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ABSTRACT 

Protein kinases are important regulatory enzymes in signal transduction 

and in cell regulation. Understanding inhibition mechanisms of kinases is 

important for the further development of new therapies for cancer and 

inflammatory diseases. I have developed a statistical approach based on the 

Mantel test to find the relationship between the shapes of ATP binding 

sites and their affinities for inhibitors. My shape-based dendrogram shows 

clustering of the kinases based on similarity in shape. I investigate the 

pocket in terms of conservation of surrounding amino acids and atoms in 

order to identify the key determinants of ligand binding. I find that the 

most conserved regions are the main chain atoms in the hinge region and I 

show that the tetrahydropyran ring of staurosporine causes induced-fit of 

the glycine rich loop. I apply multiple linear regression to select distances 

measured between the distinctive parts of residues which correlate with the 

binding constants. This method allows me to understand the importance of 

the size of the gatekeeper residue and the closure between the first glycine 

of the GXGXXG motif and the aspartate of the DFG loop, which act 

together to promote tight binding to staurosporine. I also find that the 

greater the number of hydrogen bonds made by the kinase around the 

methylamine group of staurosporine, the tighter the binding to 

staurosporine. The website I have developed allows a better understanding 

of cross reactivity and may be useful for narrowing down the options for a 

synthetic strategy to design kinase inhibitors.  
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C h a p t e r  1   

INTRODUCTION 

1.1 Ligand promiscuity & selectivity 

Many diseases are characterised by dysregulation of biological pathways, 

which leads to change at the level of the individual cell, the tissue, and the 

whole organism. To restore the healthy state, some diseases can be cured 

by a small molecule drugs that inhibit a molecular target central to the 

disease mechanism (Zimmermann et al, 2007).  

Much effort has been spent in finding a compound with high binding 

affinity against a single target, a magic bullet. However, for some diseases 

which involve several pathways such as cancer, inhibition of a single target 

is not enough to restore the healthy state. A recent trend has been towards 

designing compounds that bind to multiple defined molecular targets, a 

magic shotgun. The most significant effort has been on tackling the 

resistance problem in HIV-1 anti-viral therapy and oncology (Hopkins et 

al, 2006). Several failures arising from targeting a single protein and 

successes from many selectively non-selective drugs have led to a 

paradigm shift from a magic bullet to a magic shotgun approach in 

therapeutic intervention in cancer, cardiovascular disease and CNS 

disorders (Frantz, 2005; Roth et al, 2004). Although side-effects of 

multitarget drugs are common, it has been argued that highly cross-reactive 

drugs might work better against drug resistance mutations based on the fact 

that such drugs normally have interactions with backbone groups and 

evolutionary conserved residues (Zhang et al, 2008).  
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Protein kinases are of considerable interest to the pharmaceutical industry 

because dysfunction often results in malignancy (Blume-Jensen & Hunter, 

2001; Cohen, 2002). This family of enzymes was chosen as my case study 

for the analysis of ligand promiscuity and selectivity because all share 

similar ATP binding sites. Indeed the success of several high affinity ATP-

mimetic drugs has made the design of selective inhibitors an attractive 

approach to useful therapeutics, particularly for oncology (Noble et al, 

2004). Although the structural conservation of the ATP binding site can 

lead to off-target ligand binding, kinase inhibitor design has become a 

promising way forward for discovery of useful therapeutic agents (Force et 

al, 2004).  

The major challenge for protein kinase inhibitor design is obtaining 

selectivity. In order to reduce the chances of undesirable side effects, 

potency is usually optimised against a target kinase while reducing off-

target activities including at other kinases. By understanding the ligand 

selectivity, cross reactivity might be removed by identifying a structural 

feature that promotes promiscuity and detecting non-conserved features 

that may enable paralog discrimination (Zhang et al, 2008).  

1.2 Protein kinase 

The human genome comprises more than 500 protein kinases (Manning et 

al, 2002), which are known to mediate most of signal transduction crucial 

to metabolism, cell proliferation and differentiation, membrane transport, 

and apoptosis. Protein kinases catalyse the transfer of a phosphate group, 

usually from ATP, to a hydroxyl group of a serine/threonine or tyrosine of 

a protein substrate. The molecular weight of protein kinase is about 30 kDa 

and the sequence length is usually 250-300 amino acids (Hanks et al, 

1988). Protein kinases share the same fold and similar ATP binding sites. 

However, they exhibit a variety of conformational states and regulatory 

mechanisms. 
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1.2.1 Regulatory Mechanisms 

“All active kinases are alike, but an inactive kinase is inactive after its own 

fashion” (Noble et al, 2004). Listed below are some examples of different 

regulatory mechanisms in the way kinases can be controlled. 

1.2.1.1 By phosphorylation of the activation loop  

 

Figure 1. The yellow segment in figure 1A is the activation segment. Activation 
segment is defined as the region between and including the DFG and APE tripeptide 
motifs in figure 1B (Nolen et al, 2004).  

Many kinases require activation by phosphorylation of the activation 

segment (Nolen et al, 2004). In the unphosphorylated state, the activation 

loop can adopt various conformations, for example allowing it to traverse 

the cleft between the N- and C-terminal lobes in IRK (Hubbard et al, 

1994). Upon phosphorylation, the activation loop moves away and allows 

the pocket to bind both the ATP and a peptide substrate (Hubbard, 1997).  
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1.2.1.2 Through interactions with regulatory subunits in response to 

second messenger  

Cyclic AMP dependent protein kinase (PKA) is one of the simplest kinases 

(Taylor et al, 2004) and the first protein kinase for which a crystal structure 

became available (Knighton et al, 1991). For these reasons, PKA are used 

as the reference molecule for several studies. PKA is active in the hetero-

tetrameric form. Without cyclic AMP, the two regulatory subunits of PKA 

inhibit the two catalytic subunits by binding to their active sites. Cyclic 

AMP binding to the regulatory subunits causes a conformational change 

and releases the activated catalytic subunit. 

1.2.1.3 By expression level of additional subunit  

Cell cycle progression in eukaryotic systems is tightly regulated by 

members of the CDK family (Nurse, 2002). The unmodified CDK cannot 

catalyse the phosphotransfer reaction, but a CDK can be activated at 

particular point in cell cycle upon binding to a cyclin (Morgan, 1997).  

1.2.1.4 By additional domains that inhibit kinase by autoregulatory 

processes 

c-Src was the first proto-oncogenic tyrosine kinase to be discovered 

(Stehelin et al, 1976). Intramolecular interaction of SH2 inhibits Src kinase 

by allowing the SH3 linker to bind to the surface of the N-terminal lobe 

and stabilising it in an inactive conformation (Xu et al, 1999). Ligand 

binding to SH2/SH3 or dephosphorylation leads to the release of the 

activated kinase domain (Blume-Jensen & Hunter, 2001). 

1.2.1.5 By pseudosubstrate segment which compete with its own 

substrate 

 The C-terminal domain of twitchin is called a pseudosubstrate because it 

competes directly with the substrate for access to the active site and 
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stabilises it in an inactive conformation (Hu et al, 1994; Huse & Kuriyan, 

2002). 

These mechanisms demonstrate that kinases can be regulated by various 

types of molecules and in a variety of binding states. Biologists have 

attempted to categorise kinases in several different ways. 

1.2.2 Classification  

The classic protein kinase phylogenetic tree was constructed on the basis of 

knowledge of sequence and biological function (Hanks et al, 1988). This 

thesis focuses on the relationship between the sequences and structures of 

kinases and inhibitor binding. Therefore, instead of classifying kinases by 

their function and sub-cellular location, e.g. receptor protein-tyrosine 

kinases (e.g. IRK, EGFR), cytoplasmic protein-tyrosine kinase (e.g. Src, 

JAKs, Abl), and serine-threonine kinases (e.g. CAMKs, CDK, MAPK, 

MEK, PKA, PKC), I refer to their type based on their sequence similarity. 

Kinases have been a topic of comprehensive classification (Cheek et al, 

2005; Scheeff & Bourne, 2005). The most widely used human protein 

kinase classification phylogenetic tree is constructed based on public and 

proprietary genomic, complementary DNA, and expressed sequence tag 

(EST) sequences. (Manning et al, 2002). According to the classification of 

Manning, the major kinase groups are as follows. 
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Figure 2 The human kinase phylogenetic tree (Manning et al, 2002) 

1.2.2.1 TK (Tyrosine kinase) 

All members in this group phosphorylate tyrosine residues and their 

relationships can be observed from sequence similarity. Other dual 

specificity kinases (those which phosphorylate serine, threonine and 

tyrosine) are found scattered within other groups. 
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1.2.2.2 TKL (Tyrosine kinase-like) 

Although, the sequences of TKL family members are similar to those of 

the tyrosine kinase family, these enzymes form a distinct, closely related 

grouping. 

1.2.2.3 AGC  

This group contains PKA, PKG, PKC as members. Therefore, this group is 

called the AGC family. 

1.2.2.4 CAMK (Calcium/calmodulin-dependent protein kinase) 

Calcium/calmodulin regulated kinases and structurally related kinase 

families 

1.2.2.5 CKI (Casein kinase 1) 

1.2.2.6 CMGC  

This group contains CDK, MAPK, GSK3, CLK as members of the 

families. Therefore, it has this name from the initial letter of these kinases. 

1.2.2.7 STE (Homologs of yeast Sterile 7, 11, 20 kinases)  

This group comprises kinases in the MAP kinase cascade and homologs of 

yeast Ste7 (MAP2K), Ste11 (MAP3K) and Ste20 (MAP4K) kinases.  

1.2.2.8 RGC (Receptor Guanylate Cyclases) 

This group contains eukaryotic protein kinase domains that all appear to be 

catalytically inactive.  

1.2.2.9 AK (Atypical kinases) 

Atypical kinases consist of a relatively large family of important proteins 

such as PI3K, actin-fragmin kinase and choline kinase. They do not have 

significant sequence similarity to other eukaryotic kinase. Their structural 

character was studied in detail by Scheeff & Bourne (Scheeff & Bourne, 

2005). 
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1.2.2.10 Other 

Kinases that do not conform to any classification above. 

Since Manning et al. published their phylogenetic tree, several human 

kinome-wide studies have mapped structural coverage (Fedorov et al, 

2007; Marsden & Knapp, 2008) and binding interaction patterns (Fabian et 

al, 2005; Goldstein et al, 2008; Karaman et al, 2008) onto this human 

kinome tree. At the time of starting my PhD, the largest single source of 

publicly available kinase experimental binding data was the Supplementary 

Table 4 from Fabian et al. which had 119 kinases assayed against 20 

kinase inhibitors using T7-phage expression assays (Fabian et al, 2005). 

1.2.3 Architecture of the kinase fold 

 

Figure 3. Subdomains of kinases exemplified by the structure of PKA (Niedner et al, 
2006). 
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The kinase fold consists of the N-terminal lobe which contains mostly β-

sheets and the C-terminal lobe which contains mostly α-helices. For more 

detail analysis, the kinase fold can be divided further into subdomains. 

The descriptions of characters of each subdomain are taken from the 

structure walk-through of the protein kinase resource (Niedner et al, 2006) 

which follows the initial classification determined by Hanks & Hunter 

(Hanks & Hunter, 1995). 

Table 1. Subdomain boundaries in PKA and CDK2  

General Info  PKA CDK2 
Subdomain I 43-64 4-25 
Subdomain II  65-83 26-43 
Subdomain III  84-98 44-58 
Subdomain IV  99-113 59-73 
Subdomain V  114-137 74-98 
Subdomain VIA  138-160 99-121 
Subdomain VIB  161-177 122-138 
Subdomain VII  178-193 139-157 
Subdomain VIII  194-210 158-175 
Subdomain IX  211-240 176-209 
Subdomain X  241-260 210-254 
Subdomain XI  261-297 255-282 

 

1.2.3.1 Subdomain One:  

This subdomain contains the GXGXXGX motif, known as the glycine rich 

loop, which helps to anchor the ATP. 

1.2.3.2 Subdomain Two:  

There is an invariant lysine (Lys 72), which is shown to be very important 

for the catalytic activity of the enzyme  

1.2.3.3 Subdomain Three:  

This subdomain contains a prominent alpha helix (helix αC) (Huse & 

Kuriyan, 2002) and Asp 91 which form a salt-bridge with Lys 72. 
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1.2.3.4 Subdomain Four:  

It is the beta strand IV, no invariant residues in this subdomain. 

1.2.3.5 Subdomain Five:  

This subdomain acts as a bridge to connect between 2 lobes. The hinge 

region (residue 81-84 in CDK2) contains a set of hydrogen bond donor and 

acceptor sites that is required for potent inhibitor binding (Davies et al, 

2002). The hinge region begins with the gatekeeper residues, which form a 

hydrophobic pocket that surrounds the adenine ring. It contains Glu 127 

which binds to Arg of pseudosubstrate. 

1.2.3.6 Subdomain Six A:  

This large helix plays a mainly structural role. There is no invariant 

residue. 

1.2.3.7 Subdomain Six B:  

This subdomain comprises of two small strands with a loop between them. 

This loop is called the catalytic loop because Asp 166 in the loop is likely 

to form the catalytic base that accepts the proton from the protein 

substrate’s hydroxyl group.  

1.2.3.8 Subdomain Seven:  

This subdomain contains a conserved DFG motif. Asp 184 in the DFG 

motif helps in orienting the gamma phosphate of ATP by chelating the 

Mg2+ ions.  

1.2.3.9 Subdomain Eight:  

This subdomain consists of the activation loop, which is used for substrate 

recognition and stabilisation. It contains a highly conserved APE motif. 

Many protein kinases become activated by phosphorylation of residues in 

this subdomain.  
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1.2.3.10 Subdomain Nine:  

This subdomain stabilises the catalytic loop and plays a role in pseudo-

substrate recognition. 

1.2.3.11 Subdomain Ten:  

This is a small alpha helix with unknown function. 

1.2.3.12 Subdomain Eleven:  

This marks the C-terminal boundary of the kinase domain from the rest of 

the protein. 

