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ABSTRACT

Drug-target interaction (DTI) prediction is a fundamental step in drug discovery

and genomic research, and contributes to medical treatment. Various computational

methods have been developed to find potential DTIs. Machine learning (ML) has

been currently used for new DTIs identification from existing DTI networks. There

are mainly two ML-based approaches for DTI network prediction: similarity-based

methods and feature-based methods. In this thesis, we propose a feature-based ap-

proach, and firstly use short-linear motifs (SLiMs) as descriptors of protein. Addi-

tionally, chemical substructure fingerprints are used as features of drug. Moreover,

another challenge in this field is the lack of negative data for the training set because

most data which can be found in public databases is interaction samples. Many re-

searchers regard unknown drug-target pairs as non-interaction, which is incorrect,

and may cause serious consequences. To solve this problem, we introduce a strategy

to select reliable negative samples according to the features of positive data. We use

the same benchmark datasets as previous research in order to compare with them.

After trying three classifiers k nearest neighbours (k-NN), Random Forest (RF) and

Support Vector Machine (SVM), we find that the results of k-NN are satisfied but

not as excellent as RF and SVM. Compared with existing approaches using the same

datasets to solve the same problem, our method performs the best under most cir-

cumstance.
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CHAPTER 1

Introduction

Drug research is necessary for treatment of disease. At the molecular level, proteins

are the main targets for drugs. In this case, identification of drug-target interaction

networks is a fundamental step of genomic drug discovery, drug design and phar-

macology, which is also the problem needed to be addressed in this thesis. Because

biochemical experiments in wet lab (aka in vitro methods) spend too much time,

expense and human resources, computational methods (aka in silico methods) have

been developed to predict drug-target interaction on a large scale nowadays.

1.1 Drug-target Interaction Network

Drug can be defined as a compound (molecular entity) that interacts with one or

more molecular targets and effects a change in biological state [18]. Target proteins

refer to bio-molecules (functional modules) of living organisms [3] formed by amino

acid sequences. There are mainly four types of target proteins commonly known in

humans, which are Nuclear Receptors, G-protein Coupled Receptors (GPCRs), Ion

Channels, and Enzymes. Functions of target proteins can be affected by interacting

with compounds [24], which means that drug compounds can enhance or inhibit

functions carried out by target proteins. Such a pair of drug and its target protein is

regarded as a drug-target interaction, where each drug or protein can be represented

by a node, while an interaction can be shown as a link. In this case, a large number

of drug-target pairs constitute drug-target interaction networks. The data about

drug-target interaction can be obtained from KEGG BRITE [20], DrugBank [38],

1



1. INTRODUCTION

Fig. 1: A drug-target interaction network graph [9]

BRENDA [30], SuperTarget and Matador [16], ChEMBL [35] and GLIDA [25].

Fig. 1 shows an example of drug-target interaction network for four benchmark

datasets: Enzymes (red), Ion Channels (orange), GPCRs (blue), and Nuclear Re-

ceptors (black). Circles represent for drugs, while rectangles are targets. An edge

between a pair of drug-target means a known interaction. Since the number of known

interactions is quite small, our purpose is to discover new drug-target interactions

based on known information to enlarge the network.

1.2 Research Motivation

The amount of known drug-target interactions is limited, so more interactions need

to be detected in order to support drug research. Many researchers focus on in silico

drug-target interaction prediction because of labor-intensive, time-consuming and

costly experimental process. As the assistance of in vitro experiments, computational

2



1. INTRODUCTION

methods provide much useful information to narrow down experimental subjects.

There are mainly two aspects in terms of in silico methods: docking simulation and

machine learning. The main idea of docking simulation is to simulate the molecular

recognition process between drug and its targets on the computer, which requires

3-dimensional structures for both of them. Characteristics of binding behaviours

can be observed clearly during simulation. However, there is a severe limitation

that 3-dimensional structures of most membrane proteins cannot be found in public

databases. Thus, facing to an enormous amount of target proteins, machine learning

is an appropriate choice which is used in this thesis. Moreover, approaches based

on machine learning can also be categorized into two aspects: similarity-based and

feature-based. More details about previous research in this field will be explained in

Chapter 2 Review of the Literature.

Feature-based is the method we use in this thesis. In previous research, n-gram

has been used as the feature of protein, which is a simple chain consisting of n

amino acids with no meaning. However, short-linear motifs (SLiMs) are different

from n-gram although they are both composed of amino acids. SLiMs are involved

in recognition and targeting activities, which may contain the information relevant

to binding with compounds. The concept of SLiMs has been used to predict protein-

protein interaction, and gained a satisfied result, but no one has tried it in the field of

drug-target interaction prediction.Thus, we firstly use SLiMs as features of proteins

in this thesis.

Another problem is that only interaction data which normally called positive data

can be obtained in public databases. Although some drugs and proteins are not

shown as interacted, it does not mean they are non-interacted. It is possible that the

interaction relationship has not been discovered, or their interactions are relatively

weak, so they are not shown as positive. Many researchers regard all the unknown

data as negative samples (non-interactive data), which is incorrect, and may cause

serious consequence. In this case, negative samples selection is a crucial problem.

Based on the strategy proposed by [33], we propose a new approach considering the

degree of drugs and proteins.

3



1. INTRODUCTION

1.3 Problem Restatement

In conclusion, the number of known DTIs data is quite a few, so we need to find

target proteins for more drug compounds to enlarge DTI network. The problem can

be defined as follows. Given a new pair of drug and protein, we aim to predict whether

they are interacted or not, so that potential DTIs can be found. This research is very

valuable which contributes to medical treatment, such as new drug discovery or drug

side effects study. To solve this problem, the main idea of ML-based method is to

build models based on known DTIs data by different classification algorithms, and use

them to do prediction. Among ML-based methods, we use feature-based approach,

and firstly use SLiMs as the feature of protein.

4



CHAPTER 2

Review of the Literature

This chapter reviews the previous research and publication on prediction of drug-

target interaction networks using machine learning (ML) method, which can be

mainly categorized into two aspects: similarity-based [12][14] and feature-based [6][24][13].

They will be introduced in details below. Beside of these, there are some graph-based

approaches, such as network diffusion [9], and random walk [8].

2.1 Similarity-based Method

The main idea of similarity-based methods is based on drug and protein respective

similarity matrixes to make a prediction. The element of i-th row and j-th column in

drug similarity matrix is the similarity of drug i and drug j. In the same way, protein

similarity matrix stores the similarity score among proteins. [12] introduces several

models of similarity-based method, such as nearest neighbour (NN) [5], bipartite local

models (BLM) [5][4][23], pairwise kernel method (PKM) [19], and etc.

Concerning NN method, they create a binary vector for each drug to present

whether a target protein interacts with this drug or not, which is called drug in-

teraction profile. Similarly, target protein interaction profile can also be generated.

Given a new drug, its most similar known drug can be obtained according to drug

similarity matrix, and called as nearest neighbours (NN). The interaction profile of

a new drug can be computed by multiplying each value of its NN interaction profile

by their similarity score. Interaction profile of a new target is generated in the same

way. The average of these two results is the final score. NN is a very efficient model

5



2. REVIEW OF THE LITERATURE

Table 1: The values of AUC among NN, BLM, PKM for different datasets

Models Enzyme Ion Channel GPCR Nuclear Receptor

NN 0.898 0.889 0.852 0.820

BLM 0.928 0.918 0.884 0.694

PKM 0.966 0.967 0.937 0.856

spending less time.

BLM extends the method of local models. Given an unknown pair of drug and

target. In order to predict whether they are interacted, they first focus on this drug,

and give every known target a label as +1 or −1 based on interaction data, which aims

to divide them into two classes. Then train an SVM classifier according to protein

similarity matrix which is regarded as attribute vectors of targets to predict the label

of this unknown protein. The unknown drug can also be predicted in a similar way.

This method costs a large computation because it needs to train two classifiers for

every unknown pair of drug and protein prediction.

