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Abstract

Computational methods to predict the macromolecular targets of small organic drugs

and drug-like compounds play a key role in early drug discovery and drug repurposing

efforts. These methods are developed by building predictive models that aim to learn the

relationships between compounds and their targets in order to predict the bioactivity of

the compounds.

In this thesis, we analyzed the strategies used to validate target prediction approaches

and how current strategies leave crucial questions about performance unanswered.

Namely, how does an approach perform on a compound of interest, with its structural

specificities, as opposed to the average query compound in the test data? We constructed

and present new guidelines on validation strategies to address these short-comings. We

then present the development and validation of two ligand-based target prediction ap-

proaches: a similarity-based approach and a binary relevance random forest (machine

learning) based approach, which have a wide coverage of the target space. Importantly,

we applied a new validation protocol to benchmark the performance of these approaches.

The approaches were tested under three scenarios: a standard testing scenario with ex-

ternal data, a standard time-split scenario, and a close-to-real-world test scenario. We

disaggregated the performance based on the distance of the testing data to the refer-

ence knowledge base, giving a more nuanced view of the performance of the approaches.

We showed that, surprisingly, the similarity-based approach generally performed better

than the machine learning based approach under all testing scenarios, while also having

a target coverage which was twice as large.

After validating two target prediction approaches, we present our work on a large-scale

application of computational target prediction to curate optimized compound libraries.

While screening large collections of compounds against biological targets is key to iden-

tifying new bioactivities, it is resource intensive and challenging. Small to medium-sized

libraries, that have been optimized to have a higher chance of producing a true hit on an

arbitrary target of interest are therefore valuable. We curated libraries of readily pur-

chasable compounds by: i. utilizing property filters to ensure that the compounds have
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key physicochemical properties and are not overly reactive, ii. applying a similarity-

based target prediction method, with a wide target scope, to predict the bioactivities of

compounds, and iii. employing a genetic algorithm to select compounds for the library

to maximize the biological diversity in the predicted bioactivities. These enriched small

to medium-sized compound libraries provide valuable tool compounds to support early

drug development and target identification efforts, and have been made available to the

community.

The distinctive contributions of this thesis include the development and benchmarking

of two ligand-based target prediction approaches under novel validation scenarios, and

the application of target prediction to enrich screening libraries with biologically diverse

bioactive compounds. We hope that the insights presented in this thesis will help push

data driven drug discovery forward.
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Chapter 1

Introduction

1.1 Background

The drug discovery and development process is long and arduous, with high attrition

rates at each step (Figure: 1.1). It is estimated that 80 - 90% of drug discovery projects

fail in the discovery and pre-clinical stages, and a half of the remaining projects fail

in Phase III trials [1]. The challenges of discovering a new drug are likely exacerbated

by the fact that the early, “serendipitous” discoveries [2, 3] harvested the “low-hanging

fruit” [4, 5]. The process of getting a compound to market as a drug is highly resource

intensive, requiring a large amount of human expertise, funding and time [6]. Recent

estimates suggest that the mean cost of bringing a drug to market range from $1.3 billion

[7] to $2.8 billion [8, 9].

Figure 1.1: A general overview of the drug discovery and development process. Figure
adapted from [10].
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Computer-aided drug discovery (CADD) techniques are therefore routinely employed,

both in industry and academic settings, during the early stages of drug discovery process

to increase efficiency and reduce costs [6, 11]. A wide range of computational techniques

are utilized to aid lead optimization. These include quantum mechanical and molecular

mechanical calculations (to help understand the structure and dynamics of a molecular

system) to virtual screening (to prioritize and reduce the number of compounds for a

biological screening campaign) and quantitative structure-activity relationship (QSAR)

techniques (to gain an understanding of the absorption, distribution, metabolism and

elimination/excretion (ADME) properties of compounds) [6, 12, 13]. The increase in

available computing resources and digital data [14, 15], has driven the increased use of

computational techniques in drug discovery.

A ligand (which may also be known as a drug candidate or a drug, depending on how far

along the investigative process the compound is) is typically a small molecule (a com-

pound with a low molecular weight) which interacts with larger macromolecules, typically

proteins, known as targets. The increased availability of bioactivity data, that is, data

on the interactions between compounds and targets, has coincided with a paradigm shift

in drug discovery from the “one drug one target” paradigm to “polypharmacology” [16].

Polypharmacology is driven by the fact that there are many proteins in nature, with over

20,000 proteins the human proteome alone, which have only about 1,000 characteristic

ligand binding pockets (parts of the protein on which a small molecule may interact

with) [17]. This means that a single compound, which binds to one of these pockets, is

likely to interact with multiple proteins. It is estimated that on average drugs are active

on six [18, 19] to twelve targets [20].

Therefore, for a drug to have the desired therapeutic effect, a set of targets need to be

modulated to achieve efficacy, while avoiding others to reduce adverse side effects [21].

While the ability of a compound to interact with multiple targets poses challenges with

respect to side effects, it also means that it is possible to repurpose or reposition drugs,

which have already been through rigorous and expensive safety assessments, for other

uses [22–24]. That is, a single drug may be used to treat multiple ailments depending on

the targets and pathways it modulates. Repurposing drugs, approved and experimental,

is a key strategy in accelerating drug development [1]. It is therefore vitally important

that we gain an understanding of what targets a compound interacts with and may

modulate.
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1.2 Machine learning

There has been an increased use of artificial intelligence (AI) in a variety of fields,

including drug discovery [25, 26]. AI systems attempt to replicate human intelligence

and decision making. Machine learning (ML), a branch of AI, applies statistical and

mathematical functions to input data to teach a computational machine (i.e. a model)

to perform tasks such as predicting what the biomolecular targets of small molecules

might be [27]. Broadly, ML approaches are divided into two paradigms, supervised or

unsupervised learning, based on the type of input data used to train the machine to

perform its task.

Models employing supervised learning learn to perform their task from training data

which has been structured and labeled with the expected output value. That is, the

training data have the correct answers to the task the model is being trained on. The

model is fit to the training data and the trained model is then applied to new data to

predict outcomes. For example, a target prediction model trained on data which consists

of compound-target pairs that are labeled as interacting or non-interacting and would

be used to label an unknown compound-target pair as interacting or non-interacting.

In cases where the input data has been labeled with categorical variables (i.e. where a

compound-protein pair is categorized as being either interacting or non-interacting, or

perhaps as a strong binder, weak binder, on non-binder), the models are classification

models. Classification models make predictions by classifying query data points into the

output categories of training data. When the training data have been labeled with con-

tinuous values, the model is known as a regression model, e.g. predicting the binding

affinity value of the compound-target pair. In comparison to classification models, re-

gression models require higher quality training data, often limiting its use in large-scale

bioactivity prediction.

Models employing unsupervised learning use input training data which has not been la-

beled with the output values. During the training, models find structure within the data

to expose natural patterns among the data points. Models attempt to learn their task

as the natural patterns in the training data emerge. For example, when the training

data consists of a mixture of unlabeled interacting and non-interacting compound-target

pairs, a goal of an unsupervised learning model could be to find patterns in the training

data through which the training data would naturally be separable into interacting and

non-interacting pairs (clustering). An unsupervised model may also highlight relation-

ships between compounds of a particular type and targets of a particular type. Once

trained, the model is applied to new pairs to make inferences on their interactions.
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1.3 The importance of target prediction

In silico target prediction, using computational approaches to identify the possible macro-

molecular targets of small molecules, is a key tool in early drug discovery. Target predic-

tion methods predict whether a query compound and macromolecule pair are interacting

or non-interacting, thereby predicting the possible targets (interacting macromolecules)

of a query compound. Target prediction is useful for a variety of tasks such as tar-

get deconvolution, elucidating the mode of action of compounds, drug repurposing, and

predicting adverse effects of compounds. In-silico methods to predict the biomolecular

targets of small compounds have a range of useful applications from drug discovery to

cosmetics and agrochemicals. Across the general chemical industry, understanding the

interactions with macromolecular targets aids assessing the safety and mode of action

of compounds. Consequently, recent years have seen a growth in the development of in

silico target prediction methods.

Target prediction methods have been developed using a number of different technol-

ogy/model types, including similarity-based approaches [28], other ML-based approaches

[29, 30], inverse/reverse-docking based approaches [31], and networks-based approaches

[32]. Similarity-based approaches, also known as similarity-learning or nearest neighbor

techniques, have a long history in CADD and use the similarity between a query and the

knowledge base (also known as the reference/training data) to make predictions. Beyond

utilizing similarity measures, target prediction has also been addressed using other ML

models, such as random forests, support vector machines and neural networks, which

use the models that were fitted on the training data to make predictions. Reverse dock-

ing approaches use docking scores of docked queries to make predictions, while network

approaches build relationship networks to gain a systemic understanding of the data.

The data on which the method is developed is crucial to any artificial intelligence method.

Depending on the types of data utilized, target prediction approaches may be categorized

as [33–35]:

1. Ligand-based approaches: use molecular descriptors of the compounds to com-

pare query compounds with compounds in the knowledge base and make predic-

tions.

2. Target-based approaches (also known as structure-based approaches):

use the structural information of the macromolecules to make predictions.

3. Chemogenomic (or proteochemometric) based approaches: use informa-

tion from both the ligand and target sides to make predictions on interactions.
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As ligand-based approaches only require the structural data of compounds and their

bioactivity on macromolecules, their scope is wider than other types of target predic-

tion approaches. Ligand-based approaches include methods that use similarity searches

[28, 36–41] between a query compound and ligands in the knowledge base to infer pos-

sible targets for the query. Ligand-based ML models (such as linear regression [19],

random forests [42, 43], support vector machines [43–45], neural networks [43, 46–50],

etc.) trained on molecular descriptors of compounds, and chemical similarity networks

[51–53] of compounds have also been used for target prediction.

Structure-based approaches use the three-dimensional (3D) structure of the macro-

molecules, often protein X-ray or nuclear magnetic resonance (NMR) structures, as

the primary source of data to make predictions [54]. A common structure-based ap-

proach for target prediction is known as inverse docking, where the best orientation of

query compounds complexed with a protein are scored to determine likely stable com-

plexes. In contrast to ligand-based methods, docking approaches consider protein-ligand

interactions as well as binding modes and some solvation effects [54]. Structure-based ap-

proaches are also better at determining the structural changes resulting in activity cliffs,

which may not be visible in ligand descriptors and therefore missed by ligand-based meth-

ods [55]. However, docking multiple queries against multiple targets is computationally

more expensive than ligand-based approaches and predictions are limited to targets with

resolved 3D structures. Additionally, while the scoring functions used by docking meth-

ods rank the ligands and poses, correlating docking scores with binding affinity continues

to pose a challenge and it is therefore difficult to rank targets using docking approaches

[56]. Similarity-based approaches, predicting the bioactivity of compounds based on the

structural similarity between protein targets, have also been utilized to make predictions

[57, 58]. Other structure-based approaches, such as molecular dynamics simulations of

a ligand interacting with a protein, can be used to elicit more information on binding.

However, it is generally not computationally feasible to use these methods for large-scale

predictions.

Chemogenomics-based approaches are defined as methods that use information from both

ligands and targets to make their predictions [33, 59, 60]. Many types of modeling ap-

proaches, such as similarity-based approaches, heterogeneous networks, random forests,

etc. [59] have been used for chemogenomic approaches. Ligands may be described us-

ing their physicochemical structures as well as other annotations including side effects,

Anatomical Therapeutic Codes (ATC) and gene expression responses [59]. While on the

other side, targets may be described using descriptors based on their 3D structures, ge-

nomic sequences, protein sequence, disease annotations etc. [59]. Additional cross-term

descriptors, known as interaction fingerprints, that describe the interactions between a

ligand and its target may also be used to develop a target prediction approach [33].
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Interaction fingerprints are generated from crystal structures or docking experiments

and codify the presence or absence of interactions such as hydrogen-bonds, hydrophobic

and ionic interactions between a ligand and a target [23]. As with structure-based ap-

proaches, the scope of a chemogenomic-based approach is limited by the availability of

target data for target descriptor calculation [33].

1.4 Data for ligand-based target prediction

Data are the foundation upon which a target prediction method is built [61]. Under-

standing the properties of the data is therefore key to understanding the scope and

limitations of a developed method. Ligand-based target prediction methods use the

structure of compounds (i.e. the ligands) and their bioactivity data (annotations of

which proteins the compounds do or do not interact with) to make predictions.

Data sources and limitations

A number of publicly available databases containing bioactivity information may be used

as data sources [41, 61, 62], including databases such as ChEMBL, PubChem, Bind-

ingDB, PROMISCOUS and SuperTarget (Table 1.1). While the data in these sources

varies due to differing foci, there is overlap of data points among the different data

sources [61]. For example, ChEMBL database [63], one of the most popular data sources

for target prediction as it balances size and quality, includes data from literature, as well

as PubChem, bespoke Malaria screening data from different pharmaceutical companies,

and BindingDB [64, 65].

While there is a large quantity of available data, which is increasing, there are still

challenges associated with data availability. Data sets reflect just a tiny part of the

chemical space and are highly imbalanced. This is because there is more information on

particular ligands of explored chemical series [33, 58], and there is more information on

well-studied targets compared with less explored targets [33, 66]. The data also often

record a larger proportion of compounds which are known to be active on (i.e. interacting

with) proteins compared to compounds confirmed to be inactive on proteins. [59, 67–

69]. These biases in the available data limit the development and application of target

prediction methods.

Some modeling approaches require data from both active and inactive classes, such as a

ML classifier that classifies a compound as being active or inactive on a protein. Strate-

gies to address the data biases during model development are often employed. These
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Table 1.1: Examples of data sources for bioactivity data.

Name Description Data URL

ChEMBL Large bioactivity
database with
manually curated
data from
literature as well
as PubChem and
other data sources

2.1M compounds,
14k targets and
17.3M bioactivities

https:

//www.ebi.

ac.uk/chembl

PubChem Large open
database of
chemical
information
including small
molecule screening
data in PubChem
BioAssay

110M compounds,
96k targets and
297M bioactivities

https://

pubchem.ncbi.

nlm.nih.gov

BindingDB Database of
measured
bioactivities of
small molecules
and druggable
targets

982k compounds,
8.5k targets, and
2.3M binding data
points

https://www.

bindingdb.

org/bind

DrugBank Database of drugs
and drug targets

14.5k compounds,
4.9k targets and
19k interactions

https://go.

drugbank.com

PROMISCUOUS Database of
relationships
between drugs,
proteins,
side-effects and
indications

988k compounds,
4.9k targets and
19k interactions

https://

bioinformatics.

charite.de/

promiscuous2

SuperTarget Database with
drug-target
interactions

195k compounds,
6.2k targets and
332k interactions

https://

bioinformatics.

charite.de/

supertarget

include enriching the inactive class by randomly selected compound-target pairs to rep-

resent inactive interactions [42], selecting compound-target pairs that are dissimilar to

active compound-target pairs to represent inactive pairs [70], oversampling from the mi-

nority class [71] and under sampling or cluster sampling (sampling a selected number
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interactions based on similarity) from the majority class [72]. In addition to accounting

for the data bias in model development, a target prediction method needs to be thor-

oughly validated using validation strategies that account for these biases. In particular,

it is important to understand how reliable a target prediction method is for a specific

query.

Representing molecular structures

There are multiple ways of representing molecular structures. One of most common rep-

resentations of compounds in chemical information databases is a string format known

as Simplified Molecular-Input Line-Entry System (SMILES) [73]. A SMILES string rep-

resents the two-dimensional (2D) or 3D graph structure of a molecule in a single line

using ASCII characters to represent atoms, bonds and stereochemistry. Natural language

processing techniques may be applied to the string representations of compounds to pre-

dict chemical properties and biological activity [74]. Traditionally however, quantitative

encodings of compounds are utilized to make predictions [75].

One popular way to encode compounds for target prediction and virtual screening is the

Extended Connectivity Fingerprint (ECFP) [76]. ECFPs are graph-based topological

descriptions of a compound which encode the local properties of the compound. These

fingerprints are generated by defining the radius of the local environment and the length

of the bit vector of the fingerprint. To encode a compound, the algorithm begins by

assigning a numerical identifier to the atoms of the compound (Figure 1.2 A). The

algorithm starts at the first atom, encoding the substructures found in the environment

around the atom. The radius of the environment is then increased around an atom it

is encoding in an iterative fashion (Figure 1.2 B) until the predefined radius is reached.

The algorithm then moves onto the next atom and repeats the encoding process until

all atoms and their environments are encoded. The substructures identified on the

compound as the algorithm traverses the molecular graph are then hashed into a single

value. A binary bit-vector fingerprint of a set length is generated where each bit set to 1

represents the presence of a structural feature in the compound, while 0 represents the

absence.

When choosing values for the radius of the environment and the length of the fingerprint,

one must balance computational cost against the structural detail encapsulated by the

fingerprint. While ECFP fingerprints are fast to generate [76], the larger the radius the

more iterations per atom need to be conducted and more substructures may be identified.

Longer fingerprints capture more detail but suffer from sparseness as majority of the bits

are set to 0. Conversely, the shorter binary fingerprint is, more substructures are hashed
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into a single position (hash collision) lowering the detail captured.

Once compounds have been encoded quantitatively, the encoding may be utilized to

train predictive models. For similarity-based approaches, for example, one of multiple

similarity coefficients [77] may be calculated to quantify the similarity between a pair

of compounds which form the basis of the predictions made. Likewise, quantitative

encodings are also used as input descriptions to fit more complex models such as random

forest classification models.

Figure 1.2: Example of local circular environments for Benzoic acid amide depicting the
numbering of atoms (A) and the substructures found during the iterative identification
process around atom 1 for two iterations (B). Atom “A” depicts a generic non-hydrogen
atom. The red circle indicates the environment within a radius of 0 around the first
atom, the teal circle indicates the environment within a radius of 1 (all atoms and bonds
concerning the first atom away from the considered atom) and the orange circle indicates
the environment within a radius of 2 (all atoms and bonds concerning the first two atom
away from the considered atom). Adapted with permission from Rogers, D.; Hahn,
M. Extended-connectivity fingerprints. Journal of Chemical In-formation and Modeling
2010,50, 742–754. ©2010 American Chemical Society.

1.5 Ligand-based target prediction methods

Target prediction is a rapidly developing field. There are a variety of ligand-based target

prediction methods and many of these are available as free web services [24]. The types
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of models used by the methods and the rigor with which their predictive performance

has been evaluated varies.

The Similarity Ensemble Approach (SEA; http://sea.bkslab.org) is an early, and

consequently one of the most widely used, target prediction method [78]. SEA uses

minimum spanning trees to cluster the ligand sets for targets. The similarity between

a query compound and the ligand sets are then assessed to make predictions. A raw

score between a query and a target is calculated via a target’s ligand set. The raw

score is the sum of all the similarity coefficients between the query and all the ligands

in a set. To reduce the bias caused by ligand set size the significance of the raw score

is calculated based on the distribution of similarity scores between randomly curated

ligand sets of different sizes. This significance, of the similarity between a query and the

targets’ ligand sets, is used to rank targets. SEA was originally built on ligand sets of 246

targets from the MDL Drug Data Report [78]. SEA has been tested through multiple

rounds of prospective validation, where predictions which were previously not annotated

were experimentally tested to see if they were true interactions [78, 79]. Notably, a

large-scale validation study was carried out by Norvartis where 656 drugs, which were

approved for human use, were tested against 73 protein targets using annotations found

in the ChEMBL database to build the minimum spanning tree [80]. SEA predicted 1241

interactions of which 348 interactions could be retrospectively verified in proprietary

database [80]. Novartis tested 694 of the remaining unknown predictions, confirming

that 48% of these predictions were true interactions, while 46% were disproved and

about 6% of predicted interactions were ambiguous [80].

SwissTargetPrediction (http://www.swisstargetprediction.ch), another similarity-

based approach, utilizes a logistic regression comprised of the 2D fingerprint similarity

and the 3D molecular shape similarity between a query compound and knowledge base

ligands [81]. The result of the logistic regression is then used to assign a probability of

a query being active on the knowledge base compound’s targets. The assigned probabil-

ity is based on probabilities of a prediction being correct during internal validation tests

run with the knowledge base data. The probability values are used to rank the targets

for the query compound. SwissTargetPrediction covers over 2,600 protein targets using

data from the ChEMBL database [19]. SwissTargetPrediction was evaluated using ret-

rospective validation, that is, query compounds with known targets are selected from

existing data and are used for testing. The average performance of the test compounds

showed that SwissTargetPrediction performed the best when the test compounds were a

random selection of the data, compared to test compounds that were selected based on

their scaffolds, the assay where they were tested or the time (new compounds added to

subsequent versions of ChEMBL) the compounds’ bioactivity was recorded.
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Chemical Similarity Network Analysis Pulldown (CSNAP; https://services.mbi.

ucla.edu/CSNAP/index.html) is an example of a networks-based similarity-based ap-

proach [51]. CSNAP is built on data from the ChEMBL database and retrieves com-

pounds from the knowledge base which are similar to the query compound. CSNAP

uses a 2D similarity coefficient to retrieve compounds and calculates a Z-score to ac-

count for the significance of the similarity. The retrieved knowledge base compounds are

then clustered into chemical similarity networks based on their pairwise 2D similarity.

A network scoring function is then used to rank the targets of the first order neighbors

of the query compound, returning a ranked list of targets for the query. CSNAP was

validated using 206 external compounds that are active on 6 targets, retrieved from the

Directory of Useful Decoys. Performance of the method was reported through the fre-

quency of known targets ranked among the top-1, top-5 and top-10, with the method

able to retrieve 94% of the targets for the queries among the top-10 ranked targets.

Some methods approach target prediction as a pair-input problem, where a compound-

target pair is classified either as interacting or not-interacting [82]. When popular

machine-learning classifiers (such as random forests, support vector machines, gradi-

ent boosting etc.) are applied to target prediction the target prediction problem is often

approached as binary relevance problem. Binary relevance is an intuitive way of decom-

posing a multi-label problem (in the case of target prediction, what are the different

targets a query interacts with) to a series of binary classification problems. That is, in-

dividual machines are trained for each target and a query is independently classified as

interacting or non-interacting for each target.

An example of the binary relevance decomposition approach to target prediction is the

work carried out by Bosc et al. [42]. For each target derived from the ChEMBL database,

two types of random forest classification models were developed. The first is a standard

random forest model (called the QSAR model in this work) and the second is a Mondrian

conformal predictor (MCP) which used random forests as the underlying model type.

The QSAR model calculates the probability of the query compound belonging to the

active and inactive class of compounds for a target. The sum of these two probabilities

is 1 and the query is labeled active or inactive depending on which class has the greater

probability. With the MCP model, the prediction probabilities of a query are calibrated

to determine the significance of the query’s predicting probability based on the prediction

probabilities of compounds in a calibration set. The higher the significance of a prediction

probability is for a class, the more likely a query belongs to the class. With an MCP

model, a prediction is not just either active or inactive, but it could be both active

and inactive or neither active nor inactive, based on the significance of the prediction

probabilities. Bosc et al. analyzed the average classification performance of all the

queries for each individual target model and showed that when “both” is considered a
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valid prediction, the MCP models perform better than the standard QSAR models and

when “both” is considered an incorrect prediction, the performance of the MCP models

is comparable to the QSAR models. The authors argue that having information about

the ambiguity of a prediction is useful to a user and the MCP models are currently used

for target prediction on the ChEMBL website covering 352 targets [63].

Similarly Mayr et al. built classification models for over 1,300 ChEMBL assays [43] us-

ing different model types: k-nearest neighbors, näıve Bayes, random forests, support

vector machines, a re-implementation of the SEA, feed-forward neural networks, convo-

lution neural networks, and recurrent neural networks. Performance of the models was

measured using classification metrics averaged over the query compounds. The authors

showed that the deep learning feed-forward neural networks followed by the support vec-

tors machines performed the best at predicting activity. The study was repeated by

Robinson et al. who argue that the deep learning model (feed-forward neural network)

had a comparable performance to the support vector machines [83].

Among the ligand-based methods, a few combine a similarity-based approach with more

complex ML approaches. This is primarily done through model stacking, where outputs

from the first layer of models (typically different types of models) are used as inputs into

a second layer of models, which then make a prediction.

HitPick (http://mips.helmholtz-muenchen.de/hitpick/) gets the most similar knowl-

edge base compound to the query, and ranks the targets of this knowledge base compound

using laplacian modified näıve Bayes models of each of the targets [84]. HitPick covers

1,375 human druggable targets. The performance was tested with about 20,000 inter-

actions and presented as a function of the query’s similarity to the knowledge base [84].

With HitPickV2, the target coverage was updated and increased to cover 2,739 human

targets. The method was also altered to select 10 distinct targets (not just the tar-

gets of the most similar knowledge base compound) from the most similar knowledge

base compounds which are then ranked based first on their similarity (from most simi-

lar knowledge base compound) and then on target score from the näıve Bayesian model

[85].

The Polypharmacology Browser 2 (PPB2; https://ppb2.gdb.tools/) method covers

1,720 target proteins and offers eight different modes for target prediction [86]. Three

of the modes use different fingerprints (Molecular Quantum Numbers (MQN), Shape

and Pharmacophore Fingerprint (Xfp), or ECFP) and a similarity-based approach to

rank targets based on the most similar knowledge base compound associated with a tar-

get. Another three modes are combination modes (based on fingerprint type) which

select the 2,000 most similar knowledge base compounds and then builds a Laplacian
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modified multi-label ECFP-näıve Bayes model to rank the targets. A seventh mode is

a global ECFP-näıve Bayes model and the final mode is a global ECFP-deep neural

network model [86]. Based on the average performance measured by two different classi-

fication metrics, the similarity-based approach (nearest neighbor) and the combination

approach (nearest neighbor combined with the näıve Bayes) performed the best using

ECFP fingerprints with a radius of 4.

