29,975 research outputs found

    Predicting RNA secondary structure by the comparative approach: how to select the homologous sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The secondary structure of an RNA must be known before the relationship between its structure and function can be determined. One way to predict the secondary structure of an RNA is to identify covarying residues that maintain the pairings (Watson-Crick, Wobble and non-canonical pairings). This "comparative approach" consists of identifying mutations from homologous sequence alignments. The sequences must covary enough for compensatory mutations to be revealed, but comparison is difficult if they are too different. Thus the choice of homologous sequences is critical. While many possible combinations of homologous sequences may be used for prediction, only a few will give good structure predictions. This can be due to poor quality alignment in stems or to the variability of certain sequences. This problem of sequence selection is currently unsolved.</p> <p>Results</p> <p>This paper describes an algorithm, <it>SSCA</it>, which measures the suitability of sequences for the comparative approach. It is based on evolutionary models with structure constraints, particularly those on sequence variations and stem alignment. We propose three models, based on different constraints on sequence alignments. We show the results of the <it>SSCA </it>algorithm for predicting the secondary structure of several RNAs. <it>SSCA </it>enabled us to choose sets of homologous sequences that gave better predictions than arbitrarily chosen sets of homologous sequences.</p> <p>Conclusion</p> <p><it>SSCA </it>is an algorithm for selecting combinations of RNA homologous sequences suitable for secondary structure predictions with the comparative approach.</p

    Pathways and kinetic barriers in mechanical unfolding and refolding of RNA and proteins

    Get PDF
    Using self-organized polymer models, we predict mechanical unfolding and refolding pathways of ribo-zymes, and the green fluorescent protein. In agreement with experiments, there are between six and eight unfolding transitions in the Tetrahymena ribozyme. Depending on the loading rate, the number of rips in the force-ramp unfolding of the Azoarcus ribozymes is between two and four. Force-quench refolding of the P4-P6 subdomain of the Tetrahymena ribozyme occurs through a compact intermediate. Subsequent formation of tertiary contacts between helices P5b-P6a and P5a/P5c-P4 leads to the native state. The force-quench refolding pathways agree with ensemble experiments. In the dominant unfolding route, the N-terminal a helix of GFP unravels first, followed by disruption of the N terminus b strand. There is a third intermediate that involves disruption of three other strands. In accord with experiments, the force-quench refolding pathway of GFP is hierarchic, with the rate-limiting step being the closure of the barrel.Comment: 33 pages 7 figure

    Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    Get PDF
    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (KD). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.

    A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots

    Get PDF
    This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms

    Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations

    Full text link
    Ab initio RNA secondary structure predictions have long dismissed helices interior to loops, so-called pseudoknots, despite their structural importance. Here, we report that many pseudoknots can be predicted through long time scales RNA folding simulations, which follow the stochastic closing and opening of individual RNA helices. The numerical efficacy of these stochastic simulations relies on an O(n^2) clustering algorithm which computes time averages over a continously updated set of n reference structures. Applying this exact stochastic clustering approach, we typically obtain a 5- to 100-fold simulation speed-up for RNA sequences up to 400 bases, while the effective acceleration can be as high as 100,000-fold for short multistable molecules (<150 bases). We performed extensive folding statistics on random and natural RNA sequences, and found that pseudoknots are unevenly distributed amongst RNAstructures and account for up to 30% of base pairs in G+C rich RNA sequences (Online RNA folding kinetics server including pseudoknots : http://kinefold.u-strasbg.fr/ ).Comment: 6 pages, 5 figure
    • …
    corecore