PKM is an SVM-based method. Based on the similarities between two proteins

and two drugs, they obtain a similarity score of these two drug-target pairs by sim-

ilarities multiplication. In this case, a similarity matrix of drug-target pairs can be

created, and named as kernel matrix. They regard interacted and non-interacted data

as two classes, and kernel matrix as the input to train an SVM classifier. Compare

with the other two methods mentioned above, the result of PKM performs the best.

Table 1 shows AUC values of these three models for different datasets.

2.2 Feature-based Method

The main idea of feature-based method is to find different descriptors for both proteins

and drugs, then generate feature matrix which is represented by feature vectors for all

interaction and non-interaction data to do prediction. Different papers use different

drug-target representations.

6



2. REVIEW OF THE LITERATURE

2.2.1 Structural and Physicochemical Properties

[6] proposes a feature-based method to predict drug-target interaction, and uses

MACCS fingerprints as features of drug, while use protein sequential representation

as features of protein.

New Idea

This paper extends structure-activity relationship (SAR) methodology, and uses drug

topological structures and protein sequential representation.

Datasets

This paper uses the benchmark datasets which are proposed by [39] in 2008. These

datasets are used in much research, and they are divided by four types of target pro-

teins, which are nuclear receptor, G-protein coupled receptors (GPCR), ion channel,

and enzyme. It shows interactions between drug and its target protein. The number

of proteins in these four datasets is 26, 95, 204, 664 respectively, and the number of

drugs is 54, 223, 210 and 445 respectively. Moreover, there are 90, 635, 1476 and

2916 interactions between a pair of drug-target.

Datasets only show interaction pairs which are also known as positive data, so

authors need to select negative data (non-interactive samples) in the first step. They

regard all the unknown pairs as negative data, which means that all the possible

drug-target combinations except positive samples are negative ones. In this case, the

data is unbalanced, and may cause bias. To solve this problem, Negative samples are

randomly selected as one to two times of positive ones. Authors generate ten different

negative samples in the same way.

Methodology

MACCS substructure fingerprints are used as drug descriptors, which use a dictio-

nary of MDL keys consisting of 166 features. Each feature is a functional molecular

fragment. If a fragment can be found in this drug, then set the value of this position

7



2. REVIEW OF THE LITERATURE

as 1. If the feature is not included in this drug, then set it as 0. In this case, a

166-dimensional vector can be generated for each drug.

Fig. 2: Amino acids attributes and division

To present proteins, the authors use four types of descriptors, which are amino

acids, composition (C), transition (T) and distribution (D). Amino acid chains need

to be obtained first for each protein. Regarding amino-acid property consisting of 20

kinds of amino acids, it shows the number of each kind of amino acid in a protein

sequence. Moreover, according to seven different attributions such as hydrophobicity,

polarizability, polarity, and etc, amino acids can be divided into 3 groups for each

attribute, which are shown as Fig. 2. The value of C, T and D can be calculated

based on Fig. 2. First, they assign every amino acid in protein sequence an index from

1. Then according to hydrophobicity division, they give each amino acid a number

of ‘1’, ‘2’, or ‘3’, and compute the number of amino acids marked as ‘1’, ‘2’, or ‘3’

separately denoted by n1, n2 and n3 respectively. In term of descriptor C, there are

3 features including a composition of group 1, 2 and 3. They can be calculated as

np × 100/(n1 + n2 + n3), where p means the pth group. There are still 3 features of

descriptor T, which are the transition from group ‘1’ to group ‘2’ (or ‘2’ to ‘1’), from

group ‘1’ to group ‘3’ (or ‘3’ to ‘1’), and from group ‘2’ to group ‘3’ (or ‘3’ to ‘2’). After

score the number of each transition, they denote them as ni, nii and niii. In this case,

the value of each feature in T can be computed as (nj/(ni + nii + niii))× 100 where

j means one transition. Concerning the last type D, assume that there are Na amino

acids for group 1, they can find out the index of the first amino acid in this group,

8



2. REVIEW OF THE LITERATURE

Table 2: Performances comparison between 5-fold and independent validation

Datasets
5-fold cross validation Independent validation set

sensitivity specificity accuracy MCC sensitivity specificity accuracy MCC

Enzyme 90.10 90.64 90.31 79.77 88.23 88.39 88.28 78.27

Ion Channel 89.38 88.20 88.91 77.41 88.27 87.34 87.64 76.32

GPCR 82.54 85.49 84.68 67.10 80.59 84.74 82.97 65.34

Nuclear Receptor 82.35 84.72 83.74 64.55 81.82 81.48 81.63 63.09

and also the first 25%, 50%, 75% and 100% amino acids in group 1, then mark their

indexes in protein sequence as na1 , na2 , na3 , na4 and na5 . There are 5 features for each

group in D, and can be computed as nai/N × 100, where i = 1, 2, 3, 4, 5 respectively,

and N is the length of protein sequence. Other two groups can do the same operation,

so15 features can be obtained totally in terms of D. Repeat the operation above for

all seven functional structures. With the addition of 20 amino acid descriptors, there

are 167 features totally for protein.

After obtaining the features of drug and protein, they combine them together

according to the interaction and non-interaction data. Then they use Support vector

machine (SVM) classifier with 5-fold cross validation and independent validation to

do the prediction, and use grid search to determine the best parameters of SVM.

Results and Discussion

Table 2 shows the results for four datasets, which contains the values of sensitivity,

specificity, accuracy and Matthews correlation coefficient (MCC). The authors draw

a receiver operating curve (ROC) using the value of sensitivity (true positives) and

specificity (false positives) for each dataset. The area under ROC is called AUC,

which is an important measure to validate the performance. The AUC values of

Enzyme, Ion channel, GPCR, and Nuclear receptor are 94.86%, 94.28%, 89.02% and

88.22% respectively.

9



2. REVIEW OF THE LITERATURE

2.2.2 PSSM Based Evolutionary Information

[24] proposes a feature-based method, and extract evolutionary from position specific

scoring matrix (PSSM).

New Idea

This paper firstly uses bi-gram as features of protein, and proposes Bigram-PSSM

model to predict drug-target interaction. Besides, authors also use BRS-nonint [43]

algorithm to do negative samples selection. This algorithm is used to select negative

samples in protein-protein interaction area, and this paper firstly uses it in drug-target

interaction.

Datasets

This paper uses the same dataset as [6], and also regards all unknown combinations

as negative data. Authors use two ways selecting negative samples to avoid bias,

random and balanced. Random method is to select data from unknown samples

randomly until reach the similar size as positive samples, while balanced method is

evolved from BRS-nonint algorithm which considers balanced degree distribution of

drugs and proteins in both positive and negative datasets.

Methodology

Authors use 881 molecular substructure fingerprints defined by PubChem database

as descriptors of drugs. After SMILES format of each drug obtained, they use rcdk

package in R to find the fingerprints in this drug, and generate an 881-dimensional

binary vector corresponding to 881 fingerprints. If the corresponding substructure

can be found in drug molecule, then set it as 1. Otherwise, set it as 0.

For representing target proteins, authors propose a method called Bigram-PSSM,

which regards the probabilities of two amino acids extracted from position specific

scoring matrix (PSSM) as features of proteins. Every protein sequence has a PSSM

where each column represents an amino acid. There are 20 kinds of amino acids

10



2. REVIEW OF THE LITERATURE

totally, so there are 20 columns in PSSM. Each row means one position in this protein

sequence, so the number of rows in PSSM is the same as the length of the protein

sequence. The value in ith row and jth column is the probability of jth amino acid

occurring in the ith position. If there are N amino acids in a protein sequence, the

value of bi-gram (a pattern of two amino acids) for this protein can be calculated

followed by Equation (1).