More recently, the STarFish study stacks different combinations of predictions from a

k-nearest neighbor similarity search, random forests, and feed-forward artificial neural

networks as inputs into logistic regression models to determine if a query is active or in-

active on a target [87]. The k-nearest neighbor in the STarFish approach retrieves the

targets of the 10 most similar knowledge base compounds and ranks the targets based

on the number of times they are predicted by the retrieved knowledge base compounds.

Random forest models using a binary relevance approach and a single multilayer percep-

tron feed-forward neural network were also built to predict targets of a query compound.

Model stacking, using a logistic regression as the meta-model, was explored and a binary

relevance contruct was used for the stacking. That is a different logistic regression for

each target, was used for the logistic regressions which took the prediction outputs from

the other models as features to determine activity on a target. STarFish was trained on

data from ChEMBL covering 1,907 unique targets. Performance metrics were averaged

for the test compounds, however one of the test sets were natural product compounds

which are fairly different to the knowledge base compounds compared to other test com-

pounds. Stacking using the predictions from both the k-nearest neighbor and the random

forests performed the best, followed closely by using only the k-nearest neighbor as in-

put to the logistic regression. The latter was selected as the optimal model as it had a

high performance with lower computational costs.

1.6 Applying target prediction to generate

screening libraries

Compound libraries are a cornerstone of drug discovery [88]. Screening campaigns, test-

ing a large number of compounds on desired targets, using biological and computational

tools are routine in early drug discovery [88, 89]. Compound libraries for these cam-

paigns are usually either compiled as focused libraries [90–93], where a library has been

optimized with compounds to be screened against specific targets, or as general libraries,

where a library has been optimized to increase the diversity of its compounds and in-

crease the likelihood of finding bioactive compounds for any target [90–94]. With the
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understanding that protein targets function as part of complex cellular systems with

other protein targets (i.e., polypharmacology), there is a renewed interest in pheno-

typic screens [95]. Consequently, acquiring general purpose compound libraries have

also gained interest. Commercially available compound libraries, however, are known

to suffer from low hit-rates [96]. Designing compound libraries with a high likelihood

of containing bioactive compounds is therefore important. In addition to increasing the

likelihood of finding true hits, that is the library is composed of truly promiscuous com-

pounds and not compounds which are likely to cause false readouts in assays [95, 97–99],

a good library should also contain compounds with desirable physicochemical proper-

ties [95, 100]. A further consideration when designing screening libraries is keeping up

with “novelty erosion” [101]. That is, libraries should contain compounds from newly

explored areas of the chemical space [101] and show bioactivity on “new” and not just

established targets.

Approaches to designing compound libraries include: utilizing property and substructure

filters to ensure that the compounds have desired physicochemical properties and remove

compounds with unwanted functional groups [98, 100, 102–104], exploiting the knowl-

edge of in-house medicinal chemists to select key compounds and scaffolds [100], and

employing selection algorithms [105], such as clustering [98, 106], ranking [102, 103], it-

erative selection [107] or evolutionary optimization algorithms [100], to select compounds

for a library from a larger pool of compounds.
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Aims of this study

There are multiple approaches to build computational methods to predict the marco-

molecular targets of small organic compounds. This thesis presents the development,

validation and application of ligand-based target prediction methods. The thesis aims

to answer the following questions:

Firstly, how would a medicinal chemist know which target prediction approach to use

given the properties of the compound in question? This question emerges because the

success of a target prediction approach is largely dependent on the knowledge base on

which the approach is built. The reported performances of these approaches therefore

depend on how the test data relates to the underlying knowledge base. Yet, most often

the performance of a target prediction approach is only measured as an average of the

tested queries. While these averaged metrics are useful in assessing the performance,

they do not present a comprehensive picture as a user is likely to use the approach with

queries that are different to the average of the tested data. Therefore, we begin this

study by assessing the state-of-the-art target prediction methods and, importantly, the

validation strategies used to evaluate the models (Chapter 4). To address shortcomings

of the existing validation strategies of target prediction methods, we created strategies

to account for underlying biases in the knowledge base and to help a user understand

the applicability domain of the approach.

Secondly, how can we develop target prediction methods that have a wide chemical and

biological scope and apply validation strategies to test these methods so that the perfor-

mance results are interpretable to an end user given their query compounds? To address

this question, we developed target prediction methods based on two popular approaches

that utilize supervised learning: a similarity-based approach and a binary relevance ran-

dom forest based approach (Chapter 5). In this work, the binary relevance random
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forest based approach is called the ML approach as it harnesses more complex ML al-

gorithms than basic similarity to make predictions. The objectives of this work were to

develop target prediction methods which maximize the use of the existing bioactivity

data, ensuring a wide target coverage, and to explore the performance and scope of the

two approaches with respect to the similarity of the compounds in the test data to the

knowledge base.

Finally, can target prediction be applied to curate libraries of compounds for screening

decks which have a high likelihood of producing hits on any target of interest? Screen-

ing collections of compounds with experimental assays or virtual screens is a key step in

identifying tool compounds for drug development. Increasing the possibility of finding

true hits from a screening campaign is therefore valuable. Small to medium-sized screen-

ing libraries that are more likely to contain bioactive compounds on targets of interest

at the early stages of drug discovery projects. One approach to increase the likelihood

of true hits from screens is to optimize compound libraries with compounds that have

drug like properties and predicted activity on a wide range of proteins. We developed

a computational approach to select an optimal set of compounds for small to medium

sized compound libraries (Chapter 6). To do this, we first identified purchasable com-

pounds with drug-like physicochemical properties, and then predicted the bioactivities

of these compounds. Finally, an evolutionary algorithm is used to to select compounds

for the optimized libraries, maximize the likelihood of selecting bioactive compounds and

compounds with predicted activities on a diverse range of targets.
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Methods

To understand the value of large-scale target prediction methods, large volumes of data

were retrieved and processed for method development and validation. This chapter

summarizes the data sources, technologies and general procedures that were used to

standardize the data and develop the models during the course of this work. Detailed

information is provided in the individual Methods sections of the publications presented

in this thesis.

3.1 Data sources for target prediction

The ChEMBL database [64] was used as the source of data to develop and validate

the target prediction methods explored in this work (P2). The ChEMBL database is

an open access database of manually curated bioactivity data that is primarily sourced

from literature published in medicinal chemistry journals. ChEMBL also pulls data

from other established databases such as PubChem BioAssay and BindingDB [64], as

well as specialized data sets such as the natural product-like compounds from the Uni-

versity of Dundee, the Malaria Box Compound Set and contributions from commercial

organizations such as GlaxoSmithKline and AstraZeneca [64, 65].

In this work, the PostgreSQL database dumps of the ChEMBL databases were retrieved

from the ChEMBL website, restored locally and used to extract relevant data. Version

24 [108] of the ChEMBL database (ChEMBL24) was used to develop the similarity-based

and machine learning target prediction approaches (P2). To validate the performance

of the target prediction approaches (P2), test data was retrieved from ChEMBL24 and

version 25 [109] of the ChEMBL database (ChEMBL25). A validated similarity-based
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target prediction approach was applied to curate libraries of compounds for screening

(P3) using the latest version of ChEMBL, version 27 (ChEMBL27) [110], available at

the time. All the data retrieved from the various versions of the ChEMBL database

were preprocessed and cleaned prior to the development and validation of the target

prediction methods.

3.2 Chemical data processing and molecular

descriptor calculation

Data must go through a rigorous cleaning and transformation process before it can be

utilized for analysis. With chemical data, this includes standardization of the chemical

structures, as there are multiple ways to represent a single compound and no widely

accepted standard practices to structurally depict compounds [111].

All the compounds in the work presented in this thesis were retrieved from their re-

spective sources in the Simplified Molecular Input Line Entry System (SMILES) format.

SMILES strings are a ubiquitous compound representation format which is based on a

defined set of grammar rules to express the graph (atoms as vertices and bonds as edges)

formed by a molecular structure [73].

The compound structures were preprocessed and standardized using Python scripts and

the RDKit toolkit [112] to remove salt and solvent components, neutralize any charges,

and obtain the SMILES string of the canonical tautomer as the representative structure of

the processed compound. Additional processing to identify compounds with unwanted

atom types (atoms other than C, H, O, N, P, S, F, Cl, Br, and I) and compounds

outside molecular weight limits was also conducted to remove compounds from further

consideration.

Following the structural standardization, molecular descriptors were calculated for the

compounds. In this work, the Morgan fingerprint of a compound, obtained by RDKit,

provides the primary descriptors used for model development. Morgan fingerprints are

RDKit’s implementation of the circular ECFP [76]. The fingerprint of a compound is

generated by noting the presence or absence of specified substructures within the local

environment of its atoms, defined by the radius of the fingerprint, and moving iteratively

from one atom to the next of the compound. The resulting fingerprint is a series of bits of

a defined length, with each bit set to 1 or 0 to denote the presence or absence of features

within a compound. In this work, we use Morgan2 fingerprints (Morgan fingerprints with

a radius of 2), at a length of 2048 bits, as this has been shown to be the best performing
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descriptors for target prediction and virtual screening [20, 39, 86, 113].

3.3 Calculation of molecular similarity

A fundamental concept of cheminformatics is the similarity principle. This posits that the

compounds with a similar structure are likely to have similar properties. That is, birds of

a feather flock together. When bit-based fingerprints, such as the Morgan2 fingerprints,

are used to describe compounds, coefficients to quantify the similarity or the distance

(where distance is 1 - similarity) between a pair of compounds may be calculated [77].

In this work the Tanimoto coefficient (TC) (also known as the Jaccard index) is used to

measure the similarity between to compounds. The TC of two compounds (m1 and m2)

is calculated by dividing the number features that the compounds have in common by

all unique features present within the pair (Equation 3.1). The TC is bound between

0 and 1, with 1 indicating a complete match and 0 indicating a complete mismatch

between two compounds. Calculating the similarity between compounds underpins both

the similarity-based approach for target prediction (which was developed for this work)

and the validation of the target prediction approaches.

TC(m1,m2) =
m1 ∩m2

m1 ∪m2

(3.1)

3.4 Model development for target prediction

In P2 we investigate two types of target prediction approaches: a similarity-based ap-

proach and a binary relevance, random forest based (ML) approach (Figure: 3.1). With

the similarity-based approach, targets are predicted for a query compound based on the

similarity of the query to the compounds in knowledge base. By the similarity principle,

the more similar a query compound is to a compound in the knowledge base, the more

likely it is that the query compound will be bioactive on the knowledge base compound’s

targets. As such, for a query, a ranked list of proteins is returned based on the similarity

of the query and the proteins’ ligands (i.e., compounds found in the knowledge base). In

P2 the similarity between two compounds, as measured by the TC, was calculated using

RDKit’s DataStructs.FingerprintSimilarity method [112]. In P3, where the similarity-

based approach was applied to generate compound libraries, the highly optimized and

significantly faster, search.knearest tanimoto search arena method implemented in the

chemfp toolkit [114] was used to calculate the TC between two compounds.
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Figure 3.1: Workflows depicting the similarity-based approach (A) and the machine
learning based approach (B) for target prediction
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The ML approach, on the other hand, uses a binary relevance model with random forest

classifiers to make predictions on the bioactivity of a query compound. For each target a

random forest binary classifier was trained on data composed of at least 25 compounds

which are known to be active on the target and ten times as many compounds which

are known or assumed to be inactive. To rank the targets, a query is classified by each

target model independently and the prediction probabilities of the query belonging to

the active classes of all the classifiers are used to rank the proteins from most likely to

be a target to least likely. The classifiers were implemented using the scikit-learn library

[115].

3.4.1 Training the random forest classifiers for the ML

approach

A random forest classifier is a model that is composed of multiple decision tree classi-

fiers, with each tree in the forest casting a vote on which class a query belongs to. The

aggregated vote is then used to classify a query. Each decision tree classifier could be

thought of as a flowchart developed using a sub-sample that was sampled with replace-

ment of the knowledge base. Every tree in the forest uses a different sub-sample of the

data, generating different trees and therefore a better overall prediction. A single deci-

sion tree grows by using the most prominent features of the data first to decide on the

class membership (Figure 3.2). In the case of target prediction, the substructures of the

compound that have the highest correlation with a compound being active or inactive on

a protein target are used first by the decision tree. Using multiple decision trees (i.e., a

random forest) increases the variance among the trees, as they are each built on different

sub-samples of the data, avoiding over-fitting the model and improves the predictions

made.

Most hyperparameters for the classifiers were set to their default values. Values for the

number of trees and the maximum depth of the trees (Table 3.1) were selected using a 10-

fold cross-validation grid search protocol for each classifier. During the grid search, the

performance of the classifiers was measured using the Matthews correlation coefficient

(MCC) (Equation 3.2) metric. The best combination of the explored parameters (as

measured by a high average MCC score) was selected and used to retrain the model on

the full training data. MCC was selected as the performance measure as it is a robust

measure, particularly with imbalanced data, because it considers the proportion of all

the classes of the confusion matrix, namely true positive (TP), true negative (TN), false

positive (FP) and false negative (FN).
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Figure 3.2: Toy example of a decision tree used to determine if a compound is aromatic
or non-aromatic

Table 3.1: Hyperparameters explored during the grid search protocol to optimize the
target classifiers

Hyperparameter Values explored

n estimators: number of trees 200, 500, 1000
max depth: maximum depth of tree 25, 45, 50, 75, 100

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
(3.2)

3.5 Validation of the target prediction approaches

In P1 we make the case that the top-k metric, disaggregated by the similarity of queries

or test set compounds to the reference/training set data, is a powerful metric to measure

the performance of a target prediction approach. This metric conveys the average per-

formance and provides a sense of how an approach would work on a specific compound

given the compound’s relationship to the approach’s knowledge base. We expand on

this in P2 to thoroughly compare the similarity-based and the ML approaches to target

prediction, defining two versions of the top-k metric: the success rate and the recovery

rate:



3.6 Data source for compound library curation 23

1. Success rate: the percentage of queries with at least one known target present

among the top-k predicted targets.

2. Recovery rate: the percentage of known bioactivities (ligand-target pairs) present

among the top-k predicted targets.

The target prediction approaches were assessed using the two performance metrics (suc-

cess and recovery rates) and under three testing scenarios (the Standard testing, Stan-

dard time-split and Close-to-real-world scenarios) in order to obtain a robust and realistic

measure of performance:

1. Standard testing scenario with an external test set: over 44,000 query

compounds with at least one known target represented in the knowledge base.

2. Standard time-split validation scenario: over 18,000 “new” compounds with

at least one known target represented in the knowledge base.

3. Close-to-real-world scenario: over 20,000 “new” compounds with targets that

may or may not be represented in the knowledge base.

3.6 Data source for compound library curation

The ZINC20 database [116, 117] was used as the source of purchasable compounds

for the curation of the libraries. The ZINC20 database is a collection of purchasable

compounds from 150 chemical vendors which is refreshed every 90 days. Nearly eight-

million compounds, in SMILES format, that were listed as “in-stock”, annotated as

“anodyne”, had a charge state of -1, 0, or +1, and a calculated logP value between 0 and

4, were downloaded from the ZINC20 web service [117]. Compounds listed as “anodyne”

have been tested against and passed through a thorough set of reactivity filters and pan

assay interference compounds (PAINS) patterns [118]. Compounds marked as “anodyne”

are therefore not likely be “bad actors” or “nuisance compounds”. That is, they are less

likely to be reactive or cause pan-assay interference [119]. The retrieved compounds were

preprocessed as described in section Section 3.2.
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3.7 Rules-based filters for compound library

curation

To curate compounds for a screening library (P2), we first assembled a pool of candidate

compounds (PCC). The purchasable, anodyne, compounds from the ZINC20 database

were retrieved and standardized. To bias the PCC towards compounds with key “drug-

like” physicochemical and structural properties, compounds matching the following were

removed from further consideration:

1. Less than 18 or more than 30 heavy atoms (identified using RDKit’s Lipin-

ski.HeavyAtomCount method)

2. Less than one or more than four rings (identified using RDKit’s CalcNumRings

method)

3. Ring systems with more than three fused rings (identified using RDKit’s GetRing-

Info and AtomRings methods to identify the ring systems and number of rings per

system present a compound)

4. More than eight rotatable bonds (identified using RDKit’s rdMolDescriptors.Calc-

NumRotatableBonds method)

5. More than three hydrogen bond donors (identified using RDKit’s Lipinski.NumHD-

onors method)

6. More than seven hydrogen bond acceptors (identified using RDKit’s Lipin-

ski.NumHAcceptors method)

7. Charged carbon atoms (identified using RDKit atom properties)

8. Without at least one oxygen or nitrogen atom (identified using RDKit atom prop-

erties)

Utilizing compounds which were flagged as “anodyne” from the ZINC20 database re-

duced the possibility of “bad actor” [97, 98] behavior within the library. To further

reduce the possibility of “bad actor” behavior within the library, compounds that con-

tained the substructures listed in the “remove” and “extreme caution” categories of the

SMILES ARbitrary Target Specification (SMARTS) [120] patterns compiled by Chakra-

vorty et al. [121] were also removed. The SMARTS patterns used were compiled to

identify nuisance compounds and correctly identified 57% of noisy GSK compounds in
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the study’s validation [121]. An additional SMARTS pattern (“S(=O)(=O)O”) was also

used to filter out compounds with the tosyl esters, a highly reactive functional group not

captured by the other patterns.

Compounds which pass through these filters and have predicted targets, using a similarity

based target prediction approach, are then assembled as the PCC. Compounds for the

libraries are selected and optimized from the compounds in the PCC.

3.8 Genetic algorithm for compound library

curation

We developed an approach (P2) to generate a library of compounds which have a higher-

than-average likelihood of being bioactive on an arbitrary target of interest. This ap-

proach includes applying a genetic algorithm to optimize the selection of compounds for

the compound library. In our implementation, a gene is defined as a compound and an

individual is a set of genes, i.e., a set of compounds. By extension then, a population is

therefore defined as a set of individuals, i.e., a set of compound sets. A population, and

the individuals within it, evolves over generations and the fittest individual is selected

as the optimized library.

Figure 3.3: Generation of four child individuals (compound sets) from two parents using
a single point crossover.

A PCC is assembled form purchasable compounds which have predicted targets and have

passed through a set of rules-based filters. The initial population is first generated by

randomly selecting compounds for each individual from the PCC. The evolution is carried

out by selecting the fittest individuals as parents, producing four children from a pair of
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parents using a single point crossover (Figure: 3.3). One-third of the population for the

next generation is composed of the fittest parents from the current generation, while the

remaining two-thirds of the population is composed of the children. To add variation to

the population, 10% of the compounds in a child are replaced by new randomly selected

compounds, ensuring that a compound is not repeated within an individual. Further

details of the approach, including the development of the fitness function that was used

to determine the fitness of the individual compound sets are described in the Methods

section of P2.



Chapter 4

Strategies to validate target

prediction methods

The validation of most published in-silico methods to predict the biomolecular targets

of small compounds leave key questions about performance unanswered. Often, perfor-

mance is reported as an averaged performance of the model(s). That is, performance

metrics, such as the MCC, are calculated based on a confusion matrix composed of all

the compounds in the test set. For example, Bosc et al. [42] compared binary relevance

approaches using random forest classifiers and Mondrian conformal prediction models,

and classification metrics such as average sensitivity, specificity and correct classifica-

tion rates of the models were used to quantify performance. The Bosc et al. [42] study

showed the value of using conformal prediction to calibrate prediction probabilities to

classify the activity of a query on a protein. Similarly, Mayr et al. [43] used a binary rel-

evance decomposition to train and compare the average performance of multiple types

of classifiers (such as neural networks, support vector machines, random forest, etc.) for

target prediction. They showed that, on average, the overall average classification of

the feed-forward neural network classifiers outperformed the other classifiers. Reporting

these averaged performance metrics is valuable as it gives an overview of performance.

However, compounds are not average, and using averaged measures do not give a user

a sense of how reliable a method may be for their specific query. Model performance is

heavily affected by the quality of the data on which models were trained, and specifically

how similar a query or queries are to the knowledge base.

This chapter outlines the different validation strategies that can be employed to estimate

the performance of a target prediction method. We reviewed the different ways in which

data can be partitioned into training and test sets, then discussed the merits of the
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different performance metrics. Finally, building on existing strategies, we developed new

strategies to obtain more realistic performance measures. We argued to desegregate

performance measures by similarity to the training set. This is a simple, powerful and

underutilized strategy which provides the user an understanding of how much to trust

a method’s prediction based on the distance of their query compound to the knowledge

base.

P1: Validation strategies for target prediction

methods
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Abstract

Computational methods for target prediction, based on molecular similarity and network-based approaches, machine
learning, docking and others, have evolved as valuable and powerful tools to aid the challenging task of mode of action
identification for bioactive small molecules such as drugs and drug-like compounds. Critical to discerning the scope and
limitations of a target prediction method is understanding how its performance was evaluated and reported. Ideally,
large-scale prospective experiments are conducted to validate the performance of a model; however, this expensive and
time-consuming endeavor is often not feasible. Therefore, to estimate the predictive power of a method, statistical
validation based on retrospective knowledge is commonly used. There are multiple statistical validation techniques that
vary in rigor. In this review we discuss the validation strategies employed, highlighting the usefulness and constraints of the
validation schemes and metrics that are employed to measure and describe performance. We address the limitations of
measuring only generalized performance, given that the underlying bioactivity and structural data are biased towards
certain small-molecule scaffolds and target families, and suggest additional aspects of performance to consider in order to
produce more detailed and realistic estimates of predictive power. Finally, we describe the validation strategies that were
employed by some of the most thoroughly validated and accessible target prediction methods.

Key words: target prediction; polypharmacology; model validation; data bias; classification; performance metrics

Introduction

Fueled by the growing amount of chemical and biological data,
the availability of powerful phenotypic screening technologies
[1], and a shift in small-molecule drug discovery from the ‘one
drug one target’ paradigm to ‘polypharmacology’ [2–5], in silico
methods for the prediction of the biomacromolecular targets
of small molecules have become one of the most intensely
researched areas of cheminformatics in recent years. These
methods are useful not only for the discovery of new medicines
but also in the repositioning of existing approved drugs [6–9].

Target prediction methods are typically pair-input problems, in
that they classify a query compound and a biomacromolecule
pair as an interacting (positive) or a non-interacting (negative)
pair. One categorization of target prediction methods, based on
the types of data used, classifies methods into three overarching
approaches: ligand-based, structure-based and chemogenomic
approaches [10, 11]. Ligand-based approaches make predictions
based on the similarity principle, which states that similar
ligands (in the context of this review, small molecules) are likely
to have similar targets. These methods typically make use of
a variety of molecular descriptors to quantify and compare
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the physicochemical properties of small molecules. They do
not rely on structural information on biomacromolecules.
Their applicability domain is limited primarily by the available
chemical and biological data. Structure-based approaches, such
as ligand docking, use structural data on biomacromolecules
as the main source of information to make predictions. They
are generally more computationally expensive than ligand-
based methods, and their primary limitations are defined by the
availability of relevant target structures and accuracy of scoring
functions. Chemogenomics approaches (or proteochemometric
approaches) are defined here as methods that combine infor-
mation from both ligands and targets to make their predictions
[10–12].

There are several publications discussing techniques that can
be used in validating target prediction models [13–20]. However,
among the many recently published reviews on in silico target
prediction, only few include a discussion of validation strate-
gies [6, 10, 11, 21–26]. With this review we aim to provide a
comprehensive reference of strategies for the validation of target
prediction models. The review begins with a discussion of data
partitioning schemes that are used to train and test models to
measure their performance, highlighting their appropriateness
and limitations. This is followed by an analysis of the met-
rics that are used to measure this performance and of estab-
lished benchmark data sets. Building up on these components,
we point out strategies to obtain more realistic estimates of
the performance of target prediction models that account for
the biases present in the underlying reference data. Finally,
we describe the validation strategies that were employed by
some of the most thoroughly validated and accessible target
prediction methods.

Strategies for validating target prediction
methods

Validation primarily serves two purposes: the selection of an
optimal model and the evaluation of its generalized predictive
performance [13, 14]. Model selection is commonly a result of
an iterative model building process, during which models based
on various algorithms and parameters are built on a training
set and validated on a testing set. This validation procedure is
generally referred to as internal validation. While often used
as the sole means to report on the performance of models,
internal validation is insufficient to determine the predictive
performance as the iterative modeling procedure may introduce
a bias toward the properties of the testing data and hence
result in an overestimation of model performance. Data that
are blinded to the model development process should therefore
be used, in a process known as external validation, to obtain a
more realistic representation of generalized performance [13].
As part of an external validation process, the training set may
be further divided into a construction set (data used to train
and parameterize the model) and a validation set (data used for
the internal validation to optimize the model), while the testing
set is held back for performance assessment [13]. With data in
place to train and test the model, the metrics used to measure
the performance during the testing need to be considered next.
The choice of how a method was validated (that is the data
partitioning schemes used for the validation) and how its perfor-
mance was measured (the metrics used) are therefore essential
in understanding the reported performance.

