7 research outputs found

    Identification of target-specific bioisosteric fragments from ligand-protein crystallographic data

    Get PDF
    Bioisosteres are functional groups or atoms that are structurally different but that can form similar intermolecular interactions. Potential bioisosteres were identified here from analysing the X-ray crystallographic structures for sets of different ligands complexed with a fixed protein. The protein was used to align the ligands with each other, and then pairs of ligands compared to identify substructural features with high volume overlap that occurred in approximately the same region of geometric space. The resulting pairs of substructural features can suggest potential bioisosteric replacements for use in lead-optimisation studies. Experiments with 12 sets of ligand-protein complexes from the Protein Data Bank demonstrate the effectiveness of the procedure

    Drug design of novel molecules using a bioisosteric and de novo techniques - a comparison

    Get PDF
    Rational drug design is an area of science that evolves continuously in order to answer contemporary demands for a decrease in novel drug discovery turnover time. Multiple drug design modalities exist which may be exploited in response to the parameters of specific drug design projects. Bioisosteric modification of existing molecules and de novo design are two such approaches, both of which were employed in parallel in this study which aimed to compare their scope and efficiency using Tricyclic Antidepressants (TCAs) and Selective Serotonin Reuptake Inhibiting (SSRIs) molecules as case studies. Results indicated that bioisosterically modified structures did not have a higher affinity for their cognate receptor when compared to the template structure while the de novo design yielded molecules that were markedly different to the template from a structural perspective, and which also bound to the cognate receptor with an affinity superior to that of the template. This study showed therefore that bioisosteric modification is of utility when minor structural variations are considered sufficiently relative to a template molecule, and could consequently be of utility in the acquisition of new patents, in the reduction of toxicity, or in the attainment of improved biological profiles. It indicated furthermore, the role of the de novo approach in the successful exploration of novel pharmacophoric space and in the generation of molecular structures with an affinity significantly greater than that of lead molecules for a target receptor.peer-reviewe

    Methods for the Efficient Comparison of Protein Binding Sites and for the Assessment of Protein-Ligand Complexes

    Get PDF
    In the present work, accelerated methods for the comparison of protein binding sites as well as an extended procedure for the assessment of ligand poses in protein binding sites are presented. Protein binding site comparisons are frequently used receptor-based techniques in early stages of the drug development process. Binding sites of other proteins which are similar to the binding site of the target protein can offer hints for possible side effects of a new drug prior to clinical studies. Moreover, binding site comparisons are used as an idea generator for bioisosteric replacements of individual functional groups of the newly developed drug and to unravel the function of hitherto orphan proteins. The structural comparison of binding sites is especially useful when applied on distantly related proteins as a comparison solely based on the amino acid sequence is not sufficient in such cases. Methods for the assessment of ligand poses in protein binding sites are also used in the early phase of drug development within docking programs. These programs are utilized to screen entire libraries of molecules for a possible ligand of a binding site and to furthermore estimate in which conformation the ligand will most likely bind. By employing this information, molecule libraries can be filtered for subsequent affinity assays and molecular structures can be refined with regard to affinity and selectivity

    Development of Computational Methods to Predict Protein Pocket Druggability and Profile Ligands using Structural Data