Bm,n =
N−1∑
i=1

Pm,i × Pn,i+1(1 6 m 6 20, 1 6 n 6 20) (1)

where Pi,j means the value of ith column and jth row in PSSM. There are 400

kinds of bi-gram combination, so each protein can be described as a 400-dimensional

vector shown as below:

B = (B1,1, B1,2, ..., B1,20, B2,1, B2,2, ..., B2,10, ..., B20,1, ..., B20,10) (2)

where Bi,j denotes the value of regarding the ith and jth amino acids as a pattern.

According to the interaction and non-interaction data generated using random and

balanced methods, the authors create a 1281-dimensional vector for each record, which

is combined 881-dimensional drug vector and 400-dimensional protein vector together.

Then they use Support Vector Machine (SVM) classifier to do the classification.

Results and Discussion

Fig. 3 shows ROC curves of Bigram-PSSM model using random and balanced meth-

ods for each dataset, while Table 3 summarizes the statistics measures of Bigram

model. It is obviously that the performance of random sampling is better than bal-

anced one, and also indicates that negative samples selection affects the performance

of model. The authors state that the results are satisfied, and better than other

existing research in terms of AUC.

11



2. REVIEW OF THE LITERATURE

Fig. 3: ROC curves of Bigram-PSSM model using random and balanced datasets for
benchmark datasets

2.2.3 Class Imbalance-aware Ensemble Learning

[13] is also an feature-based method. Besides of data representation chosen, authors

find that classes imbalance may degrade prediction performance. Thus, this paper

improve the performance by balancing classes.

New Idea

Class imbalance in a challenge in drug-target interaction prediction, and this problem

is divided into two aspects: between class and within-class imbalance. Between-class

12



2. REVIEW OF THE LITERATURE

Table 3: Performances comparison between random and balanced sampling

Datasets Sampling AUC Sensitivity Specificity Precision

Enzyme
Random 94.8 60.9 99.4 48.9

Balanced 92.8 57.6 99.6 59.1

Ion Channel
Random 88.9 49.5 98.2 49

Balanced 85.5 47.3 98.3 49.8

GPCR
Random 87.2 30.9 98.6 42.8

Balanced 78 3.8 99.9 47.2

Nuclear Receptor
Random 86.9 33.3 98.4 61.4

Balanced 80.3 2.22 99.7 6.67

imbalance means that the number of positive samples is much less than negative

ones, while within-class imbalance means that the numbers of different types of drug-

target interaction are imbalanced. Some previous research ignores this problem. The

authors state that performance will be better after solving this problem.

Data

Data used in this research is collected from DrugBank public database. It consists of

5877 drugs, 3348 target proteins, and 12674 interaction. Similar as the benchmark

dataset used by [6] [24], there is no non-interactive pair in this dataset. They regard all

other pairs which not occur in the positive dataset as negative samples. Additionally,

this dataset mixes all the types together, rather than divided by different types of

proteins like the gold standard dataset.

Data Representation

In terms of drug descriptor, they use Rcpi package to generate the 193-dimensional

vector for each drug. To present target proteins, they regard amino acids, dipeptide,

autocorrelation, quasi-sequence-order, amphiphilic pseudo-amino acid, and informa-

13
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tion of composition, transition, and distribution as features of proteins. Authors try

to combine all the protein properties extracted from [17][42][36] together to generate

a list of 1290 attributes. Then normalize the value of these features.

Methodology

Authors propose a new classification method. Similar as Random Forest, they train

T decision trees as predictors, and average all the scores generated by these decision

trees to get the final score. positive dataset is denoted by P , while negative set is N .

In this case, Pi means a subset of positive instances, and Ni is a subset of negative

instances. To build one decision tree, they randomly select a feature subset names as

Fi, and use it to extract some positive samples Pi. To avoid bias caused by within-

class imbalance, the authors oversample Pi. They use k-means++ method clustering

Pi data into K clusters, and each cluster represents a type of interaction. If there

are 4 types, K will equal to 4. The sizes of these K clusters may be different, and

the largest size is named as maxClusterSize. Then reselect the all these K clusters

from P , until the size is the same as maxClusterSize for each cluster. Pi is replaced

by this new set of positive instances. Next, in order to avoid bias caused by between-

class imbalance, they randomly extract the same number as Pi from negative set N ,

so that |Pi| = |Ni|. They also modify negative samples in Ni by Fi which is the subset

of features. After that, the samples selected in Ni is removed from the original set,

which means each negative sample can only be used once. According to the same

step, they build T decision trees.

Results and Discussion

Compare the value of AUC with Decision Tree (0.760), SVM (0.804), Random Forest

(0.855), k-NN (0.814), this proposed method (0.900) performs the best. The AUC

values of other classifiers are 0.760, RF is the second best one because RF can also

deal with imbalanced classes. Thus, it is verified that predicted performance can be

improved by deal with unbalanced data effectively. Authors also use this method

predict some new drug and new protein interaction. Authors state that this method

14
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is reliable to do drug-target interaction prediction.

2.3 Summary

Most of the results shown in this three literature are satisfied except [24]. As we

can see in Table 3, the results are not satisfied, where the values of sensitivity and

precision are extremely low. It indicates that TP rate are very low, and it is a terrible

performance, not as satisfied as the authors claimed.

[24] and [13] both state that imbalanced classes have had an influence on final

results, which should be considered in this thesis. Besides, all this three literature

regards all the possible combinations which are not shown as interaction as negative

data for no reason, which is incorrect, and may cause serious consequence. Such data

can only be called as unknown samples because we cannot verify whether they are

interacted or not. Reliable negative data selection is study-worthy.

After reviewing the literature, it can be found that what we need to do is not only

seeking better and more meaningful descriptors to represent drug and protein, but

also considering fully trying to decrease the bad influence from everywhere, such as

imbalanced classes, unreliable negative data, and etc.
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CHAPTER 3

Material and Methodology

In this chapter, we propose a new feature-based method to predict drug-target inter-

action. To put it simply, the main idea of feature-based approach is to find descriptors

of protein and drug respectively, and give them values for both positive and nega-

tive samples as their features to do classification. The datasets and method will be

introduced in detail in this chapter.

Fig. 4 is a flowchart showing every step of the model we proposed. After datasets

obtained, the first step is to determine the representations of protein and drug. In

this thesis, we firstly use short-linear motifs (SLiMs) as features of protein, chemical

substructure fingerprints as features of drug. Then give each feature a value for every

record. Specifically, SLiMs can be scored according to position-specific probability

matrix (PSPM) in two different approaches, while chemical substructure fingerprints

can be converted into a binary vector for each drug. Negative samples selection is also

considered after that. As a result, a drug-target features matrix can be generated as

an input data to do classification.

3.1 Gold Standard Dataset

To be comparable with previous research, we use the same gold standard dataset

which was released by [39] in 2008. The data in this benchmark dataset is taken from

KEGG BRITE, DrugBank, BRENDA and SuperTarget databases, and classified into

four sets according to different types of proteins, which are Nuclear Receptor, GPCR,

Ion Channel, and Enzyme.
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3. MATERIAL AND METHODOLOGY

Fig. 4: Flowchart of proposed model

Fig. 5 shows the format of the dataset. The first column represents protein codes

which can be used as entries to obtain amino-acid sequences from KEGG database,

while the second column indicates drug codes which can be used to gain molecu-

lar formulas of compounds also from KEGG, and each row means that this pair of

drug-target is interacted. The numbers of proteins in Nuclear Receptor, GPCR, Ion

Channel, and Enzyme datasets are 26, 95, 204 and 664 respectively, while the num-

bers of drugs are 54, 223, 210 and 445 respectively. Moreover, there are 90, 635, 1476

and 2926 known interactions in each dataset separately.

Fig. 5: The format of benchmark dataset

17



3. MATERIAL AND METHODOLOGY

As we can see, gold standard dataset only shows positive samples. However, in

order to train a model for classification, negative samples are also needed in parallel

with positive ones as two classes in a training set. In this case, reliable negative

samples selection is a necessary step. It is worth noting that we cannot regard all

the unknown samples as negative ones because some of them may have potential

interactive relationships which have not been detected yet, while some may have weak

interactions which do not mean entirely non-interacted although the relationship is

not strong enough. Our purpose is to exclude distractors, and select true negative

samples from unknown data. Then combine positive and negative ones together as a

training set.