Data-partitioning schemes

In the simplest case,models can be trained on one set of data and
tested on another set created by random selection (Figure 1A).
Such a single train–test split procedure is only effective if the
training and testing sets are sufficiently large, diverse and rep-
resentative of the parameter space [13, 14, 20]. However, as the
limited amount of available data usually does not allow for large
testing sets, the resulting test statistics may, to some extent, be
an artifact of how the data were split and not an indicator of
generalized performance [13, 14, 16, 18, 25]. Instead of random
selection, a single split of the data into a training and a testing
sets may alternatively be prepared using a time-split approach,
where the model is trained on data compiled before a given
date and tested on data generated later (Figure 1B). The time-
split approach simulates a real-world scenario where a finalized
model is put to use and new interactions are predicted [17].
Martin et al. [27] proposed a ‘realistic split’ approach, where
compounds are clustered based on chemical similarity to mirror
the exploration of new chemical scaffolds over time. In the
realistic split approach, the larger compound clusters form the
training set (∼75% of the total number of compounds), while the
remaining smaller clusters and singletons (∼25%) are reserved
for the testing set. The authors showed that when predicting
activities of high throughput screens, a single 75:25 train–test
split reported over-optimistic performance results when the
split was created using a random sampling (as the compounds
in the testing set were similar to the training set). In contrast,
their sampling approach provided more realistic performance
estimates.

To get a more robust estimate of how a model generalizes,
cross-validation (CV) schemes have emerged, which partition
the data inmultipleways to increase the variation in the training
and testing data and to reduce the influence of how the data is
split on the resulting testing statistics. A simple CV procedure is
the n-fold CV, which involves randomly partitioning the data
into n partitions and iteratively selecting each partition as
the testing data while training the model on the remaining
partitions (Figure 1C). The result is n models and n testing
statistics, the latter of which are then averaged to give a more
realistic estimate of a model’s performance [15, 19]. When n is
equal to the number of observations, the scheme is known as
the leave-one-out CV (LOOCV), with each observation playing
the role of the testing set once. LOOCV is known to produce
over-optimistic estimates of performance in the current context
as there is a high likelihood of finding similarity between the
testing molecule and the training set [13]. Therefore, typically
a 5- or 10-fold CV scheme is chosen where the observations
are divided into 5 or 10 folds, respectively. The folds for an n-
fold CV are often created through random sampling. Pair-input
prediction methods however are known to perform better when
the tested pairs contain small-molecule or target components
that are present in the training data, as such randomly generated
folds for validation may produce over-optimistic performance
results [16, 18, 25]. Alternative sampling methods, like stratified
sampling, aim to address this issue by constructing folds with
desired representations. For stratified sampling, data are first
divided into the different output strata (positive or negative
interactions for example) and are then randomly selected from
the strata so that the desired ratio of observations is represented
in the folds [14]. The folds for a CV performance assessmentmay
also be designed to ensure that all interaction pairs involving
a particular compound, compound cluster (i.e. structurally
related compounds) (Figure 2A), a target (Figure 2B) or even
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Figure 1. Illustrations of example data partitioning schemes: (A) a single train–test split, (B) a single train–test split of chronological data, (C) a 5-fold CV scheme, (D)

a single train–test split into construction and validation sets for internal validation and an external testing set for external validation, (E) a 4-fold CV scheme used for

internal validation with a testing set reserved for external validation and (F) a nested CV scheme with a 2-fold loop for internal validation and a 3-fold loop for external

validation.

molecule–target pairs (Figure 2C) are assigned to the same fold.
These types of schemes are useful to estimate the accuracy
of a method with compounds or targets with limited prior
knowledge [25]. As schemes with such designed folds are likely
to have fewer or no similar components between the training
and testing data, the performance will be lower than that
measured with a standard n-fold CV [16, 18, 25]. In order to
give a more thorough estimation of predictive performance, it is
therefore recommended that the results obtained from standard
n-fold CV are compared to those obtained frommore challenging
designed-fold testing scenarios [11, 18, 25].

Most computational approaches require parametrization (e.g.
the value of k in a k-nearest neighbour model) via iterative
optimization, during which different values of the parameters
are explored so as tominimize the prediction error. The repeated
use of the identical training and testing sets from a single train–
test split for this optimization procedure is likely to result in
selection bias. That is, the optimized models may be biased
towards the properties of the specific testing data [13, 14]. In
cases where CV is used not only to estimate the performance
of a model but also to determine the best parameters for the
final model, the CV is first repeated over the different values
of the parameters so as to minimize the CV error, and the
parameterswith the lowest validation error rates are selected for
the final optimal model [14, 15]. Due to the limitations of data
utilized for the development of target prediction models (such
as implicit biases, data imbalance and incomplete interaction
knowledge), the performance of a model determined through
internal n-fold CV is often over-optimistic because of selection
bias [18, 25]. Therefore, the performance results of this internal
validation should not be considered as a rigorous estimate of the
performance of the selected model. Instead, external validation
should be used to evaluate the performance of the method once
the model has been selected [14]. However, using a single testing
set reserved for external validation (Figure 1D and E) may still
produce performance statistics that are not reflective of the

generalized performance but are an artifact of the testing and
training split and requires the testing set to be withheld from
the model [13].

Nested CV has consequently emerged as a scheme to per-
form external CV and better estimate unbiased performance
(Figure 1F) [13–15]. In nested CV, two CV loops are run: an inner
‘internal validation’ CV loop is used for model selection and
parameter optimization, and an outer ‘external validation’ loop
is used for model evaluation. In the inner loop, models are
trained using construction data and tested using validation data
over all unique parameter values. The parameters that produced
the lowest internal CV error are then used to build models for
the external CV loop, where models are trained on the training
set and tested on the testing set. As the testing set has remained
independent of the parameter selection process, the external CV
errors, often presented as an average error, are a more realistic
estimate of the generalized error of the model [13–15]. It is
important to note that with each iteration of the outer loop,
the combination of parameters may be different due to the
nature of the data in the internal loop that was used to optimize
them. Nested CV does however provide the best estimate of
performance [11, 14].

Often, as is the case with all the validation schemes
described, even when using the data in the testing set for
external validation, a final model, with parameters unchanged,
is trained on the full data. The performance measures therefore
do not evaluate this final model but the process of building the
model. Thesemeasurements are dependent on how the data are
split into the training and testing sets [13–15]. Repeated CV and
repeated nested CV, to allow for data variance by resampling
the folds over each repetition, have thus been recommended
as a means of converging on true performance [14]. Repeated
validation, commonly knownas bootstrapping, is resampling the
training and testing sets and repeatedly calculating performance
metrics many times over. This iterative process allows for the
calculation of the variation and confidence intervals of the
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Figure 2. Examples of CV-testing folds designed to have (A) all data points involving specific queries within 1-fold (points inside the purple box), (B) all data points

involving specific targets within 1-fold (points inside the purple box) and (C) all data points involving the components of query compounds–target pairs within one

testing fold (points inside the purple boxes). The data points covered by the blue boxes are omitted from both training and testing data during the CV round involving

the purple boxed data as the testing set, and the remaining data points are used as the training set. Interacting pairs are shown in greenwhile (putative) non-interacting

pairs are shown in white (adapted from Pahikkala et al. [25]).

performance metrics. Krstajic et al. [14] propose a repeated
nested CV scheme, where the internal and external validation
loops each have 50 repetitions, and the lowest and highest error
metric, in addition to the average error metric, are reported
to show the variance in the method’s performance. They
recommend using random n-fold CV for the internal loop and
stratified CV for the external loop when using repeated nested
CV to develop and evaluate a model [14].

In addition to reporting statisticalmetrics generated from the
above validation schemes, illustrative case studies are also often
reported to highlight the performance of a method. However,
reporting on just a few case studies is not a sufficiently rigorous
approach to determine amodel’s performance [26]. Ideally, large-
scale experimental studies would need to be conducted that
allow not only thorough validation but also a demonstration of
a method’s potential impact. However, due to cost, such large-
scale studies are generally not carried out.

Performance metrics

In its most basic form, target prediction can be regarded as
a binary classification problem: a small molecule either inter-
acts with a biomacromolecule (a positive interaction) or it does
not (a negative interaction). Based on this premise, a common
evaluation technique is to complete the confusion matrix. The
confusion matrix shows how the predictions made by a method
on a testing data set (in the current context, data on small
molecules) compare to the known recorded interactions of these
compounds. A two-class confusion matrix consists of a set of
four tallies of the prediction results: the number of true-positive
(TP), true-negative (TN), false-positive (FP) and false-negative
(FN) predictions (Figure 3A).Metrics to describe the performance
of amethod are then calculated using these entries. Importantly,
the FP predictions may in fact include undiscovered or unre-
ported interactions andmay therefore bemore precisely referred
to as assumed FP predictions. Performance metrics generally do
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Figure 3. (A) A binary classification confusion matrix with the four categories of prediction (FPs may include putative false positives); (B) ROC curves: the closer the

curves are to the top left-hand corner, the better. AUC values alone may be deceptive as a lack of correct early predictions may be offset by an increased number of

correct predictions later, leading to high AUC values. This scenario is shown by the green and purple curves. (C) Precision-recall curve: the closer the curve is to the top

right corner, the better the model’s performance.

not account for this kind of missing data, and it is therefore
more appropriate to consider this component as potential FP
predictions.

Two simple measures calculated from the confusion matrix
are themodel’s sensitivity (SE) and specificity (SP). SE (also recall
or TP rate) quantifies the model’s ability to detect positive inter-
actions and is the fraction of how many of the known positive
interactions are identified by the target prediction method

SE = TP
TP + FN

(1)

SP, or TN rate, quantifies themodel’s ability to detect negative
interactions and is the fraction of howmany known, or assumed,
negative interactions are identified by the prediction method

SP = TN
TN + FP

(2)

Precision (PR), or positive predictive value, quantifies how
many of the predicted interactions are known interactions for
a compound or a set of compounds

PR = TP
TP + FP

(3)

Accuracy (ACC) is a basic metric of the overall performance
of binary classifiers that quantifies the proportion of correct
predictions

ACC = TP + TN
TP + TN + FP + FN

(4)

A limitation of this metric is that it does not account for data
set imbalance, which is a ubiquitous issue in target prediction,
where data are often made up of a small number of recorded
ligand–target interactions (positive class) and a large number of
observed or assumed non-interactions (negative class). In this
context, a target prediction method that correctly predicts most

non-interactions but fails to identify knownpositive interactions
would obtain high ACC values, despite its inability to correctly
identify the targets of small molecules [28].

A metric that does consider the proportion of all classes
in the confusion matrix and therefore addresses the issue of
imbalanced data is the Matthews Correlation Coefficient (MCC).
The MCC quantifies the correlation between the predictions and
their true value

MCC = (TP · TN) − (FP · FN)√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(5)

MCC values range from −1 to +1, with +1 indicating perfect
prediction, 0 a prediction as good as random and −1 a prediction
that is in total disagreement with the measured data. Although
the MCC is regarded as one of the most robust measures of
the quality of binary classification, it is rarely used in target
prediction. In the special case when a model predicts very few
FPs and very few TPs at the same time, the MCC value will be
deceptively high [29].

Other correlation metrics, such as Cohen’s kappa (κ) are
sometimes used to measure the performance of a classifier.
Cohen’s kappa measures the similarity between two sets of
classifications (in this case, the predicted classes and the known
classes for interactions). Kappa quantifies how much better or
worse a classifier is compared to random chance [30–32].

All metrics discussed so far aim at quantifying the ability of
classifiers to discriminate interacting fromnon-interacting pairs
of small molecules and biomacromolecules. However, rather
than only predicting categories, most target prediction models
return a score or probability that is used to rank predicted
(non-) interactions. The ability of a target prediction method to
recognize interacting pairs of ligands and targets and to rank
them early in the hit list (‘early recognition’) is a key parameter
for the goodness and value of such models. A straightforward
and often used measure of early recognition is the top-k metric,
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which quantifies the percentage of compounds for which a
defined number of known interactions is ranked among the top-
k positions. Statements such as ‘for X% of all testedmolecules, at
least one known target was ranked among the top k targets’ are
used to report performance.Note that the top-kmetric obviously
depends on an arbitrary cut-off (the k value) and the number of
targets considered for ranking, and it does not account for the
statistical likelihood of random pick [33].

The receiver operating characteristic (ROC) curve is used to
determine early enrichment, without an earliness cut-off. The
ROC curve is an easily interpretable plot of the TP rate (SE) on the
y-axis versus the FP rate (1-SP) on the x-axis, and it is drawn by
calculating the cumulative positives and negatives as onemoves
down a rank-ordered list (Figure 3B) [34]. The closer a ROC curve
approaches the top left corner of the graph, the better the rank-
ordered list is, since TPs are identified early on, achieving early
enrichment. A ROC curve that approaches the diagonal repre-
sents the random classification of small molecule and target
pairs. Parts of the ROC curve located below the diagonal indicate
a performance that is worse than random ranking.

The ROC curve considers both the correctly classified positive
values (SE on the y-axis has TP in the numerator) and the
correctly classified negative values (1-SP has TN in the denom-
inator) and is therefore a good measure for balanced data sets
[28, 35]. In contrast, the precision-recall curve plots PR (which
has TP in the numerator) on the y-axis versus recall (which
also has TP in the denominator) on the x-axis and is therefore
ideal at visualizing how well positives appear at the top of
the ranking, particularly when the data set has an imbalanced
distribution between positives and negatives (Figure 3C) [28].
Unlike the ROC curve, the closer the precision-recall curve is to
the top right edge, the better. The random classification of small
molecule and target pairs results in a precision-recall curve that
approaches the straight line, where PR is equal to the fraction
of positives in the data set. Parts of the curve located below this
line indicate a performance that is worse than random ranking.

The goodness of a classifier, as reflected by ROC and
precision-recall curves (and others), can, in part, be quantified by
the area under the curve (AUC). AUC values are bound between
1, for ideal models, and 0, for models that make predictions
that are entirely the opposite of the recorded results. To draw
conclusions about a model’s early recognition ability, both AUC
values and the original curve need to be considered, as models
that perform differently with respect to early enrichment may
have the same AUC since a lack of early recognitions may be
offset by later recognitions (Figure 3B) [36, 37].

As the AUC metrics are not sensitive to early recognition,
the robust initial enhancement (RIE) was developed as a single
parameterized metric based on the enrichment factor (which is
the factor by which known interactions are ranked more often
within the top-k predictions compared to random selection of k
predictions)

RIE (α) =
∑n

i=1 e
−αri/N

〈∑n
i=1e−αri/N

〉
random

(6)

The RIE uses a decreasing exponential weight to calculate
how much better a ranked list of interactions is compared with
the list with random distribution of the positive and negative
targets [38, 39]. The RIE value is dependent on the early cut-off
exponential parameter (α) and the ratio of positive interactions
in the list, the product of which is the exponent component of
the metric. RIE values therefore cannot be compared, unless the
same cut-off and proportion of actives are present, making it
harder to compare different methods [34, 39].

The Boltzmann-enhanced discrimination of ROC (BEDROC)
metric, developed by Truchon et al. [34] for easier comparison,
is the RIE metric scaled between 0 and 1, with 1 implying perfect
prediction

BEDROC (α) = RIE (α) − RIEmin (α)

RIEmax (α) − RIEmin (α)
(7)

A BEDROC value of 0.5 is when the observed cumulative
distribution function (the cumulative number of actives versus
the number of predictions in a rank-ordered list) has the same
shape as the cumulative distribution function exponentially
parameterized by the α parameter. This allows BEDROC scores
with the same α parameter to be compared. The BEDROC metric
is therefore more useful in discriminating a method’s early
recognition capabilities than an AUC due to the exponential
weights and allows for easier comparison than the RIE metric
[34, 39].

Benchmark data sets for target prediction

Benchmark data sets can be useful for the comparative assess-
ment of target prediction approaches. However, due to the com-
plexities involved in compiling high-quality representative data
sets, only few have been reported to date.One of themorewidely
used [22, 40, 41] benchmark data sets for target prediction is
the Yamanashi data set [42], which was compiled from differ-
ent sources and comprises 5127 drug–target interactions of 932
drugs and 989 targets for G protein-coupled receptors (GPCRs),
ion channels, enzymes and nuclear receptors. Koutsoukas et al.
[43] published a benchmark data set consisting of ∼100 k com-
pounds compiled from the ChEMBL database [44] used to com-
pare the performance of different machine-learning algorithms
[43]. Peón et al. [45] compiled two benchmarking data sets for
their comparative study of ligand-centricmethods for target pre-
diction, one with 183 k active compounds with activities (EC50,
Ki, Kd or IC50) below 10 μm and onewith 147 k active compounds
with activities below 1 μm. The data set used for externally
testing SwissTargetPrediction has been made available for use
as a benchmark [46]. Most recently, Wang and Kurgan [47] com-
piled and curated a data set from several different databases,
consisting of 449 compounds, 1469 targets and 34 k interactions.
One of a very few sources offering a complete data matrix of
compounds tested against an array of different proteins is the
kinase data set published by Davis et al. [48], which comprises
72 diverse kinase inhibitors measured against 442 kinases and
was suggested by Pahikkala et al. [25] as a high-quality data set
for testing target prediction methods. Two benchmark data sets
specifically designed for testing structure-based methods have
also been reported [49].

Strategies for obtaining more realistic
estimates of model performance
Rigorous validation schemes, involving external validation,
in combination with information-rich performance metrics,
quantify how well a method has generalized. However, the
data employed for target prediction models are usually heavily
biased. In opposition to reality, for example, chemical databases
commonly have an overrepresentation of known actives
compared to known inactives [10, 24, 26]. Established drug
targets are much better represented by the available chemical,
structural and biological data than other biomacromolecules
[11, 50]. Additionally, the synthesizability of compounds and
the fact that medicinal chemistry tends to generate congeneric
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series of compounds lead to significant biases in the represented
scaffolds [11, 51]. These biases are a natural result of the
drug-development environment and lead to concentrations of
information on certain targets and scaffolds.

Some targets aremore challenging to predict than others due
to the specific properties of individual targets or the structural
and functional relationships between the biomacromolecules
covered by a target prediction model. For example, due to its
large and malleable ligand-binding site and no clear pharma-
cophoric requirements, cytochrome P450 (CYP) 3A4 binds to a
broad variety of ligands [52, 53]. These properties mean that,
despite the availability of a substantial body of structural, chem-
ical and biological data, CYP3A4 is a particularly challenging
target to address for both ligand and structure-based methods
[54]. It is also much more difficult for target prediction meth-
ods to discriminate small-molecule activity among structurally
and/or functionally related biomacromolecules. That is, it will be
more challenging to correctly predict a protein kinase inhibitor’s
selectivity profile for kinases than it is to understand whether
the compound will also bind to a certain GPCR. For all these
reasons, the number of biologically tested compounds or the
number of crystal structures by which a target is represented
in the reference data is not the only factor that determines
how difficult it is for a model to make predictions for a specific
molecule or target.

Given these data biases and challenges, it is clear that aver-
aged performance metrics have limited significance as they
obfuscate the predictive power of a method across queries and
target classes. In fact, the individual characteristics of the tar-
gets and molecules covered by a target prediction model and
by the testing set will determine the measured performance
of a model. It is therefore generally not possible to directly
compare results on model performance obtained from different
studies as these usually use different data formodel training and
testing.

To obtain a more realistic representation of the performance
of a target prediction model, a number of measures may be car-
ried out to ameliorate the impact of the data and model biases:

(i) A combination of metrics and methods that are more
robust against the imbalance [10, 11, 55, 56] between
known actives and inactives in the data set (e.g. precision-
recall curve, PR AUC and the MCC) should be used for
model testing. It is also useful to present the confusion
matrices of the performance tests, so that further metrics
may be calculated and used to compare methods.

(ii) For any averaged performance metrics, their minima,
maxima and distributions of values should be reported.
A repeated validation scheme to calculate ROC curves
would be useful in evaluating performance, as an average
ROC curve with its confidence interval can be shown for
assessment.

(iii) Stratified sampling may be applied to construct more
realistic data sets that mimic the real world, for training
and testing. Caution must be exercised to ensure that
oversampling of a class does not result in a model that
is overfit.

(iv) External data should be used for the evaluation of model
performance.

(v) In addition to a standard CV or nested CV, the perfor-
mance of a model should also be evaluated using the var-
ious designed folds to establish performance estimates
under conditions where there is no knowledge of the
query molecule or target (Figure 2) in the training data.

(vi) From a ligand perspective, building on established
concepts in applicability domain research [45, 57–61], a
weighted performance metric should be derived that is
an improvement on the averaged metrics that quantify
generalized performance. Such a metric would account
for the difficulty of predicting the targets of individual
query molecules as a function of the structural similarity
between the query and the training instances (in the
case of structure-based approaches, the similarity to the
closest bound ligand may be used). Graphical approaches
can be powerful tools to visualize such relationships, as
shown by the example in Figure 4. These strategies can
provide a better understanding of a method’s capacity for
inter- and extrapolation and help with the definition of
the applicability domain.

(vii) Performance metrics could also take into account the
complexity of the (known) bioactive chemical space for
the individual targets (in particular, in terms of size and
diversity) as it is indicative of the number of ligand-
binding pockets and subpockets, their size, shape, flexi-
bility and specificity (in terms of pharmacophoric require-
ments).

(viii) From a target perspective, a weighted performancemetric
could be used that takes into account the coverage and
complexity of the conformational phase space relevant
to ligand binding. Parameterizing such a performance
metric is a non-trivial task, as in most cases the relevant
conformational phase space remains unknown to a large
extent. As an approximation, tools such as SIENA [62] may
be used to automatically align protein-binding sites and
quantify structural deviations among them.

(ix) The druggability of a target, which is the likelihood of
being able to modulate a target’s activity with a small
molecule [63, 64], may also be an indicator of how diffi-
cult it is, in particular for a docking algorithm, to make
predictions for a specific target. Buried ligand-binding
sites featuring hydrogen bond donors and acceptors are,
for example, typically less challenging to address with
small molecules than shallow hydrophobic interfaces on
the protein surface (as often observed for protein–protein
interaction interfaces) [65]. Docking algorithms show sim-
ilar trends; ligand-binding sites that lack directed inter-
actions or are solvent exposed are more challenging, for
example.

(x) The structural and functional relationships between the
individual targets covered by amodel should also be taken
into account. TP predictions of targets that are related
and therefore more challenging to discriminate should
be assigned a higher weight than correct predictions for
targets that are distinct. Likewise, a putative FP prediction
of a target that is in agreement with activity recorded for a
related target should be assigned a lower weight. Putative
FP predictions are cases where compounds are predicted
as active on a particular target, but no bioactivity data
are available to confirm or refute this prediction. Given
the low likelihood of a compound being active on a ran-
dom biomacromolecule, for the purpose of evaluation, the
general assumptionmade is that the compound is indeed
inactive on that target. However, in the case of closely
related targets there is a good chance that a compound
confirmed to be active on one target is also active on the
other. Ideally, the structural similarity of targets would
be assessed based on the comparison of 3D structures of
the ligand-binding sites. Given the complexities involved
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Figure 4. Success rates for a target prediction model (e.g. percentage of compounds for which at least one known target was ranked among the top 1, top 3 and top 5

positions) versus themaximum similarity between the individual query compounds and their closest related compounds in the reference data. Such plots are powerful

tools to visualize a method’s capacity for inter- and extrapolation and help with the definition of the applicability domain.

in such comparisons, this is generally not feasible on a
large scale. Instead, the sequence similarity of the protein
domains involved in ligand binding may be used as a
rough indication of the structural similarity of targets as
perceived from a ligand’s perspective.

(xi) While there is no universal gold standard data set, evalu-
ating a model’s performance on benchmarking data sets
will allow for easier comparison among methods.

(xii) In addition to the many strategies involving statistical
means, a critical discussion of representative examples
can be very useful to better understand the scope
and limitations of target prediction models. This could
include comparing the performance of a model for
well-represented versus underrepresented targets or
highlighting the ability of a model to discriminate targets
of a group of related biomacromolecules versus a group
of distinct targets.

Examples of how popular target prediction
methods have been validated
Today, a large number of target prediction models are accessi-
ble via (mostly free) web services [2, 21, 50, 66–69]. The rigor
applied in the evaluation of these methods varies greatly. For
some models, their predictive power has been demonstrated by
a small number of case studies (e.g. ChemMapper [70], Mantra
[71, 72] and TarFisDock [73]). A substantial proportion of models
have been evaluated on larger sets of data (e.g. ChemProt [74],
CSNAP [75], DR. PRODIS [41], HitPick [76], Semantic Link Asso-
ciation Prediction (SLAP) [77], SuperPred [78] and TargetHunter
[79]). Others have undergone systematic statistical validation
by CV (e.g. SPiDER [80] and SwissTargetPrediction [81]). In one
case, namely Similarity Ensemble Approach (SEA) [82], large-
scale experimental evaluations have been reported.We describe
four examples of popular target prediction models that have

undergone some of the most thorough validation experiments
reported so far.

SEA (http://sea.bkslab.org) is an early ligand-based method that
predicts the targets of small molecules based on their similarity
to ligand sets of a reference database [82]. SEA has been tested
through multiple rounds of prospective validation [82, 83]. The
largest study reported so far is byNovartis and included the anal-
ysis of 1241 predicted interactions for 656 approved drugs. Of the
predicted interactions, 348 were retrospectively verified. Further
694 predictions were experimentally tested, of which 48% were
confirmed and 46% were disproved [84]. A number of studies
have since used SEA [85–87] to identify, for example, the targets
of the small molecule ogerin as the adenosine A2A receptor and
of SLV 320, an adenosine A1 antagonist, as an inhibitor of GPCR68
[88]. SEA has undoubtedly had the largest impact and use of
all target prediction methods, and this can be attributed to its
early development and the large-scale experimental testing by
Novartis that is not typically feasible.