1.2.4 The ATP binding site 

According to the pharmacophore model for tyrosine kinases (Traxler & 

Furet, 1999), the ATP binding site can be divided into 5 regions which 

have distinct chemical environments (Figure 4). 

 

Figure 4. Protein kinase pharmacophore (Traxler & Furet, 1999). This residue 
numbering is for cyclic AMP dependent protein kinase (PKA). The GXGXXGX motif 
is the loop above the oxygen of ribose. 
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1.2.4.1 Adenine region 

This is the region where all ATP-competitive kinase inhibitors bind. The 

major interaction of adenine in this hydrophobic pocket is the hydrogen 

bond donor acceptor system through the backbone carbonyl of Glu 121 and 

backbone NH of Val 123 in PKA. Although the backbone carbonyl of 

residue 123 is not used for ATP binding, it can serve as a hydrogen bond 

acceptor for some inhibitors, such as olomoucine (Schulze-Gahmen et al, 

1995). 

1.2.4.2 Sugar pocket 

This region is often exploited to accommodate solubilising groups because 

of its hydrophilic character. It is not highly conserved and can be used to 

direct selectivity (Keri et al, 2006). 

1.2.4.3 Hydrophobic region I or hydrophilic backpocket 

This region is the space extending from the lone pair nitrogen of ATP. It is 

not conserved and has been used to gain affinity as well as selectivity for 

several potent inhibitors of serine/threonine and tyrosine kinase (Keri et al, 

2006). Access to this pocket is controlled by an amino acid residue, which 

is equivalent to residue 120 in PKA, called the gatekeeper (Liu et al, 1999). 

There is evidence that the selectivity of pyrazolopyrimidines is controlled 

by the size of this amino acid (Schindler et al, 1999). Most tyrosine kinases 

have a small gatekeeper residue (threonine or valine), which makes them 

more sensitive to these drugs than most serine/threonine kinases, which 

have a larger gatekeeper residue (methionine or isoleucine). A mutant of 

tyrosine kinase Src with modified gatekeeper residue (T338I) has broad 

inhibitor resistance (Apsel et al, 2008). 

1.2.4.4 Hydrophobic region II or surface exposed front area 

This region is a hydrophobic slot open to solvent, which is not used by 

ATP (Traxler & Furet, 1999).  
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1.2.4.5 Phosphate binding region 

This region has high solvent exposure and seems unimportant for binding 

affinity. It can be used to gain selectivity (Traxler & Furet, 1999).  

Many more small pockets have been identified for the analysis of selective 

kinase inhibitors (Liao, 2007). 

1.3 Binding site studies 

There is evidence that high affinity targets sometimes have similar residues 

at positions important for binding of a given kinase inhibitor, although 

others with similar residues at these important positions can be insensitive 

to such inhibitors, probably due to conformational differences (Sheinerman 

et al, 2005). Therefore, understanding kinase selectivity cannot be achieved 

only through the analysis of sequences but must also consider three-

dimensional structures.  

Although biomolecules are in motion, we often treat them as static objects 

and determine their shapes by their surfaces. At the molecular level, the 

solid sphere representation is normally used to define shape (Morris et al, 

2005). For relating biological activities between drug-like molecules and 

their molecular targets, the shape of the pocket is the most discriminating 

factor (Ballester & Richards, 2007).  

Cavity detection methods have been divided into those that depend on 

energetic criteria and geometry criteria. An example of energetic-based 

detection is Qsitefinder (Laurie & Jackson, 2005) which calculates the van 

der Waals interaction energy of a methyl probe with the protein. The 

probes, which have favourable interaction energies, are obtained and a 

cluster of these probes is ranked according to interaction energy. This 

method has proven efficient in the detection of binding sites.  
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The geometry-based cavity detection methods have been divided further 

into volumetric based and surface based. Based on the description by 

Nayal and Honig, “Volumetric methods aim to identify spaces in the 

vicinity of the protein sequestered by protruding protein atoms, while 

surface-based approaches locate surface cavities by an analysis of the 

geometry of the molecular surface itself” (Nayal & Honig, 2006).  

Early solvent accessible surface methods were developed by Lee and 

Richards (Lee & Richards, 1971) and later improved by Connolly 

(Connolly, 1983). The algorithm employed a sphere of solvent molecule to 

roll over the protein to generate a smooth surface. Surface-based 

approaches have been very useful for visualising shape-complementarity 

and protein-protein interfaces. Many site comparisons use volumetric-

based methods, which can be divided further as to whether or not they rely 

on the 'grid method'.  

If the protein is embedded in a 3D grid, points, which are not overlapped 

by protein atoms, are detected and then certain criteria are applied to judge 

whether they are parts of the pocket. Examples of programs that use the 

grid volumetric-based method are Ligsite (Hendlich et al, 1997) used in 

Cavbase (Kuhn et al, 2006) and VOIDOO (Kleywegt & Jones, 1994). If 

the protein is not embedded in a 3D grid, surfaces are either identified by 

Voronoi tessellations or sphere clusters such as SURFNET (Laskowski, 

1995) used in calculating real spherical harmonic expansion coefficients 

which can be used as 3D shape descriptors (Karaman et al, 2008; Morris et 

al, 2005 ).  

In this thesis, I describe surfaces defined by volumetric-based geometric 

criteria, either through frequently occurring atoms on a grid (Chapter 2) or 

at representative points without a grid (Chapter 3), in order to describe the 

overall ‘shape’ of the kinase pocket.  

14 



Due to their well-defined shapes and the pharmaceutical importance of 

protein kinases, ATP binding pockets have been used as case studies for 

intensive binding site analyses in several papers. In 2002, Naumann and 

Matter classified kinases based on similarity in protein-ligand interaction 

features in 26 X-ray structures from 6 kinase families. They used GRID 

force-field probes (i.e. hydrophobic probe, sp2 carbonyl oxygen probe, 

neutral flat NH probe) with 1 Å spacing to derive binding site information 

in the form of interaction energies on a GRID molecular interaction field. 

After that, the data matrix was scaled and principal component analysis 

was used to cluster kinases with common interaction patterns. The 

approach can classify kinase-binding sites into subfamilies and identify 

favourable interactions that are characteristic for each class. 

In 2007, Kuhn et al. used Cavbase to classify protein kinases from 258  

X-ray structures in 48 subfamilies (Kuhn et al, 2007). Cavbase uses Ligsite 

which generates grids with a 0.5 Å spacing to detect buried cavities. If 

there are atoms in any amino acid that are closer than 1.1 Å to a surface 

point, such atoms will be used as a pseudo centre to represent the chemical 

property of that region. Common substructures are identified by the clique 

algorithm (Bron & Kerbosch, 1973). The closest matches are compared by 

determining the overlap between surface patches and pseudo centres. 

Similarity matrices generated from various clustering methods were used 

as inputs for principal component analysis, enabling the detection of cross-

reactivity between various kinases.  

In 2009, Kinnings and Jackson used a geometric hashing algorithm to 

compare binding sites based on atom-atom similarity in an all-against-all 

manner amongst 354 crystal structures from 75 different kinases (Kinnings 

& Jackson, 2009). Their geometric hashing procedures can be divided into 

a pre-processing stage and a recognition stage. In the pre-processing stage, 

distance features between all atom pairs of the model molecules are 
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calculated and converted into a hash table. In the recognition stage, the 

same representations are calculated for the target molecule and this 

information can be used to access the hash table. If the pattern of the 

second matches that of the first by more than a certain score, a rigid body 

transformation is applied to expand the number of matching points (Via et 

al, 2000). Similarity scores were clustered and comparisons were made 

between the sequence-based and binding site based classifications. The 

authors found that many clusters can be generated from related kinases, 

and hence structural similarity is sufficient for the classification of the 

highly conserved ATP binding site in kinases. 

1.4 Quantitative Structure-Activity Relationship (QSAR) 

This methodology has been developed following the idea of Crum-Brown 

and Fraser who proposed that the physiological action of a substance 

relates to its chemical constitution (Crum-Brown & Fraser, 1868) and 

independent reports which suggested that there is a linear relationship 

between the depressant action of organic compounds and their oil/water 

partition coefficient (Meyer, 1899; Overton, 1901). Later, Hammett 

defined a linear free energy relationship between the reactivity and 

electronic properties (σ) of aromatic substituents with their equilibrium 

constants (Hammett, 1935). This relationship formed the mechanistic basis 

for the development of the linear Hansch equation and then a more 

successful parabolic equation as shown below (Hansch, 1969; Hansch & 

Fujita, 1964). 

Equation 1 

log (1/C) = a(log P)2 +b(log P)+cσ+…+k; 

where C is the molar concentration that produces a biological effect, P is 

the octanol/water partition coefficient and σ is the electronic Hammett 

16 



constant. This improved equation which combines a parabolic model with 

various physicochemical properties allows for the description of structure-

activity relationships that cannot be correlated with a single linear term. 

A true structure-activity relationship model is the Free-Wilson approach 

(Kubinyi, 1993). Free and Wilson (Free & Wilson, 1964) described in the 

equation that biological activity can be defined as a contribution of the 

parent molecule (μ) and the group contribution of all structural features 

attached to that parent molecule (ai) below. 

Equation 2 

log (1/C) = Σai + μ 

A combination of the Hansch and Free-Wilson equations leads to the 

mixed approach below: 

Equation 3 

log (1/C) = a(log P)2 + b log P + cσ + … + Σai + k 

This mixed approach equation is a more powerful tool for large and 

structurally diverse quantitative structure activity relationships (Kubinyi, 

1993). More advanced QSAR methods make analogies of how a binding 

site feels the electrostatic potential of the ligand by mapping molecular 

fields calculated from atomic probes onto three-dimensional grids which 

include several thousands of points as descriptors (Kubinyi, 1998). This 

thesis explores the idea of relating biological activity with distance 

parameters using multiple linear regression in a similar manner to the 

QSAR method. 
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1.5 Fragment Recognition 

After investigating cross-reactivity features, I explore the possibility of 

designing new staurosporine derivatives by utilising knowledge of 

fragment environments gained by using a web tool to assist in molecular 

design. 

The fragment approach to molecular recognition is a very promising field 

in drug design (Fattori, 2004). A computational approach to modify the 

functional groups of compounds with topologically different scaffolds that 

exert the same biological activity, known as bioisosteric replacement or 

scaffold hopping, has also been the topic of several discussions (Zhao, 

2007).  

Several studies have searched for bioisosteres, functional groups that are 

structurally different but can form similar intermolecular interactions. A 

change of chemical template may give rise to a compound with better 

solubility, enhanced pharmacokinetic properties, improved binding 

affinity, and may lead to a novel compound which is patentable (Böhm et 

al, 2004). Some scaffolds have been shown to be active in several target 

proteins, so providing opportunities for use in different therapeutic areas. 

On the other hand, some scaffolds specifically target certain drug target 

families and can be used as molecular anchors for functional decoration 

(Muller, 2003). 

The key methods in scaffold hopping include shape matching, 

pharmacophore searching, fragment replacement and similarity searching 

(Böhm et al, 2004). These methods differ in the way similarities between 

bioisosteric groups are determined (Wagener, 2006). Even though common 

chemical replacements in drug-like compounds have already been 

described (Sheridan, 2002) and a ring replacement database has been 
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constructed (Lewell et al, 2003), the chemical environments of functional 

groups within protein structures have not yet been considered. 

One interesting study exploited a set of crystal structures of proteins 

harbouring different ligands. Bioisosteres were identified from pairs of 

substructural features with high volume overlap from an overlay of the 

structures (Kennewell et al, 2006). Another study which used Relibase to 

find interacting functional groups and their preferred interaction geometries 

also pinpointed the importance of the chemical environment in the protein 

for identifying bioisosteres (Bergner et al, 2001). Such information about 

which set of atoms/residues interact with a certain fragment is not 

systematically incorporated in the available public databases. 

Bemis analysed a set of 5120 drug molecules from the Comprehensive 

Medicinal Chemistry database and found that 50% of the drugs were 

derived from only 32 molecular frameworks (Bemis & Murcko, 1996). 

Similarly, Ertl analysed a set of 3 million compounds and identified the 50 

most common substituents (Ertl, 2003). These sets of fragments give an 

estimation of the scale of the problem and can be a good starting point for a 

systematic analysis of the underlying structural basis of fragment 

recognition. If the Protein Data Bank contains enough molecular varieties, 

it might be possible to achieve bottom-up molecular design by linking 

together fragments that can fit into known chemical environment. 

1.6 Thesis objectives  

My aim was to develop computational approaches that could account for 

the specificity and discrimination of inhibitors for kinases and that might 

contribute to a general understanding of molecular recognition in other 

systems. Using the grid method, I developed a procedure to observe the 

region in the ATP-binding pocket which causes cross-reactivity among 

kinases. A method was developed that can compare the shapes of kinase 
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pockets by using distance matrices measured from representative atoms. 

From these analyses, I rationalised how features with the most variable 

positions in the binding site affect binding affinity by using a multiple 

linear regression method. Lastly, I developed a tool to assist in the 

understanding of ligand binding and in minimising the choices for 

synthetic strategies to design specific kinase inhibitors. 
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C h a p t e r  2  

2 CONSERVED ATOMS AND RESIDUES IN THE ATP 
BINDING SITE 

The conservation of atoms and residues in the active sites of kinases is 

analysed by superposing the structures of complexes with the same ligand 

and the entities that most often retain their position are observed. The 

neighbouring atoms surrounding the universal kinase inhibitor 

staurosporine have a higher degree of conservation in position than those 

surrounding adenosine complexes, which is consistent with the hypothesis 

that the rigidity of staurosporine can fix some parts of the active site in 

particular positions. The representation at residue level brings us closer to 

unraveling kinase specificity. It demonstrates that the Cα of the first 

glycine of the glycine-rich loop (GXGXXG) is recruited towards the ether 

oxygen of the ribose upon staurosporine binding (found in 75% of the non-

redundant staurosporine complexes). Therefore, the active site can 

contract or expand to accommodate a larger ligand, and staurosporine 

leads to an induced-fit in the pocket of the kinases. 

