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Global Navigation Satellite Systems (GNSS) are widely used to document the on- and off-site trajectories
of construction equipment. Before analyzing the collected data for better understanding and improving
construction operations, the data need to be freed from outliers. Eliminating outliers is challenging. While
manually identifying outliers is a time-consuming and error-prone process, automatic filtering is exposed
to false positives errors, which can lead to eliminating accurate trajectory segments. This paper addresses
this issue by proposing a hybrid filtering method, which integrates experts’ decisions. The decisions are
operationalized as parameters to search for next outliers and are based on visualization of sensor read-
ings and the human-generated notes that describe specifics of the construction project. A specialized
open-source software prototype was developed and applied by the authors to illustrate the proposed
approach. The software was utilized to filter outliers in sensor readings collected during earthmoving
and asphalt paving projects that involved five different types of common construction equipment.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Documenting the movement of construction equipment during
construction projects is helpful in controlling and continuously
improving construction operations. Specifically, the documented
trajectories of construction resources (personnel, equipment, and
material) allows to analyze travel patterns of construction workers
[1,2], assess equipment operators’ work [3], labor activity [4], or
study variability in construction processes [5,6].

Though available technologies such as GNSS (Global Navigation
Satellite System), laser positioning, or ultra wideband (UWB) pro-
vide opportunities to track movement of the resources with high
precision [7–9], any such data collection will yield erroneous mea-
surements because of a multiplicity of external factors. Examples
for these errors are outliers in documented readings that inaccu-
rately represent equipment’s location at specific time. For instance,
GNSS measurements can show a position that cannot be realistic in
relation to the corresponding timeframe: a resource (e.g., construc-
tion equipment) moved into a new location rather too quickly or
changed orientation in a manner that is physically impossible
(e.g., an asphalt roller rapidly changes its direction by an angle lar-
ger than the one specified by the roller’s manufacturer).

The described outliers occur because of the absence, poor
strength, or reflections of navigation signals. In case of GNSS, such
conditions are related to an absent or obscure line-of-sight
between the GNSS tracker and the GNSS satellites. For instance,
the line-of-sight can be affected by atmospheric effects and objects
that obscure the satellites visibility, such as trees, overhead
bridges, or other obstacles located on or next to a construction site.

To allow a sound understanding of the equipment’s movement,
all outliers should be filtered out before analyzing the collected
data. Often, such filtering is performed by applying statistical tech-
niques, such as moving average methods to smooth trajectory data
or by relating the equipment movements to the expected moving
trajectories [10]. Alternatively, simultaneously collected readings
from different types of sensors can be fused to automatically
cross-relate different readings and remove outliers. Examples of
correcting equipment paths in such a way include fusing signals
from GNSS devices and inertial measurement units [11], utilizing
dead-reckoning sensors (including Doppler radar, encoder, and
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fiber-optical gyrometer) [12], and combining readings from differ-
ent sensors by applying Kalman filtering [13,14].

Though such automated filtering methods can often signifi-
cantly improve the accuracy of the documented equipment paths,
such methods can also erroneously remove path segments related
to specific movements of the equipment [15]. For instance, if a
dump truck rapidly reverses its heading direction due to some
events on site, the automated filtering methods can misinterpret
the corresponding sensor readings as erroneous data and remove
tracked points that do not represent outliers. In practice, filtering
out such valuable data can result in an incorrect understanding
of the construction equipment’s trajectory and lead to erroneous
data analysis, for example during safety assessment while evaluat-
ing near-misses. As quick unexpected direction changes are a com-
mon cause for near-miss accidents, the automated filtering
mechanisms can negatively affect the search for such events. To
avoid removing accurate but rather unexpected path segments,
having additional information about equipment movements to
inform GNSS data filtering process is needed.

To advise the process of filtering outliers in sensor readings the
‘‘hard’’ (sensor-based) data can be related to the ‘‘soft’’ data
(human-generated records) that describe the project context and
the conducted activities. These human-generated data can, for
example, be collected in the form of a logbook, which describes
how equipment moved on site as well as essential process events,
and be collected in a formalized [16] or a standard- free format.
Specifically, the events could be documented when a piece of
equipment starts new activities, stops due to a breakdown, or
alters its moving strategy can support the analysis of a particular
trajectory segment, which may include an outlier. Alternative to
maintaining a log-book during the construction project, a human
observer can generate valuable soft data afterwards by retrospec-
tively analyzing video recordings of the project.

Besides using additional soft data sources, the involvement of a
human into the data analysis can additionally improve the filtering
process. Specifically, human cognitive abilities can be related to
fusing information from different sources, including sensor-origi-
nated and human-generated records. Among others, such abilities
include recognizing visual and aural patterns, applying semantic
reasoning [17], and interconnecting different elements and objects
according to world models, physical laws, and geometric con-
straints [18]. Moreover, humans can also improve fusion processes
by applying a priori knowledge about the environment and genu-
inely processing human-generated data [19]. In other words, the
process of fusing information can directly benefits from human
abilities ‘‘to gather and organize unstructured, a priori information
about a problem and then mix that information with measured
sensor data, making inferences that could not have been made
using the sensor data alone’’ [20].

Because of theses advantages, it is not surprising that engaging
humans into the processes of fusing information is strongly recom-
mended in the information fusion literature [21–23].

To secure the benefits of employing a human expert into filter-
ing trajectories of the construction equipment, it is essential to
meaningfully organize interactions between the expert and the
documented hard and soft data. In particular, the interactions
should aim to assist experts in filtering equipment paths in a
way that the experts can apply their a priori knowledge and expec-
tations about how equipment can move during construction. At the
same time, there is a necessity to structure the approach to reduce
the human involvement to an acceptable level, because if the
expert is overloaded with information, some outliers in larger data
sets can easily be overlooked. A suitable approach to meet these
requirements and integrate both ‘‘hard’’ sensor- and ‘‘soft’’
human-generated records could benefit from Information Fusion
(IF) principles that aim at fusing any kind of data [19,24,16].
Based on the information fusion principles, this paper proposes
a human-centered information fusion approach oriented to mean-
ingfully utilize sensor readings and human-generated data that
describe expected equipment movements. Within the approach a
human expert is directly involved into filtering equipment trajec-
tories: the expert defines the initial search parameters to identify
potentially erroneous path segments and decides if the segment
contains outliers. Additional information about the project specific
conditions and its context inform the expert’s decisions if path seg-
ments within spatial and temporarily constrains are potentially
prone to outliers. In summary, the approach structures how both
hard and soft data are represented to an expert who analyses col-
lected equipment trajectories and soft data in conjunction with
personal knowledge and understanding how equipment is
expected to move during specific time periods and at particular
locations.

