Nevertheless, because of its high harmonic content which

can only be reduced to a certain extent through high-Q output matching networks, it

has the disadvantage of relatively lower linearity when compared to other topologies.

In particular, Class A power amplifiers constitute not only the most simple of all PA

circuits, but also offer high linearity, high gain and high output power, along with

inherently low harmonic distortion and no cross-over [73].

The reason for the higher linearity relies on the fact that for Class A operation,

the DC bias point of the device is chosen so that it is always on for all the load-line

excursion, which also allows to bias the device near the center of the most linear

portion of the transconductance curve. This in turn produces inherent disadvantages

such as low conversion efficiency and high thermal dissipation due to the high DC

power consumption. For these reasons, the hot-carrier generation study is extended

in this section to compare the reliability of devices operating in Class A and Class

AB power amplifier topologies.

The analysis begins with a comparison of the PA characterization in terms of the

load-lines excursion and the typical figures of merit as shown in figures 4.13 (a) and

(b) respectively at freq =10GHz and ZLoad =100Ω (tuned with a high-Q OMN for

the Class AB). From figure 4.13 (a) it can be seen that for Class A operation the

LSOP corresponds to a high DC power of 27W/mm whereas for Class AB the DC

power is only 4.5W/mm. On the other hand, the load-lines excursion for Class A

show a purely resistive behavior even at high input power evidencing a negligible
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Figure 4.13: Power amplifier characterization under Class A and Class AB operation
for freq =10GHz and tuned-load ZLoad =100Ω, showing (a) dynamic load-lines along
with IDS-VDS curves. Also, the typical figures of merit are shown in (b) where lines
with and without symbols correspond to Class A and Class AB respectively.

harmonic content, which in turn allows for higher linearity, as compared to the Class

AB topology. In terms of the figures of merit shown in figure 4.13 (b), the main

disadvantage of Class A operation is evidenced as a low PAE as compared to that

of the Class AB amplifier, due to the difference in DC power. Nevertheless, higher

output power and gain are obtained in Class A PAs.

Concerning the hot-carrier concentration, the electron energy distribution func-

tions under Class A at 10GHz were obtained running large-signal simulations for

200 ps or 2 full cycles of RF signal with 80K super-particles, as it was indicated be-

fore for Class AB operation. Figure 4.14 presents the resulting EDFs at 3 different

input powers Pin =0dBm, 10 dBm and 15 dBm for Class A (lines with symbols) and

Class AB (lines). It can be seen that for energies lower than 4 eV all curves show a

nearly Maxwellian distribution, however, a large tail of high energy electrons is ob-

served including the transfer to satellite valleys at 5.5 eV. Under Class A operation,

the peak EDF is reached at the lowest input power Pin =0dBm and then it decreases

monotonically as Pin increases, in contrast to what was previously described for Class
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Figure 4.14: Electron energy distribution function under Class A (lines with sym-
bols) and Class AB (lines) PA operation, at 3 input powers Pin =0dBm, 10 dBm
and 15 dBm.

AB conditions where the EDF first increases with Pin reaching a peak at 5 dBm and

then decreases with the input power, reaching its minimum at 15 dBm.

At low Pin, the device operates around the LSOP as shown in figure 4.13 (a), which

in Class A presents both high current IDS and high electric field Ex simultaneously,

allowing for a high hot-carrier generation as compared to Class AB where the LSOP

is close to an off-state of low IDS. As the input power increases, under Class A the

load-line excursion pushes the device towards regions where only either IDS or Ex

is high, reducing the hot-carrier generation. In contrast, under Class AB the EDF

first increases with Pin, reaching its peak when IDS and Ex are maximized, which is

achieved in the semi-on region. From this point, as Pin keeps increasing, the EDF

in Class AB starts decreasing due to the same reasons explained for Class A. It

most be noticed that for all Pin, the hot electron concentration is nearly one order of
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magnitude higher under Class A than in Class AB because for all possible values of

Ex along the load-lines, the current IDS is always higher in Class A than in AB.

Simulations at high frequency of 40GHz were performed for Class A operation,

while keeping the LSOP and ZLoad constant. A comparison of the EDFs obtained

at 10GHz and 40GHz under Class A is shown in figure 4.15 for two input powers

of Pin =0dBm and 18 dBm, showing that the hot-electron generation is higher at

40GHz than at 10GHz for a given Pin. Furthermore, the global peak hot-carrier

generation is observed at 0 dBm for 40GHz which is 27% higher than that at 10GHz

throughout all the energy range. As the input power increases, the EDF decreases as

it was observed at low frequency. However, when the device is driven into compression

corresponding to the 18 dBm curves, the EDF is higher at 40GHz than at 10GHz,

in particular an increment of 60% is observed in the energy range of 4 < E < 6.5 eV,

whereas the EDF is 273% (or 2.7 times) higher for energies higher than 7 eV, so that

the 18 dBm curve reaches the peak generation obtained at 0 dBm. As it was described

for the Class AB topology, the higher hot-carrier concetration at high frequency

operation is due to the broadening of the load-lines caused by the higher capacitance

of the device at high frequency, which presents an low impedance difficult to tune-out.

Finally, a comparison of the hot-electron generation under Class A and Class AB

operation at high frequency is presented in figure 4.16, where curves of the electron

EDFs are presented at 40GHz for the input powers of Pin =0dBm and 18 dBm.

In this case, the largest difference between the EDFs under Class A and Class AB

conditions is observed for 0 dBm, corresponding to approximately one order of mag-

nitude for all the energy range. However, since under Class AB operation at high

frequency the EDF increases with the input power contrary to what is observed at

low frequency, the peak hot-electron generation under Class AB reached at 18 dBm

is practically the same as that calculated under Class A for all the energy range.
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Figure 4.15: Frequency study of the electron energy distribution function in Class
A operation for freq =10GHz (lines) and 40GHz (lines with symbols) at input power
of Pin =0dBm and 18 dBm.

This analysis suggests that devices are more susceptible to hot-electron induced

degradation when operating under Class A power amplifiers than with Class AB

topology. This correlation is observed at all input powers when the frequency of

operation is kept in the x-band. However, at mm-wave frequencies and high power

operation, such as 40GHz and Pin =18dBm both topologies are expected to induce

comparable hot-carrier degradation.

4.8 Conclusions

In this chapter, a hot electron generation study was presented in terms of the

electron energy distribution function, calculated under large-signal RF, Class AB op-

eration in GaN HEMTs. The results, consistent with experimental studies, suggest

that under ideal conditions in the X-band with freq =10GHz, hot-electron degrada-
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Figure 4.16: Comparison of electron energy distribution function at high frequency
operation, under Class A (lines with symbols) and Class AB (lines) topologies at
input power of Pin =0dBm and 18 dBm.

tion effects should be lower in RF drive than in DC, regardless of the input power or

temperature of operation. However, in the mm-wave band up to 40GHz, hot carrier

generation matches the DC counterpart, even surpassing it at high energies when

the power amplifier is driven into deep compression, suggesting stronger degradation

under RF than in DC. Regarding the topology of the PA, it was shown that devices

operating in Class A produce higher concentration of hot carriers regardless of the

input power as compared to Class AB for frequencies in the X-band, whereas in the

mm-wave regime Class A and AB topologies present comparable concentrations of

hot-carriers particularly when the PA is driven into compression. Finally, in terms of

reliability the RF analysis is more meaningful for realistic lifetime estimation given

the practical application of these devices as mm-wave PAs, and the accurate calcula-

tion of the EDF under RF can be exploited in compact modeling-based lifetime and

reliability analysis as it has been done for DC operation.

110



Chapter 5

A Π-SHAPED GATE DESIGN FOR REDUCING HOT ELECTRON

GENERATION IN GAN HEMTS

The use of a Π-shaped gate structure is proposed for GaN HEMT devices, which

effectively reduces the hot electron generation under all regimes of operation, while

preserving device performance well into the lower millimeter-wave frequency range.