2.1  Introduction 

The first phase of my research focused on an analysis of ATP binding sites 

in protein kinases because of their importance in chemotherapy and the 

availability of X-ray structures in the Protein Data Bank. I try to minimise 

the problems of conformational change, protein flexibility and electrostatic 

potential by focusing mainly on structures of protein kinases which bind to 

either adenosine derivatives or to a universal kinase inhibitor called 

staurosporine. This molecule is quite rigid, and only the parts that can 

make strongly electrostatic interactions mimic those of ATP. Hence, it 
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should constrain the active site of those kinases that it binds sufficiently 

well for a comparison of surrounding atoms and binding affinities. I 

hypothesize that atoms that remain conserved both in atom type and 

position for complexes with the same ligand maintain their structural role 

to satisfy optimal interaction with the ligand. Therefore, surrounding 

kinase atoms which share a conserved position in both ATP and 

staurosporine complexes may be generally required for the binding of 

kinase ligands.  

The idea of this approach to study position-specific interactions originated 

from image processing in electron microscopy where large numbers of 

images are superposed in order to intensify the true signal relative to the 

background noise. The algorithm developed constructs a grid box around 

the rigid part of superposed ligand and collects data points in four 

dimensions, i.e. residue or atom types, and x, y, z coordinates, from the 

non-redundant protein kinase structures. The final representation is 

obtained by converting the image to the form of a PDB file, in which 

signal-to-noise ratio thresholds can be altered in order to optimise 

visualization. The approach is encoded in new software called SIMFONEE 

(specificity implication from frequently occurring neighbouring entities). 

2.2 Methods 

2.2.1 Dataset 

The structures of protein kinases were selected from the MSDlite Database 

(Golovin et al, 2004) to allow queries from the Gene Ontology 

identification number (GO:0004672), which gives a precise identification 

for ‘protein kinase activity’. Structures with resolutions better than 3.0 Å 

and containing either staurosporine or adenosine phosphate moieties 

comprised the initial data set. Non-redundant PDB chains were selected 

manually to cover all staurosporine and adenine phosphate complexes. The 

structures of 20 staurosporine-kinase complexes were superposed on the 
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indolocarbazole moiety from staurosporine in PDB ID 1stc (Prade et al, 

1997) in order to compare them with the structures of 24 adenosine 

phosphate-kinase complexes, which were superposed on the adenine ring 

from ATP in PDB ID 1atp (Zheng et al, 1993). The chosen structures are 

listed in Table 2, along with details of their quality and the complex 

crystallised in Appendix A. 

Table 2. PDB code and the chain used in position-specific study 

LIGAND LIGAND 
CODE 

PDB CODE FOLLOWED BY CHAIN 
IDENTIFIER 

Staurosporine STU 1AQ10, 1BYGA, 1NVRA, 1NXKA, 1OKYA, 1Q3DA, 
1QPDA, 1SM2A, 1STCE, 1U59A, 1XBCA, 1XJDA, 
1YHSA, 2CLQA, 2DQ7X, 1WVYA, 2ITWA, 2OICA, 
2GCDA, 2HW7A 

ATP 1ATPE, 1OL6A, 1QL6A, 1S9JA, 1QMZ 
1U5RA, 1ZYDA, 2BIYA 

ANP 1DAWA, 1IR3A, 1J1BA, 1JKLA, 1LP4A, 1MQBA, 
1O6KA, 1PJKA, 1QPCA, 1YXTA, 2A19B, 1Q99 

ACP 1K3AA, 1O6YA, 1U54B 

Adenosine 
phosphate 

AMP 2IVTA 

 

2.2.2 Classification of neighbouring atom types 

The position-specific interactions were considered at two-levels: the atom 

type and the residue type. For atom matrices, atoms in the PDB file were 

assigned an atom type according to the simplified approach used in the 

AMBER force field, which has been developed specially for molecular 

mechanics calculations of proteins and nucleic acids (Cornell, 1995) 

(Supporting Information 1). The atom type categorisation is based on the 

assumption that atoms around the side chains that have the same functional 

group can be classified as the same atom type, e.g. carboxylate oxygens of 

Asp and Glu have sp2-oxygen atom types. By using this approach, we can 

capture similar interactions in the pocket made by the same part of the 

ligand. The available atom types in this classification program are 

described below. 

23 



• Carbons  

1. CT: any sp3 carbon 

2. C: any carbonyl sp2 carbon  

3. CA: any aromatic sp2 carbon and Cε of Arg 

4. CH: all of histidine’s aromatic carbons except for CD2 (i.e. sp2 

aromatic carbon in 5-membered ring with one substituent and next 

to nitrogen, or next to carbon and lone pair nitrogen, or next to two 

nitrogens) 

5. CW: tryptophan’s carbon in connection with the 5-membered ring 

(i.e. sp2 aromatic in 5-membered ring next to carbon and NH, or at 

junction of 5- and 6-membered rings, or next to two carbons, or sp2 

junction between 5- and 6-membered rings and bonded to CH and 

NH) 

6. CX: any other unidentified carbon including carbon from the 

bound ligand 

• Nitrogens 

7. N : sp2 nitrogen in amides  

8. NC : sp2 nitrogen in aromatic rings (sp2 nitrogen with hydrogen 

attached, sp2 nitrogen in 5-membered or 6-membered ring with 

lone pair electrons)  

9. N2 : sp2 nitrogen of aromatic amines  

10. N3 : sp3 nitrogen 

11. NX: any other unidentified nitrogen including nitrogen from the 

bound ligand 

• Oxygens 

12. OH : sp3 oxygen in alcohols, tyrosine, and protonated carboxylic 

acids 

13. O: sp2 oxygen in amides  

14. O2 : sp2 oxygen in anionic acids 

15. OW: oxygen in water 
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16. OX: any other unidentified oxygen 

• Sulphur 

17. SH: cysteine sulphur 

18. S: methionine sulphur  

19. SX: any other unidentified sulphur 

• Phosphorous 

20. P: phosphorus in phosphates 

• Halogens 

21. X: F, Cl, Br, I  
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Table 3. Classification of amino acid atoms  

   Atom     Type    Atom     Type    Atom     Type 
Glycine N  N Aspartate N  N Histidine N  N 
Glycine CA  CT Aspartate CA  CT Histidine CA  CT 
Glycine C  C Aspartate C  C Histidine C  C 
Glycine O   O Aspartate O  O Histidine O  O 
Alanine N  N Aspartate CB  CT Histidine CB  CT 
Alanine CA  CT Aspartate CG  C Histidine CG  CH 
Alanine C  C Aspartate OD   O2 Histidine ND1  NC 
Alanine O  O Asparagine N  N Histidine (HE/+) CD2  CW 
Alanine CB   CT Asparagine CA  CT Histidine (HD) CD2  CH 
Valine N  N Asparagine C  C Histidine CE1  CH 
Valine CA  CT Asparagine O  O Histidine NE2   NC 
Valine C  C Asparagine CB  CT Phenylalanine N  N 
Valine O  O Asparagine CG  C Phenylalanine CA  CT 
Valine CB  CT Asparagine OD1  O Phenylalanine C  C 
Valine CG   CT Asparagine ND2   N Phenylalanine O  O 
Leucine N  N Glutamate N  N Phenylalanine CB  CT 
Leucine CA  CT Glutamate CA  CT Phenylalanine CG  CA 
Leucine C  C Glutamate C  C Phenylalanine CD  CA 
Leucine O  O Glutamate O  O Phenylalanine CE  CA 
Leucine CB  CT Glutamate CB  CT Phenylalanine CZ   CA 
Leucine CG  CT Glutamate CG  CT Tyrosine N  N 
Leucine CD   CT Glutamate CD  C Tyrosine CA  CT 
Isoleucine N  N Glutamate OE   O2 Tyrosine C  C 
Isoleucine CA  CT Glutamine N  N Tyrosine O  O 
Isoleucine C  C Glutamine CA  CT Tyrosine CB  CT 
Isoleucine O  O Glutamine C  C Tyrosine CG  CA 
Isoleucine CB  CT Glutamine O  O Tyrosine CD  CA 
Isoleucine CG1  CT Glutamine CB  CT Tyrosine CE  CA 
Isoleucine CG2  CT Glutamine CG  CT Tyrosine CZ  C 
Isoleucine CD   CT Glutamine CD  C Tyrosine OH   OH 
Serine N  N Glutamine OE1  O Tryptophan N  N 
Serine CA  CT Glutamine NE2   N Tryptophan CA  CT 
Serine C  C Methionine N  N Tryptophan C  C 
Serine O  O Methionine CA  CT Tryptophan O  O 
Serine CB  CT Methionine C  C Tryptophan CB  CT 
Serine OG   OH Methionine O  O Tryptophan CG  CW 
Threonine N  N Methionine CB  CT Tryptophan CD1  CW 
Threonine CA  CT Methionine CG  CT Tryptophan CD2  CW 
Threonine C  C Methionine SD  S Tryptophan NE1  NC 
Threonine O  O Methionine CE   CT Tryptophan CE2  CW 
Threonine CB  CT Lysine N  N Tryptophan CE3  CA 
Threonine OG1  OH Lysine CA  CT Tryptophan CZ2  CA 
Threonine CG2   CT Lysine C  C Tryptophan CZ3  CA 
Cysteine N  N Lysine O  O Tryptophan CH2   CA 
Cysteine CA  CT Lysine CB  CT Arginine NE  N2 
Cysteine C  C Lysine CG  CT Arginine CZ  CA 
Cysteine O  O Lysine CD  CT Arginine NH   N2 
Cysteine CB  CT Lysine CE  CT 
Cysteine SG   SH Lysine NZ   N3 
Proline N  N Arginine N  N 
Proline CA  CT Arginine CA  CT 
Proline C  C Arginine C  C 
Proline O  O Arginine O  O 
Proline CB  CT Arginine CB  CT 
Proline CG  CT Arginine CG  CT 
Proline CD   CT Arginine CD  CT 
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2.2.3 Classification of neighbouring residues types 

Residue classification in SIMFONEE includes 20 amino acids and water, 

which comprises the 21 residue types. Cystine is omitted because it occurs 

rarely inside the cell. Each amino acid residue is simplified to one point at 

the position of its representative atom located at a distinctive part near the 

end of the side chain. The coordinate of this centre of the residue is a 

representative position of the whole amino acid at the residue level. 

Table 4. Representative atoms of the 20 amino acids 

GLY  CA ALA  CB SER  OG CYS  SG 

 
   

VAL  CB LEU  CG ILE  CG1 THR  CB 

 
 

 

 

ASP  CG GLU  CD ASN  CG GLN  CD 

    

MET  SD LYS  CE ARG  CZ PRO  CG 

 
 

  

HIS  NE2, PHE  CZ TYR  CZ TRP  CD2 
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2.2.4 Algorithm of the software SIMFONEE 

This software written in Perl derives structure-based information from 

crystal structures of protein kinases. I have developed a computer program 

to extract generalized features that are frequently found in protein kinase 

structures by constructing a 4-dimensional grid to capture different entities 

that are conserved in atomic position on structure superposition of 

staurosporine complexes. The grid collects occupancies from atoms from 

superposed structures that satisfy the four criteria, i.e. x,y,z coordinates and 

atom or residue type.  

2.2.4.1 PDB file preparation 

The input to this program is a list of PDB chain codes. The program 

downloads the PDB file from a local repository and extracts only the 

structure from the specified chain, or takes the whole structure if it is 

defined as having chain code 0. This structure is processed by program 

Moleman2 in order to set all the water molecules to chain ‘W’, and all the 

ligands to chain ‘Q’. Proteins without chain letters are reassigned by the 

program PDBset to have chain letter Z. The objective of this process is to 

avoid ambiguities arising from having several atoms with the same 

sequence number and the same chain which may confuse the classification 

and superposition programs. The processed structures are written to a new 

filename with a 4 letter PDB code and one extra-letter to identify the 

selected chain. 

2.2.4.2 Superposition on the ligand 

In order to allow visualization in the same coordination system, all output 

files should be in the same orientation. Therefore, all other PDB chains are 

superposed onto the same set of templates and kept in separate directories 

according to the template used for superposition. The catalytic subunit of 

bovine cyclic 3'- 5' adenosine monophosphate-dependent protein kinase 

(PKA) in complex with staurosporine, PDB ID 1stc (Prade et al, 1997), is 
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used as the template and the reference residue nomenclature in this study 

because PKA is the first protein kinase for which a crystal structure 

became available and its residue nomenclature is widely used in kinase 

analyses. Therefore, the several templates for superposition are oriented 

according to this structure in order to refer to its residue numbers. The 

staurosporine template was taken from residue STO of the staurosporine in 

PKA (1stcE). Similarly, the template for the adenosine ring was taken from 

residue ATP of PKA structure 1atp.pdb after the active site had been 

superposed onto 1stc.pdb so that the neighbouring environment observed 

from both templates are in the same frame of reference as shown in Figure 

5. 

 

Figure 5. Staurosporine (carbons in orange stick) in complex with PKA, with the main 
chain in the same orientation as that found in the complex of PKA with ATP (carbons in 
green sticks) 

For every input PDB file, SIMFONEE scans for the ligand centre and 

extracts all neighbouring atoms within a 20 Å radius from the centre of the 

ligand. Then it superposes the ligand sphere onto the appropriate ligand 

template using the CCP4 program LSQKAB.  

2.2.4.3 Superposition on the kinase subdomain 

Because the N-terminal lobes of protein kinases are quite plastic, the 

frequencies of residues from this domain obtained from main chain 
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superposition would fluctuate in accordance with the overall conformation 

of the protein. Partial secondary structures of the protein PDB ID 1b39 

(chain A) are used as the template for superposition to observe conserved 

residues when there are large conformational changes between the 

domains. The template for the N-terminal lobe superposition includes a 

major part of the β-sheets down to the hinge region and helix αc (Figure 6), 

whereas the catalytic loop and four other helices are used as the template 

for C-terminal lobe superposition (Figure 7). 