The following section of the paper introduces the major con-
cepts related to information fusion in general. Then, the proposed
human-centered approach to filter GNSS data follows. Later, the
paper depicts how the implementation of the approach was
embodied as open-source software and describes how the devel-
oped software was tested to filter paths of asphalt paving and
earthmoving equipment. Results and findings are presented and
discussed before the paper concludes.
2. Information sources beneficial for filtering documented
trajectories of construction equipment

2.1. Overview of sensor-originated readings that constitute hard data

The most commonly used technologies to document equipment
movements during construction include laser based positioning
and GNSS sensors. For example, laser guided systems generally
allow obtaining highly precise positioning data, providing an unob-
structed direct line of view between the positioning station(s) and
the tracking equipment can be maintained. However, additional
stations to track equipment during large projects might be
required in case buildings or trees are located on or next to the
construction site. Alternatively, GNSS sensors can be utilized to
track equipment over large distances but with less accuracy than
laser guided systems. At the same time, the location accuracy of
GNSS sensors can be improved by additional correction, e.g. by
using a Differential GPS solution that transmits such data to multi-
ple GNSS sensors in real time. Typically, global navigation tracking
solutions can be particularly useful to track equipment that move
on distance from the construction site, such as hauling trucks.

The choice between these systems should be made according to
specifics of a construction project. As an example, for road paving
processes GNSS solutions tend to be preferred to track these pro-
cesses because the equipment continuously moves around on a
construction site that also shifts. Nevertheless, both laser guided
and global navigation systems are susceptible to a certain degree
to the context of equipment tracking and can eventually include
outliers in the documented equipment paths.

Compared to GNSS and laser based positioning, other technolo-
gies that document equipment movements are less adopted in
practice. Examples of such less-utilized technologies include
UWB sensors and computer vision tracking solutions. These tech-
nologies, similarly to the previously described, also do not guaran-
tee outlier-free readings. In particular, UWB-based sensors can
experience occlusion of tracking signals, while computer vision
technologies additionally can suffer from other external factors,
including dust and lighting conditions.

In summary, though several technologies provide opportunities
to document equipment movements, the accuracy of the
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documented paths is influenced by a construction project’s specific
context. Eventually, as every technology will yield outliers in the
documented equipment paths, having additional data sources is
desired.
2.2. Human-generated records: soft data

To support judgment of whether a particular segment of the
documented trajectory paths corresponds to an outlier or not,
additional descriptions about the equipment movements are use-
ful. Particularly, human-generated notes (‘‘soft data’’ as opposite
to ‘‘hard’’ sensor readings) about the progress of the construction
process could be of value, because humans can depict certain attri-
butes of interest [22] and suggest specific inferences, such as spec-
ify relationships between entities [14].

Soft data can be related to hard data within both temporary and
spatial domains. For example, the time stamp of a particular
human-generated record might suggest to carefully examine the
hard data collected at nearly the same time. Similarly, notes can
indicate which locations of a specific project are particularly prone
to inaccurate measurements, such as areas adjunct to high-rise
buildings that can obscure navigation signals from satellites. From
another perspective, parallel soft and hard data can support assess-
ing uncertainty of soft data through the lens of the hard data [24].
This interrelation of soft and hard data within time and spatial
domains confirms that the two types of data go hand-in-hand
and complement each other.

As an example, a site manager involved in an asphalt paving
project can produce soft data by making notes regarding how
equipment operators intent to co-operate and what events took
place on site. Such notes could include records when specific oper-
ations started, when trucks arrived, as well as any other relevant
incidents, for example, if a roller discontinued operating due to
breakdown or the need to refill its water tanks.

Once collected, the available soft and hard data need to be
meaningfully processed according to some rules that will help to
identify outliers. To demonstrate developments in the field of
information fusion the next section depicts most common infor-
mation fusion models. Later, the human-centered approach to
combine hard and soft data related to filtering paths of construc-
tion equipment will be introduced.
3. Fusion of information

To benefit from the potential explanatory power of human-gen-
erated notes (soft data) that describe events and how entities on
site were linked, soft data should be meaningfully related to the
documented sensor readings. Ultimately, this relation might sup-
port making decisions about whether a particular segment of an
equipment path contains outliers or not. The existing information
fusion models allow systematic consideration of procedures to pro-
cess data from different sources. This section briefly overviews
such models.

Probably, the most widely accepted approach to categorize
merging information from different sources started to develop
with the introduction of the Joint Directors of Laboratories (JDL)
data fusion model, proposed by the corresponding subpanel in
1991 [17]. The succeeding evolution of the model involved the
introduction of two additional levels of fusion (data preprocessing
and human–computer interaction) to depict the need for introduc-
ing the human into fusion processes.

While the JDL model was then employed in different research
lines, including tailoring it to tasks of the civil engineering domain
[25–27], the model has also been criticized because the active role
of human users in fusion was not taken into account sufficiently
[28]. Specifically, as a functional model, the JDL aims ‘‘to facilitate
understanding and communication among managers, theoreti-
cians, designers, and evaluators as well as users of the data fusion
systems’’ [27] and less concentrate on describing how the user can
be incorporated into specific elements of the fusion systems.

For structuring the possibilities to involve humans into infor-
mation fusion, the JDL model was extended by the fusion commu-
nity to kJDL [29] and the visual data-fusion models (as described in
[30]). A particularly noticeable upgrade to the JDL model was intro-
duced by the Data Fusion Information Group’s (DFIG) model [28].
The model (see Fig. 1) is constituted by several levels that are
directly related to the elements of the aforementioned JDL model.

Essentially, the DFIG model proposes to perform human-cen-
tered fusion to estimate and predict relations among different
objects in order to assess the situation in hands. In this way, the
complicated fusion tasks are to be performed by humans due to
their natural sense-making abilities related to estimating states
and predicting relations among entities.