Simulations in DC and large-signal RF conditions of the proposed Π-gate device, along

with the corresponding electron energy distribution functions (EDFs), were obtained

with a full-band Cellular Monte Carlo device simulator self-consistently coupled to

a harmonic-balance circuit solver, and compared to simulations of a typical T-gate

HEMT whose DC curves were calibrated to experimental data. The results show that

the peak hot-carrier generation obtained with an asymmetric-Π-gate is about 41%,

44% and 75% lower at DC and in Class AB mode at 10GHz and 40GHz, respectively,

as compared to that observed in the T-gate devices. This new gate structure suggests

that significantly higher reliability against hot electron induced device damage can

be achieved with modest impacts on performance.

5.1 Introduction

The superior electrical and thermal properties of GaN based HEMTs have en-

abled their use in high-frequency Power Amplifiers (PAs). However, reliability issues

are still a reason of concern and active research [101], and hot electron effects are

systematically associated to degradation of device performance under both DC [91]

and large-signal RF operation [94; 95; 71; 72], since highly energetic carriers with ki-

netic energy larger than a specific activation threshold can create electrically active
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traps by dehydrogenation of passivated point defects [90]. Field-plates have been suc-

cessfully adopted to reduce short-channel effects and enhance breakdown voltage by

reducing the peak electric field [11; 12]. Also, slanted gate contact geometries have

shown to reduce the effect of surface trap generation during off-state stress [102], and

recent studies have relied on gate contact layout engineering to improve electrical

device performance [103], decrease microwave noise [104] and achieve normally-off op-

eration [105]. However, as of this writing, efforts that have been directed to reduce hot

carrier generation and mitigate its effects have focused on asymmetric gate placement

which affect performance [106], rather than the contact interface geometry.

With the aim of improving the reliability of GaN HEMTs by reducing the hot

electron generation while preserving the DC and RF performance, a Π-shaped gate

structure is proposed here as an alternative to traditional T-gate contacts. The con-

cept is demonstrated with simulations of the DC, small signal AC, and large-signal

RF characteristics performed using a full-band Cellular Monte Carlo particle-based

device simulator (CMC) [37], self-consistently coupled to a harmonic-balance circuit

solver [89]. In this approach, the carrier dynamics take into account scattering mech-

anisms due to deformation potential phonons, polar optical phonons, piezoelectric

(polar acoustic) phonons, ionized impurities, impact ionization and thread disloca-

tions. The results are compared to simulations of a GaN HEMT device with a typical

T-gate contact, whose model was calibrated to experimental DC curves of a device

fabricated in a MMIC process flow similar to the one reported by Fitch et al. [96].

The principles of operation of the proposed Π-gate contact are correlated to rele-

vant microscopic quantities such as carrier velocity, average carrier concentration and

total scattering rate as well as electric field distribution throughout the device, while

design rules and projections of small-signal AC parameters are discussed to facilitate

the design and fabrication of the proposed Π-gate contact geometry, which is com-
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patible with the dielectrically defined optical T-gate process [107] and the two-step-

recessed gate process [108]. The description of the highly non-linear, non-equilibrium

carrier dynamics accurately captured by the CMC particle-based simulator allows

to assess the impact of the gate layout on hot carrier generation by means of the

accurate simulation of the electron EDFs in both DC bias and large-signal RF drive

under load and drive conditions that are relevant for experiments [109]. The signifi-

cant reduction of the hot carrier distribution observed with a Π-gate contact under

all operating conditions suggests improved reliability of the proposed device.

5.2 Performance of Π-gated HEMTs

5.2.1 Principles of Operation

The layout of a conventional T-gate HEMT device is shown in figure 5.1 (a). In

typical DC conditions, such as biasing for power amplifier operation, the device is

subjected to high drain voltage VDS that produces high electric fields on the drain-

side of the gate depleting this region of electrons. Then, as a gate bias VGS is applied

to allow current flow, carriers that transit under the gate are accelerated by the

high electric field gaining kinetic energy. As electrons continue traveling through the

crystal, some of the gained energy is transferred to the lattice by electron-phonon

scattering. However, a portion of electrons will achieve high energies expressed in

fractions of an electron volt and referred to as hot electrons [29]. In order to reduce the

generation of hot electrons while preserving the device performance, it is necessary to

increase the number of electron-phonon scattering events which requires more carriers

that undergo scattering as well as longer transit times, while keeping the peak electric

field.
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Experimental T-gate Layout Proposed -Gate ContactP
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ii
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Figure 5.1: Device layout showing (a) the experimental T-gate geometry from fab-
ricated devices (b) the proposed Π-gate, including design rules.

Such conditions can be achieved with a Π-shaped gate contact as proposed in

figure 5.1 (b), which is formed by basically splitting the gate length LG of T-gate in

two stems LG1 and LG2 and adding a spacer region with length d, while keeping

the rest of the access regions and the epitaxial stack structure unchanged. This

gate layout effectively reduces the hot electron generation by stepping the conduction

band EC under the gate which increases the carrier concentration in this region,

and by increasing the transit time of carriers under the gate with the spacer, which

increments the total number of scattering events. In addition, since LG1 and LG2 are

shorter than LG in the T-gate, the Π-gate contact reduces the length of the region

of high electric field on the drain-side of the gate depleted of carriers where there

is nearly no scattering. Nevertheless, by keeping the length LGD constant, the peak

electric field is the same as that of T-gate preserving the device performance.
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The discussed mechanisms require LG1 >= LG2 since the opposite situation would

not produce a significant change in the conduction band that modulates the carrier

concentration. Furthermore, if LG2 were designed to be the longest stem, the region

depleted of carriers would remain unchanged. However, it should be pointed out that

making LG2 << LG1 could make the fabrication impractical. Design rules for the Π-

shaped gate contact, also shown in figure 5.1 (b), can be derived from the principles

of operation as follows: (i) the gate length LG is split in two stems of lengths LG1

and LG2, which can be symmetric (Sym) with LG1 =LG2 or asymmetric (Asym) with

LG1 >LG2, (ii) the two stems are separated by a spacer region with length d, designed

to be long enough to allow electrons to scatter and thermalize, which increases LDS

while keeping LSG and LGD constant, and (iii) the stem in the spacer region is filled

with a standard dielectric, SiN in this case, and its height h can be optimized to

reduce the added gate capacitance and facilitate fabrication.

5.2.2 DC, small-signal AC and large-signal RF Operation

In order to demonstrate and evaluate the proposed device concept, an experimen-

tal HEMT is used as the baseline layout for design and comparison. It consists of an

AlGaN/AlN/GaN HEMT on SiC substrate as shown in figure 5.1 (a) with a typical

T-shaped gate contact with LG =140 nm, stem height h=120 nm, and access re-

gions LSG=930 nm and LGD =1930 nm for a total device length of LDS =3µm. The

CMC simulation model of the T-gate was validated with experimental DC data of the

IDS-VDS and IDS-VGS curves as presented in figures 5.2 (a) and (b) respectively, show-

ing excellent agreement at low VGS where the drain current is small. However, since

self-heating effects are not included, for high values of VGS the current is overestimated

for IDS > 0.8A/mm as it has been reported elsewhere [99; 110].
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Figure 5.2: Simulated DC curves (dashed and solid lines) showing (a) output
and (b) transfer (along with transconductance Gm) characteristics for T-gate and
Asymmetric-Π-gate devices. Experimental data (symbols) corresponds to the T-gate
device.
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The Π-gate design chosen for comparison with the T-gate consists of an asymmet-

ric contact with LG1 =100 nm, LG2 =40 nm, d=100 nm and h=120 nm. This layout

will be used for both DC and large signal RF characterization. Results in DC condi-

tions for the asymmetric-Π-gate are also shown in figures 5.2 (a) and (b), indicating

that the proposed device preserves the DC performance throughout the operating

range. Nevertheless, IDS is reduced ∼4% at low VDS due to the increased channel

resistance added by the spacer length d, whereas at high VDS, it decreases ∼10% due

to a barrier added under the gate that is modulated by the two stems of the Π-gate.

