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ABSTRACT 

Within the U.S., the 18.6 billion tons of goods currently moved along the multimodal 

transportation system are expected to grow 51% by 2045. Most of those goods are transported by 

roadways. However, several benefits can be realized by shippers and consumers by shifting 

freight to more efficient modes, such as inland waterways, or adopting a multimodal scheme. To 

support such freight growth sustainably and efficiently, federal legislation calls for the 

development of plans, methods, and tools to identify and prioritize future multimodal 

transportation infrastructure needs.  However, given the historical mode-specific approach to 

freight data collection, analysis, and modeling, challenges remain to adopt a fully multimodal 

approach that integrates underrepresented modes, such as waterways, into multimodal 

forecasting tools to identify and prioritize transportation infrastructure needs.  Examples of such 

challenges are data heterogeneity, confidentiality, limitations in terms of spatial and temporal 

coverage, high cost associated with data collection, subjectivity in surveys responses, etc. To 

overcome these challenges, this work fuses data across a variety of novel transportation sources 

to close existing gaps in freight data needed to support multimodal long-range freight planning. 

In particular, the objective of this work is to develop methods to allow integration of inland 

waterway transportation into commodity-based freight forecasting models, by leveraging 

Automatic Identification System (AIS) data. The following approaches are presented in this 

dissertation:  

i) Maritime Automatic Identification System (AIS) data is mapped to a detailed 

inland navigable waterway network, allowing for an improved representation of 

waterway modes into multimodal freight travel demand models which currently 

suffer from unbalanced representation of waterways.  Validation results show the 



   

model correctly identifies 84% stops at inland waterway ports and 83.5% of trips 

crossing locks. 

ii) AIS and truck Global Positioning System (GPS) data are fused to a multimodal 

network to identify the area of impact of a freight investment, providing a single 

methodology and data source to compare and contrast diverse transportation 

infrastructure investments. This method identifies parallel truck and vessel flows 

indicating potential for modal shift. 

iii) Truck GPS and maritime Lock Performance Monitoring System (LPMS) data are 

fused via a multi-commodity assignment model to characterize and quantify 

annual commodity throughput at port terminals on inland waterways, generating 

new data from public datasets, to support estimation of commodity-based freight 

fluidity performance measures. Results show that 84% of ports had less than a 

20% difference between estimated and observed truck volumes. 

iv) AIS, LPMS, and truck GPS datasets are fused to disaggregate estimated annual 

commodity port throughput to vessel trips on inland waterways. Vessel trips 

characterized by port of origin, destination, path, timestamp, and commodity 

carried, are mapped to a detailed inland waterway network, allowing for a detailed 

commodity flow analysis, previously unavailable in the public domain. 

The novel, repeatable, data-driven methods and models proposed in this work are applied 

to the 43 freight port terminals located on the Arkansas River. These models help to evaluate 

network performance, identify and prioritize multimodal freight transportation infrastructure 

needs, and introduce a unique focus on modal shift towards inland waterway transportation.   
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CHAPTER 1.  Introduction 

 Multimodal Freight Planning 

In 2018, over 5,200 billion ton-miles of freight were transported within the U.S. and by 

2045, it is expected that over 7,600 billion ton-miles of freight will be shipped (Bureau of 

Transportation Statistics, 2020).  The projected freight growth within the U.S. and its importance 

to the economy at a national, state, and regional level require an increased effort to improve 

freight data and to provide a sound basis for multimodal infrastructure asset management (in 

particular, for project prioritization). Federal legislation, namely the Moving Ahead for Progress 

in the 21st Century (MAP-21) and the Fixing America’s Surface Transportation (FAST) Acts, 

facilitated the creation of statewide, multimodal transportation plans with freight components 

(Statewide Freight Plans, SFPs) (FHWA, 2013, 2017). Among others, SFPs are required to 

(Cornell Law School, 2015): 

• identify significant freight system trends, needs and issues within the State, including 

bottlenecks, and congestion; 

• describe freight policies, strategies, and performance measures that guide freight-related 

transportation investment decisions; 

• list multimodal critical rural and urban freight corridors and facilities within the State; 

• describe projected improvements to reduce or impede deterioration of multimodal 

transportation system infrastructure; 

• incorporate a freight investment plan, including a list of key projects that meet the 

criteria to receive public funding for development. 

Notably, a major criterion for a project to be eligible to receive federal funding is that it 

must be included in the SFP (FHWA, 2012). All 50 U.S. States have recently updated, 
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developed, or are in the process of developing an SFP. The successful implementation of SFPs is 

key to support infrastructure management through the estimation of freight performance 

measures, project prioritization, and guide multimodal planning (FHWA, 2017).  

Even though the project assessment framework may differ by agency and state, in 

general, a typical project included in a SFP is subject to six key stages (Figure 1.1) (Chacon 

Hurtado et al., 2016).  

 

Figure 1.1   Project assessment framework 

The following sections synthesize freight planning assessment tools and their limitations 

to forecast multimodal freight needs, and describe broader impacts of this work in regard to 

multimodal freight infrastructure investment decision makings, in particular during the 

planning/strategy and prioritization stages. 

 Planning Stage: Identification of Needs 

Travel demand models (TDM) with freight components are typically used to estimate 

transportation infrastructure performance and needs at national, state, and metropolitan area 

level. A traditional TDM follows a sequential four-step approach: trip generation, trip 

distribution, mode choice and route assignment (Ortuzar et al., 2011). Each of these four steps 
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constitutes a distinct mathematical sub-model and serves as input to subsequent steps. In most 

cases, TDMs have two components, a passenger model and a freight model, which are combined 

before route assignment (Alliance Transportation Group, 2015) (Figure 1.2).  

 

Figure 1.2  Structure of 4-step TDM with commodity-based freight component 

Freight components of TDMs were initially developed for truck transportation. At a later 

stage, answering applicable legislation that calls for multimodal long-range freight planning, 

alternative modes of transportation, such as rail, maritime, and air, were incorporated. As a 

result, state-of-the-practice TDMs often consist of imbalanced mode-specific networks. For 

example, the Arkansas State TDM (AR-STDM) incorporates abstract road and rail networks, but 

lacks representation of the waterway network, despite the key role that the Arkansas River plays 

to the state economy (Alliance Transportation Group, 2015; Nachtmann et al., 2015). Such 

imbalanced network representation limits the ability of TDMs to properly identify multimodal 
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bottlenecks, future infrastructure needs beyond those highways, and most importantly, the 

interaction between multiple modes that form critical supply chains. This work overcomes this 

limitation by creating a detailed navigable waterway network, and developing algorithms to 

map-match highly disaggregated vessel tracking data to it (Chapter 3). The result of this 

approach constitutes a dataset of trips assigned to an inland navigable waterway network, and 

characterized by length, duration, origin and destination, which may be used to integrate 

maritime freight activity into TDMs.  

Traditional data sources for commodity-based 4-step TDMs are based on socio-economic 

activity census surveys, such as the Commodity Flow Survey (CFS), the Freight Analysis 

Framework (FAF), and Transearch, complemented by commodity-specific data such as the 

census of agriculture, and employment data from the Ministry of Labor. These sources are 

discussed later in Chapter 2, and limited by their relatively low collection frequency, spatial 

aggregations, commodity groups and modal representation, and cost. Thus, there is a need to 

explore the use of new data sources and their conflation potential to generate reliable data to 

input into TDMs. Focusing on waterways, vessel tracking data and publicly available commodity 

flow data are examples of sources explored in this work.   

 Commodity-based Freight Planning and Freight Fluidity 

Building upon freight planning and modeling, a desired characteristic for freight 

forecasting tools such as TDMs is the ability to evaluate performance and forecast freight 

movement at the commodity level (Kam et al., 2017). By modeling at the commodity-level 

rather than the vehicle level, predictions of industry growth/decline driven by economic trends 

are directly connected to freight activity and transportation system performance. For example, 

commodity-based freight TDMs first estimate production and attraction of freight (in annual 



 

  

  5 

tons) within each zone of a larger region. Then, annual tons by commodity are distributed across 

zones to represent origins-destinations (OD) flows.  Next, annual tons by OD pair are 

disaggregated by mode, generating OD matrices with annual tons of freight per mode, per 

commodity. Later, tons of freight are converted to number of vehicles by adopting payload 

factors (e.g. tons per truck, tons per rail carload), and those vehicles are assigned to the modeled 

transportation network (Alliance Transportation Group, 2012), provided a mode-specific 

network is modeled. The absence of a waterway network, and the unavailability of public, 

disaggregated commodity flow by water, constitute a limitation for the multimodal assignment of 

trips by commodity in TDMs. This limitation to identify commodity-flow mode-share by water 

presents an opportunity to explore and develop methods to derive inland waterway freight flows 

by commodity, at a sufficient level of spatial discrimination to support STDMs.  

Moreover, given the complexity of the multimodal freight transportation system, there 

has been increased interest in developing multimodal “freight fluidity” indicators that capture 

end-to-end supply chain performance (Transportation Research Board, 2014). Freight fluidity 

measures require different types of data (e.g., movements, transactions, cost, commodity) from a 

variety of sources (e.g., government databases, private industry), and are intended to evaluate 

mobility, reliability, resiliency, cost, and quantity of freight along a multimodal transportation 

network (Eisele et al., 2016).  For example, the FHWA National Freight Fluidity Monitoring 

Program combines waterborne data from the U.S. Army Corps of Engineers (USACE), railway 

data from TransCore and the Carload Waybill Sample, highway data from the National 

Performance Management Research Data Set (NPMRDS), and supply-chain data from U.S. 

private companies to generate a mapping tool to track the reliability, cost, and travel time (but 

not quantities) for multimodal freight movements across selected supply chains on a quarterly 
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basis (Parker, 2019). While freight fluidity has been implemented for international containerized 

supply chains, it is yet to be adapted to domestic transportation of bulk commodities involving 

inland waterways.  Given the historical mode-specific approach in freight data collection and 

analysis, challenges remain to collect and analyze multimodal data for freight fluidity purposes, 

making the data fusion approaches developed in this dissertation timely and relevant 

(Transportation Research Board, 2018)  

This work addresses the need to analyze commodity-based multimodal data for freight 

fluidity and TDM modeling purposes on inland waterways by developing a novel multi-

commodity assignment model (MCAM) solved via optimization, that fuses vehicle tracking and 

USACE’s Lock Performance Monitoring System (LPMS) data to characterize and quantify 

highly-disaggregated freight flows on inland waterways. First, the MCAM fuses LPMS and truck 

Global Positioning System (GPS) data to output annual port throughput by commodity and mode 

on inland waterway port terminals. LPMS provides commodity flow aggregated at the lock-level, 

which is spatially disaggregated to port-terminals by observing the relative volume of trucks 

accessing each port from truck GPS data. To deal with the uncertainty associated to the sample 

that truck GPS data represents from the total truck population, relaxation of constraints to the 

MCAM optimization is introduced. The output of this model is the annual volume of freight 

transloaded between barge and rail, and between barge and truck by commodity (Chapter 5).  In 

a second stage, the MCAM concept is used to fuse the port throughput by commodity (from 

Chapter 5) to the trips characterized by port of origin and destination for the same study area 

(from Chapter 3), resulting in the identification of volume and type of commodity carried by 

each vessel-trip assigned to an inland navigable waterway network (Chapter 6). 



 

  

  7 

Knowledge of commodity-based port-level throughput, trip cargo characteristics, and 

linkage between waterborne and roadway freight flows supports the development of commodity-

specific, multimodal freight fluidity performance measures, and may be used to prioritize 

transportation infrastructure investments.   

 Investment Evaluation and Prioritization of Needs 

In order to match infrastructure supply with the demand for projected freight growth, 

continuous improvements to the multimodal transportation network and freight facilities are 

required. In this context, several projects compete for a limited amount of public and private 

funding. Only a portion of all the identified needs can be materialized at a time, and thus it is 

necessary to implement investment evaluation and prioritization measures which ensure a 

transparent and value-added expenditure of the resources available (Asborno and Hernandez, 

2018).  

From an analysis of the methods available to evaluate and prioritize projects (Economic 

Development Research Group et al., 2014), all rely in part on estimation of benefits relative to 

costs. The calculation of benefits necessitates a clear and consistent definition of the extent, 

location, and characteristics of a project’s impact area (Chacon Hurtado et al., 2016; Weisbord et 

al., 2009). The impact area of a project affecting a multimodal freight facility can be defined as 

the region where the facility draws and delivers freight, or the connected origin-destination (OD) 

pairs served by the facility (Vadali et al., 2017). 

 In this context, arguably the most important opportunity for improvement is the lack of 

consistency in the data and procedures used to evaluate different projects affecting diverse 

modes, but subject to the same competition of funds. For example, planning agencies within 

Metropolitan Planning Organizations (MPOs) and state DoTs must use professional judgement 
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to define each project impact area (AASHTO, 2015) instead of following a systematic, data-

driven procedure.  Freight OD pairs may be obtained from project-specific data like stakeholder 

surveys or traffic counts, but those might not be consistent throughout diverse agencies;  and/or 

from STDMs, provided all modes are represented with a similar level of detail, which usually are 

not (Alliance Transportation Group, 2015). Such lack of consistency in guidance, data, and tools 

to evaluate freight infrastructure investments across diverse geographies and modes potentially 

leads to a less-than-optimal allocation of funds.  

This work adds value to the body of practice by developing data-driven methodologies 

that support project prioritization, such as the geospatial data fusion method to identify the 

impact area of multimodal freight projects using ubiquitous vehicle tracking data (Chapter 4). 

When compared to the state-of-the-practice, these novel prioritization tools have the advantage 

that all projects evaluated are subject to ubiquitous data and a systematic criteria to identify their 

impact, constituting a sound, common basis for proper comparison and competition of funds. 

 Research Objectives 

The specific, intrinsically related objectives of this research are: 

(1) to describe novel freight transportation and non-transportation data sources, 

emphasizing leveraging maritime Automatic Identification System (AIS) data, 

focusing on conflation potential;  

(2) to develop novel commodity-based multimodal data fusion models with the data 

examined in (1); 

(3) to estimate port throughput commodity flows from publicly available data with the 

broader impact of closing critical data gaps for inland waterway freight, by applying 

the models developed in (2);  
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(4) to identify, characterize, and quantify commodity-based freight trips assigned to a 

detailed inland navigable waterway network, and 

(5) to develop a methodology to systematically identify data-driven, multimodal project-

specific freight catchment areas. 

The research objectives highlighted above are in line with the marine transportation 

system priorities recommended by the U.S. Committee on the Marine Transportation System 

(CMTS), indicating the relevancy and timely of this dissertation.  In particular, sample CMTS 

recommendations are:  i) coordinate and apply big data analytics to reveal research gaps and 

overlap, foster potential collaboration, manage knowledge, and inform decision-making; ii) 

couple the newly-available vehicle probe data sets with more traditional freight data resources to 

quantify and contextualize travel times, dwell times, trip counts and other metrics; iii) create 

specific MTS system-scale performance indicators that relate to the freight flow network so they 

may be periodically updated and used for network calibration and validation; iv) develop and use 

decision support tools to identify nationally significant priority areas and project locations where 

agencies can leverage a variety of funding opportunities (U.S. Committee on the Marine 

Transportation System (CMTS), 2018). 
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CHAPTER 2.  Background 

The literature review presented below synthetizes the state-of-the-practice in terms of 

multimodal freight data used for long-range transportation planning, contextualizing its role in 

performance evaluation and investment prioritization. Next, a general introduction to data fusion 

is presented, closing with a list of data sources conflated in this work. Each of the following 

chapters introduce specific novel data fusion techniques, and elaborate on the background 

pertaining to specific fusion methods and datasets. 

 Data Sources for Long-Range Freight Planning 

Freight planners have expressed their concern about the lack of publicly available freight 

data (Cambridge Systematics and GeoStats, 2010). Robust freight data is produced by private 

sector’s logistics technologies and sensors, but there are several barriers that difficult to 

effectively share it among private and public sectors. Examples of those barriers are privacy 

laws, lack of resources for data processing, competitiveness and confidentiality concerns, 

institutional and coordination complexity, etc. (Cambridge Systematics et al., 2013).  Another 

obstacle to gather business data resides in the difficulty to identify who makes transportation 

decisions (Ortúzar et al., 2011), given the number of players involved in the supply chain 

distribution (senders/consignees, freight forwarders, operators/carriers, insurance companies, 

etc.). For these reasons, the development of long-range freight modeling using public datasets is 

one of the main topics identified in NCFRP Report 8 (Cambridge Systematics et al., 2010) for 

additional research. 

In the U.S., commodity-based freight models typically use data from the following 

sources: Transearch, Commodity Flow Survey (CFS), and Freight Analysis Framework (FAF). 

These may be complemented by local or regional surveys (Cambridge Systematics et al., 2008; 
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Tatineni et al., 2005). The following paragraphs briefly describe each of these data tools, and   

compares the three databases discussed above: Transearch, CFS and FAF.  

2.1.1. Transearch 

Transearch is a proprietary database of U.S. annual county-level freight flow data, by 

commodity, produced by IHS Global Insight (IHS, former Reebie Associates). More than 340 

commodities are included in the database, classified by Standard Transportation Commodity 

Classification (STCC) 4-digit codes. From a geographic perspective, Transearch covers over 

3,000 counties within 172 Bureau of Economic Analysis (BEA) regions in the U.S., and 

international regions. Freight flow volumes by geography and commodity are presented in tons, 

and translated to: shipment units (such as carloads and truck counts), vehicle miles travelled, 

shipment values, and ton-miles. This database considers seven major transportation modes, 

namely: for-hire truck, less-than-load truck, private truck, truck/rail intermodal, rail, waterborne, 

and air (IHS / Global Insight). 

The methodology implemented by IHS to produce Transearch freight flows consists of 

four steps: First, the value of production and consumption of each commodity (disaggregated 

into North American Industry Classification System (NAICS) groups) is estimated at county 

level. These estimates are based on a combination of the BEA’s input/output tables, and IHS’s 

Business Market Insight (BMI) sales information. BMI does not include all commodities. Thus, 

alternative sources are used for agricultural products and livestock (U.S. Department of 

Agriculture), automobiles and coal (IHS in-house databases), and minerals (U.S. Geological 

Survey). Then, NAICS commodities are re-classified as per STCC 4-digit codes and a price per 

ton is used to translate each commodities’ monetary values to tonnage. Next, commodity flows 

are classified into domestic, import and export by using port-level census data. Later, modal 
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freight flows of domestic county-to-county movements are developed for railroad, waterborne, 

and air cargo, per commodity (origin-destination known pairings). Lastly, truck flows are 

calculated, by subtracting the origin-destination known pairings from the total productions and 

attractions in each county. The methodology presented above is used to estimate base year 

freight flows. Future freight flow estimations are also provided. Forecasts are based on 

projections of supply and demand at county level, by 4-digit STCC commodity type, which are 

further constrained to a national total, for consistency. IHS proprietary services are leveraged as 

input to the forecasting process, such as IHS’ U.S. Macroeconomic service, IHS’ U.S. 

Agricultural service, Energy Service, etc. (IHS / Global Insight, 2011).  

Transearch includes waterborne shipments, derived from state-to-state annual flows of 

broad commodity groups published by USACE, and disaggregated using proprietary methods. 

Although drayage for marine ports is captured in Transearch, drayage for inland ports is not 

captured (IHS / Global Insight, 2011). The work presented in this dissertation allows for the 

identification of truck drayage for inland waterway ports (Chapter 4).  

A notable technical limitation of Transearch is its way of handling shipments made by 

trucks that exceed the limits for a state, specifically in the way that shipments to distribution 

centers are recorded. Transearch records the first portion of the trip (from the origin to a 

distribution center) in the National database, while the second portion of the trip (from the 

distribution center to its destination) is recorded as an individual movement in the State database 

(Alliance Transportation Group, 2012). Thus, it is not possible to identify the actual origin and 

destination for some commodity flows.  In terms of inland waterways transportation, tugs may 

pick up loaded barges at a port, then “park” loaded barges at anchoring grounds, to be picked up 

later (possibly by another tug) to reach its final destination. Thus, anchoring grounds play a 
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similar role than distribution centers in Transearch. To overcome the difficulty of associating 

both legs of the freight flow (before and after an anchoring ground), and identify the true origin 

and destination of freight, this dissertation uses highly disaggregated maritime vessel tracking 

data to generate “trip chains”, that capture the true origin and destination of freight with 

intermediate stops on anchoring grounds (Chapter 3).  

Moreover, Transearch reports all movements made from distribution centers as a unique 

STCC commodity code, e.g., Secondary Traffic (Alliance Transportation Group, 2012), masking 

the actual commodity transported. In addition, from a commodity classification perspective, 

some commodities are not reported in Transearch, such as construction, retail, refined petroleum, 

municipal solid waste and farm-based agriculture shipments (Alliance Transportation Group, 

2012). Lastly, Transearch presents other modal limitations, related with: i) the lack of 

international air shipments (HIS / Global Insight, 2011), ii) pipeline mode is not included 

(Beagan et al., 2007), and iii) incomplete and inconsistent information may be provided for 

multi-modal trips (Cambridge Systematics et al., 2010). On another note, when comparing to 

CFS and FAF, Transearch has cost and transparency limitations due to its proprietary nature. In 

2010, data for a single year of a single state could cost between $50,000 and $100,000 

(Cambridge Systematics et al., 2010). The mechanics and models used to produce estimates are 

proprietary, functioning as a “black box” where users do not know what happens inside.  Despite 

its limitations, in the absence of other spatially disaggregated commodity-based datasets, 

Transearch is widely used for freight planning purposes by the FHWA, U.S. States, Metropolitan 

Planning Organizations (MPOs), and private freight carriers and shippers (Cambridge 

Systematics et al., 2008; Asborno and Hernandez, 2018).  
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2.1.2. Commodity Flow Survey 

While Transearch is a proprietary database, CFS and FAF are publicly available. The 

Commodity Flow Survey (CFS) is a shipper survey of goods transported from establishments in 

the U.S. that provides key information about each shipment. CFS is based on a probability 

sample of all U.S. shipments. Among the twenty data attributes of each observation, it includes 

origin state, destination state, mode of transportation, shipment weight, value, commodity (as per 

NAICS, 3-digit classification), distance routed, whether the shipment is for export, whether it 

contains hazardous substances, if it is temperature-controlled, and if it is rush. The survey was 

initiated in 1993 and is currently conducted every 5 years, in a combined effort by the U.S. 

Census Bureau and the U.S. Department of Transportation. There is an approximate three-year 

delay between data collection and public release of aggregated data, e.g., the last collection is 

from 2017, but final data tables will be released in July 2020 (U.S. Census Bureau, 2019a). The 

latest public use microdata file available is from 2012 and it includes over 4 million records; 

however only 75 records correspond to shipments by water to and from Arkansas. Modes 

considered in this database are: truck, rail, water, air, and pipeline (single modes), and parcel, 

truck and rail, truck and water, rail and water (multiple modes). The industry sectors covered by 

this survey are manufacturing, mining, wholesale, electronic shopping, mail order, fuel dealers 

and publishing industries (U.S. Census Bureau, 2016a). Notably, agriculture is not included in 

the sample frame. Establishments classified in transportation, construction, and most retail and 

services industries are also excluded from the survey, as well as farms, fisheries, foreign 

establishments, and most government-owned establishments. In total, 43 commodities are 

included in the database (in NAICS, 3-digit classification) (Bureau of Transportation Statistics, 

2015b). Geographically, CFS divides the 50 U.S. States and the District of Columbia territory in 
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132 areas, classified as metropolitan areas and “reminder of State” areas. Each metropolitan area 

can be comprised by portions of more than one state, as it is the case of Chicago Combined 

Statistical Area, spanning through Illinois, Indiana and Wisconsin. CFS does not cover 

shipments originating from establishments in Puerto Rico (U.S. Census Bureau, 2017). 

The CFS survey method consists of a comprehensive questionnaire mailed to more than 

100,000 establishments from a sample frame of over 716,000, listed in the U.S. Census Bureau’s 

Business Register. The sample is selected using a stratified three-stage design (Table 2.1) (U.S. 

Census Bureau, 2016b). The stratification criteria, applied to the first design stage, is based on 

the establishments’ location (geography), industry, and size, measured in terms of number of 

employees and sales. Auxiliary establishments (truck transportation facilities, warehouses, and 

central administrative offices) with shipping activity are included on the sampling frame. 

Table 2.1  Commodity Flow Survey - Sample Design 

Design 

Stage 
Sampling Units Sample Frame Sample Size 

1st Stage 
Establishments from the Census 

Bureau’s Business Register. 
716,000 102,565 

2nd Stage 

Groups of four one-week periods 

(reporting weeks) within the survey 

year. 

52 weeks 
4 weeks/year, 

one in each quarter. 

3rd Stage Shipments. 
Total number of 

shipments per week 

40 shipments or less (if 

total is less than 40) 

One of the main limitations of CFS is its untimeliness. CFS untimeliness refers to the low 

frequency when the survey is collected (i.e. every five years), and the long time it takes to 

publish the data (three years). Because of this untimeliness, the effects of an event that occurs 

and fully recovers in-between successive collections are missed. In case an event is captured by 

CFS, it will take three years for researchers and practitioners to know the effects of such events 
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from CFS data.  Thus, this lack of agility in handling rapidly changing operations makes CFS 

unsuitable to handle several effects, like the COVID-19 pandemic. In this context, the use of 

ubiquitous and continuous vehicle tracking data present an alternative to overcome the 

untimeliness limitation. 

2.1.3. Freight Analysis Framework 

The Freight Analysis Framework (FAF) is a freight flow data tool produced by the 

Bureau of Transportation Statistics (BTS) in partnership with the Federal Highway 

Administration (FHWA). In its latest version (FAF4), FAF takes the 2012 CFS database and 

complements it with other public data sources, namely: the Census Foreign Trade Statistics, 

Economic Census data, USDA’s Census of Agriculture, Port Import/Export Reporting Service 

(PIERS), Vehicle Inventory and Use Survey (VIUS), National Highway Planning Network 

(NHPN), Highway Performance Monitoring System (HPMS), and U.S. Energy Information 

Administration (EIA).  FAF4 provides a comprehensive set of estimated annual freight flows for 

2012-2018 period, plus long-term forecast scenarios. Freight flows are expressed in weight, 

weight-distance, and value, and can be disaggregated by geography area, commodity, mode, and 

whether they are domestic, export, or import. Geographically, FAF4 considers the same 132 

domestic areas as the CFS, plus eight international regions (Bureau of Transportation Statistics, 

2015a). The transportation modes include: truck, rail, water, air (including truck-air), multiple 

modes and mail, pipeline, other and unknown, and “no domestic mode”. The latter refers to 

shipments that have an international mode but no domestic mode, addressing crude petroleum 

imports from inbound ships that enter directly to a refinery in the U.S.  In terms of commodities, 

FAF4 considers 44 groups, following the Standard Classification of Transported Goods (SCTG) 

2-digit classification. FAF4 has a forecasting tool and further assigns freight flows to the 
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Highway Performance Monitoring System (HPMS) network.  Data can be filtered and 

downloaded as Microsoft Access and comma separated values (.csv) files.  

The main limitation of FAF is its lack of geographic detail, not sufficiently refined to be 

consistent with the full array of many transportation agency’s freight planning applications 

(Cambridge Systematics, 2013). For example, Arkansas in the FAF is represented as a single 

zone. 
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Table 2.2  Comparison of Transearch, CFS, and FAF 

Data source / 

Characteristics 
TRANSEARCH CFS FAF 

Relevant data 

values provided 

Weight, value and amount of 

shipments by geography and 

commodity; classified as outbound, 

inbound, intra and through 

shipments. 

For each shipment: 

origin state, destination state, mode of 

transportation, shipment weight, value, 

commodity, transportation distance, whether the 

shipment is for export, whether it contains 

hazardous substances, if it is temperature-

controlled, if it is rush. 

Weigh, weigh-distance and 

value of freight flow by 

geography, commodity, and 

mode; classified in import, 

export, and domestic. 

Geographical 

coverage 

3,000+ counties  

172 BEA regions 

U.S., Mexico, Canada 

132 areas within U.S. 132 areas within U.S. and 8 

international regions. 

Modes included for-hire truck 

less-than-load truck 

private truck 

truck/rail intermodal 

rail 

waterborne 

air 

Single Modes: 

Truck (for hire, private), 

Rail, 

Water (inland water, great lakes, deep sea, 

multiple waterways), 

Air (including truck and air), 

Pipeline. 

Multiple Modes: 

Parcel, 

Truck and Rail, 

Truck and Water, 

Rail and Water, 

Other multiple modes. 

Other Modes. 

truck,  

rail,  

water,  

air (including truck-air),  

multiple modes and mail,  

pipeline,  

other and unknown, and “no 

domestic mode”. 

Commodities 

considered 

340+ commodities, STCC 4-digit 

codes 

47 commodity groups, as per NAICS, 3-digit 

classification. 

44 commodity groups, as per 

SCTG 2-digit classification 

Update 

frequency 

Annual Every 5 years Annual estimates 

Data cost $50,000 - $100,000 per state, per 

year (NCFRP Report 8). 

free free 
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Table 2.2  Comparison of Transearch, CFS, and FAF (cont.) 

Data source / 

Characteristics 
Transearch CFS FAF 

Primary data 

collection sources 

Partnership with main U.S. truck 

and rail (class I) carriers,  

Railroad Waybill Sample, 

U.S. Army Corps of Engineers,  

Airport Activity Statistics (BTS), 

CFS. 

 

 

Survey to over 100,000 business establishments 

within U.S. 