Altogether, the developments in the field of information fusion
increasingly acknowledge the role of humans in information fusion
processes. These considerations can be taken into account to
develop approaches for filtering outliers in documented construc-
tion equipment trajectories. In this setting, human reasoning can
support every aspect of the filtering process, including soft data
processing, comprehending situations described by both hard
and soft data, and deciding if a specific path segment is an outlier.
The next section introduces the information fusion approach that
benefits from the listed factors.
4. Information fusion approach to filter trajectories of
construction equipment

The active involvement of the user is required to meaningfully
perform numerous knowledge-intensive tasks, such as supervising
complex systems [31] and applying context-sensitive knowledge
for the needs of engineering tasks at hands [32]. In the civil engi-
neering domain several information systems already rely on the
decisions of human operators involved in the data processing loop
(see for example [18,33]). Nevertheless, according to the best of the
authors’ knowledge, no approaches have been suggested on how to
incorporate human reasoning in fusing hard and soft data in order
to filter outliers in documented equipment paths.

To address the described gap related to filtering outliers in doc-
umented equipment paths this paper proposes a user-centered
information fusion approach (Fig. 2). As central element the
approach adopts the model of human decision making as intro-
duced by Boyd in the mid-1950s [22]. The model organizes the
decision making process as a loop formed by the four steps:
Observe, Orient, Decide, Act (OODA). These steps aim to help differ-
entiating information gathering, analysis and implementation
activities by describing important aspects of decision making with-
out excessive burden of details [34].

Within the here proposed approach, the OODA steps are laid out
to govern interactions between the expert and the software to sup-
port data processing. In this set up, experts can make decisions if a
path segment is an outlier based on available hard and soft data
aligned with experts’ understanding of how equipment can move
in general, during a specific project, and within particular time
and spatial boundaries.

The expert’s knowledge can be outlined as a set of interdepen-
dent rules. This set of rules supports the expert during the ‘‘orient’’
and ‘‘decide’’ phases of the decision making loop. Within the pro-
posed approach three interdependent groups of rules are outlined:
general (how equipment can and cannot move), situated
(equipment movements during different phases of the project with



Fig. 1. Data Fusion Information Group (DFIG) 2004 model (reconstructed based on the model from [28]).

Fig. 2. Information fusion approach for retrospective analysis of the positional data by an expert.
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respect to time or spatial limits), and operationalized (movements
at specific time periods). According to the rules, an expert can
deduce expectations on how equipment can move during specific
periods of the project. The expert can then consider these expecta-
tions and judge whether sensor readings collected during those
time periods include outliers.

The ‘‘general rules’’ are based on equipment characteristics and
describe how particular construction equipment can move due to
their specifications. For instance, different equipment can have
specific limitations of the maximum speed or the turning angle.
Also, certain behavior can be expected according to the equip-
ment’s purpose (for instance, a roller often reverse its traveling
direction or an excavator might repeatedly turn around its axis).
These equipment-specific rules describe how the equipment typi-
cally moves without considering specifics of a particular project.
Consequently, the general rules supply an expert with an initial
understanding about how specific equipment can move in general
and during the examined project in particular.

The ‘‘situated rules’’ describe how construction equipment can
move during the analyzed project. Such rules are related to general
rules and to project-specific information, for instance to assump-
tions about the expected movement patterns in relation to partic-
ular projects. In these settings, the equipment’s maximum speed
during the project can be expected to remain considerably less
than the maximum speed specified in the equipment’s specifica-
tions. This assumption suggests to scrutinize specific elements of
equipment paths, where (or when) the collected sensor readings
can possibly include outliers. For example, the user can consider
(1) a temporary period when an equipment is not expected to
make rapid turns and move faster than a certain speed due to
the geometry of the construction site; and (2) a spatial area where
outliers can be grouped, thus if a single outlier was identified, the
following documented equipment locations should be carefully
analyzed as potentially prone to errors.

The situated rules are interrelated with the ‘‘operationalized
rules’’. These rules exist in relation to a particular equipment path’s
segment. In this way, experts can judge whether the segment
includes an outlier or if the sensor readings accurately describe
equipment movements. Such judgments are rooted in situated
rules and supported by visual representations of the documented
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equipment’s path and additional soft data. The operationalized
rules can, in turn, influence the situated rules. For example, the
existing expectations about the maximum equipment’s speed dur-
ing the analyzed project can be updated if that equipment had
begun to move faster than expected. Similarly, if experts identify
too many outliers within the project, they can adjust personal
assumptions about how the collected sensor readings are reliable
in general. Such assumptions can then be operationalized by
changing the parameters to automatically search the next outlier.
For instance, if experts identified that outliers tend to form groups,
they can adjust parameters in a way that the software will criti-
cally analyze several consequent data points after one outlier will
be identified.

Within the proposed classification of rules, the situated rules
are central in describing how equipment can move during the
analyzed project. These rules, if described as statements, can
support the automated search for outliers the core of the
expert’s interactions with the supportive system. For instance,
statements to support the search for outliers can have the fol-
lowing formats: (1) ‘‘the maximum angle between the previous
and current heading of the equipment should not exceed ‘20’
degrees’’; (2) ‘‘the equipment’s maximum speed should not
exceed ‘2.7’ m/s’’; (3) or ‘‘after identifying an outlier the next
path points should be automatically checked and the outlier
limit should be extended until N consequent path points appear
to be correct according to the expected equipment movements’’.
Once the statements are formalized, they become a central ele-
ment in the proposed IF approach to refine the documented
equipment paths. The expert can use the statements as search
parameters, requesting the software to find next outliers. The
formalized statements to find the next outlier are related to
the situated knowledge (these interrelated elements are shown
with dark background in Fig. 2). After the next outlier is identi-
fied, the expert can change limits or eliminate the outlier. The
expert can correct the path segment if the selection appears to
be an outlier according to the available hard and soft data. These
hard data corresponds to the documented elements of equip-
ment paths right before and after the selection and soft data
are related to the available human-generated information. The
sequence of the possible actions is not predefined. For example,
a user can find the next outlier and remove it without adjusting
the outlier’s limits. Similarly, the rules to search for next outliers
can be changed at any time.

In addition to the described automated search for outliers, a
possibility to manually define the beginning of an outlier without
using an automated search should also be provided.

