1,345 research outputs found

    Freight distribution in urban areas: a method to select the most important loading and unloading areas and a survey tool to investigate related demand patterns

    Get PDF
    Abstract Cities all around the world are observing increasing levels of urban freight activities owing to the growth of internet shopping combined to the traditional distribution to shops, creating additional problems in terms of congestions and environmental impacts. This study, developed within the European Project SUITS framework, aims at showing how Local Authorities can effectively observe freight flows from the demand side. This led to the design, implementation and testing of a spatial cluster analysis approach to understand which are the most important loading/unloading parking spots in an urban setting by processing the GPS traces of a fleet of logistic vehicles. Later field activities should focus on these important areas to maximize the efficiency of the survey. A survey of retailers and shops in such areas to observe delivering activities is then proposed. The whole process, namely the spatial analysis and the field survey, was then tested to the real case of an Italian city (Turin) to assess the potentiality of the methods. The methodology proposed can give useful insights to Local Authorities on a way of monitoring the freight distribution patterns at the more disaggregated individual loading/unloading area

    Freight distribution in urban areas: a method to select the most important loading and unloading areas and a survey tool to investigate related demand patterns

    Get PDF
    Cities all around the world are observing increasing levels of urban freight activities owing to the growth of internet shopping combined to the traditional distribution to shops, creating additional problems in terms of congestions and environmental impacts. This study, developed within the European Project SUITS framework, aims at showing how Local Authorities can effectively observe freight flows from the demand side. This led to the design, implementation and testing of a spatial cluster analysis approach to understand which are the most important loading/unloading parking spots in an urban setting by processing the GPS traces of a fleet of logistic vehicles. Later field activities should focus on these important areas to maximize the efficiency of the survey. A survey of retailers and shops in such areas to observe delivering activities is then proposed. The whole process, namely the spatial analysis and the field survey, was then tested to the real case of an Italian city (Turin) to assess the potentiality of the methods. The methodology proposed can give useful insights to Local Authorities on a way of monitoring the freight distribution patterns at the more disaggregated individual loading/unloading area

    Specifying and Analysing SOC Applications with COWS

    Get PDF
    COWS is a recently defined process calculus for specifying and combining service-oriented applications, while modelling their dynamic behaviour. Since its introduction, a number of methods and tools have been devised to analyse COWS specifications, like e.g. a type system to check confidentiality properties, a logic and a model checker to express and check functional properties of services. In this paper, by means of a case study in the area of automotive systems, we demonstrate that COWS, with some mild linguistic additions, can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We also provide a flavour of the properties that can be analysed by using the tools mentioned above

    Commodity-based Freight Activity on Inland Waterways through the Fusion of Public Datasets for Multimodal Transportation Planning