CFS  

Census Foreign Trade Statistics,  

Economic Census data,  

USDA’s Census of Agriculture,  

Port Import/Export Reporting 

Service (PIERS),  

Vehicle Inventory and Use 

Survey (VIUS),  

National Highway Planning 

Network (NHPN),  

Highway Performance 

Monitoring System (HPMS), 

and  

U.S. Energy Information 

Administration (EIA) 

Main limitations Inability to track origin and 

destination of some freight flows 

(truck and multimodal).  

Lack of reporting of certain 

commodities. 

Multimodal shipments reported as 

main single mode.  

Gaps in industry and commodity coverage 

(Agriculture, crude petroleum extraction). 

Lack of geographic detail.  

Lack of international flows. 

 

Lack of geographic detail.  
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 Data Fusion 

Fusion of multiple datasets has been used to overcome the limitations imposed by 

traditional sources, which may not be sufficiently detailed or accurate for specific commodities 

and spatial resolutions (Ahanotu et al., 2003) (Vieira da Silva & Almeida D'Agosto, 2013). For 

example, Kam et al. (2017) modeled the transportation of sorghum and corn grains from farms to 

grain elevators, and lastly to feed yards. They fused data on: (a) acreage planted, harvested, yield 

per acre, and production (bushels) by county, from the NASS Southern Plains Regional Field 

Office; (b) grain elevator locations and capacity, from BNSF elevator directory; and feed yard 

demand, derived form (c) an inventory of hogs and pigs provided by the 2012 USDA census of 

agriculture, and (d) cattle permit database from the Concentrated Animal Feeding Operations, 

Texas Commission on Environmental Quality.  

Freight transportation data gaps prevent the development of a network-based freight 

demand model that incorporate all modes at similar levels of detail for various geographies 

(Schaefer, 2017).  The combination of datasets is a necessary approach to solve existing data 

gaps, while avoiding costs associated with the development and implementation of expensive 

data collection techniques. However, the combination of several datasets is challenging. The 

main challenges occur because each data development entity follows different procedures to 

define, collect, process and share the data (Tok et al., 2011).  

Data heterogeneity can be classified as: taxonomic (different definition for the same 

term), temporal (such as changes in data collection methodology over time), or methodological 

(for example, commodity data reported in different units across datasets) (Walton et al., 2015). 

Resolving heterogeneity is necessary to link data across levels of geography, topics and modes 

(Walton et al., 2015). In addition, the unavailability of metadata and/or data dictionaries leaves 
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room for user’s interpretations, which may be inaccurate or incorrect. To overcome these 

limitations, data architectures are proposed.  For example, Quiroga et al. (2011) emphasize the 

need to develop a list of components, to establish data-integration points, to conduct a data gap 

and disaggregation need analysis, and to use standardized terminology when developing a data 

architecture (Quiroga et al., 2011).   

Building upon Quiroga’s work, NCFRP Report 35 (2015) implemented the Freight 

Transportation Data Architecture to create a Data Element Dictionary (Walton et al., 2015). To 

resolve differences in data element’s definitions, “bridging” (cross-walk) tables were introduced. 

Walton applied his proposed approach to a case study in Texas (Walton, 2013). 

Moreover, Tok et al. (2011) created Cal-FRED, a user-centered, online freight data-

repository tool, to gather publicly available sources of freight data for state planning and 

analysis. The authors’ main contribution is the practical development of a standardized freight 

data architecture, a standardized data-quality assessment, and a physical architecture (Tok et al., 

2011). 

 Data Sources Fused in This Work 

Several existing U.S. commodity databases commonly used for freight planning (CFS, 

FAF, Transearch) have potential for conflation with new and emerging sources to support 

multimodal project prioritization with focus on inland navigable waterways.  This section 

presents the data sources incorporated into the methodologies presented in this dissertation 

(Table 2.3). For completeness, a synthesis of multimodal data sources, several outside the usual 

purview of freight data, is presented in Appendix A.  
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Table 2.3  Data Sources Fused in This Work 

Data type Brief Description Entity Reference Chapter 

Commodity 

flow data 

LPMS Waterborne monthly 

commodity data, 2016.  

USACE (U.S. Army Corps 

of Engineers) 

5; 6 

Freight vehicle 

tracking data 

Statewide Truck GPS data,  

2016. 

ATRI (American 

Transportation 

Research Institute, 

2019) 

4; 5; 6 

Freight vehicle 

tracking data 

Waterborne AIS data 

(timestamped geospatial 

vessel locations), 2016 

U.S. Guard & 

USACE 

(Office for Coastal 

Management, 

2018) 

3; 4; 6 

Freight vehicle 

count by 

location 

LPMS: number of 

commercial vessels per 

lock, 2016 

USACE (U.S. Army Corps 

of Engineers, 2018) 

3 

Infrastructure 

map layers 

Roadway system: Statewide 

network line layer based on 

Arnold maps 

Arkansas 

Department of 

Transportation 

(ARDOT) and 

Arkansas GIS Office 

(Arkansas 

Department of 

Transportation)  

4 

Infrastructure 

map layers 

Waterway system: i) 

Navigable waterway lines 

layer, ii) Locks, and iii) 

Ports point geospatial 

layers from the National 

Transportation Atlas 

Database (NTAD) 

Geospatial at the 

Bureau of 

Transportation 

Statistics, U.S. 

Department of 

Transportation 

(Bureau of 

Transportation 

Statistics, 2018, 

2019a, 2019b) 

3; 4; 5; 

6 

Infrastructure 

map layers 

Location of port terminals 

in Arkansas, geospatial map 

layer 

Arkansas Economic 

Development GIS 

office 

(Arkansas 

Economic 

Development 

Commission, 2018)  

3; 4; 5 

Business County Business patterns, 

2016  

U.S. Census Bureau (U.S. Census 

Bureau, 2018) 

4 

Geopolitical 

boundaries 

Arkansas state and county 

boundaries polygon 

geospatial map layer 

 

Arkansas GIS Office (Arkansas GIS 

Office, 2016) 

3 

Geopolitical 

boundaries 

Arkansas TIGER/Line® 

Shapefiles: Census Tracts 

U.S. Census Bureau (U.S. Census 

Bureau, 2019b) 

4 

Geopolitical 

boundaries 

Traffic Analysis Zones 

polygon layer  

Arkansas 

Department of 

Transportation 

AR-STDM zone 

layer (Alliance 

Transportation 

Group, 2015) 

3; 4 

Aerial imagery Historical aerial imagery of 

the McClellan Kerr-

Arkansas River Navigation 

System (MKARNS) 

Google (Google, 2020) 3; 4; 5 
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CHAPTER 3.  Network Mapping of AIS data to Characterize Inland Waterway Freight 

Transportation 

 Abstract 

To support freight growth, Travel Demand Models (TDM) with freight forecasts are 

employed to estimate performance metrics for competing freight infrastructure investments and 

policy changes. Unfortunately, freight TDMs, initially developed for highway assessment, fail to 

represent non-truck modes with levels of detail adequate for multimodal infrastructure and policy 

evaluation. Expanded public availability of maritime freight movement data introduces strong 

potential to expand representation of marine modes within freight TDMs. This paper focuses on 

a key example, the Automatic Identification System (AIS) data which tracks vessel locations as 

timestamped latitude-longitude points (pings) along waterways. For viable estimation, 

calibration, and validation of freight TDMs, AIS data must be mapped to a representative 

network and contain trip-level travel patterns.  This work develops a detailed inland waterway 

transportation network and identifies vessel trips by applying network mapping (map-matching) 

heuristics to AIS data. Map-matching produces complete paths between stops from vessel ping 

data as series of connected links. Uniquely, the stop identification procedure estimates 

parameters to distinguish freight stops at ports from delays through locks or pre-

staging/anchoring areas. The methods are evaluated on 747 miles of inland waterways in 

Arkansas, with AIS data representing 88% of vessel activity. Manual inspection of 3,820 AIS 

trajectories was used to train the heuristic parameters including stop time, duration, and location.  

Validation results show 84.0% accuracy in detecting stops at ports and 83.5% accuracy in 

identifying trips crossing locks. A single set of parameters does not fit best all vessels, possibly 
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explaining the less-than-perfect algorithm accuracy. Since AIS data is ubiquitous in time and 

space, the proposed methods are transferable to any region with waterways.  

Key words: Inland Waterway Transportation (IWT), Automatic Identification System 

(AIS), map-matching algorithm, Geographic Identification Systems (GIS), Freight. 

 Introduction  

18.6 billion tons of goods valued at 18 trillion USD were moved in 2018 along the U.S. 

multimodal transportation system. This is equivalent to more than 7 million trucks, 1.8 million 

carloads, or 124 thousand barges (FHWA, 2019). To support expected freight grow of 51% by 

2045 (FHWA, 2019), federal legislation calls for multimodal freight planning- a significant 

distinction from the sole pursuit of highway-oriented freight planning (FHWA, 2017). In this 

context, it is imperative to identify future infrastructure needs for highway, rail, water, air and 

pipeline. Travel demand models (TDM) with freight forecasts are common tools to identify and 

prioritize transportation infrastructure needs by estimating performance metrics for demand, 

policy, and capacity scenarios. However, because freight components of TDMs were initially 

developed for truck transportation, they often lack the level of detail needed to evaluate 

multimodal freight performance metrics like freight fluidity. For example, the Arkansas State 

TDM incorporates road and rail networks, but lacks a waterway network (Alliance 

Transportation Group, 2015), despite the key role of the Arkansas River in the state economy 

(Nachtmann et al., 2015). Such imbalanced network representation limits the ability of TDMs to 

estimate freight fluidity metrics, identify bottlenecks across multimodal supply chains, and 

support infrastructure planning for multimodal facilities like ports. In the absence of a detailed 

waterway network, state-of-the-practice freight TDMs cannot assign number of vessels per draft 

and cargo to the network, preventing a true multimodal comparison of capacity upgrade needs 
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and benefits among roadways (by the addition of travel lanes) and inland waterways (by 

dredging). 

Due to privacy and confidentiality concerns, data required for freight TDMs such as 

spatially disaggregated origin-destination (OD) flows and trip characteristics like commodity 

carried are limited for all modes and especially underrepresented for inland waterways (FHWA, 

2017b).  Along inland waterways, freight flows distinguished by commodity and port OD are not 

publicly available. The U.S. Army Corps of Engineers (USACE) collects detailed domestic 

waterborne traffic movements, which are mandatorily reported by all vessel operators. For cargo 

movements, the point of loading and unloading of each commodity is reported (U.S. Army Corps 

of Engineers, 2018). However, such detailed data is reserved for use by collecting agencies like 

the USACE while a summarized version is shared via the Waterborne Commerce of the United 

States (WCUS). WCUS provides statistics on foreign and domestic commerce along U.S. 

waterways (U.S. Army Corps of Engineers, 2016). The Manuscript Cargo and Trip File provides 

movements of commodities at certain ports, harbors, and inland waterways in the U.S., including 

the annual number of trips reported per port and waterway, by direction, vessel type, and draft 

(U.S. Army Corps of Engineers, 2018). Focusing on data requirements for long-range freight 

planning (e.g., OD volumes/tonnages and trip characteristics), the Manuscript Cargo and Trip 

File is limited in: i) its spatial aggregation, (e.g., it includes only three ports from the more than 

40 freight port terminals in Arkansas); and ii) it is based on manually entered reports, which may 

contain errors. This work overcomes such limitations by developing a data-driven, reproducible 

map-matching methodology to identify trips on inland waterways based on data collected 

automatically (i.e. not prone to human errors), between ODs located at any node along a detailed 

inland waterway network.  
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The recent open availability of historical Automatic Identification System (AIS) data, 

which tracks vessels’ location and timestamp, is a promising source to model maritime freight 

flows. This work develops a detailed inland waterway transportation network and identifies 

vessel trips by applying network mapping (map-matching) heuristics to AIS trajectory data. 

Map-matching produces complete paths between stops from vessel ping data as series of 

connected links. Uniquely, the stop identification procedure contained in the heuristic estimates 

parameters to distinguish freight stops at ports from delays through locks or pre-

staging/anchoring areas. The methods are evaluated with AIS data for 747 miles of navigable 

waterways in Arkansas, including the McClellan Kerr-Arkansas River Navigation System 

(MKARNS) and the portion of the Mississippi River along Arkansas’ eastern border. Since AIS 

data is ubiquitous in time and space, the proposed methods are transferable to any region with 

waterways. 

 Background  

3.3.1. Multimodal Freight Planning and Travel Demand Models 

The projected U.S. freight growth and its importance to the economy require increased 

effort to improve multimodal freight demand forecasting tools (FHWA, 2017). TDMs identify 

future system deficiencies based on forecasted activity (demand) and infrastructure (supply) 

scenarios. Improvements to TDMs include more detailed representation of the behavioral models 

used to generate activity forecasts and of the multimodal networks that represent truck, rail, and 

water infrastructure. Federal legislation, Moving Ahead for Progress in the 21st Century (MAP-

21) and the Fixing America’s Surface Transportation (FAST) Acts, facilitated creation of 

statewide TDMs (STDMs) with freight components, which estimate freight demand flows, 
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support the estimation of freight performance measures, and guide multimodal planning (FHWA, 

2013) (FHWA, 2017). 

TDMs are mainly used for long-term travel forecasting, e.g. 20-40-year planning 

horizons. Depending on their application, TDM techniques range from simplified sketch-

planning methods to complex trip- and activity-based approaches (National Academies of 

Sciences, Engineering, and Medicine, 2012). Trip-based models typically follow a sequential 

four-step approach: trip generation, trip distribution, mode choice and route assignment (Ortuzar 

& Willumnsen, 2011). In most cases, TDMs have passenger and freight models, which are 

combined before route assignment.  The conventional four-step TDM is an effective method for 

determining network flows (when the network is represented), but lacks behavioral richness 

because it considers trips to occur independently rather than as trip chains. Activity Based 

Models (ABMs) use a disaggregate approach to incorporate relationships between trips, tours, 

and activities (Ortuzar & Willumnsen, 2011).  The key step for activity-based models is to 

generate a synthetic population to represent agents (i.e. individuals, tucks, or vessels) in the study 

area. Most ABMs use U.S. Census data and public use microdata sample (PUMS) files to 

generate synthetic populations that match demographic and economic control targets for the base 

year (Castiglione, Bradley, & Gliebe, 2015). Then, agent activity patterns are generated. ABMs 

provide an intuitive and behaviorally realistic representation of travel by recognizing travel as a 

derived demand, but require highly disaggregated data (such as truck and vessel movements) 

map-matched to a transportation network to create a representative synthetic population and 

model its behavior.  

Both trip-based and activity-based models require an accurate representation of the 

transportation network.  However, state-of-the-practice multimodal TDMs have imbalanced 
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representation of mode-specific transportation networks, limiting their ability to accurately 

identify bottlenecks and impacts on the multimodal transportation system (Alliance 

Transportation Group, 2015). This work overcomes this limitation by creating a detailed 

navigable waterway network, and map-matching highly disaggregated maritime data. The 

purpose of this approach is ultimately to enable integration of maritime modes into trip-based or 

activity-based TDMs.  

3.3.2. Automatic Identification System data (AIS) 

AIS consists of vessel traffic data, collected for navigational safety purposes (e.g., 

collision avoidance) (Table 3.1). It is required for all passenger-carrying vessels and commercial 

vessels over 300 gross tonnage that travel internationally, by the International Maritime 

Organization (IMO) since December 2004. An onboard navigation device transmits location and 

characteristics of vessels in real time to receivers onshore in base stations, satellites, buoys, and 

other vessels (U.S. Coast Guard, n.d.). In the U.S., AIS is required as per Title 33, Code of 

Federal regulations (U.S. Coast Guard, n.d.) but not for all inland waterways (Dobbins & 

Langsdon, 2013), however most vessels use AIS transponders (DiJoseph & Mitchell, 2015).  

Historical AIS data (2009-2017) is available for free download at (Office for Coastal 

Management, 2018) as geodatabases, including vessel, voyage, and broadcast information. 

Several vessel and voyage features are manual fields containing substantial errors and omissions 

while broadcasting features do not require manual entry. Each file contains point location data at 

1-minute interval, per month and UMT zone.  
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Table 3.1  AIS Data Characteristics 

Dataset characteristics Waterborne AIS data 

U.S. Data collection  U.S. Coast Guard 

Data elements Vessel: Vessel name, length, width, MMSI, IMO, and call sign 

Broadcasting: Latitude, longitude, time stamp, speed over ground, 

course over ground, heading 

Voyage: Cargo, draft, status 

Spatial Coverage All international and U.S. waterways 

Temporal Coverage / ‘ping’ 

frequency 

Discrimination to the minute of the day (for data storage and 

sharing purposes) 

Update frequency Since 2009, data collected in real time, shared via annual updates 

Data storage format File geodatabases (.csv) containing one month of data per UMT 

zone 

Data sharing scheme Open source via www.MarineCadastre.gov 

Limitations Carried by tugs and tows on inland waterways, not barges. 

Manually entered data may lack accuracy 

3.3.3. Challenges in using AIS Data for Freight Applications 

Although AIS data collection is required for most freight vessels, publicly available 

datasets may contain select samples of all AIS records.  For instance, some tug and tow 

operations might not be recorded due to smaller tugs not meeting the AIS reporting criteria 

(Perez et al., 2019). AIS data coverage may differ by region or port. In the Gulf Coast region, 

Perez at al. (2019) compared tug counts by port derived from AIS data with WCUS data 

concluding that AIS data accurately represented activity in the biggest port area, but 

overestimated or underestimated activity in smaller port areas, potentially due to the presence of 

fewer AIS reception points. Dobbins and Langsdon (2013) generated inland waterway one-day 

tow-trips from AIS data collected by a single AIS antenna and compared them to lockages 

reported by the USACE’s Lock Performance Monitoring System (LPMS). They found that 

LPMS lockages were three times higher than AIS-detected lockages.  LPMS records all vessels 
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that traverse each of approximately 200 locks and dams along the U.S. inland waterways, 

constituting a valuable source of data to evaluate coverage of AIS. Historical lockage data (1993-

2017) is openly available in (U.A. Army Corps of Engineers, 2018c). 

3.3.4. Map-matching Algorithm for Network Mapping 

Map-matching reconstructs the trajectory of a GPS-enabled device on a network, from a 

series of potentially sparse, noisy position records or “pings” (Jensen & Tradišauskas, 2009). 

Each ping is defined by latitude, longitude, and timestamp. Map-matching algorithms iterate 

through timestamp-ordered pings, associate each ping to a network link based on location 

proximity, and store the series of links utilized by the vehicle (Camargo et al., 2017). A 

limitation is that, for dense networks, high-frequency pings, and large-scale data (i.e. several 

vehicles), the computation time can be prohibitive. Conversely, low-frequency pings and/or 

dense networks lead to incomplete path identification and low map matching accuracy, e.g., 

many links are traversed between pings. As a result, most map-matching algorithms trade-off 

between computation time and accuracy (Hashemi & Karimi, 2014).  

Within the context of freight transportation, to overcome low-performance issues, Pinjari 

et al. (2014) reduced truck GPS pings to 5-minute frequencies prior to map-matching (Pinjari et 

al., 2014). Camargo et al. (2017) proposed a map-matching algorithm for low-frequency truck 

GPS data. The algorithm iterates through all pings and identifies stops based on calculated speed, 

stop duration, and coverage (length of the diagonal of a bounding box containing all consecutive-

stopped pings). Then, the algorithm re-iterates through the pings to identify which network links 

are likely used by the truck along its path. Lastly, a trip is created by computing the shortest path 

between each pair of consecutive stops, using the links previously identified. The algorithm was 

applied for activity-based modeling in a large metropolitan area to conduct select link, OD and 
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time-of-day analysis, and trajectory visualization (Camargo et al., 2017). Akter et al. (2019) 

adapted Camargo’s algorithm to truck GPS data for a state-wide network. Using the map-

matching algorithm output, Akter et al. derived truck operational characteristics (stop time-of-

day, stop duration, trip length, trip duration, and total number of stops in a day) and fed a 

multinomial logit model that distinguished truck daily activity patterns into five commodity 

groups (Akter, Hernandez, Corro-Diaz, & Ngo, 2018). This work expands the utilization of map-

matching algorithms to waterway networks by adapting the work of Camargo et al. (2017).  

3.3.5. Trip Identification from AIS data 

Previous works reconstructed vessel trajectories from AIS data (Zhang, Meng, Xiao, & 

Fu, 2018; Dobrkovic, Iacob, & Van Hillegersbarg, 2018; Zhao, Shi, & Yang, 2018; Graser, 

2019) but were limited either in their ability to match pings to a defined and detailed inland 

waterway network, or in that movements were divided per day, masking the identification of 

trips. DiJoseph and Mitchell (2015) overcome the latter by applying an algorithm to link time-

consecutive AIS records together to generate paths on inland waterways (DiJoseph & Mitchell, 

2015), but did not fuse generated vessel paths with a defined network. The inability to map 

vessel data to a network precludes future incorporation and integration of AIS data into 

multimodal, network-based models, such as TDMs. In contrast, the algorithm developed in this 

work allows for the identification of trips defined by origin and destination (not duration) and 

matched to a defined network. 

 Methodology 

The methodology consists of three steps: (1) Data preparation, (2) Vessel stop 

identification, and (3) Vessel trip identification. All data and tools are open source.  
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3.4.1. Step 1-Data preparation  

Data preparation involves three procedures: i) AIS data reduction, ii) AIS data quality 

control, and iii) development of the detailed inland waterway network. (Figure 3.1 and 3.2) 

Step 1.1-AIS Data Reduction 

Data reduction is necessary to accelerate “big data” processing. In AIS datasets, records 

with zero speed outnumber the non-zero speed records (Osekowska, Johnson, & Carlsson, 2017) 

and, depending on the application, removal of zero speed records provides a mechanism for data 

reduction. For example, Fujino et al. reconstructed vessel trajectories from a reduced AIS dataset 

and applied unsupervised machine learning to identify vessel course and issue real-time off-

course warnings. The original dataset of 5,756,438 records was reduced by 40% by removing 

records with zero speed (Fujino, Claramunt, & Boudraa, 2018).  Following this example, in this 

paper, zero speed records are removed with no loss of representation of trip characteristics 

needed for map matching and stop identification heuristics. By removing zero-speed records 

from the AIS dataset, computational time is reduced while still benefiting from highly 

disaggregated, ubiquitous AIS characteristics.  

Step 1.2-AIS Quality Control 

AIS data contains erroneous or irrelevant records that result from transmission 

interference and device mishandling. Erroneous records are defined as those with unusual high 

speed, or records located far from inland waterways (Figure 3.2.a and b). Irrelevant records come 

from vehicles that emitted less than 20 records within the reporting period, and/or from vessels 

whose records are outside reasonable waterway boundaries. After identifying erroneous and 

irrelevant records as described below, they are removed from further analysis. 
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Figure 3.1  AIS data preparation flowchart  
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a. AIS source data     b. Reduced data   c. Quality-controlled data 

Figure 3.2  Example of AIS data preparation 

To identify erroneous records, first, a spatial buffer is created for an inexact U.S. 

navigable waterway network from the National Transportation Atlas Database (“NTAD”) 

(Bureau of Transportation Statistics, 2015), clipped to the study area. The buffer width is derived 

from the Global River Bankfull Width & Depth Database (“NARVIS”) (Andreadis, Schumann, 

& Pavelsky, 2013). NARVIS and NTAD are provided as geodatabases. Because the NTAD 

waterway geometry is abstract, it may not follow observed and valid AIS records. Therefore, a 

spatial buffer should be established to exclude records grossly outside of the navigable 

waterways (Figure 3.2.c). Adopted buffer size of two standard deviations from the NARVIS 

mean width was found appropriate in this work.  Records outside the buffer are removed.  

Second, a forward sequential search iterates over consecutive AIS records to calculate 

speed (eq. 3.1).  The speed (as space mean speed) is checked against a reasonableness threshold 

of 27.7km/h (15 knots), based on (El-Reedy, 2012). By applying the proposed speed threshold, 

records corresponding to non-freight vessels are discarded. 

𝑠𝑝𝑒𝑒𝑑𝑖 = 
𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒[ 𝑖−1,𝑖]

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑡𝑖𝑚𝑒[𝑖−1,𝑖]
  (3.1) 

Where,  

speed = space-mean-speed associated with pings i-1 and i, in km/h 
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travelled distance = great-circle distance based on position (latitude, longitude) between 

pings i-1 and i, in kilometers 

travelled time = time to travel between pings i-1 and i, in hours 

Next, if less than 20 records are associated with one vessel, all the records for such vessel 

are removed. Last, spatial coverage of each remaining vessel records is calculated as the diagonal 

of a bounding box around all of its pings. Vessels with coverage less than 2km are removed. The 

coverage threshold is defined as the minimum distance between different port authorities in the 

study area.  

Step 1.3- Inland Waterway Network Development 

The objective of this step is to create a detailed representation of an inland waterway 

network as nodes and links on which to map-match the AIS vessel movements. Unlike previous 

work (Bureau of Transportation Statistics, 2015), the network is expanded to include nodes 

representing: (i) connections between links to accommodate geometry and attribute changes; (ii) 

locks; (iii) port terminals; and (iv) staging or anchoring areas. To identify (i) and (ii), the NTAD 

network layer (Bureau of Transportation Statistics, 2015) is used. To identify (iii), because the 

NTAD network node layer lacks sufficient detail (several port terminals are aggregated to single 

port authorities) it must be supplemented with local data such as state or regional port databases. 

If local data is not available, a review of open-source aerial imagery should be performed.  To 

identify (iv), NTAD cannot be used as it does not specify the location of designated anchorage 

grounds. Thus, clusters of AIS records corresponding to tugs with low speed but that did not 

match the location of a port terminal can be used to locate designated or undesignated anchorage 

grounds. As a result, “staging” or anchoring areas are identified, i.e. areas within the waterway 

where tugs may leave barges to be picked up later. Polygons representing port terminals, 
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anchoring areas, and locks are drawn to surround clusters of low-speed records observed from 

AIS data and labeled (Figure 3.3).  

 

Figure 3.3  Sample anchoring and port terminal areas 

The waterway line layer used as a basis to develop the detailed network is also obtained 

from the NTAD. Since the NTAD port layer is supplemented with additional port and non-port 

nodes, it is necessary to edit the NTAD waterways line layer to accommodate these “new” 

nodes. Next, AIS data is used to identify potential missing links and accommodate the network 

representation to the path followed by vessels (Figure 3.4). First, pings outside a buffer of the 

NTAD waterway line layer are selected. Buffer size is the NARVIS mean river width 

(Andreadis, Schumann, & Pavelsky, 2013). Second, clusters of pings outside the buffer are 

identified. Third, for each cluster, the two closest nodes to each cluster centroid are found, 

filtering out repeated node pairs.  Fourth, identified nodes are connected to the cluster centroid 

with a new link.  Lastly, the modified waterway line layer is subject to a GIS plugin to generate a 

routable network model (AequilibraE, 2018) with link “cost” determined from link length. 

Attributes added to the network link layer include length (miles), and travel time (hours). Transit 

travel time is calculated based on the link length and on an assumed vessel speed of 5.8mph 

(Yuan & Harik, 2010), except for links representing locks, were a “lockage transit travel time” is 

Legend  

       Staging areas 

       Port terminal areas 

       AIS low-speed records 
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obtained from the annual average processing time provided in the LPMS (U.S. Army Corps of 

Engineers, 2018c). 

 

Figure 3.4  Detailed navigable waterway network development 

3.4.2. Step 2-Stop Identification 

The purpose of this step is to identify and characterize stops made by vessels using a stop 

identification algorithm modified from (Camargo et al., 2017). For AIS records, zero and low 

speed position records both correspond to stops, and many zero or low speed position records 

found in close geographic proximity may correspond to the same stop, rather than to several 

unique stops. Even though each position record includes a point-speed estimate, point speeds 

may not be reliable due to transmission issues and thus cannot be used alone to define a stop. 

Instead, the stop identification algorithm evaluates consecutive series of position records to 

discover ‘stop clusters’ (Figure 3.5). Each stop cluster is defined by a stop time (the average 

timestamp of all pings within the cluster), duration, position (the centroid of the cluster), and 

location (e.g., at a port, lock, anchoring, or other area) (Figure 3.6).  
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Figure 3.5  Stop cluster example 

The parameters within the stop identification algorithm are: speed, minimum time 

stopped, and maximum stop coverage. To define values for algorithm parameters, manual 

verification of stop locations within port areas is performed for a sample of AIS records. 

Parameters are iteratively calibrated to achieve acceptable performance measured in terms of 

precision (eq. 3.2), e.g., the number of correctly identified stops at ports (true positives) relative 

to the number of identified stops at ports (true positives and false positives). By using precision 

as the performance metric for algorithm calibration, the occurrence of correctly identified stops 

is maximized while reducing the occurrence of “duplicated stops”. Duplicated stops are defined 

as two (or more) timewise consecutive stops occurring at nearby locations that in reality should 

be clustered into a single stop. Precision considers both true positives (TP, stops correctly 

identified by the algorithm) and false positives (FP, stops that the algorithm incorrectly identified 

as a stop, or duplicated stops). Details regarding parameter estimation and performance are 

presented in the case study section. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
   (3.2) 

Where, 

True Positives (TP)= number of stops correctly identified by the algorithm 

False Positives (FP)= number of stops that the algorithm incorrectly identified as such, or 

duplicated stops  
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Figure 3.6  AIS stop identification flowchart  
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3.4.3. Step 3–Trip Identification 

The purpose of this step is to reconstruct vessel trajectories as complete and connected 

paths defined by network links and nodes using map-matching heuristics, and define individual 

freight trips by origin and destination (Figure 3.7). 

