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Abstract 

This thesis presents the development of computational methods and tools using 
as input three-dimensional structures data of protein-ligand complexes. The 
tools are useful to mine, profile and predict data from protein-ligand complexes 
to improve the modeling and the understanding of the protein-ligand 
recognition. This thesis is divided into five sub-projects. In addition, 
unpublished results about positioning water molecules in binding pockets are 
also presented. 

I developed a statistical model, PockDrug, which combines three properties 
(hydrophobicity, geometry and aromaticity) to predict the druggability of 
protein pockets, with results that are not dependent on the pocket estimation 
methods. The performance of pockets estimated on apo or holo proteins is 
better than that previously reported in the literature (Publication I). PockDrug 
is made available through a web server, PockDrug-Server 
(http://pockdrug.rpbs.univ-paris-diderot.fr), which additionally includes many 
tools for protein pocket analysis and characterization (Publication II). 

I developed a customizable computational workflow based on the 
superimposition of homologous proteins to mine the structural replacements 
of functional groups in the Protein Data Bank (PDB). Applied to phosphate 
groups, we identified a surprisingly high number of phosphate non-polar 
replacements as well as some mechanisms allowing positively charged 
replacements. In addition, we observed that ligands adopted a U-shape 
conformation at nucleotide binding pockets across phylogenetically unrelated 
proteins (Publication III). 

I investigated the prevalence of salt bridges at protein-ligand complexes in the 
PDB for five basic functional groups. The prevalence ranges from around 70% 
for guanidinium to 16% for tertiary ammonium cations, in this latter case 
appearing to be connected to a smaller volume available for interacting groups. 
In the absence of strong carboxylate-mediated salt bridges, the environment 
around the basic functional groups studied appeared enriched in functional 
groups with acidic properties such as hydroxyl, phenol groups or water 
molecules (Publication IV). 

I developed a tool that allows the analysis of binding poses obtained by 
docking. The tool compares a set of docked ligands to a reference bound ligand 
(may be different molecule) and provides a graphic output that plots the shape 
overlap and a Jaccard score based on comparison of molecular interaction 
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fingerprints. The tool was applied to analyse the docking poses of active 
ligands at the orexin-1 and orexin-2 receptors found as a result of a combined 
virtual and experimental screen (Publication V). 

The review of literature focusses on protein-ligand recognition, presenting 
different concepts and current challenges in drug discovery. 
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Tiivistelmä 

Tässä väitöskirjassa esitetään tietokoneavusteisia menetelmiä ja työkaluja, 
jotka perustuvat proteiini-ligandikompleksien kolmiulotteisiin rakenteisiin. Ne 
soveltuvat proteiini-ligandikompleksien rakennetiedon louhimiseen, 
optimointiin ja ennustamiseen. Tavoitteena on parantaa sekä mallinnusta että 
käsitystä proteiini-liganditunnistuksesta. Väitöskirjassa työkalut kuvataan 
viitenä eri alahankkeena. Lisäksi esitetään toistaiseksi julkaisemattomia 
tuloksia vesimolekyylien asemoinnista proteiinien sitoutumistaskuihin. 

Kehitin PockDrugiksi kutsumani tilastollisen mallin, joka yhdistää kolme 
ominaisuutta – hydrofobisuuden, geometrian ja aromaattisuuden – 
proteiinitaskujen lääkekehityskohteeksi soveltuvuuden ennustamista varten 
siten, että tulokset ovat riippumattomia sitoutumistaskun sijoitusmenetelmästä. 
Apo- ja holoproteiinien taskujen ennustaminen toimii paremmin kuin alan 
kirjallisuudessa on aiemmin kuvattu (Julkaisu I). PockDrug on vapaasti 
käyttäjien saatavilla PockDrug-verkkopalvelimelta 
(http://pockdrug.rpbs.univ-paris-diderot.fr), jossa on lisäksi useita työkaluja 
proteiinin sitoutumiskohdan analyysiin ja karakterisointiin (Julkaisu II). 

Kehitin myös muokattavissa olevan tietokoneavusteisen prosessin, joka 
perustuu samankaltaisten proteiinien päällekkäin asetteluun, louhiakseni 
Protein Data Bankista (PDB) toiminnallisten ryhmien rakenteellisia 
korvikkeita. Tätä fosfaattiryhmiin soveltaessani tunnistin yllättävän paljon 
poolittomia fosfaattiryhmän korvikkeita ja joitakin positiivisesti varautuneita 
korvikkeita mahdollistavia mekanismeja. Lisäksi havaitsin, että ligandit 
omaksuivat U-muotoisen konformaation fylogeneettisesti riippumattomien 
proteiinien nukleotidien sitoutumistaskuissa (Julkaisu III). 

Tutkin PDB:n proteiini-ligandikompleksien suolasiltojen yleisyyttä viidelle 
emäksiselle toiminnalliselle ryhmälle. Suolasiltojen yleisyys vaihteli 
guanidinium-ionin 70 prosentista tertiääristen ammoniumkationien 16 
prosenttiin. Jälkimmäisessä tapauksessa suolasiltojen vähäisyys vaikuttaa 
riippuvan siitä, että vuorovaikuttaville ryhmille on vähemmän tilaa. Mikäli 
tarkastellut emäksiset ryhmät eivät osallistuneet vahvoihin 
karboksylaattivälitteisiin suolasiltoihin, niiden ympäristössä vaikutti olevan 
runsaasti happamia toiminnallisia ryhmiä, kuten hydroksi- ja fenoliryhmiä 
sekä vesimolekyylejä (Julkaisu IV). 

Lopuksi kehitin työkalun, joka mahdollistaa telakoinnista saatujen 
sitoutumisasentojen analyysin. Työkalu vertaa telakoitua ligandisarjaa 
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sitoutuneeseen vertailuligandiin, joka voi olla eri molekyyli. Graafisena 
tulosteena saadaan diagrammi ligandien muotojen samankaltaisuudesta ja 
molekyylivuorovaikutusten sormenjälkiin perustuvasta Jaccard-pistemäärästä. 
Työkalua sovellettiin oreksiini-1- ja oreksiini-2-reseptoreille yhdistetyllä 
virtuaalisella ja kokeellisella seulonnalla löydettyjen aktiivisten ligandien 
sitoutumisasentojen analyysiin (Julkaisu V). 

Kirjallisuuskatsaus keskittyy proteiini-liganditunnistukseen sekä esittää niihin 
liittyviä käsitteitä ja lääkkeenkeksimisen ajankohtaisia haasteita. 
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Résumé 

Cette thèse présente le développement de méthodes et d’outils informatiques 
basés sur la structure tridimensionnelle des complexes protéine-ligand. Ces 
différentes méthodes sont utilisées pour extraire, optimiser et prédire des 
données à partir de la structure des complexes afin d’améliorer la modélisation 
et la compréhension de la reconnaissance entre une protéine et un ligand. Ce 
travail de thèse est divisé en cinq projets. En complément, une étude sur le 
positionnement des molécules d’eau dans les sites de liaisons a aussi été 
développée et est présentée.  

Dans une première partie un modèle statistique, PockDrug, a été mis en place. 
Il combine trois propriétés de poches protéiques (l’hydrophobicité, la 
géométrie et l’aromaticité) pour prédire la druggabilité des poches protéiques, 
si une poche protéique peut lier une molécule drug-like. Le modèle est optimisé 
pour s’affranchir des différentes méthodes d’estimation de poches protéiques. 
La qualité des prédictions, est meilleure à la fois sur des poches estimées à 
partir de protéines apo et holo et est supérieure aux autres modèles de la 
littérature (Publication I). Le modèle PockDrug est disponible sur un serveur 
web, PockDrug-Server (http://pockdrug.rpbs.univ-paris-diderot.fr) qui inclus 
d’autres outils pour l’analyse et la caractérisation des poches protéiques. 

Dans un second temps un protocole, basé sur la superposition de protéines 
homologues a été développé pour extraire des replacements structuraux de 
groupements chimiques fonctionnels à partir de la Protein Data Bank (PDB). 
Appliqué aux phosphates, un grand nombre de remplacements non-polaires ont 
été identifié pouvant notamment être chargés positivement. Quelques 
mécanismes de remplacements ont ainsi pu être analysé. Nous avons, par 
exemple, observé que le ligand adopte une configuration en forme U dans les 
sites de liaison des nucléotides indépendamment de la phylogénétique des 
protéines (Publication III).  

Dans une quatrième partie, la prévalence des ponts salins de cinq groupements 
chimiques basiques a été étudié dans les complexes protéine-ligand. Ainsi le 
pourcentage de pont salin fluctue de 70% pour le guanidinium à 16% pour 
l’amine tertiaire qui a le plus faible volume disponible autour de lui pour 
accueillir un group pouvant interagir. L’absence d’acide fort comme l’acide 
carboxylique pour former un pont salin est remplacé par un milieu enrichis en 
groupement chimiques fonctionnels avec des propriétés acides comme 
l’hydroxyle, le phénol ou encore les molécules d’eau (Publication IV).  
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Dans un dernier temps un outil permettant l’analyse des poses de ligand 
obtenues par une méthode d’ancrage moléculaire a été développé. Cet outil 
compare ces poses à un ligand de référence, qui peut être une molécule 
différente en combinant l’information du chevauchement de forme de la pose 
et du ligand de référence et un score de Jaccard basé sur une comparaison des 
empreintes d’interaction moléculaires du ligand de référence et de la pose. 
Cette méthode a été utilisé dans l’analyse des résultats d’ancrage moléculaires 
pour des ligands actifs pour les récepteurs aux orexine 1 et 2. Ces ligands actifs 
ont été trouvés à partir de résultats combinant un criblage virtuel et 
expérimental.   

La revue de la littérature associée est focalisée sur la reconnaissance 
moléculaire d’un ligand pour une protéine et présente diffèrent concepts et 
challenges pour la recherche de nouveaux médicaments. 
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Introduction 

Molecular recognition events are central to the biochemistry of life, yet not 
fully understood. A better understanding of these events would have major 
applications, for example, towards the discovery of chemical probes or 
therapeutically active molecules. A long-term vision in the field of 
computational drug discovery is to use statistical models to predict from any 
protein, or more precisely, from any protein binding pocket, synthesizable 
compounds with favourable drug-like properties that are able to bind their 
target with high affinity. 

This thesis was conducted under a cotutelle agreement between the 
laboratories “Molécules Thérapeutiques in silico” at the University Paris 
Diderot and the Computational Drug Discovery Group, Division of 
Pharmaceutical Chemistry and Technology at the University of Helsinki. It 
tackles the development of computational methods and computational tools 
using three-dimensional protein structure data as input. The tools aim at better 
understanding of the phenomena associated with molecular recognition. 

At the start of the thesis project, I developed a statistical model to predict 
druggability, i.e. whether a protein pocket can bind drug-like molecules with 
high affinity. I have identified several limitations of the previous statistical 
models, (i) they are invariably associated with a pocket estimation method, 
which limit their applicability; (ii) they have weak accuracy when using 
pockets from apo proteins; and (iii) they are not usually available to the 
scientific community. I thus developed a new model for druggability 
prediction, PockDrug (Publication I). This new model combines information 
obtained from several different pocket estimation methods. In order to develop 
the model, I needed to re-implement a set of pocket descriptors representing 
composition, physicochemical and geometric properties of a pocket. PockDrug 
is now available for the scientific community through a web server: 
http://pockdrug.rpbs.univ-paris-diderot.fr/ (Publication II). 

The focus of the thesis was then directed towards improving our understanding 
of the ability of proteins to accommodate different ligands, or more precisely 
ligand fragments, at a local level. I developed a method to mine protein 
structures for ligand replacement functional groups. The method is written in 
the form of a computational workflow that can be fully parameterized. The 
workflow first finds proteins bound to reference ligands and then superimposes 
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protein-ligand complexes of the same protein crystallized with other ligands. 
The method is used to study phosphate replacements from the Protein Data 
Bank (PDB). I identify especially non-polar replacements as being surprising, 
and are used to discuss molecular mechanisms accompanying the 
replacements, such as arrangements of water molecules, ion coordination or 
protein displacements. In addition, the U-shape of ligands at nucleotide 
binding sites across phylogenetically unrelated proteins is observed 
(Publication III).  

In observing the diversity of ligands, acidic and basic groups, such as 
carboxylate or amino and imidazolyl groups, appear to be relatively frequent. 
Nonetheless, the probability (frequency) of a ligand to form a salt bridge given 
that it contains a basic or acidic group has not been quantified to date. In 
contrast, these type of interactions have been relatively well studied for 
proteins. A limitation is probably the difficulty in mining specific groups in 
three-dimensional structures of proteins. For five basic and one acidic group, I 
thus investigated the prevalence of salt bridges. The distribution appeared 
overall similar to that in proteins for the lysine and arginine side chains (~50% 
and ~70% of ligand primary amines and guanidinium involved in salt bridges). 
The lowest proportion (16%) of salt bridges for tertiary amines appears to be 
connected to a lower volume of the space available around the functional 
group. In the absence of strong carboxylate-mediated salt bridges, the 
environment around the functional groups appeared enriched in functional 
groups with acidic properties such as hydroxyl group, phenol or water 
molecules (Publication IV). 

Encountering difficulties in the docking scoring program to rank pose docking, 
I decided to write an application to visually analyse sets of poses generated in 
comparison with a bound reference. The tool provides a visual output that 
combines the ShaEP score with molecular interaction fingerprints and was 
applied to analyse induced-fit poses computed by the Glide software for a 
screening hit compound at the orexin receptors (Publication V). 

All of these studies served as a reminder that water molecules play an 
important role in protein-ligand recognition, e.g. mediating molecular 
interactions and explaining structural replacements. However, only few 
computational methods exist to characterize them; these are often not freely 
available and may require extensive parametrization to, for example, conduct 
molecular dynamic simulations. Therefore, I started the development of a 
computational method to position water molecules and to assign for each water 
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molecule a so-called desirability index. Only preliminary results had been 
obtained at the time of writing this thesis. 

For Publications III and IV, all scripts were released to the scientific 
community, in line with the need for open and reproducible computational 
science. The tool in Publication V will be released to the community as an 
application note.  

Statistics available from the platform GitHub (https://github.com) about the 
number of lines of code produced through the thesis are presented in Figure 1. 
In total, about 40 000 lines of code have been written over a period of three 
and half years. 
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Figure 1: Representation of programming code production using the representation 
available in the platform GitHub (https://github.com/). The histograms represent the 
number of lines function of time. Number of lines contained by project is shown in 
green, while the number of lines deleted is in red. The high number of deleted lines in 
the W.P. project is explained by the inadvertent downloading of the dataset into the 
source code.  
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Review of the literature 

The process of drug discovery aims at finding compounds that present a 
disease-modifying phenotype while achieving a concentration-time profile in 
the body adequate for the desired efficacy and safety. Discovery of new 
therapeutic molecules is a long, costly and challenging process; the success 
rate for phase II clinical studies is relatively low, ~15-20% (Arrowsmith, 
2011), and in 2015, only 33 new medical entities were accepted by the Food 
and Drug Administration (FDA) (Mullard, 2016). Our incomplete 
understanding about the biochemistry of life arises from many factors such as 
complexity of the human body leading to unpredictable metabolic responses, 
efforts directed towards poorly druggable targets, the relatively limited 
chemical space explored by medicinal chemistry (Brown and Boström, 2015; 
Dahlin et al., 2015) and a too early focus on potency instead of early ADME-
toxicity properties (Absorption, Distribution, Metabolism, Excretion and 
Toxicity) (Hughes et al., 2011). 

The process of discovering a drug molecule can be divided into three main 
steps (Kerns and Di, 2003), presented in Figure 2. The work in this thesis is 
mostly aligned with the first step, drug discovery of a clinical candidate. It 
includes the following parts: (i) exploration in order to understand the disease, 
identify potential targets and discover hit compounds, usually through 
screening compound collections; (ii) lead selection to identify among hit 
compounds the most likely compound to be optimized as a successful drug 
candidate; (iii) lead optimization to find analogues with optimal ADME 
properties and a low risk of adverse effects through an extensive medicinal 
chemistry program; and (iv) development to investigate possible formulations. 
Subsequently, the second and third steps of drug discovery are divided into 
four clinical phases that involve testing with healthy volunteers and patients. 
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Figure 2: Overview of drug research protocol, from Kerns (2008) (Kerns and Di, 
2008). 

Computational methods can play a prominent role in drug discovery, as shown 
in numerous reviews (Schneider and Fechner, 2005; Ekins et al., 2007; 
Roncaglioni et al., 2013; Carbonell and Trosset, 2014). The number of success 
stories in which in silico and in vivo approaches have been combined to 
develop a therapeutic molecule is constantly growing (Lambrinidis et al., 2015; 
Unzue et al., 2016). Computational methods for drug discovery include 
molecular modeling, docking simulations and virtual screening of compound 
collections, quantitative structure-activity relationships (QSAR) as well as 
quantitative structure-property relationship (QSPR) modeling. A large portion 
of these approaches is based on protein and ligand 3D structures, defining the 
fields of structure-based and ligand-based drug design. For more information, 
see for example the books entitled Structure-Based Drug Discovery edited by 
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Tari (2012) (Tari, 2012) and Drug Design edited by Merz et al (2010) (Merz 
et al., 2010).  

In the Review of the literature section, some theoretical background is given 
to introduce the key concepts used. Section 1 presents structural data and their 
limitations, Section 2 binding sites that help to introduce the concept of 
druggability in Publications I and II, and Section 3 thermodynamics of protein-
ligand recognition, serving as an introduction to Publications III and IV. 
Section 4 presents molecular interactions and docking simulations, which are 
used in Publication V and IV. Section 5 presents ligand optimization from the 
perspective of QSAR modeling in Publication I and bioisosteric design of 
analogues in Publication III. More specific literature reviews can be found 
within the original publications. 
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1. Structural data  

Structural databases  

The Protein Data Bank (PDB) is a freely available database, 
http://www.rcsb.org/ (last accessed 02-2016) (Berman et al., 2000). It was 
established in 1971 at Brookhaven National Laboratory under the leadership 
of Walter Hamilton. When released, it contained seven structures. The PDB 
was the first established collaborative structural database. In February 2016, 
the PDB contained 115 918 biological macromolecular structures, 107 154 of 
which were proteins. 

The Cambridge Structural Database (CSD) (last accessed 02-2016) is a 
database established by the Department of Chemistry, Cambridge University 
in 1965 (Allen, 2002). It is an international repository for small-molecule 
organic and metal-organic crystal structures. It contains over 800 000 entries 
of high resolution from X-ray and neutron diffraction analysis. 

Crystallography method 

The work conducted in this thesis relies mostly on structural data, i.e. Cartesian 
atomic coordinates, which reflects the usefulness of structure-based methods 
in drug discovery (Williams et al., 2005). X-ray crystallography is the most 
popular method to obtain this data: the proportion of structure elucidated using 
X-ray crystallography in the PDB is about 89.3% to date (last accessed 02-
2016) (Berman et al., 2000). The principle of structure elucidation is presented 
in Figure 3 (Callaway, 2015). To summarize the method, X-rays pass through 
a crystallized protein and the resulting waves create a diffraction pattern from 
which the position of atoms can be deduced. 
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Figure 3: Principle of X-ray crystallography, adapted with permission from Callaway 
et al. (2015) (Callaway, 2015) 

Since the quantity and quality of the X-ray structures can have a critical impact 
on the results obtained (Davis et al., 2003), it is important to review their origin. 
Protein crystallization is frequently difficult, for example, for membrane 
proteins, which require highly expressed, purified and often solubilized 
proteins (Ilari and Savino, 2008; Bill et al., 2011). Nevertheless, the number of 
entries in the PDB is growing continually, improving the coverage from new 
co-crystallized ligands and conformational intermediate to novel protein folds. 

The interferences of the X-rays in the crystal influence the structure resolution, 
as illustrated in Figure 3. Technical evolutions may emerge to overcome these 
limitations. Cryo-electron microscopy is a promising evolution of the classic 
X-ray crystallography. The crystal of the protein is a frozen sample, easier to 
handle, and the diffraction picture is obtained using an electron beam instead 
of an X-ray beam (Callaway, 2015). Femtosecond crystallography (Miller, 
2014) is also an improvement of the crystallography method. X-rays with a 
wavelength of 10-9 m are replaced by X-rays with a wavelength of 10-10 m. 
This wavelength change allows reduction of the interference and elucidation 
of a protein structure from pseudo crystals (Chapman et al., 2011). 

In data mining studies, there is a fine balance between selecting too low-quality 
parameters, which may lead to erroneous structures being included in the 
datasets, and having enough examples to conduct statistical studies. Different 
criteria of quality can be taken into consideration such as resolution and Free 
R value (David Blow, 2002). 
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Resolution 

Resolution (Å) is a global criteria used to characterize the fuzziness of a 
crystallographic model. A poor resolution may be explained by different 
factors, such as X-ray interferences in the crystal, a low diffracting crystal, 
heterogeneities in the crystal, the mobility of the protein or the presence of 
multiple protein conformations inside the crystal. A resolution better than 
(inferior to) 4 Å is required to position individual heavy atoms in the structure. 
Structures with a resolution from 2 Å are considered of high quality (Lamb et 
al., 2015). Figure 4 shows two structures at different resolutions, i.e. 3 Å and 
0.48 Å. Hydrogen atoms and water molecules can be reliably positioned in the 
high-resolution structures, but not at 3 Å. 

Figure 4: X-ray map densities. (A) Equus asinus haemoglobin at 3 Å of resolution, 
PDB code 1S0H. (B) Crambe hispanica crambin protein at 0.48 Å, crystallized using 
a synchrotron with an intense X-ray source, PDB code 3NIR. 

Free R value (R-Free) 

R- Free, in %, is a measure of the quality of the atomic model obtained from 
the crystallographic data (Brünger, 1993). When solving the structure of a 
protein, the researcher first builds an atomic model and then calculates a 
simulated diffraction pattern based on that model. The R-Free measures how 
well the simulated diffraction pattern matches the experimentally observed 
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diffraction pattern. A completely random set of atoms will give an R-Free of 
about 63%. An R-Free inferior or equal to 25% is considered good in 
accordance to the good practice in the field (Brown and Ramaswamy, 2007; 
Cooper et al., 2011; Donald et al., 2011). 