By means of small-signal AC simulations, the experimental cut-off frequency

ft =109GHz and maximum oscillation frequency fMAX =234GHz were determined.

In addition, figure 5.3 shows the effect on ft and fMAX of the symmetric and asym-

metric Π-gate contacts, as a function of spacer region length d. As the length d

increases, both parameters decrease due to the added distributed gate capacitance.

The symmetric case shows better performance than the asymmetric layout for ft with

19% and 32% degradation at d=160 nm respectively, whereas fMAX decreases up to

40% for both layouts, showing nearly no reduction at short d for the asymmetric-Π-

gate. Varying the stem height h in the spacer from 120 nm to 50 nm, produces the

same trend with a slight improvement for the symmetric case of nearly 5% higher ft

and fMAX than the asymmetric case at d=100 nm.

The RF characterization was performed for a power amplifier in Class AB topology

at frequencies in the X and K band of freq =10GHz and 40GHz respectively, with a

large signal operating point (LSOP) of VGS =−3V and VDS =18V with a tuned-load

ZLoad =100Ω for both the T-gate and the asymmetric-Π-gate devices. Figure 5.4 (a)

shows the dynamic load lines at 12 dBm for freq =10GHz and since it presents the

same excursion for both devices, it is demonstrated that the asymmetric-Π-gate device

offers the same power rating of the experimental T-gate. Moreover, the typical figures
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Figure 5.3: Small-Signal AC parameters (a) Cut-off frequency ft and (b) Maximum
Oscillation Frequency fMAX as a function of spacer region length d for T-gate (d=0),
symmetric-Π-gate (LG1 =LG2 =70 nm) and asymmetric-Π-gate (LG1 =100 nm, LG2 =
40 nm), corresponding to two stem heights h.
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of merit (FOM) shown in figure 5.4 (b) indicate a 14% higher power added efficiency

(PAE) for the asymmetric-Π-gate at low Pin as compared to the T-gate, due to the

lower DC drain current at the LSOP measured at VDS−LSOP in figure 5.4 (a), which

reduces the DC power. It must be noticed that the asymmetric-Π-gate device exhibits

stronger electrostatic control than the T-gate, evidenced by lower drain current at

low VGS as the drain voltage increases. In particular, figure 5.4 (a) shows that for

low VGS =−3V the current IDS at high VDS =30V of the asymmetric-Π-gate is 44%

lower than that of the T-gate, which can be explained by the modulation of the

conduction band under the Π-gate added with the two stems.

This effect is shown in figure 5.5 (a) which depicts a close-up under the gate of

the profile of EC along the channel, where it can be seen that the conduction band is

stepped and that in the case of high VDS, an extra barrier is added under the Π-gate

region, while the peak electric field remains constant in both devices as indicated by

the slope of EC for both curves. The additional barrier under the Π-gate reduces the

x-component of the electron velocity in the channel, as shown in figure 5.5 (b), which

translates into lower drain current. Since field-plates reduce short-channel effects by

reshaping the peak electric field [11], a field-plated Π-gate design could be optimized

for enhanced break down voltage by combining the effects of an additional barrier

with the reshaping of the peak electric field.

5.3 Reduced Hot Electron Generation

The generation of high energy carriers is studied through the accurate simulation

of the electron EDF under both DC bias and large-signal RF drive, which enables

a qualitative description of hot-electron induced defect generation associated with

degradation of device performance. In all the simulations, the EDF was calculated

in a region on the drain side of the gate extending vertically from the AlN barrier
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Figure 5.4: Power amplifier characterization under Class AB (RF) operation, show-
ing (a) dynamic load-lines for Pin=12 dBm at freq=10GHz along with IDS − VDS

curves and (b) Pout, Gain and PAE for freq =10GHz and 40GHz with ZLoad=100Ω.
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Figure 5.5: Close up of the profile along the channel (x-component) of (a) the
conduction band EC and (b) the electron velocity at VGS =−3V and VDS =30V for
T-gate and Asymmetric Π-gate devices.

to the bottom of the buffer, and the results are plotted on a semi-log scale where the

0 eV energy corresponds to the top of the valence band.

5.3.1 Energy Distribution in DC Regime

The EDFs in DC were built over 100 ps with 8x104 super-particles, for bias points

(1) and (2) as indicated in figure 5.4 (a), corresponding to the peak DC power of the

dynamic load lines for Pin =6dBm and 12 dBm, respectively. Figure 5.6 presents the

resulting EDFs for both T-gate and proposed asymmetric-Π-gate layouts, showing

that the peak generation of hot carriers, evidenced by the large tail of high energy
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Figure 5.6: Electron energy distribution function for the DC bias points (1) and (2)
shown in figure 5.4 (a) for T-gate and asymmetric Π-gate devices.

electrons including the transfer to satellite valleys at 5.5 eV, corresponds to bias point

(1) where moderate current and high electric field are simultaneously present, also

known as the semi-on state.

However, for the asymmetric-Π-gate, the peak EDF is 19% lower than that of the

T-gate for energies between 4 eV and 5.5 eV, approaching a 32% reduction in the range

of 5.5 < E < 6.5 eV and reaching its maximum reduction of 41% for E > 6.5 eV. For

bias point (2), where VGS is positive and the drain current is high, the EDF decreases

for both layouts due to a lower lateral electric field. Under this condition as well,

the Π-gate outperforms its T-gate counterpart in terms of the electron distribution,

obtaining reductions of about 7% for 4 < E < 5.5 eV, 20% for 5.5 < E < 6.5 eV, and

35% for E > 6.5 eV. These results suggest that improved reliability can be achieved

with a Π-shaped gate contact since less hot-electron induced traps will be generated.
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The reduction of the energy distribution observed with a Π-gate device is due

to the change in the trajectories of the electrons along the channel, and it can be

explained in terms of the microscopic physical quantities presented in figures 5.7 (a)

to (d) showing a close-up profile under the gate along the channel. Splitting the gate

contact into two stems (LG1, LG2) and adding a spacer region in between with length

d, reshapes the electric field under the Π-gate with respect to the T-gate device

as indicated by figure 5.7 (a), producing a stepped conduction band that increases

the carrier concentration under the gate of the asymmetric-Π-gate as evidenced by

figure 5.7 (b). In addition, when (LG1 + d)>LG2 the transit time of electrons under

the Π-gate increases, which enhances the total scattering under the gate as shown in

figure 5.7 (c), while also reducing the length of the region depleted of carriers (LG2 on

the drain-side of the gate) where scattering is substantially reduced due to the high

peak electric field, this being the same in both devices.

A larger concentration of carriers under the Π-gate undergoing more scattering

results in an overall lower velocity as shown in figure 5.7 (d), effectively reducing the

number of carriers with kinetic energies high enough to transfer to satellite valleys and

becoming hot as compared to the T-gate device. This effect is directly proportional

to the spacer length d, which should be long enough to increase the transit time,

with the trade-off of degrading small-signal AC performance, nevertheless preserving

the DC and large-signal RF rating. Also, it is reported here that this effect is still

observed, even though to a lesser extent, with symmetric-Π-gates where LG1 =LG2

and also with lower stem heights h, which can be advantageous for fabrication.
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Figure 5.7: Profile along the channel of (a) x-component of the electric field, (b)
electron concentration, (c) total scattering rate and (d) x-component of the electron
velocity for T-gate and asymmetric-Π-gate at DC bias point (1) from figure 5.4. Solid
bars in (a) show the position of the metallurgical gate contacts for each layout.
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5.3.2 Energy Distribution under RF Operation

The electron EDF can also be obtained under large-signal RF conditions as pre-

viously reported [109]. Simulations were run for 200 ps of the RF signal, building

the distribution function during the last 100 ps by updating the field distribution

every 1.5 fs (Poisson solver time step) and normalizing to the number of iterations.