SwissTargetPrediction (http://www.swisstargetprediction.ch) is
a ligand-based similarity method that uses both 2D fingerprints
and 3D shape, combined in a logistic regression, to predict the
likely targets of small molecules [81]. SwissTargetPrediction cov-
ers more than 2600 targets from five organisms (human,mouse,
rat, cow and horse) and is arguably one of the most thoroughly
statistically validated target prediction methods in existence
[46]. The method also suggests the orthologs and paralogs of the
predicted biomacromolecules as potential targets. SwissTarget-
Predictionwas evaluated by a standard and two designed 10-fold
CV runs. For the 1st designed CV run, molecules with similar
scaffolds were incorporated into the same CV fold to estimate
the performance of the method when the method is used with
structurally distinct ligands [81]. This experiment was repeated
using an additional 2nd filter to group molecules that were
tested in the same assay within the same fold, thus reducing
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the probability of a comparison of ligands from the same series
[81]. For all the CV experiments, the folds were created to have
10 times as many negative interactions as positive ones, with
the number of negative interactions supplemented by randomly
pairing ligands and targets with no known positive interactions
together. As expected, the performance of themethodwas lower
for the designed CV runs (distinct scaffolds ROC AUC 0.979;
distinct scaffolds and assays ROC AUC 0.932) than it was for the
standard CV (ROC AUC 0.994). The effects of ligand properties
(e.g. number of heavy atoms and lipophilicity) on the predic-
tion accuracy were also investigated. In order to estimate the
performance on new molecules, a 2nd external testing set that
was composed of 213 molecules with 346 positive and 278 new
interactions recorded in the consecutive version of the ChEMBL
database. The testing set was expanded with randomly assigned
ligands and targets to ensure that there were five times as many
negative interactions than positive interactions in the testing
set. On these data, the model obtained a ROC AUC of 0.87.

SPiDER (http://modlabcadd.ethz.ch/software/spider/) [80] is a
ligand-based method that utilizes self-organizing maps in
combination with ‘fuzzy’ CATS pharmacophore descriptors [89]
and Molecular Operating Environment (MOE) descriptors [90].
Validation of the method was carried out through a stratified
10-fold CV during which a prediction was considered successful
if all known targets of a query were predicted within a defined
significance threshold. The results from the CV were combined
to calculate the ROC curve and ROC AUC value of 0.92 [80]. The
capacity of SPiDER to predict the biomolecular targets of small
molecules was demonstrated by a number of studies involving
synthetic molecules [80, 91–94] as well as natural products
[92, 95]

SLAP (http://cheminfov.informatics.indiana.edu:8080/slap/) is a
network-based method that uses data from 17 sources and a
semantic network linking the diverse and related data types
(chemical compound, substructure, side effect, chemical ontol-
ogy, target, disease, gene family, tissue, pathway and gene ontol-
ogy) [77]. A chemical compound and a target are considered to
be associated based on the defined path patterns, which include
characteristics such as the length and the type of nodes involved
in the paths between them. To evaluate the model’s perfor-
mance, four testing sets were compiled with known drug–target
pairs from DrugBank and random drug–target pairs (serving as
negative interactions), such that the ratio of positive and nega-
tive interactions was 1:1, 1:4, 1:8 and 1:12. The ROC AUCs (about
0.92 for all sets) and the precision-recall curves were reported
for these tests, along with the performance measures by target
class. SLAPwas also evaluated on 23 confirmed drug–target pairs
that were identified with SEA, and it was found that the method
is not capable of identifying cross-boundary targets. In addition,
SLAP was evaluated on 444 drug–target pairs recorded in MATA-
DOR [96] (and not represented in the network) and successfully
identified 170 of these interactions with high confidence.

Conclusions
A plethora of in silico models have become available in recent
years and are increasingly utilized to guide efforts to identify
the biomacromolecular targets of small molecules. While the
modeling approaches have come of age, there is room for further
improvement in the validation of the methods. Ideally, target
prediction methods would be tested in large-scale, prospective
studies, but high expenses in terms of costs and time are, in
general, prohibitive to such efforts. Therefore, developers and

users rely on robust retrospective (statistical) analyses. One of
the most elaborate efforts of retrospective validation was pub-
lished for SwissTargetPrediction, where a standard CV, two CVs
with designed folds and a time-split approach were executed
and analyzed in combination.

One of the most obvious deficits of current approaches to
retrospective validation is their limitation to the global assess-
ment of model performance, which can vary substantially for
individual query molecules and targets as they are represented
in the reference data to different extents. Here, the develop-
ment of weighted scoring functions that account for the chal-
lenges involved in predicting the interaction of specific pairs
of small molecules and biomacromolecules is desirable and
urgently needed. A 2ndmajor limitation of current retrospective
studies is their lack of comparability, which is a result of a lack
of established, high quality, benchmark data sets and the com-
plexities involved in the validation of target prediction models.
It will take time for both of these issues to be resolved, but
there are several immediate steps that can be taken to obtain
more realistic estimates of model performance. As a minimum
requirement, any target prediction method should undergo a
systematic statistical validation. In particular, it is important for
parameterized models to undergo external validation, and the
results obtained from this test should be discussed with respect
to the results obtained from internal validation. The discussion
of representative test cases is desirable, e.g. the ability of amodel
to discriminate bioactivities of small molecules on structurally
distinct targets in contrast to structurally related targets.

We submit that current reports on the performance of mod-
els often miss to convey the implications of the outcomes of
statistical tests on the usefulness of target prediction methods
under real-life conditions. In contrast to the common assump-
tionmade duringmodel validation, investigators will most likely
have prior knowledge of some biological properties of a com-
pound. Armed with their expert knowledge they will often be
able to identify false predictions. For the same reason, FP predic-
tions on targets structurally related to the real target of a small
molecule (e.g. predictions of activity on CYP1A2, whereas the
compound actually is an inhibitor of CYP3A4 and not CYP1A2)
can be useful as they may point researchers into the right direc-
tion, even though current validation approaches would com-
monly consider these predictions as false. It is also likely that
investigators will have knowledge of several structurally related
compounds exhibiting the same kind of biological activity rather
than a singleton. By using multiple structurally related com-
pounds as queries the signal-to-noise ratio can be improved.
On the downside, in a real-life scenario, compounds of interest
are likely to be more distant to the training data than the
average compound of the testing set,whichmakes observing the
applicability domain of a model an important issue.

Overall, we believe, and the recent reports in the literature
show, that in silico models have become powerful tools to aid
the identification of the mode of action of small molecules. We
should not expect target predictionmethods to generally be able
to correctly rank the targets of a compound of interest among the
top 1 or top 3 out of several hundreds or thousands of biomacro-
molecules.However,we are on a good track of developingmodels
that are able to provide valuable guidance to experimentalists in
their efforts to confirm the relevant targets of small molecules
and to point out if a compound of interest is outside of the appli-
cability domain of a model. This is a qualitative improvement to
the challenging task of mode of action identification, and the
increasing availability of chemical and biological data will lead
to a further boost of theoretical methods for target prediction.
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Key Points
• In silico models have become important and powerful
tools to efforts to identify the biomacromolecular tar-
gets of small molecules.

• Commonly followed strategies in assessing the per-
formance of target prediction approaches do not ade-
quately account for the heavy biases present in the
chemical and biological data utilized for training and
testing.

• A number of immediate measures can be taken to
obtain more realistic estimates of the performance of
target prediction models.

• New metrics that weigh the difficulty of individual
predictions are urgently needed, as are benchmark data
sets enabling the comparative performance analysis of
target prediction methods.
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Chapter 5

Development and validation of

large-scale target prediction

methods

A plethora of target prediction methods exist to predict the activity of compounds on

macromolecular target. Target prediction is a key strategy in early drug discovery. The

predictions made by a target prediction method help guide experimental research and

ameliorate risks in the drug discovery process. The performance of target prediction

methods are often reported as averages over all test queries. This leaves questions unan-

swered about the value of the different approaches to target prediction.

To understand the value of ligand-based target prediction methods, we developed two

target prediction approaches with a wide target coverage: first, a similarity-based ap-

proach and second, a ML approach. Our ML approach formulates target prediction

as a binary relevance problem where independent random forest classifiers are trained

for each target. The similarity-based and ML approaches were selected for investiga-

tion as the data requirements for these approaches allowed for a large coverage of the

target space, which is important in a general-purpose target prediction method. Both

approaches were built and tested using data from the ChEMBL database (versions 24

and 25). Morgan fingerprints with a radius of 2 and a length of 2,048 bits were used as

the descriptors of the compounds. The hyperparameters of the individual random forest

classifiers were tuned using internal cross-validation and a grid search protocol with the

MCC metric measure of performance used to select the optimal classifier.

To measure performance, we benchmarked the approaches using the top-k metric dis-

aggregated by the similarity of the test data to the knowledge base of the approach (as
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laid out in Chapter 4). The performance of the approaches was measured under three

different testing scenarios. In the first testing scenario, the standard testing scenario,

the approaches were tested on a large external data set. Under the second testing sce-

nario, the standard time-split testing scenario, the approaches were tested on external

data that was generated a year after the data used to train the models. In both these

testing scenarios, all the test compounds had targets represented by the approaches. Fi-

nally, in the third testing scenario, called the close-to-real-world testing scenario, all the

new compounds added to the ChEMBL database were used as test compounds, even if

their targets were not represented by the approaches’ knowledge base.

Our initial hypothesis was that the ML approach would begin to outperform the

similarity-based approach for test compounds that were more distant to the underlying

knowledge base. However, we found that this was not the case, and the similarity-based

approach generally outperformed this ML approach under all three testing scenarios

while having a larger coverage of the target space (4,239 targets for the similarity-based

approach vs. 1,798 targets for the ML approach). Under the standard testing scenario,

the similarity-based approach ranked a correct target among the top-5 targets for 88%

of the queries while the ML approach ranked a correct target among the top-5 targets

for 85% of the queries. In fact, for high-similarity queries, the similarity-based approach

ranked a target in the top position for 95% of the queries, while the ML approach ranked

the target in the top position for 90% of the queries. Under the standard time-split sce-

nario, the overall top-5 success rates dropped by 25% for both approaches, due to an

increase in low-similarity queries compared to high-similarity queries. When looking at

disaggregated performances however, the performances for the standard testing scenario

and the standard time-split testing scenario were comparable. Under the close-to-real-

world testing scenario, the similarity-based approach had a top-5 success rate of 59%,

which was 52% for the ML approach. This is due to the larger target coverage of the

similarity-based approach.
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Abstract: Computational methods for predicting the macromolecular targets of drugs and drug-like
compounds have evolved as a key technology in drug discovery. However, the established validation
protocols leave several key questions regarding the performance and scope of methods unaddressed.
For example, prediction success rates are commonly reported as averages over all compounds of
a test set and do not consider the structural relationship between the individual test compounds
and the training instances. In order to obtain a better understanding of the value of ligand-based
methods for target prediction, we benchmarked a similarity-based method and a random forest
based machine learning approach (both employing 2D molecular fingerprints) under three testing
scenarios: a standard testing scenario with external data, a standard time-split scenario, and a scenario
that is designed to most closely resemble real-world conditions. In addition, we deconvoluted the
results based on the distances of the individual test molecules from the training data. We found that,
surprisingly, the similarity-based approach generally outperformed the machine learning approach in
all testing scenarios, even in cases where queries were structurally clearly distinct from the instances
in the training (or reference) data, and despite a much higher coverage of the known target space.

Keywords: target prediction; molecular similarity; machine learning; random forest; molecular
fingerprints; drug discovery

1. Introduction

Computational methods for predicting the macromolecular targets of small molecules have become
increasingly relevant and popular in recent years due to (i) the shift from the “one-drug-one-target”
paradigm to “polypharmacology” [1–5], (ii) the increasing availability of chemical and biological
data [6–8] and (iii) advances in algorithms and hardware technology. Depending on the types of utilized
data, in silico methods for target prediction may be categorized as ligand-based, structure-based,
or hybrid methods [9–12]. Ligand-based methods range from straightforward similarity-based
approaches [13–21] and linear regressions [22] to more complex machine learning (ML) models such as
random forests [23–25], support vector machines [25–27], self-organizing maps [28], neural and deep
neural networks [25,29–34], and network-based models [35–38]. They typically use large amounts
of chemical information and measured bioactivity data [12] and, as a result, have a larger coverage
of the target space when compared to structure-based methods, which rely on 3D structures of
macromolecules. The third type of methods, hybrid approaches such as proteochemometrics and
network-based approaches, utilize chemical, biological and structural information for target prediction.

Despite the abundance of in silico methods and models for target prediction that have been
published in recent years, our understanding of their value and scope under (close to) real-world
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conditions remains limited [39]. In an ideal scenario, the performance of a model would be determined
by large-scale prospective validation. However, the efforts and costs involved in running experiments
on scales that can yield statistically meaningful conclusions are in general prohibitive. In consequence,
to the best of our knowledge, the Similarity Ensemble Approach (SEA) method remains the only target
prediction model that has undergone systematic experimental validation [40–42].

Most studies of new target prediction models are limited to retrospective validation [39]. Clearly,
recent years have seen substantial progress in the implementation of more robust validation techniques
of this kind, but one important aspect missed by most investigations is the relationship between
the accuracy and reliability of predictions as a function of the distance between the compound of
interest (query molecule) and the training data. In other words, reported validation studies often give
a good idea of how well a model performs on the “average compound” originating from a defined
dataset, but not so much about how trustworthy a prediction is for a particular compound of interest,
which may or may not be structurally closely related to any of the instances in the training data.
A further relevant point that is often not given the necessary consideration is target space coverage.
Models trained and applied to targets for which a rich body of data is available will likely produce
better performance statistics than models aiming to cover a wide target space. From the perspective of
the end user, the most important question will be which method produces the most reliable predictions
while covering the largest possible target space, and this question has been generally left unanswered.

This work aims to establish the value of two of the most common types of ligand-based methods
for target prediction under conditions that closely resemble real-life applications: a straightforward
similarity-based approach and a random forest-based ML approach, both employing Morgan2
fingerprints as representations of molecular structures. In particular, we investigate how the structural
relationship between a query molecule and the molecules used for model training impact the reliability
of predictions, and to what extent the individual approaches are able to cover the known target space.

2. Results and Discussion

2.1. Similarity-Based Method and Machine Learning Approach for Target Prediction

Bioactivity data for model building and validation was extracted from the ChEMBL database [43]
version 24. These data were curated and processed (see Methods section for details), resulting in a
“processed dataset” consisting of 1,015,188 compound-protein pairs (546,981 unique compounds and
4676 unique targets; Figure 1a). Compound-protein pairs with an activity value less than or equal to
10,000 nM were marked as “active” (732,570 bioactivities) while those with activities greater than or
equal to 20,000 nM were marked as “inactive” (282,618 bioactivities). Prior to any model development,
the compounds in the processed dataset (Figure 1a) were randomly assigned to a “global knowledge
base” (Figure 1b) or a “global test set” (Figure 1e) at a ratio of 90:10.

The similarity-based approach uses the maximum pairwise similarities (Tanimoto coefficients
(TC) derived from Morgan2 fingerprints; maxTCs) between a query molecule and the sets of ligands
representing the 4239 individual proteins in the knowledge base (Figure 1c) to produce a rank-ordered
list of potential targets (Figure 2). In cases where multiple proteins have the same maxTCs, the next
highest TCs are considered until all proteins are ranked.

The ML approach decomposes the multi-label problem (i.e., a single query molecule may interact
with many proteins) into a series of binary classification problems (i.e., a query molecule does or does
not interact with a particular protein). This technique, known as binary relevance, is an intuitive and
popular transformation [44] in target prediction [24,25,45]. Here, a query molecule is tested on all
the target models individually and the models’ prediction probability of the active class (p-values)
are then used to rank the potential targets for the query molecule (Figure 2). More specifically,
random forest models were generated for each of the 1798 targets represented by a minimum of
25 ligands in the global knowledge base (Figure 1d). The individual models were trained on all
active and all inactive compounds recorded for a target in the global knowledge base. Following a
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widely-applied approach in target prediction for expanding chemical space coverage [9,18,33,45,46],
all training sets for ML for which the number of confirmed inactive compounds did not exceed the
number of confirmed active compounds by a factor of 10 (this was the case for 1793 out of the 1798
targets) were supplemented with presumed inactive compounds (i.e., randomly chosen compounds
from the global knowledge base which do not have any annotation for the particular target) to give
a balance of 10:1. The hyperparameters of the individual random forest classifiers were optimized
during a grid search within a cross-validation framework (see Method section for details).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 17 
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2.2. Evaluation of the Scope and Performance of the Similarity-Based Method and Machine Learning Approach
for Target Prediction

The scope and limitations of the individual approaches are evaluated under the following
validation settings:

1. Standard testing scenario with an external test set. Under this scenario, the approaches are
tested for their ability to predict the targets of a set of approximately 44,000 query molecules
(Figure 1f,g) obtained by a single random split of the processed ChEMBL24 database prior to
model development.

2. Standard time-split validation scenario within the target space covered by the approach.
Under this scenario, the models are tested on the more than 18,000 molecules that have been
newly introduced with version 25 of the ChEMBL database and have targets within the target
space of the individual models (meaning that all compounds considered as queries have at least
one known target that is covered by the approach’s knowledge base; Figure 1i,j). This test can
give a sense of how model performance will change over time [39], with the increasing alienation
of chemistry from that represented by the knowledge base (as observed in Figure 3).
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Figure 3. Distributions of the median maxTC values (quantifying the median molecular similarity of
each query molecule and its nearest ligand of each of the query molecule’s annotated targets) for the
queries from the ChEMBL24 database (blue) and ChEMBL25 database (ocher and grey). The results of
the similarity-approach are marked without a pattern; the results for the ML approach are shown with
a pattern. The bars represent the number of queries within a median maxTC bin. The distributions
show that the ChEMBL24 test set is more similar to the data of the knowledge base than the ChEMBL25
test set (which is expected as the knowledge base is a subset of the ChEBML24 database). The lines
report the cumulative percentage of queries with median maxTCs greater than or equal to the values
covered by a bin. For the sake of clarity, the lines are only shown for the similarity-based approach as
they are almost identical with the lines for the ML approach.

3 Close-to-real-world setting with an unbiased and comprehensive time-split dataset.
Under this scenario the methods were tested on the full set of bioactive compounds newly
introduced with version 25 of the ChEMBL database (20,061 compounds; Figure 1h), regardless
of whether or not any of the annotated targets is covered by the approach’s knowledge base. This
scenario comes closest to real-world applications of target prediction methods, as there is a good
chance that the targets of the new compounds (in particular those based on new chemistry) are
novel, not represented by the training data, and hence missed by the in silico models.
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Based on our experience in working with TCs derived from Morgan2 (and some related)
fingerprints, we distinguish the following classes of queries:

• “High similarity queries”: These queries share a high degree of molecular similarity with the
closest ligand (of the same target) in the knowledge base (TC greater than 0.66). Chemists will
identify queries of this class as structurally closely related to the nearest ligand (of the respective
target) in the knowledge base.

• “Medium similarity queries”: These queries share a moderate degree of molecular similarity
with the closest ligand (of the same target) in the knowledge base (TC between 0.33 and 0.66).
Chemists will typically find it challenging to identify obvious similarities between a query
molecule of this class and the nearest ligand (of the respective target) in the knowledge base.

• “Low similarity queries”: These queries share a low degree of molecular similarity with the
closest ligand in the knowledge base (TC lower than 0.33). Chemists will unlikely identify a query
molecule of this class as structurally related to any of the ligands (of the respective target) in the
knowledge base.

For the sake of clarity, the discussion of the methods’ performance focuses on these three categories
(Figure 4 shows examples of different TCs of a query molecule and knowledge base ligands). A more
fine-graded view is provided by the graphs and supplementary tables, which use a bin width for
the TC of 0.2 for the disaggregation of the results. The trends observed at both levels of granularity
are consistent.
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from the ligand sets of its targets.

2.2.1. Evaluation of the Scope and Performance of the Similarity-Based Method

Performance in a Standard Testing Scenario with an External Test Set

Overall, the similarity-based approach achieved high success rates, ranking at least one known
target among the top-3, top-5, and top-15 positions in 86%, 88%, and 93% of all cases (Figure 5A).
The success rates were found to be strongly linked with the distance between the query molecule and
the nearest ligand (for that target) in the knowledge base. For 95% of all high similarity queries (as
defined in the introductory section of the Results and Discussion section), the protein ranked at the top
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position was a known target. For medium similarity queries, however, the success rates were only 55%,
63%, and 82% when considering the top-3, top-5, and top-15 ranks, respectively. For low similarity
queries, the success rates dropped to 10% (top-3), 12% (top-5), and 18% (top-15), respectively.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 17 
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The similarity-based approach obtained good overall recovery rates (Figure 5D), with a strong
correlation of performance and the distance between the query molecule and the compounds in the
knowledge base observed here as well. The recovery rate is defined as the percentage of known
bioactivities ranked among the top-k positions of the list of predicted targets. For high similarity
queries, 92%, 97%, and 100% of the known targets were ranked among the top-3, top-5, and top-15
positions, respectively. In contrast, for medium similarity queries, the recovery rates were only 35%,
45%, and 70% when considering the top-3, top-5, and top-15 ranks, respectively. For low similarity
queries, these success rates dropped to 1% (top-3), 1% (top-5), and 3% (top-15).

Performance in a Standard Time-Split Testing Scenario

As expected, the success and recovery rates obtained for the similarity-based approach on the set
of compounds newly introduced with version 25 of the ChEMBL database (“ChEMBL 25 test set”)
were generally lower than for the ChEMBL24 test set (Figure 5B). The overall success rates among
the top-3, top-5, and top-15 positions were 58%, 61%, and 69% (vs. 86%, 88%, and 93% obtained for
the ChEMBL24 test set, see above). However, the success rates for queries represented by structurally
related ligands in the knowledge base were comparable with those obtained for the ChEMBL24 test
data: for high similarity queries, a known target was ranked at the top position in 93% of all cases
(vs. 95% obtained for the ChEMBL24 test set). This is contrasted by the performance on medium
similarity queries which had success rates of 70%, 76%, and 88% for the ChEMBL25 test set when
considering the top-3, top-5, and top-15 ranks (vs. 55%, 63%, and 82% obtained for the ChEMBL24 test
set). The success rates of the low similarity queries form the ChEMBL 25 test set dropped to 5%, 7%,
and 13% for the top-3, top-5, and top-15 ranks (compared to 10%, 12%, and 18% for the ChEMBL 24
test set).

In accordance with the trends observed for the success rates, the recovery rates were also lower
for queries from the new data in the ChEMBL25 database. Only 47%, 53%, and 63% of the known
interactions were recovered among the top-3, top-5, and top-15 targets, as opposed to a recovery rate
of 72%, 79%, and 87% obtained on the ChEMBL24 test set. Again, interactions with queries, which are
more structurally related to the knowledge base, had higher recovery rates than those that were more
distant (Figure 5E).

Performance in a Close-to-Real-World Testing Scenario

In the close-to-real-world testing scenario, an additional 1296 interactions (of 838 query molecules)
not represented by the knowledge base were considered in the performance assessment. The 1296
interactions correspond to 4% of all interactions newly introduced with version 25 of the ChEMBL
database. In consequence, the overall success rates for the top-3, top-5, and top-15 predictions decreased
to 55%, 59%, and 66%, which represents a drop by 2 to 3 percentage points compared to the standard
time-split scenario (Figure 5C). Likewise, the recovery rates for the top-3, top-5, and top-15 predictions
dropped to 45%, 51%, and 61%, which is a decrease by 2 to 3 percentage points compared to the
standard time-split scenario (Figure 5F).

Scope of the Similarity-Based Approach

The similarity-based approach has the widest scope of the approaches as any target with at least
one known annotated ligand is represented in the knowledge base. The similarity-based approach
covers a total of 4239 targets.

2.2.2. Evaluation of the Scope and Performance of the Machine-Learning Approach

In the following subsections, the performance of the ML is discussed and directly compared to the
performance of the similarity-based approach. For the sake of direct comparability, in the following
discussion all statements on the performance of the similarity-based approach refer to its application to
the reduced target space of the ML approach (1798 proteins) rather than the full target space covered by
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the similarity-based approach (4239 proteins). Note that, importantly, the target ranking performance
of the similarity-based approach on the full target scope is almost identical to that on the reduced
target scope, meaning that there is no noticeable drop in performance in the top-k success and recovery
rates of the similarity-based approach (using identical absolute values for k) when applied to a target
space of 4239 proteins instead of 1798, which is remarkable.

Performance in a Standard Testing Scenario with an External Test Set

The ML approach achieved overall success rates of 82%, 86%, and 91% for the top-3, top-5,
and top-15 positions, respectively (Figure 6A—solid lines), which is 1 to 3 percentage points lower
than the success rates obtained by the similarity-based approach. The success rates were found to be
strongly linked with the distance between the query molecule and the ligands in the knowledge base.
For 90% of all high similarity queries, the known target was assigned the top rank (as compared to
95% for the similarity-based approach). For the median similarity queries, the success rates were only
49%, 57%, and 75% when considering the top-3, top-5, and top-15 ranks, respectively (which is 6 to
7 percentage points lower than the success rates of similarity-based approach). The success rates of
the low similarity queries decreased to 10% (top-3), 15% (top-5), and 28% (top-15). Whereas the top-3
success rate was identical with that of the similarity-based approach, the top-5 and top-15 rates of the
ML approach were 3 and 10 percentage points higher, respectively. This suggests that the ML approach
may be able to predict the targets of low similarity queries better.