Overall, different sets of rules can characterize movements of
construction equipment that correspond to different states such
as those during which the equipment is idle, performs specific
operations (such as paving, compacting, or excavating), or relo-
cates to another position without carrying out specific operations.
In this respect, the human-generated data about equipment activ-
ities with references to specific time periods can highly benefit the
path filtering process as the expert can relate particular time-based
on special-based segments of equipment paths to the expected
equipment’s behavior.
5. Procedure to validate the proposed approach

As mentioned, currently no method suggests a way to incorpo-
rate human reasoning to fuse hard and soft data for filtering outli-
ers in documented equipment paths. To address the gap, the
previous section proposed a human-centered fusion approach
based on information fusion concepts. To validate the approach,
the research strategy included the following procedure:
1. Based on the proposed approach the authors of this paper
developed a software prototype that allows to import and visu-
alize previously collected hard (GNSS sensor readings) and soft
(specifically, a log of the construction project) data. The func-
tional elements of the prototype were designed in direct corre-
spondence to the components and the interconnection
structure of the proposed information fusion approach (as dem-
onstrated in Fig. 2). Thus, the functionality of the graphic user
interface of the prototype allows experts to convey – during
the ‘‘act’’ step of the OODA loop – decisions made during the
‘‘decide’’ step, while visualizations inform the ‘‘observe’’ step,
which reinforces the ‘‘orient’’ step of the loop. The developed
software prototype is described in more details in the next
section.

2. The developed software was applied by the authors to examine
paths of five different construction equipment (paver, roller,
truck, excavator and dozer) that were involved in two distinct
types of construction projects: asphalt paving and earthmoving.
The purpose of the examination procedure was to inspect if the
provided functionality can assist an expert in filtering outliers
in documented (by using GNSS technologies) equipment paths
according to the expert’s understanding about expected move-
ments of the equipment on site. The application of the devel-
oped prototype is described in Section 7.

6. Development of the software to filter and visualize outliers in
equipment trajectories

The information fusion approach was operationalized in a soft-
ware application to locate and eliminate outliers in documented
equipment paths. This application was developed by the authors
within the research track of the VISICO center of the University
of Twente, The Netherlands, and is available as open-source
software.

The graphical user interface (see Fig. 3) was developed accord-
ing to the suggested information fusion approach and support an
expert in steps ‘‘act’’ and ‘‘observe’’ of the described OODA loop.
In particular, several interface elements simultaneously represent
hard and soft data by displaying the overall path of the equipment
and a selected path segment next to the log of the project. The
demonstrated logbook represents an example of soft data and ulti-
mately aims to inform the user regarding the details of the con-
struction project in addition to the automatically collected data.
Once informed about specifics of the process, the software user
can relate them to elements of equipment paths and exercise
expert judgment to decide if those elements correspond to outliers
or reflect real equipment movements. The major part of the soft-
ware interface visualizes hard sensor readings to support users in
visual examination of the displayed path for evident outliers. Such
analysis, rooted in human abilities to identify visual patterns, can
naturally support rapidly filtering large groups of evident outliers.

In addition to providing opportunities for human exploration of
the data, the software allows to search for the next outlier auto-
matically. The user can choose between two means to detect out-
liers: angle-based search (by setting the maximum expected
equipment’s turning angle) and speed-based search (by defining
the maximum expected speed of the equipment). Correspondingly,
the next outlier will be identified either if the equipment direction
significantly differs from the previous heading, or if the adjunct
path points are located too distant from each other. After an outlier
was identified, the program considers the next N data points. The
user-entered value N – called the ‘‘intolerance level’’ – defines
the amount of consequent points that should automatically be con-
sidered as being potentially incorrect. If another outlier is identi-
fied within the path between the next N location points, the
limits of the selected outlier interval will be automatically



Fig. 3. Graphical user interface of the open-source application developed according to the suggested information fusion approach.
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increased to include that outlier as well. This option allows identi-
fying groups of outliers.

Users can (re-) define the limits that define an outlier by moving
a dedicated horizontal slider. Then, the user can meaningfully
relate the selected path with the soft data (logbook) that is dis-
played next to the path visualization. If the selected interval is con-
sidered as an outlier, the interval can be adjusted. While different
interpolation techniques can be applied to eliminate outliers, in the
developed software a linearization function was implemented by
the authors, as it provides necessary functionality without intro-
ducing additional need to adjust specific parameters (and poten-
tially communicate them with the user for fine-tuning). The last
linearization can be undone, for example, if that action was per-
formed by mistake.

In summary, removing an outlier is a three-step procedure.
First, the expert can manually or automatically identify and select
an untrustworthy path segment according to personal expecta-
tions on how specific equipment should move at a construction
site. Then, the selected path segment can be related to human-gen-
erated data to justify decisions if the segment is an outlier. Finally,
the expert can remove the outlier or search for the next doubtful
path segments based on the same or different search parameters.

As indicated, the components of the developed software proto-
type naturally correspond to the elements of the proposed infor-
mation fusion approach. As a result, the prototype provides the
expert means to observe and act according to her/his decisions if
a specific path segment is an outlier to be removed. As the purpose
of the approach is related to filtering outliers in GNSS Data sets col-
lected during construction operations, the prototype was applied
to filter outliers in documented paths of earthmoving and asphalt
paving equipment. The next section describes the details of these
applications.
7. Application of software

To test the applicability of the proposed approach to filter out-
liers in paths of construction equipment the developed software
was applied by the authors to analyze the paths of five different
types of equipment involved in asphalt paving and earthmoving
operations. The authors have had previous experience in process-
ing GNSS data collected during construction operations.

The analyzed construction equipment trajectories were gath-
ered by the authors by means of two different classes of GNSS
devices. Each class was utilized to collect a separate dataset that
corresponded to a specific type of construction operations. In par-
ticular, several inexpensive GPS devices (Wintec G-Rays 2) were
used for tracking movements of earthmoving equipment and
highly precise Differential GPS (Trimble SPS851 DGPS) to track
asphalt paving operations. The latter high-end receivers estimated
equipment positions based not only on transmission signals from
GPS, but also from GLONASS navigation satellites. By employing
different classes of GNSS devices, the conducted tests illustrate
the applicability of the proposed approach to filter outliers without
being limited to a particular device class, as sensor readings
obtained by utilizing either highly or less precise sensors eventu-
ally include outliers.