 

Figure 3.7  AIS trip identification flowchart 
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Step 3.1-Vessel Path Identification and Network Map-Matching 

To reconstruct vessel trajectories defined by network links and nodes using map-

matching heuristics, the map-matching heuristic developed by Camargo et al. (2017) was 

adapted as follows (Figure 3.8). For each vessel, first, stop cluster records are associated with a 

network node by proximity. Second, the complete path of the vessel is reconstructed by 

assuming that the vessel takes the shortest path between pairs of timewise-consecutive stop 

clusters associated with different nodes. For highway applications, the later assumption can be a 

challenge to meet given dense highway networks with many competing ‘shortest’ paths. The 

algorithm by Camargo et al. accounted for this by limiting the shortest path links to those that 

comprised the reduced set of network links associated with pings. However, for inland waterway 

networks, there are relatively fewer nodes and links from which to reconstruct a shortest path 

between stops.  Therefore, the map matching algorithm can be simplified by finding the shortest 

path between stop clusters without the need to look at a reduced link set.  The approach of 

searching for shortest paths between stop clusters and not between all pings, thus, serves to 

increase computational efficiency without reducing path identification accuracy.  

Ultimately, the map-matching algorithm produces a sequence of shortest paths (“path 

segments”) that constitute the complete paths made by all vessels. Path segments are represented 

as the series of nodes of the network visited by each vessel between each pair of consecutive 

stops, the time when the vessel arrived and left each node, and the associated network link 

connecting consecutive nodes.  
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Figure 3.8  Map-matching and trip characterization algorithm for a sample vessel 

Step 3.2–Vessel Trip Characterization  

Following the map-matching procedure vessel paths are defined by OD so that individual 

freight trips and trip chains can be characterized.  ODs are defined as freight ports and a 

distinction is made between freight stops (pick-up or delivery) at ports and stops due to lockage, 

anchoring, and other non-freight activity.   

Along a vessel path, stops at locks are mandatory, traffic-related (equivalent to a truck 

stopping at a traffic light), and irrelevant for characterizing freight activity as purposed in this 

paper. Thus, trips are defined as the combination of successive path segments that share a lock as 

an intermediate stop. For example, in Figure 3.8, network node 83 (associated with stop cluster 

6) represents a lock; so, path segments 1 and 2 are combined into a single trip with nodes 72 and 
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84 as origin and destination.  As such, vessel trips are based on the time and location of their 

stops that constitute trip origins and destinations, regardless of the duration of the trip, as was 

assumed in prior work (Dobbins & Langsdon, 2013) (Graser, 2019). Once trips are defined, trip 

characteristics such as trip length (in miles) and duration (in hours) are derived by aggregating 

the length and transit time of all the links comprising the trip. Other trip characteristics include: 

trip origin and destination nodes, and location (e.g., port, staging/anchoring, lock, and other non-

port).  

Next, trips are combined for cases of potentially non-freight ODs.  For ODs found to be 

non-ports (anchoring areas and other network nodes), the consecutive trips are combined such 

that the stop at the non-port becomes an intermediate stop (not an origin or destination) in the 

trip chain (Figure 3.8).  All nodes in the network should be predefined as ports or non-ports so 

that identification of intermediate stops is facilitated. 

 Case Study: Maritime Freight Activity in Arkansas 

3.5.1. Scope and Data 

The map-matching methodology was evaluated using AIS data gathered from the 

MKARNS and the portion of the Mississippi River along Arkansas’ eastern border for the year 

2016.  

In total, 7,803,151 AIS records emitted with a 5-minute frequency by 776 vessels were 

extracted from (Office for Coastal Management, 2018) (Figure 3.2.a). 116 of the 776 vessels 

were observed within the MKARNS, while the remaining 660 vessels were observed within the 

Mississippi River (and did not use the MKARNS). Of these records, 53% corresponded to zero 

speed records, which were removed (Step 1.1, Figure 3.2.b). The quality control process (Step 
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1.2) excluded 518,697 position records from the dataset. As a result, 3,398,279 AIS records 

(44% of the original sample) were subject to the map-matching procedures (Figure 3.2.c).  

The data used for this work constituted a sample of the population of vessels traveling on 

Arkansas waterways during 2016. Thus, a coefficient of coverage was calculated by comparing 

unprocessed AIS traces with LPMS vessel counts. The reduced AIS data sample represents 88% 

of commercial vessels operating on the MKARNS during 2016. Coverage varies per lock, 

possibly indicating that the AIS sample excluded more vessels observed in the proximity of the 

locks where a lower coefficient of coverage was found, i.e. the Oklahoma portion of the 

MKARNS.  

The development of the detailed inland waterway network (Step 1.3) was complemented 

with data from the Arkansas Economic Development Commission GIS office (Arkansas 

Economic Development Commission, n.d.). Only port terminals located on the MKARNS were 

considered, resulting in 43 unique freight port terminals and 11 staging/anchoring areas.   

3.5.2. Stop Identification and Map-Matching Parameter Calibration  

Tunable parameters within the stop identification and map-matching algorithms were 

calibrated against a manually verified dataset generated by the authors. Using a random stratified 

sample of eight vessels from the 2016 AIS records, 4,869 stops (3,820 trips across 352 days) 

were manually identified by comparing vessel position records to aerial imagery. Stops were 

manually identified based on the position record spot speed, location of the stop, and 

characteristics (speed, position) of prior and subsequent stops. The stratified random sample 

considered: number of pings (less than 15,000; 15,000-30,000; and over 30,000), expanded time 

coverage (less than 3 months; 3-9 months, and 9-12 months), and frequency of presence at ports 

in the study area (less than 20; 20-30, and more than 30 ports visited).  
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With the groundtruthed data, sample parameters were calibrated using a partial 

combinatorial search heuristic within the ranges expressed in Table 3.2. The search over the 

parameter space continued until model performance (precision) no longer improved.  Over 40 

combinations were evaluated; the combination of parameter values which gave highest precision 

was selected.  The calibrated parameters showed a precision of 83% at ports, 85% at locks, 74% 

at staging/anchoring areas, and 32% elsewhere. The overall precision (i.e. stops at all location 

types) was 67%. In addition, the calibrated parameters produced the fewest duplicated stops 

(16%), as defined in Step 2 of the methodology. 

Table 3.2  Vessel Stop Identification Parameters 

Stop Parameter Calibrated Value Range Performance Range Tested 

Stopped speed (km/h) 5.3 80.0-84.0% (4.0%) 4.5-6.0 

Minimum time stopped (seconds) 300 73.9-84.0% (10.1%) 300-1,200 

Maximum stop coverage (km) 5.0 83.2-84.0% (0.8%) 2.0-15.0 

3.5.3. Results 

The stop identification algorithm identified 120,185 stops for the 3.4 million AIS position 

records, of which 24% were on the MKARNS and 75% on the Mississippi River (Figure 3.9). 

The subsequent map-matching algorithm identified 47,555 trips (Figure 3.10), and 31,359 trip 

chains. The average number of annual trips per vessel was 63, with a mean trip length of 56.7 

miles within a range of 0.2 to 1,085 miles, and a mean duration of 10 hours with a range of 1 to 

214 hours. Vessel trips of shortest length and duration likely correspond to movements of tugs 

between docks within a given port, and to support construction occurring during 2016, e.g., 

Broadway Bridge in Little Rock. The data was processed in 485 minutes using a computer with 

Intel® Core™ i7-8700 processor (3.20GHz), 32GB RAM, Microsoft Windows 10, 64-bit 
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operating system. Open-source software was used: Python, PostgreSQL for database 

management, and Quantum GIS (QGIS) for geoprocessing and visualization. 

3.5.4. Model Validation 

For validation, the trip paths identified by the model (i.e. processed AIS data) on the 

MKARNS were compared to LPMS data (i.e. trip lockages) (eq. 3.3) following (Dobbins & 

Langsdon, 2013).  

𝑉 =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝐴𝐼𝑆 𝑑𝑎𝑡𝑎 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝑠

𝐿𝑃𝑀𝑆 𝑑𝑎𝑡𝑎 𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝑠
  (3.3) 

Where, 

V = model evaluation metric, 

Processed AIS data lockages = annual number of tugs observed from the processed AIS 

data (trips) in transit through each of the locks in the study 

area, and 

LPMS data lockages = annual number of commercial vessels reported by LPMS for the 

same locks during the same time period (U.S. Army Corps of 

Engineers, 2018.c) 

To estimate the Processed AIS data lockages, trip geometries of tugs/tows that 

intersected locks (represented by screenlines) were counted as vessels in transit through the lock. 

Validation results show that the model is capable of correctly identifying 83.5% of trip lockages, 

with a range of [65.6%-96.6%] by lock. This validation is limited in that it only considers the 

trips that crossed a lock, thus excluding trips on the lower Mississippi River (where there are no 

locks).  

Algorithm precision likely varies as a result of: i) the AIS dataset where the model is 

tested represents 88% (not 100%) of the vessel activity in the area; ii) the random stratified 

sample of vessels used to train the model constitutes only 1% of the vessels in the dataset; and 

iii) it is observed that a single set of stop identification algorithm parameters does not fit best all 

groundtruthed vessels.  
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Figure 3.9  Stop identification results from AIS data  Figure 3.10  Trip identification results from AIS data 
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Figure 3.9  Stop identification results from AIS data
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Figure 3.10  Trip identification results from AIS data 
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 Discussion 

The map-matching method presented in this paper recreates vessel trips from AIS 

position records by first identifying the location of freight delivery stops that constitute trip ODs, 

and then connecting those stops as complete consecutive series of inland waterway network 

links. In addition, matching of vessel trips to a robust inland waterway network allows for further 

integration into multimodal STDMs, which typically fall short in their representation of non-

truck modes.  

Since AIS data is available worldwide and for various time periods (past and present), the 

proposed methodology has potential for spatial and temporal transferability. Tunable parameters 

within the stop identification and map matching heuristics such as stop duration, speed, and 

spatial coverage are calibrated using manually verified vessel trajectories.  It is possible that for 

other regions and time periods, waterway geometry and vessel operational characteristics may 

differ, and thus tunable parameters should be recalibrated.  A sensitivity analysis is performed to 

illustrate the impact of various model parameters on model performance (Figure 3.11) including: 

(a) stopped speed, (b) minimum time stopped, and (c) maximum stop coverage. 

Stopped speed is varied between 4.5 and 6.0km/h (Figure 3.11.a). For the case study, 

5.3km/h (2.9 knots) produces the highest precision in stops identified at ports (84.0%).  For the 

stopped speed values tested, in general, as the stopped speed decreases below or increases above 

5.3km/h (highest precision), the algorithm precision decreases, and the number of stops 

identified decreases by as much as 13%. This can be attributed to the number (and proportion) of 

duplicated stops which tend to occur at or near at ports more than at non-port areas. This increase 

in the number (and proportion) of duplicated stops identified by the algorithm (false positives in 

eq. 3.2) produces a decrease in the precision.  
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Minimum time stopped is varied between 300 and 2400 seconds (5 to 40 minutes) 

(Figure 3.11.b). For the case study, 300 seconds produces the highest precision in the stops 

identified at ports.  In general, as minimum time stopped increases, the algorithm precision 

decreases from 84.0% to 73.9%. As a reference, typically it takes a tug about 30 minutes to a few 

hours to pick-up and deliver barges at a port terminal, depending on weather, cargo, etc.  Most 

importantly, the selection of the minimum time stopped is dependent on the frequency of the 

ping data.  For instance, considering that vessels may emit only one ping while stopped and that 

the AIS data used for analysis has a frequency of 300 seconds, stops corresponding to single ping 

records would not be identified if the minimum time stopped parameter was greater than 300 

seconds. 

Maximum stop coverage is varied between 2 and 15km (Figure 3.11.c). For the case 

study, 5.0km produces the highest precision in combination with the other parameters (84.0%). 

In general, as the stop coverage increases, the number of stops identified decreases slightly (by 

0.8%), while precision to identify stops at ports does not change substantially (0.9%). This is 

likely due to an increase in stops identified in locations other than ports.  

A notable limitation of the proposed methodology to analyze freight activity based on 

AIS tracking data is that AIS transponders are installed on tugs and tows, instead of on the 

barges that carry freight (Kruse, et al., 2018). This has several implications: i) trips made by 

tow/tugboats not transiting barges or transiting empty barges are included in the AIS data; and ii) 

a tow/tugboat may pick-up loaded barges from an origin port, and leave them in the vicinity of 

its destination port, to be picked up later to reach its final destination. Such movements are 

recorded as two separate trips, masking the true OD of the freight. Lastly, since each tow may 

push several barges, the amount of freight carried in each trip is unknown. This uncertainty in 
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freight volume would be mitigated by creating policy to mandate AIS tracking on barges, which 

would also support safety. Notably, the Port of Antwerp requires all barges to carry an AIS 

device (Port of Antwerp, 2012).  

 

Figure 3.11  Sensitivity of stop identification output to algorithm parameters 

 Conclusion 

Vessel tracking data, ubiquitous in time and space, provides a consistent source to 

observe freight activity on inland navigable waterways.  The stop identification and map 

matching heuristics presented in this paper allow vessel tracking data to be used to define and 

characterize freight trips along the inland waterway network. The methodology presented in this 

paper first identifies stops made by each vessel by clustering successive AIS position records 

based on their location, timestamp, and calculated speed. Then, each stop is associated with a 

network node based on proximity. If two timewise-consecutive stops are assigned to different 
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network nodes, they constitute the OD of a path segment. Then, a map-matching algorithm 

reconstructs complete vessel paths by finding the shortest path between OD pairs. Path segments 

through locks are joined to define freight trips, and trip chains between freight activity stops at 

ports. Lastly, freight trips characteristics are derived, such as trip length, duration, origin, and 

destination.  The methodology is applied to Arkansas waterways with 84.0% precision in 

detecting stops at ports in the Arkansas River. Sensitivity of the model parameters like maximum 

stop speed and duration show that to ensure accuracy for other regions, parameter calibration is 

necessary. Validation results show the model correctly identifies 83.5% of trips crossing locks. 

Given that historical AIS data are increasingly available worldwide, the proposed methodology 

may be applied to any region with waterways.   

Overcoming the limitations of prior analyses of AIS datasets, this work allows AIS data 

to be mapped to a well-defined inland waterway network (also generated from AIS data).  In 

doing so, freight activity along the inland waterway can be integrated into travel demand model 

(TDM) frameworks.  This is a benefit because many freight TDMs focus mainly on highways 

ignoring important multimodal connectivity, leading to the inability to estimate multimodal 

performance metrics like freight fluidity.  With the availability of AIS data and the methods for 

freight trip identification presented in this paper it is increasingly possible to represent and 

integrate non-truck modes in freight TDMs.   

Building upon the methodology proposed in this paper, the authors are working on 

further characterizing inland waterway freight movements by identifying the commodity carried 

in each trip. Such characterization may be realized by fusing LPMS, AIS, and truck GPS data 

using stochastic assignment methods. Ultimately, this paper and future work help to fill data gaps 
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often referenced for freight commodity flows so that freight project identification and 

prioritization can best leverage data driven approaches.   
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CHAPTER 4.  GIS-Based Identification and Visualization of Multimodal Freight 

Transportation Impact Areas 

 Abstract 

Measuring the area of impact of a transportation infrastructure project is necessary to 

estimate its impacts, monetize its benefits, support cost-benefit analyses, and project 

prioritization. State-of-the practice methods to identify a facility’s impact area consist primarily 

of arbitrarily selecting a radial perimeter around it. For freight related projects, this method 

ignores complex interactions among freight modes and supply chains, longer travel distances, 

etc., and may limit the impact area. Instead, the impact area of a project affecting a freight 

facility can be better defined by examining the origins and destinations (OD pairs) served by the 

modes that use the facility, or “freight catchment” area. Such OD pairs may be obtained from a 

travel demand model (TDM) and/or project specific data. Unfortunately, TDMs do not typically 

contain robust depictions of water and rail modes, preventing the identification of multimodal 

freight catchment areas. In addition, project-specific data including local traffic counts and 

stakeholder surveys are time consuming and subjective. This work overcomes the limitations of 

gathering multimodal OD pairs by introducing a method to identify multimodal freight 

catchment areas by leveraging emerging sources of “big data”. Geospatial data fusion 

approaches including map-matching and route identification are applied to integrate truck Global 

Positioning System (GPS) and maritime Automatic Identification System (AIS) data, which are 

continuous and ubiquitous over time and space. A case study of port terminals on the Arkansas 

River exemplifies the methodology. Results show that adopting an arbitrary radial impact area 

for different ports would lead to inaccurate project benefit estimates, and identify corridors of 

modal competition. 
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 Introduction  

In the context of public and private transportation infrastructure investment, projects 

compete for limited resources. Thus, evaluation and prioritization of competing projects is 

critical, but of the methods available, all rely in part on estimation of benefits relative to costs. 

Calculation of benefits necessitates detailed estimation of the types and magnitude of project 

impacts associated with the project impact area (Chacon Hurtado et al., 2016; Weisbord et al., 

2009). Therefore, it is important to clearly and consistently define the extent, location, and 

characteristics of a project’s impact area.  

The impact area of a project affecting a multimodal freight facility can be defined as the 

region where the facility draws and delivers freight, or the origin-destination (OD) pairs served 

by the facility (Vadali et al., 2017). Despite general agreement on conceptual and qualitative 

identification of a project’s economic impact area (Economic Development Research Group et 

al., 2014; Vadali et al., 2017), little published work is available to guide data-driven methods to 

define impact areas for freight projects. Instead, planning agencies within Metropolitan Planning 

Organizations (MPOs) and state Departments of Transportation (DOTs) must use professional 

judgement to define each project impact area (AASHTO, 2015). As a result, the lack of a shared 

method to determine the area of impact of competing projects may prevent proper comparison 

and promote unfair competition among projects from different agencies and jurisdictions. To 

ensure fair comparisons, impact areas should be determined by following the same, systematic 

methodology.  
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State-of-the practice methods to identify project impact areas consist primarily of 

selecting an arbitrary radial perimeter around the facility (Carroll et al., 2017; NADO Research 

Foundation, 2011; Tyndall Air Force Base, 2018). For freight related projects, however, this 

method ignores complex interactions among freight supply chain components (e.g. truck, rail, 

water) and longer travel distances, for example. Instead, impact area of a project affecting a 

freight facility can be better defined as the OD pairs served by freight modes using the facility. 

This has been referred to as the “freight catchment” area.  

 Freight OD pairs may be obtained from project-specific data like stakeholder surveys or 

traffic counts and/or statewide travel demand models (TDM). Project-specific data can be time 

consuming to collect, subjective, or in the case of annual traffic counts, may not be available at 

or near the project. If a statewide freight TDM exists, the OD pairs served by a freight facility 

might be found by performing a ‘select link analysis’(Alliance Transportation Group, 2015). 

However, although TDMs contain representative models of the roadway network, they often do 

not provide robust depictions of water and rail networks and are thus unsuitable for multimodal 

freight catchment analyses (Alliance Transportation Group, 2015; Donnelly et al., 2018). For 

example, the statewide TDM in Arkansas (ARSTDM) contains a multimodal mode choice 

model, but only performs trip assignment for highway flows and not vessel flows because 

waterways are not part of the model network (Alliance Transportation Group, 2015).  This is a 

notable limitation considering the key benefits of the Arkansas River to the state economy 

(Nachtmann et al., 2015). In addition, network representation in TDMs often lacks the level of 

detail necessary to represent actual roadway geometry, i.e. port access roads may not be 

represented.  
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The lack of guidance regarding multimodal catchment area definitions can be attributed 

in part to the heterogeneity of the data used for this purpose. In a freight supply chain, the 

catchment area contains several modes, freight facilities, and industries, which would be better 

represented (and linked together) by spatially and temporally continuous data, such as historical 

truck and vessel paths. To overcome the limitations in defining catchment areas for freight 

facilities, this paper leverages two emerging sources of “big data” to identify multimodal freight 

paths: truck Global Position System (GPS) and marine Automatic Identification System (AIS) 

data. The main contribution is a geospatial data fusion method to identify the impact area of 

multimodal freight projects using ubiquitous vehicle tracking data. Conceptually, multimodal 

freight tracking data is used to characterize spatial patterns of freight intensity. In particular, GPS 

tracking data from trucks and marine vessels accessing freight facilities are mined to identify 

stops and to find complete paths which are then mapped to a high resolution, multimodal 

transportation network. The geographical coverage of the truck and vessel trips define the 

“multimodal catchment” or impact area of the project. In this way, all competing projects are 

subject to identical criteria for impact area definition, providing a common basis for funding 

priority. 

The methodology is applied to freight ports located on inland navigable waterways, 

although it applies to other infrastructure including bridges, railyards, and warehouses. Beyond 

benefit-costs analyses, quantitative definitions of multimodal impact areas further efforts to: i) 

quantify multimodal performance measures, ii) visualize the extent of transportation impacts of 

extreme weather events (such as flooding), iii) estimate population exposures to pollutants or 

congestion effects induced by freight facilities, and iv) identify areas of modal competition.  
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 Background  

4.3.1. Project Evaluation and Prioritization and Catchment Areas 

To mitigate negative externalities of projected freight growth, physical and operational 

improvements to the multimodal transportation network and freight facilities are required. In this 

context, several multimodal projects compete for limited public and private funding. Three 

analytic methods are typically utilized to prioritize, compare, and select transportation projects: i) 

Benefit-Cost Analysis (BCA), ii) Economic Impact Analysis (EIA), and iii) Multi-Criteria 

Analysis (MCA) (Economic Development Research Group et al., 2014). BCA consists of 

quantifying project impacts as monetary units and distributing them over time to calculate the 

present value of all benefits and costs. The results are expressed as a net benefit (benefit minus 

cost), or as a benefit/cost ratio. A broader version of the BCA accounts for social impacts, 

including environmental impacts that affect non-travelers. In the EIA, project impacts are 

measured in terms of their effect on a region’s economy. Quantitative measures include business 

output, job generation, net business income generation, household income, and GDP. In MCA, 

impacts can be measured either as quantitative indices or as qualitative ratings to portray relative 

importance. Thus, a broader range of positive and negative impacts may be considered for 

decision-making (Economic Development Research Group et al., 2014).  

All three methods require the impact area of the project to be defined. For instance, 

according to the Guide for Conducting Benefit-Cost Analyses (BCA) of Multimodal, 

Multijurisdictional Freight Corridor Investments (Vadali et al., 2017), the first step of a BCA is 

to define a project by: i) the type of facility or location to be analyzed (whether it is a corridor, a 

modal or intermodal facility), ii) its impact area, iii) the modes involved, and iv) the nodes 

involved (i.e. connections to freight network points such as ports, distribution centers, etc.).  
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However, no methodology is proposed to identify impact areas. Moreover, the Guide highlights 

the need to integrate data sources to perform BCA, because individual data sources do not 

address all modes (Vadali et al., 2017).  Similarly, the EconWorks economic impact assessment 

tool allows transportation agencies to estimate economic impacts of diverse project types using 

past projects as case studies (AASHTO, 2015). For each case study, economic impacts are 

measured in terms of number of jobs, sales, income, and investment. The size and location of the 

area where the economic impacts are calculated is critical for the study, and described as the 

“counties in which the project passes, or which are immediately impacted by the project” 

(AASHTO, 2015). However, the selection of the impact area is not a data-driven analysis; 

instead, it is a judgement call made by the analyst. Another BCA tool, the Freight module within 

the BCA tool Transportation Economic Development Impact System (TREDIS) enables users to 

define a project and identify affected freight flows and associated economic activities.  Given a 

user-defined region, TREDIS profiles the area’s freight flow patterns, assesses the supply chain 

roles of those freight flows, and calculates how emerging economic trends may change future 

freight flows and investment needs. As output TREDIS allows visualization of county-level, not 

link or corridor level, freight flows. Arguably the most powerful tool available on the market, 

TREDIS does not provide network-based analyses and visualization of project-specific freight 

catchment areas. 

4.3.2. Vehicle Tracking Data Characteristics 

Multimodal catchment areas defined in this paper are based on freight vehicle tracking 

data, specifically from maritime AIS and truck GPS (Table 4.1). Both sources cover wide 

geographies, contain population-level data or exist as large samples, and are publicly available, 

either directly from government sources or through data sharing agreements with private data 
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providers, making them viable and promising sources for data-driven catchment area 

identification as described in this paper.  

Table 4.1  Vehicle Tracking Data Characteristics 

Dataset 

characteristics 
Waterborne AIS data Truck GPS data 

Data collection in 

the U.S. 
U.S. Coast Guard. 

Private data collection entities 

such as truck preclearance 

programs and Electronic 

Logging Device (ELD) 

providers. 

Data elements 

Vessel: Vessel name, length, width, 

MMSI, IMO, and call sign. 

Broadcasting: Latitude, longitude, 

time stamp, speed over ground, 

course over ground, heading. 

Voyage: Cargo, draft, status. 

Anonymous truck identifier, 

position (latitude and longitude), 

timestamp, heading, spot speed. 

Spatial Coverage 
All international and U.S. 

waterways. 
All U.S. territory. 

Temporal 

Coverage / ‘ping’ 

frequency 

Aggregated to one-minute intervals 

(for data storage and sharing 

purposes) 

Every 30 seconds. 

Update frequency 
Since 2009, data collected in real 

time, shared via annual updates. 

Since 2002, data collected in real 

time. 

Data storage 

format 

File geodatabases (.csv) containing 

one month of data per time zone. 

Text files (.txt) containing a time 

window requested by the user.  

Data sharing 

scheme 

Open source via 

www.MarineCadastre.gov  

Publicly available through 

agreements with data collection 

entities. 

Limitations 
Carried by tugs and tows on inland 

waterways, not barges. 

May lack representability of 

industries and small fleets. 

4.3.3. Automatic Identification System data (AIS) 

AIS data (Table 4.1) is collected for navigational safety purposes (e.g., collision 

avoidance) and is required by the International Maritime Organization (IMO) for all passenger-

carrying vessels and commercial vessels over 300 Gross Tonnage that travel internationally. 

Onboard navigation devices transmit location and characteristics of vessels in real time to 

receivers on shore, satellite, buoy, and other vessels (U.S. Department of Homeland Security). In 
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the U.S., AIS is mandatory along the Ohio River, between Mileposts 593 and 606, and in the 

Lower Mississippi River, up to Milepost 254.5 (Dobbins et al., 2013). Even though AIS is not 

required in all U.S. inland waterways, most vessels use the AIS transponder (DiJoseph et al., 

2015). Vessel and voyage features entered to the database manually contain substantial errors 

and omissions. Broadcasting features, e.g., location (latitude and longitude), time stamp, speed 

over ground, course over ground, and heading, do not require manual intervention, thus contain 

few errors, and are used in this work for catchment area definition. In particular, AIS data has the 

ability to track a vessel's path with time stamps which is suitable to identify freight flows though 

inland navigable waterways. Although previous studies reconstructed vessel trajectories from 

AIS data (Graser, 2019; Zhang et al., 2018; Zhao et al., 2018), they are limited in the lack of an 

inland waterways network setting, or in that movements are divided per day, masking the 

identification of trips. DiJoseph and Mitchell (2015) overcome the latter by linking consecutive 

AIS records together to generate paths on inland waterways; however, they did not fuse 

generated vessel paths with a defined network. The inability to map vessel data to a network 

precludes future integration of AIS data into multimodal, network-based models, such as state 

TDMs. In contrast, the algorithm applied in this work allows for the identification of trips 

defined by origin and destination (not duration), and matched to a defined intermodal network. 

4.3.4. Truck GPS data 

Truck GPS data consists of vehicle positioning data (latitude and longitude) emitted by 

onboard GPS devices. Spatial coverage in the US is almost ubiquitous (Short, 2014). Private 

truck fleets typically record positioning data of their own trucks for security, route tracking, fuel 

cost, and other operational analyses. Data providers typically share anonymous (no identification 

of industry, operator, company, etc.) truck GPS data gathered from a sample of private fleets. 
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Truck GPS data has been used for bottleneck identification, travel time analyses, border 

crossings, truck parking, hours of services tracking, etc., and is a valuable source of truck 

routing, time-of-day usage, volume and speed data (Laranjeiro et al., 2019; Short, 2014). Truck 

GPS data covers every single road in the statewide network, while other truck data sources, such 

as static sensors like Weigh-in-Motion (WIM), inductive loop detectors, or temporary tube 

counters, are restricted to fixed and few locations. Like AIS data, it is necessary to employ 

geospatial fusion methods to map GPS traces to a defined transportation network. Methods for 

map matching and route identification for truck GPS data have been carried out in several prior 

studies (Camargo et al., 2017; Ciscal-Terry et al., 2016; Hashemi et al., 2014).  