 
Figure 6. The N-terminal template (left) and superposition of the N-terminal domain 
(right) 

 
Figure 7. The C-terminal template (left) and superposition of the C-terminal domain 
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2.2.4.4 Counting frequently occurring atoms and residues 

The arrays of 4 dimensions were created for collecting the entities 

neighbouring the adenosine ring and staurosporine. Each block of the 

ligand array is defined by [type][x][y][z] and acts as a large bin to store 

occupancies from every surrounding atom which have the four parameters 

defined, i.e. type and x, y, and z coordinates. The entity is classified based 

on the either atom type or residue type as described earlier for the 

classification of the entities. The last three parameters describe the 

estimated position of the points at 1 Å step size by using the rounded 

integer of the coordinates x, y and z.  

 

Figure 8. Illustration of filling the occupancies of the matrix identified by 4 parameters: 
[types][x][y][z]. 
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2.2.4.5 Writing output by modifying the PDB format file and 

visualisation in Pymol 

For the atomic level, the grid was stored in PDB file format and 

occupancies of boxes were contoured using the color_b module of the 

program Pymol (DeLano, 2002) to obtain a transparent surface with the 

intensity of the colour corresponding to the frequency with which the grid 

boxes are populated. To visualise only the top rank entities, the grid can be 

displayed at different cut-off values. The array of frequently occurring 

atoms can also be displayed as a non-bonded sphere (Figure 9) with a label 

corresponding to the frequency with which the array is populated.  

 
    Carbon            Nitrogen          Oxygen           Sulphur          Phosphorus         Others        

Figure 9. Non-bonded sphere representation for neighbouring atoms in the array 

For the residue level, relative positions of neighbouring residues for 

different ligands were observed by superposing the majority of the residue 

clusters surrounding adenine and staurosporine, and then comparing the 

positions of these clusters for adenine complexes and staurosporine 

complexes. The staurosporine complexes are displayed with large sticks 

and adenosine phosphate complexes are displayed with small sticks, so that 

the relative positions of residue clusters can be compared. For visualising 

the cluster, a bond is drawn automatically when two atoms come closer 

than about 2 Å so the cluster can be easily found. Colours of frequently 

occurring residues are assigned according to the type of the amino acid 

found in the array. (Figures 10 & 11). 
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Figure 10. Water and amino acid neighbouring residues in dot representation 

 
Figure 11. Water and amino acid residue in sphere representation. These atoms are used 
to represent the centres of the residues.  
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2.3 Results & Discussion 

The staurosporine molecule is quite rigid as it contains very few rotatable 

bonds; hence we may observe interaction partners that are position-specific 

by superposing the kinases onto its lactam and indolocarbazole rings (20 

structures of staurosporine complexes). In a similar manner interactions 

around the adenosine phosphate complexes can be compared by 

superposing the non-redundant kinase structures onto the adenine ring (24 

structures of adenine-containing complexes). The conserved atomic 

environment can be found by observing the frequently occurring atoms at a 

particular location defined by a 1 Å grid box  

2.3.1 The frequently occurring entities obtained by superposing ligand 

I observe that some clusters of amino acids preserve their functional groups 

in most of the staurosporine and the adenine complexes, for instance the 

side chains of Glu and Asp of the salt-bridges which flank each side of the 

pocket, the residues that are equivalent to Ala 70 in PKA which acts as the 

ceiling of the cleft, and Gly 50 which interacts with the ether oxygen of the 

sugar moiety (Figures 12 & 13). For the adenine complex, the most 

conserved part is the protein kinase main chain in the hinge region which 

interacts with the amine group of the adenine ring (Figure 12).  

 
Figure 12. Stereo image illustrating frequently occurring neighbouring environment of 
adenosine ring at atomic level (spheres) and residue level (dots). The colour of atoms 
shown in Figure 9 and the colour of residues are shown in Figure 10. 
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For the staurosporine complex, the most conserved parts are the main chain 

of the hinge region, which interacts with the lactam oxygen, and the α-

carbon of the first glycine of the GXGXXG motif, which interacts with the 

sugar moiety (Figure 13).  

 
Figure 13. Stereo image illustrating frequently occurring neighbouring environment of 
staurosporine at atomic level (spheres) and residue level (dots). The colours of atoms are 
shown in Figure 9 and those of residues in Figure 10. 

2.3.2 Comparison of flexibility of the pocket 

The resulting atomic level matrices suggest that for both adenine and 

staurosporine ligand complexes (Figures 14 & 15), the main chain atoms 

make the most conserved interactions in terms of type and position, which 

explains why staurosporine, mimicking ATP, can bind to most of the 

kinases. 
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Figure 14. The hinge region (left) of the adenine phosphate binding complexes is the 
most conserved region. The colour of the surface is related to the occupancy of atoms in 
the array. The atom types (CT, N, C, O) are defined in Section 2.2.2. 

 
Figure 15. The maximum percent of conservation of frequently occurring neighbouring 
atoms in staurosporine complex (75%) shows that staurosporine pocket is more rigid 
than that of ATP. The atom types (CT, N, C, O) are defined in Section 2.2.2. 
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The conserved neighbouring atoms of ATP are more variable in position 

than those of staurosporine (37.5-58% conservation in Figure 14 versus 50-

75% in Figure 15). This supports the idea that the two ligands require a 

different degree of flexibility within the active site of the kinase. The 

greater number of rotatable bonds in the adenosine phosphate results in 

lower degree of conservation of neighbouring atoms in these complexes 

than in staurosporine complexes. Since the ribose moiety of the adenosine 

complex can adopt several conformations, the frequently occurring atoms 

fall in several grid boxes.  

2.3.3 Amino acid movement and substitution in the pocket 

The residue arrays serve to complement the pictorial representations of the 

atomic environment. For most of the residues, I chose the penultimate 

atoms of the side chain to represent the identities and the positions of the 

residues (Table 4). In this way, residues with a similar functional group at 

the end of the side chain in different kinases can be captured as points at a 

similar location in the superposed structures. For instance, Cβ of valine and 

Cγ of leucine at the active sites occupy the same or close-by grid boxes in 

the superposed structures. Several clusters of amino acids are seen to have 

moved, leading to contraction and expansion of the residues in the pocket 

to accommodate staurosporine (Figure 16).  
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Figure 16. Contraction (blue arrows) and expansion (pink arrows) of the staurosporine 
pocket found when the residues in the environment of staurosporine (white large sticks) 
are superposed on those of adenine phosphates (yellow thin sticks). 

The ends of some similar hydrophobic side chains e.g. Cys and Met, or 

Ala, Val and Leu, which surround the planar indolocarbazole ring, have 

equivalent positions implying that these amino acids perform the same 

function in that part of the active site. On the other hand, the amino acids 

that make contact around the methyl amino and methoxy groups of 

staurosporine demonstrate that remarkably different functional groups can 

occupy the same position and carry out the same structural role.  

2.3.4 Induced fit caused by staurosporine 

Seventy five percent (15 out of 20 staurosporine bound structures) of the 

main chain alpha carbons from the first glycine of the glycine rich loop, 

Gly 50, fall in the same 1 Å grid-box (Figure 17). On the other hand, these 

atoms are distributed within a rhombohedron-shaped volume (see Figure 

18) when superposed on the adenine ring.   
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Figure 17. The first glycine of the GXGXXGX motif (Gly 50) is found in the same grid 
box in fifteen from twenty staurosporine binding structures. The residue that is most 
conserved in position during N-terminal domain superposition is Ala 70. 

 

Figure 18. The first glycine (Gly 50) of the GXGXXGX motif can move freely in a 
rhombohedron-shaped volume when surrounding adenosine phosphates 
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This is perhaps surprising as the glycine-rich loop is generally believed to 

be highly flexible because of the displacement observed in crystal 

structures at pHs lower than 6 (Hemmer et al, 1997; Sachsenheimer & 

Schulz, 1977). However, this glycine becomes fixed in position upon 

staurosporine binding. The well-conserved position of this glycine, for 

75% of the non-redundant staurosporine complexes, but not for adenine 

complexes, suggests that the staurosporine leads to an induced fit or 

conformational selection in the kinases upon binding.  

2.3.5 The frequently occurring atoms obtained by superposing the 

domain 

When superposing neighbouring environments onto domain templates, I 

hypothesised that the residues that occur most frequently are the most rigid 

parts of the domain resulting from atoms that move in the same direction 

and with the same magnitude. The resulting amino acid residues from the 

N-terminal domain are not surprising. More than half of the 44 structures 

have their main chain sp3 carbons (28 structures) and nitrogens (25 

structures) nearby Ala 70 confined within a single element of the 1 Å grid 

(Figure 19). Both of these main chain atoms precede Ala 70 which acts as 

the ceiling of the pocket (Figure 20). Furthermore, the side chain of Val 57 

which locked the adenine ring into place is presented as the most 

frequently occurring from the residue array (Figure 20). 
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Ala 70

Figure 19. Blue surfaces are atoms that frequently retain their positions from the domain 
superposition using the N-terminal domain of CDK2 as a template. The template’s helix 
is in red and sheets are in yellow. Ala70 is in yellow stick. 
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Figure 20. N-terminal domain superposition reveals the frequently occurring atoms and 
residues, with occupancies in brackets, from the total of 44 superposed structures. 

The picture obtained from C-terminal domain superposition is more 

complicated. The side chain and the main chain of Asp 166 are among the 

most populated entities in the array (Figure 22). This residue is neither 

buried nor part of a helix or sheet. It appears that this aspartate interacts 

with a conserved His 125 in the CDK2 template, i.e. Tyr 164 in PKA, 

which is located just under the DFG loop (Figure 22). In addition, the beta 

carbon of Trp 221 often retains its position because it is next to the 

invariant Asp 220 that acts to stabilize the catalytic loop by hydrogen 

bonding to the backbone amides of, again, Tyr 164 at a few positions 

preceding the beginning of the catalytic loop. These frequently occurring 

atoms and residues support the idea that the catalytic loop is actually rigid. 

If it can move, it should move in the same way as the C-terminal domain 

that is used as the template for superposition. The most conserved residue 

is Gly 225, which locates in the middle of the helix, perhaps as a result of 

the superposition process.  
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DFG loop 

Figure 21. Blue surfaces are atoms that frequently retain their position from the domain 
superposition using the C-terminal of CDK2 as a template. The DFG loop is shown in 
yellow stick. 
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Figure 22. C-terminal domain superposition illustrates conservation of both main chain 
and side chain of PKA equivalent residue Asp 166 and Gly 225, and beta carbon of 
residue Trp 221 which is equivalent to CT (26) of Ile in this CDK2 structure. The 
frequently occurring atoms are in spheres and frequently occurring residues are in dots, 
with occupancies in brackets, from the total of 44 superposed structures. 

2.4 Conclusion 

The representation of conserved atoms portrays the rigidity of structural 

units within the ATP binding pocket as well as those distant from the 

pocket. Both the hinge region and the catalytic loop serve as crucial 

scaffolds conserving the positions of residues through the evolution of 

protein kinases. Representations of conserved residues demonstrate that 

there are adaptations of the ATP binding pocket upon ligand binding and 

that staurosporine causes an induced fit of the GXGXXGX motif. These 

subtle differences are observable when comparing the frequently occurring 

neighbouring residues of ATP with those of staurosporine. The 

generalisations do not conform to the general belief that the glycine rich 

loop and the catalytic loop are flexible. When the structures of kinases 
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bound with either adenosine phosphate or staurosporine are superposed on 

a template of the N-terminal lobe, Ala 70 in the middle of the lobe retains 

its position. Alanine does not have strongly electrostatic side-chain features 

and it is interesting to know that it is held in a very precise position in the 

middle of this very labile secondary structure, the N-terminal lobe of the 

kinase. Furthermore, using all the large helices in the C-terminal lobe as 

the template showed that the catalytic loop was held in place with support 

from the helix in subdomain IX. From this approach, both the glycine rich 

loop and the catalytic loop have very precise locations. It is tempting to 

believe that in kinases with ligand bound, these two loops move with the 

secondary structure rather than swinging around. 

However, this is a difficult concept to prove because the method relies very 

much on the part of the structures that are chosen as templates. It also 

depends on the superposition algorithm which atoms the program prefers 

to align with the template.  

The next problem worth investigating is the peculiar spatial conservation 

of the penultimate atoms, which retain their positions in the C-terminal 

lobe superposition. The spatial arrangement of these atoms in the active 

site using atoms either at the penultimate or the end of the residues may 

give interesting clues about the basis of inhibitor selectivity. 
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C h a p t e r  3  

3 SHAPE COMPARISON OF THE ATP BINDING SITE 

The positions of residue clusters are exploited to define the shape of the 

ATP binding site in protein kinases and to monitor the expansion and 

contraction of the pocket between different kinases and on ligand binding. 

Kinases with a similar spatial arrangement of residues have been shown to 

bind to a similar set of inhibitors. An analysis of the correlation of distance 

matrices demonstrates that there is no relationship between the similarity 

in amino acid sequence and the similarity in the spatial arrangement of the 

side chains in the pocket. On the other hand, kinases with high similarity in 

the spatial arrangement of the side chains tend to bind a similar set of 

inhibitors.  

3.1 Introduction 

Current global protein structure classification schemes such as CATH and 

SCOP do not adequately underpin drug discovery because they do not 

provide information about binding site similarities (Debe & Hambly, 

2004). In principle such information should give clues to potential targets 

and mechanisms of action, so assisting the design of selective therapeutic 

compounds (Jacoby, 2006). In this chapter, I explore the possibility of 

relating sequence and structural information to the ability to bind a ligand. 

Initially, I investigate whether kinases with similar binding site amino acid 

sequences tend to have the same binding affinities for a particular ligand. 

Secondly, I employ a novel shape comparison method to see whether 

kinases with similar shapes of their adenine binding site pockets have the 

same binding characteristics. Finally, I analyse dendrograms derived from 
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both sequence and structural features to define relationships with real 

experimental binding data.  