PDB diversity  

The contents of the PDB represent the work that has been conducted to date. It 
means that the PDB is “enriched” in well-studied proteins. For example, 
considering enzymes, hydrolases are well studied because they are involved in 
many diseases. The statistics given on the PDB web server 
(http://www.rcsb.org/) and reported in Figure 5 shows an over-representation 
of hydrolases (37.1%) and transferases (29.3%) relative to other functional 
classes. 

Figure 5: Distribution of enzyme classes in the PDB from http://www.rcsb.org/, 
released February-2016. 
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2. Protein-ligand recognition 

The process of molecular recognition between a ligand and a host molecule is 
central to all biochemical processes, in particular to signal transduction, 
regulation of metabolic processes and gene expression. The term ligand (Latin 
gerundive ligandum, “that should be bound”) was used for the first time by 
Alfred Stock in 1916 to define “affinities and valencies” for the ions able to 
bind analogous hybrids of silicon (Brock et al., 1983). By the modern 
definition, a ligand may be a protein, peptide, DNA or RNA, or small 
molecule. Host molecules are generally proteins. The term “protein” was used 
for the first time in the correspondences between chemists Berzelius and 
Mulder in 1836 to define a type of organic matter (Hartley, 1951). The word 
originates from the Greek root proteios "the first quality". 

The “lock-and-key” theory about the recognition of ligands (substrates) by 
enzymes was first coined by Emil Fischer in 1894 (Fischer, 1894). This theory 
demonstrated a complementarity of shape between a ligand (the substrate) and 
an enzyme. Yet, only with the emergence of crystallographic structure 
determination could protein-ligand interactions be better characterized; the 
first protein structure elucidated, myoglobin, was solved by crystallography in 
1958(Kendrew et al., 1958). 

In 1958, Daniel Koshland proposed the “induced-fit model” to portray how an 
enzyme can adapt this conformation to interact with a ligand (Koshland, 1958). 
This model is also referred to as the “hand-and-glove” model, to reflect the 
concept of flexibility of both the ligand and the host protein. 

  

Binding sites, binding cavities and binding pockets

The vocabulary used in the literature to describe the regions where ligands 
interact with host molecules is somewhat fuzzy. Words such as “binding site”, 
“binding pocket” or “binding cavity” are often used interchangeably. For 
example, a binding pocket is defined as being equivalent to a binding site 
(Kufareva et al., 2012) whereas to others it implies a cavity on the protein 
surface (Cammisa et al., 2013). 

In this thesis, a binding site will refer to the atoms of the amino acid at 
interacting distances (4 to 6 Å) of a bound ligand, and present at the surface of 
the binding region. Binding sites may be located in cavities, i.e. concave 
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regions of the protein surface (sometimes occluded cavities), at the hinge 
between protein domains (sometimes referred to as “Pacman” binding sites) or 
at a protein-protein interface, which often results in flat and large interacting 
surfaces (Kuenemann et al., 2015). Different examples of binding sites are 
presented in Figure 6. 

A binding pocket will describe the region where ligands bind; a common 
situation is thus that binding sites partially overlap at a given binding pocket. 
Binding cavity will be restricted to cases of pockets, where a cavity is present 
in the host protein. It is important to note that some cavities are too small or do 
not have suitable properties for favourably interacting with a ligand, and as 
such cannot be binding cavities. The term “decoys sites” will be used for 
pockets not able to bind a ligand, as suggested by Desdouits et al. (2014) 
(Desdouits et al., 2014). 

Figure 6: Examples of protein binding pockets. (A) Binding site of Homo sapiens 
protein kinase C with bisindolylmaleimide inhibitor (PDB code 2I0E). (B) Binding 
site of human immunodeficiency virus 1 integrase complexed with (2S)-tert-butoxy[4-
(4-chlorophenyl)-2-methylquinolin-3-yl]ethanoic acid in protein-protein interface 
(PDB code 4NYF). (C) Binding site of human immunodeficiency virus 1b complexed 
with tenofovir in protein DNA interface (PDB code 1T03). (D) Binding site of Homo 
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sapiens microsomal P450 1A2 protein complexed with alpha-naphthoflavone (PDB 
code 2HI4). Binding sites in A, B and D are shown in blue and water molecules in 
red. In C, blue and green indicate different monomers. 

Ligand activity is important for the function of the host protein, leading to the 
conservation of binding sites during evolution. Binding sites are usually 
associated with a lower mutation rate than other protein surfaces. The lower 
mutation rate of binding sites received considerable attention in the 1990s, and 
it was demonstrated for the first time by Zvelebil et al. (1987) (Zvelebil et al., 
1987) and Livingstone and Barton (Livingstone and Barton, 1993). A recent 
study by Tseng et al. (2009) using 100 enzyme families with thousands of 
sequences showed that binding sites have a 20% higher sequence identity 
than the overall proteins (Tseng et al., 2009). 

In terms of amino acid composition, binding sites are often enriched in the 
amino acids Arg, His, Trp and Tyr, as shown by Villar and Kauvar (1994) 
using 50 diverse proteins (Villar and Kauvar, 1994). The amino acid 
composition at the binding site reflects the physicochemical properties of co-
crystallized ligands (Arenas-Salinas et al., 2014). 

Environment 

Co-factors and metals 

Binding sites are not necessarily composed only of protein atoms, but may also 
contain co-factors such as metal or organic co-factors. Co-factors have a role 
in chemical reactions as well as in molecular recognition. An example of such 
a reaction is the dehydrogenation reaction conducted by the dehydrogenase 
using the nicotinamide adenine dinucleotide as a donor or acceptor of 
hydrogen. The promiscuity between a metal and the binding site influences 
reactivity and the presence of reaction intermediates (reviewed by Pordea et al 
(2015) and Rebilly et al (2015) (Pordea, 2015; Rebilly et al., 2015)). Figure 7 
presents the binding site of the pyruvate phosphate dikinase bound to a 
phosphonopyruvate and to a Mg2+ atom. 
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Figure 7: Example of pyruvate phosphate 
dikinase with bound Mg-
phosphonopyruvate binding site including 
an ion Mg2+, represented by a green 
sphere, coordinated by the ligand carboxyl 
and hydroxyl oxygen and by the protein 
carboxylate group (PDB code 1KC7). A 
hexadentate coordination is likely, 
perhaps with two missing water molecules.

Water molecules 

Water molecules at binding sites are presented in this section, while 
thermodynamic considerations about ligand binding are presented later, in 
Section 3. Hydrogen bonds (H-bonds) are discussed in more detail in Section 
4.1. 

The occupancy of a water molecule is ~9.2 Å3, and a water molecule can be 
estimated by a sphere with a radius of 1.35 Å (Nicholls, 2000). Water 
molecules ideally form four H-bonds in the solid state; they are composed of 
two hydrogen atoms, allowing two H-bonds to be donated, and one oxygen 
atom with two lone pairs that can accept two H-bonds. Water molecules have 
a permanent dipole moment of 1.8 Debye and are amphoteric, i.e. they have 
the ability to act as either an acid or a base in chemical reactions. Considering 
these properties, water molecules can interact with other water molecules, 
forming a network around biological macromolecules. The arrangement of 
water molecules inside the network is not fully understood; notably water 
networks of H-bonds have been reported to “flicker”, i.e. to exchange 
hydrogen atoms by creation and disruption of H-bonds (Sanschagrin and Kuhn, 
1998). 

Binding sites are most commonly solvated. Lu et al. (2007) showed that more 
than 85% of the protein binding sites in a dataset containing 392 high-
resolution protein-ligand complexes contain at least one water molecule, with 
a mean of 4.6 water molecules per binding site (Lu et al., 2007). In proteins, 
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water molecules can be classified as different types depending on their 
positions: (i) bulk, (ii) surface and (iii) buried (Levitt and Park, 1993; Ladbury, 
1996). Bulk water molecules correspond to the first shell of protein hydration. 
Surface water molecules correspond to the shell of water further away from 
the protein. Exchanges between the bulk and the surface are possible and very 
common. Buried water molecules are at the interface between ligand and 
protein, and appear to be trapped between these two partners (Kahraman et al., 
2007). These water molecules play an important role in protein-ligand 
recognition (Bissantz et al., 2010). 

Water molecules have thus a critical role in protein-ligand interaction: (i) a 
driving force for hydrophobic contacts, (ii) mediation of molecular contacts 
with protein side-chains and (iii) solvation/desolvation events for the ligand, 
the protein and the protein-ligand complex (Nicholls, 2000).  

Water molecules play a prominent role in the hydrophobic effect, which is a 
critical component driving molecular recognition events (Tanford, 1979; 
Southall et al., 2002). This phenomenon is the driving “force” that aggregates 
lipophilic molecular surfaces to minimize the surface exposed to the solvent. 

The International Union of Pure and Applied Chemistry (IUPAC, 2016) 
defines the hydrophobic effect as follows: 

“The tendency of hydrocarbons (or of lipophilic hydrocarbon-like groups in 
solutes) to form intermolecular aggregates in an aqueous medium, and 
analogous intramolecular interactions. The name arises from the attribution 
of the phenomenon to the apparent repulsion between water and 
hydrocarbons. However, the phenomenon ought to be attributed to the effect 
of the hydrocarbon-like groups on the water-water interaction.…”  
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Induced-fit and “hand-on-glove” models of protein flexibility 

The induced-fit model (or “hand-on-glove” if ligand flexibility is considered) 
refers to the local rearrangements in protein structure occurring concomitantly 
with the binding of a ligand. It was first used to describe the ability of enzyme 
to bind ligands in conformations that mimic transition states, but was later 
generalized to all ligand-binding events. Numerous examples in the literature 
have demonstrated the flexibility of binding sites, e.g. the glycine-rich P-loop 
near the ATP site of kinases (Mazanetz et al., 2014). 

Najmanovich et al. (2000) have estimated that 60–70% of binding sites 
undergo some changes in conformation and orientation of side chains, based 
on a dataset composed of 980 non-redundant paired apo and holo proteins 
(Najmanovich et al., 2000). This percentage is probably a true random sample 
of ligands and proteins  (Cozzini et al., 2008), since three types of proteins can 
be defined: (i) “rigid” proteins where ligand-induced changes are limited to 
relatively small side chain rearrangements; (ii) flexible proteins where 
relatively large movements around “hinge points” or at active site loops with 
concomitant side chain motion occur upon ligand binding; and (iii) 
intrinsically unstable proteins whose conformations are not defined until 
ligand binding. Databases are, for technical reasons, enriched with rigid 
proteins, which are easier to crystallize (Tompa, 2003). 

Computational identification of binding pockets 

Computational identification of binding pockets is critical to any 
computational work about molecular recognition. The easiest way to proceed 
is to extract the protein atoms (or all atoms to include co-factors, etc.) in the 
vicinity of a bound ligand. This method is, however, restricted to situations 
where the three-dimensional coordinates of the complex have been solved or 
are based on the results of docking simulations, which in turn requires added 
information to pinpoint the precise location of the ligand binding site. 

The problem is more complex if no information about a bound ligand exists. 
Three types of methods have been devised to estimate the amino acids or atoms 
that form the pocket surface in such a case: (i) geometry-based, (ii) energy-
based and (iii) evolutionary-based (Pérot et al., 2010). 
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Geometry-based estimation 

Geometry-based estimations derive from an identification of cavities in protein 
surfaces. Two algorithms are mainly used: (i) a grid and spheres to screen the 
protein surface or (ii) Delauney triangulation to divide the protein surface into 
a unique diagram which is then screened with a sphere. For a review, see Zhou 
and Yan (2012) (Zhou and Yan, 2012). Numerous examples of geometry-
based pocket estimation software have been published in the literature such as 
POCKET (Levitt and Banaszak, 1992), LIGSITE (Hendlich et al., 1997), 
CASTp (Dundas et al., 2006), PASS (Brady and Stouten, 2000), SCREEN 
(Nayal and Honig, 2006), PocketPicker (Weisel et al., 2009), Fpocket (Le 
Guilloux et al., 2009), MSdock (Xie and Hwang, 2012) and Cavitator (Gao and 
Skolnick, 2013).  

Energy-based estimation 

Energy-based pocket estimation methods derive from the mapping of 
molecular probes on a protein surface (Hall and Enyedy, 2015). Probes are 
pseudo atoms, e.g. amino, carbonyl oxygen, carboxy-oxygen, hydroxyl, 
methyl or water molecules that are “approaching” the protein. Probe-protein 
atom interactions are usually tested at each point of a grid, including the entire 
protein. A score is then calculated based on an empirical energy function. The 
basis of this method was developed by Peter Goodford in 1985 (Goodford, 
1985) and called GRID. From GRID, numerous energy-based estimations have 
been developed such as FTMap (Brenke et al., 2009), DoGSite (Volkamer et 
al., 2010), DrugSite (An et al., 2004), QSiteFinder (Laurie and Jackson, 2005) 
and PocketFinder (An et al., 2005). 

Evolutionary-based estimation 

Evolutionary-based pocket estimation methods derive from the identification 
of invariant or less-variant amino acids in sequence alignments, as 
demonstrated by Armon et al (2001) and Lichtarge and Sowa (2002) (Armon 
et al., 2001; Lichtarge and Sowa, 2002). Evolutionary-based pocket estimation 
methods are less popular than the other pocket estimations methods, as 
reflected by the low number of methods available in the literature, e.g. ConSurf 
(Armon et al., 2001) or Rate4Site (Pupko et al., 2002). However, this method 



19 

may be combined with information about the protein structure to refine the 
pocket boundaries. For examples, see LIGSITEcsc (Huang and Schroeder, 
2006), SURFNET-ConSurf (Glaser et al., 2006), SiteMap from the last version 
(Halgren, 2009), MetaPocket (Huang, 2009) and FINDSITE (Skolnick and 
Brylinski, 2009). 

Limits of pocket estimation methods 

Success of pocket estimation methods is tested by addressing the fraction of 
pockets found in a dataset. Individual protein pockets in test sets can be defined 
by, for example, the atoms (or amino acids) observed in contact (3.5 Å) with a 
ligand-bound (holo) form of the protein. The success of prediction of each 
individual pocket is then estimated by reporting the percentage of binding 
atoms found.  

The overall success rate is usually high, over 80%: 92% for SiteMap using a 
test set of 538 complexes taken from the PDBbind database (Wang et al., 2005; 
Halgren, 2009), 90% for Q-SiteFinder using a test set of 134 proteins extracted 
from the PDB (Laurie and Jackson, 2005) and 83% for Fpocket (Le Guilloux 
et al., 2009) using three different datasets containing 48, 63 and 85 protein-
ligand complexes, respectively. However, this accuracy depends on the dataset 
used. A comparison of the different pocket estimation methods has been 
conducted using a set of 5416 protein-ligand complexes. The authors showed 
that about 95% of the binding pockets were correctly identified by the software 
tested (siteFinder, fpocket, pocketFinder and SiteMap), with no difference 
between energetic and geometric algorithms (Schmidtke et al., 2010b). 

Classical algorithms are, however, often parametrized to identify pocket 
surfaces able to bind small molecules. For particular pockets, specific pocket 
estimation methods have been developed. For example, HSpred, based on 
energetic method, can be used to estimate protein-protein interaction sites (Lise 
et al., 2011). CCCPP, based on a geometric approach, can be used for channels 
(Benkaidali et al., 2014), and AlloPred, based on an energetic algorithm, has 
been developed for allosteric pockets (Greener and Sternberg, 2015). 
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Pocket descriptors 

A binding pocket can be represented in many ways. It is common to translate 
the three-dimensional information about atom types and locations into 
numbers, known as descriptors, in order to compare binding pockets or to build 
predictive statistical models. Examples of descriptors are the composition in 
amino acids or atoms (Li et al., 2006; Milletti and Vulpetti, 2010; Rao et al., 
2011), their polarity or hydrophobicity (Kyte and Doolittle, 1982; Hoppe et al., 
2006) or geometric properties of the surface (Perola et al., 2012; Petitjean, 
2014). Pocket descriptors can also be the number of spheres included in the 
pocket (for geometry-based methods) or the relative or absolute number of 
certain probes mapped (for energy-based estimation method). Some examples 
are shown in Figure 8. 

Figure 8: Example of pocket properties visualized on Clostridium symbiosum 
phosphopyruvate binding site (PDB code 1KC7) estimated taking protein atoms 
within 6 Å of the ligand’s atoms. (A) Geometric properties from convex hull. (B) 
Amino acid composition. (C) Hydrophobicity (red being more hydrophobic), based 
on the Kyte & Doolitle hydrophobicity scale (Kyte and Doolittle, 1982)  

Pocketome 

The pocketome (or pocket space) is defined as a set of pockets sharing similar 
characteristics. It has received considerable attention recently on the premise 
that similar pockets are likely to bind similar ligands. The pocketome offers 
thus the perspective of being able to predict ligands from pockets. 

Efforts have been directed to establish pocketomes specific for certain protein 
families, e.g. the ATP pockets of human protein kinases (Volkamer et al., 
2015). Other studies have collected the ensemble ligandable pockets without 
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being restricted to certain families (Desaphy et al., 2015). The Global 
pocketome, including all binding sites reported, is available in web site 
(http://pocketome.org ) (last accessed January 2016) (Kufareva et al., 2012). 
Klebe et al. (2015) have been storing pocket information as pharmacophoric 
points in order to perform fast comparisons (Krotzky et al., 2015). 

Critical to establishing and exploiting the pocketome is our ability to conduct 
pairwise comparisons of binding pockets. The methods to compare pockets can 
be divided into geometry-based and signature-based categories and have been 
reviewed by Nisius et al (2011) (Nisius et al., 2011). 

Geometry-based pocket comparison 

Geometry-based methods define binding pockets by a cloud of points in a 3D 
space, and the analysis is driven by the comparison of the clouds of points 
representing each pocket. Typical points are amino acids, atoms, pseudo-atoms 
or surface points. Characteristic features, such as atom type, residue type or 
physicochemical properties, can be included in the similarity assessment. 

Examples of implementation are eMatchSite using amino acid sequence 
alignments to compare two pockets (Brylinski, 2014), PSIM aligning pseudo 
atoms flanking the pocket borders (Spitzer et al., 2014), SILIRID aligning a 
cloud of points defined by close-distance interaction from a ligand (Chupakhin 
et al., 2014) and APoc using a carbon-  structural alignment (Gao and 
Skolnick, 2013). Other examples are SiteEngine (Shulman-Peleg et al., 2005), 
SiteBase (Gold and Jackson, 2006) and the method suggested by Krotzky et al. 
(2014) of map clouds of points pondered by physicochemical properties or 
pharmacophoric features that carry information about hydrogen bonding 
potential, hydrophobicity or polarity (Krotzky et al., 2014). 

Signature-based pocket comparison 

Signature- based approaches define the binding pocket irrespective of its exact 
3D coordinates. These methods are generally more robust towards small 
structural changes within the binding site, but may suffer from information 
loss. To cite a few recent methods, SiteAlign maps binding site properties into 
a discretized sphere, placed at the centre of the pocket (Schalon et al., 2008); 
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CLIPPERS approximates the pocket using a travel depth algorithm and 
compares the pocket depth path (Coleman and Sharp, 2010); FuzCav compares 
pharmacophoric points using six pharmacophoric properties and fingerprint 
comparisons (hydrogen bond donor or acceptor, positive ionizable, negative 
ionizable, aromatic, aliphatic) (Weill and Rognan, 2010; Ito et al., 2012); and 
PatchSurfers compares pockets using three-dimensional Zernike descriptors, a 
representation of the 3D function of Euclidean space using a 3D Zernike 
polynomial (Shin et al., 2016). 

Prediction of pocket druggability 

Drug-like molecules  

Compounds are not equal in their ability to be used as drug molecules. The 
term drug-like captures the concept that certain properties are advantageous 
with respect to compounds becoming successful drug products. The concept 
of drug-like compounds was coined in 2000 by Lipinski (Lipinski, 2000):  

“Drug-like is defined as those compounds that have sufficiently acceptable 
ADME properties and sufficiently acceptable toxicity properties to survive 
through the completion of human Phase I clinical trials”.

2.7.1.1. Rules-of-five 

Examining structural properties of 2200 compounds extracted from the United 
States Adopted Names Directory, Lipinski et al. (1997) showed that ninety 
percent of the compounds with poor absorption or permeation had (i) number 
of H-bond donor superior to five (expressed as the sum of the OH and NH pairs 
in the molecule), (ii) molecular weight superior to 500 Da, (iii) logarithm of 
coefficient partition (log P) superior to 5 and (iv) number of H-bond acceptor 
superior to ten (expressed as the sum of Ns and Os). Lipinski translated this 
definition into a set of rules, presented for the first time in 1997, which became 
famous as the “rules-of-five” (Ro5) (Lipinski et al., 2001) (publication re-
edited in 2001). A second paper by Lipinski in 2000 examined a larger set of 
molecules in phase II clinical trials, 10 000, and enunciated the Ro5 from the 
perspective of a drug-like compound (Lipinski, 2000). Although the original 
definition did not include the concept of oral absorption, specific analyses on 
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orally absorbed drugs found that they comply well with the Ro5 (Wenlock et 
al., 2003; Vieth et al., 2004; Proudfoot, 2005). 

The rationale for the Ro5 is strongly connected to physicochemical properties 
(Kerns and Di, 2008). A large number of H-bonds increases solubility in water 
(greater ability to interact with water molecules) and reduces partitioning from 
the aqueous phase into the membrane. A large molecular weight reduces the 
compound solubility and reduces the passive diffusion through the membrane. 
Log P also decreases aqueous solubility, which reduces absorption (Abraham 
et al., 2000).  