The recovery rates for the ML approach for high similarity queries were 88%, 94%, and 98% for
the top-3, top-5, and top-15 positions, respectively (2 to 4 percentage points lower than the recovery
rates of the similarity approach) (Figure 6D). For medium similarity queries, the recovery rates were
only 30%, 39%, and 60% when considering the top-3, top-5, and top-15 ranks, respectively (5, 6 and 11
percentage points lower than the recovery rates of the similarity-based approach). The recovery rates
for low similarity queries dropped to 3% (top-3), 5% (top-5), and 12% (top-15), which is still 2, 3, and 9
percentage points better than the values for the similarity-based approach.

Performance in a Standard Time-Split Testing Scenario

In line with the results obtained for the similarity-based approach, the success and recovery
rates obtained for the standard time-split scenario were lower than for the standard testing scenario
(Figure 6B). The overall top-3, top-5, and top-15 success rates were 53%, 57%, and 65%, respectively (vs.
82%, 86%, and 91% obtained for the ChEMBL24 test set; see above), which corresponds to 4, 3, and 1
percentage points below the time-split success rates of the similarity-based approach. For high similarity
queries, a known target was ranked at the top position in 86% of all cases (which is 7 percentage
points lower than the results obtained with the similarity-based approach). For medium similarity
queries, the success rates were 59%, 65%, and 76% when considering the top-3, top-5, and top-15
ranks, respectively (vs. 49%, 57%, and 75% obtained for the ChEMBL24 test set). This corresponds to
a drop by 11 to 13 percentage points over the similarity-based approach. For low similarity queries,
the success rates were 4%, 7%, and 13% (nearly identical to the similarity-based approach in that
scenario).

The recovery rates were also lower for queries from the new data in the ChEMBL25 database.
Only 44%, 50%, and 60% of all the known interactions were covered among the top-3, top-5, and top-15
predictions (Figure 6E), respectively (vs. 69%, 75%, and 84% for the ChEMBL24 test set). The trends
observed for the recovery rates under the standard time-split scenario for the similarity and ML
approach were the same as the success rates described above.
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Figure 6. Success rates (A–C) and recovery rates (D–F) of the ML approach (solid lines and bars)
and the similarity-based approach (dashed lines and bars; reduced target scope, identical with
that of the ML approach) under the (A,D) standard testing scenario with external data, (B,E) the
standard time-split testing scenario, and (C,F) the close-to-real-world testing scenario. In general,
the similarity-based approach shows a tendency to outperform the ML approach. As expected,
the performance under all testing scenarios drops as queries become more dissimilar from the training
set/knowledge base. The data for these graphs are also provided in tabular format in the Supporting
Information (Table S5–S12).
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Performance in a Close-to-Real-World Testing Scenario

In the close-to-real-world testing scenario, an additional 3381 interactions (11% of the new
interactions with version 25 of the ChEMBL database), which were not represented in the knowledge
base, (from 1778 query molecules) were considered in the performance assessment. The overall
success rates under this scenario were 49%, 52%, and 59% for the top-3, top-5, and top-15 predictions,
respectively (Figure 6C). This represents a drop by 4 to 6 percentage points compared to the standard
time-split scenario. The overall recovery rates for the top-3, top-5, and top-15 predictions dropped
by 4 to 6 percentage points to 40%, 45%, and 54%, respectively (Figure 6F). In comparison to the
similarity-based approach, the overall success rates under the close-to-real-world scenario were 6
percentage points lower for the top-3, top-5, and top-15 while the recovery rates were 5 percentage
points lower.

Scope of the ML Approach

The 90:10 split of the processed ChEMBL24 data and the requirement for a minimum of 25 ligands
per target for model building resulted in a reduced scope of the ML approach over the similarity-based
approach. While the similarity-based approach covers a total of 4239 targets, the ML approach covers
only 1798 targets (42% of the similarity-based approach’s target scope). As such, the ML approach
did not cover 379 of the known targets of ChEMBL 24 queries, which resulted in the inability of the
method to predict 2099 known interactions of 792 queries.

The accuracy of the ML approach can be marginally increased by using larger training sets
(Table 1), at the cost of target coverage. Models based on training sets consisting of a minimum of 50,
75 or 100 ligands (and ten times as many confirmed and/or presumed inactive compounds selected as
described in the Methods section) would further reduce the number of proteins to 1296, 1066 and 899,
respectively. The improvements in ranking performance are explained primarily by the reduction of
the number of proteins represented by the approach, making ranking an easier task.

Table 1. Overall success and recovery rates of the ML approach when using individual target models
with a different minimum number of active compounds.

Success Rates Recovery Rates

Minimum
number of

actives
(number of

targets
represented)

25 (1798) 50 (1296) 75 (1066) 100 (899) 25 (1798) 50 (1296) 75 (1066) 100 (899)

top-1 74.23%
(32,539/43,835) 1

74.27%
(31,897/42,946)

74.39%
(31,369/42,170)

74.40%
(30,754/41,336)

45.79%
(32,539/71,063)

46.18%
(31,897/69,066)

46.50%
(31,369/67,457)

46.68%
(30,754/65,880)

top-3 82.37%
(36,107/43,835)

82.36%
(35,370/42,946)

82.36%
(34,730/42,170)

82.34%
(34,035/41,336)

68.61%
(48,756/71,063)

68.99%
(47,649/69,066)

69.20%
(46,681/67,457)

69.29%
(45,651/65,880)

top-5 85.55%
(37,503/43,835)

85.51%
(36,725/42,946)

85.54%
(36,072/42,170)

85.53%
(35,353/41,336)

75.23%
(53,460/71,063)

75.58%
(52,197/69,066)

75.74%
(51,095/67,457)

75.85%
(49,970/65,880)

top-10 89.16%
(39,083/43,835)

89.20%
(38,308/42,946)

89.24%
(37,634/42,170)

89.29%
(36,909/41,336)

80.98%
(57,545/71,063)

81.38%
(56,205/69,066)

81.58%
(55,034/67,457)

81.76%
(53,863/65,880)

top-15 91.13%
(39,946/43,835)

91.22%
(39,175/42,946)

91.29%
(38,496/42,170)

91.35%
(37,759/41,336)

83.89%
(59,617/71,063)

84.37%
(58,270/69,066)

84.62%
(57,083/67,457)

84.80%
(55,866/65,880)

1 The percentage indicates the success and recovery rates, while the numbers in the brackets show how many
queries (success rate) or bioactivities (recovery rate) within the TC interval had a hit.

3. Methods

3.1. Data Preparation

Following a protocol closely related to that of Bosc et al. [24], the selection criteria listed below
(italics indicate a ChEMBL data field and quotations indicate the value) were applied for the extraction
of data from ChEMBL 24 [43]:

1. Assay covers a single protein or a protein complex (ChEMBL confidence_score is 7 or 9)
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2. data_validity_comment is null OR “manually validated”
3. potential_duplicate is “0”
4. standard_type is “Kd”, “Potency”, “AC50”, “IC50”, “Ki”, or “EC50”
5. activity_comment is not “Inconclusive”, “inconclusive”, or “unspecified”
6. NOT (standard_relation is null AND activity_comment is not “Active” or “active”)
7. NOT (standard_relation “>”, “≥”, or “>>” AND standard_value less than 20,000)

This extraction procedure resulted in a dataset containing 1,482,972 bioactivity records (i.e.,
compound-protein pairs). Of these records, 2206 had standard_units of “µg mL−1” as opposed
to “nM” and therefore the standard_value for these records were converted to nM using the
topological information from canonical_smiles and the Descriptors.ExactMolWt function of RDKit
(RDKit: Open-source cheminformatics; version 2019.03.2.0; http://www.rdkit.org). The molecules were
then passed through the salt and element filter described in ref. [47], and the SMILES of the remaining
compounds were converted with RDKit to non-isomeric SMILES. Duplicate compound-protein pairs,
resulting from multiple bioactivity values recorded in the original data or from the removal of compound
stereochemistry, were consolidated by calculating the median activity value as the representative
activity value for the 1,179,102 unique bioactivity records. Compound-protein pairs with activity values
less than or equal to 10,000 nM were labeled “active” (732,570 bioactivities) while those with activities
greater than or equal to 20,000 nM were marked as “inactive” (282,618 bioactivities). Compound-protein
pairs with activity values between 10,000 nM and 20,000 nM (163,914 bioactivities) were not considered
for model building or validation and were discarded. The resulting dataset (“processed dataset”)
consists of 1,015,188 compound-protein pairs, comprising 546,981 unique compounds and 4676 unique
targets (Figure 1a) from which the knowledge base for the similarity-based approach (Figure 1c),
the training sets for the ML approach (Figure 1b), and the testing sets (Figure 1e–g) were derived.
Additionally, data from the next version of the ChEMBL database (version 25) was processed as
described above and new bioactivity records were used for further test sets (Figure 1h–j)

3.2. Development of Target Prediction Models

3.2.1. Similarity-Based Approach

The pairwise similarity of each compound of the test set (query molecule) and all compounds
of the knowledge base for similarity-based target prediction was quantified based on TCs derived
from Morgan fingerprints with a radius of 2 and a length of 2048 bits. Morgan2 fingerprints were
selected because they are closely related to the extended connectivity fingerprints [48] with a diameter
of 4 bonds (ECFP4), which have been widely applied in target prediction [16,17,25,49] and virtual
screening [50] and have shown to perform favorably. For example, in tests of the target prediction
methods Polypharmacology Browser (PPB2) [49] and MolTarPred [16,17], the ECFP4 fingerprints
obtained the best performance among a collection of different molecular fingerprints.

The proteins were assigned ranks from 1 to 4239 (the total number of proteins represented by the
knowledge base) according to the maximum pairwise TC of the query molecule and any of the ligands
of that protein (maxTC). In cases where multiple proteins had the same maxTC, the ranking was
refined based on the distance of the query molecule to the next nearest neighbor until non-ambiguous
ranks could be assigned to all proteins.

3.2.2. Machine Learning Approach for Target Prediction

Random forest binary classification models were built with scikit-learn (Scikit-learn: Machine
Learning in Python; version 0.20.1; https://scikit-learn.org) [51] for all of the 1798 targets represented
in the ML knowledge base by at least 25 ligands. The training set for each model is composed of the
bioactivity records from the knowledge base and supplemented with presumed inactive compounds
(selected randomly following the procedure described in the section “Generation of training and test
sets” of Methods) to obtain a ratio of 1:10 compounds. The number of estimators (n estimators) and
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maximum depth of the estimators (max depth) of these models were optimized individually for each
model during a grid search within a 10-fold cross-validation framework (Table 2). The best combination
of parameters for each model (see the supplementary information), as measured by the average MCC
score across the 10 folds, was then used to retrain the final model for each target using the complete
training sets.

Table 2. Hyperparameters explored in the grid search of each target classification model.

Hyperparameter Values Explored

n estimators: number of trees 200, 500, 1000
max depth: maximum depth of tree 25, 45, 50, 75, 100

For a given query molecule, the proteins were then ranked by prediction probability of the active
class (p-value). Proteins assigned identical p-values were ranked according to the iterative process
described for the similarity-based approach.

4. Conclusions

This work aimed to determine the scope and limitations of two of the most commonly applied
ligand-based methods for target prediction: a similarity-based approach, and a random forest-based
machine learning approach, both employing Morgan2 fingerprints as molecular representations.
By analyzing the performance of the approaches under three different scenarios and deconvoluting
the results based on the distance of the test compounds (queries) from the training data (or knowledge
base molecules), we obtained a robust and differentiated picture of the performance and reach of
the approaches.

We have found that, in general, the similarity-based approach performed better than the ML
approach, despite the similarity-based approach covering almost 2.5 times more proteins than the
ML approach (4239 vs. 1798 proteins). Under the standard testing scenario with external data,
the percentage of queries for which their target was recovered among the top-5 out of 1798 positions
was 88% for the similarity-based approach and 85% for the ML approach (identical target space applied
for the testing of both approaches). Under the time-split testing scenario, a drop in performance
compared to the previous testing scenario was observed. Within a year’s time (i.e., the difference
between ChEMBL24 and ChEMBL25), the top-5 success rate performance of all the approaches dropped
by an average of 25% for the new chemical and target spaces explored during that year. This reduction
in performance is expected, given the evolution of the chemical and target spaces over time, and is
consistent with the drop performance observed for compounds with a comparable degree of (dis-)
similarity with the training data in the standard testing scenario with external data. The results
indicate that the single time-split scenario, which represents a snapshot of the evolution of research in
small-molecule drug discovery, may not be essential for obtaining an understanding of the robustness
of a method, provided that model performance is evaluated taking into account training-to-test set
distances. The third scenario, which is closest to the real-life application of the method, looks into how
the method would perform, taking into account that some of the targets of new molecules may not be
covered by the model. Here, minor drops in model performance were observed.

It was surprising to find that overall the similarity-based approach outperformed the ML
approach, particularly for the low-similarity queries, where it was hoped that the ML models would
have generalized and been able to make more reliable predictions. It is probable that the ML approach
may perhaps be improved with more and diverse data and achieve better generalization with more
specific training protocols for individual targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/10/3585/s1,
Table S1. Success rates under the standard testing scenario with external data by the similarity approach, Table S2.
Recovery rates under the standard testing scenario with external data by the similarity approach, Table S3.
Success rates under the time-split and close-to-real-world testing scenarios by the similarity approach, Table S4.
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Recovery rates under the time-split and close-to-real-world testing scenarios with by the similarity approach,
Table S5. Success rates under the standard testing scenario with external data by the similarity approach with
a reduced target scope, Table S6. Recovery rates under the standard testing scenario with external data by the
similarity approach with a reduced target scope, Table S7. Success rates under the time-split and close-to-real-world
testing scenarios by the similarity approach with a reduced target scope, Table S8. Recovery rates under the
time-split and close-to-real-world testing scenarios with by the similarity approach with a reduced target scope,
Table S9. Success rates under the standard testing scenario with external data by the ML approach, Table S10.
Recovery rates under the standard testing scenario with external data by the ML approach, Table S11. Success rates
under the time-split and close-to-real-world testing scenarios by the ML approach, Table S12. Recovery rates
under the time-split and close-to-real-world testing scenarios with by the ML approach.
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Cham, Germany, 2019; Volume 11731, pp. 804–809. ISBN 9783030304928. [CrossRef]



Int. J. Mol. Sci. 2020, 21, 3585 15 of 15

32. Lee, K.; Kim, D. In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural
Multi-Task Learning. Genes 2019, 10, 906. [CrossRef] [PubMed]

33. Chu, Y.-Y.; Zhang, Y.-F.; Wang, W.; Wang, X.-G.; Shan, X.-Q.; Xiong, Y.; Wei, D.-Q. DTI-CDF: A CDF Model
Towards the Prediction of DTIs Based on Hybrid Features. bioRxiv 2019, 657973. [CrossRef]

34. Lee, H.; Kim, W. Comparison of Target Features for Predicting Drug-Target Interactions by Deep Neural
Network Based on Large-Scale Drug-Induced Transcriptome Data. Pharmaceutics 2019, 11, 377. [CrossRef]
[PubMed]

35. Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-Based Approaches in Pharmacology. Mol. Inform.
2017, 36. [CrossRef]

36. Lo, Y.-C.; Senese, S.; Damoiseaux, R.; Torres, J.Z. 3D Chemical Similarity Networks for Structure-Based Target
Prediction and Scaffold Hopping. ACS Chem. Biol. 2016, 11, 2244–2253. [CrossRef]

37. Carrella, D.; Napolitano, F.; Rispoli, R.; Miglietta, M.; Carissimo, A.; Cutillo, L.; Sirci, F.; Gregoretti, F.;
Di Bernardo, D. Mantra 2.0: An Online Collaborative Resource for Drug Mode of Action and Repurposing
by Network Analysis. Bioinformatics 2014, 30, 1787–1788. [CrossRef]

38. Fu, G.; Ding, Y.; Seal, A.; Chen, B.; Sun, Y.; Bolton, E. Predicting Drug Target Interactions Using
Meta-Path-Based Semantic Network Analysis. BMC Bioinform. 2016, 17, 160. [CrossRef]

39. Mathai, N.; Chen, Y.; Kirchmair, J. Validation Strategies for Target Prediction Methods. Brief. Bioinform. 2019.
[CrossRef]

40. Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating Protein
Pharmacology by Ligand Chemistry. Nat. Biotechnol. 2007, 25, 197–206. [CrossRef]

41. Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.;
Matos, R.C.; Tran, T.B.; et al. Predicting New Molecular Targets for Known Drugs. Nature 2009, 462, 175–181.
[CrossRef]

42. Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.;
Doak, A.K.; Côté, S.; et al. Large-scale Prediction and Testing of Drug Activity on Side-Effect Targets. Nature
2012, 486, 361–367. [CrossRef] [PubMed]

43. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.;
Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45, D945–D954.
[CrossRef] [PubMed]

44. Zhang, M.-L.; Li, Y.-K.; Liu, X.-Y.; Geng, X. Binary Relevance for Multi-Label Learning: An Overview.
Front. Comput. Sci. 2018, 12, 191–202. [CrossRef]

45. Cockroft, N.T.; Cheng, X.; Fuchs, J.R. STarFish: A Stacked Ensemble Target Fishing Approach and its
Application to Natural Products. J. Chem. Inf. Model. 2019, 59, 4906–4920. [CrossRef]

46. Hao, M.; Bryant, S.H.; Wang, Y. Open-Source Chemogenomic Data-Driven Algorithms for Predicting
Drug-Target Interactions. Brief. Bioinform. 2019, 20, 1465–1474. [CrossRef]

47. Stork, C.; Wagner, J.; Friedrich, N.-O.; de Bruyn Kops, C.; Šícho, M.; Kirchmair, J. Hit Dexter: A
Machine-Learning Model for the Prediction of Frequent Hitters. ChemMedChem 2018, 13, 564–571. [CrossRef]

48. Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [CrossRef]
49. Awale, M.; Reymond, J.-L. Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors

with Machine Learning. J. Chem. Inf. Model. 2019, 59, 10–17. [CrossRef]
50. Riniker, S.; Landrum, G.A. Open-Source Platform to Benchmark Fingerprints for Ligand-Based Virtual

Screening. J. Cheminform. 2013, 5, 26. [CrossRef]
51. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



Chapter 6

Using target prediction to curate

compound sets for screening

libraries

Screening libraries of compounds with biochemical, cell-based and/or virtual screens is

routine in the early stages of a drug discovery project [90, 104]. Compound libraries used

in screening campaigns are typically designed to be either focused libraries or general

libraries. Focused libraries are designed to contain compounds that are likely to interact

with a particular target or target family. General purpose libraries are designed to be

chemically and/or biologically diverse so as to increase the chances of finding bioactive

compounds for a wide range of targets of interest. In either case, it is important that

libraries contain high-quality compounds which can be further optimized into a drug,

agrochemical, active cosmetic ingredient etc. This means that the compounds do not

exhibit “bad actor” behavior in screening assays. Small to medium-sized general-purpose

libraries are of particular interest, especially for academic drug discovery projects. This

is because in these settings, targets which are usually not as well established, are explored

under resource constraints.

In this chapter, we present a study where we applied computational target prediction

followed by an evolutionary algorithm to optimize small to medium sized compound

libraries for general purpose screens. A similarity-based target prediction method, based

by our earlier work presented in Chapter 5, was used to predict the macromolecular

targets of a large collection of purchasable compounds. Over 1.3 million compounds with

a predicted target, from the ZINC20 database, were used as the PCC from which a genetic

algorithm was used to select optimal subsets to form the optimized libraries. The PCC
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was made up of compounds which were labeled as “anodyne” on the ZINC web-service

as they have been tested on an extensive collection of reactivity filers [119]. They are

therefore assumed to be unreactive in the context of screening and suitable as a starting

point for drug discovery projects. Optimized compound libraries (BonMOLière) of 1,000,

5,000, 10,000 and 15,000 compounds were generated and have been made available to

the community. The smaller the size of the library the greater the improvements, as

measured by the fitness function, were from the optimization process. Compared to

baseline libraries, which were not optimized, the optimization resulted in improvements

which ranged from +60% (for the 15,000 compound library) to +184% (for the 1,000

compound library).
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Abstract: Experimental screening of large sets of compounds against macromolecular targets is
a key strategy to identify novel bioactivities. However, large-scale screening requires substantial
experimental resources and is time-consuming and challenging. Therefore, small to medium-sized
compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest
would be of great value to fields related to early drug discovery, in particular biochemical and cell
research. Here, we present a computational approach that incorporates drug-likeness, predicted
bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries
with maximized chances of producing genuine hits for a wide range of proteins. The computational
approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a vali-
dated, similarity-based approach, and optimizes the composition of small sets of compounds towards
maximum target coverage and novelty. We found that, in comparison to the random selection of com-
pounds for a library, our approach generates substantially improved compound sets. Quantified as
the “fitness” of compound libraries, the calculated improvements ranged from +60% (for a library of
15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound
libraries prepared in this work are available for download as a dataset bundle (“BonMOLière”).

Keywords: optimized compound library; biological screening; purchasable compounds; evolutionary
optimization; genetic algorithms; tool compounds; novel targets

1. Introduction

A key strategy to identify bioactive compounds for biomacromolecules of interest is
to screen large collections of compounds with biochemical or cell-based assays [1]. The
success of such screening campaigns depends on many factors, above all, the quality and
composition of the compound library: the much-cited “needle in the haystack” can only
possibly be found if it actually is in the haystack. For this reason, the design of compound
libraries for screening has been, and continues to be, an active field of research [2–4].

There are multiple approaches to compiling compound libraries. Focused design
aims to compile a set of compounds that have an increased likelihood of being active
on a particular target of interest [4–7]. In contrast, general compound libraries may be
optimized for maximum chemical and/or biological diversity in order to increase the
chances of identification of bioactive compounds for an arbitrary target [4–8]. In any
case, besides chemical and biological diversity, the potential of compounds to be further
optimized into functional molecules with desired properties (drugs, agrochemicals, or
active cosmetic ingredients, in particular) should be taken into account [9]. In particular,
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this concerns the chemistry and toxicological properties of compounds. A high-quality
compound library should also not include compounds that are prone to cause false readouts
in biological assays (“bad actors”) [10,11].

With the ever-growing capacities in experimental screening, and in particular with
the renewed interest in phenotypic screens, there have been increased efforts in compiling
diverse compound libraries [8,9,12–14]. Lahue et al. [9] detail the recent undertaking at
Merck & Co. to design two libraries for phenotypic screening, consisting of 50 thousand
and 250 thousand compounds, respectively. They used a combination of in-house structural
alerts and PAINS patterns [15] to remove compounds that contain undesired moieties.
Chemical properties of compounds, such as the molecular weight and the quantitative
estimate of drug-likeness score [16] (QED; a composite score to quantify chemical beauty),
were used to filter and reduce the size of the candidate pool. The candidate pool was then
organized into clusters, from which compounds were randomly selected to make com-
pound sets using a genetic algorithm. The compound sets were improved by maximizing a
fitness function that captured the 3D shape diversity, bioactivity diversity, and the median
QED score of a set of compounds. The optimized sets were added to the final compound
library after additional quality checks and opinions garnered from in-house chemists.

Schuffenhauer et al. [17] described the process used to design the screening deck at
Novartis to optimize the selection of diverse subsets for screening. Structures were first
passed through quality checks, frequent hitter SMARTS patterns (based on a subset of the
PAINS patterns and in-house patterns to flag nuisance compounds), molecular weight, and
nitrogen and oxygen contents. The compounds were flagged based on these checks and
then ranked based on aqueous solubility, cell permeability, and the number of assigned
flags from the checks. Additionally, compounds were grouped, non-exclusively, into classes
that described their target interaction, biological and chemical descriptors. Compounds
were selected in iterative rounds in a greedy fashion, starting with the highest ranking
compound which occupied the highest number of classes. This selection, based on property
ranking and the class memberships of the compounds, resulted in a 2D grid with 1.5 million
compounds. The x-axis of the grid represents the property rank and the y-axis represents
the round in which the compound was selected. The 2D grid allows the researchers at
Novartis to select their choice of how many compounds to screen from this grid, balancing
the properties and diversity of the screening subset.

A small to medium-sized screening deck (1000 to 15,000 compounds) that has a high
chance of producing genuine hits during screening on an arbitrary target of interest can
be incredibly valuable to biochemical and cell research. This is particularly true for the
research of proteins for which there is little existing knowledge to use for the compilation
of focused screening sets, and for academic research which is often focused on innovative
targets under tight resource constraints.

In this work, we report on the development and application of a computational
method for the automated compilation of small to medium-sized compound libraries that
have a high chance of producing genuine hits during experimental screens on arbitrary
protein targets. We show the capacity of the new computational approach by generating a
set of optimized compound libraries (“BonMOLière”) of different sizes from a subset of the
ZINC20 database [18,19] (an aggregate of more than 300 commercially available compound
catalogs from over 150 companies; Figure 1A). The approach utilizes (i) elaborate protocols
for the preprocessing and preparation of chemical and biological data (Figure 1B), (ii)
established rule sets to promote drug-likeness (Figure 1C), (iii) a validated, similarity-
based approach to predict the likely targets of compounds (Figure 1D,E), and (iv) a genetic
optimization algorithm (Figure 1H) to maximize coverage of the protein space (Figure 1G)
when selecting subsets of compounds for a compound library, taking target novelty and
target diversity into account.
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Figure 1. Overview of the workflow followed to generate optimized compound libraries: (A) 
source of compounds for the generation of optimized screening libraries, (B) preprocessing of 
compounds, (C) removal of compounds with undesired properties, (D) target prediction, (E) 
source of bioactivity data for target prediction, (F) ZINC20 compounds with predicted targets, (G) 
assignment of Pfam families, (H) genetic algorithm for optimal subset selection, (I) optimal library 
selected. 