4.3.5. AIS and Truck GPS data fusion  

The challenge in fusing truck and vessel tracking data is overcoming data heterogeneity 

in units of time, space, and context. Xu et al. (2017) developed a Generic Target Monitoring 

System (GTMS) to monitor multimodal vehicles, and tested it with AIS and truck GPS data 

collected at a sea port terminal. To overcome multimodal data heterogeneity, vehicle tracking 

data from different sources (i.e. truck, vessel) was converted to a uniform data format. A GIS 

web-based interface allowed users to visualize and analyze real-time and historical multimodal 

vehicle tracking data within a designated geographical area (Xu et al., 2017).  Meyer-Larsen et 

al. (2015) combined real-time AIS and truck GPS data to improve the efficiency of logistics at 

container terminals. The system tracked container vessels positions from AIS data to estimate 

vessels estimated time of arrival (ETA) and compared it with the ETA manually entered by the 

vessel operator. The system automatically detected deviations between planned and scheduled 

ETA and communicated potential deviations in real time to port stakeholders (including truck 

operators), so they could schedule operations in response to vessels’ delays (Meyer-Larsen et al., 
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2015). Monsreal et al. (2019) performed statistical analyses to determine vessels and truck 

activity correlations and causalities at coastal ports using AIS data from non-liquid carrying 

vessels acquired from a vendor, and truck GPS probe data from the National Performance 

Management Research Data Set (NPMRDS). The analysis was complemented with census and 

port administration datasets. The analyses produced coefficients representing changes in 

directional road traffic volumes corresponding to changes in import/export freight volume 

(measured in weight), and the time when those increments on road traffic were expected. For 

example, unloading of a vessel with 1,000 TEU would increase traffic along an inland highway 

by approximately 500 trucks during the week the vessel arrives, and decrease by approximately 

400 trucks two weeks later (Monsreal et al., 2019). Overall, these studies were limited by the 

lack of: i) a systematic, data-driven procedure to identify multimodal freight port catchment 

areas, ii) network assignment procedures for AIS data, and iii) multimodal data fusion 

approaches applied to inland waterway transportation. The method presented in this paper 

overcomes these limitations by characterizing spatial patterns of freight intensity that exceed the 

circular perimeter (radial buffer) typically used for catchment analysis by explicitly assigning 

truck and vessel flows to defined multimodal networks.  

 Methodology 

The “catchment” area of a multimodal freight transportation infrastructure project is 

defined as the region where such facility draws and delivers freight, which can be visualized as 

the paths followed by vehicles, vessels, railcars, etc. accessing the facility. The methodology 

consists of the following steps (Figure 4.1): 

Step 1: Data Preparation- The vehicle tracking data of each of the two modes are 

independently subjected to a quality control process to remove erroneous or irrelevant records. 



 

  72 

Step 2: Data Analysis- Each vehicle tracking dataset is independently subjected to stop 

identification and map-matching procedures to define locations and duration of stops, and 

connected paths on a defined transportation network. The stop identification and map-matching 

algorithm used for both vessels and trucks are similar but with mode-specific parameters. For 

each mode, the outputs of the map-matching algorithm are: i) a table listing the nodes of the 

network visited by each vehicle during its trips, and ii) a table listing the trips made by all the 

vehicles, identifying the origin and destination of each trip (by network node, traffic analysis 

zone, and port if applicable). 

Step 3: Multimodal Data Fusion: Visualization and Quantification- The output of the 

map-matching algorithm applied to each mode is post-processed to identify trip paths to/from a 

specific freight facility, depicting its mode-specific project impact area. Then, the two mode-

specific impact areas are super-imposed into a single map to depict the multimodal impact area. 

Several mode-specific and combined indicators are derived to quantify and compare the impact 

area: i) impact area size, ii) Vehicle Miles Travelled (VMT), iii) Vehicle Hours Traveled (VHT), 

iii) population within the impact area, iv) number of business registered within the impact area, 

and iv) number of unique traffic analysis zones (TAZ) as origin or destination of trips associated 

to each facility. 
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 Figure 4.1  AIS and truck GPS data fusion methodology flowchart
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4.4.1. Step 1- Data Preparation 

The purpose of this step is to remove low-quality records from the AIS and truck GPS 

datasets. Unprocessed AIS and anonymous truck GPS data may contain erroneous or irrelevant 

records due to transponder issues, transmission obstructions, etc. Erroneous GPS records refer to 

records with unusual high speed (i.e. cargo vessels travelling at 70 mph), or located far from the 

transportation network (i.e. vessels far away from inland waterways or heavy trucks away from 

roadways). Irrelevant records come from vehicles that emitted less than 20 records within the 

reporting period. These records are removed from the datasets. For example, geospatial tools are 

used to remove records outside a buffer representing the navigable waterways.  

4.4.2. Step 2- Data Analysis: Stop Identification and Map Matching 

The purpose of this step is to reconstruct the vehicle and vessel paths observed from the 

GPS/AIS position data using mode-specific networks, also known as map-matching. From the 

several map-matching algorithms available (Camargo et al., 2017; Hashemi et al., 2014), 

Camargo et al. (2017) was used because it has the advantage of wide applicability to multimodal 

data sets4.1.5.Akter and Hernandez (Akter et al., 2018) adapted the algorithm to statewide truck 

GPS samples, while Asborno and Hernandez (Asborno et al., 2020) adapted it to vessel 

movements on inland navigable waterways.  

AIS and truck GPS datasets were subjected independently to the adapted map-matching 

algorithm. First, stops made by each vehicle are identified by iterating through temporally 

consecutive location records (i.e., GPS “pings” or latitude-longitude-timestamp points). A naïve 

approach to find stops would be to locate all zero speed pings. However, assuming that a vehicle 

 
4.1 Camargo’s algorithm is written in Python 2.7 and openly available at 

https://github.com/pedrocamargo/map_matching 

https://github.com/pedrocamargo/map_matching
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emits a signal every few seconds even when stopped, several consecutive pings with low or zero 

speed likely represent a single stop and the naïve method would thus over count stops and 

misrepresent stop duration. The stop identification algorithm instead defines stop clusters based 

on parameters defining point speed thresholds, minimum duration, and maximum geospatial stop 

coverage. For each mode, the stop identification algorithm outputs a list of stops made by all 

vehicles, indicating: anonymous vehicle/vessel identification number, a generated stop 

identification number, time when the stop occurred, and its location coordinates (longitude and 

latitude).  

In parallel, the algorithm identifies all links of the network that are likely used by the 

vehicle as it travels between stops. Using geospatial analysis, each ping is associated with a 

network link if its location falls within a pre-defined buffer distance from the link. Links with 

pings within their buffers are likely used by the vehicle as it traveled between stops. In some 

cases, a vehicle/vessel may traverse many links between ping recordings, thus the map-matching 

algorithm reconstructs the complete path of consecutive links using shortest path algorithms. For 

each mode, the map-matching algorithm outputs a sequenced list of network nodes visited by 

each vehicle, the time when the vehicle arrived and left each node, and its associated network 

link.  

4.4.3. Step 3- Multimodal Data Fusion: Visualization and Quantification 

The purpose of this step is to visualize the trips made by all vehicles to/from a given 

freight facility on a multimodal network. Freight port terminals along the U.S. inland waterways, 

selected from a publicly available database, are specified by location (latitude, longitude) and 

commodities handled (if any) (Bureau of Transportation Statistics, 2019). Additional freight port 

terminals not included in the database were found in a similar fashion than Joubert and Axhausen 
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(2013) did to identify commercial facilities visited by trucks. This work extends Joubert and 

Axhausen’s (2013) work to inland waterway transportation facilities as follows.  First, we select 

nation-wide facilities that serve freight from (Bureau of Transportation Statistics, 2019), and then 

define a bounding box delimiting the area of study to identify only those freight facilities within 

our study area. Later, we super-impose the results of the AIS stop identification algorithm (step 

2) to the port terminal locations and identify clusters of stops not associated with any port 

terminal location (i.e. stop clusters located outside a buffer area around each port location). 

Those clusters constitute potential locations of port terminals, docks, or loading/unloading areas, 

which were not included in the initial port database. These potential locations are verified using 

aerial imagery. For the case study of Arkansas, three ports are added to the initial port database 

following this approach. The commodities handled at those three freight ports are deducted by 

observing their storage areas on the aerial imagery, and through a web-search of publicly 

available data about those facilities. 

To visualize the vehicle trips to and from such freight facilities, first, for each mode, stop 

identification, and map-matching results are joined to create a list of all vehicle and vessel trips 

that accessed each facility. Trip data include the sequence of network nodes visited by each 

vehicle, the time when the vehicle arrived and left each node, its associated network link, and the 

trip identification number. To add geometry for visualization purposes, the trip data is joined to 

with the corresponding mode-specific transportation network based on network link attributes 

(e.g., link ID). This also allows for estimation of VMT and VHT performance measures as the 

network link attributes include distance and free flow travel time. As a result, for each freight 

facility, the geometry of vehicle and vessel trips to/from the freight facility is produced and 

includes length (miles), duration (hours), origin, and destination (network node, TAZ, and port 
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ID when applicable). GIS software is then used for visualization on catchment areas by mode, 

and each mode is super-imposed to visualize the multimodal catchment area. 

To complement visual depictions of freight catchment areas, key quantitative indicators 

(Table 4.2) are calculated per mode and by combining all modes (e.g., multimodal). The 

indicators constitute performance of the freight activity associated with each facility. The impact 

area size, population, number of business within the impact area, and location of unique TAZs 

serving as the origin or destination of trips to/from each port are derived using statistical 

packages and modeling tools in GIS platforms. The VMT and VHT corresponding to all trips to 

and from each port are calculated by aggregating the trip length (in miles) and duration (in hours) 

for all the trips with origin or destination in the said port. 

Table 4.2  Key Performance Indicators of Each Freight Facility, Measured From its Impact 

Area 

Key indicators Units of measurement 

Impact area size Acres 

Vehicles Miles Travelled (VMT) 

VMTmultimodal = VMTtruck + VMTvessel 

Aggregated miles for all vehicles; 

Percentage of VMT per mode 

Vehicles Hours Travelled (VHT) 

VHTmultimodal = VHTtruck + VHTvessel 

Aggregated hours for all vehicles; 

Percentage of VHT per mode 

Population within the impact area a  Number of individuals 

Number of business registered within the impact area b  Number of businesses 

Number and location of unique TAZ as origin or 

destination of trips to/from each facility 
Number of TAZs 

 Notes: (a) Might be stratified per population characteristic. 

(b) Might be stratified per commodity (NAICS code).  
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 Case Study: Impact Areas of Port terminals on the Arkansas River 

4.5.1. Scope 

The methodology was applied to 43 freight port terminals located on the Arkansas River (Figure 

4.2) with AIS and truck GPS data samples from 2016. The Arkansas River is a 308-mile stretch 

of navigable waterway that plays a key role in the national economy by connecting the heartland 

of the U.S. to the international markets via the Mississippi River, and contributes to the national 

economy with 4.5 B USD in sales, 34,000 jobs, and 168MUSD in taxes (Nachtmann et al., 

2015).  

Figure 4.2  Study area: 43 freight port terminals on Arkansas River. Labels represent 

names of municipalities  
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4.5.2. Data 

The AIS data in this case study consisted of over 3,390,000 records, emitted by a sample 

of 765 unique vessels observed along Arkansas during 2016. The raw data from which this 

sample was extracted is available for free public download in (Office for Coastal Management, 

2018). Truck GPS data acquired from a non-profit trucking industry research firm corresponds to 

over 4 million “pings” emitted by approximately 40,000 unique trucks within a 10-mile buffer 

around the state of Arkansas, during four two-week periods in 2016: February, May, August, and 

November. Within Arkansas, the truck GPS data represents a sample of about 10% of the truck 

population, with minor variability across seasons and regions (Hernandez et al., 2019). Truck 

GPS pings are observed at port facilities with varied levels of concentration. Heavier 

concentration of truck GPS activity is observed in the Port of Little Rock and in the Port of Pine 

Bluff, while a relatively lower concentration is observed at all other ports.  

Information about the commodities handled by each port were gathered from the National 

Transportation Atlas Database  (Bureau of Transportation Statistics, 2019). Population data by 

census tract in Arkansas was obtained from the Census Bureau Topologically Integrated 

Geographic Encoding and Referencing (TIGER). Business location data was obtained from 

ESRI, and consisted of a geocoded list of more than 200,000 establishments registered in 

Arkansas, including name, location, and North American Industry Classification System 

(NAICS) code, among others. 

4.5.3. Applied Methodology 

The parameters adopted for the stop identification and map matching algorithms (Table 

4.3) were obtained by comparing the number of total stops and trips identified by the algorithm 

to control vehicles subjected to manual verification of stops and paths. Mode-specific parameters 
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were identified independently for the unprocessed GPS and AIS traces (Akter et al., 2018; 

Asborno et al., 2020).   

Table 4.3  Multimodal Stop Identification Parameters 

Stop Parameter / Mode Maritime  Roadway  

Stopped speed (km/h) 5.3 4.8 

Minimum time stopped (seconds) 300 300 

Maximum stop coverage (km) 5.0 0.3 

Geoprocessing buffer size (degrees) 0.01-0.1 0.001 

4.5.4. Results 

Four of the 43 ports in the case study were selected for detailed analysis based on their 

commodity and location diversity. Commodities range from diesel fuel (liquid bulk), food and 

farm, and other dry bulk quarry products, to steel structures and construction equipment. The 

impact areas (Figure 4.3) and corresponding quantitative impact measures (Table 4.2 and Figure 

4.4-Figure 4.8) show the variability in impact scale and scope observed for each port. TAZs used 

for this analysis correspond to the Arkansas State TDM. The 5,849 zones within the state follow 

the boundaries of aggregated census blocks, while out-of-state zones match the Transearch data 

and Business Economical Area (BEA) districts, totaling 306 U.S. BEAs (without Arkansas) 

(Alliance Transportation Group, 2015). Thus, TAZs within Arkansas represent areas much 

smaller than out-of-state TAZs. 
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Figure 4.3  Multimodal impact areas for freight port terminals located on the Arkansas 

River, 2016. Truck paths (red) were not available out-of-state. Green circles delimit an 

arbitrary 100-mile diameter area around each facility 

a.  Port in Pine Bluff shipping food and 

farm products 

b.  Port in Pine Bluff shipping steel structures 

and construction equipment 

c.  Port in North Little Rock shipping 

wholesale diesel fuel 

d.  Port in Van Buren shipping dry bulk 

quarry products 

Dardanelle 

Little Rock 

Pine Bluff 
Pine Bluff 
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Figure 4.4  Size of multimodal and mode-specific impact areas, 2016 

 

 

Figure 4.5  VMT and VHT of multimodal impact areas, 2016 

b. VMT 

a. VHT 
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Figure 4.6  Unique TAZs as origin or destination of multimodal trips to and from port 

terminals, 2016 

a. Port in Pine Bluff shipping food and 

farm products. 29 unique TAZs as origin 

or destination of trips from/to this port 

 

b. Port in Pine Bluff shipping steel structures 

and construction equipment. 21 unique TAZs 

as origin or destination of trips from/to this 

port 

c. Port in North Little Rock shipping 

wholesale diesel fuel. 50 unique TAZs as 

origin or destination of trips from/to this 

port 

d. Port in Van Buren shipping sand, gravel, 

and other dry bulk quarry products. 28 unique 

TAZs as origin or destination of trips from/to 

this port 
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Figure 4.7  Number of registered business within the multimodal impact areas, 2016 

 

Figure 4.8  Population within the multimodal impact areas, 2016  
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 Discussion 

4.6.1. Insights to Port Activity by Region 

Multimodal freight activity per port can be used to target policies and drive investment. 

For example, in terms of freight corridor planning, different modes (maritime and roadway) 

compete along parallel shipping lines, such as the corridors connecting Little Rock (Figure 4.3.a) 

and Dardanelle (Figure 4.3.b) with Pine Bluff. Such areas of modal competition may indicate a 

potential for modal shift in those regions. Further analysis on the quantities of the specific 

commodities travelling on those routes may guide targeted policies to incentivize shifts from 

truck to water on those routes. In contrast, complementary modal interaction can also be 

observed in the usage of the river for local, short trip deliveries (Figure 4.3.d). Multimodal 

interactions observed in these visualizations provide evidence on the use of the river for domestic 

shipping of steel structures and sand (Figure 4.3.b and Figure 4.3.d, respectively), and the key 

role of the Arkansas River to connect the U.S. Midwest with international markets through the 

Mississippi River for shipping farm products (Figure 4.3.a). Modal competition is also observed 

in the performance metrics quantified by this analysis (Figure 4.4). For each port, the bigger the 

difference between the multimodal area (left bar) and the sum of the individual modal areas 

(right bar), the longer the corridor(s) where the modes compete.  

In terms of VMT (Figure 4.5), port terminals are dominated by truck travel as compared 

to maritime. VMT is typically used to calculate emissions and other environmental impacts. To 

evaluate cost-benefit ratios of modal shift policies (from truck to vessels), for example, estimates 

of VMT by mode are a necessary externality to measure. To complement this analysis, the 

authors are exploring methods to estimate commodity ton-miles transported per mode and port, 

which would provide information to more detailed cost-benefit analyses. 
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4.6.2. Catchment Area Comparisons 

The size and extent of each port terminal catchment area varies significantly by port 

(Figure 4.3 and Figure 4.4), and thus it would not be appropriate to adopt a generalized, arbitrary 

impact area as shown by the 100-radius circles around freight facilities. The difference between 

the arbitrary radial areas and the multimodal impact areas derived from vehicle tracking data 

(Figure 4.3) indicate the extent of the freight activity that would be ignored if arbitrary radial 

impact areas were utilized to estimate port activity. The unique impact areas could not be 

visualized by relying solely on surveys or static traffic data. Even though truck trip paths (and 

thus, areas of impact) may be visualized from the output of a travel demand model, such models 

are based, in large part, on survey data as well. Waterway trip paths cannot be visualized from 

travel demand models that do not represent the navigable waterway network. In this context, 

vehicle tracking data provides a viable alternative to the outputs of state travel demand models to 

analyze multimodal freight catchment areas for project evaluation and prioritization. 

Lastly, the number and location of unique TAZs that constitute the origin and destination 

of trips to and from each port (Figure 4.6), derived from multimodal vehicle tracking data, can be 

used to support long-range transportation planning purposes, such as scenario planning. 

Scenarios simulating disruption of business in those zones might impact the port terminal 

economic activity, and vice-versa. For example, a severe weather event such as a flooding 

affecting a port in Little Rock (Figure 4.3.c), located in the center of the state, may have an 

impact on freight flows observed as far as Northwest Arkansas, encompassing a total area of 

10,500 thousand acres (Figure 4.4). While an event affecting traffic flows in Northwest 

Arkansas, such as an accident at a highway/rail crossing, may have an impact on the economic 

activity of a port located as far as Little Rock.  
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4.6.3. Transferability and Future Work 

In terms of transferability, the same analysis applies to any transportation infrastructure 

for which geospatial location is available, such as bridges, intermodal connectors, storage and 

warehousing facilities, rail crossings (provided rail tracking data, which is proprietary of rail 

operators, is available), etc. Moreover, it could be applied to any area of interest, such as parcels 

corresponding to a specific land use, the location of a specific industry (i.e. an inland petrol 

refinery, a forestry industrial area, etc.), and evaluate its area of impact.  

Building upon the methodology, future work may measure the interaction between land 

use and freight transport by evaluating specific impacts. Overall, the novel multimodal freight 

data analysis constitutes a sound basis to characterize spatial patterns of freight intensity to/from 

specific land-use parcels. Moreover, the identification and visualization of impact areas of 

different freight ports (or any other piece of infrastructure) are subject to the same data and 

criteria to identify their multimodal area of impact, providing a common basis for proper 

comparison and competition of funds. 

 Conclusion 

Vehicle tracking data, namely AIS and truck GPS data, provide ubiquitous and consistent 

sources to identify multimodal freight paths to and from freight facilities and specific land-use 

parcels, such as ports. The methodology in this paper consists of multimodal freight data 

collection and analysis that allows characterization of spatial patterns of freight intensity. By 

matching vehicle tracking data to mode-specific networks, and selecting the trips with origin or 

destination within bounding boxes surrounding a freight facility, the resulting freight paths 

illustrate the impact areas of an investment in such facility. In addition, any events affecting the 

transportation infrastructure within the catchment area of the facility will influence the use of the 
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freight facility. For example, the impact area of an extreme weather event such as flooding of a 

road or port could be identified for resiliency evaluation. Moreover, the identification and 

visualization of the geographic extent of multimodal freight catchment areas can be used to 

estimate population exposure statistics, such as exposure to emissions, by super-imposing census 

and business locations to the catchment areas.  

Within the context of transportation infrastructure investment, several projects compete 

for a limited amount of resources, based on an estimation of project benefits relative to costs. To 

evaluate project benefits, it is important to understand the extent, location, and characteristics of 

a project’s impact area, or “catchment” area, which can be defined as the region where the 

facility draws and delivers freight, or the OD pairs served by the facility. However, little has 

been written regarding systematic methods to identify multimodal catchment areas. State-of-the 

practice methods to identify the impact area of a facility consist of arbitrarily selecting a radial 

perimeter around the facility, ignoring complex interactions among freight modes and supply 

chains. Alternatively, freight paths to and from a facility may be obtained from project specific 

data like surveys, which are not always comparable among projects, and/or from travel demand 

models which have imbalanced or non-existent multimodal network representations. The main 

contribution of this paper is a geospatial data fusion method to identify the impact area of a 

multimodal freight project by using increasingly ubiquitous vehicle tracking data. In this way, all 

projects evaluated are subject to the same data and criteria to identify their impact area, 

providing a common basis for proper comparison and competition of funds.  

A case study to illustrate the value of identifying multimodal freight catchment areas 

highlights the differing size and shape of port impact areas, further supporting limitations 

presented by the naïve assumption of radial impact areas for freight facilities. Examples of inland 
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waterway ports in Arkansas show that modes compete on the same freight corridors, presenting 

an opportunity for mode shift. Since the AIS and Truck GPS data are increasingly available 

worldwide, the methodology has wide applicability to broad geographies and facility types.  
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CHAPTER 5.  Multi-Commodity Port Throughput from Truck GPS and Lock 

Performance Data Fusion 

 Abstract 

Inland waterways ports are key elements of an efficient multimodal freight transportation 

system. Data on the capacity and throughput of inland waterway ports by commodity supports 

effective long-term freight planning and travel demand modeling. More specifically, such data 

can be used to estimate multimodal, commodity-based freight fluidity performance measures and 

to support location selection for freight transload facilities. State-of-the-practice means of 

obtaining commodity flows data, such as shipper/carrier surveys and vessel and vehicle 

movements are limited in their ability to provide monthly or seasonal statistics on individual port 

operations, rather, they provide annualized statistics for river segments which may contain 

multiple ports. Our work addresses these limitations by developing a Multi-Commodity 

Assignment Model to quantify commodity throughput at inland waterways ports. The model 

fuses waterborne Lock Performance Monitoring System (LPMS), which provides the commodity 

dimension, and anonymous truck Global Positioning System (GPS) data, which allows for spatial 

disaggregation. A goal programming approach minimizes the deviation between known and 

estimated truck flows at each port. The methodology was applied to the Arkansas River, a 308-

mile navigable waterway served by 14 locks and 43 freight ports.  Overall, 84% of ports had less 

than 20% difference between observed and predicted truck flows. The model is applicable to any 

inland waterways with aggregated commodity flow data and truck GPS coverage, and fills a 

critical data gap by describing commodity throughput at inland waterway ports using publicly 

available data.  



 

94 

Key words: Multimodal Transportation, Data Fusion, Commodity Flow, Inland 

Waterways Transport 

 Introduction 

Along America’s Marine Highway Network, inland waterway ports are critical 

connections among transport modes, making them key elements of an efficient multimodal 

freight transportation system. While data about the commodity flows through each port may be 

collected by port operators, it is proprietary and is not regularly shared with public agencies due 

to privacy concerns. Publicly available maritime port statistics, such as the Port Performance 

Freight Statistics Program introduced by the U.S. Bureau of Transportation Statistics, are limited 

to the top-25 ports in the US (U.S. Department of Transportation, 2019), which tend to exclude 

inland waterway ports.  State-of-the-practice means of gathering port commodity flows data 

include economic surveys (e.g. U.S. Census Bureau’s U.S. Port Data (2019)), surveys targeting 

freight flows (e.g. Commodity Flow Survey (CFS)), and mode specific datasets (e.g. National 

Performance Management Research Data Set, or Waterborne Commerce Statistics).  Such 

sources are limited in their spatial disaggregation, temporal continuity, and multimodal 

integration. For example, CFS is carried out every five years, and considers only 132 

geographical zones within the U.S., where the state of Arkansas constitutes a single zone. Such 

spatial aggregation is not suitable to describe commodity flows at port level. In addition, surveys 

carried out every a number of years impose the need to estimate annual volumes. In contrast, this 

paper produces annualized data from sources that are continuously updated in terms of temporal 

coverage. To address these limitations, this paper presents a methodology to quantify commodity 

flows through inland waterway ports by fusing two mode-specific datasets in a Multi-

Commodity Assignment Model.   



 

95 

Our motivation to quantify and describe inland waterways port throughput stratified by 

commodity type was two-fold. First, given the complexity of the multimodal freight 

transportation system, there has been increased interest in developing multimodal “freight 

fluidity” indicators that capture end-to-end supply chain performance (Transportation Research 

Board, 2014). The term freight fluidity is a measure of the ease at which freight (in quantities of 

tonnage or volume) can move through the multi-modal supply chain. Freight fluidity is often 

measured in travel time, travel time reliability, or transportation costs.  Most importantly, though, 

it should reflect performance of all modes within the supply chain. Freight fluidity measures 

require different types of data (e.g., movements, transactions, cost, commodity type) from a 

variety of sources (e.g., government databases, private industry).  The data is intended to 

evaluate mobility, reliability, resilience, cost, and quantity of freight in a multimodal 

transportation network (Eisele et al., 2016).  Multimodal freight fluidity indicators require not 

only mode-specific data, but an understanding of the interaction between individual modes 

(Transportation Research Board, 2016). To date, most modal interactions are captured by fusing 

mode-specific datasets via demand models, visualization tools, etc. (Hwang et al., 2016; IHS / 

Global Insight, 2011; Parker, 2019). For example, the FHWA National Freight Fluidity 

Monitoring Program combines waterborne data from the U.S. Army Corps of Engineers 

(USACE), railway data from TransCore and the Carload Waybill Sample, highway data from the 

National Performance Management Research Data Set (NPMRDS), and supply-chain data from 

U.S. private companies to generate a mapping tool to track the reliability, cost, and travel time 

(but not quantities) for multimodal freight movements across selected supply chains on a 

quarterly basis (Parker, 2019). Given the historical mode-specific approach to freight data 

collection and analysis, challenges remain to collect and analyze multimodal data for freight 
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fluidity purposes (Transportation Research Board, 2018). The purpose of this paper is to create 

methods for fusing multi-modal freight data in an effort to quantify and describe port level 

commodity flows along inland waterways. Knowledge of port-level throughput, and linkage 

between waterborne and roadway freight flows, resulting from the methodology presented in this 

paper, supports the development of commodity-specific, multimodal freight fluidity performance 

measures.  

Second, a quantitative description of current and historical port throughput provides a 

basis for long-term port cargo projections, which are essential for port facilities, infrastructure, 

and location planning (de Langen et al., 2012). Previous freight facility location studies were 

limited by the spatial aggregation of commodity data at county level (Asborno et al., 2018). In 

this sense, the disaggregated approach proposed here helps to overcome such limitations. 

Moreover, for public agencies, policy and incentive programs for port development can be 

guided by information on commodity specific port growth.  For the private sector, quantification 

of port throughput by commodity allows industry stakeholders to assess business opportunities 

and potential more efficient shipping solutions. This paper provides a generalizable, data-driven 

method to quantify commodity throughput for inland waterway ports, a measure that is currently 

not directly publicly available as most inland ports are not covered in the BTS top-ranked port 

lists. 

In this work, inland waterborne commodity flows between locks were spatially 

disaggregated to each port by fusing publicly available USACE’s Lock Performance Monitoring 

System (LPMS) data with anonymous truck Global Positioning System (GPS) data. Commodity 

flows on the U.S. inland waterways were quantified using LPMS, which contains monthly 

volumes carried by vessels using USACE maintained locks for each of the 40 commodities, and 
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is aggregated into nine commodity groups (U.S. Army Corps of Engineers, 2016).  Locks and 

dams are located along several river navigation systems in the U.S. including the McClellan 

Kerr-Arkansas River Navigation System (MKARNS), the Upper Mississippi River, Illinois 

Waterway, and Ohio and Tennessee rivers (Figure 5.1.a) (U.S. Army Corps of Engineers). 

Navigation locks and dams maintain slack water pools for year-round navigation along inland 

waterways (Figure 5.1.b). Although LPMS provides commodity volume through the locks, 

commodity flows through inland waterway ports are not immediately available, as several ports 

are located between each pair of consecutive locks.  The Arkansas portion of the MKARNS, for 

example, consists of 308 miles of channel controlled by 14 locks and serves 43 freight ports 

(U.S. Army Corps of Engineers). 

 

 

         a. Location of U.S. locks             b. Lock on Arkansas River (USACE) 

Figure 5.1  Locks 

To mine freight fluidity insights, LPMS data is used in conjunction with other data 

sources. Campo, Mayer and Rovito (2012) evaluated the resilience of inland waterways transport 

in terms of port (un)loading capabilities during catastrophic closures, and applied the method to a 

segment of the Upper Mississippi river, between six consecutive locks. Commodity volumes in 

the study area were collected from the LPMS. However, spatial disaggregation of commodity 

volumes to each port was not possible due to the limitations of the LPMS previously mentioned 
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(e.g., LMPS corresponds to locks, not to ports) (Campo et al., 2012).  Dobbins and Langsdon 

(2013) generated inland waterway towboat trips from Automatic Identification Systems (AIS) 

data, and used LPMS to compare the number of lockages reported by USACE with the number 

of towboats operating with AIS receivers (Dobbins et al., 2013).  Thoma and Wilson (2005) 

proposed a model to forecast annual waterborne freight of coal, and food and farm products, 

using LPMS commodity volumes on key locks and historical waterborne commerce statistics 

data, but did not disaggregate it to port-level (Thoma et al., 2005).  In all, the methodologies and 

applications of the above-mentioned studies were hindered by the inability to disaggregate lock 

to lock commodity flows to port-level flows.  Our work uses LPMS commodity-specific volumes 

rather than vessel counts (e.g., as was done by Dobbins and Langsdon, 2013) to add the required 

commodity dimension to quantify port throughput, thus overcoming the lack of lock to port 

disaggregation in Campo et al. (2012).  