Figures 5.8 (a) and (b) show the resulting EDFs at freq =10GHz and 40GHz, respec-

tively, keeping the LSOP and ZLoad constant for both the T-gate and asymmetric-Π-

gate layouts for Pin of 6 dBm and 18 dBm. At low frequency, figure 5.8 (a) shows that

for both layouts the hot electron generation peaks at 6 dBm drive and it decreases as

Pin increases. As compared to the T-gate at 6 dBm, the asymmetric-Π-gate shows a

32% reduction in the EDF for 4 < E < 6.5 eV, reaching up to 44% reduction of hot

carriers for E > 6.5 eV. At high Pin =18dBm, the Π-gate energy distribution is 13%

and 19% lower than that of the T-gate for the energy ranges 4 < E < 5.5 eV and

5.5 < E < 6.5 eV, respectively, whereas it reaches a 46% reduction for E > 6.5 eV.

At high frequency freq =40GHz, as shown in figure 5.8 (b), the hot carrier genera-

tion increases with Pin contrary to what is observed at X-band [111]. For Pin =6dBm,

the high frequency distribution of the Π-gate reaches that of the T-gate at 10GHz,

nonetheless, it is 25% lower than that of the T-gate at 40GHz for 4 < E < 6.5 eV,

reaching up to a 35% reduction for higher energies. As the PA is driven into com-

pression at 18 dBm drive, the EDF reaches its highest peak particularly for E > 6 eV,

however it is in this case that the maximum reduction of the distribution is observed

with the asymmetric-Π-gate being 50% and 75% lower than the T-gate EDF for

6.5 < E < 7.5 eV and E > 7.5 eV respectively, suggesting improved robustness to

failures from the generation of traps [90].
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Figure 5.8: Electron energy distribution function under RF Class AB operation at
(a) X-band 10GHz and (b) K-band 40GHz, for different input powers.

126



5.4 Conclusions

A new Π-shaped gate contact was proposed for improved reliability of GaN HEMTs

in terms of reduced hot electron generation under all regimes of operation while pre-

serving the device performance. The device concept was demonstrated by Monte

Carlo simulations and compared to simulations of an experimental T-gate device

where the simulated IV curves were first calibrated to measured data. The principles

of operation were discussed and used to derive design rules, which along with pro-

jections of AC parameters ft and fMAX were presented as guidelines for design and

fabrication. Furthermore, simulations of the electron EDF in both DC bias and large-

signal RF drive show that under the same operating conditions, the peak of hot-carrier

generation obtained with an asymmetric-Π-gate is lower up to 41% in DC, 44% and

75% in Class AB at 10GHz and at 40GHz respectively compared to EDFs of T-gate

HEMTs. These results suggest improved hot-electron induced failure conditions in

both DC and large-signal RF operation of the device with an asymmetric-Π-gate, by

reducing the number of highly energetic carriers that can create electrically active

traps.
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Chapter 6

ELECTRO-THERMAL CHARACTERIZATION OF GAN HEMT ON SI

THROUGH SELF-CONSISTENT ENERGY BALANCE-CELLULAR MONTE

CARLO DEVICE SIMULATIONS

In order to assess the mechanisms of self-heating observed in GaN HEMTs on Si

substrates, the electro-thermal characterization of an experimental device is carried

out in terms of the simulation of its DC performance by means of an expanded full

band Cellular Monte Carlo particle-based simulator (CMC). In this new approach,

the thermal effects are included through an energy-balance equation for phonons

which allows to self-consistently couple the charge and heat transport. As a result,

accurate temperature maps are obtained for the acoustic and optical phonon modes,

showing that the location of the hot spot in the channel is not at the peak of the

electric field, but instead it is shifted towards the drain up to 32 nm. Additionally,

the modeled IDS(VGS-VDS) space is significantly improved with respect to the tradi-

tional isothermal simulations, as a result of including the self-heating effects which

modify the charge transport in the active layer of the device through the temperature

dependence of the scattering mechanisms considered in the simulations. Finally, the

electro-thermal model of the experimental HEMT is used to evaluate the impact that

lateral scaling, i.e. reducing the source-to-gate LSG and gate-to-drain LGD dimen-

sions, has on self-heating effects, showing that scaled devices offer improved DC and

small-signal AC performance but are subject to higher temperatures in the channel

as compared to the original non-scaled device when dissipating the same DC power.
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6.1 Introduction

AlGaN/GaN HEMTs have become a prominent technology for high-power and

high-frequency operation, due to their scalability and high efficiency. In particular,

GaN HEMTs fabricated on Si substrates have been the object of intense study both

at a research and commercial level because of the advantage of reduced cost and

the capability of integration with Si MOS processes [112; 14; 113], which are both

limiting factors with GaN on SiC technologies. However, the use of Si substrates

raises reliability concerns in terms of crystal quality and thermal management, which

degrade device performance. Although the thread dislocation density (NTDs) in the

GaN buffer grown on Si substrates has been reduced to non-prohibitive levels, thermal

management and self-heating effects constitute reliability concerns due to the low

thermal conductivity of Si, and therefor are the subjects of active research.

Although Monte Carlo techniques have been widely utilized to study electrical

transport in HEMTs, the possibility to include thermal effects is less widespread

and self-heating is often treated using a Relaxation Time Approximation (RTA) ap-

proach [114] or with the macroscopic Joule Heating term [115]. In this chapter, the

DC electro-thermal characterization of an experimental GaN on Si HEMT is studied,

by means of accurate full-band CMC simulations. The capabilities of the traditional

CMC framework have been expanded to include thermal effects by means of self-

consistently coupling the charge transport with a flux-based energy-balance equation

for both optical and acoustic phonon modes. In this approach, instead of using the

macroscopic Joule Heating term, a novel method to compute the forcing function

of the heat equation is presented based on tracking the total energy exchange be-

tween electrons and phonons during simulation run-time, which does not require the

conventional RTA, resulting in the full coupling between charge and heat transport.
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Within this framework, the electrical performance in DC of the experimental device

is accurately obtained. After the model of the experimental HEMT is validated with

measured DC curves, it is used to asses the impact of lateral scaling on self-heating

effects in the device.

6.2 Energy Balance Flux Approach

The underlying physical mechanism of heat generation in semiconductors, as il-

lustrated in figure 6.1, consists of a transfer of energy from carriers, which are ac-

celerated in the presence of an electric field, into the lattice by means of energetic

optical phonons and to a lesser extent acoustic phonons, created through collisions or

scattering events. Optical phonons, having very low group velocity resulting in low

thermal conductivity, decay into acoustic phonons at a rate much slower than that

at which these collisions occur, giving rise to hot spots. Eventually, as optical modes

decay into acoustic phonons, these are able to move through the device by diffusion

and be absorbed by the heat sink [114].

In order to accurately capture the physical description of heat generation within

the CMC simulation framework, instead of solving the Heat Transport Equation

(HTE) [116], the adopted approach is based on a flux analysis of heat generation and

transport, through the solution of an energy balance equation for phonons (EBE).

The time evolution of the EBE is directly obtained from the Boltzmann Transport

Equation (BTE), and given for each phonon mode µ by 6.1:

∂Wµ

∂t
= −∇ · Fµ (r, T ) +

∂Wµ

∂t
|e−p +

∂Wµ

∂t
|p−p, (6.1)

where Wµ (r.t) = 1/ΩΣk (Eµ(k)fµ(r.k.t)) is the ensemble energy density within the

volume Ω of reciprocal space, Fµ (r.t) = 1/ΩΣk (ν(k)Eµ(k)fµ(r.k.t)) is the energy flux
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Figure 6.1: Flowchart of thermal energy transport in semiconductor devices.

or loss term, and the two partial derivatives on the right hand side (RHS) constitute

the generation term due to electron-phonon (e-p) and phonon-phonon (p-p) interac-

tions. The variables T and r correspond to the temperature and position respectively.