    Get PDF
    Within the U.S., the 18.6 billion tons of goods currently moved along the multimodal transportation system are expected to grow 51% by 2045. Most of those goods are transported by roadways. However, several benefits can be realized by shippers and consumers by shifting freight to more efficient modes, such as inland waterways, or adopting a multimodal scheme. To support such freight growth sustainably and efficiently, federal legislation calls for the development of plans, methods, and tools to identify and prioritize future multimodal transportation infrastructure needs. However, given the historical mode-specific approach to freight data collection, analysis, and modeling, challenges remain to adopt a fully multimodal approach that integrates underrepresented modes, such as waterways, into multimodal forecasting tools to identify and prioritize transportation infrastructure needs. Examples of such challenges are data heterogeneity, confidentiality, limitations in terms of spatial and temporal coverage, high cost associated with data collection, subjectivity in surveys responses, etc. To overcome these challenges, this work fuses data across a variety of novel transportation sources to close existing gaps in freight data needed to support multimodal long-range freight planning. In particular, the objective of this work is to develop methods to allow integration of inland waterway transportation into commodity-based freight forecasting models, by leveraging Automatic Identification System (AIS) data. The following approaches are presented in this dissertation: i) Maritime Automatic Identification System (AIS) data is mapped to a detailed inland navigable waterway network, allowing for an improved representation of waterway modes into multimodal freight travel demand models which currently suffer from unbalanced representation of waterways. Validation results show the model correctly identifies 84% stops at inland waterway ports and 83.5% of trips crossing locks. ii) AIS and truck Global Positioning System (GPS) data are fused to a multimodal network to identify the area of impact of a freight investment, providing a single methodology and data source to compare and contrast diverse transportation infrastructure investments. This method identifies parallel truck and vessel flows indicating potential for modal shift. iii) Truck GPS and maritime Lock Performance Monitoring System (LPMS) data are fused via a multi-commodity assignment model to characterize and quantify annual commodity throughput at port terminals on inland waterways, generating new data from public datasets, to support estimation of commodity-based freight fluidity performance measures. Results show that 84% of ports had less than a 20% difference between estimated and observed truck volumes. iv) AIS, LPMS, and truck GPS datasets are fused to disaggregate estimated annual commodity port throughput to vessel trips on inland waterways. Vessel trips characterized by port of origin, destination, path, timestamp, and commodity carried, are mapped to a detailed inland waterway network, allowing for a detailed commodity flow analysis, previously unavailable in the public domain. The novel, repeatable, data-driven methods and models proposed in this work are applied to the 43 freight port terminals located on the Arkansas River. These models help to evaluate network performance, identify and prioritize multimodal freight transportation infrastructure needs, and introduce a unique focus on modal shift towards inland waterway transportation

    Truck Activity Pattern Classification Using Anonymous Mobile Sensor Data

    Get PDF
    To construct, operate, and maintain a transportation system that supports the efficient movement of freight, transportation agencies must understand economic drivers of freight flow. This is a challenge since freight movement data available to transportation agencies is typically void of commodity and industry information, factors that tie freight movements to underlying economic conditions. With recent advances in the resolution and availability of big data from Global Positioning Systems (GPS), it may be possible to fill this critical freight data gap. However, there is a need for methodological approaches to enable usage of this data for freight planning and operations. To address this methodological need, we use advanced machine-learning techniques and spatial analyses to classify trucks by industry based on activity patterns derived from large streams of truck GPS data. The major components are: (1) derivation of truck activity patterns from anonymous GPS traces, (2) development of a classification model to distinguish trucks by industry, and (3) estimation of a spatio-temporal regression model to capture rerouting behavior of trucks. First, we developed a K-means unsupervised clustering algorithm to find unique and representative daily activity patterns from GPS data. For a statewide GPS data sample, we are able to reduce over 300,000 daily patterns to a representative six patterns, thus enabling easier calibration and validation of the travel forecasting models that rely on detailed activity patterns. Next, we developed a Random Forest supervised machine learning model to classify truck daily activity patterns by industry served. The model predicts five distinct industry classes, i.e., farm products, manufacturing, chemicals, mining, and miscellaneous mixed, with 90% accuracy, filling a critical gap in our ability to tie truck movements to industry served. This ultimately allows us to build travel demand forecasting models with behavioral sensitivity. Finally, we developed a spatio-temporal model to capture truck rerouting behaviors due to weather events. The ability to model re-routing behaviors allows transportation agencies to identify operational and planning solutions that mitigate the impacts of weather on truck traffic. For freight industries, the prediction of weather impacts on truck driver’s route choices can inform a more accurate estimation of billable miles

    Studying Regional and Cross Border Freight Movement Activities with Truck GPS Big Data