The anonymous truck GPS data used in this work was gathered by the American 

Transportation Research Institute (ATRI). The data contained location information over time for 

a sample of the truck population but did not contain commodity information.  Truck GPS data 

was used to quantify truck volumes at each port, which, in turn, allowed for distribution of 

LMPS commodity volumes to ports. Truck GPS data of the type used in our work has been used 

in similar contexts.  Bartholdi et al. (2019) used truck GPS data within container terminals to 

measure service times (Bartholdi et al., 2019). Pinjari et al. (2016) explored the use of truck GPS 

data to analyze trajectories, e.g. travel paths of petroleum-tanker trucks between Florida ports 

and delivery locations.  They applied spatial heuristics (e.g. geographic bounding boxes) to fuse 

two consecutive months of truck GPS trajectories with geocoded gas stations to capture trucks 

which stopped at these facilities (Pinjari et al., 2016). Similarly, we created bounding boxes 
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around waterway ports to capture truck GPS trajectories with stops in the port areas. However, 

instead of mapping truck trajectories with business locations, we leveraged lock and dam 

commodity flow data for multimodal data fusion. Further expanding on the work of Pinjari et al., 

we accessed eight weeks of truck GPS data, distributed throughout the year, to capture 

seasonality, and included nine commodity groups rather than exclusively examining petroleum 

products. Examples of truck GPS data fusion for freight planning purposes are found in Flaskou 

et al. (2015), who developed a methodology to convert truck GPS trajectories into freight 

performance measures and applied the methodology to freight corridors in Tennessee. Kuppam 

et al. (2014), used heavy-duty truck GPS data to develop a tour-based truck travel demand model 

which was incorporated into the Arizona Freight Demand Model (CPCS, 2019).  Our work 

complemented the methods of Pinjari et al. (2016), Flaskou et al. (2015), and Kuppam et al. 

(2014) to derive insights from anonymous truck GPS data by adding a multimodal perspective to 

the data fusion process. 

Although waterborne commodity flows from the LPMS dataset and truck trajectories 

from anonymous GPS data have been used separately for freight applications, methods to fuse 

the two distinct datasets have yet to be explored.  There is significant potential in fusion of these 

multimodal datasets to address existing, critical gaps in port performance measurement, namely 

the ability to measure port-level commodity flows.  This paper demonstrates that it is possible to 

produce port-level commodity flows by overcoming several challenges associated with 

multimodal freight data fusion. Our main challenge is data heterogeneity.  Data heterogeneity is 

caused by the diverse methods to collect, process, store, and share data from different agencies 

and data providers (e.g. USACE, ATRI, etc.), leading to discrepancies in units, terminology, 

temporal and spatial coverage, etc. (National Academies of Sciences, Engineering, and 
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Medicine, 2015). To overcome this challenge, databases were aligned in terms of spatial 

aggregation, time period, and units of measurement and fed into a Multi-Commodity Assignment 

Model to describe and quantify port-level commodity flows.  

The remainder of this paper presents the methodology to fuse truck GPS and LPMS data, 

necessary to feed the novel Multi-Commodity Assignment Model, its application to a case study 

on the Arkansas River, a discussion, and concluding remarks. 

 Methodology 

Our methodology consists of three main steps.  First, truck movement data and LPMS 

commodity flows are spatially and temporally combined. Second, the fused dataset is used to 

feed a Multi-Commodity Assignment Problem (MCAP) solved via goal programming. The 

objective is to identify, for a time window t and river section s, the number of truckloads 

corresponding to each commodity j transloaded at each port i to truck (𝑥𝑖,𝑗
𝑠,𝑡

) and rail (𝑅𝑖
𝑠,𝑡

) 

(transload operations between barge and rail are not distinguished by commodity).  Third, the 

results of the optimization model are post-processed to identify flow and cargo directionality 

(e.g. up- and down-river flows). In this section, spatial and temporal fusion are discussed, 

followed by formulation of the MCAP optimization model and post-processing requirements.  

5.3.1. Fusion of Truck GPS Data and Lock and Dam Commodity Flows 

The data required for MCAP included: i) the number of trucks accessing each port, 

derived from truck GPS data, and ii) the number of equivalent truckloads of each commodity 

passing through each lock, derived from LPMS, both for the same time period t.  The truck GPS 

and LPMS data were heterogeneous in units (trucks vs. weight -in tons-), spatial coverage (ports 

vs. locks), and temporal scope (hourly vs. monthly).  Fusion of the datasets required conversion 
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of each dataset to the same units (truckloads), geographical areas (river segments), and temporal 

scope (annualized). 

Lock Performance Monitoring System (LPMS) Data Processing 

LPMS data consists of monthly quantities (by weight) of 40 commodities transported 

along U.S. inland navigable waterways by direction (e.g. upriver and downriver). The USACE 

collects data on the quantity of commodity at each of their approximately 200 locks and dams. 

Historical monthly data (2009-2017) is publicly available in ‘.xlsx’ format from the Public Lock 

Commodity Report (U.S. Army Corps of Engineers, 2016). For any current and previous 

calendar year, a summarized report by lock, for nine aggregated commodity groups, is available 

in ‘.html’ format from the LPMS website (U.S. Army Corps of Engineers).  

LPMS data processing (Figure 5.2.a) consisted of calculating the difference in the 

quantity (by weight) of each commodity between each pair of consecutive locks, per direction, 

per month, (∆Ls,t
j,U;  ∆Ls,t

j,D), referred to as ‘commodity flux’. Upriver and downriver commodity 

flux were aggregated to quantify commodity flux per month, ∆Ls,t
j, and then converted to 

equivalent truckloads by dividing commodity flux by commodity-specific truck payload factors fj 

.  Truck payload factors can be gathered from State Travel Demand Models (FHWA, 2019), the 

Freight Analysis Framework (Macks Inc., 2016), or are commonly collected through shipper and 

carrier surveys.  Equivalent monthly truckloads 𝑐𝑗
𝑠,𝑡

 were then summed over the year to obtain 

the annual equivalent truckloads of each commodity flux between each pair of consecutive locks, 

𝑐𝑗
𝑠,𝑎𝑛𝑛𝑢𝑎𝑙

. 
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              a. LPMS data preparation       b. Truck GPS data preparation 

Figure 5.2  LPMS and truck GPS data fusion 

Truck GPS Data Processing 

The anonymized truck GPS data used in this work consisted of timestamped locations 

(latitude and longitude) for a sample of the truck population covering a statewide region.  Each 

truck’s GPS transponder, identified by a unique but anonymous number, emits intermittent 

signals (“pings”) over time, indicating its location. First, the anonymous GPS pings were 

grouped by truck into “trips” and then subjected to quality control protocols to remove 

inconsistent records. Inconsistencies were defined as trips of less than 20 pings, trips with 

geographic coverage less than 1.2 miles (e.g. length of the diagonal of the bounding box 

including all pings), and calculated speeds higher than 81 mph. Then, a stop identification 
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algorithm developed by Camargo et al. (2017) and adapted by Akter et al. (2018) was applied to 

identify stop locations and durations for each trip. A truck was considered to be stopped when its 

speed was lower than 3 mph for more than 5 minutes, and the stop coverage area was less than 

0.2 miles.  All pings corresponding to a single stop were clustered within a rectangular bounding 

box, and the location of the first ping in the cluster was assigned as the stop location. After the 

stops made by individual trucks were found, trucks with stops within port areas were identified.  

A port area was defined as a bounding box around the port facility (including the truck loading 

area) corresponding to a dock, identified by aerial imagery (e.g., Figure 5.3). 

 

Figure 5.3  Example of port area geographic bounding boxes 

The GPS data used in this study contained four two-week samples, roughly capturing the 

start of each quarter of the year (Figure 5.2.b). Studies show the coverage of the GPS sampled 

data to be 10-15% of the total truck population (Diaz Corro et al., 2019).  To later fuse annual 

commodity flows from LPMS with the truck GPS data sample, it was necessary to estimate 

annual, total (e.g. population level) truck volume for each of the ports. Thus, once the sample 

number of trucks S found at each port i during each sample period w, Si
w, was found, two 
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expansion factors were applied to estimate the annual truck volume at each port.  First, the 

sample was expanded to represent population-level truck volumes.  Expansion factors for each 

sample period, Vv
w, were derived as the ratio of the GPS sample volume to truck counts from 

nearby Weigh-In-Motion (WIM) stations for the same time period5.1.6.1The GPS-derived truck 

volume at each port, Si
w, was multiplied by Vv

w to estimate the total population of trucks at each 

port, e.g. “volume-expanded”. Next, temporal representation of the GPS sample was addressed 

by extrapolating each volume-expanded two-week period to an annual volume. Each volume-

expanded, two-week period was multiplied by a temporal expansion factor, Vt
Q (e.g. number of 

two-week periods in a three-month quarter) (eq. 5.1). Lastly, quarterly volumes 𝑆’𝑖
𝑄

 were 

summed to obtain the annual number of trucks accessing each port (eq. 5.2).  

 𝑆’ 𝑖
𝑄 = 𝑆𝑖

𝑤 × 𝑉𝑣
𝑤  × 𝑉𝑡

𝑄
 5.1 

 𝑇𝑖
𝑎𝑛𝑛𝑢𝑎𝑙 = ∑ 𝑆′

𝑖
𝑄

𝑄
 5.2 

5.3.2. Multi-Commodity Assignment Model Formulation 

The model to quantify and describe commodity throughput at each inland waterway port 

from LPMS and truck GPS data was conceptualized as a Generalized Assignment Problem 

(GAP). The reason to select this model type (e.g. assignment) and not others (e.g., discrete 

choice models, gravity models, machine learning, simulation) is in the data that was available 

(and unavailable). For instance, the problem could be considered as a choice selection, in which 

vessels transporting commodities and observed at locks choose among a set of ports for 

transloading. However, to apply a discrete choice model would require an origin-destination 

matrix for each commodity to be derived from historical data or alternative sources, which do not 

 
5.16.1WIM are embedded roadway sensors that continuously measure truck volume and weight by axle 

configuration (FHWA, 2016). 
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exist in the public realm. Gravity, or entropy maximizing, model formulations present another 

option for our application. These models are utilized in traditional 4-step travel demand models 

to obtain origin-destination matrices by “matching” production and attraction of trips in each 

zone. In our case, we may consider that each port and each lock constitute a zone. In that context, 

the application of a gravity model would require the availability of historic and/or current 

production and attraction data on each commodity in each port, which also does not exist in the 

public realm (or likely in any aggregated private dataset). Supervised machine learning methods 

were also disregarded, because we do not have any labeled training instances such as 

historical/observed data on the number of truckloads of each commodity transloaded at each 

port.  Lastly, simulation can also be an effective tool in this context. However, simulation would 

require an independent dataset of commodity flows at each port for calibration. Since such 

dataset does not exist in the public domain, it was not possible to adopt a simulation approach. 

Further, our goal was to develop a descriptive quantification of commodity flows at port level 

and, thus, a simulation approach (which is targeted at analyzing policy sensitive inputs) was not 

necessary. It was deemed untenable to consider executing an intercept survey at each port to 

obtain the commodity carried by each truck in an effort to gather labeled training instances for a 

supervised machine learning model.  

A GAP seeks to optimally assign tasks to agents, subject to capacity restrictions on the 

agents, and an agent may be assigned many tasks (Kundakcioglu et al., 2008). A GAP objective 

function may minimize cost, maximize profit, etc. GAP and its extensions have been applied 

broadly, including job scheduling, facility location, routing, etc. (Kundakcioglu et al., 2008). In 

applying a GAP to the quantification of port throughput, commodities were considered “tasks” to 

be assigned to ports, i.e. “agents”. The objective function targeted minimal deviation between 
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observed and predicted truck flows at each port.  Such minimization was subject to the following 

conditions: i) port “capacity”, defined as the number of trucks accessing each port, and ii) 

assurance that all commodities were assigned to at least one port.  Limitations of extending the 

GAP to quantify port throughput were addressed. GAP assigns each task to only one agent. For 

the port throughput problem, however, the total commodity flux on a river section may be 

transloaded at several ports. To incorporate these restrictions, a Generalized Multi-Assignment 

Problem (GMAP) was applied.  GMAP differs from GAP in that tasks may be duplicated and 

assigned to more than one agent (Kundakcioglu et al., 2008).    

In this paper, the application of the GMAP to a multi-commodity scenario was referred to 

as a Multi-Commodity Assignment Problem (MCAP).  In the MCAP formulation, a river section 

s was defined as a stretch of inland navigable waterway located between a pair of consecutive 

locks (L1, L2) (Figure 5.4.a). The objective was to assign commodity flux cj along river section s 

to each port i within that river section (Figure 5.4.b), i.e. to identify the (unknown) quantity of 

commodity j transloaded between barge and truck at port i ϵ s. The (unknown) quantity of freight 

transloaded between barge and rail was represented as R (Figure 4b). The quantity of freight was 

measured in equivalent truckloads. The individual commodities j belong to a work group of 

commodities a. 

 

                         a. River section schema     b. Model schema: unknown variables 

Figure 5.4  Multi-commodity assignment model schematics 

Unknowns:   𝑥𝑖,𝑗 ,     
 𝑖  𝑠,     

T(x)1 R1

i=1 i=2

L2L1

?

𝑐𝑗
𝑠,𝑡    

T(x)2 R2 T(x)3 R3

i=3

Lock L2

River section s

Port i=1

T1, R1 Port i=m

Tm, Rm

Port i=2

T2, R2

Lock L1
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The problem was formulated by equilibrating commodity flux c (expressed as equivalent 

truckloads) along waterways with land-side freight volume carried by truck T and rail R, during 

time period t (eq. 5.3):  

 ∑ (𝑇𝑖
𝑠,𝑡 + 𝑅𝑖

𝑠,𝑡) = 
𝑖

∑ 𝑐𝑗
𝑠,𝑡 

𝑗
 5.3 

Equation 5.3 assumed that commodity flux (supply) in each section was transferred to 

truck or rail at each port (demand) such that supply and demand were balanced.  However, 

considering the contextual, spatial, and temporal heterogeneity of the LPMS and truck GPS 

datasets, it is unlikely that commodity flux in each river section will balance with truck volumes 

at each port.  Furthermore, operational characteristics of the ports such as inventory holding and 

storage likely weaken the assumption of balanced supply and demand over shorter time periods, 

e.g. monthly.  Thus, the model was applied to annual commodity flows, reducing the effects of 

long-term commodity storage or inventory holding at each port. Further, the problem was 

conceptually formulated as a minimization problem in which the difference between truckloads 

representing supply (LPMS-derived commodity flows) and demand (GPS-derived truck 

volumes) was minimized (eq. 5.4).  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = ∑ (𝑇𝑖
𝑠,𝑡 + 𝑅𝑖

𝑠,𝑡) − ∑ 𝑐𝑗
𝑠,𝑡

𝑗𝑖
 5.4 

The definition of sets, parameters, variables, objective function and constraint equations 

involved in the model are presented in Table 5.1. 

The model was solved by adopting goal programming techniques, which consist of the 

relaxation of conflictive conditions in an optimization formulation to allow a feasible solution 

(but not necessarily optimal) to be found (Colapinto et al., 2017; Gardi et al., 2014). The 

relaxation techniques implemented in the MCAP formulation were: i) inequalities adopted in eq. 
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5.7 and 5.8 instead of equalities, and ii) discrete (integer) values were replaced with continuous 

values, e.g. trucks were allowed to be partially loaded.  

Table 5.1  Multi-Commodity Assignment Model Formulation 

Sets   

j    a Set of commodities 

i    s Set of ports within each river section 

s    r Set of sections within a river 

Parameters 

 si,j Coefficient to indicate whether port i on river section s handled commodity j, subject to loading 

equipment. 

   

 si Coefficient to indicate whether port i on river section s had rail access. 

  
 

Variables 

Decision variables 

x s,t
i,j Number of barge/truck truckloads of commodity j transloaded at port i during time period t, 

on river section s 

R s,t
i Equivalent truckloads transloaded from barge to rail (and vice-versa) at port i during time 

period t, on river section s 

Input variables 

c s,t
j Flux of commodity j on river section s during time period t 

T s,t
i Number of trucks T accessing port i on river section s during time period t 

𝑇𝑖
𝑠,𝑡 = ∑ 𝛼𝑖,𝑗

𝑠

𝑗
𝑥𝑖,𝑗

𝑠,𝑡
 5.5 

 

Model 

Objective function 

 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒇(𝒙,𝑹) = ∑ ∑ 𝜶𝒊,𝒋
𝒔 𝒙𝒊,𝒋

𝒔,𝒕 + ∑ 𝜷𝒊
𝒔𝑹𝒊

𝒔,𝒕 −
𝒊𝒋𝒊

∑ 𝒄𝒋
𝒔,𝒕

𝒋
    𝒋  𝒂,   𝒊  𝒔 5.6 

 

Subject to the following constraints 

i) Flow conservation: The amount of each individual commodity cj observed in river section s 

must be less or equal than the sum of the amounts of the same commodity j loaded/unloaded to 

truck at all ports i ϵ s 

∑ 𝛼𝑖,𝑗
𝑠  𝑥𝑖,𝑗

𝑠,𝑡

𝑖
≤ 𝑐𝑗

𝑠,𝑡         5.7 
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Table 5.1 Multi-Commodity Assignment Model Formulation (Cont.) 

ii) Proportional truck volumes: The commodity-specific proportion of trucks T accessing each port i 
must be less or equal than the total trucks observed along a river section s 

∑ 𝛼𝑖,𝑗
𝑠  𝑥𝑖,𝑗

𝑠,𝑡  𝑗

∑ 𝑐𝑗
𝑠,𝑡 − ∑ 𝛽𝑖

𝑠𝑅𝑖
𝑠,𝑡

𝑖  𝑗

≤
𝑇𝑖

𝑠,𝑡

∑ 𝑇𝑖
𝑠,𝑡

𝑖

    𝑖  𝑠   5.8 

 

  

iii) Non-negativity constraints: Non-negativity constraints were placed on the truck volume (x), rail 

volume (R), and objective function 

𝑥𝑖,𝑗 ≥ 0       ,  𝑖  𝑠 5.9 
 

𝑅𝑖 ≥ 0    𝑖  𝑠 5.10 
 

∑ ∑ 𝛼𝑖,𝑗
𝑠 𝑥𝑖,𝑗

𝑠,𝑡 + ∑ 𝛽𝑖
𝑠𝑅𝑖

𝑠,𝑡 −
𝑖𝑗𝑖

∑ 𝑐𝑗
𝑠,𝑡

𝑗
 ≥ 0      ,  𝑖  𝑠 5.11 

 

  

5.3.3. Results Post-processing  

The decision variables obtained with the MCAP, e.g., the number of truckloads of each 

commodity transloaded at each port, by mode, for time period t, were post-processed to describe 

the upriver and downriver directionality, and to convert from the number of trucks (e.g., 

truckloads) back to commodity flows (e.g., freight by weight). The post-processed results were 

the freight (by weight) transloaded to rail and the freight (by weight) by commodity transloaded 

to truck at each port, by direction (upriver, downriver), during time period t. Rail transloads were 

quantified but not described per commodity due to rail data unavailability, such as number of 

railcars observed per port. 

Throughput directionality 

Directionality post-processing consisted of distributing port throughput to upriver and 

downriver flows.  From the GPS data, it was not possible to determine whether a truck was at a 

port to pick-up or drop-off an upriver or downriver cargo. Thus, upriver and downriver 

commodity flux were aggregated to account for this discrepancy. To distribute throughput to 

upriver and downriver portions, the percentage of upriver and downriver commodity flux were 

calculated from the LPMS data for each river section and commodity. It was assumed that all 
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ports within the same river section had the same percentage of commodity flux with respect to 

total commodity flux in that section and direction. Even though this assumption might be 

somewhat restrictive, considering the data that is available, this may be the best approximation to 

distinguish the volume of commodity corresponding to each direction of travel on the inland 

waterways (upriver vs. downriver). Nevertheless, the total volume of commodity transloaded per 

port and commodity (i.e. upriver and downriver, aggregated) remains unaffected by this 

assumption. The output of this step was the number of truckloads at each port, per commodity, 

and per direction (upriver and downriver) for time period t: (𝑥𝑖,𝑗,𝑈
𝑠,𝑡  ,   𝑥𝑖,𝑗,𝐷

𝑠,𝑡
)      ,  𝑖  𝑠        

(eq. 5.12 and eq. 5.13).  

 
𝑥𝑖,𝑗,𝑈

𝑠,𝑡 =
∆𝐿𝑗,𝑈

𝑠,𝑡

∆𝐿𝑗,𝑈
𝑠,𝑡 + ∆𝐿𝑗,𝐷

𝑠,𝑡 × 𝑥𝑖,𝑗
𝑠,𝑡 

5.12 

 
𝑥𝑖,𝑗,𝐷

𝑠,𝑡 =
∆𝐿𝑗,𝐷

𝑠,𝑡

∆𝐿𝑗,𝑈
𝑠,𝑡 + ∆𝐿𝑗,𝐷

𝑠,𝑡 × 𝑥𝑖,𝑗
𝑠,𝑡 

5.13 

Commodity volumes 

The MCAP described and quantified port throughput in terms of truckloads as a means to 

alleviate data heterogeneity issues. In particular, the LPMS commodity data (by weight) was 

converted to truckloads to match the truck GPS data units.  To convert from the number of trucks 

(e.g., truckloads) back to commodity flows (e.g., freight by weight), truckloads were multiplied 

by payload factors fj specific to each commodity (eq. 5.14 and eq. 5.15). The payload factors 

corresponding to each LPMS commodity group can be gathered from the State Travel Demand 

Model (STDM), vehicle use surveys, or national TDMs, such as the Freight Analysis Framework 

(FAF). Since LPMS commodity groups may not match with STDM or FAF commodity 

grouping, crosswalk tables may be needed to link each LPMS commodity group to one or more 

STDM commodity groups.  Further, when more than one STDM or FAF commodity group 
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matched a unique LPMS commodity group, for example, the payload factor of the LPMS group 

can be calculated as an average of the payload factors of the matched STDM commodity groups. 

The results obtained after this step were the tons of each individual commodity transloaded per 

port by direction (upriver and downriver) during time period t: (𝑋𝑖,𝑗,𝑈 
𝑠,𝑡  , 𝑋𝑖,𝑗,𝐷

𝑠,𝑡
)  (eq. 5.14 and    

eq. 5.15). For rail, an average payload factor of all commodities was applied. 

 𝑋𝑖,𝑗,𝑈
𝑠,𝑡 = 𝑥𝑖,𝑗,𝑈

𝑠,𝑡 × 𝑓𝑗 5.14 

 𝑋𝑖,𝑗,𝐷
𝑠,𝑡 = 𝑥𝑖,𝑗,𝐷

𝑠,𝑡 × 𝑓𝑗   5.15 

 Case Study: McClellan-Kerr Arkansas River Navigation System 

The multimodal data fusion methodology and MCAP were applied to the Arkansas 

portion of the McClellan-Kerr Arkansas River Navigation System (MKARNS), which consists 

of 308 miles of river divided by locks into 13 river sections. 43 freight ports are located along the 

waterway (Figure 5.5), which contributes to the national economy with $4,535M in sales, $168M 

in business taxes, and 33,695 jobs (Nachtmann et al., 2015). Within the next 50 years, the net 

present value of sales, GDP, and tax economic impacts of the MKARNS are expected to be 

$232.5B, $111.3B, and $7.8B respectively (Oztanriseven et al., 2019).  LMPS and truck GPS 

data were obtained for the year 2016.  Truck GPS data for four two-week periods was obtained 

from ATRI while monthly LPMS data was downloaded from the USACE Navigation Data 

Center. Commodities were grouped into nine categories, as defined by the LPMS commodity 

grouping scheme. Truck payload factors for each of the nine categories were derived from the 40 

LPMS commodity sub-groups, using the Standard Transportation Commodity Codes (STCC2) 

payload factors included in the Arkansas State Travel Demand Model to assist with the 

commodity cross-walks (Alliance Transportation Group, 2012). 
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The proposed MCAP model was applied to each of the eight river sections where freight 

ports are located. Spatial data (GIS files) for the navigable waterways geometry, port and lock 

locations were publicly available from the National Transportation Atlas Database (NTAD) for 

the year 2018. Since waterborne infrastructure does not change frequently, using 2018 data 

(instead of 2016, matching truck GPS and LPMS data) was considered to be acceptable. Since 

the NTAD port data contained all ports located along U.S. inland navigable waterways, it was 

filtered to select only freight ports along the MKARNS.  Further, to ensure no ports were missing 

from the NTAD dataset, or in incorrect locations, Google Earth satellite imagery was used to 

manually confirm port locations. When available, 2016 imagery was used to account for 

potential changes between 2016 and 2018 datasets. As a result, 41 freight serving ports were 

included in the NTAD dataset, and an additional two were added based on satellite imagery 

(Figure 5.5). 

 

Figure 5.5  Arkansas portion of the MKARNS 
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 Results 

The model was formulated and solved using IBM ILOG CPLEX optimization studio 

version 12.8.0. This software has a built-in feature to relax conflictive constraints if needed to 

reach a feasible solution. This relaxation feature is necessary to resolve conflicts, allowing for a 

solution to be found outside of the boundaries imposed by the originally conflictive constraints. 

This is the case when even the formulation of constraints as inequalities may lead to infeasible 

solutions. For example, the inequality constraint on truck proportions (eq. 5.8) imposes an upper 

limit on the proportion of trucks accessing each port within a river section, which may be 

surpassed after relaxing it, allowing for a higher number of quantified trucks to transload at such 

port than observed. By applying the proposed model (eq. 5.6) with constraint equations 5.7-5.11, 

and further relaxing the proportional truck volume condition (eq. 5.8), a feasible solution for 

each of the river sections was found. Resulting truckloads (e.g., number of trucks) were 

distributed to upriver and downriver commodity flows per port, and further converted to 

measures of freight by weight.  

Resulting quantifications of port throughput by commodity were summarized in tabular 

form (Table 5.2-Table 5.3), with the cells representing quantity (measured in annual tons) of 

each commodity assigned to each port for the upriver and downriver directions. Note that blank 

cells in the tables denote that the port did not handle a specific commodity or serve a given 

mode, while a zero value denotes no commodity was transloaded even though the port was 

equipped to handle that commodity. For example, for Port 3001 in river section 3, 69,414 annual 

tons of chemicals were transloaded to/from barges traveling upriver, while 128,109 tons of 

chemicals were transloaded to/from barges traveling downriver.  Likewise, 179,082 annual tons 

of food and farm products were transloaded at Port 3002 to/from barges traveling downriver, 
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representing the dominate movement (only 6,469 annual tons were transloaded by barges 

travelling upriver). 

Table 5.2  2016 McClellan Kerr-Arkansas Upriver Freight Transloaded per Port, 

Commodity, and Mode (Annual Tons)  
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3001 15,293    69,414   31,404   67,029   3,574        186,714  186,714    

3002      6,469        6,469      6,469        

3003  14,896          14,896    14,896      

4 4001      109,273    109,273  109,273    

5001      63,534      63,534   34,887   98,421      

5002    0 0     0  0

5003  27,582   0  0 0    27,582    27,582      

5004   138,749   0    138,749 0 138,749    

5005   0 29,344   0    1,787     31,130   0 31,130      

5006      0    0 0 0

5007     14,681    3,596       18,277    18,277      

5008     9,576      0   9,576      9,576        

5009   0  0 0    0  0

5010    12,443   0     12,443    12,443      

5011     59,955       59,955    59,955      

5012      0    0  0

5013      0    0  0

7001-2   0 0 0     0 45,200   45,200      

7003  0        0 0 0

7004   145 0 0 0   0 145         145          

7005    0      0 0 0

7006 239                239         239          

7007  137,646        137,646  137,646    

7008   0   51,308      51,308   0 51,308      

7009   0 0 0 0  0 10,251   10,251   0 10,251      

7010-11   0 17,509   541,310 13,280    0 0 572,099  572,099    

7012  0 192,253 182,050  0    374,302  374,302    

7013    334      334  334

9001    33,915        33,915    33,915      

9002    0 42,419       42,419    42,419      

9003   64,801     26,060      90,862    90,862      

10001    92,529        92,529   10,647   103,175    

10002   147,897 0 43,162   30,053      221,113 0 221,113    

11001     34,262    2,198       36,460    36,460      

11002    10,526     0   10,526    10,526      

11003 0  0 0 0    0 0  0

11004         0 0 175,957 175,957    

13001    14,315   0   0 0 14,315    14,315      

13002     56,362       56,362    56,362      

13003-4 13,993    242,891 154,515 121,982     533,381 7,637     541,019    

13005      65,449      65,449    65,449      

13006    0      0 0 0

13007  19,422   0 0 0     19,422   0 19,422      

3

5

7

13

Note that blank cells in the tables denote that the port did not handle a specific commodity or serve a given mode.