2. Results and Discussion 
All 7,692,013 compounds included in the ZINC20 subset used in this study (Figure 

1A) fulfill the following key criteria (among other criteria, outlined in the Materials and 
Methods section): 
1. The compounds are already made and readily obtainable from the manufacturer (i.e., 

they are part of the “in-stock” subset of the ZINC20 database). 
2. The compounds are presumed benign in the context of screening with biological as-

says (i.e., they are also part of the “anodyne” subset of the ZINC20 database). More 
specifically, all of these compounds have passed an extensive collection of reactivity 
filters and PAINS patterns compiled and utilized by the developers of the ZINC da-
tabase, meaning that they are unlikely reactive or causing pan-assay interference [20]. 

Figure 1. Overview of the workflow followed to generate optimized compound libraries: (A) source of compounds for the
generation of optimized screening libraries, (B) preprocessing of compounds, (C) removal of compounds with undesired
properties, (D) target prediction, (E) source of bioactivity data for target prediction, (F) ZINC20 compounds with predicted
targets, (G) assignment of Pfam families, (H) genetic algorithm for optimal subset selection, (I) optimal library selected.

2. Results and Discussion

All 7,692,013 compounds included in the ZINC20 subset used in this study (Figure 1A)
fulfill the following key criteria (among other criteria, outlined in the Materials and Meth-
ods section):

1. The compounds are already made and readily obtainable from the manufacturer (i.e.,
they are part of the “in-stock” subset of the ZINC20 database).

2. The compounds are presumed benign in the context of screening with biological
assays (i.e., they are also part of the “anodyne” subset of the ZINC20 database).
More specifically, all of these compounds have passed an extensive collection of
reactivity filters and PAINS patterns compiled and utilized by the developers of
the ZINC database, meaning that they are unlikely reactive or causing pan-assay
interference [20].
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A multi-step process including the preparation of chemical and biological data
(Figure 1B), the filtering for physicochemical properties to promote drug-likeness (Figure 1C),
and the prediction of likely targets with a 2D similarity-based approach (Figure 1D), resulted
in a pool of (1,314,755) candidate compounds (PCC). On this PCC, a genetic algorithm is
applied to generate the final set of optimized screening libraries.

2.1. Characterization of the Pool of Candidate Compounds

In order to understand the relevance and properties of the PCC, and to enable a
comparison of compound libraries prior and after optimization, we conducted a thorough
characterization of the PCC.

2.1.1. Physicochemical and Structural Characterization of the Pool of Candidate Compounds

The PCC consists of 1,314,755 compounds which are built on 379,690 unique Murcko
scaffolds. Ninety-six percent of the scaffolds (362,707 scaffolds) represent fewer than ten
compounds of the PCC. However, the remaining 16,983 scaffolds (4% of all scaffolds) have
a wide distribution in terms of occurrence, ranging from 10 to 13,695 compounds per
scaffold. The 10 most popular scaffolds (Figure 2) account for 60,428 compounds, with
benzene being the most popular one (representing 13,695 or 1% of the PCC). Clustering of
the PCC (with the Taylor-Butina algorithm and a Tanimoto similarity threshold of 0.4; see
Materials and Methods) produced 28,826 clusters, 6801 of which are singletons.
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The upper and lower boundaries of several relevant physicochemical properties of the
compounds forming the PCC are set by the property filters applied previously (Figure 1C).
In the case of the molecular weight, the property filters imposed an upper limit of 900 Da.
The majority of the compounds forming the PCC have a molecular weight between 250
and 500 Da (Figure 4A), with the median at 342 Da. The median number of heavy atoms
is 24 (Figure 4B). The majority of the compounds have 6 to 8 rotatable bonds (Figure 4C)
and their median number of rings is 3 (Figure 4D). Half of all compounds have 1 hydrogen
bond donor (Figure 4E) while the number of hydrogen bond acceptors per compound is
more spread out (median at 4 hydrogen bond acceptors; Figure 4F). The distribution of the
logP values of the compounds shows a peak near the upper filter boundary (Figure 4G),
at approximately 4, with the median located at 2.90. Finally, while not utilized as a
physicochemical property filter, Figure 4H shows the distribution of the QED score [16].
The QED score is a quantification of the drug-likeness of a compound, with 0 being most
unfavorable and 1 being most favorable. The compounds of the PCC have a QED score
distribution which is skewed towards being favorable, with a median score of 0.78. This
shows that the PCC is composed of compounds with a high level of drug-likeness.

2.1.2. Biological Characterization of the Pool of Candidate Compounds

For the compounds forming the PCC, activities on a total of 3262 distinct protein
targets were predicted with a target prediction model based on 2D molecular similarity.
This model has been published and validated previously [21] and is built on a curated
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subset of the ChEMBL27 database [22,23] (the “ChEMBL27 reference set”) that covers a
total of 5170 proteins (see Materials and Methods). As shown in Figure 3, the types of
targets (enzymes, membrane receptors, etc.) predicted for the PCC are a good reflection of
the proteins represented in the ChEMBL27 reference set.
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To characterize the target diversity of compound libraries, we retrieved the Pfam
family classifications [24,25] of the ChEMBL proteins by scanning their sequences against
the Pfam database of 18,259 families. The compounds of the PCC were predicted to be
active on 3262 unique targets that represent 880 Pfam families. These predicted targets are
diverse and cover over 70% of the 1214 Pfam families that represent the 5170 proteins in
the ChEMBL27 reference set. Of the proteins represented in the ChEMBL27 reference set,
334 belong to more than one Pfam family and two proteins are assigned to the dummy
Pfam family to group all targets for which a Pfam family could not be assigned.
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A novelty score for each Pfam family was calculated based on how many ChEMBL
bioactivities were recorded before and after the year 2010 (Equation (1)). The intention
of this score is to promote, during compound library optimization, the representation of
protein targets that reflect the more recent research directions (as the protein space and
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the chemical space of interest evolve over time). The novelty scores were assigned to the
proteins via their Pfam classification:

Pfam novelty score =
No.(bioactivities recorded in or after 2010)

No.(bioactivities recorded in or after 2010)+No.(bioactivities recorded before 2010)
(1)

The distribution of the novelty scores (Figure 5) of the predicted targets of the PCC
closely mirrors the distribution of the novelty scores of the full protein space of the
ChEMBL27 reference set, with median novelty scores of 0.74 and 0.71, respectively. This
indicates that the predicted targets are generally representative of the proteins found in the
ChEMBL27 reference set, with a slight bias towards newer targets.
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2.2. Characterization of the Optimized Compound Libraries

Starting from the PCC, optimized compound libraries composed of 1000, 5000, 10,000,
and 15,000 compounds were generated with the genetic algorithm described in the Materi-
als and Methods section. As this is a subset selection problem, it is an optimization problem
as an optimal subset needs to be selected which may be achieved through numerous com-
binations of compounds. A genetic algorithm is well suited for this as it reaches an optimal
selection by selecting compounds to maximize the values of the fitness function. The
algorithm optimizes the fitness of a compound set (i.e., a subset of the PCC) according to a
fitness function that accounts not only for the novelty of the proteins predicted as targets
of the compounds in a set but also for the number of proteins and number of times (i.e., the
count) specific Pfam families are predicted for the compounds of a library (Equation (2)).
This is because the more times a Pfam family is assigned to a library, via predicted targets
for the compounds within a library, the higher the likelihood that proteins within this
family will be a true hit when screened with this library.

fitness score =

(
∑ Pfam family Pfam novelty score

(
1−0.99count

1−0.99

))

number of compounds in the library
(2)

Therefore, when comparing two libraries of the same size, a higher fitness score
signifies a better library, enriched with:

1. more bioactive compounds as a whole
2. compounds active on proteins representing more Pfam families (maximizing target di-

versity)
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3. compounds active on newer targets (the novelty score is higher for newer targets)

2.2.1. Baseline Compound Libraries

To understand the benefits of this approach (i.e., utilizing a target prediction model
and a genetic algorithm to optimize the selection of compounds for the libraries), baseline
compound libraries (of sizes 1000, 5000, 10,000, and 15,000) were generated. These base-
line compound libraries were generated by randomly selecting sets of compounds from
the 2,572,351 ZINC20 compounds which passed through the property filters (Figure 1C)
irrespective of whether they are a part of the PCC or not. The selection was repeated
multiple (10% of the compound library size) times and the properties of the fittest of these
compound libraries are reported in Table 1.

Table 1. Properties of the baseline compound libraries generated from compounds before predicted targets and the genetic
algorithm are used to optimize the libraries.

Library
Size

Fitness
Score

Number of
Murcko Scaffolds

Number of
Targets

Number of
Pfam Families

Number of
Bioactivities

Median
Novelty Score

1000 0.55 963 272 127 925 0.76

5000 0.39 4516 719 275 4288 0.75

10,000 0.30 8707 910 325 8571 0.74

15,000 0.25 12,779 1051 378 12,561 0.74

2.2.2. Optimized Compound Libraries

The genetic algorithm was run for 300 generations, with a population consisting of
individual compound sets. The number of individuals for a population was set to 10%
of the size of the library being optimized. The population evolved to reflect the fittest
individuals from the previous generation (see Materials and Methods).

Within the 300 generations of evolution, the fitness increased (Table 2) and converged
(Figure 6) for compound libraries of all sizes, with the biggest effects observed for the
smallest compound library. That is, the fitness of the 1000-compound library improved by
34%, whereas the fitness of the 15,000-compound library increased by only 14% through
the course of evolution. This shows that there are greater gains in optimization using this
genetic algorithm for the smaller libraries than for larger libraries. It must be noted that,
unlike the percentage improvement, the fitness score (Equation (2)) is a function of the
number of compounds in a library and can therefore only be compared when they describe
libraries of the same size and not libraries with different numbers of compounds.

Table 2. Change in properties of the fittest individual (compound library) from the first generation to the fittest individual
from after 300 generations generated with population sizes that were 10% of the library size 1.

Library Size % Change in
Fitness Score

∆ Number of
Murcko

Scaffolds

∆ Number of
Compound

Clusters
Represented

∆ Number of
Targets

∆ Number of
Pfam Families

∆ Number of
Bioactivities

% Change in
the Median

Novelty Score

1000 +34.48%
(0.96→1.29)

−15
(925→910)

0
(1000 in both)

+59
(364→423)

+102
(180→282)

+395
(1679→2074)

+5.22%
(0.72→0.76)

5000 +19.90%
(0.59→0.71)

+17
(4211→4228)

0
(5000 in both)

+7
(984→991)

+102
(339→441)

+591
(8272→ 8863)

+0%
(both at 0.75)

10,000 +16.89%
(0.43→0.50)

−83
(7853→7770)

0
(10,000 in both)

+40
(1137→1177)

+79
(407→486)

+805
(16,035→16,840)

+6.11%
(0.71→0.75)

15,000 +13.73%
(0.35→0.40)

−189
(11,300→11,111)

0
(15,000 in both)

−81
(1362→1281)

−3
(515→512)

+769
(24,370→25,139)

−0.61%
(0.75→0.74)

1 The “→” symbol indicates a change in the value of a characteristic between the fittest individual at the start and the end of the evolution.
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By the similarity principle, a more diverse compound library should reflect a more
diverse set of targets on which compounds of that library are active. The similarity principle
holds true for the 5000-compound library: looking at the 5000-compound library (Table 2),
we see that over the 300 generations the number of Murcko scaffolds represented increased
by 17. The evolution of the 1000, 10,000-, and 15,000-compound libraries, on the other
hand, saw a decrease by 15, 83, and 189 Murcko scaffolds respectively. This was while
the number of unique predicted targets increased by 59 (to 423) for the 1000-compound
library, and by 7 (to 991) for the 10,000-compound library, indicating that compounds
with more promiscuous scaffolds have been selected through the course of evolution. The
15,000-compound library did see a reduction in the number of unique targets over the
course of the evolution (by 81 targets, to 1281).

There is no change in the number of molecular clusters represented at the start and
the end of the evolution for all the compound libraries. This is because the PCC forms over
24 thousand clusters, therefore the limiting factor in the number of clusters represented
is the size of the library as each compound within a library is from a different cluster.
Notably, every compound within a library is always from a different cluster, speaking to
the diversity of the libraries.

Importantly, compounds selected during the evolution are in fact predicted to be
bioactive towards newer targets more often. There are 59 more targets and 102 more Pfam
families represented in the 1000-compound library at the end of 300 generations. The
5000 and 10,000-compound libraries also saw, as a result of evolution, a gain by 7 and
40 predicted targets, respectively, and 102 and 79 more Pfam families, respectively. For the
1000 and 10,000-compound libraries, the evolution resulted in a +5% (from 0.72 to 0.76)
and +6% (from 0.71 to 0.75) respective change in the median novelty score of the targets
predicted for the most fit individuals at the start and the end of the evolution. For the
5000-compound library, the median novelty score of the predicted targets was 0.75 for the
fittest individual at both the beginning and the end of the evolution. An anomaly to this
trend is observed for the 15,000-compound library where there is a reduction in the number
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of unique targets (by 81 targets to 1281) and consequently a very slight reduction in the
median novelty score (from 0.75 to 0.74). There is, however, an improvement in the fitness
of the 15,000-compound library, and this gain is acquired from the increase in predicted
bioactivities (by 769 bioactivities to 25,139).

The optimization led to an increase in predicted bioactivities for all the compound
libraries. That is, between the start and end of the evolution, the 1000-compound library
has 395 (+24%) more predicted bioactivities, the 5000-compound library has 591 (+7%)
more bioactivities, the 10,000-compound library has 805 (+5%) more bioactivities, and the
15,000-compound library has 769 (+3%) more activities. All these changes, coupled with
the increase in the fitness score, show that the resulting compound libraries have got more
predicted activity on novel targets.

Comparing these optimized compound libraries (Table 2) with the baseline compound
libraries (Table 1), we see that the optimization shows remarkable improvements of the
fitness across all libraries: +134% (0.55 vs. 1.29) for the 1000-compound library (Figure 7A),
+82% (0.39 vs. 0.71) for the 5000-compound library (Figure 7B), +67% (0.30 vs. 0.50) for the
10,000-compound library (Figure 7C), and +60% (0.25 vs. 0.40) for the 15,000-compound
library (Figure 7D). These improvements are driven by a steep increase in the number of
predicted targets of the optimized compound libraries. When compared to the baseline
compound libraries, between an additional 151 targets (+55% for the 1000-compound
library) to 230 targets (+20% for the 15,000-compound library) are observed. Similarly, the
number of bioactivities is also higher in the optimized libraries, between an additional
1149 bioactivities (+124% for the 1000-compound library) and 12,578 bioactivities (+100%
for the 15,000-compound library), than the baseline libraries.
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adjacent to the lines indicating the properties of the respective library.



Int. J. Mol. Sci. 2021, 22, 7773 11 of 20

2.2.3. Further Optimization of the Smaller-Sized Compound Libraries

As the smaller-sized compound sets were observed to benefit most from optimization
by the genetic algorithm, we explored the possibility to further improve the sets of 1000 and
5000 compounds by re-running the genetic algorithm, this time with larger population sizes.

We first focus on the 1000-compound library. For this set, with a population size of 100
(Table 2), the optimization driven by the genetic algorithm yielded an increase in fitness by
34%. The larger population size of 500 (Table 3) led, over the course of its evolution, to an
improvement in fitness by 46%, and with a population size of 1000, the improvement was
58% (Table 3).

Looking deeper at the 1000-compound libraries generated with population sizes of 100
(10% of the library size; Table 2) and 500 (Table 3), we see that the increase in final fitness
values (1.29 vs. 1.42) correlates with an increase in the number of covered Murcko scaffolds
(910 vs. 918), the number of targets (423 vs. 508), the number of covered Pfam families
(282 vs. 303), and the number of predicted bioactivities (2074 vs. 2198). The increase in
fitness is because the fitness function is designed to increase the score with repetitions in
the predicted targets as the compound set is more likely to interact with a target when the
target is predicted multiple times within the set.

The 1000-compound library generated with a population size of 1000 produced a
1000-compound library with the highest fitness score (1.56). The resulting 1000-compound
library also covers more (930) scaffolds compared to 910 and 918 for the 1000-compound
libraries generated with population sizes of 100 and 500, respectively. Clearly, during the
course of this evolution, there is a slight increase in the number of scaffolds (from 928
to 930). This change occurred alongside an increase in the number of targets (from 433
to 710 targets from the start and end of the evolution) and Pfam families (from 198 to
323 Pfam families from the start and end of the evolution). As a result, despite only a slight
increase in the number of represented scaffolds, the selected library is more populated
with compounds that are predicted to interact with newer targets. This is also observed by
the increase in the number of predicted bioactivities (from 1735 to 2743) and targets with
higher novelty scores.

Considering the 5000-compound library, increasing the population size of the genetic
algorithm from 500 individuals per generation (10% of the library size–Table 2) to 1000
and 5000 (Table 3) resulted in increased fitness of the best-scoring individuals (fitness of
0.71, 0.73 and 0.84, respectively). The improvement of the fittest individuals from the start
and to the end of the evolution was also greater as the population size increased: a 20%
improvement with a population size of 500, a 23% improvement when the population
size was increased to 1000, and a 41% improvement for a population size of 5000. The
fittest 5000-compound library generated from the population of 1000 individuals has an
inverse relationship compared to the fittest library generated with the smaller population
(500 individuals) on different fronts: a smaller number of scaffolds (4228 vs. 4193), fewer
targets covered (991 vs. 917), and fewer Pfam families covered (441 vs. 412). The number
of bioactivities, however, is higher (8863 vs. 8991), as is the median novelty score (0.75
vs. 0.76). This resulted in the improvement of the fitness score (0.71 vs. 0.73). Increasing
the population size to 5000 resulted in a further increase in fitness for the 5000-compound
library. Comparing the 5000-compound libraries generated with the populations of 1000
and 5000 individuals (with a fitness of 0.73 and 0.84, respectively), a different set of changes
in the properties is observed with the increase in fitness. We still see that fewer and more
promiscuous scaffolds are selected (4193 vs. 4175 Murcko scaffolds). However, this is
coupled with more unique targets predicted (1062 vs. 917), more Pfam families covered
(4210 vs. 470), and with more predicted bioactivities (8991vs. 10391) for the compound
libraries. The different modulations of the properties to achieve higher fitness is a result of
the multiple parameters which must be optimized.
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Table 3. Change in properties of the fittest individual (compound library) from the first generation to the fittest individual from after 300 generations for the 1000-compound and
5000-compound libraries using different population sizes for the genetic algorithm 1.

Library Size Population Size % Change in
Fitness Score

∆ Number of
Murcko Scaffolds

∆ Number of Compound
Clusters Represented

∆ Number of
Targets

∆ Number of Pfam
Families

∆ Number of
Bioactivities

% Change in the
Median Novelty

Score

1000 500 +46.14%
(0.97→1.42)

+6
(912→918)

0
(1000 in both)

+102
(406→508)

+101
(202→303)

+541
(1657→2198)

+2.26%
(0.74→0.76)

1000 1000 +58.16%.
(0.99→1.56)

+2
(928→930)

0
(1000 in both)

+267
(443→710)

+125
(198→323)

+1008
(1735→2743)

+0%
(both at 0.76)

5000 1000 +23.12%.
(0.59→0.73)

−59
(4252→4193)

0
(5000 in both)

+58
(859→917)

+15
(406→421)

+959
(8032→8991)

+1.33%
(0.74→0.75)

5000 5000 +40.76%
(0.60→0.84)

−17
(4192→4175)

0
(5000 in both)

+230
(832→1062)

+61
(409→ 470)

+2353
(8038→10,391)

+0.92%
(0.75→0.76)

1 The “→” symbol indicates a change in the value of a characteristic between the fittest individual at the start and the end of the evolution.
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The 1000-compound library, which was optimized further with a population size
of 1000, shows an improvement in fitness of 184% (0.55 vs. 1.56) over the baseline 1000-
compound library (Figure 8A). This library also has an additional 438 (+161%) predicted
targets, 194 (+154%) Pfam families and 1818 (+193%) predicted bioactivities compared to
the baseline compound library. Likewise, the 5000-compound library, which was optimized
further with a population size of 5000, has an improvement in fitness of 115% (0.39 vs.
0.84) over the baseline 5000-compound library (Figure 8B) and an additional 343 (+48%)
predicted targets, 195 (+71%) Pfam families and 6103 (+142%) predicted bioactivities
compared to the baseline compound library. These improvements show a clear benefit in
optimizing compound libraries using this approach.
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3. Materials and Methods
3.1. Data Sets
3.1.1. ZINC20 Database

Via the ZINC20 web service [18,19], the 7,692,013 compounds annotated as “in-
stock” [20] AND annotated as “anodyne” [20] AND assigned a charge state of −1, 0
or +1 AND assigned a calculated logP value between 0 and 4 were retrieved as SMILES
strings from the ZINC20 database web service (Figure 1A) to be used as the source of
compounds from which the optimized compound libraries would be generated.

3.1.2. ChEMBL27 Database

From the ChEMBL27 database [22,23], the 2,156,988 bioactivity data records (i.e.,
compound-target pairs; Figure 1E) matching the following selection criteria (which are
closely related to those used in previous works [21,27]) were retrieved:

1. Assay covers a single protein or a protein complex (ChEMBL confidence_score is 6, 7,
8, or 9)

2. data_validity_comment is null OR “manually validated”
3. potential_duplicate is “0”
4. standard_type is “Kd”, “Potency”, “AC50”, “IC50”, “Ki”, or “EC50”
5. activity_comment is not “Inconclusive”, “inconclusive”, or “unspecified”
6. NOT (standard_relation is null AND activity_comment is not “Active” or “active”)

Among the bioactivity records retrieved from the ChEMBL27 database, 4399 records
had standard_units of “ug.mL−1” as opposed to “nM” and therefore the standard_value
for these records was converted to nM using the canonical_smiles and RDKit’s Descrip-
tors.ExactMolWt function.
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3.2. Chemical Structure Processing and Data Consolidation

The chemical structures from both the ZINC20 and ChEMBL27 data (Figure 1B)
were standardized using the ChEMBL Structure Pipeline [28] to remove salt components
(note that the compounds from the ZINC20 database do not include salt components)
and solvent components and to neutralize any charges. Only compounds with molecular
weight between 250 and 900 Da and composed of C, H, O, N, P, S, F, Cl, Br, and I atoms were
retained. The SMILES string of the canonical tautomer of the compounds, as obtained from
RDKit’s TautomerEnumerator.canonicalize method, was recorded and used for further
processing. In the case of the ZINC20 data, non-stereospecific SMILES were obtained and
used to identify unique compounds based on their constitution (as information on the
stereochemistry of the purchasable compounds is often incomplete or inaccurate).

Duplicate compounds in the processed ZINC20 data, resulting from the standard-
ization process, were merged, resulting in 4,175,683 unique compounds. These ZINC20
compounds were further filtered for desirable molecular properties (see Molecular property
filters for the ZINC20 data set).

In the case of ChEMBL27 data, when the standardization of the compounds resulted
in duplicate compound-target pairs, the bioactivity records were merged and the median
activity value of the merged records was set as the activity value for the compound-target
pair. The 1,116,495 bioactivity records with activity values of less than or equal to 10,000 nM
were labeled as “active” and were used as the reference data covering 661,839 compounds
and 5170 targets for the similarity-based target prediction.

3.3. Filtering of the ZINC20 Subset by Molecular Properties

Following chemical structure processing, a series of molecular property filters (Figure 1C)
were then used to remove any compounds with physicochemical properties that are
unfavorable in the context of biochemical and cell research [11,17,29,30]. More specifically,
any compounds matching any of the following criteria were removed:

1. Less than 18 or more than 30 heavy atoms (calculated using RDKit’s Lipinski.Heavy
AtomCount method)

2. Less than one or more than four rings (calculated using RDKit’s CalcNumRings method)
3. Ring systems with more than three fused rings (calculated using RDKit’s GetRingInfo

and AtomRings methods to get the ring systems and number of rings per system
present a molecule)

4. More than eight rotatable bonds (rdMolDescriptors.CalcNumRotatableBonds)
5. More than three hydrogen bond donors (Lipinski.NumHDonors)
6. More than seven hydrogen bond acceptors (Lipinski.NumHAcceptors)
7. Charged carbon atoms (identified using RDKit atom properties)
8. Not at least one oxygen or nitrogen atom (identified using RDKit atom properties)
9. Substructures listed in the “remove” and “extreme caution” categories of the SMARTS

patterns compiled by Chakravorty et al. [31]. These SMARTS patterns were compiled
from a meta-analysis of existing structural filters to identify nuisance compounds and
correctly identified 57% of noisy GSK compounds in the study’s validation [31]

10. Contain tosyl group (compounds which match the “S(=O)(=O)O” SMARTS pattern).

This filtering resulted in a final set of 2,572,351 ZINC20 compounds which were next
subjected to target prediction.