This section is organized as follows: first, specifics of equipment
movements on site are depicted. Then, the short description of the
construction site context follows. Finally, examples of filtering par-
ticular segments of documented equipment paths are shown.

7.1. Data filtering in earthmoving operations

One of the most common ways to follow construction activi-
ties is to attach broadly available low-priced GNSS receivers to
construction equipment. As this practice is being extensively
adopted, eliminating outliers in equipment trajectories obtained
by using these less precise tracking devices is essential before
conducting further data analysis. The developed software to filter
trajectories was applied to illustrated filtering outliers in paths of
earthmoving equipment, documented by using such conventional
sensors. The additional description of the utilized low-cost GPS
data logging devices and their relative accuracy analysis can be
found in [3].

As a part of validation of the proposed method an earthmoving
project involving a number of dump trucks, two excavators, and a
dozer was selected. Trajectories of the equipment were
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documented during construction of the Engineered Biosystems
Building (EBB) at the Georgia Institute of Technology, Atlanta,
USA (see Fig. 4). The entire site was 120 m � 100 m in dimension
with a total volume of excavation of 40,000 cubic yard (CY)
(30,600 m3) of earth.

As in the scope of the proposed approach the understanding and
expectations how equipment typically conduct their work is cen-
tral, the next section depicts specifics of equipment movements.
7.1.1. Specifics of equipment movements in earthmoving projects
Dump trucks: Dump trucks are unique equipment that operate

similar to automobiles on normal roads but exhibit different
behavior at construction sites. In relation to the opportunities to
filter outliers according to angle- and speed-based search options,
the maximum turning angle and the maximum equipment’ speed
can be obtained from the equipment specifications (e.g. [35,36]).
Additional information, such as suggested 16 km/h speed limit
on site (e.g. according to [37]), could guide experts in making their
decisions about suspicious path segments. Noticeable, though the
speed limit can supply speed-based search, the human reasoning
is still important to judge if a particular segment is an outlier or
correspond to speeding on site.

Hence, soft data collected by a human observer can assist in
making such decisions. The potentially valuable soft data in this
case can include notes (as elements of the log of the project) when
the truck enters and exits the construction site and how it moves
from one specific zone on the construction site to another. As the
operation sequence is known (typically a truck passes through a
driveway, moves inside the pit and stops for loading and cleaning),
the corresponding timestamps can help in path filtering by sug-
gesting what search rules can be applied for different operations.
For instance, to filter segments that correspond to the traveling
along the driveway, an angle-based search can be used in connec-
tion to considering the geometry of the driveway. Then, during the
travel, the truck’s maximum allowed speed is limited due to pres-
ence of other construction equipment and workers, therefore a
speed-based search can be utilized.

Excavators: Typical operations of the equipment include swing-
ing movement for the most time and occasionally traveling from
one working location to another. As the angle-based search could
not be suggested to search outliers according to the specifics of
equipment movements, the speed-based search can be of use,
especially for filtering paths that correspond to the equipment tra-
vel paths. In this case, information about the equipment’s maxi-
mum travel speed (e.g. 5.5 km/h for Komatsu PC 400 LC [38]) can
Fig. 4. GPS tags mounted on an excavator and
support automatic identification of segments that can refer to
outliers.

Another type of earthmoving equipment – Dozers – typically
move linearly to push the earth but also can rotate about its axis
and change direction of movement from forward to backwards.
Similar to other equipment, the maximum speed can be found in
the equipment specifications (e.g. in [39] for John Deere Crawler
Dozer 750C). As dozers can be idle or typically move in straight
path during its operation, recording timestamps for when the
equipment becomes idle or starts operating can advise an expert
in applying the angle-based search for the linear movements that
occurred during normal operating procedures.

All three types of the described construction equipment were
involved in the construction project described earlier. The equip-
ment trajectories were documented by the authors during the pro-
ject and then processed using the developed software to filter
outliers in equipment paths, as described next.

7.1.2. Description of data collection during the earthmoving project
GNSS paths of equipment involved in the chosen earthmoving

project were collected during the entire work shift that lasted
between 6:30 AM to 5:30 PM. The low cost portable GNSS devices
gathered the equipment trajectories at the update rate of 1 Hz. To
assist in identifying outliers manual observations were made and
the timestamps when the working context of the equipment chan-
ged were noted down. The excerpt of the soft data for different
equipment is presented in Table 1. Noticeable, the level of granu-
larity of the soft data was not predefined. While the illustrative
excerpt shows that the truck operations were tracked precisely;
descriptions related to other equipment had fewer details. How-
ever, even the less detailed descriptions can also support the iden-
tification of activities on site and therefore inform the experts’
filtering task, as described further.

7.1.3. Applying the developed software to filter outliers in equipment
movements during earthmoving operations

Filtering paths of dump trucks: Trucks trajectories were docu-
mented only within the construction site, as the sensors were
attached when trucks arrived on site and then removed at the exit
gate. The left part of Fig. 5 shows trajectories on site collected by a
tracking sensor throughout an entire workday. This figure similar
to all figures presented later is a screenshot of the graphical user
interface of the developed software and demonstrates the func-
tionality of the developed program to overview equipment move-
ments throughout a working shift along with selecting a segment
that corresponds to a particular period of interest. The path
a truck (left), data collection site (right).



Table 1
Sample of the human-generated data.

Type of equipment Timestamp Description

Dump Truck 2:57:40 PM Entered the site
2:59:36 PM Entered the pit
3:03:44 PM Start loading
3:05:06 PM Loading complete
3:06:01 PM Cleaning
3:06:44 PM Exit

Excavator 6:03:44 AM Moved inside the pit
6:08:31 AM Loading
6:51:20 AM Stopped (no trucks)
7:02:33 AM Loading

Dozer 6:45:45 AM Started working
7:15:42 AM Stopped
7:22:28 AM Started working
8:02:55 AM Stopped
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segment represents a single loading cycle of a truck highlighted in
the figure by applying visualization limits that correspond to the
timestamps obtained from the soft data. Since the truck paths dif-
fer across varying loads, the human involved into the filtering pro-
cess can identify outliers by comparing a particular trajectory with
trajectories corresponding to other loads. In this way, the under-
standing of how equipment moved during the entire work shift
can support an expert in considering what parameters can be
applied for the automated search for outliers. The regions 1, 2, 3
and 4 highlighted in the left part of the Fig. 5 are shown in more
detail on the right side of the figure to demonstrate the identified
outliers as well as how the path segments appear after eliminating
these outliers.