9

10

11
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Table 5.3  2016 McClellan Kerr-Arkansas Downriver Freight Transloaded per Port, 

Commodity, and Mode (Annual Tons) 
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3001 20,755    128,109 225,177 5,353     98,946      478,340  478,340   

3002      179,082    179,082  179,082   

3003  10,016          10,016    10,016     

4 4001      251,922    251,922  251,922   

5001      158,703    158,703 31,116   189,819   

5002    0 0     0  0

5003  1,335     0  0 0    1,335      1,335       

5004   37,173     0    37,173   0 37,173     

5005   0 98,573   0    0 98,573   0 98,573     

5006      0    0 0 0

5007     1,524      4,074       5,598      5,598       

5008     994         0   994         994          

5009   0  0 0    0  0

5010    41,797   0     41,797    41,797     

5011     6,224         6,224      6,224       

5012      0    0  0

5013      0    0  0

7001-2   0 0 0     0 27,775   27,775     

7003  0        0 0 0

7004   67 0 0 0   0 67          67            

7005    0      0 0 0

7006 270                270         270          

7007  7,868            7,868      7,868       

7008   0   207,603    207,603 0 207,603   

7009   0 0 0 0  4,785     0 4,785     0 4,785       

7010-11   0 20,569   25,837   53,735    0 0 100,142  100,142   

7012  0 89,639   213,874  0    303,513  303,513   

7013    392      392  392

9001    84,479        84,479    84,479     

9002    0 2,135         2,135      2,135       

9003   39,810     99,530      139,340  139,340   

10001    72,667        72,667   7,758     80,426     

10002   71,908   0 4,889     60,581      137,378 0 137,378   

11001     3,666      2,997       6,663      6,663       

11002    158,892   0   158,892  158,892   

11003 0  0 0 0    0 0  0

11004         0 0 421,510 421,510   

13001    4,080     0   0 0 4,080      4,080       

13002     2,795         2,795      2,795       

13003-4 6,897      118,462 44,040   6,049         175,448 4,108     179,556   

13005      136,099    136,099  136,099   

13006    0      0 0 0

13007  14,840   0 0 0     14,840   0 14,840     

3

5

7

13

Note that blank cells in the tables denote that the port did not handle a specific commodity or serve a given mode.
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 Discussion 

Commodity flows through inland ports were not publicly available for model validation 

(in fact, the (in)ability to acquire such data was the main goal of this work).  Therefore, a method 

to assess model performance using the previously defined relaxed constraints was developed. In 

particular, the differences between predicted and observed percentages of trucks at each port 

were used as an evaluation metric (EM) (eq. 5.16). Generally, lower EM corresponds to better 

model results. 

 
𝐸𝑀𝑖 = |

𝑇𝑖
𝑠,𝑡

∑ 𝑇𝑖
𝑠,𝑡

𝑖

  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −
𝑇𝑖

𝑠,𝑡

∑ 𝑇𝑖
𝑠,𝑡

𝑖

  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| × 100% 
5.16 

Overall, 84% of the ports (36 out of 43) show EM less than 20% (Table 5.4, Figure 

5.6.a). By averaging the EM of all ports within each river section, 75% of the river sections with 

ports (6 out of 8) show an average EM less than 20%.  Notably, the six river sections with EM 

less than 20% represent 80% of the ports within the river navigation system (Table 5.4).  

Table 5.4  Model Evaluation Metric per River Section (EM) 

River sections Number of ports Average EM per section 

3; 4; 5; 7; 10 30 < 10% 

13 6 < 20% 

9; 11 7 < 40% 

1; 2; 6; 8 0 No ports. Algorithm not applicable 

  

A further metric used to assess model performance was the rail-to-truck ratio (RT) of 

transloaded freight at each river section (eq. 5.17). This metric captured the model ability to 

mimic RT ratios observed in independent national datasets.  

 
𝑅𝑇𝑠 =

∑ 𝑅𝑖
𝑠,𝑡

𝑖

∑ 𝑇𝑖
𝑠,𝑡

𝑖

× 100% 
5.17 
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With the exception of section 11, all river sections showed RT between 0% to 9% (Figure 

5.6.b). Since the decision variable R captured both barge/rail transload operations and freight 

consumed at facilities located at the ports (e.g., refineries, power plants), the high RT observed in 

section 11 may be explained by commodities arriving by water and being consumed at a power 

plant with port access located along that river section. The overall RT considering all river 

sections was 13%, in line with 15% national freight mode share (U.S. Department of 

Transportation, 2019).   

 

a. Evaluation metric per port (EM) 

 

b. Rail-to-Truck mode share ratio (RT) 

Figure 5.6  Model evaluation 
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The novel, multimodal fusion model presented in this paper closes a critical gap in the 

ability to quantify and describe port-level commodity flows, which is essential for estimating the 

demand for freight transportation facilities and services, safety risk, energy consumption, and 

environmental impacts per port. For example, the resulting port-level commodity flow shown in 

Table 5.2 and Table 5.3 could be used for estimation of commodity-specific, multimodal freight-

fluidity performance measures, and to support location selection for transload facilities. 

Specifically, a relatively high amount of food and farm products was transloaded in river 

sections 4 and 13, but there was only one port capable of handling such products. This may 

indicate an opportunity to invest in port infrastructure along those sections through direct 

investment of private companies or the public sector. As for measuring the resilience of the 

multi-modal freight supply chain, the model could be adapted to predict the impact of permanent 

or temporary port closures on the waterborne network. For example, by adjusting the coefficients 

αi,j, which indicate the types of commodities that can be handled at each port, we could simulate 

a temporary port shutdown after a severe weather event. The results could then be used to 

highlight which and to what degree other ports on the waterway accommodate the displaced 

commodity flows.  

Although the proposed methodology was able to quantify and describe port throughput 

with relatively high accuracy, the methodology could be improved to produce more accurate and 

robust estimates. First, the model was applied to inland waterways transport with publicly 

available data on the types of commodities by weight transported through locks operated by 

USACE.  Notably, the USACE issues a Public Lock Commodity Report with data from 

approximately 200 Locks within the U.S., thus providing coverage of much of the 12,000 miles 

of U.S. commercial inland waterways (U.S. Army Corps of Engineers, 2014, 2018). On the 
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MKARNS, locks and dams operate 24 hours per day, 7 days per week, and the data collected is 

representative of all vessels utilizing the locks. However, the amount and type of commodity 

carried is provided in a report manually filed by the vessel operator (U.S. Army Corps of 

Engineers, 2013), which may contain reporting errors.  Expanding data collection opportunities 

to wider geographies and automating the process to reduce respondent error would improve 

model inputs, and thus allow for more accurate model outputs.  

Second, the truck GPS sample used in this study, although very large, may not represent 

all industries or commodities. Studies have shown the data to under-represent smaller fleets 

and/or private owner-operators (Pinjari et al., 2014).  If lack of representation was tied to port 

operations, then there was potential for bias within the proposed model framework. For example, 

if logging trucks serving a particular port were under-represented in the truck GPS sample data, 

then the model may potentially assign a higher proportion of logging operations to rail or to other 

ports within the same river section, because trucks carrying logs were not contained in the GPS 

data for a particular port.  Fortunately, representation of truck GPS datasets is expected to 

improve, as more companies are included in the sampling frame with the recent regulation 

requiring Electronic Logging Devices (ELDs). In addition, truck GPS data is currently only 

available through partnerships with private operators or data providers.  This may hinder data use 

by public sector agencies. In future work, a sensitivity analysis will be conducted to evaluate 

how much truck GPS data (in terms of temporal scope) is needed to obtain acceptable throughput 

results.  The goal would be to determine the minimal amount of truck GPS data needed to 

estimate stable truck flows to and from the ports to reduce data acquisition costs. Furthermore, 

truck GPS data was the only source of vehicle movement data used in this work, but could be 

supplemented by other sources such as the Marine Automatic Identification System (AIS). AIS is 
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a publicly available dataset providing the timestamped location of operating marine vessels. A 

preliminary observation of 2016 AIS data on the Arkansas River indicates that it may serve as a 

suitable complement or replacement to truck GPS data. AIS tracking capabilities may provide 

data to replace the assumption that directionality percentages per commodity are equivalent for 

all ports within the same river section. This assumption could be violated considering in-bound 

and out-bound trade imbalances, however this element of the post-processing is minor to the 

purpose of the study.  

In terms of model improvements, the model was sensitive to assumptions of rail access at 

each port. Currently, the presence of a rail spur at a port was considered sufficient to allow 

barge/rail transload operations. However, although rail spurs were present, they may be out of 

operation. Stakeholder interviews may help to identify ports which do not use observed rail 

spurs.  This would better inform the model variable β, which represents whether a port accesses 

the rail network or not. Beyond the model improvements detailed above, extensions to the model 

framework include: i) developing a time-expanded approach to disaggregate from annual to 

monthly volumes, ii) identifying paths of trucks observed at ports to better link commodity 

carried by each truck to port operations, and iii) to develop a predictive model that is sensitive to 

policy and pricing changes that affect commodity throughput at each port or along the river.  

 Conclusions 

This paper presented a novel methodology to spatially disaggregate commodity flows 

observed at locks along the inland navigable waterways to each port located between locks.  

Disaggregation was based on the temporal, spatial, and contextual fusion of truck GPS and 

LPMS data. The methodology proposed, e.g. Multi-Commodity Assignment Problem, consisted 

of a multimodal data fusion approach to feed an optimization model solved via goal 
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programming under relaxed constraints. The methodology was evaluated with a case study of the 

McClellan Kerr-Arkansas river navigation system using 2016 data. Results show that 84% of 

ports had less than a 20% difference between estimated and observed truck volumes. The 

quantification of port throughput by commodity and mode obtained by adopting the proposed 

methodology, which was not previously publicly available, can be utilized for several purposes, 

such as: i) to estimate multimodal, commodity-based freight fluidity performance measures, ii) to 

incorporate into multimodal freight travel demand models, iii) to support location selection for 

waterborne freight transload facilities, and iv) to perform scenario planning and resilience 

evaluations. The methodology can be applied to any geography with available truck GPS data 

and inland navigable waterways with aggregated commodity flow data, such as that obtained 

from locks operated by USACE. 
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CHAPTER 6.  Commodity-based Vessel Trip Characterization on Inland Waterways 

 Abstract 

Given the complexity of the multimodal freight transportation system, there is increased 

interest in developing multimodal “freight fluidity” indicators to capture end-to-end supply chain 

performance. Inland navigable waterways play a key role in the multimodal transportation 

system by connecting productive heartland areas to international gateways, while keeping 

transportation costs competitive. To expand the concept of freight fluidity to inland navigable 

waterways, which typically carry bulk freight, requires a highly disaggregated understanding of 

freight flow by commodity. However, publicly available commodity flow on U.S. inland 

waterways is limited in its spatial aggregation to the location of locks which is insufficient to 

identify commodity flows by port origin-destination. Automatic Identification System (AIS) has 

the potential to further disaggregate inland waterway commodity flows but has thus far only been 

used to measure general waterway performance (e.g., speed, travel time).  The purpose of this 

work is to quantify and characterize inland waterway commodity flows at trip level from 

publicly available data. This is accomplished through the development of a multi-commodity 

assignment model which conflates vessel and vehicle movement data (from AIS and GPS) with 

commodity volumes (from Lock Performance Monitoring System data).  Validation using data 

from the Arkansas River show agreement between model predictions and aggregated commodity 

volumes with differences between 0.00%-1.82% by commodity and lock.  Detailed commodity-

flow estimates allow us to derive commodity-based freight fluidity measures and forecasts, 

which can support data-driven project prioritization and scenario planning. 

Key words: Inland Waterway Transportation, Commodity Flow, Automatic 

Identification System, Freight. 
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 Introduction and Background 

Given the complexity of the multimodal freight transportation system, there is increased 

interest in developing multimodal “freight fluidity” indicators to capture end-to-end supply chain 

performance (Transportation Research Board, 2014). Freight fluidity measures the ease at which 

freight (in quantities of tonnage or volume) moves through the multi-modal supply chain. 

Fluidity indicators were first introduced by Transport Canada, who measured the total transit 

time of inbound containers from overseas markets to strategic North American inland 

destinations via various gateways (Transport Canada, 2017).  Unlike Canada, the U.S. has not 

yet adopted practices of measuring multi-modal freight flows that encompass end-to-end (e.g., 

port-rail-highway-customer) goods movement (FHWA, 2017). Currently, the FHWA is leading 

national efforts to implement freight fluidity system performance measures and analysis. 

Examples of such efforts can be found in (Eisele, Juster, Sadabadi, Jacobs, & Mahapatra, 2016; 

Cambridge Systematics, Inc., 2011; I-95 Corridor Coalition, 2019). However, these efforts are 

currently limited to the use of only truck probe data. 

Inland navigable waterways play a key role in the multimodal transportation system by 

connecting productive heartland areas with international gateways, while keeping transportation 

costs competitive (U.S. Committee on the Marine Transportation System, 2020). More than 

25,000 miles of U.S. inland waterways carry about 14% of all domestic freight representing 

more than 600 million tons of cargo annually (American Society of Civil Engineers, 2017). 

Expanding the concept of freight fluidity to inland waterways where non-containerized, bulk or 

dimensional cargo is transported (Wiegmans, 2017) requires a highly-disaggregated 

understanding of freight flow by commodity. However, at best, publicly-available commodity 

flow data on U.S. inland waterways is limited in its spatial aggregation to the location of locks 
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through the Lock Performance Monitoring System (LPMS) (U.S. Army Corps of Engineers, 

2018). LPMS aggregates commodities into nine groups (Table 6.1). Notably, the U.S. Army 

Corps of Engineers (USACE) collects disaggregated commodity flow data at vessel trip level 

(U.S. Army Corps of Engineers, 2018). However, such detailed data is reserved for use by 

collecting agencies and not made available to public agencies like State Departments of 

Tranportaiton. A summarized version of this data is shared via the Waterborne Commerce of the 

United States (WCUS) (U.S. Army Corps of Engineers, 2016). In particular, the Manuscript 

Cargo and Trip File provides movements of commodities at certain ports, harbors, and inland 

waterways in the U.S., but it is limited in: i) its spatial aggregation, (for example, it includes only 

three ports from the more than 40 freight port terminals in Arkansas); and ii) it is based on 

manually entered reports, which may contain errors. This work overcomes those limitations by 

leveraging geospatial Automatic Identification System (AIS) data and other publicly available 

databases to quantify and characterize highly disaggregated commodity flow on inland 

waterways. 

Table 6.1  LPMS Commodity Classification 

Code – Commodity group 

10 – Coal, lignite, and coal coke 

20 – Petroleum and petroleum products 

30 – Chemicals and related products 

40 – Crude materials, inedible, except fuels 

50 – Primary manufactured goods 

60 – Food and farm products 

70 – Manufactured equipment and machinery 

80 – Waste material 

90 – Unknown or not elsewhere classified 
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Contributing to the measurement of multimodal transportation system performance and 

freight fluidity, the USACE developed several applications of fluidity using AIS data, namely: i) 

lock operations management (interactions between individual vessel operators and the system), 

ii) the Inland Marine Transportation System Travel Time Atlas (under development, will include 

travel time, travel time reliability, and port terminal dwell time); and iii) the Port Fluidity 

Performance Measurement Methodology (port system time from anchorage to exit, cycle time 

from entrance to channel exit, travel time, travel time indices)  (Transportation Research Board, 

2018). For the development of the Inland Marine Transportation System Travel Time Atlas, 

USACE produces travel time estimates for key waterway segments, updated quarterly. Travel 

time between ports or river markers is estimated from AIS historical data (DiJoseph & Mitchell, 

2015). The output is presented as vessel travel time tables that summarize the 25th, 50th, and 

75th percentile travel times between inland waterway ports that constitute origin-destination 

pairs per river segment (Kress et al., 2016). This paper supplements USACE’s work by allowing 

for commodity-based travel-time characterization, leveraging AIS along with other data sources. 

The purpose of this work is to characterize highly disaggregated commodity flows on an 

inland waterway network based on publicly available data. This is accomplished by conflating 

multimodal, ubiquitous geospatial vehicle tracking data (maritime AIS and truck Global 

Positioning System (GPS)) with aggregated commodity data (USACE LPMS).  The proposed 

model can be used to quantify and describe the type of commodities carried by vessel trips 

mapped to a detailed inland navigable waterway network. Applications include the development 

of commodity-specific, multimodal freight fluidity performance measures which extend to data 

driven project prioritization. For example, detailed sections of an inland waterway can be 

prioritized for dredging based on their importance to the economy, as measured by the value and 
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tonnage of the commodities transported through each river section. In addition, the geospatial, 

timestamped trip data characterized by commodity produced by our model can support planning 

and scheduling of transportation infrastructure investments. In particular, traffic-disruptive 

maritime operations can be scheduled based on the selection of the time of year when a given 

commodity has its lowest traffic on the link and node of the network where the infrastructure 

improvements are planned, thus minimizing construction and maintenance impacts on the 

economy.  

The remaining of this paper presents the data preparation necessary to feed the multi-

commodity assignment model, specification and formulation of the model, a case study to test 

and evaluate the model on the Arkansas River, and concluding remarks.   

 Methodology 

For this work, a trip is defined as a sequence of network links and nodes visited by a 

vessel in transit between each pair of time-wise-consecutive stops associated with port nodes in 

the network (presented as “trip-chains” in Chapter 5). Intermediate stops along a vessel trip may 

occur at nodes characterized as non-port locations, such as locks or anchoring grounds. The 

methodology to characterize and quantify vessel trip cargo by commodity on an inland waterway 

transportation network is based on a multi-commodity assignment model, formulated as an 

optimization assignment model, fed by freight data derived from public databases. Details on 

input data and model formulation are presented in the following paragraphs. 

6.3.1. Data Preparation 

The input for the multi-commodity assignment model has two components: i) the port of 

origin and destination of each vessel trip; and ii) port throughput by commodity. Each input is 

defined for the same time period and study area. 
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Vessel Trip Identification by Port of Origin and Destination 

The port of origin and destination for each vessel trip is derived from AIS data by 

following the heuristic in Chapter 3 (Asborno, Hernandez, and Yves, 2020). Briefly, the heuristic 

first identifies vessel stops by clustering successive AIS records based on their location, 

timestamp, and calculated speed. Then, each stop is associated with a network node based on 

proximity. Timewise-consecutive stops constitute the origin and destination of a path segment. 

Later, a map-matching algorithm reconstructs complete vessel paths by finding the shortest path 

between origin-destination pairs. Path segments are joined to define freight trips with origin and 

destination in ports. Lastly, freight trips are characterized by origin, destination, length, duration, 

time-of-year (week, season, etc.), and path (but not by commodity). Trip origin and destination 

are represented by network nodes, location type (port, anchoring ground, lock, or other), and a 

unique location identification number. While the ports of origin and destination for trips within 

the study area are identified from the AIS sample pertaining to the study area, trips coming from 

or exiting the study area boundaries are subject to data preparation. Thus, the true origin and 

destination of trips coming from or destined to ports located outside of the study area are 

represented by “artificial” ports at the pair of locks located at the study area boundaries (Figure 

6.1). Next, the trips with origin or destination in the study area boundary locks are identified by 

applying geoprocessing tools. First, “screenlines” are created at each of the locks. Then, vessel 

trips (paths) intersecting the screenlines are identified.  Lastly, the information about the origin 

and destination of all trips is converted into a matrix where rows represent each freight port of 

the network, and columns represent each trip. The matrix values represent a binary variable 

called “v s ted” (vi,t), which takes the unit value if port i was either the origin or destination of 

trip t, and the null value if vice-versa (eq. 6.1). 
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𝑣𝑖,𝑡 = {
1 𝑖𝑓 𝑡𝑟𝑖𝑝 𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑝𝑜𝑟𝑡 𝑖
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (6.1) 

Port Throughput by Commodity 

In the U.S., port throughput by commodity is publicly available only for the major ports 

based on their annual cargo handled (Bureau of Transportation Statistics, 2019). This typically 

excludes inland waterway ports which serve relatively smaller annual cargo quantities than 

coastal ports. Thus, this work derives the annual volume (in tons) of commodity transloaded at 

port terminals on inland waterways by following the procedure in Chapter 5 (Asborno, 

Hernandez, and Akter, 2020). Briefly, the method spatially disaggregates inland waterways 

commodity flow between locks, as observed from USACE LPMS, into port-terminal commodity 

flow, by observing the relative volume of trucks accessing each port terminal during the same 

time period and study area from truck GPS data. The method estimates the volume of commodity 

(in equivalent truckloads) transloaded annually between barge and truck per port terminal (in 

tons) and direction (upriver, downriver), and the total volume of freight (all commodities 

aggregated) transloaded between barge and rail or not subject to transload (produced or 

consumed at the facility), per port terminal and direction. Notably, the estimates do not 

distinguish between pick-up and drop-off freight volumes. This output serves as input to the 

procedure described in this paper, following several data preparation steps. First, the volume of 

freight transloaded between barge and rail (or not subject to transload at all, for which 

commodity type is not known) is summed to the LPMS commodity group labeled as “unknown 

or not elsewhere classified”.  The purpose of this step is to calibrate the estimated port level 

flows to aggregate observed totals.  Then, volume of freight of downriver and upriver directions 

are aggregated, and a payload factor by commodity is applied to convert truckloads to tonnages 

(eq. 6.2). Lastly, a matrix is created, where rows represent each freight port i of the network, and 
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columns represent each of the nine commodity groups j following the LPMS aggregation (Table 

6.1). The matrix values (ai,j) represent the annual tonnage of each commodity transloaded at each 

port. For the “artificial” ports represented by the locks located at the study area boundaries, the 

volume and type of commodities for the study period are obtained directly from the LPMS. 

 𝑖,𝑗 = ( 𝑖,𝑗,𝐷 +  𝑖,𝑗,𝑈)  × 𝑓𝑗    (6.2) 

Where, 

ai,j, = volume of commodity j (in tons) transloaded at port i 

ai,j,D = volume of commodity j (in equivalent truckloads) transloaded at port i, 

corresponding to downriver direction 

ai,j,U = volume of commodity j (in equivalent truckloads) transloaded at port i, 

corresponding to upriver direction 

fj = truck payload factor for commodity j 

6.3.2. Stochastic Multi-commodity Assignment Model 

Trip port of origin and destination and type and volume of commodities transloaded at 

each port serve as input to the two-stage multi-commodity assignment model described here. 

Since the inputs are derived from different sources (AIS, GPS, and LPMS), the assignment 

model is a tool to minimize data heterogeneity by assuming a non-integer, linear, and stochastic 

model formulation. The first modeling stage consist of a deterministic, linear objective function 

that seeks to minimize differences in the volume of commodity transloaded at ports and assigned 

to trips visiting such ports, for all ports, all commodities, an all trips in the study area during the 

study period. Decision variables in this model pertain to volume (in tons) of each commodity 

carried per vessel trip, and are treated as non-integer variables to resemble a continuous volume 

of commodity loaded in any given trip. AIS data is linked to tugs and tows pushing barges on 
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inland waterways, but not to the barges that carry the load (Kruse, et al., 2018). Thus, the second 

modeling stage introduces stochasticity to reflect uncertainty in the volume of freight (all 

commodities aggregated) transported per trip.  Stochasticity is modeled by assuming different 

scenarios of maximum freight carried per trip, and combining the results of all scenarios into a 

single model output. Further details are provided later in this section. The model is evaluated 

based on the difference of the distribution of commodity volumes observed at locks (LPMS) and 

model output aggregates.   

The selection of an optimization approach to solve the assignment problem is made after 

considering other potential model types (gravity models, supervised machine learning) against 

data requirements and availability. For example, consider a gravity model where ports serve as 

production and attraction zones and the number of trips linking ports used as impedance factors 

to connect such zones. In the context of available data, from the commodity flows available at 

the port level (Chapter 5) we are unable to discern productions from attractions, creating a 

challenge to adoption of gravity models. Similarly, supervised machine learning models are not 

considered due to the unavailability of a public ‘groundtruthed’ data of trips characterized by 

commodity that is needed in the training stage of a machine learning model. Therefore, a 

generalized assignment optimization model is selected, where commodities represent “tasks” that 

are assigned to “agents”, or trips, subject to constraints. Constraints consider port capacity, trip 

capacity, commodity flow conservation, and non-negativity boundaries.   

The model schema (Figure 6.1) and formulation (Table 6.2  ) consider that the (known) 

volume a of commodity j transloaded at port i (ai,j) during a given timeframe is the sum of the 

(unknown) volume x of the same commodity j carried by all trips t (xt,j) that visit port i during the 

same time period (eq. 6.3). Extending this concept to the set of ports, trips, and commodities on 



 

135 

the network leads to its matrix form (eq. 6.4). Commodity tonnages on both sides of eq. 6.4 may 

not be in agreement due to data heterogeneity. Thus, the objective function minimizes the 

difference between the volume of cargo transloaded at ports (A) and the volume of cargo 

transported by trips (X) for the study area, in search for a feasible set of decision variables xt,j  for 

all ports, trips, and commodities (eq. 6.4).  

 𝑖,𝑗 = ∑ (𝑣𝑖,𝑡 × 𝑥𝑡,𝑗)𝑡   (6.3) 

𝐴 = 𝑉 × 𝑋  (6.4) 

 
Figure 6.1 Model schema depicting a section of river with three ports between a pair of 

locks 

Table 6.2  Model Formulation – Stage 1 

Sets   

i    P Set of ports 

t    T Set of vessel trips  

j    C Set of commodities  

s    S Set of scenarios  

Parameters 

vi,t 

Coefficient to indicate whether port i is the origin or destination of trip t 

𝑣𝑖,𝑡 = {
1 𝑖𝑓 𝑡𝑟𝑖𝑝 𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑝𝑜𝑟𝑡 𝑖
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 



 

136 

Table 6.2  Model Formulation – Stage 1 (cont.) 

bs Maximum volume of cargo (in tons) transported per vessel trip, assumed for scenario s 

Variables 

Decision variables 

𝑥𝑡, 
𝑠  Volume (in tons) of commodity j transported in trip t  in scenario s 

Input variables 

ai,j Volume (in tons) of commodity j loaded/unloaded in port i 

Model 

Objective function 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒇(𝒙) = (∑ ∑ (𝒂𝒊,𝒋𝒋 /𝟐)𝒊 − ∑ ∑ ∑ (𝒗𝒊,𝒕 × 𝒙𝒕,𝒋
𝒔 )𝒕𝒋𝒊 )   (6.5) 

Subject to the following constraints 

i) Trip capacity: The maximum volume of cargo (all commodities aggregated) transported per trip must 

not exceed the capacity of a reasonable number of barges pushed per tug, assumed for scenario s 

∑ 𝑥𝑡, 
𝑠

𝑗 ≤ 𝑏𝑠   𝑡  𝑇  (6.6) 

 ii) Port capacity: The volume of freight (all commodities aggregated) carried by all trips visiting a 

port must match the total volume of freight transloaded at such port (all commodities aggregated).  

∑ ∑ (𝑣𝑖,𝑡 × 𝑥𝑡, 
𝑠 )𝑗𝑡 = ∑  𝑖,𝑗/2𝑗    𝑖  𝑃  (6.7) 

 

iii) Commodity flow conservation: The volume of each commodity transported by all trips carrying 

such commodity must match the volume of the same commodity transloaded at all ports 

∑ 𝑥𝑡, 
𝑠

𝑡 = ∑  𝑖,𝑗/2𝑖      𝐶  (6.8) 

iv) Non-negativity constraints: Non-negativity bounds are placed on the volume of commodity 

transloaded per trip 

𝑥𝑡, 
𝑠 ≥ 0       𝐶,  𝑡  𝑇  (6.9) 

In the second modeling stage, stochasticity is introduced to model the uncertainty 

associated to the maximum volume of freight transloaded per trip, b. Stochasticity may be 

modeled by representing the uncertain parameters by random variables and model the 

randomness by a finite set of scenarios (Seker and Noyan, 2012). Thus, the model presented 

above is applied for different scenarios of trip capacity (eq. 6.6). The results of each scenario are 

combined to an overall model result of volume of commodity (in tons) assigned per trip, 𝑥𝑡,𝑗 , 

considering the probability of occurrence of each scenario (Lin et al., 2018) (eq. 6.10) 

𝒙𝒕,𝒋 = ∑ ∑ 𝒑𝒔 × 𝒙𝒕,𝒋
𝒔

𝒔𝒑   (6.10) 
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Where, 

𝑥𝑡,𝑗
𝑠 = annual volume (in tons) of commodity j carried by trip t in scenario s, 

ps = probability of occurrence of scenario s, and 

𝑥𝑡,𝑗= annual volume (in tons) of commodity j carried by trip t (model results). 

6.3.3. Model Validation 

For validation, the volume of each commodity group (in tons) assigned to trips identified 

by the model (i.e. model results) on the study area are compared to the volume of each 

commodity group observed at locks on the same area, during the same time period (i.e. 

“LPMS”). The comparison consists of calculating the difference of commodity volume at each 

lock, as an absolute value, 𝑉𝑗,𝑙. Commodity volumes are normalized to the total freight volume on 

the system (all commodities, trips, and locks aggregated) to eliminate scaling effects that would 

prevent a direct comparison, and presented as percentages of total freight (eq. 6.11). The average 

of 𝑉𝑗,𝑙 for all locks and commodities constitutes the overall model evaluation metric, V (eq. 6.12). 

Subtotals per lock and commodity further support model evaluation and validation (eq. 6.13 and 

eq. 6.14). 