At steady state, the LHS of 6.1 must be zero, and the EBE can be written for each

phonon mode µ as:

∇ · (κµ (T, r)∇T ) = −

(

∂Wµ

∂t
|e−p +

∂Wµ

∂t
|p−p

)

= −Pµ (r) , (6.2)

where the energy flux term has been approximated by Fourie’s Law given by

Fµ (r.t) = κµ(T, r)∇T , in which κµ is the thermal conductivity of phonon mode

µ. It must be noticed that the generation term includes both sources of heat in semi-

conductors, namely the electron-phonon (e-p) interactions through scattering and the

phonon-phonon (p-p) interactions, which account for the anharmonic decay of optical

phonons into low energy acoustic phonons.
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Since a robust and efficient elliptical solver for partial differential equations (PDE)

is already available within the CMC framework, used to solve Poisson’s equation

for the electrostatic potential, equation 6.2 is further manipulated into the form of

an elliptical PDE. First, it is necessary to impose the condition that the thermal

conductivity is a piece-wise function of position, meaning it is constant with respect

to the position within a given cell but it is allowed to change from one cell to another.

Then, the term κµ(T, r) can be moved outside of the divergence operator in 6.2.

Additionally, the temperature dependence of κµ is modeled by a simple power law of

the form κµ(T ) = κref (T/Tref )
α, where κref is the thermal conductivity value at a

reference temperature Tref and α is a fitting parameter [117], so that κµ(T ) can be

calibrated to experimental data of the material of interest.

The Kirchhof Transformation is then used to define a new variable Θ, which

represents an “apparent” temperature and it is given by [118]:

Θµ,C (T ) = Tref +
1

κµ,C (Tref )

∫ T

Tref

κµ,C (τ) ∂τ, (6.3)

so that µ denotes the respective phonon mode and C index of the computational cell

6.2, enabling the EBE equation 6.2 to be rewritten as a linear PDE in terms of Θ as:

∇Θµ,c =
−Pµ (r)

κµ,c (Tref )
, (6.4)

where Pµ (r) is the heat generation term or the forcing function, and κµ,c is the refer-

ence value of the thermal conductivity since the temperature dependence is implicitly

contained in the Θ variable. The linearity condition for 6.4 requires that both the

temperature and its derivative in the normal direction, i.e. the heat flux, be continu-

ous across a boundary [118]. This could be troublesome in the case of heterojunctions,
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but it is overcome by imposing the same functional form f(T ) for the thermal con-

ductivity across interfaces so that κµ,c (Tref )=λcf (T ), where λc is constant within a

given cell, but is allowed to vary from one cell to another [118]. Even though this is

a reasonable restriction for semiconductor materials, it is non-physical for metals.

It must be noticed that instead of using the macroscopic Joule Heating term,

defined as ~J · ~E, the forcing function Pµ (r) required in 6.4 is defined by the RHS of

equation 6.2. The electron-phonon (e-p) term is computed in real-time by tracking

the respective scattering mechanism, optical or acoustic, and recording the energy

exchanged in the scattering event, overcoming the need of the usual assumptions such

as elastic acoustic scattering events and the RTA for electron-phonon interactions as

used in previous methods [114]. Nevertheless, the phonon-phonon (p-p) term is still

computed using an RTA as:

∂Wµ

∂t
|p−p= Ci

(

Ti − Tj

τi−j

)

, (6.5)

where Ci is the heat-capacity of the phonon mode, Ti,j is the temperature of the

respective modes and τi−j is the decay time from i to j mode. In this sense, the

anharmonic decay of optical phonons into acoustic phonons is described by 6.5. This

novel approach, referred here as self-heating forcing function, requires the simulta-

neous solution of two equations as 6.4, one for the group of optical modes and one

for the group of acoustic modes, each of them with a particular thermal conductivity

κµ,c. The result is two separate temperatures associated to the respective acoustic or

optical phonon population.

The self-consistent electro-thermal simulation begins by first obtaining a steady-

state solution of the device under study with a conventional isothermal CMC run

cycle, so that the relevant electrostatic and transport quantities such as electric fields,
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carrier concentration, distribution and velocity are resolved for a given potential at

an initially constant temperature. The self-heating forcing function given by the RHS

of 6.2 is then computed at each cell by taking averages on the net scattering energy

exchanged (absorbed or emitted) between carriers and the lattice over N iterations,

and the energy is normalized by the volume of the cell and the time step, resulting

in a power density or Pµ (r). It must be highlighted that the length of the averaging

window (or number of N iterations for averages) should be chosen sufficiently large

to minimize the effect of noise associated to the CMC run-cycle. Once the forcing

function is calculated for each cell, the heat equation 6.4 is then solved using a suc-

cessive over-relaxation method to within a given tolerance, resulting in two separate

temperature maps. Then the process is iterated, meaning another CMC run-cycle is

carried out and the process of temperature mapping is repeated. The convergence is

checked by testing if the change in temperatures between two consecutive solutions in

every cell is sufficiently small. Since the local temperature obtained for each phonon

mode in the grid is used to correct the corresponding acoustic and optical phonon

scattering rates, then this method effectively captures the self-heating effect observed

in devices.

6.3 Electro-Thermal Device Simulations

The experimental device characterized in this study was fabricated and reported

by Altuntas et al. [112], and the experimental device layout is shown in figure 6.2 (a).

It consists of a T-gate HEMT grown on Si 111 substrate by molecular beam epitaxy.

The Si substrate is followed by a nucleation layer, typically AlN thick enough to

allow the groth of a relaxed GaN buffer of 1730 nm. The epitaxial stack of the

barrier consists of Al0.29Ga0.71N/AlN/GaN with thicknesses of 10 nm and 1 nm for

the AlGaN and AlN layers respectively. The device is capped with a 0.5 nm thin
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Figure 6.2: GaN-on-Si HEMT device layout showing (a) Experimental Layout by
Altuntas [112] and (b) Simulated device layout.

GaN layer followed by 50 nm of SiN and 100 nm of SiO2 passivation. The gate length

LG is 75 nm, and the source-gate LSG and gate-drain LGD access region lengths are

500 nm and 925 nm respectively. Since the full thickness of the substrate including

the nucleation layer and buffer has dimensions prohibitively large for Monte Carlo

simulations, the simulated device layout shown in figure 6.2 (b) is restricted to a GaN

buffer with thickness of 1000 nm.

Even though GaN-on-Si HEMTs typically have source-via grounding (SVG) to re-

duce the contact resistance, minimize the parasitic inductor caused by wire-bonding

and improve thermal dissipation, its effects are already accounted for in the simu-

lated device layout. The simulated device is intrinsic, meaning that the effects of

packaging such as wire bonding are not included, except for the contact resistance

which is calibrated with the doping of the contact layer. Concerning the improved

thermal dissipation, by reducing the buffer thickness from several microns to 1000 nm,

the improved efficiency of the SVG is emulated by setting the heat sink at the bot-

tom of the buffer. In all the simulations, the carrier dynamics is captured by the
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CMC framework [37], considering scattering processes due to polar optical phonons,

piezoelectric (acoustic) phonons, deformation potential, ionized impurities and im-

pact ionization. The device domain in real space is simulated by a particle-based

dynamic kernel self-consistently coupled with a 2D multigrid Poisson solver.

GaN devices grown on Si substrates are subject to high thread dislocation densities

(NTDs) whose effect was included through threading dislocation scattering, calculated

for the reported value of TDD=5x109cm−2, and by adding vertical sheets of charge in

the buffer. The polarization charge is set as charge sheet layers at the heterointerfaces,

calculated with Ambacher’s formalism [45; 84]. The reference thermal conductivity at

300K for GaN was set to κref =130W/K·m with α= -0.43, while the bulk volumetric

heat capacity was chosen to be 2.65x106W/m3 and the optical phonon frequency

98.6THz. Regarding the optical phonon decay relaxation time, it was calibrated

between 2 ps and 5 ps throughout the simulation range [119]. Whereas most electro-

thermal studies focus on the GaN/Si or GaN/SiC substrate interface, here the focus

is on the active region of the device. All simulations were performed with an initial

lattice temperature of 300K and the electro-thermal simulations included a thermal

heat sink set to 300K located at the bottom of the buffer.

