38 research outputs found

    Scalable prediction of compound-protein interactions using minwise hashing

    Full text link

    Development, validation and application of in-silico methods to predict the macromolecular targets of small organic compounds

    Get PDF
    Computational methods to predict the macromolecular targets of small organic drugs and drug-like compounds play a key role in early drug discovery and drug repurposing efforts. These methods are developed by building predictive models that aim to learn the relationships between compounds and their targets in order to predict the bioactivity of the compounds. In this thesis, we analyzed the strategies used to validate target prediction approaches and how current strategies leave crucial questions about performance unanswered. Namely, how does an approach perform on a compound of interest, with its structural specificities, as opposed to the average query compound in the test data? We constructed and present new guidelines on validation strategies to address these short-comings. We then present the development and validation of two ligand-based target prediction approaches: a similarity-based approach and a binary relevance random forest (machine learning) based approach, which have a wide coverage of the target space. Importantly, we applied a new validation protocol to benchmark the performance of these approaches. The approaches were tested under three scenarios: a standard testing scenario with external data, a standard time-split scenario, and a close-to-real-world test scenario. We disaggregated the performance based on the distance of the testing data to the reference knowledge base, giving a more nuanced view of the performance of the approaches. We showed that, surprisingly, the similarity-based approach generally performed better than the machine learning based approach under all testing scenarios, while also having a target coverage which was twice as large. After validating two target prediction approaches, we present our work on a large-scale application of computational target prediction to curate optimized compound libraries. While screening large collections of compounds against biological targets is key to identifying new bioactivities, it is resource intensive and challenging. Small to medium-sized libraries, that have been optimized to have a higher chance of producing a true hit on an arbitrary target of interest are therefore valuable. We curated libraries of readily purchasable compounds by: i. utilizing property filters to ensure that the compounds have key physicochemical properties and are not overly reactive, ii. applying a similaritybased target prediction method, with a wide target scope, to predict the bioactivities of compounds, and iii. employing a genetic algorithm to select compounds for the library to maximize the biological diversity in the predicted bioactivities. These enriched small to medium-sized compound libraries provide valuable tool compounds to support early drug development and target identification efforts, and have been made available to the community. The distinctive contributions of this thesis include the development and benchmarking of two ligand-based target prediction approaches under novel validation scenarios, and the application of target prediction to enrich screening libraries with biologically diverse bioactive compounds. We hope that the insights presented in this thesis will help push data driven drug discovery forward.Doktorgradsavhandlin

    DTI-SNNFRA: Drug-Target interaction prediction by shared nearest neighbors and fuzzy-rough approximation

    Full text link
    In-silico prediction of repurposable drugs is an effective drug discovery strategy that supplements de-nevo drug discovery from scratch. Reduced development time, less cost and absence of severe side effects are significant advantages of using drug repositioning. Most recent and most advanced artificial intelligence (AI) approaches have boosted drug repurposing in terms of throughput and accuracy enormously. However, with the growing number of drugs, targets and their massive interactions produce imbalanced data which may not be suitable as input to the classification model directly. Here, we have proposed DTI-SNNFRA, a framework for predicting drug-target interaction (DTI), based on shared nearest neighbour (SNN) and fuzzy-rough approximation (FRA). It uses sampling techniques to collectively reduce the vast search space covering the available drugs, targets and millions of interactions between them. DTI-SNNFRA operates in two stages: first, it uses SNN followed by a partitioning clustering for sampling the search space. Next, it computes the degree of fuzzy-rough approximations and proper degree threshold selection for the negative samples' undersampling from all possible interaction pairs between drugs and targets obtained in the first stage. Finally, classification is performed using the positive and selected negative samples. We have evaluated the efficacy of DTI-SNNFRA using AUC (Area under ROC Curve), Geometric Mean, and F1 Score. The model performs exceptionally well with a high prediction score of 0.95 for ROC-AUC. The predicted drug-target interactions are validated through an existing drug-target database (Connectivity Map (Cmap))

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Get PDF
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones

    Application of Machine Learning for Drug–Target Interaction Prediction

    Get PDF
    Exploring drug–target interactions by biomedical experiments requires a lot of human, financial, and material resources. To save time and cost to meet the needs of the present generation, machine learning methods have been introduced into the prediction of drug–target interactions. The large amount of available drug and target data in existing databases, the evolving and innovative computer technologies, and the inherent characteristics of various types of machine learning have made machine learning techniques the mainstream method for drug–target interaction prediction research. In this review, details of the specific applications of machine learning in drug–target interaction prediction are summarized, the characteristics of each algorithm are analyzed, and the issues that need to be further addressed and explored for future research are discussed. The aim of this review is to provide a sound basis for the construction of high-performance models

    Drug-Target Interaction Networks Prediction Using Short-linear Motifs

    Get PDF
    Drug-target interaction (DTI) prediction is a fundamental step in drug discovery and genomic research and contributes to medical treatment. Various computational methods have been developed to find potential DTIs. Machine learning (ML) has been currently used for new DTIs identification from existing DTI networks. There are mainly two ML-based approaches for DTI network prediction: similarity-based methods and feature-based methods. In this thesis, we propose a feature-based approach, and firstly use short-linear motifs (SLiMs) as descriptors of protein. Additionally, chemical substructure fingerprints are used as features of drug. Moreover, another challenge in this field is the lack of negative data for the training set because most data which can be found in public databases is interaction samples. Many researchers regard unknown drug-target pairs as non-interaction, which is incorrect, and may cause serious consequences. To solve this problem, we introduce a strategy to select reliable negative samples according to the features of positive data. We use the same benchmark datasets as previous research in order to compare with them. After trying three classifiers k nearest neighbours (k-NN), Random Forest (RF) and Support Vector Machine (SVM), we find that the results of k-NN are satisfied but not as excellent as RF and SVM. Compared with existing approaches using the same datasets to solve the same problem, our method performs the best under most circumstance

    DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network

    Get PDF
    Motivation: In vitro experiment-based drug-target interaction (DTI) exploration demands more human, financial and data resources. In silico approaches have been recommended for predicting DTIs to reduce time and cost. During the drug development process, one can analyze the therapeutic effect of the drug for a particular disease by identifying how the drug binds to the target for treating that disease. Hence, DTI plays a major role in drug discovery. Many computational methods have been developed for DTI prediction. However, the existing methods have limitations in terms of capturing the interactions via multiple semantics between drug and target nodes in a heterogeneous biological network (HBN). Methods: In this paper, we propose a DTiGNN framework for identifying unknown drug-target pairs. The DTiGNN first calculates the similarity between the drug and target from multiple perspectives. Then, the features of drugs and targets from each perspective are learned separately by using a novel method termed an information entropy-based random walk. Next, all of the learned features from different perspectives are integrated into a single drug and target similarity network by using a multi-view convolutional neural network. Using the integrated similarity networks, drug interactions, drug-disease associations, protein interactions and protein-disease association, the HBN is constructed. Next, a novel embedding algorithm called a meta-graph guided graph neural network is used to learn the embedding of drugs and targets. Then, a convolutional neural network is employed to infer new DTIs after balancing the sample using oversampling techniques. Results: The DTiGNN is applied to various datasets, and the result shows better performance in terms of the area under receiver operating characteristic curve (AUC) and area under precision-recall curve (AUPR), with scores of 0.98 and 0.99, respectively. There are 23,739 newly predicted DTI pairs in total
    corecore