𝑉𝑗,𝑙 = |(
𝐿𝑃𝑀𝑆𝑗,𝑙

∑ ∑ 𝐿𝑃𝑀𝑆𝑗,𝑙𝑙𝑗
⁄ ) × 100 − (

∑ 𝑥𝑡,𝑗
𝑙

𝑡 

∑ ∑ ∑ 𝑥𝑡,𝑗
𝑙

𝑡 𝑙𝑗
⁄ ) × 100|     𝐶,  𝑙  𝐿 (6.11) 

𝑉 =
∑ ∑ 𝑉 ,𝑙𝑙 

𝐿×𝐶
 (6.12) 

𝑉𝑙 = ∑ 𝑉𝑗,𝑙𝑗     𝑙  𝐿 (6.13) 

𝑉𝑗 = ∑ 𝑉𝑗,𝑙𝑙       𝐶 (6.14) 

Where, 

Vj,l = model validation metric for tonnages of commodity group j and lock l, 

𝐿𝑃𝑀𝑆𝑗,𝑙= annual volume (in tons) of commodity j reported by LPMS for lock l, 
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𝑥𝑡,𝑗
𝑙 = annual volume (in tons) of commodity j carried by trips t (model results) observed 

at lock l. To calculate 𝑥𝑡,𝑗
𝑙 , a screenline approach is used such that trip path geometries of 

tugs/tows that intersected locks (represented by line segments) are counted as vessels in transit 

through the lock,  

V = overall model validation metric (considering tonnages of all commodities, all locks),  

C = number of commodity groups, and 

L = number of locks within the study area. 

 Case Study: Commodities Transported by Vessels on the Arkansas River 

6.4.1. Scope, Data, and Model Parameters 

The proposed methodology is applied to the Arkansas River. The study area includes a 

308-mile segment of the inland navigable waterway consisting of 14 locks and 43 freight ports. 

The Arkansas River contributes to the national economy with $4,535M in sales, $168M in 

business taxes, and 33,695 jobs (Nachtmann et al., 2015). The case study includes a set of 43 

ports and 2 external locks treated as proxy ports.  The proxy ports are the W.D. Mayo lock and 

dam, and the Montgomery point lock & dam, constituting the western and eastern study area 

boundaries, respectively (Figure 6.2).  

The set of vessel trips characterized by port of origin and destination on the Arkansas 

River for the year 2016 is derived from AIS data. The AIS data sample used for this work may 

be obtained from (NOAA Office for Coastal Management, 2018). For the vessels observed 

within the study area, AIS data mining for trip identification, including port of origin and 

destination, follows the procedure in Chapter 3 (Asborno, Hernandez, and Yves, 2020). As a 

result, 4,374 trips with either origin or destination in one of the 45 ports in the study area are 
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identified. 3,096 of such trips transit within the study area, while the remaining traverse the study 

area boundaries, and 102 trips represent pass-through vessel movements. The identification of 

port of origin and destination of each trip allows for the extraction of the model parameters, vi,t. 

 
Figure 6.2  Study area 

The set of commodities follows the commodity aggregation from LPMS (Table 6.1). The 

volume of each type of commodity observed during 2016 in the 14 locks within the study area is 

obtained from (U.S. Army Corps of Engineers, 2017). 

The second piece of input data required for this work, namely the annual port throughput 

by commodity handled by each of the 43 ports on the network (excluding bounds) during 2016 is 

derived from truck GPS and LPMS data by following the procedure in Chapter 5 (Asborno, 

Hernandez, and Akter, 2020). Truck GPS data for four two-week periods of 2016 is acquired 

from a national vendor, representing seasonal movements of roughly 10% of the truck population 

in Arkansas (Diaz-Corro, Akter, and Hernandez, 2019). Trucks within bounding boxes around 

port areas are selected, time-expanded, and volume-expanded, to match with LPMS annual data. 



 

140 

Payload factors by commodity are further applied to convert number of trucks to commodity 

volume (in tons). By applying the procedure in Chapter 5 (Asborno, Hernandez, and Akter, 

2020), the volume of each type of commodity transloaded in each of the 43 ports of the study 

area is obtained. 

The parameter b, which sets an upper bound to the volume of freight carried per trip, is 

derived from LPMS. In particular, the lock usage report provides the number of loaded barges 

and the number of commercial vessels observed at each lock operated by USACE (U.S. Army 

Corps of Engineers, 2018). An average of 4.72 loaded barges per vessel was observed at the 

locks within the study area during 2016, with a standard deviation of 0.84. To account for the 

uncertainty in the maximum volume of freight carried per trip, five scenarios are modeled, where 

b takes the form of a discrete variable and is varied 2 standard deviations below and above the 

average, with a step of one standard deviation.  Considering the capacity of most barges is 1,500 

tons, the average volume of freight per trip, b is 7,085 tons, and the set of scenarios is S={4,564; 

5,825; 7,085; 8,345; 9,606}.  In the absence of further statistical data pertaining the distribution 

of number of barges per vessel in the study area, the five scenarios are considered to have an 

equal probability of occurrence, thus p = 0.20. 

6.4.2. Results 

Each modeled scenario, which has 39,366 decision variables (4,374 trips and 9 

commodities), is programmed and solved in less than one minute with IBM ILOG CPLEX 

Optimization Studio version 12.10.  Due to input data heterogeneity (AIS, truck GPS, and 

LPMS), relaxation of conflictive constraints, namely port capacity (eq. 6.6) and commodity flow 

conservation (eq. 6.8), is necessary for a feasible solution to be found. Notably, under some 

scenarios, relaxing constraints in conflict may lead to an assignment of freight per trip that 
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violates the commodity flow conservation principle. Such principle dictates that the volume of 

commodity assigned to trips (output) should be the same than the volume of commodity 

transloaded at ports (input) (eq. 6.8). In particular, scenarios with an upper bound of the volume 

of freight carried per trip being equal or less than the average plus one standard deviation, i.e. b ≤ 

8,345 tons, result in this violation. Thus, under such relaxed constraints, the stochastic model (all 

five scenarios combined) results in 80% of the total freight transloaded at ports being assigned to 

trips. The flow conservation principle stands when the analysis is done by commodity type for all 

commodities except chemicals and food and farm products. To account for the un-assigned 

freight flow of chemicals and food and farm products, model results are post processed as 

follows. First, it is assumed that the distribution of volume of commodity per trip, for all the trips 

that carry the given commodity, stands. Then, the volume of commodity assigned per trip is 

increased proportionally, to match the total volume of such commodity transloaded at ports.  

It is observed that 65% of the set of trips are assigned freight. This is consistent with the 

known presence of vessels within the study area that do not carry freight; being involved instead 

in repositioning empty barges, construction, dredging operations, etc. Notably, 29% of freight (in 

tons) is assigned to trips (chains) that have the same port of origin and destination, indicating that 

such cargo is transported in only a portion of the trip, most likely between a port and a barge 

anchoring ground, for another tug to pick them up later.  

Trips derived from highly disaggregated AIS data are characterized by port of origin, 

destination, length (miles), duration (hours), and location (path). This work further characterizes 

trips by commodity carried. Commodity-based measures on the study area are derived for 2016 

by aggregating the length and number of trips carrying each commodity (Figure 6.3). Moreover, 

commodity flow on a detailed inland waterway network is pictured by aggregating the volume of 
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each commodity carried by all trips transiting each network link. Thus, existing commodity-

based maps, spatially aggregated to the location of locks on the network, are disaggregated to the 

location of ports (Figure 6.4). 

 
Figure 6.3  Ton-miles transported on MKARNS by commodity, 2016 
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Figure 6.4  Commodity flow on MKARNS detailed inland waterway network, 2016 

 Model Evaluation and Discussion 

6.5.1. Model Validation 

First, the stochastic model is evaluated using the validation metrics V (eq. 6.12), and Vj,l 

(eq. 6.11). The lower the validation metrics, the better the model. Differences in the volume of 

commodity between LPMS and model results, Vj,l,  range from 0.00% to 1.82% for each lock, 

Changes in 

commodity 

volume visualized 

at port level, in-

between locks 



 

144 

with an average of 0.25%. We aggregated the differences corresponding to each lock and to each 

commodity (eq. 6.13 and 6.14, respectively). We found that the commodity with highest 

difference (Vj =12.24%) is Food and Farm products, while all other commodities have Vj <5.41%. 

As for locks, low differences range between Vl  = [0.00% to 1.95%] (Table 6.3). 

Table 6.3  Model Validation Metric Vj,l  MKARNS, 2016 

Commo-

dity/Lock 
Coal Petrol 

Che-

micals 

Crude 

Materials 

Manu-

factured 

Food & 

Farm 

Mach-

inery 
Waste 

Unk-

nown 
Vl 

85 0.15 0.08 0.65 0.74 0.17 0.63 0.02 0.00 0.12 0.94 

88 0.20 0.03 0.47 0.61 0.29 0.73 0.02 0.00 0.13 0.00 

89 0.20 0.00 0.48 0.62 0.30 0.72 0.02 0.00 0.13 0.01 

90 0.11 0.01 0.01 0.21 0.25 1.82 0.01 0.00 0.15 1.85 

91 0.10 0.00 0.12 0.21 0.27 1.79 0.02 0.00 0.14 1.95 

92 0.07 0.00 0.00 0.25 0.19 1.39 0.01 0.00 0.15 1.26 

93 0.08 0.00 0.00 0.25 0.19 1.39 0.01 0.00 0.15 1.26 

105 0.01 0.06 0.27 0.25 0.21 0.95 0.02 0.00 0.22 0.39 

101 0.01 0.05 0.24 0.22 0.20 0.97 0.01 0.00 0.22 0.46 

102 0.02 0.01 0.35 0.24 0.22 0.79 0.03 0.00 0.22 0.23 

104 0.00 0.17 0.40 0.25 0.16 0.69 0.03 0.00 0.21 0.47 

103 0.03 0.24 0.53 0.52 0.54 0.08 0.03 0.00 0.22 1.92 

106 0.03 0.25 0.49 0.52 0.52 0.15 0.03 0.00 0.22 1.79 

107 0.03 0.26 0.50 0.53 0.52 0.14 0.03 0.00 0.22 1.82 

Vj 0.99 1.15 4.24 5.41 0.23 12.24 0.31 0.01 2.51  

A second metric used to evaluate the model is the percentage of ton-miles by commodity 

transported on the MKARNS during 2016, provided at (U.S. Army Corps of Engineers, 2018), 

and compared to aggregated model results (eq. 6.15), Mj. This comparison reveals an average 

difference by commodity of 3.62%, within a range of 0.0% to 15.3%, with food and farm 

products being the commodity group with higher difference (Table 6.4).  

𝑀𝑗 = |
∑ 𝒙𝒕,𝒋𝑡

∑ ∑ 𝒙𝒕,𝒋𝑡𝑗
−

𝑚𝑗

∑ 𝑚𝑗𝑗
| (6.15) 

Where, 

Mj = ton-miles model validation metric for commodity group j, and 
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𝑚𝑗= annual volume (in ton-miles) of commodity j reported by USACE for the MKARNS 

Table 6.4  Validation of Distribution of Ton-miles by Commodity, Mj. MKARNS, 2016 

Commodity Model results USACE WCUS Mj 

Coal 3.03% 2.21% 0.82% 

Petrol 3.66% 4.60% 0.94% 

Chemicals 44.21% 39.98% 4.23% 

Crude Materials 19.10% 10.81% 8.29% 

Manufactured 7.74% 7.29% 0.46% 

Food & Farm 19.66% 35.00% 15.33% 

Machinery 0.13% 0.12% 0.02% 

Waste 0.01% 0.00% 0.01% 

Unknown 2.45% 0.00% 2.45% 

 

Differences in model validation metrics and “perfect” model results may be caused by a 

number of reasons. First, the validation assumes that tug-trips carry freight along all their path, 

while freight might be carried only for a portion of the trip, e.g. between a port and an anchoring 

area. Second, other potential causes for the differences are related to the model input data.  For 

example, it was observed that 2016 AIS data covers 88% of the vessel population on MKARNS 

(Asborno, Hernandez, and Yves, 2020). In addition, there could be issues with the commodity 

volumes manually reported in LPMS. Third, in terms of model characteristics, assumptions of 

tonnage capacities per trip plays a key role in model results, as evidenced in the sensitivity 

analysis discussed in the next section. Despite the adoption of a stochastic approach that adopts a 

commodity distribution per trip based in the distribution of commodity per trip from several 

scenarios that assume diverse trip capacity, the model may be improved by increasing the 

number of scenarios, as in a Monte Carlo simulation approach (Lin et al., 2018).   
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6.5.2. Sensitivity Analysis 

This section discusses a sensitivity analysis of model scenario results to the input 

parameter b, which assumes the maximum freight volume transported per trip (in tons, all 

commodities aggregated). For the sensitivity analysis, b is varied between two fully loaded 

barges below and two fully loaded barges above the mean, µb, with a step of one fully loaded 

barge. The mean µb is calculated from the average number of barges pushed per tow on the study 

area during the study period, as observed per lock and informed through publicly available 

LPMS usage data, and rounded to the nearest higher integer; µb = 5 fully loaded barges. Notably, 

LPMS operators collect data of all vessels and barges observed on the locks operated and 

maintained by USACE, representing not a sample but the vessel population. The five sensitivity 

scenarios are compared based on the average distribution of commodity tonnages at locks, V (eq. 

6.12), and the percentage of unassigned freight in each scenario (violation of commodity flow 

conservation principle, eq. 6.8) (Figure 6.5). As discussed, the lower these metrics, the better the 

model. 

As the capacity of freight per trip (b) increases from three to seven fully loaded barges 

(equivalent to 4,500 to 10,500 tons), the percentage of unassigned freight decreases from 30% to 

0%. This is due to the higher capacity of the set of trips on the system to carry the goods 

transloaded at ports in the study area (input data). For a maximum trip capacity of 5 fully loaded 

barges (7,500 tons) or more, the set of trips is able to absorb all the volume of commodities 

transloaded at ports. Scenarios with trip capacity lower than 5 fully loaded barges are not capable 

of absorbing all the freight transloaded annually on port terminals on the MKARNS. 
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Figure 6.5  Sensitivity of deterministic scenarios and stochastic model results to the 

maximum volume of freight carried per trip 

As the capacity of freight per trip increases from five to seven fully loaded barges (7,500 

to 10,500 tons), the model validation metric, V, which considers the distribution of commodity 

assigned to trips per locks, increases from 0.36% to 0.72%. Similarly, as the capacity of freight 

per trip decreases from five to three fully loaded barges (7,500 to 4,500 tons), the model 

validation metric V increases from 0.36% to 0.66%. This indicates that, for a deterministic 

approach,  assuming a volume of maximum freight per trip equivalent to five fully barges or 

7,500 tons, which is closest to the average number of barges per trip recorded in LPMS data 

(4.72 barges), leads to results that better represent commodity flow on the MKARNS. 

However, as observed in Figure 6.5, the stochastic model approach, that combines the 

results of five deterministic scenarios, results in better evaluation metrics that each individual 

scenario. In particular, the average distribution of tonnages at locks by commodity, V, is 

significantly better (0.25%). The results post-processing further improves the model capacity to 
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represent commodity flow on an inland navigable waterway by assigning all freight transloaded 

at ports to trips.  

6.5.3. Applications 

By conflating aggregated commodity datasets (such as LPMS) and highly spatially and 

temporal-disaggregated multimodal vehicle tracking data through the model presented in this 

paper, it is possible to characterize and quantify commodity flow on an inland waterway network 

per trip (i.e. not limited to the location of locks). The results of the methodology proposed in this 

paper, based on public data, may be used by public agencies to prioritize infrastructure 

investments. For example, by assigning a monetary value to each commodity flowing on a 

detailed waterway network, network links and corridors may be prioritized by value for dredging 

purposes. Ubiquitous AIS and truck GPS data permit the transferability of the proposed model to 

other regions with waterways and aggregated commodity-flow data. 

In addition, the proposed methodology may be used as a basis for scenario planning and 

forecasting. For example, the results of applying the model to a scenario simulating a port 

closure would inform which portions of the river would experience a change in freight flow by 

commodity type and volume, allowing more robust dredge scheduling, resiliency analysis, or 

other planning of infrastructure investment needs. 

Furthermore, vessel trips identified from highly disaggregated, ubiquitous, automatic data 

allow for seasonal commodity flow analysis. Such analysis may be used by agencies as a 

decision-making factor (among others) to support the selection of the time of year to conduct 

construction and maintenance operations on transportation infrastructure that minimizes 

economic disruptions by supply chain.  
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6.5.4. Limitations and Future Work 

A notable limitation of the proposed methodology is that it relies on truck GPS data, 

which can be expensive, and may underrepresent certain commodities and truck market 

segments (small fleets, independent owner operators) (Pinjari et al., 2014). The authors are 

exploring an alternative model where truck GPS data would not be required to estimate the 

volume and type of commodities carried per vessel trip. Another limitation of the model is that 

AIS data is linked to tugs and tows pushing barges on inland waterways, but not to the barges 

that carry the load (Kruse, et al., 2018). The model presented in this paper would benefit from 

AIS transponders being installed on barges, as implemented in the Port of Antwerp (Port of 

Antwerp, 2012), or by inquiring the number of barges pushed by the tow in the AIS messages, as 

it is used in European inland waterways (Javor et al., 2013). 

 Conclusion 

The main contribution of this paper is the development of a multi-commodity assignment 

model solved via optimization under relaxed constraints, to characterize and quantify commodity 

flow on inland waterways at vessel trip level from publicly available datasets. Uncertainty on the 

assumption of model input parameters is handled by introducing a stochastic scenario approach. 

Commodities handled by freight ports on a river corridor during a given time period are assigned 

to vessel trips derived from highly disaggregated maritime geospatial data (AIS) for the same 

time period and study area. Vessel trips characterized by port of origin, destination, path, 

timestamp, and commodity carried, are mapped to a detailed inland waterway network, allowing 

for a detailed commodity flow analysis, previously unavailable in the public domain. Moreover, 

by leveraging AIS data, this work improves confidential commodity flow datasets that rely on 

manually-entered origin-destination trip information to derive detailed commodity flows. The 



 

150 

methodology developed in this work is tested on the Arkansas River, a 308-mile navigable 

waterway with 43 ports and 14 locks, with 2016 AIS, truck GPS, and LPMS data. Ubiquitous 

AIS and truck GPS data permit the transferability of the proposed model to other regions with 

waterways and aggregated commodity-flow data.  

This work may be applied to derive commodity-based freight fluidity performance 

measures, scenario planning, and scheduling of transportation infrastructure investment. AIS 

data has been used to derive travel time measures of freight fluidity on inland waterways; this 

work expands AIS use by quantifying freight fluidity by commodity. Furthermore, the model 

might be applied to scenarios simulating port closures, resulting in the extent of displacement of 

freight flows by commodity. Moreover, timestamped trips from AIS data allow for a seasonality 

analysis, permitting to plan and schedule interventions on transportation infrastructure that 

minimize impact on a given supply chain.   
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CHAPTER 7.  Conclusion and Future Work 

 Fusion of “big data” sources not typically used for freight transportation planning, such 

as maritime Automatic Identification System (AIS), truck Global Positioning System (GPS), and 

Lock Performance Monitoring System (LPMS) data, provides a consistent and novel data source 

for multimodal, long-range freight planning. The methods developed for this work describe, 

quantify, and characterize commodity-based freight activity on a multimodal transportation 

system, with focus on inland waterway networks.  

The main methodological contributions of this work are:  

i. The map-matching of maritime AIS data to identify vessel trips on a detailed inland 

waterway transportation network. Building upon previous research, vessel trips are 

defined by their origin and destination, rather than on assumed trip duration or pre-

defined bounding boxes. 

ii. The geospatial data fusion of truck GPS and AIS data to identify multimodal origin-

destination pairs associated with a freight facility. This provides a systematic way to 

identify the area of impact of diverse multimodal freight facilities or industries.  

iii. The development of a novel multi-commodity assignment model to quantify and 

characterize annual port throughput by commodity at inland waterway port terminals; 

and the temporal and spatial disaggregation of annual port throughput per vessel trips. 

Secondary methodological contributions presented in this work are:  

iv. The identification of areas with maritime freight activity that are not currently 

designated as loading/unloading areas in public databases, based on vessel stop 

clusters and satellite imagery; 
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v. The identification of freight corridors of modal competition by visualization of 

multimodal freight paths. 

This dissertation also contributes to practical applications and policy tools through:  

vi. The network-based trip identification from AIS data allows for future integration into 

multimodal travel demand models (TDMs) with freight components. In particular, the 

highly disaggregated nature of AIS data can be leveraged for the generation of 

synthetic populations for activity-based freight demand models. Moreover, the 

approach to define a routable inland waterway network allows for the incorporation 

of currently underrepresented inland waterway networks in statewide TDMs to enable 

identification of multimodal bottlenecks and infrastructure needs.   

vii. The multimodal catchment areas associated with potential investments on freight 

facilities constitutes a sound, consistent basis to estimate impacts and benefits of 

diverse transportation infrastructure investments. The use of ubiquitous data in time 

and space, such as AIS and truck GPS, provides a more accurate depiction of the 

impact area of a freight facility (when compared to the naïve assumption of radial 

impact areas around the facility), and a common basis for proper comparison and 

competition of funds. The proposed approach improves the state-of-the-practice that 

utilizes static, limited traffic counts and subjective survey data. Moreover, the 

identification and visualization of the geographic extent of multimodal freight 

catchment areas can be used to estimate population exposure statistics, and to 

discover areas of modal competition where to target modal-shift policies.  

viii. The quantification of port throughput by commodity and mode obtained by fusing 

truck GPS and LPMS data fills a critical gap by providing data that was not 
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previously publicly available. Such data can be used to estimate freight fluidity 

performance measures; to perform scenario planning, simulate partial or permanent 

port closures, and resilience evaluations; and to support location selection for 

multimodal freight facilities on inland waterways.  

ix. The commodity-based characterization of vessel trips on an inland waterway network 

constitutes a data-driven guide to strategic investment decision-making. In particular, 

the quantification and identification of the type of commodities transported on inland 

waterways segments from highly disaggregated data allows for the prioritization of 

dredging of such segments, based on the economic value of commodities transported.  

Several research avenues may be developed in the future based on the work presented in 

this dissertation. Three avenues are presented in the following paragraphs, namely: i) further 

commodity disaggregation; ii) replacement of manually entered AIS fields by machine learning 

methods, and iii) temporal disaggregation of the annualized port throughput by commodity 

obtained in this work. 

Focusing on commodity-based planning, the nine commodity groups defined by LMPS 

were used in this work.  However, it may be beneficial to further disaggregate commodities. For 

example, with the food and farm products category it would be valuable to know the breakdown 

of soybeans and rice, from other grains as they have different harvesting and shipment patterns 

as well as different constituent groups that lobby for their consideration in freight planning and 

policy development.  The methods (e.g., GMAP) developed in this dissertation can leverage 

additional, commodity-specific data sources for data fusion with the goal of commodity 

disaggregation.  Such sources include the Agricultural Marketing Service data from Department 
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of Agriculture (USDA), data from the National Agricultural Statistics Service, and data from the 

United States Energy Information Administration (EIA) (Appendix A).   

This dissertation focused primarily on assignment models.  Another possible modeling 

tool is that of machine learning (ML).  For example, ML tools may be applied to public use 

microdata (such as CFS PUM) to derive factors that affect freight mode choice by commodity. 

ML tools are adept at finding patterns and making predictions from ubiquitous, highly 

disaggregated data like AIS.  In particular, a drawback noted in the current publicly shared 

version of AIS data are the manually entered fields for commodity carried.  As these fields were 

prone to human error, they were not used in this work.  However, ML may be a promising tool to 

replace manually entered features.  One such feature is the “status” of a vessel that indicates the 

type of activity in which a vessel is involved. To minimize human efforts and error, an 

unsupervised data mining algorithm (such as K-means clustering) could be applied to derive the 

activity based on features derived in this work from AIS data like trip length, duration, coverage, 

average speed, origin, and destination. 

Lastly, the multi-commodity assignment model presented in this work may be improved 

by adopting a time-expanded approach, in which a monthly analysis during a complete year is 

conducted. The results of a time-expanded multi-commodity assignment model would be the 

port throughput by commodity per month (instead of annual, as presented in this work). Such 

results would provide a more detailed input to the characterization and quantification per 

commodity type of cargo transported by vessel trips as identified on inland waterway networks, 

improving its results. Alternatively, LPMS commodity data may be directly disaggregated into 

the type and quantity of cargo transported by vessel trips transiting inland waterway locks (as 

observed from AIS data), and then use the paths, origin and destination of those trips to derive 
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port throughput and highly disaggregated commodity flow on a detailed inland navigable 

waterway network. In this way, the truck GPS data, which is the most expensive source used in 

this work, would not be needed. 

To conclude, the novel data fusion models and methods presented in this dissertation 

support several long-range multimodal freight transportation planning applications, such as 

project prioritization. This work presents a critical step towards the broader goal of representing 

robust inland waterway freight activity into multimodal transportation infrastructure 

management and strategic decision-making.
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APPENDIX A: Synthesis on Potential Data Sources for Commodity-Based, Multimodal 

Long-Range Freight Planning 

The literature review section synthesized data sources traditionally utilized for freight 

planning purposes, i.e. CFS, Transearch, and Freight Analysis Framework (FAF). This appendix 

synthesizes existing U.S. data sources which are not systematically utilized for freight planning, 

focusing on their suitability for conflation for commodity-based long-range freight planning 

purposes.  Notably, most non-traditional datasets consider each transportation mode individually, 

such as waterborne lock performance and monitoring data, AIS, truck Weigh-In-Motion data, 

and the rail carload waybill. Very few sources include information that could be applied across 

all modes, such as data from the United States Department of Agriculture (USDA) and County 

Business Patterns. The data and sources examined in this section are: 

• Automatic Identification System (AIS), collected by the U.S. Coast Guard.  

• Data from the Waterborne Commerce Statistics Center, including the Lock 

Performance Monitoring System (LPMS), from the U.S. Army Corps of 

Engineers. 

• Rail Carload Waybill, issued by the U.S. Department of Transportation.  

• Truck GPS data from the American Transportation Research Institute (ATRI). 

• Business data from ReferenceUSA, InfoUSA, ESRI, and the U.S. Census Bureau 

under the County Business Partners (CBP).  

• Data about transportation of agricultural products, provided by the U.S. 

Department of Agriculture (USDA) through its Agricultural Marketing Service 

and through the National Agricultural Statistics Service.  

• Data from the United States Energy Information Administration (EIA) 
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• Roadway Weigh-In-Motion (WIM) system. 

• Data from the Federal Motor Carrier Safety Administration (FMCSA). 

• National Performance Management Research Data Set (NPMRDS). 

Each individual dataset is examined in the following paragraphs. For each dataset, the 

key characteristics, commonalities, and value-added elements are evaluated and compared by 

creating a data conflation matrix. Examples of data characteristics include: data values provided, 

units, spatial and temporal scope, frequency of data gathering, reliability, completeness, 

representativeness, cost, availability, format, etc. The data-conflation matrix summarizing the 

findings is presented in Table A.1.  
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Table A.1  Main Characteristics of Data Sources Non-Systematically Utilized for Freight Planning 

Data source / 

Characteristics 

Relevant data 

values 

provided 

Geographical 

coverage 

Temporal 

coverage & 

update 

frequency 

Commodity 

disaggreg. 
Modes 

Data cost 

& 

availability 

Data file 

type 

Main 

opportunities 

& limitations 

AIS (MARAD) 

Vessel location 

(lat/long), 

timestamp, 

vessel 

characteristics 

(cargo, tow, 

passenger). 

All 

waterways. 

Temporal 

disaggregation 

to the minute 

of each day. 

Public file 

updated 

annually. 

No commodity 

data available. 
Water 

Free 

download. 

GIS point 

layer 

organized 

per UTM 

zone & 

month/year. 

GIS-based, 

fusion-friendly. 

Good temporal 

& geographical 

coverage.  

No commodity 

data. 

WCSC / LPMS 

(USACE) 

Quantity (tons) 

of commodities 

found each 

month in each 

lock. 

All U.S. 

inland 

waterways 

where lock & 

dams are 

located. 

Monthly 

aggregates, 

updated 

annually. 

9 commodity 

groups. Further 

disaggregation 

available in 

.pdf format. 

Water 
Free 

download. 

Spreadsheet 

table (.csv). 

Suitable for 

GIS-based 

fusion.  

Temporal 

disaggregation 

per day would 

be preferred.  

Rail Carload 

Waybill (FRA) 

Individual 

shipments’ 

quantity (tons), 

routed distance 

(miles), Origin, 

Destination, 

commodity. 

U.S. territory. 

O/D specified 

as BEA/State. 

Shipment date 

identified. 

Updated 

annually. 

STCC 5-digit 

codes.  

All Rail, Rail 

& Truck, 

Rail & 

Water. 

Free 

download. 

Spreadsheet 

table (.csv). 

Only railway 

dataset 

containing 

commodity 

information. 

Geographical 

aggregation too 

broad. 
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Table A.1  Main Characteristics of Data Sources Non-Systematically Utilized for Freight Planning 

Data source / 

Characteristics 

Relevant data 

values 

provided 

Geographical 

coverage 

Temporal 

coverage & 

update 

frequency 

Commodity 

disaggreg. 
Modes 

Data cost 

& 

availability 

Data file 

type 

Main 

opportunities 

& limitations 

Truck GPS 

data (various) 

Vehicle 

location 

(lat/long), 

timestamp. 

All U.S. 

territory. 

Temporal 

disaggregation 

to the minute 

of each day. 