3.4. Target Prediction

The targets of compounds were predicted based on their 2D molecular similarity
(Figure 1D) of the query compounds (i.e., all the 2,572,351 processed compounds from
ZINC20) to any of the compounds in the ChEMBL27 reference set (i.e., all the 661,839 pro-
cessed compounds from the processed ChEMBL27 database with their 1,116,495 bioactivity
records covering 5170 targets). More specifically, this search was performed using Mor-
gan2 fingerprints and the search.knearest_tanimoto_search_arena method implemented
in chemfp [32]. Compound pairs with a Tanimoto coefficient of 0.5 or greater (Figure 9)
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were retained (as we found previously that for these compound pairs the probability of
predictions to be correct is 60% or higher; see Figure 3 in Ref. [21]).
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Figure 9. Distribution of the maximum similarities (quantified as Tanimoto coefficient based on
Morgan fingerprints with radius 2 and length of 2048 bits) of the compounds derived from the
ZINC20 data set to the compounds of the ChEMBL27 reference set for target prediction (derived from
the ChEMBL27 database). The line is the kernel density estimate while the bars are the normalized
histogram of the pairwise similarities. The distribution shows a large number of dissimilar pairs and
a long tail as similarity increases. This observation is consistent with existing knowledge that two
random compounds are more likely to be dissimilar than similar [33,34]. Of all the 2,572,351 com-
pounds on which a similarity search was carried out, nearly half the compounds (1,257,596) had a
maximum similarity of less than 0.5 to the ChEMBL27 reference set (grey bars). This means that
for these compounds no likely targets could be identified by the computational approach. For the
purpose of this study, these compounds were hence regarded as “dark chemical matter” [35], and
since the aim of this study is to generate compound libraries with the best coverage of the target
space, these compounds were discarded. The remaining 1,314,755 compounds (blue bars) were
assigned the ChEMBL27 compounds’ targets as predicted targets. These 1,314,755 unique ZINC20
compounds had a coverage of 3362 predicted targets and were retained as the pool of candidate
compounds (PCC) from which the final, optimized compound libraries will be generated with the
genetic algorithm. The PCC had a median Tanimoto coefficient of 0.59 to the ChEMBL27 reference
set and 32,032 compounds (2% of the PCC) had the same Morgan fingerprints as compounds in the
ChEMBL27 reference set resulting in the peak at Tanimoto coefficient of 1.

3.5. Additional Descriptions of the Compounds from the ZINC20 Database

In addition to the physicochemical properties that were used to filter the compounds
from the ZINC20 database, Murcko scaffolds, QED score, logP, and compound clusters
were used as additional descriptions of the compound sets. The number of Murcko
scaffolds was calculated using the PandasTools.AddMurckoToFrame function of RDKit
and counting the unique SMILES strings of the Murcko scaffolds. The QED scores were
calculated using the rdkit.Chem.QED.default function of RDKit. The logP was calculated
using RDkit’s Descriptors.MolLogP function. To cluster compounds, Dalke Scientific’s
implementation [36] of the Taylor-Butina [37,38] clustering algorithm was utilized with
Morgan 2 fingerprints and a Tanimoto threshold of 0.4.

3.6. Calculation of the Novelty of a Target

To map the diversity of targets, the targets were assigned to a Pfam family according to
their protein sequence. Pfam is a large database of protein families that are represented by
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hidden Markov models which describe these families with the goal of increasing coverage
with as few models as possible [24,25]. Sequences of the proteins in the ChEMBL27 refer-
ence set were retrieved from the ChEMBL27 database. The sequences were then searched
against the library of Pfam hidden Markov models (Pfam-A.hmm; version 33.1) using the
“Pfam_scan.pl” script (version 1.6) with default parameters and the “-clan_overlap” option
to get a family classification (Figure 1G). All proteins for which no automatic assignment
to a Pfam family could be obtained were assigned to a single “dummy” family. This is
to account for the fact that, while these proteins were not assigned to a family by Pfam,
and are thus different from the ones assigned to Pfam families, it is unclear how similar or
different the unassigned proteins are to each other. Therefore, a conservative approach is
to assign them to the same family and assume that they are similar. Bioactivity records,
through their targets, were then labeled with a Pfam family.

To calculate the novelty score for the Pfam families, the dates when the bioactivity
records were recorded needed to be retrieved. Wherever possible, these dates were re-
trieved from the ChEMBL27 database by linking an activity (using the activity_id) to its
data source (the src.src_id and the docs.docs_id fields) and retrieving the year of publica-
tion (the docs.year field). For 343,389 of the bioactivity records, there was no date recorded
in the ChEMBL27 database, and an attempt was made to find the relevant data when
the primary data source (as recorded in the src_id field in ChEMBL database) was the
PubChem Bioassay database [39] using the Assay ID (AID) which is also recorded in the
ChEMBL database. Of the 1,360,528 bioactivity records (records before merging identical
SMILES-target pairs) used for target prediction, 62,734 (i.e., less than 5%) did not have a
date assigned as there was no date information recorded in the ChEMBL database for these
records and these records had primary sources other than PubChem and dates could not
be retrieved.

A novelty score (Equation (1)) for each Pfam family was then calculated. In the case
of 1 of 1214 of the Pfam families where a score cannot be calculated (i.e., because the
denominator could not be calculated due to a lack of dates for the bioactivity records), the
average novelty score (0.71) of the scored families was assigned as the novelty score. The
compounds from the PCC, along with their predicted targets, the target’s Pfam families,
and target novelty scores, were then passed onto a genetic algorithm (Figure 1H) for subset
selection, which was used to select an optimal subset of compounds for the compound
libraries (Figure 1I).

3.7. Genetic Algorithm for Library Generation from the Pool of Candidate Compounds

A genetic algorithm was implemented to optimize the selection of compounds for the
compound libraries from the PCC. In this implementation, an individual is defined as a set
of N (where N = 1000, 5000, 10,000, and 15,000) compounds. A population, composed of M
individuals, then evolves over generations to produce an optimal population containing
the optimal (most fit) individual which is the selected library.

3.7.1. Calculation of the Fitness Function

The fitness of an individual, that is a set of compounds, is determined by the diversity
and the novelty of the targets with which the compounds are predicted to interact. The
fitness score (Equation (2)) of an individual was calculated to capture the properties we
aimed to maximize in the set selection: we want to optimize for a set of compounds that
are predicted to interact with a diverse set of targets. To capture this, the score includes a
summation of the novelty of each individual Pfam family represented in the set.

When a Pfam family is represented multiple times in the predicted targets, the prob-
ability of a true interaction between the set of compounds and that family increases.
Therefore, to capture the value of repeat predictions while still prioritizing diversity, the
fitness function takes the form of a geometric progression (Equation (2)). This allows the
score to increase with repeat family representation, however, the effect of the same family
represented reduces with additional repeats. The scale factor of the geometric progression



Int. J. Mol. Sci. 2021, 22, 7773 17 of 20

was set to the Pfam novelty score while the common ratio (r) was set to 0.99, as at this value
of r a slow plateau in the sum is observed (Figure 10). The fitness score (Equation (2)) for
an individual compound set is, therefore, the sum of the geometric sums of each of the
Pfam families (where the count is the number of compounds predicted to interact with
the family and the scale factor is the family’s novelty score), divided by the number of
compounds in the individual.
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Figure 10. Sum of a geometric progression (S =
scale factor(1−rcount)

(1−r) ) with a scale factor of 1 and
varying values of the common ratio (r) versus the count. When used to calculate the fitness score, a
sum of a geometric progression is calculated for each Pfam family (where the novelty score is set
as the scale factor, and the number of times the Pfam family is predicted is set as the count) and
summed to get the fitness score (Equation (2)).

3.7.2. Library Optimization Procedure

The optimization of a compound library (Figure 11) begins by generating M (the
population size) individuals, where each individual (i.e., compound set) is composed of N
(the size of the compound library that is being generated) compounds randomly selected
from the PCC. The fitness of each of the individuals in the population is calculated.
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One third of the population size is composed of selected parents from the current
generation. The fittest individuals of the current generation are selected as the parents.
The remaining individuals (i.e., two-thirds of the population size) are children produced
by mating the parents. Each pair of parents produces four children by passing on half of
their compounds (as determined by a single point crossover in the middle of each parent)
to each child. When a child inherits the same compound from both parents, one of the
occurrences of the compound is mutated to a randomly selected compound ensuring that
the new compound which is selected does not already appear in the child. Children are
also mutated, to add variation, by randomly replacing 10% of the compounds with new
compounds from the PCC. The parents and children are then pooled together to form the
population of size M for the next generation whose fitness is evaluated. This process is
repeated over 300 generations and the fittest individual at the end of the evolution is chosen
as the optimal individual for a compound library of size N compounds. The parameters of
N and M are detailed in Table 4.

Table 4. The population size parameters used in the genetic algorithms to optimize a library of size
N (N = 1000, 5000, 10,000, and 15,000).

Library Size/Size of the Individual (N) Population Size (M)

1000 100, 500, 1000
5000 500, 1000, 5000

10,000 1000
15,000 1500

4. Conclusions

In this study, we present a multi-step, computational approach for the design of
small to medium-sized compound libraries that have a maximized likelihood of producing
genuine hits in biological assays for an arbitrary target of interest. The approach takes
multiple types of properties into account: drug-likeness, predicted bioactivities, biological
space coverage, and target novelty. The hits identified by screening these compound
libraries could serve as valuable tool compounds in biochemical and cell research, and
some of them may also prove to be valid starting points for the development of drugs.

We have found that for all sizes of the compound libraries we generated (i.e., 1000,
5000, 10,000, and 15,000 compounds) the genetic algorithm improved the quality of the
compound sets, with the individual libraries’ fitnesses improving up to 58%. The genetic
algorithm was initially run with populations of 10% of the size of the library. As the smaller
libraries (consisting of 1000 or 5000 compounds) benefitted the most from the optimization,
further evolutions with larger population sizes were run, increasing the fitness of these
libraries even more. In all cases, the objective fitness values, generated from the fitness
function, increased through the course of evolution.

Multiple properties of the libraries were analyzed: number of Murcko scaffolds, the
number of Taylor-Butina clusters, number of predicted targets, number of Pfam families
of the predicted targets, number of predicted bioactivities, and the novelty scores of the
predicted targets. These properties were modulated differently during the course of the
optimizations to produce fitter libraries. In some cases, more diverse compound sets (as
measured by a change in the number of Murcko scaffolds) were selected for the libraries
which resulted in activity on a more diverse set of predicted targets. In other cases,
compounds with more promiscuous scaffolds were selected which increased the number of
targets they were predicted to be bioactive on. The modulation of these multiple objectives
to produce better libraries highlights the appropriateness of our fitness function.

The benefits of utilizing target prediction and a genetic algorithm to optimize com-
pound libraries are best seen when comparing fitness values of the optimized compound
libraries with that of the baseline libraries (which do not account for predicted targets
and have not been evolved). The largest improvement in fitness (+184%) was observed
for the 1000-compound library generated with a population size of 1000, while the small-
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est improvement in fitness (+60%) was observed for the 15,000-compound library gen-
erated with a population size of 1500. The best of the optimized compound libraries
prepared in this work are available for download as a dataset bundle (“BonMOLière”)
from https://doi.org/10.5281/zenodo.5114733 (accessed on 19 July 2021).
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Chapter 7

Concluding discussions and future

prospects

In-silico tools that can aid the identification of the macromolecular targets of small or-

ganic compounds are important to early-stage drug discovery and drug re-purposing

efforts. As such, the development of target prediction methods is an area of active re-

search. In this thesis, we analyzed the various strategies employed to evaluate target

prediction methods and proposed validation strategies to overcome the limitations of

only measuring and relying on generalized performance measures (P1). We developed

and thoroughly evaluated two ligand-based target prediction methods: a similarity-based

approach and a binary relevance random forest based (ML) approach (P2). These meth-

ods utilize the maximum amount of data available to cover as much of the target space

as is possible. Finally, we applied target prediction and a genetic algorithm to curate a

selection of compounds for small to medium-sized compound libraries for experimental

screening (P3). We enriched (with respect to randomly selecting compounds for screen-

ing) these libraries with biologically diverse, bioactive compounds so as to maximize the

likelihood of finding a hit for a wide range of targets. The findings presented in this thesis

contribute to an area of active research to develop and apply in silico methods to predict

the bioactivity of small organic compounds on biomacromolecular targets. Elucidating

the interactions between compounds and targets is key to understanding the mode of

action of drugs, drug repurposing, predicting side effects of possible drug candidates etc.

making the process of drug development more efficient and data driven.
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7.1 Evaluating target prediction methods

Target prediction methods have been evaluated in a variety of ways with various degrees

of rigor. We analyzed existing strategies and developed new guidelines on validation

strategies for target prediction methods. In an ideal scenario, a newly developed tar-

get prediction method would be evaluated using large-scale prospective testing. That

is, a large volume of predicted bioactivities would be prospectively validated through

experiments. However, as large-scale prospective validation is prohibitively expensive,

developers of target prediction methods rely on retrospective validation. With retro-

spective validation, existing data on the bioactivity of compounds on targets are used as

test data to evaluate the performance of a method.

There are multiple ways to utilize data to train and test a model. Models should always

have performance reported based on truly external test data. That is, these data have

not been used in model training in any way. To maximize the use of data and get a better

sense of the generalized performance of a model, we argue that nested cross-validation

should be used whenever possible. Partitioning the data in this way makes maximum

use of the available data while still allowing for external data for model evaluation. With

nested cross-validation, an inner-loop with partitioned data is used to evaluate the best

hyperparameters for a model. Meanwhile, the outer-loop contains data which did not

influence the hyperparameter selection, and is therefore external to model training, and

used to measure the performance of the model. These data partitioning schemes must

take computational costs into account. When a target prediction method is made up

of a single model, for example, nested cross-validation repeated multiple times would

give a good sense of the method’s performance. This may not be feasible when a target

prediction method is composed of multiple models. In all cases however, a large volume

of truly external data should be used to evaluate the model’s performance.

The performance of target prediction methods is often quantified using classic ML met-

rics. These metrics are derived from a confusion matrix of all the compounds in a test set

for a model. While averaged performance metrics are indeed valuable and do measure

the overall performance, they leave the user unable to decipher what the performance of

the model may be with respect to their specific compound of interest. In this work, we

argued that this leaves a crucial question about how the model will perform on individ-

ual compounds unanswered. That is, the performance with respect to the applicability

domain of the model is not well understood. We developed guidelines to validate tar-

get prediction approaches. We advocated for performance measures to be disaggregated

by how similar the test compounds are to the training compounds. This disaggrega-

tion allows for a more nuanced understanding of the performance and provides and an
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easy-to-understand measure of the applicability domain. Disaggregating performance by

similarity does however have to be balanced with the number of samples available per

bin. Selecting a bin size which is too small may result with too few test data points in

bins making the results meaningless, while a large bin size reduces the nuance sought.

It is therefore important to ensure that the test data is diverse, and is reflective of the

real world scenario, ensuring that a wide spectrum of compounds are tested.

7.2 Development and validation of target

prediction methods

A key component of a generalized target prediction method, which is not focused on a

particular target family for example, is having a broad target coverage. Ligand-based

target prediction methods offer a broader target coverage compared to structure-based

methods, as they do not rely on 3D structure of targets. Nevertheless, a limiting factor in

the coverage of a ligand-based target prediction method is the amount of bioactivity data

available for different targets. We developed and thoroughly validated the performance

of two target prediction approaches: a similarity-based approach and a random forest

binary relevance based (ML) approach. Both approaches were designed to maximize the

coverage of the target space, that is, be able to make predictions for as many targets as

possible.

Notably, for the first time, the performances of the approaches were tested under three

test scenarios: a standard testing scenario, a standard time-split testing scenario and

a close-to-real-world testing scenario. The performances were also measured with two

metrics: success rates and recovery rates. The metrics and scenarios are described in

detail in Section 3.5. As the success and recovery rates, for both the similarity-based

and ML approach showed identical trends, this discussion focuses on the success rates

to convey the differences the the performance of the two approaches. The performances

were desegregated by the similarity of the test queries to their targets’ ligand sets. High-

similarity queries had a median TC between 0.66 and 1 to the most similar ligand(s) of

the query’s targets, medium-similarity queries had a median TC between 0.33 and 0.66,

and low-similarity queries had a median TC between 0 and 0.33.

The knowledge base for the target prediction approaches, extracted from the ChEMBL

database (version 24) and pre-processed, consisted of 492,282 compounds, 4,617 targets

and 914,057 measured bioactivities. The bioactivities were labeled as “active” when the

activity value of the compound-target pair was 10,000 nM or less, and as “inactive” when

the activity value was 20,000 nM or more. A target needed just one active bioactivity
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recorded in the knowledge base to be represented by the similarity-based approach,

leading to a coverage of 4239 proteins. The ML approach was built with individual

random forest models (one model per target) each of which classified a test compound as

“active” or “inactive”. The random forest models were therefore built using both active

and inactive bioactivity records. A model was built for all targets with at least 25 active

bioactivity records, resulting in a target coverage of 1,798 proteins.

The similarity-based approach performed just as well as this ML approach. Under the

standard testing scenario, the similarity-based approach identified a known target for

86%, 88% and 93% of all queries within the top-3, top-5 and top-15 ranked targets. In

fact, the approach ranked a known target for 95% of all high-similarity queries at the

top position. Medium-similarity queries had success rates between 55% for the queries

among the top-3 to 82% of the queries in among the top-15 ranked targets. There

was a further drop in success rates for low-similarity queries, with targets ranked for

10% of the queries among the top-3 to 18% among the top-15. Under the time-split

scenario, the approach had overall success rates from 58%, among the top-3 targets,

to 69%, among the top-15 targets, which is approximately 25 to 30 percentage points

lower than the standard testing scenario. The difference in the overall success rates

is due to the fact that 50% of ChEMBL 24 test data had a median TC greater than

0.8, which dropped down to 0.4 for the ChEMBL 25 test data used in the time-split

scenario. That is, the ChEMBL25 test data is more different to the knowledge base

than the ChEMBL24 test data. The success rates under the time-split scenario are

comparable with those obtained under the standard testing scenarios for queries with

the same molecular similarity. The time-split scenario may, therefore, not be essential

if performances are desegregated by molecular similarity. Under the close-to-real-world

testing scenario, 4% of the interactions introduced with version 25 of the ChEMBL

database were not represented by the knowledge base. As a result, the success rate

performance dropped by 2 to 3 percentage points over the standard time-split scenario.

Under the standard testing scenario, the ML approach ranked a target for 82%, 86%

and 91% of compounds among the top-3, top-5 and top-15 compounds respectively.

These are three percentage points lower than the similarity-based approach. With the

ML approach, only 90% of the high-similarity compounds had a target ranked in the

top position vs. 95% for the similarity-based approach. The performance of the ML

approach on medium-similarity queries was up to 7 percentage points lower than the

similarity-based approach (49% and 75% for the top-3 and top-15 ranks respectively).

The low-similarity queries had success rates between 10% (top-3) to 28% (top-15), the

latter of which is marginally better than the similarity-based approach (18% of the low-

similarity queries had a target in the top-15). Just like the similarity-based approach,

the ML approach had a 25 to 30 point percentage drop in performance (53% for the
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top-3 to 65% for the top-5) under the time-split scenario compared to the standard

testing scenario. The improved performance of the ML on low-similarity queries for the

top-15 targets was not observed with the time-split validation scenario and is therefore

considered to be an artifact of the data and not a generalized trend. Under the close-to-

real-world testing scenario, 11% of the interactions were not represented in the knowledge

base of the ML approach (as opposed to 4% for the similarity-based approach). This

resulted in a further 4 to 6 percentage point drop in performance compared to the

standard testing scenario.

The similarity-based approach shows better performance than this binary relevance ML

approach, with a target coverage that is twice as large. This is likely due to the fact that

the binary relevance decomposition of a multi-label problem does not take label depen-

dencies into account [122] and the relationship between the targets is not well accounted

for. The similarities across different targets’ ligand sets, which was used to rank targets

for the similarity based method, provides a better way to rank targets compared to the

prediction probabilities of belonging to the active class from the random forest models,

for the ML approach. The active class probabilities may be more comparable once they

are calibrated using scaling techniques, such as Venn–ABERS predictors [123]. How-

ever these techniques are more data hungry as they require additional data to be set

aside for calibration sets, further reducing the target scope of the approach. As more

data becomes available, this ML approach may be improved by scaling the probabilities

produced by individual models as well as improving the performance of the individual

models themselves. An increase in quality bioactivity data would also allow for the de-

velopment of multi-task prediction models with a wide target coverage (e.g. a recent

multi-task target prediction classifier was built to predict bioactivity on 616 ChEMBL

targets [124–126]). It is will be crucial to benchmark these multitask models and com-

pare their performance and scope to a similarity-based approach. These benchmarking

efforts will push the development of state-of-the-art target prediction methods.

7.3 Applying target prediction to curate screening

libraries

Having demonstrated the value of the similarity-based target prediction approach, both

in terms of the target scope and prediction power, we applied the similarity-based ap-

proach to curate compound sets for screening libraries. Screening libraries of compounds,

via bench based screens (cell-based or biochemical screens) and/or virtual screening cam-

paigns are routine in early drug discovery projects. General screening libraries are de-
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signed to be chemically and/or biologically diverse to increase the chances of finding

a hit among the set of compounds for a any of a wide range of targets. The success

of screening libraries varies depending on the target of interest and the composition of

the library. Small to medium-sized general purpose libraries, which contain high quality

compounds, have a higher-than-average change of producing a hit on an arbitrary com-

pound of interest, are particularly valuable to resource constrained environments such

as small academic labs. Hits from these libraries could be used as starting tool com-

pounds in the drug development process. We applied a similarity based target prediction

approach followed by a genetic algorithm to optimize small to medium-sized general pur-

pose libraries.

The process of generating the screening libraries began by gathering a pool of candidate

compounds (PCC). Compounds deemed to be unreactive are retrieved from the ZINC20

[117] web service and were passed through a series of physicochemical filters to bias

the pool towards compounds with drug-like properties. The targets for the retrieved

compounds, which passed through the filters, were predicted using a similarity based

approach and a processed knowledge base from the ChEMBL database (version 27).

This resulted in the PCC of over 1.3 million candidate compounds from which the small

to medium-sized (1,000, 5,000, 10,000, and 15,000 compounds) libraries were generated.

As the library sizes were much smaller than the number of candidate compounds, the

number of possible combinations of compounds which could form the library was too

large to enumerate to find the optimum combination. As this is a subset selection

problem, it is an optimization problem. As such, a genetic algorithm was utilized, to

select an optimal combination of compounds for the libraries. In this implementation,

a gene was a compound, an individual was a set of compounds, and a population was a

collection of compound sets. A population was evolved for 300 generations to generate

fitter individuals and at the end of the evolution the fittest individual (i.e. compound

set) was selected as the compound library.

Defining what “optimal” is and how to measure the fitness of a set of compounds for

the library is key to curating a library. We aimed to compile a library which contained

compounds which have a high likelihood of interacting with a diverse range of targets

with a bias towards “newer” targets of interest. To capture the diversity of the targets,

the Pfam families of the targets were retrieved. Pfam is a database of evolutionary

related proteins (families) which are represented by hidden Markov models [127, 128].

The diversity of the predicted targets for a set of compounds was measured by the number

of different Pfam families linked to compounds by their predicted biological activity. To

quantify the “newness” of a target, a novelty score was calculated for each Pfam family

by looking at the dates (as recorded in ChEMBL or PubChem when dates were not

available in ChEMBL) of the bioactivities of the targets that are labeled with a Pfam
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family. Therefore, by getting all the unique Pfam families represented by a compound

library, and summing the novelty scores of the Pfam families represented, a fitness score

of an individual could be calculated. A higher fitness score would therefore signify a

library which has better balanced the following:

1. a compound library which is enriched with bioactive compounds as a whole

2. a compound library which is enriched with compounds active on proteins repre-

senting more Pfam families (diversity)

3. a compound library which is enriched with compounds active on newer targets (as

the novelty score is higher for newer targets)

As a whole, the library is more likely to be active on a member of a Pfam family

if that family has been predicted multiple times within the library through different

compounds. Therefore the fitness function was not a simple sum of the novelty scores of

the unique Pfam families predicted. Rather, it was formulated as a sum of the geometric

progressions where the scale factor is the novelty score of the Pfam family and the count

is the number of times the Pfam family has been predicted for a set of compounds. This

allowed for the benefit of the repeat predictions to be accounted for while still maximizing

the diversity and trying to bias towards newer targets/Pfam families. We used the sum

of the geometric progressions, as opposed to a simple sum of all the Pfam novelty scores

including the repeats, as the weight of the repeated Pfams to decreased as the repeat

count increased so as to still prioritize diversity.

This approach, using target prediction to compile the PCC followed by a genetic algo-

rithm to optimize the library, lead to improvements for all library sizes when compared

to randomly selecting compounds that only passed through the physicochemical filters

(known as baseline libraries). The smaller the library size, the greater the improvement

in fitness scores when compared to the baseline libraries. The largest improvement in

fitness was observed for the 1,000-compound library (+184%) while the smallest im-

provement was for the 15,000-compound library (+60%).

When looking at the change in fitness through the course of an evolution, again, the

smaller the library size, the greater the improvements. When the genetic algorithm

was run with population sizes of 10% of the size of the library, the fitness improved

by +34%, +20%, +17% and +14% for the 1,000, 5,000, 10,000 and 15,000-compound

library respectively. Additional evolutionary runs were carried out for the 1,000 and

5,000-compound libraries, increasing the population size to further improve the fitness

of the libraries. The 1,000-compound library had an improvement of +58% in the fitness

score, during the course of the evolution, when generated with a population of 1,000
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individuals. Similarly the 5,000-compound library had an improvement of +41% in the

fitness score when generated with a population of 5,000 individuals.