My shape comparison method relies on estimating correlations between 

distance matrices using the Mantel test, where the distances are measured 

from the representative, mostly penultimate, atoms of the residues. The 

challenge arises from the fact that the distances in the matrices are not 

independent of each other: changing the position of one object would 

change the distance from that object to each of the others. Therefore, the 

relationship between two matrices cannot be assessed by evaluating the 

correlation coefficient and testing its statistical significance. The classical 

Pearson correlation coefficient is used for measuring the correlation 

between the matrices, and the significance of this statistic is assessed by 

comparison with the distribution found by randomly reallocating the order 

of the elements in one of the matrices many times (Bonnet & Peer, 2002). 

Therefore, this procedure can overcome the problems arising from the 

statistical dependence of elements within each of the two matrices. 

3.2 Method 

3.2.1 Dataset  

The preliminary data sets used for residue selection were those structures 

from the PDB with IDs indicating ‘protein kinase activity’, i.e. those with 

gene ontology ID GO:0004672 in the MSDlite database (Golovin et al, 

2004). These PDB IDs were filtered through the PISCES server (Wang & 

Dunbrack, 2003) to select a protein chain based on resolution, R-factor and 

completeness.  

3.2.2 Kinase catalytic domain superposition and alignment 

The eighty chosen chains with resolutions better than 3.0 Å and R-factors 

less than 0.30 were then superposed onto the cyclic AMP dependent 

protein kinase (PKA) structure (PDB ID: 1STC, chain E) using the 
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program Baton based on the method developed in Comparer (Sali et al, 

1990). The details of their quality and the complex crystallised are listed in 

Appendix A. 

3.2.3 Distance matrices construction 

The obtained structural alignment in format (.ali) was used to infer 

equivalent residues in the kinase superfamily using the program 

KinaseMap (Smith, 2006). Distances between every residue surrounding 

the pocket were measured from representative atoms in distinctive parts of 

the amino acids near the end of the side chains (see Table 4). Half-diagonal 

distance matrices were constructed for each PDB chain in the dataset. 

3.2.4 Matrix correlation and dendrogram construction 

The correlations between the matrices were calculated by the Mantel test 

using program zt (Bonnet & Peer, 2002). The relationships between 

distance matrices were defined using the neighbour-joining algorithm from 

the program PHYLIP (Felsenstein, 2004). The sequences of the catalytic 

domains and also the residues in the active sites were aligned in order to 

calculate dendrograms for comparison with the shape-based dendrogram 

using program ClustalX. The dendrograms were made using the program 

TREEVIEW (Page, 1996).  

3.2.5 Circular dendrogram construction 

The equivalent set of distances was also measured for a new set of 35 non-

redundant crystal structures of kinases, which have been assayed by Fabian 

et al. (Fabian et al, 2005). These structures are the PDB files with the best 

resolutions that have the protein names matching those assayed by Fabian 

et al. and contain a variety of inhibitors bound in the ATP binding site. 

This allows the relationship between the spatial arrangement of residues of 

different kinases and their binding affinities (Kd) against 10 ligands to be 

visualised. The colour gradient representation of the tree plotting program 
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iTOL (Letunic & Bork, 2007) was used where the intensity of the colours 

was proportional to –log10Kd in order to allow comparison for millimolar to 

sub-nanomolar values of binding constants (Kd). 

3.3 Results & Discussion 

3.3.1 Residue selection for the construction of quasi-shape 

I wish to investigate whether the spatial arrangement of residues in the 

ATP binding pocket has an influence on which inhibitor the kinase 

recognises. In order to avoid comparing extremely variable regions of the 

pocket, I focused only on protein structures with staurosporine or adenine-

ring containing compounds bound. A set of seven points was selected that 

can represent common features of the pocket. The Mantel test can 

distinguish the pockets of different kinases based on the assumption that 

the matrix of distances between points surrounding the adenosine pocket 

can reflect key features of the pocket shape in multiple dimensions; I call a 

matrix of this sort a “quasi-shape” (Figures 23 & 24).  

 

Figure 23. The quasi-shape is located between the N-terminal and the C-terminal lobes 
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Figure 24. The quasi-shape (purple lines) 

Calculated correlation coefficients among distance matrices of the same 

size and order of elements can be used to estimate the similarities in the 

spatial arrangements of side chains and hence the relationship between 

shape and the ability of the parent kinase to bind various inhibitors. The 

resulting shape-based dendrogram is constructed from 17 points in 17 

residues, which are equivalent to the following residues in cAMP 

dependent protein kinase: Leu 49, Gly 50, Val 57, Ala70, Met 71, Lys 72, 

Val 104, Met 120, Glu 121, Tyr 122, Val 123, Glu 170, Asn 171, Thr 183, 

Asp 184, Glu 127, Leu 173. 

These residues can be found in the multiple structural alignment in the 

JOY format (Mizuguchi et al, 1998) in Figure 26. 

 

Figure 25. JOY annotations. 
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49 50             57 
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70 71 72                                                                                          104                                        120-123     127 
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Figure 26. Multiple alignments from superposition of the kinases using program Baton. 

 



3.3.2 Dendrogram constructed from the quasi-shape 

The result suggested that Mantel test correlations between the matrices 

derived from a small set of inter-atomic distances, between 7 frequently 

occurring atoms, can separate the majority of staurosporine complexes 

from the adenine containing complexes (Figure 27). This means there are 

observable differences in spatial arrangement of these atoms when 

staurosporine and adenine are bound. Thus, the Mantel Test appears to 

work well for classifying different three dimensional geometric shapes. 

However, the same kinase in different crystal forms can be scattered 

throughout the resulting shape-based dendrogram, implying that 

similarities between these conserved atoms are not sufficient to 

differentiate the structures of kinases (Figure 27).  

Therefore, I investigated the use of distinctive parts near the ends of each 

amino acid residue as the centres for distance measurements in the 

construction of the distance matrices, thus allowing the derivation of a 

quasi-shape from each PDB file. The choice of these atoms, which depends 

on their residue type, is shown in Figure 11. By gradually increasing the 

number of residue points, I was able to categorise the same kinase in 

different crystal forms and different complexes into the same branch of the 

dendrogram. This dendrogram places the same type of kinase in different 

complexes in the same branch regardless of the bound ligand, and the 

staurosporine binding structures were clustered into one half of the tree 

(Figure 28). Therefore, the constructed matrices appear to be able to 

represent similar pockets.  
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Figure 27. Mantel test can distinguish the shape derived from 7 frequently occurring 
atoms in staurosporine complex from adenosine phosphate complex, but structures of 
the same kinase, e.g. KAPCA are scattered throughout the tree. 
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Figure 28. The shape-based dendogram constructed from 17 points in 17 residues, which 
places the same type of kinase in different complexes in the same branch regardless of 
the bound ligand. 
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3.3.3 Sequence relationship with inhibitor binding 

I next investigated the relationship between the similarity obtained from 

sequence alignment and the ligand selectivity. However, it is difficult to 

conclude from these dendrograms whether the whole domain sequence 

alignment (Figure 29), the ligand accessible region alignment (Figure 30), 

or the shape similarity (Figure 31) dendrogram is better because these 

dendrograms cannot represent that very weak binding is somewhat similar 

to not binding at all. Hence, I also produced circular dendrograms using 

gradient colour to represent the relationship between sequence and shape to 

the binding affinities to 10 inhibitors so that the binding can be compared 

by the intensity of the colour.  



 
Figure 29. Phylogenetic tree obtained from neighbour joining clustering of Baton’s structural sequence alignment of the whole kinase domain. The first 
column is the PDB ID, the next twenty columns are inhibitors from supplementary information 4 of Fabian et al., and the final column is the kinase name. 
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Figure 30. Phylogenetic tree obtained from neighbour joining clustering of Baton’s structural alignment of residues in the ligand accessible region (closer 
than 3Å from any part of the ligand from 14 non-redundant human kinases)  
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Figure 31. Phylogenetic tree obtained from neighbour joining clustering of Mantel’s correlation of distance matrices 
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3.3.4 Dendrogram displaying the relationship between shape and 

inhibitor binding affinities 

The general sequence-based dendrogram (Figure 32) is shown for 

comparison with the shape comparison dendrogram (Figure 33). It can be 

seen that kinases with similar sequence does not always bind similar 

inhibitors. 

 

TTKK  

 
Figure 32. The classic dendrogram based on sequence similarity from structure based 
sequence alignment using the program Baton. The intensity of the colour is proportional 
to -log10Kd of the inhibitor. The kinases with closest quasi-shape similarity are marked 
with arrows. 
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CCMMGGCC  
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When I apply the same dendrogram colouring method to the set of 35 non-

redundant structures where the Kd of the enzyme has been studied by 

Fabian et al. (Fabian et al, 2005), I obtain a dendrogram that characterises 

the ability to bind ten ligands, based on the similarity in quasi-shape as 

shown below (Figure 33).  

 

 
Figure 33. The shape-based dendrogram shows the matrix correlation between the 
shapes of the kinases and their binding affinities to 10 inhibitors. The kinases with 
closest quasi-shape similarity are marked with arrows. 
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It is evident that kinases with similar pocket quasi-shapes can have similar 

inhibitor binding profiles, regardless of their family membership. A nice 

example is serine/threonine kinase 10 (STK10), which is clustered in the 

sequence-based dendrogram (Figure 32) as an STE kinase as defined in the 

protein kinase phylogenetic tree by Manning et al. (Manning et al, 2002). 

When considering STK10 in terms of similarity in spatial arrangement of 

residues (Figure 33), it is instead paired with leukocyte-specific protein 

tyrosine kinase (LCK) which is a tyrosine kinase. The sequences are quite 

different, but the quasi-shapes of these pockets are the most similar in this 

dendrogram and their abilities to bind seven inhibitors are very similar. 

Many kinases with similar sequences, for example CDK2 and CDK5 or 

DAPK2 and DAPK3, also have very similar quasi-shapes and inhibition 

profiles. This quasi-shape-based dendrogram provides a way of visualising 

relationships among kinases, complementing that of the classical sequence-

based dendrogram. My dendrogram (Figure 33) demonstrates that the 

similarity in quasi-shape can sometimes explain the ability to bind a set of 

ligands regardless of the overall sequence identity.  

3.3.5 A case study: BUB1 kinase 

I illustrate the use of this method with a homology model of BUB1 kinase. 

The information I used to construct the dendrogram is based on the 

information about the shape from a homology model alone. The shape of 

the BUB1's active site was compared with 37 non-redundant kinase 

structures. The method employs the centre point of 17 active site residues 

to construct the distance matrices for each kinase and then to find the 

correlation between them. The homology model of BUB1 appears to have 

highest similarity with CLK1. If one discards all the tyrosine kinases, it is 

apparent that CLK1, DAPK2, DAPK3, and PIM1 appear to be in the same 

group in the quasi-shape classification. 
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There is evidence from a study by the Structural Genomics Consortium 

(Marsden & Knapp, 2008) that a class of imidazo-pyridazine inhibitors 

which binds to CLK1, PIM1 and DAPK3 shows selectivity against a panel 

of 40 Ser/Thr kinases. PIM1 and CLK1 share only 18% sequence identity 

but they appear in the same branch of the shape-based dendrogram if 

tyrosine kinases are not considered. Therefore, my quasi-shape analysis is 

useful for selecting kinases which share similarity in the shape of the 

adenine binding pocket. Since BUB1 appears in the shape based 

dendrogram to be in the same branch as CLK1, PIM1, DAPK2, and 

DAPK3, an inhibitor of BUB1 might be designed by using a CLK1 

inhibitor with alteration in electrostatic properties to suit BUB1. 

 

Figure 34. BUB1 and its similarity to other kinase with available inhibition constants. 
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3.4 Conclusion 

For the kinase pairs which show highest similarity in their quasi-shape, 

STK10 and LCK, there is a correlation between the similarity in the quasi-

shape of the pocket and the ligand selectivity. An experimental analysis of 

CLK1, PIM1 and DAPK3 suggests that my novel shape comparison 

method is able to distinguish kinases which bind to the same compound. 

The method may be useful for predicting the binding characteristics of 

kinases of unknown structure, as illustrated in this chapter for the BUB1 

kinase domain. However, in order to understand the determinants of 

inhibitor selectivity, the electrostatic properties of each amino acid cannot 

be neglected. In the following chapter, I investigate this further in order to 

answer the question: Which residues in the active site influence how well 

the kinase can bind staurosporine?  
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C h a p t e r  4  

4 UNDERSTANDING INFLUENTIAL RESIDUES USING 
QUANTITATIVE STRUCTURE ACTIVITY 
RELATIONSHIPS 

A reverse pharmacophore approach. 

Amino acid residues in the active site that influence how well 

staurosporine can bind are investigated by a Multiple Linear Regression 

method. This approach resembles QSAR, the difference being that, instead 

of correlating the differences in functional groups of the ligand with the Kd 

of the same protein, the differences in the distances between all the side 

chains of different kinases are chosen in order to identify those that 

correlate with the Kd for staurosporine. A set of “influential” residues, 

where differences in spatial arrangement have been shown to affect the Kd 

tremendously, are obtained from the set of distances that have the highest 

correlation with the Kd. A phylogenetic tree built from these 13 influential 

residues alone can cluster the kinase inhibition profiles as successfully as 

the general sequence alignment phylogenetic tree. The QSAR equation can 

be interpreted as a preference for shorter or longer distances between 

these influential residues, and is shown to agree well with the Kd. Closure 

between the N-terminal and C-terminal lobe and a larger size of the 

gatekeeper residue promote tight binding to staurosporine. 

4.1 Introduction 

Staurosporine has very few strongly electrostatic features. Its major 

interactions with protein kinases are largely steric with non-polar groups. 

Thus, I hypothesised that the tightness of inhibitor binding might be 

determined by the compactness of residues in the pocket. In order to test 
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this idea and to predict binding affinities from the structures, I assumed 

that good binding requires certain geometric restraints and investigated 

which distance descriptors correlate well with the dissociation constants. 

For instance, if the distances are shorter for most of the structures with low 

binding constants, this would suggest that contraction along that direction 

is required for tight binding. The goal for this experiment is to predict 

binding affinities directly from structures. This approach resembles a 

Quantitative Structure Activity Relationship (QSAR), but all the input 

parameters are measured from the structure in terms of distances that 

constitute the quasi-shape of the ATP binding pocket.  