  

2.7.1.2. Consequences of Ro5 on drug development 

A recent analysis (2015) show that among the 1543 drugs approved by the 
FDA and deposited in Drugbank (Law et al., 2014), 1318 (85.4%) obey the 
Ro5  (Tian et al., 2015). 

The Ro5 have had a major impact in the community, as seen by the more than 
1000 citations in CAS SciFinder by the end of year 2004 (Lipinski, 2004). 
Rules are typically used to anticipate drug-like properties and select 
compounds to be progressed or to prioritize the chemical space used for high-
through-put screening and virtual screening. Indeed, the number of 
theoretically accessible small molecules is in the order of ~1.2*109 molecules 
(Hann and Oprea, 2004; Ursu et al., 2011), but only a small proportion of them 
can be drug candidates (Dobson, 2004). The large impact of the Ro5 can be 
explained in several ways (see the book of Kerns et al., 2008 for discussion): 
(i) these rules are easy to understand and intuitive, (ii) their number is limited 
and easy to remember, (iii) they are easy (fast, no associated cost) to implement 
and (iv) they are based on a strong physicochemical rationale (Kerns and Di, 
2008).  

The Ro5 were originally perceived more as a profiling tool to serve as a 
guideline for drug discovery than as a strict filter, as discussed by Lipinski 
himself (Lipinski, 2004, 2005). Nonetheless, the impact of the Ro5 on the 
scientific community was so large that it set pressures on the pharmaceutical 
industries to include them as hard filters in compound development projects, 
despite these rules not being universal, for review see Leeson et al (2007) and 
Abad-Zapatero (2007) (Abad-Zapatero, 2007; Leeson and Springthorpe, 
2007).  
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2.7.1.3. Alternatives to the Ro5 

Alternative sets of rules and compound profiling methods have been 
developed. For example, the Veber rules suggest that a compound suitable for 
oral bioavailability should have (i) number of rotatable bonds less than ten, (ii) 
polar surface area less than 140 Å2 and (iii) number of hydrogen bond (H-bond; 
see also Section 4.1) donors/acceptors less than 12 (Veber et al., 2002). The 
“rules of three” suggest that fragment hit suitable for optimization should have 
(i) molecular weight less than 300, (ii) polar surface area less than 60 Å2 and 
less than three of each of the following: (iii) number H-bond donors, (iv) 
number of H-bond acceptors, (v) ClogP and (vi) number of rotatble bond 
(Congreve et al., 2003). 

Any set rules suffer from the use of strict cut-offs (Yusof and Segall, 2013), 
which can be alleviated using desirability indices and machine-learning based 
profiles. The quantitative estimate of drug-likeness index is based on the fit of 
the distributions of eight properties for 771 marked oral drugs (Bickerton et 
al., 2012). The eight properties comprise molecular weight, Log P, number of 
H-bond donors and acceptors, polar surface area, number of rotatable bonds, 
number of aromatic ring and number of alerts for undesirable substructures 
based on Brenk et al. (2008) (Brenk et al., 2008). This method tolerates more 
compound as drug-like than strict cutoff rules. Machine learning methods and 
sets of molecular descriptors are also widely used. Machine-learning methods 
are built, for example, on support vector machines (Byvatov et al., 2003; 
Zernov et al., 2003; Müller et al., 2005; Li et al., 2007), neural networks 
(Sadowski and Kubinyi, 1998; Frimurer et al., 2000; Byvatov et al., 2003; 
Takaoka et al., 2003), genetic algorithms (Gillet et al., 1998, 2002) or Bayesian 
classifiers (Yusof and Segall, 2013).  

A major limitation of any rule is the underlying data, which reflects the current 
chemical space used for drug discovery. Indeed, any model has an applicability 
domain, which is always limited by the compounds used for training (Tian et 
al., 2012).  
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Druggable versus non-druggable pockets 

Similarly to the concept of drug-like molecules used to rationalize the chemical 
space of compounds, the concept of druggability defines a protein able to bind 
a drug-like molecule with relatively high affinity (Hopkins and Groom, 2002).  
Assessment of druggability comes from the observation that proteins are 
unequal in our ability to modulate them with small molecular weight 
compounds, as exemplified by the very different hit rates obtained in different 
NMR fragment screening studies (Hajduk et al., 2005). More precisely, Hajduk 
et al. (2005) define a druggable pocket as having an affinity constant below 10 

M for a drug-like molecule (Hajduk et al., 2005). 

The assumption underlying the concept of druggability is that the 
physicochemical properties relevant to drug-like small molecules are reflected 
in the physicochemical properties of the protein pocket. Druggable pockets 
should have a volume sufficient to host a drug-like molecule, be strongly 
hydrophobic and contain a polar component. Perola et al. (2012) defined five 
properties to characterize druggable pockets, akin to the drug-like Ro5 
properties (Perola et al., 2012): (i) a volume higher than 500 Å3, (ii) a depth 
higher than 10.4 Å, (iii) an enclosure score higher than 0.28 (score 
characterizing buried pockets), (iv) proportion of charged residues lower than 
26.3% and (v) a hydrophobicity index higher than -1.12 (based on the scale of 
Kyte and Doolittle (Kyte and Doolittle, 1982)). 

Two examples, one for a druggable pocket, the other for a less druggable 
pocket, are presented in Figure 9. Both examples are taken from the kinase 
family and from the Krasowski’s dataset (Krasowski et al., 2011). 
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Figure 9: Representation of druggable and less druggable binding sites. (A) Less-
druggable binding site of the ligand phosphopyruvate on Clostridium symbiosum 
pyrophosphate d kinase, PDB code 1KC7. (B) Druggable binding site of the ligand 
bisindolylmaleimide inhibitor on Homo sapiens protein kinase C beta II, PDB code 
2I0E. Polarity are coloured from hydrophobic gradient, blue (hydrophobe) to red 
(polar). The proteins share 18.1% of sequence identity when considering a structural 
alignment of the kinase domain (71/393 aligned positions). 

Computational models to predict binding pocket 
druggability 

Predicting pocket druggability is a challenging procedure with many 
applications, principally to identify cavities that could be used for binding 
small molecules or to guide the choice of a target during a drug development 
programme (Pérot et al., 2010).  

The methods used to predict druggability models are similar to those employed 
in QSAR modeling (see Section 5.3). Numerical descriptors are used to define 
the pocket and used to predict an outcome (druggable/non-druggable) that may 
be associated with a quantity (druggability score) but could also be a 
probability of classification. Table 1 presents an overview of the different 
druggability models proposed in the literature. Druggability models usually 
come as a “package” tied to a pocket estimation method. 

. 
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Table 2: Overview of druggability models. * models available in a webserver or 
software. NRDD: Non-Redundant Druggability Dataset. NRDLD: Non-Redundant 
dataset of Druggable and Less Druggable binding sites. D: druggable pocket. ND: 
non-druggable pocket. 

Model Pocket estimation Dataset Descriptors 
(Hajduk et al., 
2005) 

Geometric criteria 
only, flood-fill 
algorithm (Insight II, 
Accelrys) 

Hajduk’s set 
28 D, 29 ND 

13 terms representing polar 
and lipophilic surface areas, 
surface complexity and 
dimensions (Linear 
Regression) 

SCREEN 
(Nayal and 
Honig, 2006) 

Molecular surface 
cavity depth detection 
(GRASP) (Nicholls et 
al., 1991) 

100  
protein–ligand 
complexes 
(Perola et al., 
2004). 

Only geometric, GRASP 
score (Random Forest) 

MAPPOD (Cheng 
et al., 2007) 

MOE SiteFinder 
alpha-spheres based 
estimation 
(Labute and Santavy, 
2010) 

Cheng’s set 
17 D, 10 ND 

Curvature and lipophilic 
surface area (Biophysical 
model, free energy 
estimated) 

Dscore-SiteMap 
* (Halgren, 
2009) 

Grid defined on the 
ligand position 

Cheng’s set 
17 D, 10 ND 

Hydrophobicity, size and 
enclosure (Linear 
Regression) 

SiteScore 
(Gupta et al., 
2009) 

Using SiteMap 
(Halgren, 2009)

Gupta’s HTS 
data, 22 
proteins and 
Hajduk’s set 

Polar, apolar surfaces, shape 
and volume (Regression 
using VALSTAT (Gupta et 
al., 2004)) 

DLID (Sheridan 
et al., 2010)

icmPocketFinder 
(Laurie and Jackson, 
2005) 

290 000 
pockets from 
PDB and  
Cheng’s set as 
test set 

Volume, buriedness and 
hydrophobicity (Linear 
Regression) 

(Huang and 
Jacobson, 2010) 

Probe mapping using 
Dock version 3.5.54 
(Lorber and Shoichet, 
1998) 

Hajduk’s set 
and DUD 
(Huang et al., 
2006) set 
35 D, 37 ND  

Binding site energy 
approximation based on 
OPLS force field 
(Biophysical model, free 
energy estimated) 



28 

(Schmidtke and 
Barril, 2010)*

Fpocket (Le Guilloux 
et al., 2009) 

Schmidke’s 
set (NRDD) 
45 D, 20 ND 
including 
Cheng’s and 
Hajduk’s sets 

Normalized local 
hydrophobicity density and 
polarity density, 
hydrophobicity score 
(Linear Regression) 

DrugPred 
(Krasowski et 
al., 2011) 

Probe mapping using 
Dock version 3.5.54 
(Lorber and Shoichet, 
1998) 

Krasowski’s 
set (NRDLD) 
71 D, 44 ND 
including 
NRDD set 

Contact area between probes 
and protein, hydrophobic 
area, polar surface, 
occurrence polar amino 
acids, hydrophobicity index 
(Partial Least Square 
Regression)  

Volsite 
(Desaphy et al., 
2012) 

Volsite, probe 
mapping 

NRDLD 
71 D, 44 ND 

Pharmacophores cavities: H-
bond acceptor, H-bond 
donor, H-bond acceptor and 
donor, negative ionizable, 
positive ionizable, 
hydrophobic, aromatic. 
(Support Vector Machine) 

DoGSiteScorer* 
(Volkamer et 
al., 2012a) 

DoGSite (Volkamer et 
al., 2012a) 

NRDD 
45 D, 20 ND 

Set of 17 descriptors 
representing, among depth, 
relative number of amino 
acid apolar, polar, position 
and negative, volume, shape, 
surface lipophilic and 
solvent exposure (Support 
Vector Machine) 

CAVITY-
SCORE (Yuan 
et al., 2013) 

CAVITY (Chen et al., 
2009) 

NRDLD 
71 D, 44 ND 

Enclosure, number of 
hydrophobic and H-Bond 
normalized (Linear 
Regression) 

DrugFEATURE 
(Liu and 
Altman, 2014) 

Microenvironment 
searching FEATURE 

Combine 
Hajduk’s and 
Cheng’s sets 
and few 
complexes 

From comparison score 
between microenvironment 
known binding drug-like 
molecules and 
microenvironment include 
in the pocket 
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from 
DrugBank 

FTMap* for 
druggability 
(Kozakov et al., 
2015) 

FTMap (Brenke et al., 
2009) 

Combine 
Hajduk’s and 
Cheng’s sets to 
validate their 
score 

Hot spot geometric 
properties, e.g. dimension, 
number of probes size of 
probe cluster 

Limitations and challenges of druggability models 

A major limitation of druggability models is the low number of studies 
reporting druggability information (i.e. studies using drug-like molecules or 
fragment screens on multiple targets) that are available to the academic 
community (Fauman et al., 2011; Nisius et al., 2011). Only a few datasets are 
used in the literature, as shown in Table 1, namely only Cheng’s and Hajduk’s 
datasets (Hajduk et al., 2005; Cheng et al., 2007). Doak et al. (2015) suggested 
overcoming this limitation by broadening the drug-like and druggable target 
definitions, allowing the development of more diversified datasets (Doak et al., 
2015). Another way to loosen the definition is to extend the concept of 
druggability to include “bindability” or “ligandability”, i.e. whereas the ligands 
of interest are not restricted to drug-like molecules (Sheridan et al., 2010; 
Surade and Blundell, 2012).  

A consequence of the limited amount of data is the inability of druggability 
models to make reliable predictions for cases different from buried or occluded 
pockets, e.g. binding sites in protein-protein interactions, which are larger and 
flatter that small molecule binding sites (Jones and Thornton, 1996; Jin et al., 
2014). To respond to this limitation, druggability models focussing on specific 
cases have been developed, e.g. for protein-protein interactions (Sugaya and 
Furuya, 2011; Johnson and Karanicolas, 2013), for all mammalian proteins in 
the PDB (Loving et al., 2014) and for 565 proteins predicted from the 
Pseudomonas aeruginosa genome (Sarkar and Brenk, 2015). 

The second challenge for druggability prediction models is to consider 
explicitly protein flexibility, either motions of the binding site or transient 
pockets in the protein. Different statistical models of druggability taken from 
snapshots from molecular dynamic simulation trajectories have been 
developed (Seco et al., 2009; Yugang et al., 2011; Bakan et al., 2012; Cuchillo 
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et al., 2015). Molecular dynamic simulations require, however, 
parametrization, which limits their applicability on a large scale. 

Lastly, each model depends on a specific pocket estimation method (Pérot et 
al., 2010; Nisius et al., 2011), making the predictions difficult to compare, 
especially when the pocket estimation method is not available. This 
furthermore prevents the estimation of druggability performance from cavities 
in the protein defined visually. From the 14 models presented in Table 1, only 
four models are readily available.  

  



31 

3. Principles of molecular recognition 

The principles beyond binding pocket druggability are linked to the 
phenomena of molecular recognition. A rigorous way to describe these 
phenomena is through thermodynamics. 

Fundamental thermodynamic equations 

A binding process can be described as an association or a dissociation between 
a ligand (L) and a receptor (R): 

[R], [L], [RL]: concentration (mol L-1) for the ligand, receptor and complex. 

The process is dynamic and depends on the association ( ) and dissociation 
rate constants ( ). The binding affinity constant ( ) characterizes the 
affinity between a ligand and a host protein. The equilibrium constant ( ) is 
defined by the dissociation constant: 

At equilibrium,  is connected to the temperature and entropic and enthalpic 
standard energies using the Van’t Hoff equation:  

: standard enthalpy (J mol-1) 

: standard entropy (J mol-1) 

T: absolute temperature (K) 

R: ideal gas constant (8.3144621 J mol-1 K-1) 
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This relationships is used to estimate the spontaneity of a reaction, in our case 
the binding (association) of a ligand to a host protein. The standard free energy 
is connected to standard entropy and standard enthalpy and consequently to the 

. 

R: ideal gas constant (8.3144621 J mol-1 K-1) 

T: absolute temperature (K) 

: initial ligand concentration (mol L-1) 

: standard enthalpy (J) 

: standard enthalpy (J) 

The spontaneous association takes place only, when the standard Gibbs free 
energy (in Joules) is negative 

Experimental assessment of thermodynamic parameters

Measuring binding free energy 

Affinity constants  are classically determined in pharmacological 
assays and can be used to estimate . Competitive binding assays are among 
the most commonly used methods to determine  of a compound. This assay 
uses the displacement (competition) of an unlabelled ligand (passive) against 
the labelled one (active). It presents the advantage that the passive ligands do 
not need to be labelled, which is impractical e.g. for screening purposes. A 
competition assay is usually performed so that the binding site of receptor is 
first saturated with the labelled ligand, then increasing concentrations of the 
unlabelled one are added, and displacement of the labelled ligand is measured. 

, the concentration of unlabelled ligand necessary to displace 50% of the 
labelled one, can then be estimated. , which is the inhibition constant and as 
such independent of the labelled ligand binding affinity, can then be estimated 
from IC50 using the Cheng-Prusoff equation (Cheng and Prusoff, 1973) when 
a simple mechanism is at hand (e.g. non-competitive inhibition in the case of 
an enzyme). 



33 

: Michaelis constant 

: inhibition constant 

[L]: ligand concentration (mol L-1) 

: half maximal inhibitory concentration (mol L-1) 

Surface plasmon resonance (SPR) 

Surface plasmon resonance (SPR) is an optical technique used for 
characterization of intermolecular interactions (Helmerhorst et al., 2012; Olaru 
et al., 2015). The technique was published for the first time in 1983 for 
detection of gases (Liedberg et al., 1983) and has since then been developed to 
measure the interaction between biological macromolecules (for review, see 
Schuck, 1997). The principle underlying the method is detailed in Figure 10 
(Cooper, 2002). A surface plasmon is a surface charge density wave at a metal 
surface. The SPR method reposes on the changes of the refractivity index on a 
surface plasmon. The interactions between the fixed macromolecules and other 
molecules circulating in a flow channel perturb the wave in the metal film. The 
evolution of the refractivity index, measured in real-time, gives the kinetic of 
the interaction (see Figure 10B).  

.  
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Figure 10: SPR principle. (A) Typical set-up for an SPR biosensor. (B) A typical 
binding cycle observed with an optical biosensor, adapted with permission from 
Cooper 2002 (Cooper, 2002). 

The SPR technique is considered one of the most important analytical tools to 
measure and characterize biological interactions since it is non-invasive and 
accurate (Yadav et al., 2012). It is furthermore label-free, i.e. it does not require 
a radioligand but requires a ligand immobilized. 

Isothermal Titration Calorimetry (ITC) 

Isothermal titration calorimetry is a biophysical technique that allows a full 
thermodynamic characterization of a protein-ligand interaction by measuring 
the heat evolved during molecular association. Indeed, when a protein interacts 
with a ligand, heat is either released (exothermic) or absorbed (endothermic).   

An ITC is composed of two identical cells, a reference and a sample cell, 
surrounded by an adiabatic environment. The reference cell contains the buffer 
and the sample cell contains the macromolecules. Series of small aliquots of 
ligand are injected into the sample cell and, using a temperature differential 
sensor, the difference temperature between the two cells is measured in real-
time. The heat transferred during the injection allows estimation of different 
thermodynamic variables such as entropy or enthalpy and the protein-ligand 
interaction kinetic (Peters et al., 2009; Ladbury, 2010). An example of ITC 
material and the data accessed is presented in Figure 11. The first ITC was 
developed by Laplace and Lavoisier in the 1850s. 
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Figure 11: (A) Example of experimental ITC instrument. (B) Example of results of a 
characteristic titration experiment (upper) with the associated data analysis. 
Reproduced with permission from Geschwindner et al. (2015) (Geschwindner et al., 
2015). 

Sensitivity of ITC is a crucial factor. One of the limits of this method is that it 
detects the total heat effect in the sample cell upon addition of ligand; the total 
heat includes non-specific effects such as dilution of ligand in the buffer, 
dilution of the protein sample, heat of mixing, temperature difference between 
the cell and the syringe and mixing of buffers of slightly different composition 
(Böhm and Schneider, 2012). Today, the quality of the measurements is close 
to 10-9 J using a nanocalorimeter, but requires significant amounts of purified 
protein (Perozzo et al., 2004; Roselin et al., 2010; Torres et al., 2010). ITC is 
commonly used in the community, with more than 500 articles reporting its 
use (citations collected from Web of Science, PubMed, SciDir and OVID 
databases in 2010 (Ghai et al., 2012)). Among these, more than 130 citations 
referenced a study about protein small molecules interactions. 
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Factors influencing binding free energy 

The free energy of binding is central to understanding protein-ligand 
interactions, as stated by a pioneer in the field, Professor Peter Kollman: 

"Free energy is arguably the most important general concept in physical 
chemistry" (Kollman, 1993). 

Figure 12: Illustration of the phenomena associated with a thermodynamic 
contribution to the binding free energy. H-bonds are indicated by dashed lines and 
hydrophobic interactions by dotted lines. Reproduced with permission from Klebe 
(2013) (Klebe, 2013). 

Free binding energy is influenced by many factors that depend on the ligand’s 
and receptor’s intrinsic properties as well as the environment, especially the 
solvent. This is illustrated on Figure 12, reproduced with permission from the 
book “Drug Design: Methodology, concepts, and mode-of-action” (Klebe, 
2013). In Figure 12, protein and ligand are shown as dissociated and 
associated, and three different factors contributing to the binding free energy 
are reported. The first one is the translational or rotational degrees of freedom, 
illustrated by the ligand. When the ligand is free, it may be able to adopt 
different conformations. When the ligand is bound, the degrees of freedom are 
reduced. This contribution of the free energy is entropic by nature, relative to 
the order of the system. The second factor influencing the free energy is the 
interactions formed, which can be illustrated by the H-bonds between the 
ligand and the water molecules, between the protein and the water molecules 
and between the ligand and the receptor. These interactions are enthalpic in 
nature, however, the loss of water molecule-ligand interactions can lead to a 
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disordered water molecules network and generate an entropic contribution. 
Surrounding hydrophobic regions of the ligand and the protein, water 
molecules are also present, forming a “cage” of water molecules. Breaking this 
ordered network can be unfavourable to the protein-ligand interaction. Finally, 
when protein and ligand are bound, water molecules in solution are free and 
form a new water molecules network. The overall contribution of water 
molecules to the binding free energy is thus very difficult to quantitatively 
estimate (Tanford, 1979; Huggins, 2012; Biela et al., 2013; Breiten et al., 2013; 
Alvarez-Garcia and Barril, 2014; Jeszen i et al., 2016) (see also Section 5.4). 

Computational estimation of the binding free energy change of a 
system 

Principle of binding free energy estimation 

The theoretical prediction of binding free energy is a “holy grail” of 
computational drug discovery methods. It has application towards the 
discovery of novel active compounds, the anticipation of side effects, and more 
globally about our understanding of the factors involved in the formation of 
protein-ligand complexes (Gilson and Zhou, 2007; Steinbrecher and Labahn, 
2010; Ashida and Kikuchi, 2015). Different methods to estimate the binding 
free energy have been presented in the literature. The most popular are (i) the 
free energy perturbation and the thermodynamic integration methods 
(Beveridge and Dicapua, 1989; Kollman, 1993), (ii) the molecular mechanics/ 
Poisson-Boltzmann surface area (MM/PBSA) (Kollman et al., 2000) and (iii) 
the linear interaction energy methods (Aqvist and Marelius, 2001). For a 
complete review, see Ashida and Kikuchi (2015) (Ashida and Kikuchi, 2015). 