Beyond the objective fitness function values of the libraries, the change in the number

of Murcko scaffolds, the number of Taylor-Butina clusters [129, 130], number of pre-

dicted targets, number of Pfam families of the predicted targets, number of predicted

bioactivities, and the novelty scores of the predicted targets were analyzed. These five

properties were modulated differently during the course of the different evolutionary runs

to produce fitter libraries. In some cases, more diverse compound sets (as measured by a

change in the number of Murcko scaffolds) were selected for the libraries which resulted

in activity on a more diverse set of predicted targets. In other cases, compounds with

more promiscuous scaffolds were selected which increased the number of targets they

are predicted to be active on. In all cases, every compound within a library was from

a different Taylor-Butina cluster (clustered with a TC threshold of 0.4) which speaks to

chemical space diversity of the libraries. The modulation of these multiple objectives to

produce better libraries highlights the appropriateness of our fitness function and the use

of the genetic algorithm for this optimization task. The optimized compound libraries,

BonMOLière, of the different sizes have been made available to the community.

7.4 Concluding remarks

In this thesis we present the development, validation and application of large-scale tar-

get prediction methods. Understanding the interactions between compounds and their

biomolecular targets gives insights into the mode of action of compounds. This allows

for a deeper understanding on what targets a compound modulates to achieve an effect,

including the side effects it may elicit. Target prediction is particularly useful to drug

repositioning efforts, where the compounds which have gone through the thorough and

costly process of safety trials are approved to treat alternative ailments. Predicting the

biomolecular targets of small molecules is a key tool in early drug discovery, the focus

of this thesis, as well other chemical industries such as cosmetics and agrochemicals.

We developed and thoroughly validated two target prediction approaches: a similarity-

based approach and a ML approach. These approaches were designed to fully maximize

the use of the available data and to develop target prediction methods with a large

target coverage. We showed that the similarity-based approach performed just as well as

the binary-relevance random forest based (ML) approach, while having a target coverage

which was more than twice the size. The development of methods in the exciting domain

of target prediction will continue to be fueled as the amount of bioactivity data for model
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building increases. The possibility of developing a large-scale target prediction method

which uses well calibrated ML models (such as via conformal prediction models, scaling

methods for binary relevance approaches or a multitask model with a wide target scope)

becomes more of a reality with more data. In our opinion it is worthwhile to further

develop machine learning models for target prediction which generalize better than a

similarity-based approach to increase the performance for the prediction of the targets

of low-similarity queries. The development of well calibrated ML models would allow for

the development of hybrid target prediction approaches, which capitalize on accuracy

of similarity-based approaches for high-similarity queries and would use well calibrated

and generalized ML approaches for low-similarity queries.

Having evaluated the performance of two target prediction approaches, we applied the

similarity-based target prediction approach to curate general purpose screening libraries

which have a higher-than-average chance of producing hits on an arbitrary target of

interest. Readily purchasable compounds with predicted targets form the PCC from

which compounds are selected for screening libraries. We aimed to produce libraries

that were enriched with compounds that are likely to be bioactive on diverse targets.

As this selection is a subset selection problem, a genetic algorithm is used to optimize

the selection. Applying target prediction followed by a genetic algorithm for compound

selection lead to improvements ranging from +60% (for a library of 15,000 compounds)

to +184% (for a library of 1,000 compounds) in the the fitness of the libraries. The op-

timized libraries have been made available to the community. It would be valuable to

run large-scale prospective validations using these enriched libraries which would test

the performance of the target prediction and in-turn demonstrate the value of utilizing

target prediction to enrich screening libraries. As a result of wanting to be agnostic to

chemical vendors, the BonMOLière data set was optimized with compounds that may

be sourced from any of the 150 companies featured on the ZINC20 database. Repeating

this study from popular vendors, such as MolPort [131] or Enamine [132], would provide

the community with a compound library which could be more easily sourced. Of course,

over time vendor stocks change and any compound library will, over time, become out-

dated. An easily accessible tool which allows a user to upload a user defined super set

of compounds on which target prediction followed by the genetic algorithm subset selec-

tion could be conducted, returning an optimized library to a user, would be a valuable

tool to the community. Such a tool would be especially useful for small academic labs

for whom running large screens is prohibitive.

Over the course of this thesis, we developed two target prediction approaches, which

maximized the use of available data to ensure a large coverage of the target space. These

approaches were thoroughly validated and showed that the similarity-based approach

performs just as well as the binary relevance random forest based ML approach, while
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covering a much larger target space. There is therefore scope to build better ML models

for target prediction while still ensuring that a wide target scope is maintained. We

have also demonstrated the value of applying target prediction on a large-scale to curate

screening libraries, and provided these enriched libraries to the community. We hope

that the insights from this work will be used to push the field of target prediction, and

therefore data driven drug design, further.
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Acronyms

2D two-dimensional.

3D three-dimensional.

ADME absorption, distribution, metabolism and elimination/excretion.

AI artificial intelligence.

ATC Anatomical Therapeutic Codes.

CADD computer-aided drug discovery.

ECFP Extended Connectivity Fingerprint.

FN false negative.

FP false positive.

MCC Matthews correlation coefficient.

MCP Mondrian conformal predictor.

ML machine learning.

MQN Molecular Quantum Numbers.

NMR nuclear magnetic resonance.

PAINS pan assay interference compounds.

PCC pool of candidate compounds.

QSAR quantitative structure-activity relationship.

SMARTS SMILES ARbitrary Target Specification.
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SMILES Simplified Molecular-Input Line-Entry System.

TC Tanimoto coefficient.

TN true negative.

TP true positive.

Xfp Shape and Pharmacophore Fingerprint.
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The data of success and recovery rates presented in the graphs of the paper are reported below. 

The percentage indicates the success and recovery rates, while the numbers in the brackets show how 
many queries (success rate) or bioactivities (recovery rate) within the TC interval had a hit. 

Similarity-based approach 

Standard testing scenario with external data 

Table S1. Success rates under the standard testing scenario with external data by the similarity approach 

median 

maxTC 

[0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 97.85% 

(17560/ 
17946) 

88.29% 

(15486/ 
17539) 

32.94% 

(1973/ 
5989) 

6.98% 

(208/ 
2982) 

5.19% 

(8/ 154) 

78.98% 

(35235/ 
44610) 

top-3 99.74% 

(17899/ 

17946) 

96.61% 

(16945/ 

17539) 

50.63% 

(3032/ 

5989) 

12.17% 

(363/ 

2982) 

7.79% 

(12/ 

154) 

85.75% 

(38251/ 

44610) 

top-5 99.96% 

(17939/ 

17946) 

98.66% 

(17304/ 

17539) 

60.96% 

(3651/ 

5989) 

15.19% 

(453/ 

2982) 

8.44% 

(13/ 

154) 

88.23% 

(39360/ 

44610) 

top-10 99.98% 

(17943/ 

17946) 

99.70% 

(17486/ 

17539) 

77.63% 

(4649/ 

5989) 

21.09% 

(629/ 

2982) 

9.09% 

(14/ 

154) 

91.28% 

(40721/ 

44610) 

top-15 99.98% 

(17943/ 

17946) 

99.88% 

(17518/ 

17539) 

85.72% 

(5134/ 

5989) 

27.80% 

(829/ 

2982) 

10.39% 

(16/ 

154) 

92.89% 

(41440/ 

44610) 

 
 



 

Table S2. Recovery rates under the standard testing scenario with external data by the similarity approach 

maxTC [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 0.2) overall 

top-1 67.82% 

(18368/ 
27084) 

55.34% 

(15480/ 
27972) 

12.65% 

(1341/ 
10603) 

0.66% 

(45/ 6767) 

0.15% 

(1/ 677) 

48.20% 

(35235/ 
73103) 

top-3 94.73% 

(25658/ 

27084) 

85.51% 

(23919/ 

27972) 

29.05% 

(3080/ 

10603) 

1.86% 

(126/ 

6767) 

0.15% 

(1/ 677) 

72.20% 

(52784/ 

73103) 

top-5 98.91% 

(26788/ 

27084) 

93.59% 

(26179/ 

27972) 

40.48% 

(4292/ 

10603) 

3.16% 

(214/ 

6767) 

0.30% 

(2/ 677) 

78.62% 

(57475/ 

73103) 

top-10 99.87% 
(27049/ 

27084) 

98.39% 
(27523/ 

27972) 

60.95% 
(6463/ 

10603) 

6.34% 
(429/ 

6767) 

0.44% 
(3/ 677) 

84.08% 
(61467/ 

73103) 

top-15 99.96% 

(27074/ 

27084) 

99.32% 

(27782/ 

27972) 

72.76% 

(7715/ 

10603) 

10.64% 

(720/ 

6767) 

0.59% 

(4/ 677) 

86.58% 

(63295/ 

73103) 

 



 

Standard time-split and close-to-real world testing scenarios 

Table S3. Success rates under the time-split and close-to-real-world testing scenarios by the similarity approach 

 time-split scenario close-to-
real-world 

scenario 
median 

maxTC 

[0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 0.2) overall 

top-1 95.59% 

(1518/ 1588) 

88.61% 

(4147/ 

4680) 

57.81% 

(3055/ 

5285) 

8.68% 

(565/ 

6510) 

0.69% 

(8/ 1160) 

48.34% 

(9293/ 

19223) 

46.32% 

(9293/ 20061) 

top-3 98.74% 

(1568/ 1588) 

95.62% 

(4475/ 

4680) 

76.31% 

(4033/ 

5285) 

15.44% 

(1005/ 

6510) 

1.03% 

(12/ 

1160) 

57.71% 

(11093/ 

19223) 

55.30% 

(11093/ 

20061) 

top-5 99.75% 

(1584/ 1588) 

97.37% 

(4557/ 

4680) 

82.65% 

(4368/ 

5285) 

19.43% 

(1265/ 

6510) 

1.38% 

(16/ 

1160) 

61.33% 

(11790/ 

19223) 

58.77% 

(11790/ 

20061) 

top-10 99.87% 

(1586/ 1588) 

99.08% 

(4637/ 

4680) 

90.26% 

(4770/ 

5285) 

26.31% 

(1713/ 

6510) 

1.81% 

(21/ 

1160) 

66.21% 

(12727/ 

19223) 

63.44% 

(12727/ 

20061) 

top-15 99.87% 
(1586/ 1588) 

99.62% 
(4662/ 

4680) 

93.72% 
(4953/ 

5285) 

31.08% 
(2023/ 

6510) 

1.98% 
(23/ 

1160) 

68.91% 
(13247/ 

19223) 

66.03% 
(13247/ 

20061) 

 



 

Table S4. Recovery rates under the time-split and close-to-real-world testing scenarios with by the similarity approach 

 time-split scenario close-to-real-

world 

scenario 
maxTC [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 70.10% 

(1611/ 
2298) 

62.63% 

(4426/ 
7067) 

35.74% 

(2983/ 
8346) 

2.61% 

(273/ 
10462) 

0.00% 

(0/ 
2029) 

30.77% 

(9293/ 
30202) 

29.50% (9293/ 

31498) 

top-3 94.04% 

(2161/ 

2298) 

88.67% 

(6266/ 

7067) 

61.71% 

(5150/ 

8346) 

6.88% 

(720/ 

10462) 

0.00% 

(0/ 

2029) 

47.34% 

(14297/ 

30202) 

45.39% 

(14297/ 

31498) 

top-5 98.69% 

(2268/ 

2298) 

95.39% 

(6741/ 

7067) 

72.12% 

(6019/ 

8346) 

10.31% 

(1079/ 

10462) 

0.00% 

(0/ 

2029) 

53.33% 

(16107/ 

30202) 

51.14% 

(16107/ 

31498) 

top-10 99.70% 

(2291/ 

2298) 

98.40% 

(6954/ 

7067) 

85.15% 

(7107/ 

8346) 

16.93% 

(1771/ 

10462) 

0.00% 

(0/ 

2029) 

60.01% 

(18123/ 

30202) 

57.54% 

(18123/ 

31498) 

top-15 99.74% 

(2292/ 

2298) 

99.19% 

(7010/ 

7067) 

90.47% 

(7551/ 

8346) 

21.62% 

(2262/ 

10462) 

0.00% 

(0/ 

2029) 

63.29% 

(19115/ 

30202) 

60.69% 

(19115/ 

31498) 

 



 

Similarity-based approach - reduced scope 

Standard testing scenario with external data 

Table S5. Success rates under the standard testing scenario with external data by the similarity approach with a reduced 
target scope 

median 

maxTC 

[0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 97.81% 

(17307/ 
17695) 

88.21% 

(15177/ 
17205) 

32.28% 

(1904/ 
5899) 

6.43% 

(188/ 
2923) 

4.42% 

(5/ 113) 

78.89% 

(34581/ 
43835) 

top-3 99.76% 

(17652/ 

17695) 

96.65% 

(16629/ 

17205) 

50.18% 

(2960/ 

5899) 

11.56% 

(338/ 

2923) 

7.08% 

(8/ 113) 

85.75% 

(37587/ 

43835) 

top-5 99.96% 

(17688/ 

17695) 

98.70% 

(16981/ 

17205) 

60.54% 

(3571/ 

5899) 

14.64% 

(428/ 

2923) 

7.96% 

(9/ 113) 

88.23% 

(38677/ 

43835) 

top-10 99.98% 

(17692/ 

17695) 

99.72% 

(17157/ 

17205) 

77.37% 

(4564/ 

5899) 

20.56% 

(601/ 

2923) 

7.96% 

(9/ 113) 

91.30% 

(40023/ 

43835) 

top-15 99.98% 

(17692/ 

17695) 

99.88% 

(17185/ 

17205) 

85.61% 

(5050/ 

5899) 

27.10% 

(792/ 

2923) 

8.85% 

(10/ 

113) 

92.91% 

(40729/ 

43835) 

 



 

Table S6. Recovery rates under the standard testing scenario with external data by the similarity approach with a 
reduced target scope 

maxTC [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 68.08% 

(18074/ 

26550) 

55.61% 

(15174/ 

27287) 

12.59% 

(1292/ 

10265) 

0.61% 

(40/ 6528) 

0.23% 

(1/ 433) 

48.66% 

(34581/ 

71063) 

top-3 94.92% 
(25201/ 

26550) 

85.72% 
(23391/ 

27287) 

29.00% 
(2977/ 

10265) 

1.81% 
(118/ 

6528) 

0.23% 
(1/ 433) 

72.74% 
(51688/ 

71063) 

top-5 98.96% 

(26275/ 
26550) 

93.73% 

(25576/ 
27287) 

40.52% 

(4159/ 
10265) 

3.12% 

(204/ 
6528) 

0.46% 

(2/ 433) 

79.11% 

(56216/ 
71063) 

top-10 99.87% 

(26516/ 

26550) 

98.48% 

(26872/ 

27287) 

61.27% 

(6289/ 

10265) 

6.31% 

(412/ 

6528) 

0.69% 

(3/ 433) 

84.56% 

(60092/ 

71063) 

top-15 99.96% 

(26540/ 

26550) 

99.37% 

(27114/ 

27287) 

73.27% 

(7521/ 

10265) 

10.65% 

(695/ 

6528) 

0.92% 

(4/ 433) 

87.07% 

(61874/ 

71063) 

 



 

Standard time-split and close-to-real world testing scenarios 

Table S7. Success rates under the time-split and close-to-real-world testing scenarios by the similarity approach with a 
reduced target scope 

 time-split scenario close-to-

real-world 

scenario 
median 

maxTC 

[0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 95.84% 

(1496/ 1561) 

88.91% 

(4122/ 

4636) 

58.04% 

(2971/ 

5119) 

8.51% 

(532/ 

6251) 

0.70% 

(5/ 716) 

49.92% 

(9126/ 

18283) 

45.49% 

(9126/ 

20061) 

top-3 98.78% 

(1542/ 1561) 

96.23% 

(4461/ 

4636) 

76.75% 

(3929/ 

5119) 

15.37% 

(961/ 

6251) 

0.84% 

(6/ 716) 

59.61% 

(10899/ 

18283) 

54.33% 

(10899/ 

20061) 

top-5 99.74% 

(1557/ 1561) 

97.58% 

(4524/ 

4636) 

82.77% 

(4237/ 

5119) 

19.53% 

(1221/ 

6251) 

1.54% 

(11/ 

716) 

63.17% 

(11550/ 

18283) 

57.57% 

(11550/ 

20061) 

top-10 99.87% 
(1559/ 1561) 

99.29% 
(4603/ 

4636) 

90.56% 
(4636/ 

5119) 

26.25% 
(1641/ 

6251) 

1.96% 
(14/ 

716) 

68.11% 
(12453/ 

18283) 

62.08% 
(12453/ 

20061) 

top-15 99.87% 

(1559/ 1561) 

99.72% 

(4623/ 
4636) 

94.30% 

(4827/ 
5119) 

31.04% 

(1940/ 
6251) 

2.23% 

(16/ 
716) 

70.91% 

(12965/ 
18283) 

64.63% 

(12965/ 
20061) 

 



 

Table S8. Recovery rates under the time-split and close-to-real-world testing scenarios with by the similarity approach 
with a reduced target scope 

 time-split scenario close-to-

real-world 

scenario 
maxTC [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 71.53% 

(1583/ 

2213) 

63.97% 

(4368/ 

6828) 

36.22% 

(2904/ 

8018) 

2.75% 

(271/ 

9860) 

0.00% 

(0/ 

1198) 

32.46% 

(9126/ 

28117) 

28.97% 

(9126/ 

31498) 

top-3 94.62% 

(2094/ 

2213) 

89.81% 

(6132/ 

6828) 

62.91% 

(5044/ 

8018) 

7.22% 

(712/ 

9860) 

0.00% 

(0/ 

1198) 

49.73% 

(13982/ 

28117) 

44.39% 

(13982/ 

31498) 

top-5 98.78% 

(2186/ 

2213) 

95.88% 

(6547/ 

6828) 

73.15% 

(5865/ 

8018) 

10.87% 

(1072/ 

9860) 

0.00% 

(0/ 

1198) 

55.73% 

(15670/ 

28117) 

49.75% 

(15670/ 

31498) 

top-10 99.77% 

(2208/ 

2213) 

98.68% 

(6738/ 

6828) 

85.88% 

(6886/ 

8018) 

17.58% 

(1733/ 

9860) 

0.00% 

(0/ 

1198) 

62.47% 

(17565/ 

28117) 

55.77% 

(17565/ 

31498) 

top-15 99.77% 
(2208/ 

2213) 

99.36% 
(6784/ 

6828) 

91.16% 
(7309/ 

8018) 

22.28% 
(2197/ 

9860) 

0.00% 
(0/ 

1198) 

65.79% 
(18498/ 

28117) 

58.73% 
(18498/ 

31498) 

 



 

ML approach 

Standard testing scenario with external data 

Table S9. Success rates under the standard testing scenario with external data by the ML approach 

median 

maxTC 

[0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 94.93% 
(16797/ 

17695) 

80.73% 
(13889/ 

17205) 

28.16% 
(1661/ 

5899) 

6.47% 
(189/ 

2923) 

2.65% 
(3/ 113) 

74.23% 
(32539/ 

43835) 

top-3 98.82% 

(17487/ 
17695) 

90.32% 

(15540/ 
17205) 

44.96% 

(2652/ 
5899) 

14.47% 

(423/ 
2923) 

4.42% 

(5/ 113) 

82.37% 

(36107/ 
43835) 

top-5 99.38% 

(17586/ 

17695) 

93.57% 

(16098/ 

17205) 

54.08% 

(3190/ 

5899) 

21.28% 

(622/ 

2923) 

6.19% 

(7/ 113) 

85.55% 

(37503/ 

43835) 

top-10 99.73% 

(17648/ 

17695) 

96.30% 

(16569/ 

17205) 

66.86% 

(3944/ 

5899) 

31.06% 

(908/ 

2923) 

12.39% 

(14/ 

113) 

89.16% 

(39083/ 

43835) 

top-15 99.84% 

(17667/ 

17695) 

97.49% 

(16773/ 

17205) 

74.47% 

(4393/ 

5899) 

37.46% 

(1095/ 

2923) 

15.93% 

(18/ 

113) 

91.13% 

(39946/ 

43835) 

 



 

Table S10. Recovery rates under the standard testing scenario with external data by the ML approach 

maxTC [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 

0.2) 

overall 

top-1 65.62% 

(17423/ 

26550) 

50.49% 

(13777/ 

27287) 

12.06% 

(1238/ 

10265) 

1.53% 

(100/ 

6528) 

0.23% 

(1/ 433) 

45.79% 

(32539/ 

71063) 

top-3 92.63% 

(24594/ 

26550) 

77.73% 

(21209/ 

27287) 

25.54% 

(2622/ 

10265) 

5.02% 

(328/ 

6528) 

0.69% 

(3/ 433) 

68.61% 

(48756/ 

71063) 

top-5 97.65% 
(25927/ 

26550) 

85.82% 
(23418/ 

27287) 

34.60% 
(3552/ 

10265) 

8.53% 
(557/ 

6528) 

1.39% 
(6/ 433) 

75.23% 
(53460/ 

71063) 

top-10 99.30% 

(26364/ 
26550) 

92.33% 

(25193/ 
27287) 

48.76% 

(5005/ 
10265) 

14.81% 

(967/ 
6528) 

3.70% 

(16/ 
433) 

80.98% 

(57545/ 
71063) 

top-15 99.66% 

(26461/ 

26550) 

94.86% 

(25885/ 

27287) 

57.99% 

(5953/ 

10265) 

19.87% 

(1297/ 

6528) 

4.85% 

(21/ 

433) 

83.89% 

(59617/ 

71063) 

 



 

Standard time-split and close-to-real world testing scenarios 

Table S11. Success rates under the time-split and close-to-real-world testing scenarios by the ML approach 

 time-split scenario close-to-

real-world 

scenario 
median 

maxTC 

[0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 0.2) overall 

top-1 90.01% 

(1405/ 1561) 

80.20% 

(3718/ 

4636) 

47.86% 

(2450/ 

5119) 

7.04% 

(440/ 

6251) 

0.42% 

(3/ 716) 

43.84% 

(8016/ 

18283) 

39.96% 

(8016/ 

20061) 

top-3 96.28% 

(1503/ 1561) 

90.55% 

(4198/ 

4636) 

64.43% 

(3298/ 

5119) 

12.01% 

(751/ 

6251) 

0.42% 

(3/ 716) 

53.34% 

(9753/ 

18283) 

48.62% 

(9753/ 

20061) 

top-5 98.40% 

(1536/ 1561) 

93.21% 

(4321/ 

4636) 

70.38% 

(3603/ 

5119) 

15.95% 

(997/ 

6251) 

0.70% 

(5/ 716) 

57.22% 

(10462/ 

18283) 

52.15% 

(10462/ 

20061) 

top-10 99.30% 
(1550/ 1561) 

96.05% 
(4453/ 

4636) 

77.93% 
(3989/ 

5119) 

21.52% 
(1345/ 

6251) 

1.12% 
(8/ 716) 

62.05% 
(11345/ 

18283) 

56.55% 
(11345/ 

20061) 

top-15 99.62% 

(1555/ 1561) 

97.43% 

(4517/ 
4636) 

81.46% 

(4170/ 
5119) 

25.05% 

(1566/ 
6251) 

1.26% 

(9/ 716) 

64.63% 

(11817/ 
18283) 

58.91% 

(11817/ 
20061) 

 



 

Table S12. Recovery rates under the time-split and close-to-real-world testing scenarios with by the ML 
approach 

 time-split scenario close-to-

real-world 

scenario 
maxTC [0.8, 1] [0.6, 0.8) [0.4, 0.6) [0.2, 0.4) [0.0, 0.2) overall 

top-1 67.06% 

(1484/ 
2213) 

57.45% 

(3923/ 
6828) 

29.13% 

(2336/ 
8018) 

2.77% 

(273/ 
9860) 

0.00% 

(0/ 
1198) 

28.51% 

(8016/ 
28117) 

25.45% 

(8016/ 
31498) 

top-3 91.55% 

(2026/ 

2213) 

82.70% 

(5647/ 

6828) 

50.86% 

(4078/ 

8018) 

7.03% 

(693/ 

9860) 

0.00% 

(0/ 

1198) 

44.26% 

(12444/ 

28117) 

39.51% 

(12444/ 

31498) 

top-5 95.39% 

(2111/ 

2213) 

89.22% 

(6092/ 

6828) 

60.50% 

(4851/ 

8018) 

10.75% 

(1060/ 

9860) 

0.00% 

(0/ 

1198) 

50.20% 

(14114/ 

28117) 

44.81% 

(14114/ 

31498) 

top-10 98.73% 

(2185/ 

2213) 

93.85% 

(6408/ 

6828) 

72.11% 

(5782/ 

8018) 

16.33% 

(1610/ 

9860) 

0.08% 

(1/ 

1198) 

56.86% 

(15986/ 

28117) 

50.75% 

(15986/ 

31498) 

top-15 99.14% 

(2194/ 

2213) 

96.28% 

(6574/ 

6828) 

76.93% 

(6168/ 

8018) 

20.23% 

(1995/ 

9860) 

0.17% 

(2/ 

1198) 

60.22% 

(16933/ 

28117) 

53.76% 

(16933/ 

31498) 
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