Although QSAR methodologies have been widely used in order to try to 

understand binding affinities through various parameters related to 

lipophilicity, charges and hydrogen bonding character, distances between 

certain atoms in the protein have not been used. Because the experimental 

data depend very much on the method and the experimentalist, I chose 

dissociation constants of staurosporine (Kd,STU) from Fabian et al. (Fabian 

et al, 2005) as the sole source of my experimental binding data. Structures 

in this training set have Kd,STU between 0.5 to 870 nM and both adenine-

containing or staurosporine-bound structures are considered. Adenine ring-

containing structures are included in the data set on the assumption that the 

rigid parts of the pockets that harbour adenosine or staurosporine share 

similar conformations and electronic features. The advantage of assuming 

that the structure of the adenosine phosphate-bound complex resembles the 

same enzyme in the staurosporine-bound complex is that there are more 

structures in complex with adenosine containing compounds. The greater 

number of structures with available Kd,STU values allowed me to test my 

equation by predicting Kd,STU for further kinase structures co-crystallised 

with adenine ring containing ligands. 
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4.2 Methods 

4.2.1 Dataset 

I filtered the Protein Data Bank (Berman et al, 2000) for X-ray structures 

of every kinase that Fabian et al. (Fabian et al, 2005) report a Kd for 

staurosporine (Kd,STU), and selected only structures which are co-

crystallised as either staurosporine or adenosine phosphate complexes.  

4.2.2 Distance selection 

As in the case of shape analysis, distances from 15 representative atoms 

between all non-gapped residues surrounding the pocket were measured 

and written out in the form of tab-delimited file. The calculated distances 

are coloured in a Microsoft Excel spreadsheet based on their values as 

follows. 

                        Minimum   <     Lower Tail    < Mean – S.D. 
 
                        Maximum   >    Upper Tail     > Mean + S.D. 
 

4.2.3 Multiple linear regression  

Multiple linear regression was performed using program XLSTAT 

(Fahmy, 2008) to find the best equation to relate the distances measured 

between the centre points near the end of the side chains (see Figure 11) 

and log10Kd,STU.  

4.2.4 Descriptor representation 

The distances shown to correlate with the binding affinities were drawn 

manually in the structure of PKA (PDB ID 1stc, chain E) by writing 

dummy atoms and specifying the connections between them. The file was 

visualised using the Pymol molecular visualisation program (DeLano, 

2002). 
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4.2.5 Circular dendrogram construction 

The relationships between 113 kinases in Fabian’s data set were drawn 

based on selections of some residues in the pocket using neighbour-joining 

clustering in ClustalX (Thompson et al, 1997). The dendrograms were 

produced with gradient colour representation using program iTOL (Letunic 

& Bork, 2007) in order to reflect the log10Kd values of the inhibitors, 

including: 

4.2.5.1 Clustering based on similarity of amino acid residues in contact 

with staurosporine and showing correlation (<-0.4 and > 0.4) 

with Kd,STU in the multiple linear regression analysis. The 

gatekeeper residues are shown on the outer circle of the 

dendrogram.  

4.2.5.2 Clustering based on similarity in the whole catalytic domain 

sequence. The tree was illustrated with data on the ability to 

bind inhibitors together with pictures of the catalytic domain of 

kinases from various families. 

4.2.5.3 Clustering based on equivalent amino acid residues which are 

within 3 Å distance from SB202190 in the crystal structure PDB 

ID 1PME with the binding affinities for SB202190  

(-log10Kd,SB202190) 

4.2.5.4 Clustering based on equivalent amino acid residues which are 

within 3 Å distance from SP600125 in the crystal structure PDB 

ID 1UKI with the binding affinities for SP600125  

(-log10Kd,SP600125) 

4.2.5.5 Clustering based on equivalent amino acid residues which are 

within 3 Å distance from Iressa in the crystal structure PDB ID 

2ITY with the binding affinities for Iressa (-log10Kd,Iressa) 

4.2.5.6 Clustering based on equivalent amino acid residues which are 

within 3 Å distance from LY333531 in the crystal structure PDB 
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ID 1UU3 and 2J2I with the binding affinities for LY333531  

(-log10Kd,LY333531) 

For the first two dendrograms, the selected inhibitors (i.e. staurosporine, 

LY-333531, SU11248, and ZD-6474) are amongst the most promiscuous 

ligand in the Fabian’s dataset. Therefore, the number of the kinases they 

can bind is sufficient to demonstrate trends in binding affinities. 

4.3 Results & Discussion 

I avoided including distances that are influenced by the type of ligand 

bound in the structure. This was achieved by discarding residue points that 

differ in position when found in contact with ATP or staurosporine. In this 

way I could be sure that the differences in distances were independent of 

whether staurosporine or ATP complexes are compared. The distances 

between pairs of 15 frequently occurring residues are chosen for Multiple 

Linear Regression. These distances are measured from the centres of the 

distinctive parts of residues that are equivalent to these residues in cAMP 

dependent protein kinase (PKA). 

Point 01: LEU 49 Point 02: GLY 50 

Point 03: VAL 57 Point 04: ALA70 

Point 05: MET 71 Point 06: LYS 72 

Point 07: VAL 104 Point 08: MET 120 

Point 09: GLU 121 Point 10: TYR 122 

Point 11: VAL 123 Point 12: GLU 170 

Point 13: ASN 171 Point 14: THR 183 

Point 15: ASP 184 



Table 5. Distances between pairs of 15 frequently occurring residues chosen for Multiple Linear Regression. 
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The aim was to select distances from the quasi-shape defined by 15 points 

in contact with staurosporine (Table 5), where the points correlate with the 

binding affinities either positively or negatively. Multiple linear regression 

was used for this task and the equations produced are shown in Table 6. 

Kd,STU is the dissociation constant of staurosporine, and the distance 

between residues X and Y is written as DX_Y. 

Table 6. Equations correlating the influential distances with log10Kd,STU 

Random 

Test 
R2 training R2 test set Equation 

None 0.6 - 

Equation 4: 

log10Kd,STU=3.4+0.1D50_184–0.4D120_123 

5 structures 0.6 0.7 

Equation 5: 

log10Kd,STU=3.4+0.1D50_184–0.4D120_123 

10 structures 0.7 0.7 

Equation 6: 

log10Kd,STU=3.6+0.1D50_184–0.4D120_123 

 

I tested the predictive power of these equations by leaving out randomly 

selected test sets. While the purpose of using multiple linear regression in 

this context was simply to select the set of distances that correlate well 

with the binding affinities, the resulting equations suggest that predictive 

power might be demonstrated if a larger dataset were available. All 

resulting equations appear to contain the same best sets of distances 

producing R2 values for the random test sets of about 0.7 for both 

equations (Figures 35 & 36).  
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Test set random 5 structures
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Figure 35. The predictive power of the multiple linear regression equations, tested by 
leaving out 5 randomly selected test sets, shows R2 about 0.7. 

Test set random 10 structures
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Figure 36. The predictive power of the multiple linear regression equations, tested by 
leaving out 10 randomly selected test sets, shows R2 about 0.7. 

The distance descriptors which correlate well with binding affinities, either 

having positive or negative influence on Kd,STU, are called the ‘influential 

distances’. Figure 37 illustrates these influential distances in the structure 

of cyclic AMP dependent protein kinase (PKA), PDB ID 1stc. The 

residues that are used as the points of measurement for these influential 

distances can be used to describe how the position of their representative 

77 



atoms near the end of the side chains can influence Kd,STU. From all the 

equations shown in Table 6, the distance between residues 50 and 184, 

described in the equation as D50_184, is directly proportional to the value of 

log10Kd,STU, and the distance between residues 120 and 123, D120_123, is 

inversely proportional to log10Kd,STU. The meaning of the equation is that in 

kinases that are tightly bound to staurosporine, i.e. have a small 

log10Kd,STU, there is a preference for a smaller D50_184 and a larger D120_123.  

 

Figure 37. Interpretation of the multiple linear regression analysis shows that smaller 
values of Kd,STU result from the larger size of side chains of the gatekeeper and 
gatekeeper+3 residues, i.e. PKA equivalent residue: Met120 and Val123 (orange bar). The 
equation suggests that the closer approach between Gly50 of the N-terminal lobe and 
Asp184 of the C-terminal lobe (purple bar) correlate with tighter binding to staurosporine. 

In cAMP dependent protein kinase (PKA), the distance between residues 

50 and 184 is measured between the Cα of Gly50 of the GXGXXG motif in 

the N-terminal lobe to the Cγ of Asp184 of the DFG loop in the C-terminal 

lobe. Staurosporine is located between the two lobes, and the closer 

approach of these two motifs in a direction perpendicular to the plane of 

staurosporine reflects the better binding affinities presumably because of 
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the resultant tighter binding. In contrast, increasing the distance between 

residue 120 (gatekeeper) and 123 (gatekeeper+3) implies an expansion of 

the pocket along this direction. The equation suggests that these two 

residues should move further apart to accommodate staurosporine. The 

gatekeeper residue points toward the plane of staurosporine, while the 

gatekeeper+3 residue is located under the indolocarbazole ring. The size of 

the gatekeeper and the gatekeeper+3 residues may have a key role in 

locking the lactam in the correct orientation while making optimal steric 

interactions with the indolocarbazole of staurosporine. The larger size of 

the gatekeeper residue likely results in the larger distance and correlates 

with good binding because the larger volumes of the side chains in the 

plane of the lactam ring promote favorable hydrophobic interactions in the 

pocket. 

Thirteen residues which are in contact with staurosporine and show 

correlation (<-0.4 and > 0.4) with Kd,STU were selected for the clustering of 

staurosporine binding affinities. These residues are equivalent to PKA 

residues 49, 50, 57, 70, 71, 72, 120, 121, 122, 123, 170, 171, and 184. In 

Figure 38, the resulting dendrogram constructed by the neighbour-joining 

algorithm of the thirteen residues is combined with data on the ability to 

bind staurosporine from Fabian et al. (Fabian et al, 2005) in order to 

investigate whether the similarities between these influential residues 

would result in similar binding constant. The resulting dendrogram can 

cluster tight staurosporine binders into two major groups with obviously 

better binding affinities (Figure 38). I also display the gatekeeper residues, 

which in Figure 38 lie beside the affinities of staurosporine. It can be seen 

that the majority of staurosporine tight binders have large gatekeeper 

residues, e.g. Phe and Met at the position equivalent to PKA residue 120 

(Figure 38). Smaller gatekeeper residues, e.g. Thr or Leu, tend to be 

associated with weaker binding affinities to staurosporine.  
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Figure 38. A dendrogram displaying relationships between 113 kinases based on 
neighbour joining of the 13 residues that are highly correlated to binding constants. 
Most kinases with better binding affinities to staurosporine (dark red) have large 
gatekeeper residues, e.g. phenylalanine (F), methionine (M). A majority of kinases 
which are inhibited by ZD-6474 (blue) has threonine (T) or valine (V) as a gatekeeper 
residue. Binding affinities to LY-333531 (green) and SU11248 (yellow) are shown for 
comparison. 

The dendrogram produced from the whole catalytic domain sequence 

alignment was made for comparison. It is clear that the similarity in 

sequence of the whole catalytic kinase domain does not imply that the 

enzyme would bind to the same set of inhibitors (Figure 39). It is 

interesting that the ability to cluster ZD-6474 in the thirteen active site 

residue dendrogram is even better than the whole domain clustering. 
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CDK2                                                                  PKA 

SRC                                                                                   PHKG1 

INSR                                                  PAK 

Figure 39. The binding affinities to promiscuous inhibitors, staurosporine (red), LY-
333531(green), SU11248 (yellow), and ZD-6474 (blue), demonstrate that the similarity 
in sequence cannot predict the ability to bind inhibitor. 

A further question that I address is whether there is any other inhibitor for 

which the active site residues can be used to distinguish good binders from 

poor binders. The similarities in ligand accessible residues of four 

promiscuous inhibitors where there are available crystal structures in 

complex with kinases show that we cannot predict the trend in binding 

affinities in this way. All of these inhibitors are more selective than 

staurosporine. This is probably because the inhibition by these inhibitors is 

governed by fewer residues. Other factors, such as the flexibility of the 

ligand, the electrostatic potential, and the steric interaction in the pocket 

might make sequence comparison of active site residues inadequate for the 

prediction of binding affinities. 
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Figure 40. Dendrogram constructed from alignment of residues within SB202190 
accessible region 
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Figure 41. Dendrogram constructed from alignment of residues within SP600125 
accessible region 
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Figure 42. Dendrogram constructed from alignment of residues within Iressa accessible 
region 
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Figure 43. Dendrogram constructed from alignment of residues within LY333531 
accessible region 
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4.4 Conclusion 

I have dissected the contribution to kinase staurosporine binding affinities 

in terms of distances between residues that line the ATP binding site. I 

have proposed that the size of the gatekeeper and closure of the pocket 

together affect the tightness of staurosporine binding. Here I have shown 

using the three-dimensional structures of kinases that larger sizes of 

gatekeeper residues normally result in tighter binding to staurosporine. 

This is probably a result of the compactness caused by the larger volumes 

of the side chains in the plane of the lactam ring which result in a better 

fitting of staurosporine. The closure of the DFG loop and the glycine rich 

loop also correlates to the tightness of staurosporine binding. The 

clustering of kinases based on 13 influential residues also shows that the 

ability to bind staurosporine can be grouped roughly based on similarity of 

a few residues in the pocket. However, this method of clustering cannot be 

applied to more selective inhibitors. The amount of selectivity determining 

residues selected for these inhibitors for the construction of the dendrogram 

is not optimal, and more detailed comparison is required for each inhibitor 

to understand the basis of each inhibitor’s selectivity. 
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C h a p t e r  5  

5 UNDERSTANDING CROSS-REACTIVITY BASED ON 
COMMON SUBSTRUCTURES 

A web application, MAHORI (http://www-cryst.bioc.cam.ac.uk/mahori), 

has been developed to query atomic interaction information from the 

protein-ligand database Credo (http://camelot.bioc.cam.ac.uk/drupal/ 

databases/credo). When the query has been made by submitting a SMILES 

string, drawing the chemical functional group or typing the compound’s 

name, the website can then display all the crucial interactions that a 

molecule makes with proteins in the PDB. A simple search query for 

staurosporine showed that the greater the number of the hydrogen bond 

and ionic interactions made by the methyl amine moiety, the better the 

binding affinity to staurosporine. This information can be useful in 

identifying selectivity-determining residues. 