Figures 6.3 and 6.4 show the maps for the acoustic mode temperature TA and

optical mode temperature TLO respectively, plotted as a contour on the 3D conduction

band simulated at a DC bias condition of VGS=2.0V, VDS=10V, where high current

and high electric field are simultaneously present but at a moderate DC power. From

the figure it can be seen that the peak temperature for both cases is located on the

drain side of gate, particularly in the 2DEG channel where most of the phonons are

generated through electron-phonon scattering. However, for the acoustic phonons the

peak temperature in the channel reaches 370K and it diffuses uniformly all the way

through the device. On the other hand, the optical mode temperature reaches a high
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Figure 6.3: 3D conduction band of the HEMT with temperature profile for Acoustic
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peak of 950K in the channel and the temperature rapidly drops several hundred K

away from the peak. These results confirm that most of the energy is transferred

from hot carries into the lattice through optical phonons, which are highly localized

in the drain side of the gate creating a hot spot.

6.4 DC Electro-Thermal Characterization

The electro-thermal model of the device under study was validated to DC exper-

imental data of the IDS-VDS and IDS-VGS curves reported by Altuntas [112] as the

DC measurements (in contrast to the pulsed curves), and the results are presented in

figures 6.5 (a) and (b) respectively. Isothermal simulations at 300K, i.e. regular CMC

simulations with a constant lattice temperature, are presented in blue segmented

lines showing a good agreement for both the output and transfer characteristics at

low voltage, however it can be seen that for currents higher than 0.8A/mm the value

of IDS is significantly overestimated because the self-heating of the device is not con-

sidered. This causes a higher drain current in the output and transfer characteristics,

as well as a higher transconductance Gm which in turn leads to the overestimation

of small and large signal parameters such as cut-off frequency ft and output power,

not presented here. When the self-consistently coupled energy-balance/CMC simu-

lation is performed using the self-heating forcing function, IDS is correctly predicted

throughout the IDS(VGS,VDS) space, shown in red solid lines.

Once the optical and acoustic phonon mode temperatures are self-consistently

computed, its values are used to determine the appropriate scattering rates, previously

tabulated within a wide temperature range. As the temperature increases, both

acoustic and optical scattering rates increase leading to higher total scattering, in

turn reducing the electron velocity along the channel and therefore the total current.

Figures 6.6 (a) and (b) present a profile along the channel of the x-velocity of electrons
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Figure 6.5: Validation of the electro-thermal model with experimental curves corre-
sponding to (a) ID-VDS for VGS =0V and 2V, and (b) ID-VGS for VDS=6V. Isother-
mal simulations with T =300K are also shown.

and the total scattering in that order, for both the isothermal and self-heating cases

at VGS=2.0V, VDS=5.0V, which corresponds to the the saturation bias point IDsat

shown in figure 6.5 (a). It must be noticed that even though the overall scattering

rate is higher with self-heating and the overall velocity is lower, the peak velocity

remains unchanged with respect to the isothermal simulations. This is because self-

heating does not significantly modify the electric field distribution, roughly given by

the ratio VDG/LGD where VDG = VDS − VGS.

A detailed profile of the x-electric field (Ex), acoustic mode temperature TA and

optical mode temperature TLO along the channel is presented in figures 6.7 (a), (b)

and (c) respectively, for VGS =2V at three different values of VDS which correspond

to 3 points along the IDS-VDS curve shown in figure 6.5 (a). At low VDS =1V, where

the current is 0.4A/mm and Ex along the channel is small and nearly constant, TA

increased up to 330K above the initial 300K while TLO increased up 400K in the LGD

region. The temperature profile for this case is very uniform along the channel, and

since the variation in temperature with respect to the isothermal case is relatively

139



x-
V

el
oc

ity
 [c

m
/s

]

0.0

1.0

2.0

3.0 Isothermal 300K
Self Heating

x107

(a)

x position [ µm]

to
ta

l s
ca

tte
rin

g 
[1

/s
]

0 0.3 0.6 0.9 1.2 1.51012

1013

1014
(b)

VGS= 2.0V, VDS= 5.0V  
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small, the change in the scattering rate and therefore drain current is also small,

reflected by the negligible difference among the plots in figure 6.5(a), which indicates

that self-heating is not a dominant factor in this regime.

However, as the drain voltage increases so does the electric field and both acoustic

and phonon mode temperatures. Moreover, at VDS=10V a high peak Ex is present

on the drain-side of the gate along with a peak TA of 375K and a high peak of 960K

for TLO. A relevant result that is obtained due to the novel forcing function approach
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Figure 6.7: Profile along the channel of (a) x- component of the electric field, (b)
acoustic mode temperature and (c) optical mode temperature for VGS=2V at three
different VDS.
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implemented in this work is that the position of the peak electric field in the channel

does not correspond to the position of the peak temperature of either phonon mode,

which is typically the case with other methods such as the Joule heating. This is

due to the fact that the relaxation time of electrons is non-zero, i.e. once electrons

are accelerated by the field gaining kinetic energy, they traverse a short region in the

channel before they scatter and emit phonons. From the figure it can be seen that

at VDS =10V there is a displacement between the peak Ex and peak temperature

of 20 nm and 32 nm for the acoustic and optical modes respectively. This result

provides relevant information to develop thermal management strategies to mitigate

self-heating effects.

6.5 Impact of Lateral Scaling on Self-Heating

One of the main applications for GaN HEMTs is in the field of power amplifiers

(PAs) operating at ultra high frequencies. In particular, the high electron velocities

observed in the 2DEG of AlGaN/GaN heterostructures make this a strong candidate

for the millimeter-wave (mm-wave) range corresponding to freq >30GHz. For this

reason, several strategies have been developed to improve the frequency response of

HEMTs. Among them, scaling the gate length LG has proven to be very effective to

increase the cut-off frequency ft with the trade-off of increased short-channel effects,

due to a lower aspect ratio of LG/BTh where BTh is the thickness of the barrier. If

the LG scaling is accompanied by vertical scaling, i.e. BTh is also reduced to preserve

the aspect ratio, then effective suppression of short-channel effects is achieved but the

gate leakage current is increased and the output current is degraded due to a lower

conductivity of the 2DEG.

With the aim of overcoming the limitations of traditional vertical scaling, a sig-

nificant amount of studies have focused on the effect of lateral scaling, i.e. reducing
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the source-to-gate LSG and gate-to-drain LGD access region lengths [120; 121].The

effectiveness of this strategy is well substantiated by the definition of the main met-

rics used to determine the frequency response of FETs, namely ft which represents

the maximum oscillation frequency of the device, and fMAX which is the maximum

frequency at which the transistor provides a power gain. These parameters are given

by equations 6.6 and 6.7 for ft and fMAX respectively [122; 7]:

ft =
Gm/(2π)

(Cgs + Cgd) + Cgd ·Gm · (Rs +Rd) + gd · (Rs +Rd) · (Cgs + Cgd)
, (6.6)

fMAX =
ft

2
√

gd · (Rs +Rd +Ri) +RgCgd (2πft)
, (6.7)

where Cgs, Cgd, Gm, gd, Rs and Rd represent gate-to-source and gate-to-drain capac-

itances, transconductance, output conductance and source and drain resistances, in

that order. It must be noticed that Rs and Rd are parasitic resistances associated to

the access regions of the device, and if they are negligible then equation 6.6 reduces

to the typical expression ft = Gm/(2π (Cgs + Cgd)) dominated by Gm and the ca-

pacitances, in which case ft is clearly improved by increasing Gm and reducing the

transit time under the gate which can be done by increasing the velocity of carriers.