A fundamental principle underlying binding free energy estimation is that the 
binding free energy is equivalent to the sum of the contributions of the 
thermodynamic components (group of atom, receptor, ligand) taken 
independently , , , , ….) (Cozzini et al., 
2004). To illustrate this principle, the model MM/PBSA is presented below 
(Kollman et al., 2000). This model is popular in drug design, with applications 
in protein design, protein-protein interactions, conformer stability and re-
scoring function; it has been described in 100-200 publications a year over the 
last five years  (Genheden and Ryde, 2015). The model is an end-point model, 
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i.e. it calculates the binding free energy from molecular dynamics of bound 
and free ligand only, not for intermediate states. 

The binding free energy is given by the equation: 

, , : states of the system L ligand only, R receptor 
only and RL receptor ligand complexed. 

For each state: 

, , : Energies of bond (bond, angle and dihedral), electrostatic 
and van der Waals terms computed using molecular mechanics (i.e. a force-
field).  

, : solvent contributions, polar and non-polar, to the solvation free 
energies.  is obtained by solving the Poisson-Boltzmann equation.  is 
estimated from the implicit solvent model, i.e. a linear relation to the solvent 
accessible surface area (SASA) (Connolly, 1983). The entropy  is estimated 
by a normal-mode analysis of the vibrational frequencies based on the data 
assessed during the molecular dynamic.  

To improve the quality of the computation, classically, the estimated binding 
free energy based on these different equations is averaged from three 
independent molecular dynamics (Swanson et al., 2004). 

Limitations and challenges for the models of free energy 
estimation 

To date, the main limitation reported is accuracy. Predictions are system- and 
protocol-dependent  (Mikulskis et al., 2014), and accuracies generally 
relatively poor, e.g. a mean standard error between 11 and 14 kJ mol-1 has been 
reported (Genheden and Ryde, 2015). Other limitations are high computational 
time and need of specific expertise, restricting their routine application 
(Steinbrecher and Labahn, 2010; Ashida and Kikuchi, 2015).  

Water molecules represent another important challenge to free energy 
estimations. MM/PBSA uses an implicit solvent model based on solvent 
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accessibility surface (Connolly, 1983). However, different models exist to 
estimate the contributions to the binding free energy of water molecules; the 
most popular being TPIP4 (Jorgensen et al., 1983) and TPIP5 (Mahoney and 
Jorgensen, 2001). TPIP4 and TPIP5 approximate water molecules as rigid 
bodies having four or five interaction points. Energy of the bulk water 
molecules has been estimated at 94.83 kJ mol-1 for the TPIP4 model and 80.97 
kJ mol-1 for the TPIP5 model (Huggins, 2012). These models consider each 
hydration site’s need sequentially and are therefore extremely computationally 
intensive. 
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4. Molecular interactions 

The major classes of molecular interactions between a protein and a ligand are 
the irreversible covalent interactions and the reversible non-covalent 
interactions.  

Covalent interactions represent a particular case in protein-ligand interactions. 
There are several reasons for this, one being that the process is no longer at 
equilibrium, or that enzymes covalently linked with an inhibitor need to be 
degraded and re-synthesized for the enzymatic activity to be continued. In the 
drug discovery process, irreversible interactions are often associated with 
adverse effects (Mah et al., 2014). Nonetheless, it is interesting to note that 
30% of marketed drugs acting on enzymes do so through covalent interactions 
(Robertson, 2005). A multitude of chemical mechanisms are used for covalent 
interactions, such as acylation, alkylation, metal-metalloid binding, disulfide-
bond formation, hemiketal formation, Michael addition and Pinner reaction 
reviewed in Postashman and Duggan (2009) (Potashman and Duggan, 2009). 

Weak (non-bonded) interactions between atoms of a ligand and a protein are 
individually weak but collectively strong. The most common types of non-
covalent interactions are presented in Figure 13 and discussed in more detail 
below: hydrogen bond (H-bond) (Section 4.1), salt bridge (Section 4.2) 
halogen bond (X-bond) (Section 4.3) and -systems (Section 4.4). These, of 
course, do not represent an exhaustive list of all possible molecular interactions 
(Bissantz et al., 2010).  

In molecular modeling, non-bonded interactions are modelled using two types 
of forces that may be attractive or repulsive. The electrostatic force can be 
modelled using the Coulombic law and depends on the charge carried by the 
interacting atoms as well as the distance r separating them. Electrostatic forces 
are inversely proportional to r2. The van der Waals forces (Keesom force, 
Debye force, London dispersion forces) depend on the presence of permanent 
or induced dipoles as well as on steric factors and are inversely proportional to 
r4 or r6.  
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Figure 13: Examples of non-covalent interactions in protein-ligand complexes. (A) 
Homo sapiens orexin receptor OX2 complexed with the insomnia drug suvorexant 
PDB code 4S0V. (B) human herpes virus 3 thymidine kinase in complex with (E)-5-
(2-bromovinyl)-2'-deoxyuridine-5'-monophosphate, PDB code 1SON. Interactions 
are predicted using Protein-Ligand Interaction Profiler (Salentin et al., 2015). 
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Hydrogen bond (H-bond) 

Figure 14: Example of H-bond network stabilizing (E) 
-5-(2-bromovinyl)-2'-deoxyuridine-5'-monophosphate 
in human herpesvirus 3 thymine kinase; PDB code 
1OSN. 

Hydrogen bonds are classical non-bonded interactions, illustrated in Figure 14. 
A hydrogen bond is characterized by two partners: a hydrogen-bond donor (X-
H), i.e. an electronegative atom bonded to a polarized hydrogen atom, e.g. an 
oxygen atom of a hydroxyl group; and a hydrogen-bond acceptor (Y), which 
may be an atom (can be an anion) or a group of atoms. An aromatic ring can 
serve as a hydrogen bond acceptor since its electron-rich  system above and 
below the aromatic ring hosts a partial negative charge (Du et al., 2013).  

The modern definition of H-bond from the IUPAC (Arunan et al., 2011) is as 
follows: 

“The hydrogen bond is an attractive interaction between a hydrogen atom 
from a molecule or a molecular fragment X–H in which X is more 
electronegative than H, and an atom or a group of atoms in the same or a 
different molecule, in which there is evidence of bond formation. A typical 
hydrogen bond may be depicted as X–H•••Y–Z, where the three dots denote the 
bond” 

The IUPAC defines a list of six criteria for hydrogen bonds (E1-6), and six 
characteristics (C1-6) particular to hydrogen bonds are summarized in Table 2 
for a hydrogen bond X–H•••Y–Z. 
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Table 2: Summary of the criteria and characteristics particular to the H-bond 
interaction. 

 Criteria  Characteristics 
E1 Forces involved in formation 

of the H-bond include those 
originating from 
electrostatics, from charge 
transfer, and from dispersion 

C1 The pKa of X•••H and pKb of 
Y-Z in a given solvent 
correlate strongly with the 
energy of the H-bond formed 
between them 

E2 The H•••Y bond strength 
increases with the 
electronegativity of X. 

C2 The proton shared between 
donor and acceptor may be 
transferred between both 
partners (i.e. the case of salt 
bridge) 

E3 The X-H•••Y is usually close 
to 180°. 
Closer to 180° indicates a 
stronger H-bond and shorter 
H•••Y distances 
  

C3 The network of hydrogen 
bonds can show co-
operativity, leading to 
deviations from pair-wise 
additivity in hydrogen bond 
properties 

E4 Greater X-H length indicates 
stronger H-bonds.  
Spectroscopic 
considerations. 

C4 H-bond have directional 
preferences. 

E5 NMR considerations. C5 Interaction energy correlates 
well with the extent of charge 
transfer 

E6 H-bond should be thermally 
stable. 

C6 Considerations about the 
electron density topology 

A common way to study the characteristics of hydrogen bonds is to mine 
crystallographic data either from proteins (PDB) or from small molecules 
(CSD) (Bissantz et al., 2010). Atomic distances reflect the strength of the H-
bonds, weaker H-bonds being longer (Williams and Ladbury, 2003).  Different 
types of H-bond, i.e. very strong, strong and weak, can be defined as a function 
of the types of acceptor and donor atoms (see Table 3). In terms of X-H•••Y 
angle, structure analysis show that although this angle can vary, e.g. in the case 
of a bifurcated H-bond, it remains greater than 150° (Taylor et al., 1983; 
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Lommerse et al., 1997; Nobeli et al., 1997). Bifurcated H-bonds are more 
common for weak H-bonds (Sarkhel and Desiraju, 2004; Panigrahi and 
Desiraju, 2007). 

Table 3: Potential H-bond donor and acceptor groups classified according to their 
strength of interaction. X is any atom, Hal is any lighter halogen and M is a transition 
metal. Adapted from Williams et al. (2003) (Williams and Ladbury, 2003). 

 Donor Acceptor 
Very strong N+H3, X+-H, F-H COO-, O-, N-, F-

Strong O-H, N-H, Hal-H O=C, O-H, N, S=C, F-

H, Hal-

Weak C-H, S-H, P-H, M-H C=C, Hal-C, , S-H, M, 
Hal-M, Hal-H, Se 

H-bond energies depend mainly on the properties of the hydrogen-bond donor 
and acceptor groups. The H-bond contributions to the binding free energy are 
case-dependent. H-bond-driven contribution to the binding free energy appears 
to range from 2 to 8 kJ mol-1 (Klebe, 2013). Six chemical “Leitmotifs” have 
been suggested to be able to describe the diversity of the observed H-bonds 
(Gilli et al., 1994, 2009; Gilli and Gilli, 2000). In particular, dependencies 
between the strength of the H-bond interaction, the distance and the pKa value 
difference between the donor and acceptor atoms were observed (Gilli et al., 
2009).  
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Salt bridge 

Figure 15: Example of salt bridges between the 
carboxylate from the 4-(acetylamino) -3- 
[(aminoacetyl)amino] benzoic acid and the 
Influenza A virus neuraminidase, PDB code 1INH. 

Salt bridges are charge-assisted H-bonds formed between a negatively charged 
(acidic) functional group (H-bond acceptor; such as the side-chain carboxyl 
group from aspartate or glutamate) and a positively charged (basic) donor 
(such as side-chain functional groups of lysine, arginine or histidine). This type 
of H-bond is classified as a very strong H-bond and is characterized by a short 
distance between the interacting non-hydrogen atoms, median 2.79 Å (Bissantz 
et al., 2010). 

Salt bridges have been well characterized in proteins since they are key to 
protein folding, flexibility and thermostability (Hall et al., 2013; Lee et al., 
2014; Meuzelaar et al., 2014; Lotze and Bakker, 2015). For example, salt 
bridges have been shown to play an important role in the stability of secondary 
structure elements (Sarakatsannis and Duan, 2005; Donald et al., 2011). From 
a set of 1500 proteins from the PDB (Gvritishvili et al., 2008), 39.4% of lysine, 
60.6% of arginine, 47.1% of aspartate and 52.9% of glutamate were shown to 
be involved in at least one salt bridge interaction (Gvritishvili et al., 2008).  

The energetic contribution of salt bridges is very difficult to quantify (Debiec 
et al., 2014) since not only do they combine van der Waals and electrostatic 
energetic contributions but also charged H-bond acceptor and donor groups are 
strongly solvated. Salt bridges may also be mediated by water molecules; 
32.8% of histidine, arginine and lysine side chains and 24.6% of asparatic acid 
and glutamic acid positive side chains are involved in a water-mediated salt 
bridge (Sabarinathan et al., 2011). 
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Halogen bond (X-bond) 

Figure 16: Example of X-bond interaction 
between the chlorines from the (4r)-7,8-
dichloro-1', 9-dimethy l-1-oxo-1, 2, 4, 9- 
tetrahydrospiro [beta-carboline-3, 4'-
piperidine]- 4-carbonitrile and the human 
protein kinase 3, PDB code 3BHY. 

Halogen bonds are comparable to hydrogen bonds, but it is the halogen atom 
that is shared between a donor and an acceptor. Halogen bonds (X-bond) were 
discovered in 1986 (Ramasubbu et al., 1986). In a crystallographic 
environment, electrophiles such as metal ions tend to approach halogens of C-
X (X = F, Cl, Br, I) at an angle of ~ 100° (“side-on”), while nucleophiles, such 
as oxygen and nitrogen, approach at an angle of ~165° (“head-on”) 
(Ramasubbu et al., 1986). An example of a halogen bond between chlorine 
(Cl) atoms and main-chain carbonyl oxygen atoms is presented in Figure 16. 

The definition of a halogen bond from the IUPAC (Desiraju et al., 2013) is 
given as: 

“A halogen bond occurs when there is evidence of a net attractive interaction 
between an electrophilic region associated with a halogen atom in a molecular 
entity and a nucleophilic region in another, or the same, molecular entity.”

This interaction is based on an electronic depopulation of the valence pz orbital 
of the halogen atom, which forms an electropositive “hole“ that can function 
as a halogen bond donor. Two interaction models have been suggested, the 
quantic -hole model and the electrostatic model lump-hole, presented in 
Figure 17 (Ford and Ho, 2015). 
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Figure 17: (A) Example of -hole model: The formation of a covalent carbon–halogen 
bond (a C—X -bond) pairs the electrons from the valence orbitals of the two atoms. 
As a result, the pz orbital of the halogen opposite the -bond becomes depopulated, 
resulting in an electropositive crown (in blue), whereas the pxy orbitals retain their 
complement of electrons to account for the overall negative charge of the halogen 
(reproduced with permission from Scholfield et al (2015); Figure legend from 
Scholfield et al (2015)) (Scholfield et al., 2015). (B) Electron distribution of atoms in 
CH3Br, as predicted from the lump-hole theory. The distribution of electrons forms a 
ring around the bromine centre (accounting for the majority of electrons at the atomic 
surface) and a “hole” at the surface that can interact with the “lump” of electrons 
from an interacting X-bond acceptor. The standard surface of the bromine atom is 
outlined as a spherical cage. Reproduced with permission from Ford et al (2015); 
Figure and legend from Ford et al (2015) (Ford and Ho, 2015). 

X-bonds have a length of interaction that depends on the type of halogen atom, 
more specifically, the radius and polarizability of the halogen donor, F > Cl > 
Br > I (Ford and Ho, 2015). For example, halogen bonds have been shown to 
range between 2.57 Å for C-F•••H bonds and 3.42 Å for C-I•••S bonds (Lu et 
al., 2010). The angle of a halogen bond was found to be around 160°, but close 
to 100° in the case where the X-bond acceptor is an H-atom  (Lu et al., 2010).. 

Halogen bonds may be found in numerous drug interactions; 50% of the 
current drugs are halogenated, often in order to increase membrane 
permeability and decrease metabolic degradation (Xu et al., 2014). Contrasting 
with their importance, halogen bonds are poorly implemented in molecular 
force fields (Ford and Ho, 2015).  
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-systems 

A -system is a conjugated system of connected p-orbitals, alternating single 
and double bonds. -systems may be linear or cyclic. In proteins, -systems 
are carried by the aromatic amino acids Trp, Phe, His and Tyr, as shown in 
Figure 18. 

Figure 18: Examples of -systems. (A)-(B) -stacking and cation-  interaction from 
Torpedo californica acetylcholinesterase complexed with donepezil, PDB code 1EVE. 
(C) Intra-protein anion-  interaction from Comamonas testosteroni isomerase, PDB 
code 8CHO. 

-stacking – The favourable interaction between two aromatic -systems can 
be explained by a particular polarization of -systems, which creates a 
quadrupole moment with partial negative and positive charges respectively 
positioned above both aromatic faces and in the ring periphery (Martinez and 
Iverson, 2012). Interaction of polarized -systems leads to several possible 
low-energy preferred arrangements such as stacked, T-shape, parallel 
displaced and reversed polarity (see Figure 19). In terms of energy, it has been 
estimated that the different configurations may be ordered as stacked < T-shape 
< parallel < reverse polarity (Tsuzuki et al., 2002).   

In terms of geometry, the distance between the centres of two interacting rings 
are in the range of 4.5–5 Å for a -stacked configuration, and below 7.5 Å for 
the other configurations, as shown from a dataset containing 505 proteins 
(McGaughey et al., 1998). In terms of angle, for the T-shape the angle between 
the orthogonal line from one ring centre to the other ring centre is less than or 
equal to 30° (Chakrabarti and Bhattacharyya, 2007). 
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Figure 19: Types of -stacking for benzene rings with the charge distribution around 
the  systems. (A) stacked. (B) T-shape. (C) paralleled. (D) reverse polarity. Adapted 
from Matthews et al (2014) (Matthews et al., 2014). 

Cation-  - Cation-  interactions have been recognized as an interaction 
between the face of an electron-rich -system and a cation, and thus, include a 
component of charge (see Figure 18B). In terms of strength, cation-
interactions are at the same level as strong H-bonds, but below the level of salt 
bridges (Gallivan and Dougherty, 2000). The length of cation-  interactions 
are shorter than the stacking interaction of -systems, e.g. ~3.5 Å for an 
interaction between a benzene and a primary amine (Dougherty, 1996; 
Gallivan and Dougherty, 2000). Cation-  interactions are furthermore 
preferentially exposed to solvent (Gallivan and Dougherty, 2000). A critical 
role for cation-  interactions has been shown for many protein-ligand systems 
(Dougherty, 2013), e.g. the binding of nicotine to acetylcholinesterase 
receptors. 

Anion-  - Anion-  interactions were first demonstrated by X-ray 
crystallography using different types of aromatic rings and anions (Quiñonero 
et al., 2002). In proteins, anion-  interactions have been observed as an 
edgewise interaction between Asp or Glu and aromatic amino acids upon 
analysis of 946 complexes from the PDB (Jackson et al., 2007). The length of 
the interaction was found to be between 4.5 and 5 Å (Jackson et al., 2007). 
More surprisingly, anions have also been found to position themselves 
preferably in axial position with respect to the plane of the ring (Giese et al., 
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2015), which can be explained theoretically by studying the electronic 
configuration. 

Molecular docking 

Molecular docking is a computational method that aims to predict the binding 
mode of a ligand to a protein or to rank compound libraries based on the “fit” 
of compounds for a binding site (Bohm and Schneider, 2000; Cheng et al., 
2012; Fatumo et al., 2013). Docking simulations are thus today an essential 
structure-based drug design strategy (Kroemer, 2007; Meng et al., 2011; 
Ferreira et al., 2015). Recent examples of structure-based virtual screening 
applications are many: for the human immunodeficiency virus-1, reverse 
transcriptase inhibitors screening (Santos et al., 2015), for the discovery of 
novel inhibitors against Mycobacterium tuberculosis, 3-dehydroquinate 
dehydratase (Petersen et al., 2015), and for the discovery of inhibitors of the 
PyrD protein, proteins allowing antibiotic resistance of Pseudomonas 
aeruginosa (Guo et al., 2016). 

A large number of docking softwares have been and are being developed. A 
representation of the most commonly used docking software is provided in 
Figure 20 (Sousa et al., 2013). The most popular softwares are AutoDock 
(Morris et al., 1998), Gold (Jones et al., 1995, 1997) Glide (Friesner et al., 
2004) and DOCK (Ewing et al., 2001).  

docking is a computational method that aims to predict the binding mode of a 
ligand to a protein or to rank compound libraries based of the “fit” of 
compounds for a binding site (Bohm and Schneider, 2000; Cheng et al., 2012; 
Fatumo et al., 2013). Docking simulations are thus today an essential structure-
based drug design strategy (Kroemer, 2007; Meng et al., 2011; Ferreira et al., 
2015). Recent examples of structure-based virtual screening applications are 
many, for the human immunodeficiency virus-1 reverse transcriptase 
inhibitors screening (Santos et al., 2015), the discovery of novel inhibitors 
against Mycobacterium tuberculosis 3-dehydroquinate dehydratase (Petersen 
et al., 2015), or the discovery of inhibitors of the PyrD protein, protein allowing 
antibiotic resistance of Pseudomonas aeruginosa (Guo et al., 2016). 

A large number of docking softwares have been and are being developed. A 
representation of the most used docking software is provided as Figure 20 
(Sousa et al., 2013). The most popular softwares are AutoDock (Morris et al., 
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1998), Gold (Jones et al., 1995, 1997) Glide (Friesner et al., 2004) and DOCK 
(Ewing et al., 2001).  

Figure 20: Number of citations for the most common protein-ligand docking 
programs in the period 2001-2011. Programs published in 2011 are not included. 
Adapted from Sousa et al. (2013) (Sousa et al., 2013). 

As a variety of docking algorithms are available, an understanding of the 
advantages and limitations of each method is of fundamental importance in the 
development of effective research strategies. Docking studies are divided into 
two steps: (i) ligand and receptor preparation, which includes the generation of 
3D conformers for a ligand; (ii) pose prediction; and (iii) selection of the best 
poses using a scoring function. 

Preparation  

The preparation involves preparation of ligand and receptor, and consists of 
adding hydrogen atoms, eliminating water molecules, specifying the correct 
protonation and tautomerization states of the binding site and ligand, and 
calculating partial charges. This step is docking-software dependent, for the 
software Glide see e.g. original publication (Friesner et al., 2004). Assigning 
for example incorrect ionization can have important consequences on the pose 
predicted (Jain and Nicholls, 2008; Kirchmair et al., 2008). 
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Pose prediction 

The pose prediction step explores the conformational and orientational space 
accessible to the ligand within the protein binding site (see Figure 21) (Ferreira 
et al., 2015). Two strategies are popular, i.e. a systematic search in, for 
example, DOCK (Ewing et al., 2001) and Glide (Friesner et al., 2004), or a 
random stochastic search in AutoDock (Morris et al., 1998) and Gold (Jones 
et al., 1995, 1997).  