5.1 Introduction 

Crystal structures serve as templates for many facets of drug discovery 

(Breitenlechner et al, 2005). A survey of the market value of small-

molecule drugs has shown that two-thirds of the sales resulted from 

analogue designs (Wermuth, 2006). Understanding the interactions made 

by chemical analogues presented in the Protein Data Bank may therefore 

suggest synthetic strategies for lead optimisation. Nevertheless, gathering 

the binding characteristics of a particular analogue is time-consuming and 

there is no publicly available resource that facilitates this type of 

understanding. My web-based application, MAHORI, is acronymed from 

its function for Mapping Analogous Hetero-atoms onto Residue 

Interactions. It aims to provide visualisation and classification of molecular 
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interactions made by the user-query atoms obtained from the heterogen 

section of the PDB file (wwPDB, 2007). 

A few web resources allow PDB structures and their superpositions to be 

queried based on ligand structure, including Relibase (Bergner et al, 2001) 

and IsoStar (Bruno et al, 1997). Selection of amino acid residues that 

interact with a queried ligand can also be achieved by FireDB (Lopez et al, 

2007) and classification of ligand-protein interactions based on residue 

contacts can be obtained from MSDsite (Golovin et al, 2005). However, 

these websites do not allow for comparison of the molecular interactions of 

multiple structures at the level of ligand substructure. 

The rationale for allowing user-defined substructure comparisons is based 

on the idea of the bioisostere that often shares a similar number and 

position of interactions with the protein, such as hydrogen bonding 

environment. Selection of the analogous part of the molecule could give an 

indication of the significant interactions that the substructure can contribute 

to the binding. This chapter describes an approach to selecting either the 

atoms that comprise the equivalent substructure in several molecules which 

can relate to cross-reactivity amongst several kinases or non-carbon atoms 

that are likely to make significant interactions which are selective for a 

small set of kinases. 

5.2 Methods 

5.2.1 Rationale 

MAHORI supports robust querying of the Protein Data Bank through its 

underlying protein-ligand database, Credo (Schreyer & Blundell, 2009). 

This database stores all types of interactions and contact distances that the 

ligands make with the protein. This is achieved using a method adapted 

from assignment of interaction types described in the approach for 

optimising fragment and scaffold docking (Marcou & Rognan, 2007). 
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Every atom of the ligand and its contacting neighbour atoms have their 

pre-defined types and the distances are calculated for every interacting 

pair. By prioritising the types of atoms and the distances, the interaction 

types can be assigned for all atom pairs.  

5.2.2 Available query types 

The user can make a query by providing a chemical structure, a SMILES 

string (Weininger, 2002), a chemical name or a PDB three-letter code. The 

ligand’s PDB three-letter code is the main type of query which will lead to 

a substructure selection panel. When searching by the chemical name, the 

program will look for the ligand’s PDB three letter codes in the Credo 

database. When searching for a fragment, the program receives the query 

in the form of a chemical drawing from program MarvinSketch 4.1.12 

(ChemAxonLtd., 2007) and converts it to a SMILES string.  

 

Figure 44. The MAHORI web-interface allows for various forms of ligand query, e.g. 
by providing a chemical structure, a SMILES string, a chemical name or a PDB three-
letter code.   
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Once the SMILES string is obtained, the program obgrep from the 

OPENBABEL package (Banck et al, 2007) searches for the ligand which 

contains that string in the Protein Data Bank. This program will then write 

an output file containing a list of the ligand PDB three-letter codes.  

5.2.3 Query execution process 

For each ligand PDB three-letter code, the program will provide the user 

with a list of the atoms that constitute the ligand and the name of the 

proteins that interact with these ligands. The user can select atoms of 

interest from this list. The name of the protein will be provided based on 

the interacting partners of those atoms. The process goes on until the last 

ligand in the list. 

The program uses the set of ligand atoms obtained from the user to make a 

MySQL query for a list of interacting protein atoms. The contact distances 

and interaction type are provided by the Credo database. The program 

prints all interactions that this set of atoms make and populates the closest 

contact per residue into a table of residue interactions.  

 

Figure 45. Colour code used for displaying ligand-residue interactions in MAHORI 

5.2.4 Data presentation 

MAHORI returns the output interactions into two panels. The left panel is 

a molecular viewer which can display the molecular interaction using the 

program Jmol 11.3.42 (TheJmolDevelopmentTeam, 2007), where the user 

can view the molecule in several styles, e.g. wireframe, strands, cartoon, 

rocket. The right panel prints out the final table for each PDB file which 
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contains the interactions that are sorted amongst the protein atoms nearest 

to the ligand atoms. Interacting residues are displayed in colours according 

to the interaction type. Clicking the interacting residues in the right panel 

will trigger the picture of the interacting residues in the left panel. Multiple 

user-defined substructures can be retrieved and displayed in the same page.   

 

Figure 46. Example of MAHORI output displaying interaction made with N4′ of 
staurosporine. More details of N4′ interaction can be found in Figure 51. 

5.3 Results & Discussion 

5.3.1 Understanding staurosporine promiscuity  

The interactions found in common between all protein kinases and 

staurosporine can be dissected into those that are conserved involving the 

lactam and tetrahydropyran moieties and the steric/hydrophobic contacts 

made by the indolocarbazole ring.  
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Figure 47. The potential group which likely causes alteration in binding affinities is the 
methylamine moiety of staurosporine. 

I speculated that interactions that were not identified in the previous QSAR 

study, involving the methyl amino (N4′) and the methoxy group (O3′) of 

staurosporine, could play roles in constraining the distance between the N- 

and C-terminal lobes to the optimal value.  

 

Figure 48. The chemical structure of staurosporine shows the position of N4′ used for 
MAHORI query. 
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These distances are neither constant in position so that they can be captured 

by the grid, nor a linear function of binding affinities that can be captured 

by multiple linear regression. More distances can be identified by 

incorporating quadratic terms into the multiple linear regression in the 

same way as the Hansch equation in Section 1.4. This equation is obtained 

from collaboration with Professor Amiram Goldblum, who performed the 

Hansch analysis and suggested that the best way to describe this system is 

by including the square term in the function. The equation that is obtained 

using this approach is as follows (Equation 7): 

Equation 7. 

log Kd,STU =  44.82 +  0.02 × (D104_122)2 - 0.26 × D120_122  
- 5.89 × D70_170 + 0.18 × (D70_170)2 +  0.25 × D71_170; 

 
where: Kd,STU is the dissociation constant of staurosporine, the distance 

between residues X and Y is written as DX_Y, and standard deviation (S.D.) 

= 0.28, R2 = 0.83, R = 0.91. 

The R2 is significantly better than the linear equation without the square 

terms. Although the R2 is higher, there is a trade off between the ability to 

explain the binding affinities and over-fitting which arises from using a 

larger number of descriptors. Therefore, I verified the equation with a test 

set of newly released structures in the PDB and the binding affinities of 

these structures were found to be predicted with high accuracy (Figure 49). 
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Figure 49. Multiple linear regression with the square distance terms (see equation 7). 
The navy-dots comprise the dataset from 38 kinases that are used to construct the 
equation. The non-navy dots are the test set of newly released structures from the 
Protein Data Bank (cyan, PDB ID 2hw7; green, PDB ID 2dq7; orange, PDB ID 2itq; 
magenta, PDB ID 2clq). 

 

Figure 50. The terms obtained from Equation 7 confirm the role of the size of the 
gatekeeper (D120_122) and the closure between the N-terminal and C-terminal lobe 
(D71_170). This equation also suggests an optimal distance along the direction between 
Ala 70 and Glu 170. 
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Equation 7 includes two distances in directions that were not present in the 

equations without square terms in Table 6. The first term is the distance 

D104_122 (purple bar between Y122 and V104 in Figure 50), linking 

residues that are found in the tight binding pocket and which should move 

closer together to act as tweezers that tighten the pocket around the lactam 

area. The second is the distance D70_170 (blue bar between Ala70 and 

Glu170 in Figure 50) which is a quadratic term in equation 7. This term 

implies that an optimal distance is required along the direction of the blue 

bar. The term D70_170 suggests a role for the distance along the direction 

that passes through the methylamine N4′ of staurosporine (Figure 50).  

Indeed, the hydrogen bonds or ionic interactions that staurosporine can 

make along this direction are associated with the major differences in the 

binding affinities.  

I found that the number of hydrogen bonds made by residues around N4′ of 

staurosporine corresponds well with the trend in binding affinity (Table 7). 

Kinase structures that have two residues making hydrogen bonds or ionic 

interactions to N4′ of staurosporine, i.e. CDK2, PKA, PIM1, and LCK, 

have binding affinities below 51 nM. Most structures that have only one 

residue contributing hydrogen bonds or ionic interactions to N4′ have 

binding affinities between 51-440 nM, i.e. CSK, EGFR, FYN, M3K5. The 

kinase STK16, which does not make any interaction with N4′, has a binding 

affinity of 200 nM.  
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Table 7. Number of interactions made by the kinases with methylamine (N4′) of 
staurosporine. 

Number of interactions Protein 

kinase 
PDB ID 

Kd, STU 

(nM) H-bond Ionic vdW 

CDK2 1AQ1 8.1 2 1 2 

PIM1 1YHS 15 2 1 2 

LCK 1QPJ 20 2 - 2 

PKA 1STC 50 1 1 2 

SYK 1XBC 7 1 - 1 

FYN 2DQ7 51 1 - 1 

M3K5 2CLQ 120 1 - 1 

CSK 1BYG 440 1 - 1 

MKNK2 2HW7 22 - - 1 

EGFR 2ITU 70 - 1 2 

STK16 2BUJ 200 - - - 

 

In order to achieve better affinity for kinases, the strategy might be to 

identify a residue in the protein close to the methyl amino (N4′) or to 

modify the staurosporine ligand so that it can make a further hydrogen 

bond. The reference PKA structure is the PDB ID: 1STC from Figure 51. 

The majority of kinases make one hydrogen bond with the atom that is 

equivalent to the main chain carbonyl oxygen of residue 170. When there 

are two hydrogen bonds made with N4′, the additional hydrogen bond 

comes from the side chain of Glu 127 (Figure 51). 
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Figure 51. Interactions made by the atom N4′ of staurosporine in various crystal 
structures. The PDB code of the protein chain is shown in red and the name of the 
protein is in brackets. The interacting residues are highlighted with the name of the 
residue in square brackets followed by the residue number and the protein chain.  
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Therefore, I speculate that the binding affinities of staurosporine 

derivatives can be affected most by optimising the interaction with the side 

chains of residues that are equivalent to Glu 127 in PKA (Asp 86 in 

CDK2). The type of this residue varies between kinases but the position is 

aligned well with no insertion or gap in the Baton structural alignment 

(Figure 26). 

Making point mutations of active site residues in order to achieve a better 

binding affinity to staurosporine might also be achieved by altering  

Glu 127 of PKA to a residue that can make an optimal hydrogen bond to 

N4′ of staurosporine. This suggestion might be useful for finding a new 

kinase construct that binds better to staurosporine and may help in 

producing more proteins that would provide X-ray structures of 

staurosporine complexes. 

5.3.2 Understanding simple bioisosteric replacement for synthetic 

strategy 

According to a study on the bioisosteric similarity of molecules based on 

structural alignment and observed chemical replacement in drugs (Krier & 

Hutter, 2009), replacement of variable substructures in staurosporine can 

be considered in terms of the replacement of N4′, O3′, and their methyl 

substituents. Various bioisosteric substitutions can be found as in Table 8. 

For example, for a methoxy oxygen (OR or O3′ of staurosporine), more 

exchanges to methylene groups were observed than to fluorine atoms. 

From the list in Table 8, the methoxy group can be substituted with NHR 

or SR, and the amine group can be substituted with OR or =NR to preserve 

the size and ability to form hydrogen bond of the linker. Choices for 

methyl group replacement are more diverse but may lead to selectivity for 

a particular kinase. 
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Table 8. Most common bioisosteric substitutions regarding one-to-one exchanges of 
atoms from Krier & Hutter.  

-OR 
(O3′) 

-NHR 
(N4′) -CH3 

-CH2- -CH2- Cl 
CH3 OR CH2R 
NHR =CR2 OR 
Car Car OH 
=CR2 Nar F 
NR2 =NR NH2 
Nar =NH Br 
OH  I 
SR   
F   

 

Once the desired kinase is chosen, MAHORI might be used to investigate 

the tendency of substituting the N4′ from the (-NHR) substitution column. 

In this way the binding affinities for a large set of kinases can be slightly 

modified and may lead to the design of an inhibitor which is selective for a 

smaller group of kinases. The possibility of this application depends on the 

amount of feature interactions available on the Protein Data Bank. 

5.3.3 Understanding promiscuous substructure of FGFR inhibitors 

I now analyse small molecules that target the FGFR TK in order to 

understand the similarity of the interactions they make. Four crystal 

structures of inhibitor-bound FGFR1 TK domains exist in the PDB (PDB 

IDs: 1AGW, 1FGI, 2FGI and 3C4F). The interactions made with the 

FGFR were investigated using MAHORI.  
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Substructure matching using MAHORI demonstrates that particular 

substructures of the FGFR inhibitor molecules are responsible for kinase 

promiscuity.  

 

Figure 52. The indolinone substructure (red circle) which binds to many kinases. 