3.2 Protein Feature Representation

3.2.1 Short-linear Motif

Concept Introduction

In genetics, a motif is a nucleotide or amino-acid sequence pattern that is widespread

and may have a biological significance [37]. In terms of protein, a motif should be a

meaningful sequence of amino acid pattern extracted from a set of protein sequences.

Short-linear sequence motifs (SLiMs) or minimotifs in protein sequences are short

patterns of 3 to 10 amino acids that have been found to be interesting [1]. SLiMs are

involved in recognition and targeting activities, which may contain the information

relevant to binding with compounds. Thus, we use SLiMs as features of protein.

Fig. 6 shows an expression of Ion Channel No. 86 SLiM. Each letter represents for

an amino acid, and the length of this SLiM is 10, which means there are 10 positions

available for amino acids to place in this pattern. Another type of expression is

[V IA][AS]R[FL][ST ]PY EW [Y H]. [V IA] means amino acid V , I and A are all

possible in the first place, but the probability may be different. The height of letters

shown in Fig. 6 correspond to the probability of amino acids. In other words, the

higher a letter is, the more probability this amino acid occurs. Each possible pattern
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Fig. 6: A short-linear motif expression Fig. 7: Flowchart of using MEME to extract
SLiMs

is called a site of this SLiM. For example, V ARFSPY EWY and IARFSPY EWY

are two sites, but they belong to the same SLiM.

Multiple EM for Motif Elucidation (MEME)

Many tools can be used to extract SLiMs, such as Minimotif Miner(MnM) [29], SLiM-

Search [11], SLiMFinder [10] and Multiple EM for Motif Elucidation (MEME) [2]. In

this thesis, we use MEME as the tool to generate SLiMs. MEME use unsupervised

and Expectation Maximization (EM) algorithm to optimize statistical parameters in

order to get motifs from a set of protein, DNA or RNA sequences. It can be installed

locally on Linux, OS X and Cygwin systems, and also provides web server online.

Fig. 7 shows that how to use MEME to extract SLiMs. First, amino acid sequences

need to be obtained from public databases according to protein identifiers shown in

the first column in benchmark dataset. Then, generate a FASTA file which can be

read by MEME, and the format is shown as Fig. 8. This is a text-based format

including protein names followed by their peptide sequences. Each letter represents

an amino acid. Besides, DNA or RNA names with their nucleotide sequences are also

acceptable, but we only consider protein sequences in this thesis. “>” is a symbol

followed by a protein identifier indicating that previous protein sequence is over, and

this is a new one. Its peptide sequence is placed on a new line. After FASTA file

generated, it is regarded as an input file to extract SLiMs according to the command

shell below.
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Fig. 8: FASTA format

meme i n p u t f i l e . f a s t a −oc o u t p u t f i l e −mod anr −nmot i f s 50 −minw 3 −maxw 10

Regarding this command, “inputfile.fasta” is the FASTA file generated as input,

while “outputfile” is the folder name to store results, and it can be set as any name we

want. “-minw” is the minimum size of motifs, while “-maxw” represents the maximum

size. As introduced previously, SLiMs mean the motifs whose size are between 3 to

10, so we set “-minw” as 3, while “-maxw” as 10. “-nmotif” in this command means

the number of motifs needs to be extracted, and it is set as 50 in this instance. Table

4 shows this value for each dataset, where N() means “the number of”. The original

intention of SLiMs amount setting is the same number as proteins. However, 26

SLiMs for Nuclear Receptor dataset is too small to get a satisfying performance, so

it is enlarged to 100. Also, in terms of Enzyme dataset, it spends approximately 340

hours to generate 50 SLiMs. To let the research proceed smoothly, 50 SLiMs is set

tentatively in this thesis.
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Table 4: The number of motifs extracted for each dataset

Datasets N (target proteins) N (SLiMs)

Enzyme 662 50

Ion Channels 204 204

GPCR 95 95

Nuclear Receptors 26 100

Position-specific Probability Matrix

From MEME output file, we can obtain position-specific probability matrix (PSPM)

for every SLiM. Table 5 is the PSPM corresponding to the same SLiMs as Fig. 6.

Each column represents for one amino acid. In this case, there are 20 columns in

PSPM because proteins consist of 20 kinds of amino acids totally. Moreover, each

row represents a position in this SLiM. As we know, the length of No.86 SLiM is 10,

so this PSPM includes 10 rows. The value in this matrix means the probability of

corresponding amino acid occurring in particular position. As we can see from the

first row, amino acid A, I and V are all possible occurring in the first position of

this pattern, and probabilities are 0.1̇, 0.3̇ and 0.5̇ respectively, which tallies with the

information extracted from Fig. 6.

Based on PSPM, we can assign every motif in each protein a sore using two

approaches: I-score proposed by [28], and sliding window method [22], so that a

protein feature matrix can be built as the features of proteins. These two scoring

methods aim to solve protein-protein interaction problem, so after the considering

concrete problem in this thesis, I-score and sliding window approaches are restated.

3.2.2 I-Score Approach

In I-score approach, we regard the SLiMs extracted by MEME as the features of

protein.
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Table 5: Position-specific Probability Matrix of Ion Channel No. 86 SLiM

A C D E F G H I K L M N P Q R S T V W Y

0.1̇ 0 0 0 0 0 0 0.3̇ 0 0 0 0 0 0 0 0 0 0.5̇ 0 0

0.5̇ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4̇ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0.7̇ 0 0 0 0 0.2̇ 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7̇ 0.2̇ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0.4̇ 0 0 0 0 0 0 0 0 0 0 0 0 0.5̇

Step 1: Counting Sites

As explained before, sites are the instances of a SLiM. In this step, we count the

number of sites for each SLiM in every protein sequences. For example, Fig. 9 shows

three SLiMs found from a set of proteins, and Fig. 10 is a protein sequence named

Q13838. According to three known SLiMs, we can point out all the sites for each

SLiM, which is the number of this motif. As shown in Fig. 9, we find out all the sites

of motif 7, and mark them in red. In the same way, Patterns in purple are sites of

motif 8, while green short chains are sites of motif 10. In this case, the score of motif

7 for protein Q13838 is set as 3, motif 8 is set as 2, and the number of motif 10 is 3.

Assume that there are 10 SLiMs extracted, a matrix like Table 6 can be generated.

Each row means a protein, while every column represents a SLiM.

Step 2: Scoring Sites using I-Formula

Rueda et al. [28] proposed I-formula in order to calculate I-score as the attributes of

predict obligate and non-obligate protein interaction complexes, and get a satisfying
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Fig. 9: (a) Motif 7, (b) Motif 8, (c) Motif 9

Fig. 10: Example of counting sites

result where the accuracy is more than 99%. Assume that given a protein sequence

X of length L and a SLiM m of length l with n sites, the I-score of SLiM m for

protein X is calculated according to Equation (1). In this formula, ai means the ith

site of SLiM m, while aij is the jth amino acid in site ai. In this case, P (aij) is the

probability of amino acid aij occurring on the jth position of site ai, which can be

obtained from PSPM. Different length of SLiMs will affect the value, which may lead

Table 6: Counting sites matrix

SLiM 1 ... SLiM 7 SLiM 8 SLiM9 SLiM10

Q13838 0 0 3 2 0 3

...
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to an unfair comparison. It means that a higher value may be caused by a larger

size of SLiM since it is calculated by sum of values about probabilities of amino acids

in each site. The more amino acids contained in a site, the larger score it may be.

However, every SLiM is an equal attribute without any priority. To make it fair, it

should be divided by l which is the length of a SLiM.