Overall, Figs. 5, 6 and 7, 9 and 10 illustrate the way the proposed
information fusion approach can be applied by showing (1) the ini-
tially collected sensor readings next to (2) several enlarged areas
that show path segments before and after eliminating the outliers.
As filtered GNSS paths normally appear largely similar to visualiza-
tions of the as-collected GNSS data and thus require enlarged areas
similar to those demonstrated, the illustrations of filtered paths are
not included in this paper.

In particular, to identify outliers in the documented GNSS data
related to earthmoving operations, the authors applied the
Fig. 5. Trajectories of trucks on the construction site collected by a GPS tag throughout t
or automatically and path segments after the outliers were removed (on the right).
developed software prototype in the following way. Some evident
outliers were located manually, while others were found automat-
ically by applying the angle-based search with the assumption that
a turning angle should be less than 40�. The outlier selection and
linearization were performed with respect to both hard and soft
data at hand.

The manual selection was performed by the authors to filter out
evident outliers according to the visualized sensor readings. Some
visually obvious outliers that contained a large number of obvi-
ously erroneous points were identified and filtered out manually.
Then, the software user applied automatic search for outliers to
detect other (visually less noticeable) outliers that included rela-
tively small number of erroneous points.

Filtering path of the excavator: The working shift of an excavator
was documented as shown in Fig. 6. The figure particularly indi-
cates large amounts of equipment’s swing movements where oper-
ations were performed at particular spots. However, as the scope of
this research was focused on equipment paths rather that equip-
ment activities, only GNSS data related to relocating the equipment
were analyzed and only the corresponding path segments were fil-
tered. The soft data (as indicated in Table 1) was utilized to differ-
entiate activities of the equipment.

The right part of Fig. 6 shows how filtering the equipment path
was performed with the help of the developed software. Similar to
the previous example, at first most evident outliers were removed
manually and then less evident outliers were identified by using
the parameter-based search. In this case the angle-based threshold
for outlier identification was set as 30�.

Filtering paths of a dozer: The left part of Fig. 7 shows the dozer’s
moving trajectory within the documented work shift, while the
selected section illustrated the equipment’s typical moving pat-
tern. These patterns represent the dozers’ main activity of pushing
soil towards the excavator. Thus, dozers have the capability to
change their moving direction from forward to backward similar
to trucks, but they travel shorter straight distances. Based on the
visualized trajectories and existing soft data (such as presented
in Table 1) the specific areas where the dozer traveled in a manner
that corresponds to its typical activity (or was alternatively relo-
cating) can be identified and the corresponding way of filtering
can be performed. Several samples of manual and automated
he working day (on the left); path segments with outliers identified either manually



Fig. 6. Excavator’s documented path with samples of filtering several manually and automatically identified outliers.

Fig. 7. Trajectory of a dozer and samples of filtering the documented dozer’s path segments.
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outlier identifications and filtering are shown within the right part
of Fig. 7. Similarly to the previous examples, the angle-based
search was found useful in identifying outliers.

7.2. Data filtering in asphalt paving operations

To examine the applicability of the approach to filter outliers
without limitation to a particular technology class, such as inex-
pensive GPS receivers, the developed software was applied to filter
outliers of equipment involved in paving operations whose paths
were documented by means of highly precise GNSS sensors. The
decision to utilize highly precise sensors was also motivated by
typically high demands for accuracy to track paving activities. In
particular, localization to track paving operations can be consid-
ered as accurate if it has the positioning accuracy of 10 cm in both
transversal and longitudinal directions with the possible temporal
degradation of the accuracy up to 20 cm [12].
Two essential differences between earthmoving and asphalt
paving operations exemplify the different moving patterns of the
corresponding equipment: (1) the material is continuously
deployed during paving instead of removed during earthmoving;
and (2) the continuity of the process is critical, as delays in deploy-
ing material that are caused by process interruptions influence the
final quality of the road. Because of these characteristics of the
asphalt paving operations, equipment movements during asphalt
paving are largely differ from those entailed in earthmoving oper-
ations. Therefore, this second case validates the generality by illus-
trating how the proposed approach can be applied for different
filtering needs originated from specifics of largely dissimilar con-
struction domains.

Similar to earthmoving operations, movements of pavers and
rollers highly depend on characteristics and functions of construc-
tion equipment, geometry of the construction site, and specifics of
the paving process. Therefore, the additional information can
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support anticipating and analyzing equipment movements. Such
information can include descriptions of the construction process
and site geometry, as well as depict paver’s heading directions at
specific locations.

7.2.1. Specifics of equipment movements during asphalt paving
projects

Pavers: During road construction a paver normally changes its
heading based on the site geometry while continue to move for-
ward. At the end of a paved lane, it moves backwards to start
another lane. Though the paver should, ideally, advance without
stops to sustain the continuity of the paving process, in practice
the continuity depends on project geometry, and also can be dis-
turbed by external events or weather conditions. Thus, even if
the maximum paver’s speed is known (for instance it can be
25 m/min for a particular paver model [40]), the actual speed dur-
ing road construction depends on the desired asphalt layer thick-
ness, the continuity of asphalt delivery, and the movements of
other equipment.

Besides constructing the asphalt layer, the paver sometimes
needs to relocate to the beginning of the new paving lane and
eventually has to stop and wait for the delivery of the asphalt mix-
ture. In this setting, the information about delays of asphalt trucks,
breaks, and other events that negatively influence the continuity of
the paver movements can be easily documented as soft data.
Therefore, collecting timestamps of the beginning and end of the
paving lane, as well as describing on-site events (such as when
or where equipment stops) can support experts in filtering outliers
in equipment movements. Correspondingly, the choice of using an
angle- or speed-based search to identify outliers can be justified by
the experts according to their personal knowledge and the pro-
vided soft data in relation to the expected movements of the paver
in particular moments of time. Overall, the equipment is not
expected to make rapid turns and rapidly change speed during
paving, but can perform so during relocating to the beginning of
the next paving lane.