The indolinone substructure of SU5402 and SU4984 (Mohammadi et al, 

1997) interacts with many kinases, such as CDK2 (1PF8, 2BHE, 2BHH, 

1KE5-1KE9, 1E9H, 1R78), PIM1 (1YXX), CDK5 (1UNH), GSK3B 

(1Q41, 1UV5), Casein Kinase 1 homolog1 (1EH4), Serine/Threonine-

protein kinase 12-A (2BFY), NEK2 (2JAV), CHK1 (2AYP), and STK10 

(2J7T). From the number of kinases that it binds and the position of the 

indolinone binding area, this substructure has the characteristic of a hinge 

binder which can be found from the web application MAHORI. 
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Figure 53. Pyrido[2,3D]pyrimidinyl substructure (red circle) which binds many kinases 
as well as many dihydrofolate reductases  

The pyrido[2,3D]pyrimidinyl substructure of PD173074 (Mohammadi et 

al, 1998) also binds ABL1 (1M52, 1OPK, 1OPL, 2FO0, 2G2H), CDK6 

(2EUF) and many dihydrofolate reductase structures. The difference is the 

atom that is equivalent to N3 of the ligand PD173074 makes one hydrogen 

bond and one aromatic interaction with the hinge region of ABL1, while 

the same atom makes only an aromatic interaction without hydrogen 

bonding with a beta-strand in dihydrofolate reductase. This atom does not 

interact with protein at all in CDK6. This hinge binder substituent may be 

useful for the design of a multi-target drug, which aims to interfere with 

both DNA-synthesis via dihydrofolate reductase and signal transduction 

via kinases. 
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Figure 54. 7-azaindole derivatives in the structure of FGFR from PDB ID 3C4F  

 

Figure 55. 7-azaindole from PDB ID 2UVX shows its ability to bind cAMP dependent 
protein kinase without having any decorating substituent, which may be useful as a 
scaffold for multi-target drug design. 
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The 1H-pyrrole[2,3-B]pyridine, or 7-azaindole, moiety binds several 

kinases, such as SRC (3EN4), CDK2 (3BHU) and CHK1 (1ZYS, 2QHM) 

amongst others. A crystal structure of this fragment alone bound to cyclic-

AMP dependent protein kinase (2UVX) implies that 7-azaindole is the 

promiscuous substructure (Figure 55). This substructure is another hinge 

binder which may be suitable as a scaffold for multi-target drug design. 

Decorating substituents should aim to achieve selectivity by limiting the 

number of kinases to which the molecule can bind. 

5.4 Conclusion 

I have learned that the numbers of hydrogen bonds and ionic interactions 

determine the magnitudes of binding affinities and the interactions made 

with methylamine are important to the binding with staurosporine. From 

this understanding, I can identify Glu 127 as the residue which can be used 

to achieve better binding affinities for staurosporine derivatives. 

Promiscuous scaffolds of the ligand can be found in the four examples of 

FGFR inhibitors which clearly demonstrate the part of the molecules that 

acts as a hinge binder. I show that three scaffolds which bind to FGFR can 

also bind to various other kinases. My web-tool, MAHORI, enables 

comparison of the amount, the type and the position of the interactions in 

one results page on the computer screen. This kind of information might be 

useful for rational drug design and medicinal chemistry education. 

The tool is useful to confirm the parts of ligands that bind to kinases non-

specifically and to rationalise the specificity determining residues. The 

findings may be helpful in guiding synthetic strategies and mutagenesis 

studies by narrowing down the choice of chemical group replacement in 

the ligand and amino acid substitutions in the kinase. 
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C h a p t e r  6  

CONCLUDING REMARKS AND FUTURE WORK 

At the time of starting the thesis, my research was geared towards the 

understanding of the determinants of inhibitor selectivity. However, due to 

the fact that there are so many conformations of kinases with many 

different kinds of inhibitors available in the Protein Data Bank, my 

research was refocused on those forms which allow comparisons of many 

structures; these are staurosporine and ATP complexes.  

The problem proved to be not so simple; Q-SiteFinder estimated the active 

site volumes in CDK2 alone could be hugely variable, for example 182 Å3 

(PDB ID 1aq1) with staurosporine and 406 Å3 (PDB ID 1fin) with ATP. 

This led to the idea of developing an algorithm to observe frequently 

occurring atoms, because some parts of the pocket that interact with the 

ligand were held in the same position regardless of their different volumes.  

By superposing the rigid parts of the ligands, the staurosporine complexes 

were proven to be good models. In contrast with ATP binding complexes, 

staurosporine complexes show a lack of plasticity in the pocket, especially 

in the constrained region. The superposed position of Gly 50, which varies 

in ATP complexes but which stays close to oxygen of the tetrahydropyran 

ring in staurosporine complexes, led to the induced fit hypothesis. The 

conservation of positions of atoms in the hinge regions for both complexes 

confirmed that this was the major determinant of cross-reactivity of 

inhibitors. 
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Domain superposition provided a new way to compare the rigid parts of 

the molecule. It became apparent that a residue in the lower middle part of 

the N-terminal lobe, Ala 70, positions the ligand in protein kinases. This 

approach could also correctly identify Asp 166 in the C-terminal lobe as a 

residue that is conserved in position. Interestingly Asp 166 is the amino 

acid residue which accepts the proton from the substrate and the reason 

why this region is called the catalytic loop. 

The concept of frequently occurring atoms was used further to consider the 

shape created by these unmoving points. I wanted to know which distance 

between these points are the most important. Although there is no 

correlation between distances and binding affinities when the distance 

between the static atoms is measured, when the distances between the side 

chains are considered, there is considerable improvement in the correlation 

with binding affinities. Hence, I developed the idea of measuring the 

distances between the ends of the side chains. 

QSAR indicated that the gatekeeper residue was always involved in the 

distances that gave rise to the best equations. This coincided with the 

observation that the size of the gatekeeper residue affects inhibitor binding. 

Another distance that was important was the one that passes through N4′ of 

staurosporine. Optimal distances along this direction could result in strong 

molecular interactions. The greater the number of hydrogen bond 

interactions and ionic interactions along this direction, the better the 

binding affinities. 

In theory, the MAHORI website could be developed to allow bottom-up 

fragment design. Indeed, one way to decide whether or not a fragment will 

stay in a pocket is by considering local environments in other protein 

crystal structures. Promiscuous scaffolds can also be identified which lead 

to knowledge about cross-reactivity between enzymes in different 

106 



pathways. However, at the time of conducting this research, drug-like 

substructures in the PDB were still quite rare. Hence, there was not much 

choice in substructure queries using MAHORI. I believe that when the 

Protein Data Bank grows, the website will become fruitful. There is room 

for improvement in MAHORI. The first priority is to allow water-mediated 

interactions. Then I would wish to develop a method to classify the 

environment and compile a list of frequent substructure interactions. It 

would be useful if the user could link substructures together to form a new 

ligand for a particular input pocket. 

My idea for future work on kinases is to develop further software for 

automated identification of specificity determining residues. I would define 

specificity as the features that are retained after subtracting the 

promiscuous ones from all those in a particular kinase. Therefore, 

observing promiscuous features by frequently occurring atoms can be a 

starting point for obtaining the specificity determining features. Identifying 

these residues would result in a clear benefit for kinase inhibitor design. 
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APPENDIX 

A. Details of protein kinase chains used for shape comparison. 

  Protein PDB Length Res(Å) R Species Ligand Others Kd,STU 

1 ACK1 1U54B 291 2.80 0.23 HUMAN ACP MG,PTR   
2 AKT2 1O6KA 336 1.70 0.20 HUMAN ANP MN,TPO   
3 CDK2 1AQ10 298 2.00 0.22 HUMAN STU   8.1 
  CDK2 1B38A 299 2.00 0.18 HUMAN ATP MG 8.1 
  CDK2 1B39A 299 2.10 0.20 HUMAN ATP MG 8.1 
  CDK2 1FINC 298 2.30 0.21 HUMAN ATP   8.1 
  CDK2 1GY3C 299 2.70 0.25 HUMAN ATP MG,TPO 8.1 
  CDK2 1JSTC 298 2.60 0.20 HUMAN ATP MN,TPO 8.1 
  CDK2 1QMZA 299 2.20 0.22 HUMAN ATP MG,TPO 8.1 
4 CHK1 1NVRA 289 1.80 0.19 HUMAN STU   30.0 
5 CK2A 1DAWA 327 2.20 0.22 MAIZE ANP MG   
6 CSK 1BYGA 278 2.40 0.20 HUMAN STU   440.0 
7 CSK21 1PJKA 334 2.50 0.19 HUMAN ANP     
  CSK21 1YMIA 334 1.66 0.19 HUMAN ANP     
8 CSK2A 1LP4A 332 1.86 0.21 MAIZE ANP MG   
9 DAPK1 1IG1A 294 1.80 0.19 HUMAN ANP MN   
  DAPK1 1JKKA 294 2.40 0.20 HUMAN ANP MG   
  DAPK1 1JKLA 294 1.62 0.20 HUMAN ANP     
10 EPHA2 1MQBA 333 2.30 0.24 HUMAN ANP   870.0 
11 EPHB2 1JPAA 312 1.91 0.23 MOUSE ANP     
12 FAK1 1MP8A 281 1.60 0.19 HUMAN ADP     
13 FUS3 2B9FA 353 1.80 0.21 YEAST ADP MG   
  FUS3 2B9IA 353 2.50 0.20 YEAST ADP MG   
  FUS3 2B9JA 353 2.30 0.20 YEAST ADP MG   
  FUS3 2B9HA 353 1.55 0.19 YEAST ADP MG,STE7   
14 GCN2 1ZY5A 303 2.00 0.23 YEAST ANP MG   
  GCN2 1ZYDA 303 2.75 0.21 YEAST ATP MG   
15 GSK3B 1J1BA 420 1.80 0.22 HUMAN ANP     
  GSK3B 1J1CA 420 2.10 0.22 HUMAN ADP MG   
  GSK3B 1PYXB 422 2.40 0.21 HUMAN ANP MG   
  GSK3B 1Q3DA 424 2.20 0.23 HUMAN STU     
16 IF2A 2A19B 284 2.50 0.23 YEAST ANP MG   
17 IGF1R 1JQHA 308 2.10 0.20 HUMAN ANP MG   
  IGF1R 1K3AA 299 2.10 0.21 HUMAN ACP PTR   
18 INSR 1I44A 306 2.40 0.21 HUMAN ACP MG 73.0 
  INSR 1IR3A 306 1.90 0.19 HUMAN ANP MG,PTR 73.0 
19 ITK 1SM2A 264 2.30 0.25 HUMAN STU -   
20 KAPCA 1ATPE 350 2.20 0.18 MOUSE ATP MN 50.0 
  KAPCA 1BKXA 350 2.60 0.22 MOUSE ADE TPO 50.0 
  KAPCA 1FMOE 350 2.20 0.18 MOUSE ADN TPO 50.0 
  KAPCA 1JBPE 350 2.20 0.17 MOUSE ADP TPO 50.0 
  KAPCA 1L3RE 350 2.00 0.20 MOUSE ADP MG,TPO 50.0 
  KAPCA 1Q24A 350 2.60 0.20 BOVINE ATP MG,TPO 50.0 
  KAPCA 1RDQE 350 1.26 0.13 MOUSE ADP,ATP MG,TPO 50.0 
  KAPCA 1STCE 350 2.30 0.21 BOVINE STU   50.0 
  KAPCA 1U7EA 350 2.00 0.17 MOUSE ANP MN,TPO 50.0 
21 KIT 1PKGA 329 2.90 0.23 HUMAN ADP MG,PTR 100.0 
22 KPCT 1XJDA 345 2.00 0.20 HUMAN STU     
23 KSYK 1XBCA 291 2.00 0.25 HUMAN STU   7.0 
24 LCK 1QPCA 279 1.60 0.20 HUMAN ANP PTR 20.0 
  LCK 1QPDA 279 2.00 0.20 HUMAN STU   20.0 
  LCK 1QPJA 279 2.20 0.21 HUMAN STU   20.0 
25 MAPK2 1NXKA 400 2.70 0.24 HUMAN STU     
  MAPK2 1NY3A 400 3.00 0.27 HUMAN ADP     
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26 MP2K1 1S9JA 341 2.40 0.25 HUMAN ATP MG   
27 PDPK1 1H1WA 289 2.00 0.20 HUMAN ATP     
  PDPK1 1OKYA 310 2.30 0.22 HUMAN STU     
  PDPK1 2BIYA 310 1.95 0.19 HUMAN ATP     
28 PHKG1 1QL6A 298 2.40 0.24 RABBIT ATP MN 0.5 
  PHKG1 2PHKA 277 2.60 0.25 RABBIT ATP MN 0.5 
29 PIM1 1XR1A 300 2.10 0.27 HUMAN ANP MG 15.0 
  PIM1 1YHSA 273 2.15 0.23 HUMAN STU   15.0 
  PIM1 1YI4A 273 2.40 0.21 HUMAN ADN   15.0 
  PIM1 1YXTA 293 2.00 0.18 HUMAN ANP   15.0 
  PIM1 1YXUA 293 2.24 0.23 HUMAN AMP   15.0 
  PIM1 2BZKB 313 2.45 0.19 HUMAN ANP   15.0 
30 PKNB 1O6YA 299 2.20 0.19 MYCTU ACP MG   
31 Q9JLS3 1U5RA 348 2.10 0.21 RAT ATP MG   
32 SKY1 1Q8YA 373 2.05 0.21 YEAST ADE,ADP MG   
  SKY1 1Q97A 373 2.30 0.21 YEAST ATP ADN,MG   
  SKY1 1Q99A 373 2.11 0.22 YEAST ANP     
33 SRPK1 1WBPA 397 2.40 0.23 HUMAN ADP     
34 STK16 2BUJA 317 2.60 0.19 HUMAN STU   200.0 
35 STK6 1MQ4A 272 1.90 0.23 HUMAN ADP MG 16.0 
  STK6 1MUOA 297 2.90 0.26 HUMAN ADN   16.0 
  STK6 1OL5A 282 2.50 0.19 HUMAN ADP MG,TPO 16.0 
  STK6 1OL6A 282 3.00 0.28 HUMAN ATP   16.0 
  STK6 1OL7A 282 2.75 0.26 HUMAN ADP MG,TPO 16.0 
  STK6 2C6DA 275 2.20 0.23 HUMAN ANP   16.0 
36 ZAP70 1U59A 287 2.30 0.22 HUMAN STU     
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