Figure 21: Small-molecule conformational search methods. (A) A molecule 
containing two bulky groups (green and purple spheres) has its conformation defined 
by two internal dihedrals 1 and 2; (B) Considering 2 as a frozen dihedral, the 
energy variation due to r the energy variation due to rotation of 1 is plotted in a 1D 
energy landscape. The initial structure (grey spheres) is modified by changing 1, 
leading to a decrease in energy. The systematic search algorithm changes all 
structural parameters until a local (blue spheres) or global (red sphere) energy 
minimum is reached; (C) The stochastic search explores the conformational space by 
randomly generating distinct conformations, populating a broad range of the energy 
landscape. This procedure increases the probability of finding a global energy 
minimum. Reproduced with permission, Figure and legend,  from Ferreira et al. 
(2015) (Ferreira et al., 2015). 

Systematic search algorithms – Systematic search algorithms explore all of the 
degrees of freedom in a molecule. Three approaches are used: (i) 
conformational search, (ii) fragmentation and (iii) databases of pre-generated 
conformations. The conformational search is considered the “brute force” 
solution, e.g. in the software Glide (Friesner et al., 2004). Ligand 
conformations are exhaustively sampled by systematically rotating (360°) all 
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rotatable bonds (Sousa et al., 2006). Several constraints and restraints on the 
ligand are employed to reduce the combinatorial explosion that is proportional 
to the number of rotatable bonds. The fragmentation method consists of 
breaking down the chemical structure into several fragments, see e.g. in DOCK 
(Ewing et al., 2001). One fragment is then selected as an anchor fragment and 
is docked to the binding site, and the process is continued until the entire ligand 
is constructed. The database methods used libraries of pre-generated 
conformations to estimate the ligand flexibility. An example of this method is 
FLOG, which generates for each compound a small set of conformations, e.g. 
25 conformers by ligand (Miller et al., 1994). Ligand conformations are then 
treated separately as a rigid docking protocol.   

Stochastic algorithms – Random stochastic methods sample the 
conformational space using random changes to a ligand conformation, rotation 
or translation. Each change is accepted or rejected based on a probability 
function. Different algorithms may be used such as Monte Carlo, genetic or 
Tabu algorithms (Dias and de Azevedo Jr., 2008). AutoDock (Morris et al., 
1998) and Gold (Jones et al., 1995, 1997) use a genetic algorithm, which 
appears more performant to converge to a global energy minimum in terms of 
number of search-and-evaluation cycles than the Monte Carlo algorithm 
(Krovat et al., 2005). Tabu search algorithms appear to have a high accuracy 
in finding local energy minima (Baxter et al., 1998),  but they are less popular 
than other algorithms (Machado et al., 2001; Dias and de Azevedo Jr., 2008). 

Scoring 

Scoring functions are critical to docking simulations. They serve several 
distinct purposes: (i) to find the more likely poses among a large number of 
poses that have been sampled, (ii) to rank a set of compound based on the 
likelihood that they bind to a given protein (virtual screening) and (iii) to 
predict binding affinities (Kroemer, 2007; Huang and Zou, 2010; Meng et al., 
2011; Grinter and Zou, 2014). Three type of scoring functions have been 
developed, which are commonly referred to as force-field-based, empirical-
based and knowledge-based. 
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4.5.3.1. Force-field-based scoring function 

Force-field-based scoring functions estimate the binding energy by a sum of 
physical interactions (bonded and non-bonded energy terms) that dominate 
protein-ligand binding. For example, from DOCK software that uses the 
AMBER force field (Ewing et al., 2001)(Grinter and Zou, 2014; Case et al., 
2015):  

: approximations of the bond angle energies 

: approximations of strain energies 

: energy term dihedral angles of linearly bonded sets of four atoms 

: aggregate of non-bonded energies interaction such as Lennard-
Jones potential, van der Waals attraction and electrostatic potential terms.  

Force-field-based scoring functions generally model well the physical 
principles that govern binding (Kitchen et al., 2004; Meng et al., 2011; Grinter 
and Zou, 2014). Nonetheless, there is no entropic energy contribution, and a 
solvent model needs to be added, e.g. a Poisson-Boltzmann model (Rocchia et 
al., 2002) or generalized Born models of solvation (Liu et al., 2009). Cut-off 
distances are furthermore used to define non-bonded interactions, which 
results in decreasing the accuracy of long-range effects. This type of scoring 
function is also computationally demanding since there is a high number of 
combinations of atom pairs for which energies need to be computed, especially 
for large ligands. Force-field-based scoring functions are used, for example, in 
AutoDOCK, coupled with an empirical function (Morris et al., 1998).  

4.5.3.2. Knowledge-based scoring functions 

Knowledge-based scoring functions are based on a sum of atom pairwise 
energy potentials. Knowledge-based scoring exploits crystallographic 
information, which reflect the native binding geometry; the potentials are 
extracted from known receptor-ligand complexes or small molecule crystals, 
and weighted on their observed frequencies. The pairwise potentials are based 
on the comparison with reference densities of  the frequency densities for 
paired atom types, torsions and solvent exposition (Li and Liang, 2007; Huang 
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et al., 2010). Examples are the ITScore (Huang and Zou, 2006a), DrugScore 
(Gohlke et al., 2000) or DrugScore eXtended (DSX) (Neudert and Klebe, 
2011). Below we summarize the formalism of knowledge-based scoring, 
exemplified by the DSX scoring function (Neudert and Klebe, 2011):  

: score associated in a state 

: density function in state 

: density reference 

A state depends on the pair of atom type involved and the distance between 
them. The score is a function of the density attributed to a given state, 
compared with the reference density learned previously from protein-ligand 
complexes. DSX’s reference densities  (Neudert and Klebe, 2011) are based 
on a set of 37 067 X-ray structures with a resolution higher than 2.4 Å and 
containing at least one ligand from the PDB (Berman et al., 2000) as well as 
345 726 small molecule structures from the CSD (Allen, 2002). 

More precisely: 

, : atoms in protein and ligand  

, , : functions that are dependent on the distance, protein and ligand. 

To reduce the combination of atom type paired, DSX grouped similar pairs of 
atoms based on a clustering of their atom pair densities.  

Two additional terms referring to comparison of torsion densities based on 
four-atom combinations, and solvent exposure densities based on solvent-
accessible surface are also included in the scoring function. The final score is 
given by:  
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SAS-ratio for a protein or ligand atom 

 and : weighting factors 

In DSX, the  is normalized by the volume available for interaction.  

Knowledge-based scoring functions appear well-balanced between their 
accuracy and performance  (Huang et al., 2010). Limitations of this type of 
scoring function comes from the difficulty in properly defining the reference 
densities, including setting up artificial distance cut-offs (Gohlke et al., 2000; 
Huang and Zou, 2006a; Li and Liang, 2007; Neudert and Klebe, 2011). A 
dataset of high quality is furthermore required. 

4.5.3.3. Empirical-based scoring functions 

Empirical scoring functions are based on statistical models of binding energy 
prediction trained from protein-ligand complexes with known binding 
affinities (Kitchen et al., 2004; Huang and Zou, 2010). The prediction terms 
are associated with the physical events involved in the formation of protein-
ligand complexes, e.g. H-bond interactions or ionic interactions. Each term is 
pondered by a factor computed from multiple linear regressions to fit the 
energy predicted with the real energy of interaction (Ferreira et al., 2015). The 
first empirical function was developed by Böhm (1995) using a set of 45 
protein-ligand complexes and was called LUDI (Böhm, 1994). Different 
empirical functions exist in the literature such as X-CScore (Wang et al., 2002), 
ITscore (Huang and Zou, 2006b), SFCscore (Sotriffer et al., 2008) and 
AIScore (Raub et al., 2008). Other examples of empirical scoring functions are 
ChemScore (Eldridge et al., 1997), GlideScore (Friesner et al., 2004) and  XP 
GlideScore (Friesner et al., 2006).   

For the ChemScore scoring function, the binding free energy is estimated as 
follows: 



57 

, , ,  linear correlation coefficients 
corresponding to the energies associated with H-bond, metal interaction, 
lipophilicity and ligand rotational entropy. 

: regression constant 

: free energy term calculated with a function, , which can depend 
on an angular ) and/or a distance term . 

function of rotational entropy based on the number of rotatable 
bonds and the percentages of non-lipophilic heavy atoms on either side of the 
rotatable bond ( ). 

The linear correlation coefficients in ChemScore ( , , , 
) are calculated from a regression model on a set of 82 experimentally 

determined protein-ligand complexes. 

Empirical scoring functions have the advantage of predicting a free energy 
calibrated on real free energy, in contrast to e.g. knowledge-based functions, 
which predict a rank or force-field based functions that do not include 
experimental data in their calculation (Huang et al., 2010). However, empirical 
scoring functions are limited by the experimental data used to build the 
underlying statistical models.  

4.5.3.4. Comparison and consensus scoring function 

Generally, no type of scoring function seems to outperform the others, as 
demonstrated by Wang et al. (2003) who compared 11 scoring functions and, 
more recently, Xu et al. (2015) who compared 16 scoring functions (Wang et 
al., 2003; Xu et al., 2015). The performance of the different scoring functions 
is dependent on the target used. A general test case for comparing scoring 
functions is the retrospective ability to recreate the poses of a co-crystallized 
ligand, predicting experimentally measured binding energies (Huang et al., 
2010).  

Consensus scoring is the use of several scoring functions to extract results that 
are robustly found by many functions (Clark et al., 2002; Wang et al., 2003). 
Typical consensus methods are consensus score based on a rank-by-number, 
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average rank or linear combination of different methods. Consensus scoring 
allows a balancing of the advantages and limitations of several scoring 
functions. It is mostly used in virtual screening experiments, but can also be 
used as a rescoring tool when different poses have been suggested (Feher, 
2006).  

Challenges for molecular docking 

Scoring functions are one of the main challenges in docking simulations. For 
example, for three docking scoring functions using a dataset of 164 high-
resolution protein-ligand complexes, considering only the top scoring solution, 
a pose with RSMD within 2 Å of native confirmation are found in only 42.6% 
of the cases for FlexX, 55.4% for GOLD and 59-63% for Glide (Perola et al., 
2007). Comparison of different docking scoring software to find native ligand 
conformation can, however, lead to seemingly conflicting results, even using 
similar protocols or datasets, and higher performances have been reported 
(Chen et al., 2006). This is because docking simulations are affected by the 
complete docking protocols used, which includes the search space (size of the 
box) or the ligand preparation atom types (Huang et al., 2010; Meng et al., 
2011; Ferreira et al., 2015). 

Flexibility of both the protein and ligand is very difficult to consider since it 
results in an exponentially large search space (Lexa and Carlson, 2012). A 
common way to alleviate the problem is to complement docking studies with 
molecular dynamic simulations (Amaro et al., 2008; Davare et al., 2015; Kim 
et al., 2015). Another strategy has to use a pre-enumerated conformational 
ensemble of protein conformations that are often generated by molecular 
dynamic simulations (Totrov and Abagyan, 2008). There have been technical 
advances towards truly flexible docking: for example, the use of pseudo-
flexible proteins (Huang and Zou, 2010) or the creation of protein side chains 
around a positioned ligand. This latter strategy, implemented in the Glide 
induced-fit protocol (Friesner et al., 2004), uses a cycle; starting from a 
preliminary binding pose, side chains are removed and reconstructed around 
the ligand, followed by docking and so on. More specific examples of methods 
that account for protein flexibility include soft docking, which allow a small 
overlap between the ligand and protein (Jiang and Kim, 1991). The study of 
protein flexibility is helped by a better characterization of rotamer side chains, 
for example, in AutoDockFR (Ravindranath et al., 2015). 
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Water molecules are an important challenge for the docking and are most often 
not taken into accountin docking protocols (Kroemer, 2007; Lee and Seok, 
2008). Phenomena associated with water molecules, such as water networks, 
bridging protein-ligand interactions or contributing to the hydrophobic effect, 
are not considered. In contrast, 65% of the crystallographic protein-ligand 
complexes contain at least one water molecule (Klebe, 2006). Glide XP 
(Friesner et al., 2006) is one of the few docking programs that integrate water 
molecules, approximated by spheres. 
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5. Strategies for ligand optimization  

A key premise to drug discovery is that structurally similar molecules exhibit 
similar biological activities, often referred to as the activity-property principle 
(Wermuth, 2006). Medicinal chemists apply this concept to synthesize 
analogue series bearing potentially bioisosteric replacements, i.e. chemical 
groups that do not have an identified liability, but should keep the potency 
intact. Other key applications of this principle are modeling of structure-
activity relationships and modeling of structure-property relationships. 

Bioisosterism 

Analogue series are generally constructed to carry bioisosteres, often utilized 
in lead optimization process with the aim of improving properties, such as 
pharmacokinetics, metabolism, solubility or reducing adverse effects, while 
keeping or improving potency. A comprehensive survey of bioisosteres and 
their characteristics has been reported recently (Brown, 2012). 

The definition of bioisosteres from the IUPAC is the following: 

“A bioisostere is a compound resulting from the exchange of an atom or group 
of atom with another, broadly similar, atom or group of atoms” (IUPAC, 2016) 

Historically, the concept of the bioisosterism was born from that of isosterism; 
molecules that contain the same number and arrangement of electrons have 
similar physicochemical properties, introduced by Langmuir in 1919 
(Langmuir, 1919). Since then, the definition of the bioisostere has evolved and 
bioiosteres have been more recently defined (Burger, 1991) as: 

“Compounds or groups that possess near-equal molecular shapes and 
volumes, approximately the same distribution of electrons, and which exhibit 
similar physicochemical properties...” 
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Example: phosphorus replacement 

Proteins related to phosphorylation and dephosphorylation events are central 
to biochemical processes. An estimated 30% of cellular proteins are 
phosphoproteins (Cohen, 2000). Consequently, proteins that recognize 
phosphate-containing ligand moieties are an attractive target for therapeutic 
development. Phosphate as such is rarely used in drug molecules since it is 
predominately charged (pKa1 = 1.54 and pKa2 = 6.31) and is poorly permeable 
to the membrane (Smith et al., 2003). 

Classical replacements of phosphate groups can generally be divided into the 
following six classes (Rye and Baell, 2005; Elliott et al., 2012): (i) phosphorus-
based bioisosteres such as phosphonate-based (phosporothionate and 
thiophosphonate-based) and boranophosphate-based bioisosteres, (ii) sulphur-
based bioisosteres, (iii) carboxylate-based bioisosteres, (iv) heterocyclic-based 
bioisosteres, (v) squaric and squaramide-based phosphate bioisosteres and (vi) 
other bioisosteres containing a heteroatom (boronic acid and selenium-based 
bioisosteres). Some examples of these categories are presented in Figure 22. 

Carboxylic acid bioisosteres are the most commonly used non-phosphorus 
isosteres of phosphate. They are widely represented in drug molecules with 
about 450 carboxyl-containing drugs in use worldwide (Ballatore et al., 2013). 
For example, for S1P inhibitors the replacement of a phosphate to a carboxyl 
group allows modulating the activity from a  of 0.85 nM to 19 nM for S1P 
receptor antagonists (Högenauer et al., 2010). 
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Figure 22: Examples of classical phosphorus bioisosteres from Elliot et al. (2012) 
(Elliott et al., 2012). (A) Phosphorus-based bioisosteres – 1. from PIsY inhibitor, 2. 
from NagA inhibitor, 3. from lipid analogue, 4. from cyclic phosphatidic acid 
analogue, 5. from nucleoside derivatives. (B) Sulphur-based bioisosteres – 6.,8.,9. 
from tyrosine phosphatase inhibitors, 7. InsP3 derivate, 10. from lipid. (C) 
Carboxylate-based bioisosteres – 11., 12. from PT1B inhibitors, 13., 14. from 
phosphatase inhibitors, 15. from 6-N’-acetyltransferase inhibitors. (D) Heterocyclic-
based bioisosteres – 20. from lysophosphatidic acid and thiazolidinone-derived, 
17.,18. from mimic of pTyr, 19.,20. from PT1B inhibitors. (E) Squaric acid and 
squaramide-based bioisosteres – 21. from nucleotide derivate, 22. from tyrosine 
phosphatase inhibitors. (F) Other heteroatoms-based bioisosteres – 23. from 
nucleotide analogues, 24. from pTyr mimic. 
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Challenges in identifying bioisosteric replacements

An important consideration regarding bioisosteric replacements is that while 
they prove effective for one type of target, an efficient replacement in one 
circumstance does not guarantee efficient replacement in another case 
(Meanwell, 2011). Success of bioisosteric replacements is commonly 
dependent on the target family (Wassermann and Bajorath, 2011). 

For example, for the angiotensin II receptor antagonist (losartan), the tetrazole 
moiety in losartan offers a 10-fold increase in potency compared with the 
carboxylic acid analogue (Carini et al., 1991). However, in a similar 
replacement used to develop cPLAA2  inhibitors, the novel tetrazole-
containing analogue is 31-fold less active than the analogue containing 
carboxylic acid (Hess et al., 2007); the structure is given in Figure 23. 

Figure 23: Limit of bioisosteric replacements on . Structures adapted from 
Meanwell (2011) with corresponding . 1. and 2. angiotensin II receptor 
antagonist analogues. 3. and 4. For cPLAA2  inhibitor analogues (Meanwell, 2011). 

In silico bioisosterism identification 

In silico methods have been shown to be useful tools, both methods and 
databases, to suggest and investigate the effects of bioisosteres (Ertl, 2007). 
Three types of approaches have been used (Devereux and Popelier, 2010): (i) 
rational approaches that define bioisosteres from similar compounds, (ii) 
literature searching and (iii) chemoinformatics approaches based on 
investigation of a chemical space or X-ray structures. While literature 
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searching is specific to a particular case study, the other two approaches have 
been used to develop databases of bioisostere replacements.  

The rational approach has been used, for instance, to develop a large database 
of bioisosterism replacements. The BIOSTER database (version 15.1) (Ujváry, 
1997; Hayward, 2012) contains 30 000 bioisosteric transformations, 
representing over 41 000 bioactive molecules. Another example is the freely 
available SwissBioisostere database (Wirth et al., 2013), which contains 4.5 
million replacements, automatically extracted as matched molecular pairs from 
the ChEMBL database (Gaulton et al., 2012).  

Chemoinformatics approaches to identify potential bioisosteres from PDB 
complexes have usually considered the atoms surrounding molecular 
fragments in binding sites. For example, the Sc-PDB-Frag database is based 
on a comparison of protein-ligand interaction fingerprints and contains 12 000 
fragments and 15 million pairwise fragment comparisons (Desaphy and 
Rognan, 2014). The KRIPO database relies on quantifying similarities of 
binding site subpockets using pharmacophore fingerprints. Fuzzy 3-point 
pharmacophore fingerprints were found to have the optimal balance between 
computational resources and identification of potential replacements (Wood et 
al., 2012). An alternative strategy, which is not equivalent but rather 
complementary, was introduced by Kennewell et al. (2006) (Kennewell et al., 
2006). The three-dimensional structures of protein-ligand complexes are 
aligned and ligand substructures occupying the same binding region identified. 
This detects replacements variable in terms of molecular interactions that are 
occupying the same spot in the binding site.  

  

Similarity searching 

Searching of similar compounds to existing ones (typically active compounds) 
is a classical task of chemoinformatics. Different strategies are used, covering 
different molecular representations. The field of compound similarity 
calculation is very active especially for virtual screening applications (Cereto-
Massagué et al., 2015) or to describe the chemical space and identify the 
activity cliff (Zhang et al., 2015) 
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Maximum common substructure 

The maximum common substructure (MCS) is the most intuitive case of 
similarity searching for ligands. MCS-based methods are based on a pairwise 
graph matching to find the maximum substructure (Figure 24). The MCS can 
be used to derive a similarity score, calculated based on the length of the 
maximal substructure found relative to the complete size of the compounds. 
Different algorithms can be used to define the MCS, e.g. hyperstructure 
searching from hashing of small substructures (Teixeira and Falcao, 2013), 
count fusion (Ahmed et al., 2014) or mismatch tolerance (Wang et al., 2013). 
MCS searching algorithms are much more computationally intensive than 
fingerprint similarity searches. For screening large databases, the two methods 
are usually combined. 

Figure 24: Principle of MCS, example from Zhang et al. (2015) (Zhang et al., 2015). 

Fingerprints 

Fingerprints methods are based on the representation of molecules as 
bitstrings, i.e. numerical vectors, where each bit corresponds to a property 
found (1) or not found (0) in the compound (Figure 25). 

At least six types of molecular fingerprints are commonly used (Muegge and 
Mukherjee, 2015): 
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- Topological fingerprints, which capture molecular features, such as the 
number of bonds or type of atoms used in, for example, Daylight (Daylight 
Chemical System Information) or atom pairs  (Sheridan et al., 1996). 

- Structural keys, which capture structural properties, such as number of 
ligand configurations used in, for example, BCI (Barnard et al., 2000) or 
PubChem (Wang et al., 2009; PubChem, 2015).  

- Circular fingerprints, which record the radial environments of each atom. 
The radial environment is first recorded by considering an atom directly 
connected to the central atom and next widened to increase the number of 
atoms connected used in, for example, Molprint2D (Bender et al., 2004) or 
ECFP (Rogers and Hahn, 2010). 

- Pharmacophore fingerprints, based on the search of key structural 
properties used in, for example, CAT descriptors (Schneider et al., 1999), 
3pt (McGregor and Muskal, 1999a, 1999b) and 4pt 3D fingerprints (Mason 
Jonatan S., 2000).  

- Hybrid fingerprints, combining the previous categories and used in, for 
example unit 2D fingerprint (Certara, 2015). 

- Interaction fingerprint which captures the interaction information, such as 
the PIPLIF method (Radifar et al., 2013) based on the definition of the pair 
interactions from Marcou et al. (2007) (Marcou and Rognan, 2007). 

Figure 25: Generation of topological fingerprint using Daylight 
(http://www.daylight.com/) fingerprint. Reproduced with permission from Muegge 
and Mukherjee (2015) (Muegge and Mukherjee, 2015). 
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Fingerprints are very efficiently compared using coefficients such as 
Tanimoto, Dice or Tversky. Differences between these similarity scoring 
methods have been presented by Bajusz et al. (2015) (Bajusz et al., 2015). 