Rollers: The paver is closely followed by rollers. Rollers aim to
achieve an optimum density and to provide a smooth surface by
compacting the asphalt mat in specific patterns. In general, rollers
move back and forth at slow but uniform speed, following a rolling
pattern that progresses from the lower to the higher side of the
asphalt lane. The roller’s driving direction should not be suddenly
changed or rapidly reversed, as these actions damage the road sur-
face quality. Additionally, rollers should not stay still over the
freshly paved asphalt mat and might avoid overusing stop/start
sequences. The maximum speed and the maximum turning angle
vary between different equipment models. For example, a specific
three-drum roller can have the maximum steering angle of 40
degrees and can reach the speed of 10.2 km/h [41], and a tandem
roller can perform 25 degree turn and can speed up to 12 km/h
[42].

Though such information can already be used to filter outliers
during equipment movements in relation to both relocating the
roller to another lane and compacting operations, additional
knowledge about the geometry of a particular project can also
assist in searching for outliers. Beside compacting and relocating
to the beginning of the next paved lane, the roller operator needs
to perform other equipment-specific actions. For instance, the
equipment eventually needs to travel longer distances to fill its
water tank, as water needs to be continuously disposed during
compaction to avoid sticking the mixture to the roller’s drums.
Such information about the equipment behavior can easily be doc-
umented by a human observer by means of project notes.

In summary, an expert can effectively filter documented paths
of the construction equipment by considering the hard and soft
data collected during asphalt paving projects in relation to the
expectations how the equipment can move on site. The next sec-
tion illustrates such filtering based on the proposed information
fusion approach.

7.2.2. Description of data collection during the paving project
The GNSS sensor readings as well as the project logbook used to

validate the applicability of the approach to filter trajectories of
asphalt paving equipment were gathered during a road construc-
tion project conducted near Alkmaar, a city in the Netherlands
(Fig. 8). The structured data collection followed the methodology
developed within the PQi (Process Quality improvement) frame-
work developed at the University of Twente [5], which has the
aim to improve process quality by structured monitoring construc-
tion work and making operational behavior explicit.

During the tracked 7 h work shift about 1200 tons of asphalt
mixture was paved, which resulted in an 800 m long, 7 m wide,
and 7 cm thick asphalt layer.

7.2.3. Applying the developed software to filter outliers in equipment
trajectories collected during asphalt paving operations

Filtering path of the paver: The filtering of trajectories of equip-
ment involved in the paving project was performed by utilizing the
developed software. The user of the software first visually exam-
ined the path using the software, and then performed an auto-
mated search for outliers (Fig. 9).

Filtering path of the roller: The trajectory of a tandem roller was
documented during a work shift between 4:56 AM and 11:42 AM.
The equipment path highlighted in the left-top part of Fig. 10 cor-
responds to the time period between 8:05 and 10:11 when the
equipment continuously compacted the asphalt layer. Before that
period the roller went to the beginning of the paved lane and after
that period the roller stood still.

Several outliers were identified in the documented equipment
path. Similar to the paver’s path’s, both of the manually selected
outliers were identified by visually examining the documented
path using the interface of the developed software. One of these
outliers was located at the beginning of the shift and another one
was in the middle of the shift. The second of these outliers had a
particularly large value that can be seen as the graph scale of the
corresponding illustration extended up to 100 m. In addition to
the manually identified outliers, several others were identified
automatically.

Although the paths of asphalt paving equipment were collected
using highly precise GNSS equipment, several significant outliers
that had to be eliminated were still found. The proposed approach
thus proved to be useful to identify outliers in equipment trajecto-
ries documented by highly precise GNSS sensors.
8. Discussion and future work

The proposed human-centered information fusion approach
structures the way of identifying and filtering outliers in GNSS data
while accounting for additional soft data characterizing construc-
tion processes. In addition, the approach allows incorporating
human reasoning about how construction equipment can move
during construction operations. The approach is constructed
around the observe-orient-decide-act loop that characterizes
human decision making and deals with both ‘‘hard’’ sensor read-
ings and ‘‘soft’’ human generated data.

Documenting the site and taking notes during the process can
provide specifics of the project’s context as well as characterize
relations between entities and events on site. Several examples
of such descriptions include state of equipment within specific
timeframes (if equipment stays idle or performs specific opera-
tions), geometry of and objects on the construction site (such as



Fig. 8. GPS tags mounted on a roller and a paver (left), data collection site (right).

Fig. 9. Overview of the paver’s path with examples of identified and linearized sections of the paver’s path.

Fig. 10. Overview of the roller’s path and examples of identified and linearized sections of the roller’s path.
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obstacles that could influence equipment movements) and unex-
pected events (e.g. delays in material delivery on site). Besides,
using soft data can assist in capturing information that can hardly
be obtained or require a large number of sophisticated sensors. Soft
data can for instance describe locations of materials that were not
tagged with positional sensors or markers, identify potential haz-
ards, and characterize weather factors, including visibility, temper-
ature, and rain that can potentially affect the construction
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activities or sensor readings. In addition, some unquantifiable
traits can be described using soft data, including equipment oper-
ator’s fatigue, recent incidents on site that can influence worker’s
behavior, and performed impromptu temporary adjustments to
the flow of work. As an additional value, the soft data can depict
the intentions of equipment operators how to conduct their activ-
ities in a given context.

Based on the provided hard and soft data, the expert can iden-
tify outliers as visual anomalies in the data visualization or auto-
matically find path segments where equipment moved in an
unexpected manner. In this way, soft data can support the expert
in making informed decisions whether particular segments of doc-
umented equipment paths are outliers.

The level of detail of soft data can ideally be just enough to
support informed decisions, but according to the nature of human
generated records such data granularity can hardly be predicted
in advance. As the human-generated soft data aims to provide
additional information about the progress of construction work,
the amount of the supplied information can differ according to
the observer’s understanding of the needed data granularity, the
person’s available time and the needed amount of attention.
These conditions particularly apply if multiple pieces of equip-
ment should be tracked. Nevertheless, any amount of supplemen-
tary relevant information in addition to the hard data alone can
potentially be helpful in identifying outliers. Once this data fusion
approach is adopted experience and learning will shed more light
on ways to deal with granularity and detail.