    Get PDF
    This thesis presents the development of computational methods and tools using as input three-dimensional structures data of protein-ligand complexes. The tools are useful to mine, profile and predict data from protein-ligand complexes to improve the modeling and the understanding of the protein-ligand recognition. This thesis is divided into five sub-projects. In addition, unpublished results about positioning water molecules in binding pockets are also presented. I developed a statistical model, PockDrug, which combines three properties (hydrophobicity, geometry and aromaticity) to predict the druggability of protein pockets, with results that are not dependent on the pocket estimation methods. The performance of pockets estimated on apo or holo proteins is better than that previously reported in the literature (Publication I). PockDrug is made available through a web server, PockDrug-Server (http://pockdrug.rpbs.univ-paris-diderot.fr), which additionally includes many tools for protein pocket analysis and characterization (Publication II). I developed a customizable computational workflow based on the superimposition of homologous proteins to mine the structural replacements of functional groups in the Protein Data Bank (PDB). Applied to phosphate groups, we identified a surprisingly high number of phosphate non-polar replacements as well as some mechanisms allowing positively charged replacements. In addition, we observed that ligands adopted a U-shape conformation at nucleotide binding pockets across phylogenetically unrelated proteins (Publication III). I investigated the prevalence of salt bridges at protein-ligand complexes in the PDB for five basic functional groups. The prevalence ranges from around 70% for guanidinium to 16% for tertiary ammonium cations, in this latter case appearing to be connected to a smaller volume available for interacting groups. In the absence of strong carboxylate-mediated salt bridges, the environment around the basic functional groups studied appeared enriched in functional groups with acidic properties such as hydroxyl, phenol groups or water molecules (Publication IV). I developed a tool that allows the analysis of binding poses obtained by docking. The tool compares a set of docked ligands to a reference bound ligand (may be different molecule) and provides a graphic output that plots the shape overlap and a Jaccard score based on comparison of molecular interaction fingerprints. The tool was applied to analyse the docking poses of active ligands at the orexin-1 and orexin-2 receptors found as a result of a combined virtual and experimental screen (Publication V). The review of literature focusses on protein-ligand recognition, presenting different concepts and current challenges in drug discovery.TĂ€ssĂ€ vĂ€itöskirjassa esitetÀÀn tietokoneavusteisia menetelmiĂ€ ja työkaluja, jotka perustuvat proteiini-ligandikompleksien kolmiulotteisiin rakenteisiin. Ne soveltuvat proteiini-ligandikompleksien rakennetiedon louhimiseen, optimointiin ja ennustamiseen. Tavoitteena on parantaa sekĂ€ mallinnusta ettĂ€ kĂ€sitystĂ€ proteiini-liganditunnistuksesta. VĂ€itöskirjassa työkalut kuvataan viitenĂ€ eri alahankkeena. LisĂ€ksi esitetÀÀn toistaiseksi julkaisemattomia tuloksia vesimolekyylien asemoinnista proteiinien sitoutumistaskuihin. Kehitin PockDrugiksi kutsumani tilastollisen mallin, joka yhdistÀÀ kolme ominaisuutta – hydrofobisuuden, geometrian ja aromaattisuuden – proteiinitaskujen lÀÀkekehityskohteeksi soveltuvuuden ennustamista varten siten, ettĂ€ tulokset ovat riippumattomia sitoutumistaskun sijoitusmenetelmĂ€stĂ€. Apo- ja holoproteiinien taskujen ennustaminen toimii paremmin kuin alan kirjallisuudessa on aiemmin kuvattu (Julkaisu I). PockDrug on vapaasti kĂ€yttĂ€jien saatavilla PockDrug-verkkopalvelimelta (http://pockdrug.rpbs.univ-paris-diderot.fr), jossa on lisĂ€ksi useita työkaluja proteiinin sitoutumiskohdan analyysiin ja karakterisointiin (Julkaisu II). Kehitin myös muokattavissa olevan tietokoneavusteisen prosessin, joka perustuu samankaltaisten proteiinien pÀÀllekkĂ€in asetteluun, louhiakseni Protein Data Bankista (PDB) toiminnallisten ryhmien rakenteellisia korvikkeita. TĂ€tĂ€ fosfaattiryhmiin soveltaessani tunnistin yllĂ€ttĂ€vĂ€n paljon poolittomia fosfaattiryhmĂ€n korvikkeita ja joitakin positiivisesti varautuneita korvikkeita mahdollistavia mekanismeja. LisĂ€ksi havaitsin, ettĂ€ ligandit omaksuivat U muotoisen konformaation fylogeneettisesti riippumattomien proteiinien nukleotidien sitoutumistaskuissa (Julkaisu III). Tutkin PDB:n proteiini-ligandikompleksien suolasiltojen yleisyyttĂ€ viidelle emĂ€ksiselle toiminnalliselle ryhmĂ€lle. Suolasiltojen yleisyys vaihteli