Ligand descriptors 

Molecular descriptors are sets of characteristics associated with compounds 
such as molecular weight, geometry, volume, surface areas, ring content, 
rotatable bonds, interatomic distances, bond distances, atom types, planar and 
non-planar systems, molecular walk counts, electronegativities, 
polarizabilities, symmetry, atom distribution, topological charge indices, 
functional group composition, aromaticity indices, solvation properties and 
many others (Sliwoski et al., 2014). Molecular descriptors are widely used for 
QSAR modeling, sometimes for the pairwise comparison of compounds, 
especially for representing the chemical space, and almost never for similarity 
searches of compounds in databases since the fingerprint-based searches are 
computationally much more efficient (Muegge and Mukherjee, 2015). 

Molecular descriptors have been compiled in the Handbook of Molecular 
Descriptors from Todeschini and Consonni, with more than 5000 in the latest 
edition (Todeschini and Consonni, 2010). Descriptors can be classified 
according to the “dimensionality” of the chemical representation: 1D for scalar 
physicochemical, such as molecular weight, 2D for molecular constitution and 
configuration-derived, such as number of aromatic rings or number of chiral 
centres and 3D for descriptors conformation-derived (Ekins et al., 2007). 
Ligands represented using a set of descriptors can be compared as in, for 
example, the study of Venkatraman et al. (2009), where ligands are compared 
using geometric properties based on 3D Zernike descriptors (Venkatraman et 
al., 2009). 
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Modeling Structure-Activity Relationship (SAR) 

Figure 26: Principles of SAR models. (A) SAR models in intersection biology, 
chemistry and statistics fields. (B) General protocol to develop a SAR model. Adapted 
with permission from McKinney et al. (2000) (McKinney et al., 2000). 

Quantitative structure-activity relationship (QSAR) and Quantitative structure-
property relationship (QSPR) modeling refers to an ensemble of statistical 
methods that are used to quantitatively predict biological activities (potency or 
affinity for a target, biodegradability, diffusion or toxicity) or physicochemical 
properties. Predictive modeling can also be used to develop non-quantitative 
classification models, which are not discussed in this Review of the literature.  

The concept of structure-activity relationships (SAR) was for the first time 
demonstrated between the chemical composition of ammonium salts and their 
physiological action in 1868 (Brown and Fraser, 1868). The first to establish a 
mathematical relationship between structural attributes and specific activities 
of a set of selected chemicals was Hansch and Fujita in the 1960s (Hansch and 
Fujita, 1964). To date, QSAR modeling has been used to predict the biological 
activities of untested and sometimes still unavailable compounds, to optimize 
an existing lead and to clarify which chemical properties are the most likely 
determinants for their biological activities (Wang et al., 2015). The 
international organization for economic cooperation has also edited regulations 
for the use of QSAR molecules to test for toxicity of compounds, leading to 
the QSAR-Toolbox project (http://www.qsartoolbox.org/). The general 
protocol is presented in Figure 26 (Puzyn et al., 2010; Verma et al., 2010). 
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Development of a QSAR model 

Development of a QSAR model may be divided into three main steps. These 
are (i) selection of a series of active and inactive molecules with known 
activities, distributed into a training set and a test set; (ii) selection of 
descriptors; and (iii) construction of the models QSAR and validation (Wang 
et al., 2015).  

Careful attention is required to develop, validate and exploit a QSAR model. 
Based on the publication of Tropsha (2010), a generic QSAR workflow is 
presented in Figure 27 (Tropsha, 2010; Golbraikh et al., 2012).  

Original dataset and curation – In academic settings, datasets are often 
extracted from public databases such as ChEMBL (Gaulton et al., 2012) or 
PubChem (Wang et al., 2009) or other commercial databases (for review, see 
(Oprea and Tropsha, 2006)). Curation of the dataset is a very important since 
the error rate in public or commercial databases has been estimated to be 
around 3.4% (Young et al., 2008). QSAR models are also influenced by other 
factors, such as tautomeric forms or structure representation, leading to 
incorrect descriptor calculation. Fourches et al. (2010) suggested overcoming 
these limitations with a standardized curation protocol: (i) removal of 
mixtures; (ii) cleaning structure and removing salt; (iii) normalization of 
specific chemotypes; (iv) treatment of tautomeric forms; (v) removal of 
duplicates; and (vi) manual inspection (Fourches et al., 2010).  
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Figure 27: Predictive QSAR modeling workflow. Reproduced with permission from 
Golbraikh et al (2012) (Golbraikh et al., 2012). 

Descriptors selection – Numerous descriptors exist in the literature, as shown 
in the handbook of molecular descriptors ((Todeschini and Consonni, 2010) 
see also (Puzyn et al., 2010)). Molecular descriptors can be grouped by 
different dimensionalities, i.e. 0D for constitutional descriptors; 1D for counts 
of molecular groups or physicochemical properties; 2D for invariants of 
molecular graphs, e.g. connectivity indices and information indices; and 3D 
for geometric spacial properties.  

Balancing between external test set and training set – This step consists of 
defining a training set and an external test set (typically 10–20% of data), 
which will be used to evaluate the QSAR model. The training and test sets need 
to have the same chemical diversity. Outlier compounds should be deleted to 
refine the chemical space where the model is trained. Several statistical 
methods are used to find the activity outliers (Bajorath et al., 2009; Sisay et al., 
2009). Structural outliers are compounds that are largely dissimilar to all other 
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compounds in the descriptor space, and they should also be deleted (Puzyn et 
al., 2010). 

Model construction – QSAR modeling techniques employ various methods of 
multidimensional data analysis as well as supervised machine learning. The 
commonly used machine learning methods are multiple linear regression, 
partial least squares, artificial neural networks or support vector machine 
(Gertrudes et al., 2012). Different considerations are employed, depending on 
the dataset,  to select the optimal machine learning method (Sorich et al., 2003; 
Louis et al., 2010; Pourbasheer et al., 2010; Qin et al., 2011; Varnek and 
Baskin, 2012).  

Validation – Three types of validation are possible: (i) internal validation or 
cross-validation in n-fold, which uses a sampling of the training set in n-folds 
to measure the robustness of the predictions and the quality of predicted error; 
(ii) external validation based on predictions for molecules belonging to an 
external test set; and (iii) data randomization or Y-scrambling, where the 
response variables are randomized (Tropsha et al., 2003; Gramatica, 2007; 
Golbraikh et al., 2012). 

Different statistical criteria are commonly used to assess the predictivity of 
QSAR models  (Wang et al., 2015). 

The coefficient  calculates the predictive power of a model using cross-
validation. 

, , : variable predicted, observed and mean of the prediction in 
mean from a n-fold validation. 

The coefficient   is the linear correlation coefficient between observed and 
predicted variables in the test set. 
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Dimensionality of QSAR models 

Depending on the level of abstraction used to model chemical compounds, 
different “dimensionalities” of QSAR models have been proposed. Table 4 
summarizes the different types of QSAR models. 

Table 4: Specificity of different generation of QSAR models, from Damale et al. 
(2014) (Damale et al., 2014). 

QSAR models Specificity 
1D-QSAR Use descriptor experimental such as pKa or logP and 

topological descriptors without considering the 3D 
ligand information. 

2D-QSAR Use structural patterns like connectivity indices or 
2D-pharmacophores. 3D representations are still not 
considered.  

3D-QSAR Incorporate 3D descriptors and consider ligand 
flexibility, for example by using alignment steps. 

4D-QSAR and 
more 

Often receptor-dependent model including flexibility, 
induced fit modeling and solvation modeling. 

3D-QSAR is popular as a support method for medicinal chemistry since it 
allows visualization of the type of replacements that are going to decrease or 
increase biological activity around a template compound (Verma et al., 2010). 
The comparative molecular field analysis (CoMFA) method (Cramer et al., 
1988) is a popular QSAR method in drug design, as shown by the number of 
publication with the term ‘CoMFA’, from 50 in 1995 to 160 in 2009 (Zhang et 
al., 2011). The CoMFA method is based on an 3D alignment of ligands in an 
energy grid. For each grid point, a resulting energy is calculated from 
electrostatic (Coulombic) and steric (van der Waals) energy. These grid point 
energies are used as descriptors and correlated with the biological activity 
using a partial least squares regression. The resulting PLS models are 
combined to define a plot contour for each compound. The principle of 
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CoMFA method is presented in Figure 28 from Zhang et al. (2011) (Zhang et 
al., 2011).  

Figure 28: Standard CoMFA process, reproduced with permission from Zhang et al 
(2010) (Zhang et al., 2011).  

Challenges for QSAR models 

A challenge for QSAR is to propose clear workflows to optimize properly a 
QSAR model. Dearden et al. (2009) identified 21 types of errors perpetrated 
in QSAR/QSPR models in the literature, e.g. poorly curated datasets with 
replicate compounds in training and test sets or erroneous descriptors (Dearden 
et al., 2009). The computation of the descriptors themselves can have a major 
impact on the reproducibility of QSAR models (Gramatica, 2007). Prediction 
of LogP showed significantly different values using different software 
(Benfenati et al., 2003).  

Overfitting and overtraining models that have a high theoretical predictivity on 
training and test sets, but no real external predictivity is another challenge with 
QSAR modelling (Tropsha, 2010). As shown by Topliss (1977), the number 
of descriptors relative to activities may lead to significant unwanted chance 
correlations, generating a QSAR model that is only apparently predictive 
(Topliss, 1977). A rule often considered helpful is to use “at least six or seven 
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compounds for each descriptor”. This rule is nonetheless poorly followed in 
the literature, as shown from an analysis of 28 QSAR models predicting 
anticonvulsant activity (Garro Martinez et al., 2015). Overfitted models are 
more affected by random variations and irrelevant predictors that reduce their 
performance and portability (Hawkins, 2004).  

The applicability domain, i.e. the theoretical region of the chemical space 
where the model was trained and is applicable, has recently received a great 
deal of attention (Sahigara et al., 2012), however, it is still often poorly 
described in the publications (Wang et al., 2015). Different strategies have 
been developed to define the applicability domain using molecular descriptors 
(Sahigara et al., 2012): (i) range-based or geometric methods that visually 
represent the applicability domain; (ii) distance-based methods that calculate 
the relative distance of the compound to the applicability domain based on a 
transformation of the descriptor matrix to a distance matrix; (iii) density-based 
methods that use a probability function; and (iv) other methods such as 
decision trees. 

The final issue is availability. Over the last 60 years, many QSAR models have 
been developed, but only a few are used due to poor visibility in the 
community. To avoid this problem, databases have been set up such as C-
QSAR, which to date contains 18 000 models (Kurup, 2003). More recently, a 
collaborative platform, called QSAR-DB, to centralize and classify QSAR 
models has been developed (Ruusmann et al., 2014, 2015). 
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Designing analogues and thermodynamic profiles 

Analysis of thermodynamic profiles, i.e. entropic and enthalpic contributions 
for each analogue in a binding site, allows the affinity and specificity for a 
target to be optimized. During the lead optimization phase the binding constant 
may be improved by 5–6 orders of magnitude (Klebe, 2013). Analysis of 
thermodynamic profiles of different analogues thus provides important 
information on the biophysical phenomena resulting in protein-ligand binding. 

Cooperation between entropy and enthalpy 

As discussed in Section 3.3, the binding free energy is directly connected to 
the changes in enthalpy and entropy. The binding free energy can thus be 
driven by the entropic term, by the enthalpic term or by both. Understanding 
the origin of the entropic and enthalpic contributions towards the binding free 
energy is very important in drug discovery (Geschwindner et al., 2015) 
(Homans, 2007). Entropy-enthalpy cooperation has been a subject of 
discussion, research and criticism for over half a century (Petersen, 1964; 
Lumry and Rajender, 1970; Sharp, 2001; Starikov and Nordén, 2007; 
Geschwindner et al., 2015; Pan et al., 2015). 

The phenomenon of compensation between entropic and enthalpic 
contributions is supported in, for example, 32 protein-ligand complexes of the 
102 studied, or in another report 14 protein-ligand complexes of the 171 
studied (Olsson et al., 2011; Reynolds and Holloway, 2011). This phenomenon 
is illustrated in Figure 29 for a thermolysin binding site, where different 
analogues have the same binding free energy, but different thermodynamic 
contributions (Klebe, 2015). Nonetheless, the proportion in entropic and 
enthalpic energy of each modification is clearly system-dependent, as 
demonstrated by the above-mentioned Olsson study (Olsson et al., 2011). For 
some systems, such as pathogen-derived peptides with class II major 
histocompatibility complex, this phenomenon is considered a epiphenomenon 
(Ferrante and Gorski, 2012).  
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Figure 29: Different ligands in a series of modified peptidomimetics showing 
equipotent binding to trypsin; nevertheless, their affinities factorize differently into 
enthalpic and entropic components, adapted from Klebe (2015) (Klebe, 2015).  

The diversity of cooperation between the entropic and enthalpic contributions 
is thus difficult to analyse; a pragmatic and acceptable theory to increase the 
affinity of a drug is yet to be developed (Pan et al., 2015).  Generally, water 
molecules and solvent rearrangement take a prominent place in explaining this 
phenomenon, as demonstrated in the model of Grunwald and Steel (Grunwald 
and Steel, 1995). Hydrophobic effects are as the most favourable contributor 
to binding free energy, estimated at 80% (Whitesides and Krishnamurthy, 
2005; Garbett and Chaires, 2012). Amplitude of the hydrophobic contribution 
is correlated with the compound lipophilicity size (Murray et al., 2012). This 
is explained by water molecules adjacent to an apolar group forming a network 
of H-bonds, and this order is entropically favourable. Desolvation of these 
hydrophobic groups perturbs the water network, yielding entropy instability 
with the transfer of water molecules from the network to the bulk solvent 
(Kyte, 2003; Starikov, 2013). Desolvation of polar groups breaks the H-bond 
between ligand or protein polar groups and water molecules. These water 
molecules are transferred to the bulk solvent, and this energy influences both 
the entropic and enthalpic contributions (Olsson et al., 2008; Klebe, 2013). 
Both hydrophobic effect and desolvation of polar groups perturb the water 
molecule network in the first hydration shell of the ligand, target and protein-
ligand complex. Perturbation of the first hydration layer contributes to the 
entropy-enthalpy compensation phenomenon (Biela et al., 2013; Betz et al., 
2016).  
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Conformational rearrangements play also a role in defining the entropic 
contribution to ligand binding. A local perturbation of the protein and ligand 
structures has been suggested to flip a switch to a high-entropy conformational 
state favourable to the interaction. This phenomenon has been named entropy–
enthalpy transduction (Fenley et al., 2012) and can explain the entropic 
contribution of different analogues, indicating that different high-entropy 
conformational states exist for different biomolecules with the same binding 
free energy.

Strategies for drug optimization 

Entropy and enthalpy need to be optimized conjointly to overcome the 
compensation. Entropy seems to be easier to influence by increasing the 
compound hydrophobicity. Increasing the enthalpic contribution requires well-
positioned interactions such an H-bond (Klebe, 2013).  

Five simple rules of optimization have been suggested (Klebe, 2013): (i) 
lipophilicity should be limited to maintain good water solubility; (ii) protein 
polar atoms not solvent exposed must have a ligand partner; (iii) in the case of 
pockets not optimally solvated, ligands can form more H-bonds with the 
protein than with water molecules, and thus, the binding affinity of such 
ligands can be very high; (iv) rigid ligands can bind more strongly than flexible 
ligands because of the loss of internal degrees of freedom; (v) for most proteins 
that contain transition metals, maintaining an interaction between the metal 
and the protein is important.  

Another complementary approach has been suggested by Freire et al. (2009), 
who defined six regions of drug optimization, presented in Figure 30 (Freire, 
2009). Regions I and II – entropy is more favourable in the binding free energy 
that enthalpy. Region III – modifications result in both enthalpic and entropic 
losses. These modifications are not relevant because they are not binding free 
energy-driven.  Regions IV and V – an enthalpic gain is compensated by an 
entropic loss. Region VI – modification is enthalpy-dependent, but is not 
completely compensated by entropy. For the authors, the best optimization 
region is region VI, where the gain of affinity is due to a gain of enthalpy, 
enabling an increase also in the selectivity between the protein and target 
(Freire, 2008, 2009). However, positioning an analogue in this region is 
difficult because to increase the interaction between protein and ligand requires 
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optimization of H-bonds, which are often in competition for water molecules. 
A strong H-bond interaction also does not guarantee a binding free energy 
increase and can be fully compensated, as demonstrated for the HIV-1 protease 
when comparing different analogues (Lafont et al., 2007). 

. 

Figure 30: After a round of optimization, the (−T S, H) points for all compounds 
are plotted. Compounds with better affinity (shown in green) fall below the 
optimization line, while compounds with lower affinity (shown in red) appear above 
the optimization line. Compounds with the same affinity as the parent compound 
(shown in orange) are situated on the optimization line. By tracing a vertical and 
horizontal line through the coordinates of the parent compound, six different regions 
can be defined. These regions define distinct strategies for optimization. Reproduced 
with permission from Freire et al (2009) (Freire, 2009).. 

A drawback limit of drug optimization: molecular obesity 

Recent years have revealed that modern medicinal chemistry programs 
produce many “obese” compounds (Hann, 2011) – highly potent but very 
lipophilic compounds with molecular masses beyond 500–600 Da. These 
compounds gain in binding free energy using entropy optimization. However, 
increasing the size of the molecules reduces their bioavailability and results in 
early fails. A way to avoid creating such compounds is to control early on the 
ligand efficiency, i.e. the potency with respect to size or molecular weight 
(Reynolds et al., 2008; Hann and Keserü, 2012).   
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Computational methods to estimate water molecules contribution 
in binding sites 

Different computational methodologies have been developed to study the 
contribution to the binding energy of water molecules at binding sites, which 
can be used to define regions that can be favourably modified during 
compound optimization (Pearlstein et al., 2010, 2013; Brodney et al., 2012). 
Based on long molecular dynamics, WaterMap (Abel et al., 2008) 
(Schrödinger commercial suite) estimates from a 3D structure the hydration 
sites, based on investigation of the movement of water molecules during a long 
molecular dynamic simulation. Alternative freely available tools are WATsite 
(Hu and Lill, 2014) and WATCLUST (López et al., 2015), which are also 
based on analysis of the trajectory of water molecules during a molecular 
dynamic. 

Another strategy is to investigate the position of water molecules in X-ray 
structures. WaterScore estimates water molecule displacement using a 
combination of different factors such as B-factor, solvent-contact surface area, 
total hydrogen bond energy and number of protein atomic contacts (García-
Sosa et al., 2003). Aqualta reproduces water molecules that bridge polar 
interactions between ligands and proteins using geometric criteria obtained 
from extensive searches of the CSD (Rossato et al., 2011). SZMAP (solvent-
Zap-mapping) (Bayden et al., 2015) estimates the water molecules’ binding 
free energy influence using a sample orientation of the water molecules from 
water molecules elucidated by crystallography.  
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 Aims of this thesis 

The main goals of this thesis were to develop computational methods and tools 
useful for profiling a ligand for a target (I, II), to mine for ligand structural 
replacements (III), to mine and analyse the spatial distribution of interacting 
atoms forming protein-ligand salt bridges (IV) and to visualize and select 
among a pool of docking poses (V). Preliminary results regarding positioning 
water molecules in binding sites are also presented (unpublished results). 

Particular emphasis was placed on providing the methods to the community 
free of charge using a web server (II) or providing the source codes through 
the code development platform GitHub (III, IV). 

Specific developments and objectives: 

- To build predictive QSAR models that predict protein pocket druggability 
with high accuracy; and to characterize druggable binding sites using 
molecular descriptors (I) 

- To write a fully automated workflow that extract ligand local structural 
replacement (akin to bioisosteres) based on a superimposition of 
homologous proteins.  This method is applied in the study of phosphate 
isosteres (III). 

- To analyse the environment of six specific charged ligand groups, 
highlighting the importance of weakly charged interactions for their 
recognition, including by water molecules in the absence of strong salt 
bridges (IV). 

- To developed scripts to visualize, compare and select binding poses 
(obtained by induced-fit docking) by comparison with a bound reference 
(V). 

- Explore methods to position water molecules in binding sites and to 
characterize them using geometrical considerations (unpublished results). 
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Materials and methods 

1. Databases of structural data 

Protein data bank 

The PDB, see Section 1, Review of the literature, is a collaborative structural 
database containing more than 107 154 protein structures (release 02-2016). 
This databank is the source of all protein structures used in this doctoral thesis. 

Druggable and non-druggable datasets 

Druggable and non-druggable proteins, with their corresponding binding sites 
have been extracted from the database Druggable Cavities Dataset (DCD) 
(Schmidtke and  Barril, 2010) (http://fpocket.sourceforge.net/dcd/), containing 
1 068 proteins, 159 apo proteins and 909 holo proteins. 

Method for database redundancy 

The PDB databank is highly redundant. The same protein can be included 
several times, crystallized with different ligands, at different resolutions or 
using different crystallographic techniques or packing. In Publications III and 
IV, the redundancy is treated using a sequence alignment algorithm and a 
sequence identity calculation available in the EMBOSS suite (Rice et al., 
2000). The software EMBOSS Needle is used, which implements the 
Needleman-Wunsch global sequence alignment (Needleman and Wunsch, 
1970). Parameters were conserved by default, i.e. gap opening penalty = 10.0, 
gap extension penalty = 0.5 and matrix substitution EBLOSUM62. The 
definition of the sequence identity used for filtering is: 

It should be noted that this definition is unfavourable to proteins composed of 
multiple domains. Two identical sequences will have 100% sequence identity, 
while two random sequences have 5-15% identity; sequences in the 15-25% 
identity region are in the “twilight zone” in deciding whether or not they are 
evolutionarily related (Pearson, 2013). 



82 

To avoid composition bias, a subset of the PDB, called PDB50, was used 
containing only 22 091 different proteins with a cross sequence identity 
inferior to 50%. 