I(m|X) = −1

l
×

l∑
j=1

P (aij)× log(P (aij)) (1)

Since 0 6 P (aij) 6 1, log(P (aij)) is negative, the higher probability a SLiM is, the

lower score we will get. To make it more meaningful, a negative sign is used in front

of the equation. Besides, log(P (aij)) = 0 when P (aij) = 1, which is meaningless. To

solve this problem, a regulation of P (aij) threshold is defined as follow:

log(P (aij)) =


log(1− ε) ifP (aij) > 1− ε

log(P (aij)) otherwise

(2)

where ε > 0, and ε is a sufficiently small value, and set as 0.01 in our experiment.

Step 3: Averaging I-Score

The final score of a SLiM should also be divided by the number of its sites which is

obtained in Step 1. Therefore, I formula is modified as below:

Î(m|X) = − 1

n
×

n∑
i=1

(
1

l
×

l∑
j=1

P (aij)× log(P (aij))) (3)

Thus, every SLiM for each protein sequence will get an I-score.

3.2.3 Sliding Window Score Approach

This method is proposed by [22], and found a new way to define sites rather than

using the SLiMs extracted by MEME. Assume that given a protein sequence X of
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length L, and the length of a potential site s is l. Suppose that there is a window

which can show l amino acids, and place the window from the beginning of the protein

sequence. The pattern shown in this window consisting of the first l amino acids is

regarded as a potential site. It can be scored by the formula (4), where P (si) means

the probability of ith amino acid in site s occurring in the ith position of a SLiM.

The value of P (si) can be obtained from PSPM in MEME output file. Then move

the window to the next position, and score the pattern selected by the window in

the same way. Repeat the same operation until the window slides to the end of the

protein sequence X.

P (s|X) =
1

l
×

l∑
i=1

P (si) (4)

Next, we define a threshold λ. If P (s|X) is larger than λ, site s is considered as a

real site, and marked as a, otherwise, it is not a site. In this thesis, we set value of λ

as 0.4, 0.45, 0.5 and 0.6 to see which performance is better. Fig. 11 shows that given

a pattern of SLiM and its PSPM, how to find real sites using this method. Letters in

red represent the pattern shown in the window.

The purpose of this method is to calculate the value of SLiMs for every protein,

so after the score of each real site gotten, we need to add them together and divide

it by the number of real sites to get an average. Suppose that there are n real sites

of SLiM m in protein X, and ai means the ith real site. According to Equation (5),

we can get the score of SLiM m.

P (m|X) =
1

n
×

n∑
i=1

P (ai|X) (5)

3.3 Drug Feature Representation

In this thesis, we use chemical substructure fingerprints [32][31][41] as drug feature

descriptors. PubChem database defines 881 fingerprints, while Klekota and Roth [21]

defines 4860 bits. Fig. 12 is a portion of fingerprints in PubChem, where the first
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Fig. 11: An example to show how to find real sites in sliding window score method
(λ = 0.6)

column is position number starting from 0 and end with 880, and the second column

is chemical structure. Klekota and Roth defines molecular fingerprints in a similar

way, but more particularly. In the following part, we focus on PubChem to explain

the principle, and Klekota and Roth is the same.

It is obvious that drug chemical formulas need to be gained first if we want to

identify descriptors of drugs. Simplified molecular-input line-entry system (SMILES)

is the chemical formula expression we used in this thesis. SMILES format can be

searched on KEGG public database according to the drug codes in the dataset. Fig.

13 shows this process.

According to 881 drug fingerprints defined by PubChem, each drug can be encoded

with 881 binary bits. If the substructure can be found in this compound, then set the

value of this fingerprint as 1, otherwise, set it as 0. Many tools have been developed
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Fig. 12: The first 25 chemical substructure fingerprints in PubChem

to find molecular fingerprints in drugs. rcdk package in R software is one of them.

This package is a JAVA framework for chemoinformatics, and can be imported into

R as the interface to CDK Libraries. It is developed to assess different kinds of

chemical compound descriptors. It can output the corresponding position numbers

whose substructures can be found in this drug based on SMILES format input. Fig.

14 is the R command and its output. We assign the SMILES expression to variable

smiles, and set the type of database as ′pubchem′. In this case, R prints the positions

Fig. 13: An example of SMILES format searching process
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whose fingerprints are satisfied.

Fig. 14: Command in R and its output to identify drug descriptors

According to the output, we can create a matrix like Table 7, where each column

represents a substructure position number, so there are 881 columns regarding Pub-

Chem. As we can see, the fingerprints on position 10, 11, 12, 13, 19 and 20 can be

found in this drug, then set the value on these positions as 1.

Table 7: Drug Feature Matrix

0 ... 10 11 12 13 14 15 ... 19 20 21 ... 880

Drug1 0 1 1 1 1 0 0 1 1 0 0

...

3.4 Negative Samples Selection

As mentioned before, reliable negative samples selection is a significant problem need

to be solved before classification. Based on two strategies proposed by [33] and

considering the specific problem in this thesis, we introduce a solution as follows.

Since interaction pairs between drugs and their target proteins are known, the

pairs which not shown as interacted are considered as unknown samples. For each

drug, we have known the features of its target proteins, and based on these fea-

tures, the most different proteins can be fingered out as the non-interacted proteins

in terms of this drug. To make it clear, suppose that there are m drugs and n
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proteins in a dataset, and marked as drug D = {d1, d2, d3, ..., dm}, target proteins

T = {t1, t2, t3, ..., tn}. If d1 interacts with t1, t2 and t3, which belongs to set PT

(positive target), then t4, t5, ... , tn are regarded as unknown state for d1, and such

set is named as UT (unknown targets). The next step is to find out the proteins

which have the largest differences between d1. Assume that there are k SLiMs as

attributes for each protein, the protein properties X = {x1, x2, x3, ..., xk} where each

element represents one attribute and consist of values for each protein of this feature.

It means that xi = {xi1, xi2, xi3, ...xin} where xin means the value of the ith feature

for the nth protein.

To define the weight for each attribute can follow Equation (6).

Wi =
mean(xi)

2/var(xi)∑k
j=1(mean(xj)2/var(xj))

(6)

where mean(xi) is the average of xi:

mean(xi) =
1

n
×

n∑
j=1

xij (7)

and var(xi) is its variance:

var(xi) =
n∑
j=1

(xij −mean(xi))
2 (8)

Then the deviation of ith protein ti is calculate as follows.

ξ(ti) =
k∑
j=1

(Wj ×
∣∣∣∣xji −mean(xj)

mean(xj)

∣∣∣∣) (9)

The higher ξ(ti) is, the more deviation protein ti has, and the further away from

mean value. However, it can not illustrate that the most different point is in this

position. Moreover, it should be compared with positive data according to Equation

(10), where UT is a set storing unknown targets, while PT is a set of positive targets

which means the proteins interacted with this drug.
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P (ti ∈ UT ) =

∣∣∣∣∣ξ(ti)−mean(
∑
j∈PT

ξ(tj))

∣∣∣∣∣ (10)

After that, we sort the proteins based on the value of P (ti) from high to low,

and selection preference is from high to low. To make it much fairer, we choose the

same number of non-interacted proteins as target ones for every drug to maintain the

same degree in positive and negative data. Next, the same operation can be done

for each drug to find out the most likely non-interacted proteins for this drug, and

vice versa. In terms of every protein, its targeted drugs can also be extracted, and

using the same formulas based on the features of drugs. In the same way, the most

different ones compared to the attributes of interacted drugs will be chosen, and the

same amount of drugs can still be selected as interacted ones for this protein. For

the rest of proteins, the same operations are repeated. After another negative set

obtained, we combine all the negative pairs fingered out during these two screenings

together. In this case, the number of negative data is twice larger than positive ones,

which may cause bias. To avoid this situation, we randomly select the same number

as positive ones from the combined set to be negative samples, and combine positive

and negative pairs together as the dataset need to be used for classification.

3.5 Classification and Validation

We have tried several classifiers in this research, such as k Nearest Neighbours (k-NN),

Random Forest (RF), and Support Vector Machine (SVM). Waikato Environment for

Knowledge Analysis (Weka) is the tool used to do the classification and validation in

this research. It integrates many classifiers including k-NN, RF and SVM, and also

outputs results of evaluation.