guanidinium-ionin 70 prosentista tertiÀÀristen ammoniumkationien 16 prosenttiin. JĂ€lkimmĂ€isessĂ€ tapauksessa suolasiltojen vĂ€hĂ€isyys vaikuttaa riippuvan siitĂ€, ettĂ€ vuorovaikuttaville ryhmille on vĂ€hemmĂ€n tilaa. MikĂ€li tarkastellut emĂ€ksiset ryhmĂ€t eivĂ€t osallistuneet vahvoihin karboksylaattivĂ€litteisiin suolasiltoihin, niiden ympĂ€ristössĂ€ vaikutti olevan runsaasti happamia toiminnallisia ryhmiĂ€, kuten hydroksi- ja fenoliryhmiĂ€ sekĂ€ vesimolekyylejĂ€ (Julkaisu IV). Lopuksi kehitin työkalun, joka mahdollistaa telakoinnista saatujen sitoutumisasentojen analyysin. Työkalu vertaa telakoitua ligandisarjaa sitoutuneeseen vertailuligandiin, joka voi olla eri molekyyli. Graafisena tulosteena saadaan diagrammi ligandien muotojen samankaltaisuudesta ja molekyylivuorovaikutusten sormenjĂ€lkiin perustuvasta Jaccard-pistemÀÀrĂ€stĂ€. Työkalua sovellettiin oreksiini-1- ja oreksiini-2-reseptoreille yhdistetyllĂ€ virtuaalisella ja kokeellisella seulonnalla löydettyjen aktiivisten ligandien sitoutumisasentojen analyysiin (Julkaisu V).Cette thĂšse prĂ©sente le dĂ©veloppement de mĂ©thodes et d’outils informatiques basĂ©s sur la structure tridimensionnelle des complexes protĂ©ine-ligand. Ces diffĂ©rentes mĂ©thodes sont utilisĂ©es pour extraire, optimiser et prĂ©dire des donnĂ©es Ă  partir de la structure des complexes afin d’amĂ©liorer la modĂ©lisation et la comprĂ©hension de la reconnaissance entre une protĂ©ine et un ligand. Ce travail de thĂšse est divisĂ© en cinq projets. En complĂ©ment, une Ă©tude sur le positionnement des molĂ©cules d’eau dans les sites de liaisons a aussi Ă©tĂ© dĂ©veloppĂ©e et est prĂ©sentĂ©e. Dans une premiĂšre partie un modĂšle statistique, PockDrug, a Ă©tĂ© mis en place. Il combine trois propriĂ©tĂ©s de poches protĂ©iques (l’hydrophobicitĂ©, la gĂ©omĂ©trie et l’aromaticitĂ©) pour prĂ©dire la druggabilitĂ© des poches protĂ©iques, si une poche protĂ©ique peut lier une molĂ©cule drug-like. Le modĂšle est optimisĂ© pour s’affranchir des diffĂ©rentes mĂ©thodes d’estimation de poches protĂ©iques. La qualitĂ© des prĂ©dictions, est meilleure Ă  la fois sur des poches estimĂ©es Ă  partir de protĂ©ines apo et holo et est supĂ©rieure aux autres modĂšles de la littĂ©rature (Publication I). Le modĂšle PockDrug est disponible sur un serveur web, PockDrug-Server (http://pockdrug.rpbs.univ-paris-diderot.fr) qui inclus d’autres outils pour l’analyse et la caractĂ©risation des poches protĂ©iques. Dans un second temps un protocole, basĂ© sur la superposition de protĂ©ines homologues a Ă©tĂ© dĂ©veloppĂ© pour extraire des replacements structuraux de groupements chimiques fonctionnels Ă  partir de la Protein Data Bank (PDB). AppliquĂ© aux phosphates, un grand nombre de remplacements non-polaires ont Ă©tĂ© identifiĂ© pouvant notamment ĂȘtre chargĂ©s positivement. Quelques mĂ©canismes de remplacements ont ainsi pu ĂȘtre analysĂ©. Nous avons, par exemple, observĂ© que le ligand adopte une configuration en forme U dans les sites de liaison des nuclĂ©otides indĂ©pendamment de la phylogĂ©nĂ©tique des protĂ©ines (Publication III). Dans une quatriĂšme partie, la prĂ©valence des ponts salins de cinq groupements chimiques basiques a Ă©tĂ© Ă©tudiĂ© dans les complexes protĂ©ine-ligand. Ainsi le pourcentage de pont salin fluctue de 70% pour le guanidinium Ă  16% pour l’amine tertiaire qui a le plus faible volume disponible autour de lui pour accueillir un group pouvant interagir. L’absence d’acide fort comme l’acide carboxylique pour former un pont salin est remplacĂ© par un milieu enrichis en groupement chimiques fonctionnels avec des propriĂ©tĂ©s acides comme l’hydroxyle, le phĂ©nol ou encore les molĂ©cules d’eau (Publication IV). Dans un dernier temps un outil permettant l’analyse des poses de ligand obtenues par une mĂ©thode d’ancrage molĂ©culaire a Ă©tĂ© dĂ©veloppĂ©. Cet outil compare ces poses Ă  un ligand de rĂ©fĂ©rence, qui peut ĂȘtre une molĂ©cule diffĂ©rente en combinant l’information du chevauchement de forme de la pose et du ligand de rĂ©fĂ©rence et un score de Jaccard basĂ© sur une comparaison des empreintes d’interaction molĂ©culaires du ligand de rĂ©fĂ©rence et de la pose. Cette mĂ©thode a Ă©tĂ© utilisĂ© dans l’analyse des rĂ©sultats d’ancrage molĂ©culaires pour des ligands actifs pour les rĂ©cepteurs aux orexine 1 et 2. Ces ligands actifs ont Ă©tĂ© trouvĂ©s Ă  partir de rĂ©sultats combinant un criblage virtuel et expĂ©rimental. La revue de la littĂ©rature associĂ©e est focalisĂ©e sur la reconnaissance molĂ©culaire d’un ligand pour une protĂ©ine et prĂ©sente diffĂšrent concepts et challenges pour la recherche de nouveaux mĂ©dicaments

    The application of spectral geometry to 3D molecular shape comparison

    Get PDF
    corecore