General protocol extraction 

From the PDB, an extraction protocol divided into the following three steps 
was devised: (i) remove DNA, RNA, NMR structures, (ii) control the R-value 
and resolution and remove structures with weak quality, (iii) keep only one 
structure with multiple related structures present using a global sequence 
alignment. 

2. Method for structural analysis 

Protein pocket estimation 

Three pocket estimation methods were used: (i) ligand proximity, taking 
protein atoms at a distance threshold of the ligand atoms (ii) Fpocket (Le 
Guilloux et al., 2009) and (iii) DoGSite (Volkamer et al., 2010). These three 
methods cover three different pocket estimation types, e.g. (i) using a ligand 
position, (ii) using a geometric algorithm and (iii) using an energetic algorithm. 
They are freely available using web servers or source code (Schmidtke et al., 
2010a; Volkamer et al., 2012b). 

Pocket and ligand descriptors 

Ligand descriptors 

Ligand descriptors were computed using the Python package (freely available 
PyDPI) (Cao et al., 2013). Only descriptors for small molecules were used, 
3215 descriptors divided into 12 groups, such as topology, physicochemical 
properties or composition.  
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 Pocket descriptors 

Fifty-two descriptors divided into six types were used. Some needed to be 
implemented by Python version 2.7 scripts in order to be used. An overview 
of these pocket descriptors is presented in Table 5. 

Table 5: Pocket descriptors implemented, adapted from Publication I 

Type of descriptors Descriptors based on References
Hydrophobicity atoms and amino acid 

composition and 
solvent accessibility 

NACCESS (Hubbard, 
SJ and Thornton, 1992) 
(Burgoyne and 
Jackson, 2006) 
(Milletti and Vulpetti, 
2010) 
(Kyte and Doolittle, 
1982) 

Aromaticity aromatic amino acid 
frequency 

(Milletti and Vulpetti, 
2010) 

Polarity polar amino acid 
frequency and atoms 
composition 

(Eyrisch and Helms, 
2007) 

Physico-chemical 
properties 

atom and amino acid 
frequency 

(Milletti and Vulpetti, 
2010) 

Volume volume of the convex 
hull computed using 
atom pocket 

(Petitjean, 2014) 
(Petitjean, 1992) 

Shape shape of the convex 
hull computed using 
atom pocket 

(Petitjean, 2014) 
(Petitjean, 1992) 
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Ligand similarity 

Ligand similarity is implemented both using fingerprints and maximum 
common structure (MCS). MCS allows subsequent computation of the RMSD 
of the atoms included in the MCS. 

The MCS searching is realized using the algorithm of non-contiguous atom 
matching structural similarity (NAMS) (Teixeira and Falcao, 2013). This 
algorithm is based on an alignment of a compound and graph comparison, 
including bounding and atom profiles. The measurement of the similarity is 
next computed using a Jaccard similarity coefficient  (Jaccard, 1901):  

where A and B are the compounds compared,  is the score matching of 
the superimposition of A on A,  the score of matching of B on B and 

 the score of matching of A on B. The similarity coefficient ranges 
between 0 and 1, 0 being compounds without similarity and 1 identical 
compounds. The score matching, based on a graph comparison, included two 
components, an atom-matching component and a bond-matching component. 

Protein-ligand interaction fingerprint 

Protein-ligand fingerprints are used in Publication V to compare docking 
poses. Interactions are defined using a set of rules based on geometric criteria, 
e.g. the distance and angle between a ligand atom and a protein atom. The list 
of contacts was used to define a profile of the interaction (Marcou and Rognan, 
2007). 

Comparison of two profiles of interaction, e.g. group of interaction defining a 
protein-ligand interaction, is conducted by comparing the fingerprints using a 
Jaccard similarity coefficient (Jaccard, 1901).  

Fingerprint of interaction is computed in Python 2.7 using PyPLIF package 
(Radifar et al., 2013). 
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Ligand mining 

The Simplified Molecular-Input Line-Entry System (SMILES) (Weininger, 
1988) format is used to extract from the ligand simple chemical substructures, 
e.g. a ligand-containing ring. Ligands, in 3D, are transformed using open Babel 
software in short ASCII strings (O’Boyle et al., 2011). The resulting strings 
were next inspected using regular expression (regex) implemented in Python. 

3D data mining 

For phosphate groups (Publication III), the labels in the PDB are sufficient to 
retrieve the atoms of interest. 

For the chemical substructures of interest (Publication IV), data mining of the 
PDB is realized using house-script based on a redefinition of connectivity 
matrix for each atom. Distance criteria, to differentiate different chemical 
bonds, single, double and triple, together with a distance threshold are fixed 
empirically based on a statistical analysis using the PDB. For tertiary amines, 
deviations from planarity of the plane formed by the connected carbons are 
also tested to avoid nitrogen in resonant systems. 

3. 3D superimposition  

Protein superimposition (TM-align) 

TM-align is a software that identifies the optimal alignment between the 
tertiary structure of protein pairs (Zhang, 2005). TM-align is based on a step 
of sequences alignment to pair the residues of both proteins. The output of TM 
align is a rotation/translation matrix.  

Superimpositions of paired proteins are subsequently done by using the 
translation vector and TM-score rotation matrix provided by TM-align.  
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Ligand superimposition 

For the ligand, with exactly the same number of atom and with a relatively 
similar geometry, superimpositions were realized using an implementation of 
Kabsch’s algorithm (Kabsch, 1976) developed by myself in Python 2.7. This 
algorithm is based on a matrix transformation to find the best rotation and 
translation matrix between two groups of points in the space. 

Superimposition quality 

The quality of the protein superimpositions is measured using the root means 
square deviation (RMSD) in Å, which characterizes the deviation of paired 
similar structures in the same referential.  

where:  and  are a set of  of 3D ( ) coordinates paired. 

RMSD is computed using TM-align on C  paired and has been implemented 
in Python for the ligand. Lower RMSDs means better superimposition. 

Complementary to the RMSD, only for the ligands superimposed, the overlay 
of the volume- and electrostatic shape was computed using ShaEP software 
which is based on measuring the overlap between Gaussian functions (Vainio 
et al., 2009). ShaEP contains two main functions: (i) a scoring function to score 
the superimposition of atoms represented by their electrostatic potential and 
local shape using Gaussian functions; and (ii) a genetic algorithm to find the 
superimposition that maximizes the score overlap of the molecules. In this 
thesis, only the scoring was conducted. If two ligands have a good overlay, the 
scores are maximal. 

It is important to note that ShaEP can compare different ligands, in contrast to 
RMSD calculations.  
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4. Structure visualization  

To visualize the protein-ligand interactions, two tools are used, PyMOL 
environment (DeLano, 2002) and LigPlot which allow a visualization of the 
profile of interaction in two dimensions, using a 3D-2D transformation 
(Wallace et al., 1995; Laskowski and Swindells, 2011). In the late stage of this 
doctoral thesis the Protein-Ligand Interaction Profiler webserver which uses 
geometric criteria to find the interaction was also employed (Salentin et al., 
2015). Density maps based on the cloud of the atom are generated using 
Chimera software (Pettersen et al., 2004) 

5. Statistical analysis and machine learnings 

Descriptors selection 

Descriptor pre-filtering is realized by removing (i) uninformative descriptors, 
e.g. descriptors having a null variance for the pocket set, and (ii) descriptors 
whose computation returned errors. Another step of descriptor reduction is 
included in the model learning phase. 

Data visualization 

Three types of data transformation are used in this thesis based on different 
types of data, mostly for data visualization purposes. 

Principal Component Analysis (PCA) 

PCA is an orthogonal transformation based on a square matrix of covariance 
computed from a set of descriptors for a dataset, or a profile to reduce the 
number of dimensions. The projection is realized on a plane that defines a 
percentage of variability explained by the descriptors in this plane. 
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Correspondence analysis 

Correspondence analysis is an orthogonal transformation based on a 
contingency table in two entries, individual and classes. The table of 
contingency is transformed into a table of Chi-square, and individuals and 
classes are projected on a plane (2D) (Hirschfeld, 1935). The proximity 
between two individuals characterizes their similarity and the proximity 
between a class and an individual characterizes their dependency. 

Multidimensional Scaling 

Multidimensional Scaling is a method based on the projection in N dimension 
of a distance matrix. Matrix of values is transformed into distance matrix. Only 
Euclidian distances are used in this thesis, and this matrix is projected in a 
plane of N dimensions, generally two, in preserving the relative distance 
between two individuals by a scaling method, classically the Torgerson–
Gower scaling method (Torgerson, 1958). 

Predicting models  

Linear Discriminant Analysis 

Linear Discriminant Analysis is a supervised statistical method used to build a 
statistical classification model based on Fisher’s linear discriminant methods 
(Fisher, 1936). 

Model performance 

Classification performances are discussed using the four criteria of quality, 
accuracy, sensitivity, specificity and Matthew’s correlation coefficient (MCC).  
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where TN: true negatives, TP: true positive, FN: false negative and TN: true 
negative. 

6. Programming languages and libraries 

All of the scripts were developed using Python version 2.7 with classical 
libraries: os, re, path, shutil, copy, urllib, gzip; numerical libraries: numpy, 
sympy, matlib, scipy, math and specific libraries for bioinformatics or 
chemical data: biopython, openbabel, PyPLIF and PyDPI. 

Statistical analysis were conducted using R (Team R Core (R Foundation for 
Statistical Computing), 2015) and with the libraries lattice, scatterplot3d, 
MASS, vrmlgen, FactoMineR, ggplot2, plotrix, rpart, klaR, randomForest, 
e1071 and kernlab. 

The source code has been managed using Git software as source code 
management system (Hamano et al., 2005) and using the platform GitHub 
(https://github.com) for the repository hosting service. 
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Results and specific discussion 

1. PockDrug and PockDrug-Server (Publications I and II) 

The prediction of pocket druggability has been presented in Section 2.8 of the 
Review of the literature. 

The main aim of the Publication I is to construct a statistical model capable of 
predicting pocket druggability, while not being sensitive to the pocket 
boundaries. In order to do so, a preliminary investigation of the robustness of 
the pocket estimation method in term of descriptor variability is made. The 
model is useful in investigating the binding site properties important for 
druggability. 

Development of the pocket druggability model 

The druggability model is similar to a classical QSAR model. The 
development phases discussed in Section 5.3 of the Review of the literature 
have been followed. 

Original dataset and curation – NRDLD dataset (Krasowski et al., 2011) is 
used to train the druggability model. It contains 44 less druggable binding sites 
and 71 druggable binding sites. Each binding site was estimated using three 
pocket estimation methods, proximity to the co-crystallized ligand with 
different distance thresholds, Fpocket and DoGSite. Each pocket was 
visualized and two estimated by Fpocket are removed because of poor overlay 
of the ligand position.  

Descriptor selection – Most ready-to-use protein pocket descriptors were not 
available and needed to be implemented. In total, 52 pocket descriptors were 
used (Table 3). The importance of the descriptors was analysed using PCA, 
showing that pockets estimated using the three pocket estimation methods are 
well dispersed in the PCA plan. 

Balancing between external test set and training set – The classical division of 
NRDLD dataset into train and test sets was used in order to allow 
benchmarking  (Krasowski et al., 2011). In this division, 37 binding sites form 
the test set, with protein families being well diversified. 
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Model construction – Linear discriminate analysis has been chosen for 
machine learning since it is easily interpretable and gives good performance.  
Descriptor parsimony is controlled using a protocol that consists of testing any 
combinations of descriptors as input of linear discriminant analysis model and 
keeping models with the best performances in internal validation and the 
lowest number of descriptors. The final PockDrug model is a consensus of 
seven linear discriminant analysis models, each including three descriptors. 

Validation – The external validation is performed using the test set from 
NRDLD set. Another external test set is developed from the DCD database 
composed of only apo pockets, extracted from protein not complexed. Internal 
validation is performed using a 10-fold cross-validation and a leave-one-out 
cross-validation. 

Main results 

Binding pockets comparison 

While pockets estimated differently were found to exhibit a weak structural 
overlap in terms of number of common residues (less than 50%), the volume 
and shape descriptors were noted to be very dependent on the pocket 
estimation method. In contrast, physicochemical and hydrophobic descriptors 
were less dependent on the pocket estimation method employed. Example of 
pockets estimated using the same protein but using different pocket estimation 
methods are presented in Figure 31, panel A. 

PCA was used to analyse globally the pocket spaces occupied by pockets that 
were differently estimated, and radar plots were used to visualize the linear 
correlation of the descriptors between the two different pockets sets. 
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Figure 31: (A) Pockets estimated using different pocket estimation methods, in blue 
using the ligand proximity with a threshold of 4.5 Å, in green using Fpocket and in 
purple using DoGSite. The protein is the human interleukin-1  convertase complexed 
with (3S) - n - methanesulfonyl – 3 - ({ 1- [n - ( 2 - naphtoyl) -l -valyl] -l - prolyl } 
amino) –4-oxobutanamide, PDB code 1BMQ (B) Combined descriptors used to build 
the PockDrug model. In red hydrophobic descriptor, in orange geometric descriptors, 
in violet aromatic descriptor and in grey atomistic descriptor, adapted from 
Publication I. 

Druggability model performance 

The performance of PockDrug in an external test set was found to be 86.5%. 
PockDrug was not dependent on the fuzziness of the pocket estimation method. 
These good performances can be explained by the fact that the most 
informative descriptors in linear discriminant analysis models are considered 
as the most robust in pocket estimation methods, such as hydrophobicity or 
aromatic descriptors, geometric descriptors have a lesser importance. A pie 
plot presenting the different descriptors used by PockDrug is presented in 
Figure 31, panel B. 

In comparison to other druggability models using the same pocket set and 
estimated using the same pocket estimation methods, the performance here is 
more accurate by ~5-10%. 

Characteristics for a druggable pocket 

The final model is based on a combination of three pocket properties, e.g. (i) 
hydrophobicity, (ii) geometric properties, shape or volume descriptor and (iii) 
aromaticity. Hydrophobicity and geometry, but not aromaticity, have 
previously been reported in the literature. 
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A dissection of the involvement of the different descriptors in the final model 
showed that the hydrophobicity property is the key descriptor to explain the 
druggability. When it was removed, the accuracy decreased from 84% to 63%. 
It is not surprising that the hydrophobicity is very involved in predicting the 
druggability, considering its contribution to the binding free energy (see 
Sections 3.3 and 5.4, Review of the literature) 

PockDrug-Server 

The model PockDrug is freely available on the web server 
http://pockdrug.rpbs.univ-paris-diderot.fr/. This issue is important for the 
scientific community.  

The web server is also able to conduct pocket estimations from protein 
structures using Fpocket or from a selected distance of a pre-bound ligand. 
Users can also submit a pocket previously estimated, e.g. visually determined. 
For each pocket, a set of 17 pocket descriptors is computed and provided in 
addition to the probability of the selected binding site being druggable. 

Problems of applicability domain were encountered during the PockDrug-
Server development. Indeed, many less druggable small pockets do not match 
the applicability domain where PockDrug was developed. A threshold of 14 
residues was fixed where the reliability of the druggability prediction is low, 
i.e. these pockets are outside the applicability domain. This is in agreement 
with the literature: Perola et al. (2012) reported that only 10% of druggable 
pockets have between ten and fourteen residues, and Hajduk et al (2005) 
considered pockets with less than ten residues to be decoy pockets (Hajduk et 
al., 2005; Perola et al., 2012). Furthermore, descriptors computed from a 
pocket with less than ten residues are also not reliable considering the weak 
number of atoms included.  

Discussion  

Difficulty to define protein druggability  

Building a suitable dataset for modeling the druggability of binding pockets is 
very challenging. The main limitation of the dataset is about being “confident” 
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that a binding site is non-druggable (see Section 2.8, Review of the literature). 
We decided to combine two existing widely used datasets.  

The challenge in data collection for building a druggability model has been 
discussed by Crowther et al. (2014): 

“proteins are generally unsuitable for resource-intensive HTS unless they are 
considered druggable, yet druggability is often difficult to predict in the 
absence of HTS data.” (Crowther et al., 2014) 

However, another aspect has to be considered: 52% of the so-called drug-like 
molecules in the NRDLD dataset have at least one failure with respect to the 
Lipinski “rules-of-five”, as shown in Figure 32.  

Figure 32: Number of Lipinski failures for the ligand considered drug-like included 
in the NRDLD dataset. 

The result can be seen as a paradox: druggability models predict druggable 
pockets, but in order to improve the druggability models, the definition of the 
drug-like molecules should be modified.  
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From druggability models to binding profiles 

Druggability models seem to perform well, with accuracies close to 90%. It is 
therefore logical to ask whether a global model would also be possible to 
predict (and profile) from pocket descriptors binding of other compounds such 
as antibiotics or peptides. Even if ligand properties are associated with pocket 
properties (Pérot et al., 2013), this type of accurate global model is not a 
realistic issue today. Challenges to overcome are the diversity in term of ligand 
and protein chemistries, as well as local target-dependent challenges such as 
the presence of water molecules at binding sites. In the case of druggability 
predictions, the chemical space is drastically reduced in a type of ligand that 
exhibits similar properties, characterized for example by the Ro5 (Section 
2.7.1, Review of the literature), which reduces the number of factors 
introducing predicting errors.  
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2. Structural replacements of phosphate groups (Publication III) 

The concepts of bioisosterism and phosphate replacements have been 
presented in Section 5.1 of the Review of the literature. 

The general aim of this study was to develop a chemoinformatic approach, 
based on a data-mining using the PDB, useful for suggesting new ligand 
structural replacements (LSR) for a chemical group. Phosphate group 
represents an ideal test case since there are many potential reference proteins, 
such as kinases, phosphatases or ligases, whose endogenous ligands contain a 
phosphate moiety. Secondly, phosphate bioisosteres is a very active branch of 
medicinal chemistry since phosphate is generally an unsuitable group in drug 
molecules. 

Chemoinformatics approach to define structural replacements 

Chemoinformatics approach is based on mining the PDB to extract from 
crystallized homologues complexes superimposed the LSRs. The developed 
computational workflow is divided into six steps: (i) screening and extraction 
of proteins containing ligand with at least one phosphate group; (ii) mining of 
these proteins (or very close homologues or mutants) in complex with other 
ligands using balstp algorithm; an e-value threshold of blastp to define two 
homologues fixed at 10-100; (iii) structural 3D superimposition of the reference 
protein containing the ligand and studied phosphate group with homologue 
protein; (iv) extraction of the ligand structural replacement based on structural 
overlap; and (v) clustering of structural replacements based on their SMILES 
codes composition. An example of structural replacement is presented in 
Figure 33. 
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Figure 33: Example of final ligand superimposition between an ATP, containing 
phosphate groups, carbon represented in white transparent and the 2-[trans-(4-
aminocyclohexyl)amino]-6-(benzyl-amino)-9-cyclopentylpurine, carbon represented 
in black. The LSR corresponds to the ligand part with the carbon in green encircled 
in red. 

Main results 

Phosphate replacement 

Form the PDB, a set of 15 819 phosphate LSRs were extracted using AMP, 
ADP, ATP and POP as reference ligands. LSRs are clustered in 16 non-
overlapping categories containing phosphorus; boron; fluorine; chlorine; 
bromine; beryllium; NO2 (generally nitro); SO2; S; CON (generally 
carbamoyl or amide); COO (ester or carboxylic acid); exclusively C; only C 
and O; only C and N; only C, O and N; and Other. 

Mechanisms of phosphate replacements 

In some cases, the proteins replace the phosphate by a 3D rearrangement, i.e. 
loop displacement, or a side-chain displacement (example in Figure 34, panel 
A). This is no longer the case in a ligand structural replacement.  

The different chemistry of the LSRs is discussed in parallel with the different 
mechanisms underlying the replacements (presented in Figure 34). (i) 
Phosphate is often exposed to the solvent; congeners seem to be generally 
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permissive to chemical substitutions. Water molecule rearrangement may 
explain the permittivity of the structural replacement. (ii) Metals are present in 
55-71% of the phosphate binding sites. Some examples in which a base 
replaced the metal near the phosphate were found (see e.g. Figure 34, panel B). 
(iii) Intramolecular ligand interaction, where the ligand adopts a U-shape was 
noted to transcend protein families. SAR studies suggest that a destabilizing of 
intramolecular interaction can lead to a drop in the affinity (example in Figure 
34, panels C and D).  

Figure 34: Examples of phosphate LSRs, included in Publication III. (A) Phosphate 
replaced by the protein binding site, Escherichia coli, biotin carboxylase, PDB code 
3JZI; ligand JZL (reference 1DV2/ATP). (B) LSR replacing a Mg2+ human cyclin 
dependent-kinase 2, PDB code 3ULI; ligand 1N3 (reference 1DV2/ATP). (C) U-shape 
replacements in human c-Jun N-terminal kinases, PDB code 3FV8, ligand JK3 
(reference 4KK3/AMP). (D) U-shape replacement in Bos Taurus, protein kinase A, 
PDB code 2F7E, ligand 2EA (reference 1JBP/ADP). (E) Hydrophobic group 
phosphate replacing, human farnesyl diphosphate synthase, PDB code 4P0W, ligand 
1XH (reference 4H5D/POP). (F) Penicillin phosphate replacement; Staphylococcus 
aureus, sensor domain of BlaR1, PDB code 3Q82, ligand MER (reference 
1XA1/POP). 
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Previously unrecognized phosphate isosteres 

Classical phosphate replacement, such as replacement containing phosphate, 
carboxyl, esters, sulfones and sulfonamides was identified with this workflow. 
The approach also highlighted less classical phosphate replacements such as 
hydrophobic rings, polar rings, nitrile groups and amide groups. Aliphatic 
apolar groups are also found for phosphate replacement, which is surprising 
considering that phosphate groups are negatively charged (see example Figure 
34, panel E). Some other replacements are interesting in medical chemistry, 
for example in Figure 34 panel F, penicillin G, which contains a lactam 
scaffold, replaces phosphate groups. Other miscellaneous replacements, such 
as the replacement of the phosphate by positively charged groups have been 
found and discussed in term of affinity. These unrecognized LSR for the 
phosphate, extracted from a PDB data-mining give a new perspective in 
medicinal chemistry for phosphate replacement. 