3.5.1 k-NN

k Nearest Neighbours (k-NN) is one of the most fundamental and simple classification

methods [27]. Assume that there are two classes, positive and negative. Given a test
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sample, find out its k nearest known-label neighbours. If there are more samples

belong to positive class among this k nearest neighbours, then regard this test sample

as positive; Otherwise, predict it as negative. In this thesis, we use 1-NN method,

which means that a test sample is predicted as the same class as its nearest training

sample.

There is a general formula for distance calculation called Minkowski distance which

is defined as Equation(11). d means dimension, which is the number of features.

d(x, y) = p

√√√√ d∑
i=1

|xi − yi|p (11)

When p = 1, Equation(11) is converted into Equation(12) which is called Manhattan

distance.

d(x, y) =
d∑
i=1

|xi − yi| (12)

When p = 2, Euclidean distance can be obtained as Equation (13). In this thesis, we

use Euclidean distance to find the nearest neighbours for each sample.

d(x, y) =

√√√√ d∑
i=1

(xi − yi)2 (13)

3.5.2 Random Forest

Generally speaking, Random Forest (RF) combines the definition of bagging and

decision tree together. It has an advantage in accuracy improvement, and does not

need to reduce the dimensionality. As the name implies, ‘forest’ means many decision

trees need to be built. Every time before building a decision tree, the training set is

constructed by randomly sampling from the original dataset with replacement, until

N samples chosen if N samples are needed. Samples unselected are regarded as a test

set. Such sampling method is named as bootstrap sample. Decision tree may cause

overfitting for the training set. To solve this problem, if there are M features totally,

when a decision needs to be done, we can randomly choose m features of them where
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3. MATERIAL AND METHODOLOGY

m << M . Then choose one best feature from these m features to make a decision.

We can use the same method to build many decision trees as predictors, and branches

of these trees will not be pruned. Given a test sample, if it is classified as positive

class by more decision trees, this sample is predicted as positive class. Otherwise, it

is regarded as negative. This is like a voting system which depends on majority votes.

3.5.3 Support Vector Machine

Support vector machine (SVM) is a supervised learning method. The aim of SVM is

to separate the training data by a hyperplane with the largest margin. It uses the

concept of kernel instead of mapping data into a higher dimensional space. There are

mainly three types of kernel, which are linear, polynomial, and radial basis function

(RBF). In this thesis, we use RBF as the kernel of SVM. There are two parameters

which affect the performance of this classifier, γ and c. γ is the parameter of RBF

kernel, which controls the shape of separating function. To make it simple, it defines

how far the influence of a single training example reaches. c means cost, which is a

parameter for the soft margin cost function, and it indicates the level of punishment.

A lower c value allows higher error on the training set by finding larger margin, while

a higher c value will select few points within soft margin, and may cause overfitting.

We can improve the performance by modifying the values of parameter γ and c.

3.5.4 mRMR Feature Selection

mRMR is short for minimum-redundancy maximum-relevancy, which is a feature

selection method proposed by [26]. The purpose of feature selection is to choose

a subset of relevant features instead of using all the features to build a model for

classification. Feature selection is not the way to improve the performance, but to

make model more efficient. It will take less time, avoid curse of dimensionality, and

make the model simpler and more general. mRMR feature selection method considers

both high relevant between features and class and less redundancy among features.

Suppose that S represents feature subset, c is class label, f means feature, and
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I(a, b) is the information between a and b. Relevancy can be computed as Equation

(14).

D(S, c) =
1

|S|
∑
FiεS

I(fi; c) (14)

Redundancy is calculated as follows.

R(S) =
1

|S|2
∑

fi,fj∈S

I(fi; fj) (15)

We can maximize Φ in oder to make relevancy maximum and redundancy mini-

mum.

Φ(D,R) = D −R (16)

3.5.5 Performance Evaluation

In order to validate the performance of different classifiers, we compare predicted

results with known classes. Cross-validation is a commonly used evaluation method.

The original dataset can be divided into two sets, training set and testing set. Training

set is used to build a model, while testing set is regarded as an unknown-label set to

do the prediction using this model. Since the labels of two classes have been known,

the results can be evaluated by some statistics measures, such as specificity, sensitivity

and accuracy, which are defined as Equation (17)(18)(19).

In this thesis, 10-fold cross validation is used as the evaluation method. First,

randomly divide the whole dataset into ten equal parts. Then select the first part as

a test set, while the rest nine sets are combined as a training set which is used to

build a model. After using this model to predict the test set, values of those measures

can be computed. Next, select the second part as a test set, while other nine parts

as a training set, and do the same operation to get another set of measured values.

Repeat the same work until every part are selected as a test set, and other nine sets

are used to build a model to do the prediction by the same classifier of the same

parameters. In this case, ten sets of measured values are obtained, and we can get
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3. MATERIAL AND METHODOLOGY

an average for each as the final score for specificity, sensitivity and accuracy of this

classifier.

specificity =
TN

TN + FP
(17)

sensitivity =
TP

TP + FN
(18)

accuracy =
TP + TN

TP + TN + FP + FN
(19)

Assume that there are two classes, positive and negative. TP is the number of

True Positive samples, and True Positive means the samples are labeled as positive

(interaction) and also predicted as positive data. FP is the number of False Positive,

and False Positive means the samples are predicted as positive samples, but labeled

as negative in the original dataset, so this kind of samples are not real positive sam-

ples, and called as False Positive. In the same way, TN means the number of True

Negative samples, which are predicted as negative and indeed negative in fact. FN

is the number of False Negative data, which are positive ones indeed, but classified as

negative. Specificity is a measure that validates true negative rate, while sensitivity

is to evaluate true positive rate, and accuracy is an overall assessment considering

both positive and negative prediction.

AUC is another important measure which means the area under ROC curve. The

x-axis of ROC curve is False Positive rate, while y-axis is True Positive rate. The best

situation is that all the predicted positive samples are true, in this case, the value of

AUC is 1.
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CHAPTER 4

Results and Discussion

4.1 Results

In this chapter, we list all the results of four gold standard datasets generated using

different databases, methods, parameters, and classifiers. In terms of drug features,

we have tried two databases: PubChem and Klekota and Roth, consisting 881 and

4860 fingerprints respectively. For scoring SLiMs, we use two methods: I-score and

sliding window score (SWS) method, and the value of SWS threshold λ is set as 0.4,

0.45, 0.5 and 0.6 separately. Besides, three classifiers are used to do the prediction

Random Forest (RF), k-Nearest Neighbours (k-NN), and Support Vector Machine

(SVM). We set k as 1 concerning k-NN. Additionally, after trying different values of

parameter γ and c, we find that when γ = 0.01, c = 100, the performances of four

datasets are relatively better. Thus, we set γ as 0.01 and c as 100 for SVM in this

thesis. Moreover, there are four statistics measures used in this chapter, which are

AUC, accuracy, sensitivity and specificity.

Table 8 shows the results of Nuclear Receptor dataset using k-NN, RF and SVM

classifiers. Multi-rows of ‘881 fingerprints’ represent the results using 881 chemical

substructure fingerprints defined by PubChem database, while rows of ‘4860 finger-

prints’ are the measured values generated using 4860 fingerprints by Klekota and

Roth database. The row of ‘I-score’ shows the performance using I-score method

scoring SLiMs, while ‘SWS’ is short for sliding window score approach. Multi-rows of

SWS method are the results of different thresholds. As we can see from Table 8, the

performance of k-NN is relatively worse than RF and SVM in general. The value of λ
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4. RESULTS AND DISCUSSION

effect the results in a certain degree, but not too much. Concerning Nuclear Receptor

dataset, The best AUC value is 0.8764 when regard 4680 fingerprints as drug features

and use SWS method with λ equals to 0.6 scoring SLiMs by RF, and its accuracy is

also the highest.