The condition of low parasitic resistances can be achieved by either increasing the

conductivity of the 2DEG or by simply reducing LSG and LGD of the transistor which

is exactly the objective of lateral scaling. Even though the improvement in frequency

response of HEMTs due to lateral scaling has been studied both with experiments

and transport simulations [123; 124], the impact it has on reliability and particularly

on self-heating effects is still a matter of interest. This issue is addressed in the

following sections using the electro-thermal model of the experimental GaN-on-Si
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HEMT of the previous sections, where the effect of LGD and LSG scaling has been

treated separately.

6.5.1 Gate-to-Drain LGD Scaling

The parasitic resistance Rd is dominated by the gate-to-drain region length. The

effect of reducing the length LGD from 925 nm of the experimental device down to

300 nm while keeping LSG =500 nm constant, can be seen in the output and transfer

characteristics shown in figures 6.8 (a) and (b) respectively. A quick glance of panel

(b) shows that LGD has no effect on the IDS − VGS curves and therefore on Gm,

suggesting low impact on ft. However, the output characteristic shows that as LGD

decreases so does the saturation or knee voltage VKn, going from approximately 5V

at 925 nm to 3V for 300 nm. This in turn significantly reduces the on-resistance Ron,

evidenced by the steeper slope of the linear region of the device as LGD is reduced.

On the other hand, the saturation or maximum current remains constant. Reducing

VKn and Ron signify an improvement for PA design because it allows increasing the

excursion of the load line and therefore the output power.

With the aim of assessing the impact on the reliability of the device, the bias point

given by VDS =5V and VGS =2V on the IDS − VDS curve was chosen because it

corresponds to a point with constant DC power PDC among devices with scaled LGD,

providing a good baseline to study the self-heating effects. First, the impact on the

electric field and velocity distribution along the channel is presented in figures 6.9 (a)

and (b) respectively. As expected, the peak electric field in the channel rises as LGD

decreases, because the same potential (VDG = VDS − VGS) is dropped over a shorter

length, while the potential lost in the parasitic component Rd is also reduced. This

in turn increases the peak velocity of electrons in the channel allowing for a higher

ft. However, since Cgd is inversely proportional to LGD then fMAX performance is
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Figure 6.8: Effect of gate-to-drain LGD lateral scaling on the (a) IDS-VDS for VGS =
2V and (b) IDS-VGS for VDS=6V, also shown the transconductance Gm in right-axis
of (b). Self-heating effects included in all simulations.
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degraded with this scaling. Even though these results indicate better ft performance,

increasing the peak field also implies a reduction of the breakdown voltageBV limiting

the load-line excursion, which is a competing effect with the improvement achieved

with the lower VKn also observed.

In terms of self-heating, the temperature profiles of the acoustic and optical

phonon modes along the channel are shown in the left and right axis of figure 6.10

respectively, corresponding to the point with constant PDC . Due to the higher electric

field in the channel, as LGD is reduced from 925 nm to 300 nm the peak TLO goes up

from 550K to 630K which represents a 15% increment. Since optical phonon modes

undergo anharmonic decay into acoustic modes, the peak TA also increases going from

345K to 356K which represents a 3% increment. Even though it seems a modest

increment, it should be kept in mind that TA is close to the lattice temperature effec-

tively measured in a real device, and the 3% increment in Kelvin represents a rise of

temperature from 72◦C to 83◦C in the channel. Also, it must be noticed that asym-

metries in the device, i.e. LGD different to LSG, induce a non-uniform distribution of

TA along the channel having as a general trend that the shorter region will hold the

highest temperature, whereas a uniform TA is observed for LGD = LSG =500 nm.

From this analysis it can be concluded that scaling of LGD yields lower VKn and

Ron which can be used to improve the load-line excursion in PA applications, while

practically no effect is seen in Gm. Nevertheless, the frequency response of the device

given by ft still increases because the peak electric field in the channel is higher as

LGD decreases, inducing a higher peak velocity which in turn reduces the transit

time of carriers. However, this effect is detrimental in terms of BV and represents a

competing effect with the lower VKn for maximum load-line excursion. In terms of self-

heating, an increment of 15% and 3% is observed for TLO and TA respectively when

LGD is reduced by a factor of 3 under constant power dissipation. This represents a
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rise in temperature from 72◦C to 83◦C in the channel, suggesting that lateral scaling

of the gate-to-drain region requires implementing thermal management strategies to

take advantage of the improved electrical performance while preserving reliability.

6.5.2 Source-to-Gate LSG Scaling

The other lateral dimension that can be scaled is the source-to-gate access region

length LSG which is correlated to the parasitic Rs. Its effect can be seen in the

output and transfer characteristics of the HEMT shown in figures 6.11 (a) and (b)

respectively, where LSG was reduced from the experimental value of 500 nm down

to 200 nm while keeping LGD =925 nm constant. Unlike what happens with LGD

scaling, the IDS −VGS curves show that as LSG is reduced IDS increases for the same

applied voltage VGS, which translates into a higher Gm while the threshold voltage

remains constant. The improvement in Gm is due to the fact that a higher intrinsic
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Figure 6.11: Effect of source-to-gate LSG lateral scaling, while keeping LGD con-
stant, on the (a) IDS-VDS for VGS =2V and (b) IDS-VGS for VDS=6V, also shown
in right-axis of (b) the transconductance Gm. Self-heating effects included in all
simulations.

VGS is applied to the device as Rs is reduced, since less potential is lost in the access

region, allowing for a stronger modulation of charge in the channel. Furthermore,

these results imply that higher ft can be achieved due to the higher Gm and lower

Rs obtained with this strategy. In addition, significant variations are also observed

in the IDS − VDS space, where the current IDsat increases and Ron decreases as LSG

is reduced, with the trade-off of higher VKn, which can be deleterious since a higher

potential is required to drive the device into saturation.

Concerning the impact on reliability, two relevant conditions should be considered

when studying the effect of reducing LSG as indicated in figure 6.11 (b). The first

corresponds to comparing self-heating along DC points with constant PDC , which

in this case corresponds to VDS = 6V while the value of VGS was chosen to keep

IDS =1A/mm as LSG is decreased, providing a constant PDC =6W/mm. It must

be noticed that as LSG decreases from 500 nm to 200 nm, the VGS required to keep

constant current decreases from 1V to -0.5V. The reason is that a higher VDS is

dropped across a shorter length as LSG decreases, increasing the peak electric field
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Figure 6.12: Profile along the channel of the electric field for two different LSG

values. DC bias points along the line of constant DC power from figure 6.11 (b),
implying different values of VGS were used, while keeping VDS and IDS constant.

in the channel as indicated in figure 6.12 (a). This in turn allows for a high electron

velocity as shown in figure 6.12 (b), resulting in constant IDS.

Since the peak electric field increases as LSG is scaled down, then more electrons

will gain high kinetic energy that will be transferred to the lattice through scattering,

resulting in higher temperatures for both acoustic and optical temperature modes for

scaled devices dissipating the same power. This is demonstrated in figure 6.13 where

a profile along the channel of TA and TLO is shown for devices with LSG =200 nm and

500 nm under constant PDC . In this case, the peak TLO increases from 640K to 740K

when LSG goes from 500 nm to 200 nm, representing a 15% increment, while the peak

TA rises from 348K to 360K under the same scaling, representing an increment of
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temperature from 75◦C to 87◦C in the channel. It must be highlighted that in the

scaled device the profile of TA is non-uniform showcasing a temperature gradient from

360K in the source-to-gate access region to 350K on the gate-to-drain region.