No commodity 

data available. 
Truck 

For 

purchase. 

GIS point 

layer. 

Suitable for 

GIS-based 

fusion. Good 

temporal & 

geographical 

coverage. 

Potential lack 

of 

representativity. 

Business Data / 

CBP (U.S. 

Census) 

Business 

establishments’ 

location 

(lat/long), size 

(employment), 

industry served 

(NAICS). 

U.S. territory.  

By State, 

County, 

Metropolitan 

area, ZIP 

Code, and 

Congressional 

District 

Levels. 

Updated 

annually. 

NAICS 5-digit 

codes 
N/A 

Free 

download. 

Spreadsheet 

(.csv). 

Good temporal 

& geographical 

coverage. 

USDA / Census 

of Agriculture 

Map layers 

showing 

number of 

farms, 

livestock, 

poultry, land 

use, crops, 

ownership, 

income, 

chemical use. 

All U.S. 

territory. 

Statistics 

summarized 

at county, 

state and 

national level. 

Survey 

conducted 

every 5 years 

(latest: 2012). 

Crop type: 

corn, soybeans, 

wheat, hay, 

etc. 

N/A 
Free 

download. 

.csv 

spreadsheets 

suitable to 

generate 

GIS-layers. 

Information 

about 

agriculture 

specific supply 

chains. 

Suitable spatial 

coverage. 



 

 
 

1
6
2

 

Table A.1  Main Characteristics of Data Sources Non-Systematically Utilized for Freight Planning 

Data source / 

Characteristics 

Relevant data 

values 

provided 

Geographical 

coverage 

Temporal 

coverage & 

update 

frequency 

Commodity 

disaggreg. 
Modes 

Data cost 

& 

availability 

Data file 

type 

Main 

opportunities 

& limitations 

USDA / Grain 

Transportation 

Report 

Grain transport 

cost indicators 

per mode. Rail: 

carloads 

deliveries to 

port; tariff rail 

rates, etc. 

Water: barge 

grain 

movements 

through 

specific locks 

and dams by 

grain type. 

Water: 5 

locks & dams 

located on the 

Mississippi, 

Ohio, and 

Arkansas 

rivers. 

Weekly 

report. Barge 

shipments 

aggregated 

per quarter 

and annually.  

Grain type: 

corn, wheat, 

and soybean. 

Truck, 

Water, Rail. 

Free 

download. 

Report 

delivered in 

.pdf, tables 

provided in 

excel. 

EIA 

Location and 

type of 

infrastructure 

used on the 

supply chain of 

energy 

products. 

All U.S. 

territory.  

Frequently 

updated.  

by energy 

type: biomass, 

coal,electricity, 

fossil fuel 

resources, 

geothermal, 

hydroelectric, 

natural gas, 

petroleum, 

solar, wind, 

and renewable 

energy power 

plants. 

Water, Rail, 

Pipeline, 

Transmission 

lines.  

Free 

download. 

Excel 

spreadsheet 

and google 

maps. 

Information 

about energy-

specific supply 

chains.  

Suitable for 

GIS-fusion. 
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Table A.1  Main Characteristics of Data Sources Non-Systematically Utilized for Freight Planning 

Data source / 

Characteristics 

Relevant data 

values 

provided 

Geographical 

coverage 

Temporal 

coverage & 

update 

frequency 

Commodity 

disaggreg. 
Modes 

Data cost 

& 

availability 

Data file 

type 

Main 

opportunities 

& limitations 

WIM (FHWA) 

Weight and 

axle-based 

classification 

of trucks. 

WIM sensor 

locations, 

typically few, 

on interstates 

or main U.S. 

Highways. 

Data collected 

daily. 

No commodity 

data available. 
Truck 

Upon 

request 

Spreadsheet 

(.csv). 

Poor 

geographical 

coverage. No 

data about 

commodity.  

FMCSA 

Carrier 

registration 

information: 

legal name, 

U.S. DOT 

number, 

contact details, 

number of 

power units, 

fleet VMT, 

operation, 

cargo carried 

U.S. territory.  

Current 

registration 

information. 

Frequent 

updates. 

30 

commodities, 

but non- 

conclusive 

(several 

categories per 

carrier). 

Truck 
Free 

download. 

Text 

document 

(.txt) 

Non-conclusive 

commodity 

data. 

NPMRDS 

(FHWA) 

Average travel 

time data on 

the National 

Highway 

System. 

U.S. National 

Highway 

System, by 

state or region 

(four regions). 

Updated 

monthly. 

No commodity 

data available. 

Truck, 

passenger 

cars. 

Free, 

access 

available 

only to 

State and 

MPO 

officials. 

shapefile 

Geographical 

limitations, 

non-open-

source dataset, 

no commodity 

data. 
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A.1. Automatic Identification System (AIS) 

The AIS consists of vessel’s traffic data, collected for navigational safety purposes 

(collision avoidance). It is required for all passengers vessels and all commercial vessels over 

300 gross tonnage that travel internationally, by the International Maritime Organization (IMO), 

since December 2004. An onboard navigation device transmits location and characteristics of 

large vessels in real time. The receivers are base stations on shore, buoys, satellites, and other 

vessels (U.S. Department of Homeland Security). In the U.S., AIS data is mandatory collected by 

the U.S. Coast Guard in U.S. and international waters. For inland waterways, AIS is mandatory 

in the Ohio River, between Mileposts 593 and 606, when the McAlpine upper pool gauge is at 

approximately 13.0 ft or above, and in the Lower Mississippi River, up to 20 mi above Baton 

Rouge, Louisiana, at Milepost 254.5 (Dobbins et al., 2013). Even though AIS is not currently 

required in most U.S. inland waterways, most vessels are using the AIS transponder (DiJoseph & 

Mitchell, 2015). Historical AIS data (2009-2017) is organized in file geodatabases, including 

vessel, voyage, and broadcasting information, and it is available for free download at (NOAA 

Office for Coastal Management, 2018). Examples of vessel data elements are: Vessel name, 

length, width, and MMSI. Voyage data elements include destination, cargo, draught, ETA, etc. 

Notably, several of these features are entered to the database manually, and contain substantial 

errors and omissions.  In particular, cargo details are too broad to provide any meaningful 

information pertaining the commodity carried by each vessel. Examples of broadcasting features 

are: location, speed over ground, course over ground, heading, status, etc. Each file contains 

point location data at 1-minute interval, per month and UMT zone (NOAA Office for Coastal 

Management, 2018). In addition to vessel positioning, the AIS system captures information that 

may be used for freight planning purposes. In particular, AIS data includes the type of vessel, 
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size, and the potential ability to track a vessel path with time stamps. This information may be 

suitable to identify freight flows though U.S. inland navigable waterways, and in combination 

with highway and USACE Locks data, constitute a valuable source for freight planning 

purposes.  The main limitation of AIS data is its lack of information about the commodity carried 

by vessels, which is complemented by combining AIS and LPMS data. The USACE has used 

AIS data to evaluate travel time and reliability on waterways (Transportation Research Board, 

2014), but it is yet to be integrated with truck GPS data and with commodity databases to 

evaluate multimodal freight fluidity.  

A.2. Data from the Waterborne Commerce Statistics Center (WCSC) 

The Waterborne Commerce Statistics Center (WCSC) is a division of the Institute of 

Water Resources, operated and maintained by the U.S. Army Corps of Engineers (USACE). The 

WCSC makes waterborne data and statistics available to the public at no charge, via the 

Navigation Data Center (NDC). Examples of the data found at the WCSC are: manuscript cargo 

data, manuscript trips data, a complete dock list, a list of the principal ports of the U.S., U.S. 

flagship vessel characteristics, commodity data collected through the Lock Performance 

Monitoring System (LPMS), and the Commodity Movements from Public Domain Database, 

among others. The following paragraphs provide a brief description of the most relevant of these 

datasets.  

A.2.2. Lock Performance Monitoring System 

Probably one of the most important pieces of WCSC data for this research, the Lock 

Performance Monitoring System (LPMS) is operated and maintained by USACE. The USACE 

collects data of a complete sample of U.S. flag vessels and foreign vessels operating in U.S. 

waterways that transit a USACE-owned or operated lock structure; which is managed and shared 
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by the Navigation data Center (NDC) (U.S. Army Corps of Engineers). Publicly available 

records summarize annual and monthly tonnage of a series of commodities carried by vessels at 

each lock chamber and direction. Products shipped are classified into nine commodity groups 

(Table 6.1). Details on specific companies or commodities are confidential and not included in 

the dataset. In addition, the database provides information about the total number of different 

types of vessels observed at each lock chamber. Examples of vessel types are: tows, recreation, 

commercial, and other. The information is organized in a series of reports, available in .pdf and 

.xlsx format. For example, annual summaries of lock use, performance, and characteristics are 

available in a Commodity report, a Lock usage report, and an Unavailability report (U.S. Army 

Corps of Engineers, 2018c). Monthly tonnage summaries per commodity and lock chamber are 

available for download in excel format for the current and previous year exclusively (U.S. Army 

Corps of Engineers, 2016). 

A.2.3. Commodity Movements from Public Domain Database 

The Public Domain database is comprised of a series of .pdf reports which indicate the 

annual tonnage of more than 100 commodities by origin, destination, and commodity group. This 

is the only open-source, publicly available waterborne source that includes data on the origin and 

destination of waterborne commerce. This is also one of the most complete waterborne data 

source in terms of commodity disaggregation.  The database is available in .pdf and, since 2011, 

in excel form, but not in GIS form. For the purpose of this research, unfortunately, the 

commodity movements are aggregated in annual tonnages, and the origins and destinations are 

spatially defined as broadly as U.S. States. (U.S. Army Corps of Engineers, 2020) 
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A.2.4. Manuscript Cargo and Trips Data 

The Manuscript Cargo Data contains the consolidated annual tonnage of more than 100 

products observed at more than 500 river systems and principal ports of the U.S. The database 

indicates the type of movement (inbound receiving, outbound shipping, or thru), the reporting 

year, region (where the port or navigation system is located), and commodity code. It can be 

downloaded by the WCSC website in the form of a spreadsheet. Even though the annual 

consolidation of tonnage does not support the temporal resolution required for this research, this 

database may be used to further disaggregate the simple commodity breakdown of the LPMS 

dataset (only 9 commodity groups) into more detailed markets. In addition, the Manuscript Trips 

Data informs the number of annual upbound and downbound trips made on each river system 

and principal ports of the U.S., by vessel, during the reporting year. For confidentiality purposes, 

vessels are not identified on the database. Instead, the vessel’s draft (in feet) and type is provided 

(dry cargo barge, liquid barge, self-propelled dry, tanker, towboat, or other –cranes, etc.). (U.S. 

Army Corps of Engineers, 2018a) 

A.2.5. Waterborne Infrastructure 

The WCSC provides a list of the “Principal Ports of the U.S.”. In this annually-updated 

list, the importance of a port is measured by the total tonnage of all commodities handled by the 

port during the reporting year. The spreadsheet includes the annual tonnage, name, and location 

(latitude and longitude) of the top-150 ports. Notably, only one port in Arkansas is included in 

the 2016 report: Helena port. (U.S. Army Corps of Engineers, 2018b). A much more 

comprehensive compilation of maritime U.S. facilities is included under the “Master Docks 

Plus” in the form of an access database. This database contains more than 40,000 facilities, 

identified as docks, fleeting areas, locks and/or dams, and milepoints. The publicly available 
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version of this database indicates the waterway where each facility is located, as well as its 

location (latitude and longitude), name and identifier code, and commodities handled (but not its 

volume), among others. The data is collected by survey; it is accompanied by a database schema 

and data dictionary, and can be downloaded form  (U.S. Army Corps of Engineers, 2019). 

A.3. Rail Carload Waybill  

The Rail Carload Waybill (RCW) consists of a stratified sample of annual rail shipment 

data that must be filed by all railroads that operate more than 4,500 cars per year in the U.S. The 

sample is collected by a partnership between the Surface Transportation Board and the Federal 

Railroad Administration. Even though the complete RCW is confidential, a comprehensive 

Public Use Waybill File (PUWF) is open-sourced to the public. Among its 61 features, the 

PUWF includes shipment origin, destination, commodity, weight, number of cars, revenue, haul 

length, date, whether the cargo is hazardous, etc. (Cornell Law School).  In addition, the RCW 

database identifies intermodal movements. The PUWF is available on a text (.txt) file and lacks 

any geographic references (such as latitude, longitude, or geometry), preventing users to directly 

map it into a GIS environment. In particular, the 2016 RCW sample includes 649,772 shipment 

waybills, covering more than 45 commodity groups, classified as per 5-digit Standard 

Transportation Commodity Codes (STCC) (Railinc, 2018). The STCC which appear more often 

on the 2016 RCW are: 01-Farm products, 11-Coal, 13-Crude petroleum, natural gas or gasoline, 

28-Chemicals, and 37-Transportation equipment. The RCW is the only publicly available 

database providing commodity flow data for the railway system, and it is utilized by the Federal 

Railway Agency (FRA) to analyze the rail movements of hazardous materials and support safety 

and security (Wright et al., 2017).  
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One limitation of RWC is that origins and destination are broadly defined as 172 

Business Economic Areas (BEA) within the U.S., complemented with 13 foreign zones within 

Mexico and Canada. This spatial resolution is not detailed enough to meet the objectives of this 

dissertation. A second challenge to meet the objective of this dissertation is associated with 

mapping the RCW data. As mentioned earlier, RCW lacks spatial references that enable 

mapping. On this matter, the FRA developed a toolkit to map the confidential RCW into a 

proprietary GIS software (Volpe). The toolkit consists of python scripts, available free of charge 

from FRA upon request, for research purposes. The toolkit requires supporting data, some of 

which is proprietary: i) a GIS rail network file (publicly available at the Geospatial webpage, 

Bureau of Transportation Statistics (Bureau of Transportation Statistics, 2020)), ii) a Centralized 

Station Master file, copyrighted by Railinc (Railinc, 2020), and iii) data on flow rights and 

weight (million gross tons), proprietary to the Class 1 railroads. Alternatively, geocoded North 

America Rail Stations are available at PC*Miler|Rail, a Trimble licensed software (Trimble, 

2018).  

A.4 Truck GPS Data 

Truck GPS data consists of vehicle positioning data (latitude and longitude) emitted by 

GPS devices onboard a truck. The spatial coverage in the US is almost ubiquitous 

(Transportation Research Board, 2014). Private truck fleets typically record positioning data of 

their own trucks, for security and route tracking purposes, fuel cost and other operational 

optimization analysis. The American Transport Research Institute (ATRI), part of the American 

Trucking Association, gathers anonymous truck GPS data from a number of private fleets. In 

cooperation with FHWA, truck GPS data gathered by ATRI is used for diverse purposes, such as 

bottleneck identification, travel time analysis, border crossings, truck parking and hours of 
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services tracking, rerouting, etc. (Transportation Research Board, 2014). Truck GPS data can be 

acquired from private vendors. 

Truck GPS data is a valuable source of truck routing, time-of-day corridor usage, volume 

and speed data. For reference, GPS data in Arkansas for 2016 represents about 35 million raw 

data points per week corresponding to approximate 40,000 unique trucks.  Because current 

sources of truck GPS data are samples of the total truck population, it is important to evaluate the 

spatial and temporal coverage for each application (Diaz-Corro et al., 2019).  The spatial and 

temporal analysis based on truck GPS data has several advantages over other truck data, such as 

Weigh-in-Motion (WIM) or Annual Average Daily Truck Traffic (AADTT data) gathered by the 

Federal Highway Administration (FHWA).  The main advantage is the broad spatial and 

temporal coverage of truck GPS data. From a spatial coverage point of view, truck GPS data 

covers every single road in the statewide network, while AADTT is restricted to fixed and few 

counting stations (Figure A.1).  Even though the information derived from truck GPS data is 

comprehensive, it lacks the commodity carried or industry served by trucks and thus it needs to 

be complemented with other commodity databases, such as USDA (for agriculture) or from 

business sources (for other commodities). 
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Figure A.1  WIM and ADTT stations within Arkansas 

The temporally continuous nature of the GPS data allows for robust time-of-day usage 

analysis. Previous studies show that GPS data is a sample of roughly 10% of the total population 

of trucks travelling on the roads (Pinjari et al., 2014). This was confirmed for the Arkansas data 

sample by comparing the volume of trucks on the GPS dataset at WIM stations, with the volume 

of trucks counted at those WIM stations in Arkansas (Hernandez et al., 2018). Coefficients of 

coverage of sample locations considered in this work are shown in Table A.2. 

Table A.2 Sample GPS Data Coverage Coefficients in Arkansas 

Quarter Van Buren Little Rock Pine Bluff 

Q1 15.69 16.58 11.76 

Q2 14.02 9.91 11.12 

Q3 14.53 10.39 10.45 

Q4 16.74 13.28 13.00 

Average 15.25 12.54 11.11 
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A.5. Business Data  

Two potential sources of business data are InfoUSA and ReferenceUSA, both developed 

and maintained by Infogroup.  ReferenceUSA consists of a series of databases, namely: Business 

locations, U.S. New Business, U.S. Healthcare, Canadian Business, U.S. Jobs and Internships, 

and U.S. Historical Business, among others. The databases are compiled from “hundreds of 

thousands” of public information sources, analyzed and verified annually by Infogroup staff 

(Infogroup, 2020).  ReferenceUSA has been utilized to build customized lists of employers by 

location, industry as per North American Industry Classification System (NAICS), or company 

size (measured in sales volume and in number of employees), and includes a mapping feature, 

suitable to map business locations. A business’ search provides company name, executives, 

business type (major industry group or NAICS), geography, phone, business size, ownership, 

financial data, etc. The search has the option to include verified, unverified and/or closed 

business. Search results are available on either a list or a map, downloadable to excel/.csv files. 

Heat maps are created by an embedded tool with business of the same category. A transportation 

layer can be added to the map. On the other hand, InfoUSA has been available since 1972, and 

provides business mailing lists, consumer mailing lists, email lists, and marketing campaign 

services. Consumer databases are built from real state & tax assessments, voter registration files, 

utility companies, etc.  Both databases are available for a subscription fee. In particular, InfoUSA 

may offer marketing services which go beyond the needs of this dissertation. Alternatively, ESRI 

offers business location and summary data for a fee. ESRI’s data, however, is based on the same 

source than ReferenceUSA and InfoUSA: a business dataset of over 12 million establishments 

developed by Infogroup, providing the same information.   
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An open-source alternative to Infogroup-based business data is the County Business 

Patterns (CBP) program. Under this program, the United States Census Bureau has been 

publishing subnational economic data by industry annually since 1964. The CBP data is obtained 

from various Census Bureau programs, such as the Economic Census, Current Business Surveys, 

and Annual Survey of Manufacturers.  The CBP data consist of the number of establishments by 

geographic area and industry, employment during the week of March 12, first quarter payroll, 

and annual payroll. The CBP geographic area covers the continental U.S., Puerto Rico, and 

Island Areas. The geographical resolution ranges from State, County, Metropolitan Area, ZIP 

code and Congressional District Levels. The data for establishments is presented by industry, 

using 6-digit NAICS codes. For confidentiality purposes, noise infusion is applied. Before being 

published, the CBP data is subject to various edits for quality assurance, such as validation of 

geographic coding, addresses, and industry classification. The database can be downloaded at 

(U.S. Census Bureau, 2018). The CBP is utilized by private business with marketing purposes, 

such as to analyze marketing potential, measuring sales effectiveness, advertising programs, 

setting sales quotas, and developing budgets. Public agencies utilize the data for administration 

and planning. Notably, CBP covers most NAICS industries but excludes crop and animal 

production (which may be supplemented by USDA data) (U.S. Census Bureau, 2020). State-

wide databases incorporating business location data include: Arkansas Department of 

Transportation (ARDOT) business establishments and structures, and Arkansas Economic 

Development Commission (AEDC) gas stations and convenience stores. 

A.6. Data from the United States Department of Agriculture (USDA)  

The United States Department of Agriculture (USDA), National Agricultural Statistics 

Service (NASS), performs the Census of Agriculture every five years. The latest data available 
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was collected in 2017, concurrently with (and complementing) the Commodity Flow Survey. 

Data collected in 2017 was made available for the 50 continental U.S. States in April 2019; 

remaining data on U.S. Territories will be completed by July 2020. This highlights the lengthy 

process required to process and make data publicly available. The Census of agriculture includes 

all places from which $1,000 or more of agricultural products are produced or sold on the census 

year (U.S. Department of Agriculture, 2020b). With the census data, the NASS produces a series 

of statistics and reports. Statistics are summarized at county, state, and national level.  One of 

such comprehensive reports is the Geographic Area Series, including data about the number of 

farms; livestock, poultry and their products; land use; crops; irrigation; farm and operations’ 

characteristics; ownership; income; production expenses; chemical use; etc. (U.S. Department of 

Agriculture, 2012). In addition, the NASS offers online visualization and free downloadable map 

layers showing land cover and acreage per crop type (i.e. corn, soybeans, wheat, hay, etc.), at 

county level. These cropland data layers are based on satellite imagery and suitable to a GIS 

environment. They can be downloaded from (U.S. Department of Agriculture, 2020a). 

Moreover, the USDA consistently reports information about transportation of agricultural 

products through the Agricultural Marketing Center (AMC), Transportation Research and 

Analysis division (U.S. Department of Agriculture, 2020c). The data is free of charge, 

downloadable, and organized by research subjects, some of which and briefly described as 

follows: 

• Grain transportation report. A weekly comprehensive report including (among 

others): grain transport cost indicators per mode; U.S. origins to export position 

price spreads ($/bushel); other U.S. grain exports and imports information; and 

information per mode. For rail mode: carloads deliveries to port; railcar auction 
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offers; bids/offers for railcars to be delivered in the secondary market; tariff rail 

rates for unit and shuttle train shipments; tariff rail rates for U.S. bulk grain 

shipments to Mexico; and railroad fuel surcharges. For water mode: Illinois river 

barge freight rate; weekly barge freight rates for southbound shipments; barge 

grain movements through specific locks and dams by grain type; grain barge 

movements through Mississippi River locks 27; upbound empty barges through 

Mississippi River locks 27, Arkansas River lock and Dam 1, and Ohio River locks 

and dam 52; grain barges unloaded in the New Orleans region; Gulf vessel 

inspections, loading activity, and rates. The report is issued in .pdf format, with 

tables and figures provided in excel for the current year.  

• Agricultural refrigerated truck quarterly. Information compiled from the 

weekly fruit and vegetable truck rate report, including the following refrigerated 

truck data: quarterly shipment tonnages by origin and commodity; regional 

quarterly truck rates ($/mile) by origin and distance; quarterly truck rates ($/mile) 

for U.S. average by distance, per mileage category; quarterly truck rates ($/mile 

and $/truckload) by origin-destination pair; and weekly availability by origin and 

commodity. Origins and destinations are represented as U.S. States, Mexico, or 

Canada. Approximately 37 fruit and vegetable commodities are included. 

However, quarterly truck shipments for all commodities and origins are not 

available. Those available are reported, but do not represent complete movements 

of a commodity. Tables are available in excel format.  

• Transportation of U.S. grains: a modal share analysis. This report presents the 

tonnage of grain (identified per type, including corn, wheat, soybeans, sorghum, 

https://www.ams.usda.gov/sites/default/files/media/QuarterlyTruckRatesbyOriginDestinationPair.xlsx
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and barley) transported by truck, rail, and barge, per year from 1978 to 2013. The 

data is broken-down into domestic and for export. Even though the topic of this 

report is relevant, the geographical data aggregation approach adopted makes it 

unfit for the purpose of this research. 

• Barge rates and movements. Information on the transport of grain on the 

Mississippi, Ohio, and Arkansas rivers. Excel tables are provided, including: grain 

shipments’ tonnage aggregated by quarter and total annual from 2000 to 2017, 

detailing the weekly tonnage observed in five locks and dams located on the river 

systems mentioned above, per commodity (corn, wheat, and soybean); and 

average weekly Mississippi river barge rates by quarter, for the same period.  

• Biofuels and co-products. Public rail tariff rates and fuel surcharges for ethanol 

and DDGS shipped on class I railroads, by origin-destination pair. Origins and 

destinations are identified as 17 cities located along class I railway lines. The data 

is available in excel files and updated monthly.  

A.7. Data from the United States Energy Information Administration (EIA) 

The EIA independent statistics and analysis section provides a valuable interactive map 

of the U.S. energy system. The map locates energy infrastructure and reserves, namely: coal 

mines, power plants, oil & gas refineries and processing plants, natural gas and HGL market 

hubs, oil & gas wells and platforms, energy resources and reserves, and transportation. 

Transportation infrastructure includes pipelines and transmission lines, crude oil rail terminals, 

petroleum product terminals, petroleum ports, natural gas underground storage, LNG terminals, 

and waterways for petroleum movements. Map views can combine all energy types or can be 

filtered by energy type, namely: biomass, coal, electricity, fossil fuel resources, geothermal, 
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hydroelectric, natural gas, petroleum, solar, wind, and renewable energy power plants. The 

interactive map can add county boundaries, congressional districts, administrative boundaries 

and demography layers. The map can be displayed for the continental U.S. of focused to a single 

region or state (State energy profiles) (U.S. Energy Information Administration, 2017). In its 

commitment to make energy data more accessible, understandable, relevant, and responsive to 

user needs, the EIA provides open data through and Application Programming Interface (API) 

which requires a free sign-up (U.S. Energy Information Administration) . Data may be 

downloaded to excel and google sheets through web add-ins.  

A.8. Weigh-In-Motion (WIM) System. 

In the U.S., efforts to collect weight data of moving trucks started in the early 1950s. 

Technology has evolved since, but the operational principle remains the same. Weigh-in-Motion 

(WIM) sensors measure axle loads of vehicles moving at normal highway speed, through signals 

recorded by devices typically embedded in the road surface. Data collected at WIM sites is 

utilized to derive the following information pertaining to each vehicle: speed, lane, time and 

date, wheel load, axle load, axle group load, gross vehicle weight, individual inter-axle spacings, 

overall vehicle length, and axle-based vehicle classification (Quinley, 2010). WIM data has been 

used in combination with inductive signature data for highly detailed truck-body vehicle 

classification (Hernandez et al., 2016). For research purposes, WIM data is available upon 

request from the FHWA to State Departments of Transportation, free of charge. 

In Arkansas, WIM data is collected continuously by ARDOT. These sensors consist of a 

single inductive loop to detect and count traffic, with two weight sensors either straddling the 

loops or sandwiched between two loops. Weight sensors can be piezoelectric systems 

(polymeric, ceramic, and quartz), bending plates or load cells (Arkansas State Highway and 
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Transportation Department, 2013).  Figure A.1 shows the location of WIM stations within 

Arkansas. The number and distribution of stations is somewhat scarce, and primarily capture 

vehicles that are travelling on the interstate/highway and not stopping at ports or intermodal 

facilities. No routing or commodity information is provided by WIM data. Thus, WIM data in 

Arkansas may is not suitable to identify project-catchment areas. However, in the event a WIM 

station is located within the catchment area of a project, it might be used to evaluate the 

characteristics of traffic (mainly weight) occurring in such area. 

A.9. Federal Motor Carrier Safety Administration (FMCSA). 

The Federal Motor Carrier Safety Administration (FMCSA) at the U.S. Department of 

Transportation has the purpose to reduce crashes, injuries and fatalities involving large trucks 

and buses. In this context, the FMCSA created and maintains the Motor Carrier Management 

Information System (MCMIS) to monitor the amount, severity, and location of safety incidents 

where commercial motor carriers are involved (Federal Motor Carrier Safety Administration, 

2018). The MCMIS consist of the following files: crash, census, inspection, and investigation. 

The census includes carrier registration information, such as legal name, U.S. DOT number, 

contact details, number of power units, fleet VMT, operation classification (i.e. authorized for 

hire or not, U.S. Mail, private passenger, state government, etc.) and cargo carried.  

Some highway traffic monitoring management products and systems used for law 

enforcement and truck compliance can read license plates and U.S.DOT numbers. The U.S.DOT 

number is then linked to the FMCSA database so officers can observe, among others, the 

commodities authorized to be carried by the fleet to which the truck belongs (International Road 

Dynamics, 2020). Within FMCSA’s census “cargo carried” section, the carrier selects its fleet’s 

cargo from a series of 30 commodities. Examples of such commodities are: building materials, 
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grain, paper products, refrigerated food, oil field equipment, livestock, chemicals, beverages, 

logs, metals, and general freight. The census file is updated monthly and is available for free 

download at (Federal Motor Carrier Safety Administration, 2020a). However, the downloadable 

version does not contain cargo carried details. These details can be obtained on a website search 

(Federal Motor Carrier Safety Administration, 2020b). However, for fleets that carry general 

freight or a large number of different commodities, the commodity identification via FMCSA is 

not conclusive to discriminate the commodity that each individual truck is carrying at any time. 

A.10. National Performance Management Research Data Set (NPMRDS). 

Briefly, the NPMRS consists of average travel time data on the National Highway 

System (NHS, as defined by FHWA), obtained by FHWA and updated monthly. The main 

purpose of this dataset is to support the calculation of performance measures (FHWA, 2020). 

Travel times include both passenger and freight activity. Data can be downloaded by state or 

region (the U.S. is divided into four regions). It is available in shapefile form, exclusively to 

State Department of transportations and metropolitan organizations since July 2013 (FHWA; 

National Operations Center of Excellence, 2017). Additional road coverage beyond the NHS 

may be requested to FHWA separately and is not a part of the NPMRDS. However, because of 

the geographical limitations of this non-open-source dataset, it is not used for this research. 
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