Table 9 shows the results of GPCR dataset, and the performance is much better

than Nuclear Receptor. The values of AUC are mostly higher than 0.9, while in terms

of RF, AUC values are all more than 0.96. It is evident that the performance of k-

NN is satisfied, but still not as excellent as RF and SVM. Additionally, the results

generated using 881 fingerprints are a little bit better than using 4860 fingerprints

for all classifiers. Moreover, it is interesting to note, the result of I-score performs

the best compared with SWS for k-NN, while this method has the worst performance

in SVM. In terms of AUC, RF is better than SVM, and the highest value occurs

when using PubChem database and SWS method with λ equals to 0.5, which AUC

is 0.9756. However, considering accuracy, SVM has higher scores, and the best value

is 0.938 with sensitivity is 0.928 sensitivity and 0.948 specificity.

As we can see from Table 10, the performance is satisfied in general. The values

of AUC for all conditions are mostly more than 0.9. Additionally, the results of

RF and SVM is still better than k-NN. Although AUC of RF is higher than SVM,

the accuracy of SVM is better. When λ = 0.45 in SWS, the accuracy reaches the

highest for both 881 and 4860 fingerprints, which are 0.929 and 0.934 separately. The

difference between these two types of fingerprints is not much in Ion Channel dataset.

The performance of Enzyme is shown as Table 11. Generally, AUC by k-NN is

around 0.95, while the accuracy is mostly higher than 0.94. In terms of RF, the

accuracy is more than 0.97, and AUC is up to 0.99. For SVM, the values of accuracy

are the same as AUC, which are mostly around 0.97.

4.2 Comparison

To compare the results intuitively for each dataset, we draw a series of bar charts

shown as Fig.15, and accuracy is used as the measure. Each bar graph compares
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Table 8: Results of Nuclear Receptor dataset

AUC Accuracy Sensitivity Specificity

k-NN

881

Fingerprints

I-score 0.7259 0.722 0.733 0.711

SWS

λ = 0.4 0.6718 0.644 0.733 0.556

λ = 0.45 0.7231 0.661 0.744 0.578

λ = 0.5 0.7118 0.683 0.700 0.667

λ = 0.6 0.7248 0.711 0.700 0.722

4860

Fingerprints

I-socre 0.7078 0.678 0.722 0.633

SWS

λ = 0.4 0.695 0.633 0.667 0.600

λ = 0.45 0.7331 0.678 0.633 0.722

λ = 0.5 0.7353 0.667 0.600 0.733

λ = 0.6 0.7096 0.639 0.500 0.778

RF

881

Fingerprints

I-score 0.8319 0.767 0.789 0.744

SWS

λ = 0.4 0.8459 0.789 0.833 0.744

λ = 0.45 0.8276 0.789 0.833 0.744

λ = 0.5 0.8426 0.800 0.789 0.811

λ = 0.6 0.8764 0.800 0.789 0.811

4860

Fingerprints

I-socre 0.8119 0.739 0.733 0.744

SWS

λ = 0.4 0.8141 0.750 0.789 0.711

λ = 0.45 0.7729 0.717 0.767 0.667

λ = 0.5 0.7910 0.744 0.744 0.744

λ = 0.6 0.7516 0.711 0.689 0.733

SVM

881

Fingerprints

I-score 0.7278 0.728 0.722 0.733

SWS

λ = 0.4 0.7000 0.700 0.756 0.644

λ = 0.45 0.7500 0.750 0.767 0.733

λ = 0.5 0.7500 0.750 0.744 0.756

λ = 0.6 0.7778 0.778 0.811 0.744

4860

Fingerprints

I-socre 0.7889 0.789 0.744 0.833

SWS

λ = 0.4 0.7056 0.706 0.733 0.678

λ = 0.45 0.7389 0.739 0.767 0.711

λ = 0.5 0.7333 0.733 0.733 0.733

λ = 0.6 0.7222 0.722 0.756 0.689
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Table 9: Results of GPCR dataset

AUC Accuracy Sensitivity Specificity

k-NN

881

Fingerprints

I-score 0.9159 0.916 0.934 0.898

SWS

λ = 0.4 0.9177 0.917 0.934 0.901

λ = 0.45 0.9217 0.921 0.928 0.915

λ = 0.5 0.9183 0.918 0.920 0.917

λ = 0.6 0.9191 0.916 0.915 0.917

4860

Fingerprints

I-socre 0.8874 0.887 0.902 0.871

SWS

λ = 0.4 0.9048 0.903 0.918 0.888

λ = 0.45 0.9199 0.919 0.918 0.920

λ = 0.5 0.8906 0.890 0.896 0.883

λ = 0.6 0.9004 0.894 0.891 0.896

RF

881

Fingerprints

I-score 0.9699 0.919 0.937 0.901

SWS

λ = 0.4 0.9703 0.920 0.946 0.893

λ = 0.45 0.9739 0.928 0.939 0.917

λ = 0.5 0.9756 0.934 0.942 0.926

λ = 0.6 0.9733 0.942 0.942 0.942

4860

Fingerprints

I-socre 0.9614 0.915 0.923 0.907

SWS

λ = 0.4 0.9664 0.922 0.928 0.917

λ = 0.45 0.9689 0.920 0.928 0.912

λ = 0.5 0.9634 0.921 0.926 0.917

λ = 0.6 0.9612 0.924 0.918 0.929

SVM

881

Fingerprints

I-score 0.9205 0.920 0.920 0.921

SWS

λ = 0.4 0.9236 0.924 0.926 0.921

λ = 0.45 0.9370 0.937 0.942 0.932

λ = 0.5 0.9354 0.935 0.931 0.940

λ = 0.6 0.9378 0.938 0.928 0.948

4860

Fingerprints

I-socre 0.9118 0.912 0.902 0.921

SWS

λ = 0.4 0.9181 0.918 0.918 0.918

λ = 0.45 0.9213 0.921 0.913 0.929

λ = 0.5 0.9244 0.924 0.922 0.924

λ = 0.6 0.9134 0.913 0.902 0.924
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Table 10: Results of Ion Channel dataset

AUC Accuracy Sensitivity Specificity

k-NN

881

Fingerprints

I-score 0.9209 0.897 0.883 0.911

SWS

λ = 0.4 0.8940 0.893 0.888 0.898

λ = 0.45 0.9042 0.899 0.896 0.903

λ = 0.5 0.9146 0.899 0.887 0.911

λ = 0.6 0.9185 0.902 0.909 0.894

4860

Fingerprints

I-socre 0.9232 0.897 0.884 0.909

SWS

λ = 0.4 0.8904 0.887 0.892 0.881

λ = 0.45 0.9069 0.901 0.896 0.907

λ = 0.5 0.9205 0.904 0.888 0.921

λ = 0.6 0.9175 0.903 0.910 0.896

RF

881

Fingerprints

I-score 0.9523 0.888 0.872 0.904

SWS

λ = 0.4 0.9475 0.874 0.888 0.860

λ = 0.45 0.9572 0.892 0.881 0.902

λ = 0.5 0.9542 0.888 0.874 0.901

λ = 0.6 0.9639 0.907 0.899 0.915

4860

Fingerprints

I-socre 0.9586 0.900 0.871 0.928

SWS

λ = 0.4 0.9417 0.865 0.844 0.886

λ = 0.45 0.9588 0.898 0.875 0.921

λ = 0.5 0.9573 0.899 0.877 0.921

λ = 0.6 0.9623 0.913 0.904 0.921

SVM

881

Fingerprints

I-score 0.8852 0.885 0.910 0.860

SWS

λ = 0.4 0.9194 0.919 0.928 0.911

λ = 0.45 0.9289 0.929 0.931 0.927

λ = 0.5 0.9119 0.912 0.915 0.909

λ = 0.6 0.9160 0.916 0.911 0.921

4860

Fingerprints

I-socre 0.8916 0.892 0.904 0.879

SWS

λ = 0.4 0.9123 0.912 0.913 0.911

λ = 0.45 0.9339 0.934 0.934 0.934

λ = 0.5 0.9272 0.927 0.917 0.938

λ = 0.6 0.9051 0.905 0.911 0.899
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Table 11: Results of Enzyme dataset