The second condition of interest to assess the impact of LSG scaling on self-heating

corresponds to keeping the electric field constant instead of the dissipated power, as

it is shown in figure 6.11 (b) with the constant electric field line. In this condition the

DC bias point allows for higher IDS as LSG decreases. Figure 6.14 shows the profile

along the channel of the electric field (left-axis) and the carrier velocity (right-axis)

for LSG =200 nm and 400 nm. Even though the peak electric field is constant for

both devices, the peak velocity is higher for the scaled transistor producing higher

IDS, which translates into a higher DC power dissipation. Therefore, since a higher

DC power is dissipated in a smaller area, the temperature is expected to increase as

LSG is reduced.
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two different LSG =200 nm and 400 nm where the DC bias points were chosen along
the constant electric field line from figure 6.11 (b).

Figure 6.15 presents the temperature profile along the channel for the acoustic

modes (left-axis) and optical modes (right-axis) under constant electric field condi-

tions for 2 devices with LSG =200 nm and 400 nm. As expected, the peak TA rises

from 355K to 372K in the scaled device resulting in a peak channel temperature of

99◦C. Once again TA exhibits a non-uniform profile along the x direction due to the

asymmetric lenghts of the access regions. Regarding the optical modes, the peak TLO

increases from 670K to 790K as LSG goes from 400 nm to 200 nm.

From both conditions studied to asses the impact of LSG scaling on self-heating

it can be concluded that a scaled devices experience a significant increment in tem-

perature as a trade-off to improved electrical performance, which can be detrimental

to short-term and long-term reliability. In this sense, in order to fully take advantage

of lateral scaling strategies, it is necessary to develop efficient thermal management

techniques to go with it.
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Figure 6.15: Profile along the channel of acoustic mode temperature (left-axis) and
optical mode temperature (right-axis) under lateral scaling of LSG, along the constant
electric field line from figure 6.11 (b).

6.6 Conclusions

The electro-thermal characterization of a GaN HEMT on Si was presented. Sim-

ulations of the DC characteristics were obtained with an expanded Cellular Monte

Carlo framework, where thermal effects are included through an energy-balance equa-

tion for phonons. The forcing function is computed by tracking the energy exchange

during scattering events, which self-consistently couples the charge and heat trans-

port. The electro-thermal model was validated to DC experimental data showing

excellent agreement throughout the entire IDS(VGS −VDS) space. Unlike what is typ-

ically reported, through the accurate thermal mapping of the device it was found that

the position of the hot spot in the channel is not located at the peak electric field, but

is actually shifted towards the drain by up to 32nm. Additionally, the electro-thermal

model of the device was used to study the impact lateral scaling has on self-heating

effects, showing that a significant improvement is observed in terms of electrical per-
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formance but it is accompanied by the significant increase of the temperature in the

channel when devices operate under constant DC power or constant electric field,

highlighting the need of efficient thermal management strategies in GaN-HEMTs.
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Chapter 7

SUMMARY

In this work, a simulation study of reliability in millimeter-wave (mm-wave) GaN

Devices for power amplifier (PAs) applications was presented. The study was per-

formed by means of a full band Cellular Monte Carlo particle-based device simulator

(CMC), and it consisted in the systematic characterization of the performance of

GaN devices operating under DC, small signal AC and large-signal radio-frequency

(RF) conditions from which the microscopic properties of the device were correlated

to effects such as generation of hot carriers and self-heating typically associated to

degradation of performance.

The conceptual framework relevant for this work was introduced in the first two

chapters. In particular, a short review of semiconductor device modeling was provided

in the introduction, making emphasis on the CMC simulator. This was followed in

chapter 2 by a brief review of concepts concerning GaN technology, focusing on the

polarization effects in wurtzite GaN, principles of operation of devices such as HEMTs

and HETs and reliability mechanisms relevant to this technology. Also, the principles

of operation and design of PAs were discussed.

The first contribution of this work was presented in chapter 3, focusing on the

study of non-idealities that limit the DC electrical performance of isotypeAlGaN/GaN

heterojunction diodes. CMC simulations were performed to reproduce the measured

IV curves of an experimental device, however significant discrepancies were found

when the layout of the ideal device was used. This result was confirmed by means of

hydrodynamic simulations performed with commercial software Sentaurus by Synop-

sys, suggesting that non-ideal effects should be included in the model to account for
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the degraded electrical performance. Then by means of hydrodynamic simulations

it was demonstrated that variations in the mole fraction of the AlGaN/GaN barrier

along with the presence of non-ideal Schottky contacts were responsible for the re-

duction of current drive capability of the experimental device. In the context of the

development of HETs technology, these results provide valuable information about

deleterious effects that degrade HETs’ performance.

In chapter 4, a study of hot electron generation in GaN HEMTs was carried out

in terms of the electron energy distribution function (EDF), calculated under large-

signal RF, Class AB PA operation. The results suggest that in the X-band at 10GHz,

RF hot-electron degradation effects should be lower than under DC stress, regardless

of the input power or temperature of operation which is consistent with experimental

studies. However, in the mm-wave band up to 40GHz, hot carrier generation matches

the DC counterpart, even surpassing the DC concentration of high energy carriers

when the PA is driven into deep compression, suggesting stronger degradation under

RF than in DC. The study was extended to compare hot carrier generation under

Class A and Class AB topologies, resulting in EDFs that suggest devices are more

susceptible to hot-carrier degradation when operating in Class A. The relevance of this

study lies in the fact that in terms of reliability, the RF analysis is more meaningful

for realistic lifetime estimation given the practical application of GaN HEMTs as

mm-wave PAs, and in that the accurate calculation of the EDF under RF can be

exploited in compact modeling-based lifetime and reliability analysis as it has been

done for DC operation.

Using the same methodology of chapter 4, in chapter 5 a new Π-shaped gate

contact was proposed for improved reliability of GaN HEMTs which reduces hot

electron generation under DC and large-signal RF operation while preserving device

performance. The device concept was demonstrated by CMC simulations and it was
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benchmarked against simulations of a T-gate device whose model was calibrated to

experimental data. Simulations of the electron EDF in both DC and RF operation

show that under the same operating conditions, the peak hot-carrier generation ob-

tained with an Asymmetric-Π-gate is lower up to 41% in DC, 44% in Class AB at

10GHz and 50% in Class AB at 40GHz with respect to EDFs of T-gate HEMTs,

which suggests improved robustness to failures from the generation of traps induced

by hot-carriers. Also, the design rules along with projections of small-signal AC

parameters were presented as guidelines for design and fabrication.

Finally, chapter 6 was dedicated to the electro-thermal characterization of an ex-

perimental GaN HEMT fabricated on Si substrate, focusing on the active area of

the device. Simulations of the DC characteristics were obtained with an expanded

CMC framework, where thermal effects are included through an energy-balance equa-

tion for phonons. In this approach, the heat generation term or forcing function

was computed by tracking the energy exchange during scattering events, which self-

consistently couples the charge and heat transport. The model was validated to

experimental data of the DC characteristics showing excellent agreement throughout

the entire IDS(VGS − VDS) space. In addition, by means of the accurate extraction of

thermal maps of the device it was found that the position of the hot spot in the chan-

nel is not at the peak electric field, but is actually shifted towards the drain by up to

32nm, unlike what is typically reported. The electro-thermal model of the experimen-

tal device was then used to asses the impact of lateral scaling in HEMTs, considering

the cases of scaling LSG and LGD separately. The results indicate that decreasing

the lateral dimensions of the device significantly improve the electrical performance,

but at the same time devices are subject to higher temperatures which constitute

a reliability issue that should be addressed through efficient thermal management

techniques in order to fully take advantage of lateral scaling.
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The proposed future work consists on expanding the electro-thermal studies of

GaN-HEMTs considering the effects of different substrate materials such as SiC and

Diamond, and also increasing the accuracy of the electro-thermal model by adding

the effect of thermal resistances at material interfaces. Including the full effect of the

substrates, will enable the possibility of evaluating thermal management strategies

to reduce the self-heating effects. Another interesting expansion of this work consists

in evaluating the reliability of novel HEMT devices fabricated in N-polar GaN, as

well as studying complex configurations of HEMTs that include multiple fingers and

cascode structures recently proposed to achieve enhancement mode devices.
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