Discussion  

Improvement of extracting workflow 

The computational workflow has been optimized for phosphate groups. While 
this approach works for small chemical groups, such as phosphate groups, it is 
limited when facing more complex substructures; furthermore, it is not 
flexible. An improvement of the workflow would consist of reconstruction of 
all connectivity matrices (as is done in order to run ShaEP) and mining them 
directly for substructure search using a graph-matching algorithm. This type 
of algorithm has been pioneered by the Ullman algorithm (Ullmann, 1976). In 
retrospect, it would have been better to build a more easily generalizable tool 
from the start. 

The computational workflow suffers from some limitations due to the methods 
used. The extraction of the type of LSR based on a regular expression search 
on the SMILES strings (generated from the LSR extracted from the pdb file) 
introduced problems in the LSR hierarchical organization. For example, a 
current problem is that the conversion of two separate fragments into SMILES 
connects them as part of a ring system. When the chemical group is incomplete, 
i.e. the ring is not completely included in the LSR region, these fragments are 
not properly classified. If the SMILES format is chosen for simplicity and 
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speed, a substructure chemical search based on the 3D structure should avoid 
potential problems. 

Generalization to other chemical substructures  

A main perspective of this work is application of the same protocol as for the 
phosphate group for new chemical substructures. 

This has already been done for ribose, but the data are not yet analysed. 
Examples of replacements found are presented in Figure 35; ribose was 
replaced with a sulfonamide, heterocycle or hydrophobic cycle. 

Figure 35: Example of ribose LSRs extracted using the protocol include in 
Publication III. (A) Sulfonamide replacement from Spodoptera frugiperda 
transferase, PDB code 2VTH, ligand LZ2 (reference 4I3Z/ADP). (B) Heterocycle 
replacement from Escherichia coli aurora kinase, PDB code 4BYI, ligand FH3 
(reference 2WQE/ADP). (C) Cycle replacement from human transferase, PDB code 
2ZYB, ligand KSL (reference 3DQX/AMP). 
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3. Neighbourhood of ionizable groups (IV) 

Salt bridges (charge-reinforced H-bonds) comprise one of the strongest 
interactions in protein-ligand interactions (see Section 4.2, Review of the 
literature).  

Salt bridges are formed between acidic and basic groups and are characterized 
by the sharing of a proton. Although well studied in proteins, they have been 
only poorly characterized in the case of protein-ligand complexes. This is 
probably due to the difficulty in identifying specifically the atoms that belong 
to the ionizable groups from a ligand in a 3D structure, the lack of ready-to-
use datasets and the relative difficulty in operating chemoinformatics data 
mining tools in the PDB.  

A better understanding of salt bridge frequencies would facilitate anticipating 
them in, for instance, docking simulations, which would enable better 
assignment of formal charges to the ligand and protein structures. Ligands and 
proteins are, however, commonly prepared by enumerating ionization states at 
best. The main goal of this study was thus to dissect and quantify the frequency 
by which a ligand forms a salt bridge, given that it contains a basic or acidic 
group. 

Data mining 

Six ionizable functional groups are considered. Five basic groups, i.e. primary 
amine, secondary amine, tertiary amine, imidazole and guanidinium, and one 
acidic group, carboxylic acid, are considered.  

Two main challenges have been faced: (i) the extraction of ionizable functional 
groups from ligands from the PDB and (ii) controls for the quality of the 
structures extracted, especially in analysing water molecules, poorly 
positioned at low resolution. 

The extraction of ionizable groups, i.e. the detection of their substructures, 
would benefit from using a graph-matching algorithm rather that the case-
specific code that is used. It would render the study much more flexible to 
analyse other functional groups. This problem has already been discussed 
above for detection of phosphate groups (Section 2.2 of Results and specific 
discussion). 
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Controls regarding the quality of structures is an important issue. Two datasets 
of different resolution have been built, containing non-redundant proteins 
complexes with the ligand’s specific substructures (one ligand may contain 
several substructures). At 1.5 Å resolution, we collected 161 with primary 
amines, 91 with secondary amines, 64 with tertiary amines, 26 with an 
imidazole, 11 with guanidinium and 96 with a carboxylic acid. At 3.0 Å 
resolution, the figures were 1491 primary amines, 1113 secondary amines, 
1020 tertiary amines, 251 imidazoles, 134 guanidinium and 1390 carboxylic 
acids. The R free value is controlled in both datasets to be below 0.25, which 
is a standard value for mining contact data in PDB complexes. The dataset at 
1.5 Å resolution was used to analyse the position of water molecules. 

Main results 

Fraction of substructures stabilized by salt bridges  

This study quantifies the proportion of ionic interactions for the six chemical 
groups considered: 54% of the ligand’s primary amines are involved in salt 
bridges, and these numbers are 53% for secondary amines, 16% for tertiary 
amines, 15% for imidazole, 72% for the guanidinium group and 53% for 
carboxylic groups. For ligands with guanidinium and primary amino groups, 
these proportions are similar to those previously reported for proteins. The low 
proportions found for tertiary amines – which have pKa of 8-10, similar to that 
of primary amines – are suggested to be linked to the lower accessible volume 
for interaction.  

Water molecules are analysed using the high-resolution dataset. Salt bridge 
interactions mediated by water molecules are found for 26% of primary 
amines, 22% of secondary amines, 5% of tertiary amines and 26% of 
carboxylates of the protein-ligand interaction.  

Environments that stabilize ionizable groups 

We developed a method to analyse the neighbourhood of the ionizable groups 
under scrutiny by focusing on their closest neighbours (closest interacting 
atoms), collecting types and interaction distances. An example of the 
investigation of environments is presented in the case of primary amines in 
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Figure 36. Environments are investigated using different approaches, based on 
a 3D visualization in panel A, and analysis of neighbour atoms in panel B. 

The B panel demonstrates that primary amines are in most cases interacting 
with no more than three atoms within a distance of 3.5 Å (only non-bonded 
interactions examined). When considering the six closest neighbours 
(collected within a distance of 6 Å), the types of interacting atoms are specific 
for the first four neighbours as well, and thereafter resemble the neighbourhood 
of any atom. The combination of neighbours is also demonstrated to be 
enriched in specific preferred neighbourhoods, the most commonly observed 
being carboxylic acid oxygen, two acyl oxygens and one water molecule. Thus, 
the interaction properties of a primary amine are well represented by 
considering only its closest four closest neighbours. 

Figure 36: Environment investigation of primary amine chemical group. (A) 
Representation of the map density of the position of three types of atom neighbours, 
in red oxygen atom from carboxylate groups (Oox), in orange oxygen atom from 
hydroxyl groups (Oh) and in blue water molecules (Ow). (B) From left to right, 
number of neighbour atoms in the shell of 3.5 Å; proportion of different neighbour 
atom types for the six first neighbours collected within 6Å; and distribution of the 
different combination of four atom neighbours; rank 1: Oox + Oc (oxygen from an 
acyl group) + Oc + Ow; rank 2: Oox + Ow + Ow + Xot (carbon aliphatic and sulfur 
included in all amino acid); rank 3: Oox + Oox + Oc + Oh. Nam: nitrogen of amine 
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group; Nim: nitrogen of imidazole group, Ngu: nitrogen from guanidinium group, 
NaI: nitrogen from primary amine, Car: carbon in aromatic group. 

The method allows demonstration of a clearly different environment in cases 
where the protein carries a fully charged counter ion and in its absence. See, 
for example, Figure 37 for primary amine. In the case where no counter ion is 
present in the vicinity of the ligand ionizable group, the environment that 
stabilizes the chemical group often includes a weakly ionic hydrogen bonding 
group such as hydroxyl or water molecules. In addition, the environment of 
basic groups includes H-bond acceptors such as acyl substituents. 

Figure 37: Correspondence analysis of the contingency table in terms of atom type 
close to the primary atom, characterizing the neighbouring atoms (1, closest atom, 2, 
second closest, etc.). Two environments are considered, i.e. salt bridges (A-red, 
neighbours 1-4) and no salt bridges (B-grey, neighbours 1’-4’). Environment (A) is 
composed mainly of carboxylate group (Oox) and hydroxyl group (Oh) from the 
protein. The environment (B) that do not include a fully charged neighbour is 
composed mainly of water molecules (Ow), acyl groups (Oc), imidazole nitrogen 
atoms (Nim) and to a lesser extent hydroxyl groups (Oh). Adapted from Publication 
IV. 
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Discussion  

Role of water molecules 

The distance distribution of water molecules near basic groups resembles the 
distance distribution observed for acidic counter ion (carboxylic acid). The 
study suggests a previously unrecognized role as counter-ions in the vicinity 
of acidic and basic groups bound to ligands. This phenomenon appears 
relatively common in the complexes studied. Furthermore, the relatively 
significant proportion (5-25%) of salt bridges mediated by water molecules is 
in contrast to the poor consideration that this phenomenon receives in scoring 
functions and in binding free energy computations. 

Considering the closest neighbours to represent the 
interacting atoms 

In Publication IV, we demonstrate that the closest neighbouring atoms from 
functional groups contain significant information about the interactions that 
take place. Apolar atoms are also found in the list of close contacts, although 
hydrophobic contacts are more distant that H-bonding contacts (~4-4.5 Å vs. 
~2.7-3.3 Å). The novelty of the method is that all interacting atoms in the close 
environment are considered at once and not individually, yielding additional 
information. This study thus paves the way for improvements that would 
concentrate on only the neighbouring atoms in, for example, score binding 
poses or local adjustments of binding poses. The number of neighbouring 
atoms to be considered obviously depends on the functional group at hand. A 
potential drawback of this type of method is that the sensitivity to small shifts 
in the binding site would be high.  

Publication IV also attempts to bridge the information gap between the 
interactions (or H-bond networks) considered at the level of a functional group 
and those considered at the level of isolated atoms. 
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4. Post-docking selection for a pharmacophore model to discover OX1 
and OX2 orexin receptor ligands (Publication V) 

The orexin peptide−orexin receptor system is an important regulator of the 
sleep-wakefulness cycle. Orexin receptors are peptidic G protein-coupled 
receptors. The goal of this study was to discover agonists of these receptors, 
none of which have been reported in the literature to date. A protocol 
combining in vivo and computational methods was developed. 

This protocol divides into four steps: (i) development of a pharmacophore 
model based on ~200 antagonists validated by screening a collection of ~137 
000 chemically diverse compounds; (ii) pharmacological screening using 395 
compounds in the hit list of step (i); (iii) of the 47 most promising compounds, 
four were validated for low M orexin agonist activity and seven for high nM 
antagonist activity; and (iv) docking was used to investigate the molecular 
mechanism of orexin agonist activity. 

Main results 

Discovery of new agonist and antagonist compounds 

As the main result of this study, we identified four compounds with promising 
partial agonist activity and  in the 1−30 M range (1.5% hit rate), as well 
as seven antagonists with  in the 0.1−10 M range for the G protein-
coupled receptors OX1 and 1−50 M for the G protein-coupled receptors OX2 
receptor (1.7% hit rate). 

Docking simulation and pose selection 

Docking simulations were conducted using the Glide-XP induced-fit protocol, 
including two binding site water molecules, with the experiment performed by 
my collaborators. A variety of complexes were suggested for each ligand (5-
20 poses), each complex being composed of a ligand and a slightly rearranged 
protein, especially at the level of the side chains. Upon visual examination, the 
scores and the overlap with the ligand bound in the X-ray (our reference) were 
found to be independent. This is illustrated in Figure 35, where the pose with 
rank 1 is also optimal with respect to shape overlap to the reference ligand, as 
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well as fingerprint similarity to the reference ligand (i.e. the best solution by 
all three criteria is the “real” best solution). In contrast, in the redocking 
experiment the second best score shows very limited overlap with the real 
solution. 

A tool to analyse docked poses was developed. The protocol uses three steps: 
(i) superimposition of the reference protein and the docked complex, (ii) 
computation of the volume of overlap using ShaEP software between the 
docked ligand and the reference ligand and (iii) a comparison of the interaction 
profile between the complex reference and including the pose by using 
interaction fingerprints and Jaccard score similarity.  

The results were useful in identifying the poses that were optimal for shape 
and fingerprint interactions to the reference. The method is discussed in Figure 
38 using a flexible redocking of Suvorexant to the native X-ray structure.  

Figure 38: Example of pose docking selection using crossing information between 
ligand volume overlap and fingerprint interaction between the ligand in the co-
crystallized suvorexant, represented in surface and poses of suvorexant redocked 
using Glide. (A) Graphic representation of crossing information between Jaccard 
similarity scores of interaction fingerprint and ShaEP scores, normalized on the 
distribution, between each pose and the reference co-crystalized ligand. The rank of 
poses based on GlideScore is also indicated. (B) Representation of the poses ranked 
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in the first position and the surface of the co-crystallized ligand in the same 
referential. (C) Representation of the pose ranked in the second position and the 
surface of the co-crystallized ligand in the same referential. 

Discussion  

Generalization of this protocol for any pose selection: 
problem of reference ligand 

The selection of a reference for a group of poses is a crucial issue for this 
method. Different co-crystalized ligands may be available for a given protein 
and will influence the results. The code that we implemented is able to identify 
for each ligand studied the reference ligand sharing the largest maximum 
common substructures. However, a single reference is used in Publication V. 

Limitation from the interaction fingerprints 

Modeling of protein ligand interaction is conducted using interaction 
fingerprints. However, only seven types of interactions are considered in the 
fingerprint package PyPLIF (Radifar et al., 2013) based on fingerprint 
interaction as defined by Marcou et al. (2007): (i) apolar interaction, (ii) 
aromatic -stacking, (iii) aromatic T-shape, (iv) H-bond (protein as donor), (v) 
H-bond (protein as acceptor), (vi) electrostatic positive interaction (protein 
positively charged) and (vii) electrostatic negative interaction (protein 
negatively charged) (Marcou and Rognan, 2007). The fingerprint does not 
interpret the chemistry of the ligand; it is thus not capable of assigning “atom 
types” and hydrogen atoms. This is very problematic, for example, for an 
oxygen atom, which depending on its hybridization state, can be only an 
acceptor or a donor/acceptor of a hydrogen bond. Particular interaction types, 
i.e. halogen bond, are not considered, limiting the overall quality of this 
method. Furthermore, only protein-ligand contacts, not water molecules, are 
considered.  
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Unpublished results - Positioning of water molecules and 
estimation of their favourable displacement 

Water molecules play an important role in protein-ligand recognition in, for 
example, mediating salt-bridge interaction (Publication IV) or in participating 
in a mechanism that explains local structure replacements (Publication III). 
Furthermore, modelling water molecules is a great challenge for numerous 
computational methods such as free-energy estimation, molecular docking and 
design of analogues (see Section 4.5, Review of the literature). 

Only a few water molecule positioning methods are available to the scientific 
community, and they are generally associated with an expensive commercial 
package, e.g. WaterMap in the Schrodinger suite. Methods based on molecular 
dynamics require long computation and parametrization times and are difficult 
to generalize to all types of targets (see Section 5.5, Review of the literature). 

The aim of this project was to develop a novel method for predicting positions 
of water molecules in binding sites and assigning for each one an index 
attributing how favourably or unfavourably replaceable they are. To overcome 
the limitation of the current model, based on long molecular dynamics, this 
method is based on positioning of water molecules using known position of 
water molecules included in crystallographic structures, extracted from the 
PDB. Currently, geometry models exist to investigate water molecules in the 
binding site (see Section 2.2, Review of the literature), but none are used both 
to position and to estimate the favourable displacements of water molecules.   

1. Positioning method 

A high-quality subset of the PDB, resolution below 1.5 Å and R-free below 
25%, was collected. Thresholds of quality criteria were fixed empirically as a 
balance between the number of water molecules presented by structures and 
the number of structures available. A set of 1280 structures was collected. 

Two methods were tested, a geometric method and a grid-based method. The 
grid-based method was computationally inefficient and we decided not to 
pursue it further. Only the geometric approach is described herein (see Figure 
39). It is divided into two steps, mapping water molecules around the protein 
and estimating a desirability index that characterizes their displacements. The 
second part of the study is ongoing. 
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The water molecule mapping step is based on the construction of the 
cartographies of water molecules, characterizing the preferential positions of 
water molecules around protein amino acids. The 20 amino acids were 
fragmented, identifying rigid functional groups, e.g. imidazole from histidine 
or carboxyl group from aspartic acid. The shell around each fragment, 
including water molecules with 1, 2, 3 or more than 4 interactions, were 
collected independently. A water molecule contact is defined when the 
distance between the oxygen atom of a water molecule and a protein’s atom is 
below 3.2 Å. 

Water molecule mapping then consists of combining all cartographies and 
mapping them on the fragmented amino acids of a new protein. Clashes are 
removed, and the number of contact points with the protein is estimated using 
geometric methods. Distance clashing between the protein atom and water 
molecule is fixed at 2 Å. 

Figure 39: Method of water positioning based on amino acid fragmentation. Water 
molecules are presented using a sphere, in red for water molecules with at least 4 
contacts, in orange for 3 contacts, in yellow for 2 contacts and in green for one contact 
with the protein.  
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2. Positioning quality 

A test set of 100 high-quality proteins, not included and with a sequence 
identity inferior to 50% with the training set was built. The quality of the water 
molecules positioning is discussed using the number of water sites that were 
present in the test set found. Considering a distance of 2 Å between water 
molecules crystallized and water molecules placed by our algorithm, ~80% of 
the water sites are found (Figure 40). 

Figure 40: Example of water positioning (A) from complex of Human 
immunodeficiency virus 1 protease complexed with the inhibitor KNI-272, PDB code 
1HPX previously desolvated and (B) focused on an exposed polar oxygen on the 
protein surface. Water molecules are presented using spheres, in red for water 
molecules with at least 4 contacts, in orange for 3 contacts, in yellow for 2 contacts 
and in green for one contact with the protein. The sites of water correctly found are 
presented in a red sphere. 

3. Future developments 

The current development of this work is divided into three parts: (i) improve 
water molecules mapping protocol, (ii) develop a desirability index that 
quantifies the desirability displacement of each water molecule and (iii) 
benchmark this method with the approaches available in the literature. 

For a water molecule mapping protocol, three directions are being investigated: 
(i) reduce the number of extra water molecules by considering only water 
molecules with the best geometry in the water network, i.e. by identifying the 
best water network around the protein and removing redundant water 
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molecules not included in this network, (ii) refine the cartography. Develop 
new cartographies for most common ligand fragments, possibly degenerated, 
that would allow considering water in the protein-ligand interface, (iii) focus 
the positioning for water molecules in the protein-ligand interface or in protein 
pockets. 

The most challenging part of this development consists of developing an index 
of water desirability that considers (i) the nature of the direct neighbour’s 
atoms, with or without neighbouring water molecules, (ii) the water network 
perturbation, (iii) the mobility of water molecules and (iv) the neighbouring 
atoms of a ligand. This index should be connected to the free energy of the 
protein-ligand interaction. At the moment, only the number of contacts with a 
protein for a cluster of water molecules is considered. Finally, the validation 
of this method needs to be improved by, for example, benchmarking against 
well-documented examples of HIV-1 protease (Li and Lazaridis, 2003; 
Kellogg and Chen, 2004; Beuming et al., 2012). 
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Concluding remarks 

1. Program availability 

Among the main problems encountered during this thesis was the lack of 
availability of computational tools developed by the community. For example, 
for protein pocket estimation methods many articles present new algorithms, 
but only a few of them are available either as source code or using a web server. 

This problem raises the question of scientific reproducibility and reliability of 
findings, especially for computational sciences; algorithms are not always 
available and some methods are never publicly released. A well-recognized 
issue has been, for instance, the retraction of five membrane protein X-ray 
structures due to an erroneous in-house script (Chang et al., 2006). The lack of 
distribution for computation tools has several origins: (i) technical difficulties, 
(ii) monetization and (iii) protectionism by the institutions to be more 
competitive, e.g. for grant applications (Morin et al., 2012; Walters, 2013).  

In contrast, many platforms exist to distribute source code and data such as 
F1000research for research or GitHub for source code (Black, 2014; Bajorath, 
2015). The scientific community is also more sensible about the problem of 
reproducibility for computational work as shown by the editorial 
recommendation of the American Chemical Society journal to distribute 
source code (Matters, 2010). 

2. Protein-ligand affinity  

Affinity between a ligand and a protein is difficult to take into account in work 
that statistically addresses molecular interactions. This is due to the relative 
difficulty in mining binding affinity values when this study was started as well 
as the low relevance of the values where the bound compounds differ in several 
places. Nonetheless, it would be interesting to consider the distribution of 
binding affinities in the complexes used in Publications III compared with the 
PDB, e.g. extracting data from PDBbind (Wang et al., 2004).  

For Publication III, we decided to read selected original publications in order 
to discuss relevant affinity changes (see Section 2, Results and specific 
discussion).  
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Generally, we should be able to access relatively well-curated binding data 
from, for instance, the MOAD database, which contains a large number of 
protein-ligand complexes, 8156 binding affinities for 23 269 complexes 
extracted from the PDB (Hu et al., 2005; Ahmed et al., 2015). 

3. Conclusion 

Limitations in predicting which types of ligands can bind to which types of 
proteins are numerous. Computational methods, although complex, tend 
sometimes to generate trivial predictions that can be summarized as “small 
ligands bind small pockets and large ligands bind large pockets”. In general, 
we are not able to understand and model all phenomena responsible for 
protein-ligand recognition. 

Taken together, the six studies here investigate different aspects of protein-
ligand recognition, considering the pocket description (Publications I and II), 
ligand replacements tolerated for a binding site (Publication III), specific 
interaction types (Publication IV) and water molecules (Unpublished result).  

The methods developed provide a starting point for further computational 
developments that should lead to improvements in our understanding of the 
phenomena involved in protein-ligand recognition. 
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