AUC Accuracy Sensitivity Specificity

k-NN

881

Fingerprints

I-score 0.9565 0.951 0.957 0.945

SWS

λ = 0.4 0.9519 0.947 0.957 0.937

λ = 0.45 0.9665 0.955 0.956 0.953

λ = 0.5 0.9656 0.954 0.956 0.953

λ = 0.6 0.9587 0.949 0.955 0.942

4860

Fingerprints

I-socre 0.9460 0.943 0.950 0.936

SWS

λ = 0.4 0.9355 0.933 0.954 0.912

λ = 0.45 0.9493 0.945 0.955 0.934

λ = 0.5 0.9571 0.949 0.958 0.941

λ = 0.6 0.9495 0.943 0.956 0.930

RF

881

Fingerprints

I-score 0.9914 0.977 0.974 0.980

SWS

=0.4 0.9913 0.972 0.965 0.979

λ = 0.45 0.9924 0.975 0.969 0.981

λ = 0.5 0.9901 0.975 0.967 0.982

λ = 0.6 0.9904 0.977 0.971 0.983

4860

Fingerprints

I-socre 0.9896 0.976 0.974 0.979

SWS

λ = 0.4 0.9885 0.976 0.977 0.975

λ = 0.45 0.9900 0.976 0.972 0.974

λ = 0.5 0.9904 0.977 0.975 0.978

λ = 0.6 0.9884 0.975 0.975 0.976

SVM

881

Fingerprints

I-score 0.9719 0.972 0.963 0.980

SWS

=0.4 0.9742 0.974 0.969 0.980

λ = 0.45 0.9764 0.976 0.969 0.984

λ = 0.5 0.9754 0.975 0.967 0.984

λ = 0.6 0.9772 0.977 0.967 0.987

4860

Fingerprints

I-socre 0.9687 0.969 0.973 0.965

SWS

λ = 0.4 0.9740 0.974 0.973 0.975

λ = 0.45 0.9719 0.972 0.972 0.972

λ = 0.5 0.9762 0.976 0.975 0.977

λ = 0.6 0.9750 0.975 0.974 0.976
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different scoring SLiMs methods, classifiers and various types of fingerprints. The

dark blue bars represent the accuracy using I-score method, yellow bars indicate the

accuracy when λ = 0.6 in SWS method, grey bars means λ = 0.5, bars in orange

are performances of λ = 0.45, and light blue ones are λ = 0.4. Generally speaking,

different scoring methods have little influence on the final results. The performance

of k-NN is quite satisfied, but relatively not as good as RF and SVM. Besides, the

results of 881 fingerprints are a little better than 4860 ones. In this case, if we focus

on the accuracy using 881 fingerprints, concerning RF, when the threshold is 0.6, the

accuracies are the best under most circumstances. For SVM, λ = 0.45 is the best

choice. However, the influence of different thresholds is not that much.
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Fig. 15: Comparison among different SLiMs scoring methods, classifiers and different
types of fingerprints for each dataset

We choose the performance by RF with 881 fingerprints as a condition comparing

the results among different datasets. The performance of I-score is moderate, so we

use I-score to do this comparison which is shown in Fig. 16. Obviously, the perfor-

mance of Nuclear Receptor is relatively not as satisfied as others. This may caused
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by less training samples. We believe that if enlarge the dataset, the performance will

be better. The performance of Enzyme proves this hypothesis.

0

0.2

0.4

0.6

0.8

1

1.2
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RF	with	881	Fingerprints

Nuclear_receptor GPCR Ion_channel Enzyme

Fig. 16: Comparison among different datasets using RF with 881 fingerprints

Besides, we also want to compare the performance before mRMR feature selection

and after it. We choose AUC as the measure to evaluate the performance, and use

SVM with I-score and 881 fingerprints as the classifier. Table 12 shows the results

of SVM using mRMR, while Fig. 17 compares AUC of SVM using all the features

and feature subset selected by mRMR method. As we can see, AUC values become

lower after mRMR. This is a normal situation because features support classifiers to

do prediction. The results may be affected after reducing features. However, the aim

of feature selection is not to improve the accuracy, but make models simpler, so that

it may cost less time and avoid curse of dimensionality. Additionally, we can also find

out the most important features using mRMR.

After comparing the performance among different sets and different methods,

existing research comparison is also needed. We choose the AUC values generated

by RF with 881 fingerprints and SWS method with λ = 0.6 as the result of our

method. Table 13 lists the AUC values of some existing methods using the same

gold standard dataset, which are Cao et al (2012) [6], Bigram-PSSM [24], Yamanishi

et al. (2008) [39], Wang et al. (2010) [34], Yamanishi et al. (2010) [40], KBMF2K
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Table 12: Results of mRMR feature selection applied on SVM with I-score and 881
fingerprints

Nuclear Receptor GPCR Ion Channel Enzyme

AUC 0.7222 0.9024 0.8032 0.8832

Accuracy 0.722 0.902 0.803 0.883

Sensitivity 0.756 0.915 0.781 0.972

Specificity 0.689 0.890 0.825 0.794

0 0.2 0.4 0.6 0.8 1

Nuclear	Receptor

GPCR

Ion	Channel

Enzyme

With	mRMR Without	mRMR

Fig. 17: Comparison of AUC between with and without mRMR
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Table 13: The comparison of AUC among existing methods using benchmark datasets

Algorithms Enzyme Ion Channel GPCR Nuclear Receptor

Proposed Method 0.9904 0.9639 0.9733 0.8764

Cao et al. (2012) 0.9486 0.9428 0.8902 0.8822

Bigram-PSSM 0.948 0.889 0.872 0.869

Yamanishi et al. (2008) 0.904 0.851 0.899 0.835

Wang et al. (2010) 0.886 0.893 0.873 0.824

Yamanishi et al. (2010) 0.892 0.812 0.827 0.835

KBMF2K 0.832 0.799 0.857 0.824

NetCBP 0.8251 0.8034 0.8235 0.8394

DBSI 0.8075 0.8029 0.8022 0.7578

[15], NetCBP [7], and DBSI [9]. These existing methods are not only feature-based,

but using the same dataset to solve the same problem, so they are comparable. The

method proposed in this thesis outperforms the others regarding most datasets. In

terms of Nuclear Receptor dataset, the AUC value of our method is the second best,

which is also a satisfied result.
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CHAPTER 5

Conclusion

We propose a new feature-based method to predict drug-target interaction which

firstly introduces short-linear motifs (SLiMs) as protein features into this field. Dif-

ferent from n-gram, SLiMs have biological meanings, so that they can represent pro-

tein features better. There are two approaches to score SLiMs: I-score and sliding

window score (SWS) which are calculated based on position-specific probability ma-

trix (PSPM), in order to generate protein feature matrix. Concerning drug features,

we select two kinds of chemical substructure fingerprints defined by PubChem and

Klekota and Roth databases, then generate a drug feature binary matrix as the rep-

resentation of drugs.

Another contribution of this research is to find a strategy to extract negative data

from unknown samples. This point is often ignored by many previous studies, but

necessary to be considered. We select negative samples by finding out drug-target

pairs with the largest difference from known interacted samples, and also considering

balanced degrees between positive and negative data to avoid bias.

After getting all the results, we find that the performance of RF and SVM is better

than k-NN, and using the fingerprints defined by PubChem is the best choice. The

influence of different values of threshold λ in SWS method is not much for the final

results. Additionally, when λ = 0.6, the accuracy of RF classifier is relatively higher

in most conditions. Besides, SVM with λ = 0.45 is also a good choice. Compared

with the other existing study using the same dataset, our results are the best under

most circumstance. It indicates that this method is efficient and reliable.
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