    Get PDF
    This dissertation utilizes an existing GPS data source to create and analyze a dataset of processed truck trips. The original data was generated for the purpose of fleet management by GPS transponders installed on Canadian owned trucks. These vehicles provide a critical service by fulfilling the economic need to move goods from one location to another. This thesis subsequently re-purposes the GPS pings as a form of opportunistic data to enrich the current state of knowledge regarding freight movement patterns. The first sections of this thesis are dedicated towards understanding the GPS data and devising processing methods needed to convert raw data into a suitable dataset of truck trips. Due to the nature of the topic, a geographic perspective was integral to this work to properly mine the data for useful information. For example, a new application of entropy based on the variety and distribution of carriers stopping at a location was created to assist with the classification of stop events. The data processing resulted in an approximate sample size of 245,000 trips per month from September 2012 to December 2014 and the month of March 2016. The volume of data and level of detail provides information that has not been available to date, which includes trip origins and destinations, associated industry, observed routes, and border crossing time/location if the trip was international. The processed trips derived from GPS data are applied towards a better understanding of inter-regional and cross-border truck movements. This area is underrepresented due to the difficulties in obtaining long-haul trip data where trucks move through multiple jurisdictions. These difficulties are compounded for international trips since the study area spans multiple nations. The processed truck trips are utilized to identify the spatial patterns of truck movements at specific border crossings between Canada and the U.S. including the Ambassador Bridge, Blue Water Bridge, and Peace Bridge. The choice of border crossing is also investigated using a specific case study of trucks travelling between Toronto, Ontario, and Chicago, Illinois. Finally, the observed trips from origin to destination allows for an analysis of delays at single locations (the border crossing) as well as their impact on the total trip. These applications represent a small part of the full potential that passive GPS data can provide after sufficient processing is applied. It is the hope of this author that these efforts can contribute towards the state of practice in transportation as GPS data becomes increasingly available to researchers. The work presented in this thesis illustrates how such GPS data can be used as a viable source to fill in gaps in knowledge. While traditional data collection techniques will remain a necessary facet of transportation research in the foreseeable future, information generated passively by users every day provides a new source of data that is characteristically large (in terms of volume and spatio-temporal coverage) and cost-effective

    Characterizing Truck Parking Shortages in Arkansas: A Data Analytical Approach

    Get PDF
    The Truck Parking Problem occurs when drivers have met the daily driving limit and encounter a decision between driving over time or parking in unauthorized locations. This research applies data analytics to gain further knowledge to characterize the truck parking shortage in Arkansas. Truck parking shortages are a serious problem that truck drivers face daily and is complex due to Hours of Service (HOS) regulations restrictions on legal parking areas and design. Existing research includes a one-day annual survey which compiles where public rest stops, businesses, and private rest stops are utilized by truck drivers. This research expands on the survey to capture broader time-of-day and daily patterns. This was done by calculating the following metrics for truck parking: how many drivers occupy a specific rest area at arrival, by time of day, and how long each driver stays at a rest location. To accomplish this research task, we combined multiple real data sources representing truck parking locations and truck travel characteristics represented by GPS “pings” over a one-year period. We used data analytics to describe and characterize the truck parking problem over time and geographic location. We then used the defined metrics to compare and contrast many locations across Arkansas. This research presents the findings using a user-friendly heat map which demonstrates the knowledge gained from this research. As a result, this heat map can serve as the visual foundation for new policies on truck parking expansion and show how HOS regulatory requirements are impacting truck drivers throughout the state

    An information fusion approach for filtering GNSS data sets collected during construction operations

    Get PDF
    Global Navigation Satellite Systems (GNSS) are widely used to document the on- and off-site trajectories of construction equipment. Before analyzing the collected data for better understanding and improving construction operations, the data need to be freed from outliers. Eliminating outliers is challenging. While manually identifying outliers is a time-consuming and error-prone process, automatic filtering is exposed to false positives errors, which can lead to eliminating accurate trajectory segments. This paper addresses this issue by proposing a hybrid filtering method, which integrates experts’ decisions. The decisions are operationalized as parameters to search for next outliers and are based on visualization of sensor readings and the human-generated notes that describe specifics of the construction project. A specialized open-source software prototype was developed and applied by the authors to illustrate the proposed approach. The software was utilized to filter outliers in sensor readings collected during earthmoving and asphalt paving projects that involved five different types of common construction equipmen
    • …
    corecore