The conducted tests focused on refining GNSS paths of con-
struction equipment as satellite-based navigation is probably the
most common way to document equipment movements. To obtain
paths that have different absolute error, both low and high precise
equipment was used. Particularly, movements of equipment
involved in earthmoving operations were recorded by using low-
cost GPS receivers, while high-end DGPS sensors were employed
during the asphalt paving project. The test outcomes indicated that
sensor readings obtained by utilizing both classes of equipment
paths included outliers that can be filtered according to the pro-
posed approach. Therefore, the authors envision that equipment
paths documented by using other technologies, such as laser-based
positioning systems, could also be filtered likewise. However, addi-
tional tests for such technologies are desired.

Although the applicability of the information fusion approach
was demonstrated by applying the specially developed software
prototype to filter paths of different construction equipment, not
all possibilities of utilizing different types of soft data were
explored. In particular, the developed software only supports a
particular type of soft data (a logbook of the construction project),
therefore other potentially useful information sources, such as on-
site photos and construction plans, were not presented to the user
during tests. In other words, the potential surplus of utilizing spe-
cific types of soft data was not the subject of this research.

Additionally, the implementation of the approach as a proto-
type left space for possible improvements in terms of the graphical
user interface. The developed interface can clearly be improved
based on the tasks of the user and their specifics. For instance,
the interface can be extended to encompass additional functional-
ity to effectively handle extra-large datasets or filter paths that
potentially contain large amounts of outliers.

In addition to the implementation process, several limitations
also characterize the conducted tests. In particular, as the data col-
lection was conducted not in experimental settings, but during real
construction projects, the collected paths include absolute error,
associated with the utilized equipment. Therefore, though the val-
idation of the method was mainly concentrated on filtering outliers
introduced by the environment, while aspects related to the in-
depth discussion of the accuracy of the documented equipment
itself were left aside.

Another characterization of the conducted tests is their purpose
to demonstrate the potential applicability of the information
fusion approach, rather than to provide evidence for advantages
of using the proposed solution, for example by comparing it with
the fully automated data analysis. This research design decision
is related to the authors’ consideration that the efficiency of soft-
ware developed according to the proposed approach is a hardly
generalizable characteristic because the demanded amount of
human intervention into data processing highly depends on the
accuracy of tracking technologies, ambient weather conditions,
and the availability of unobstructed transmission signals from nav-
igation satellites. Altogether, the amount of necessary corrections
for hard data collected during a specific project can hardly be pre-
dicted beforehand, as construction processes are conducted within
specific contexts that include particular site layouts as well as
objects located on or next to the construction site that can intro-
duce a different amount and type of outliers within collected data.
Future research could include further justifications of the approach
and evaluations of the desired degree of accuracy of the docu-
mented readings. In this way, the research can explore if the pro-
posed information fusion approach can be related to particular
data analysis tasks. For example, research could show whether fil-
tering paths obtained by using low-cost equipment can effectively
support precise process control and retrospective analysis of near-
miss safety accidents. Another particularly promising future
research direction is to develop machine learning algorithms that
can automatically correct outlier detection settings, reducing the
need to involve experts in the process. For instance, if GNSS data
are found to be prone to outliers within a specific time or spatial
constrains, the software could automatically adjust parameters
and concentrate on searching potential outliers within those con-
strains. Also, additional research could study the benefits of incor-
porating additional sensor readings by utilizing other technologies,
such as video tracking and dead-reckoning system, with respect to
considering with the costs of adequately processing multiple input
streams. Ultimately, these future research directions could lead to
a computer-pull communication pattern when the input from the
human could be requested ‘‘only when the expected value of their
observation exceeded the cost of obtaining it’’ [43].

Future investigations into the nature of expert knowledge can
also contribute to automating filtering equipment paths. Such
investigations could involve careful analyses of how equipment
and human operators can collaboratively perform information
fusion tasks by applying frameworks for process analysis, based
on distributed cognition [22]. Ultimately, this trajectory can sup-
port further development of information fusion approaches.
Another way to improve path filtering can be to adopt structures
for soft data based on particular domain-specific ontologies that
unambiguously describe both possible events and project back-
ground conditions. Finally, better understanding of rules adopted
and applied by an expert to filter equipment paths, can contribute
to the more automated and even real-time filtering of equipment
paths. In this case, a balance can potentially be found between
reducing level of details to handle limitations pertinent to data
transfer and processing during real-time tracking of construction
activities, according to the scheme suggested in [44], and the
robustness of data filtering algorithms. Apparently, a promising
approach would be to apply qualitative reasoning methods to
assess equipment movements at a construction site. As the major
purpose of such methods is to support qualitatively reasoning
about physical mechanisms, they provide a natural way to cope
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with incomplete knowledge [45]. As the reasoning about equip-
ment movements can be directly related to spatial qualitative rea-
soning the following three requirements to qualitative models (as
listed in [46]) can guide the process of approaching filtering outli-
ers in equipment paths: representation to describe relevant
aspects of space by making only as many distinctions as necessary,
domain theory to express partial knowledge available in the con-
text and inference technologies to relate classes, such as spatial
sizes and locations. Based on the potential value to structure and
support interactions between human experts and equipment by
adopting formalizing principles of qualitative reasoning, future
research in this direction can be particularly fruitful.

9. Conclusions

This paper proposes a human-centered information fusion
approach to support the interrelation of soft (human-generated
notes) and hard (sensor readings) data with expert reasoning to fil-
ter equipment paths. This approach allows effective discrimination
of outliers in an interactive way with the aim to increase accuracy
of the collected GNSS path trajectories of construction equipment.
The proposed approach in particular aspires to avoid cases when
automated data filtering can misinterpret some path segments
related to equipment-specific movements.

To illustrate the approach, the authors developed open-source
software to refine documented paths of construction equipment
and used it to filter path trajectories of five different construction
equipment. The software demonstrated its functionality in sup-
porting its users to easily identify and eliminate outliers based
on expectations for how five different types of construction equip-
ment move during asphalt paving and earthmoving projects. The
source code of the software together with the compiled version
and the description can be freely downloaded from a web-based
source code repository [47] and could be applied to refine docu-
mented paths of construction equipment before further data
processing.
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