213 research outputs found

    Influence of the Main Filter on QRS-amplitude and Duration in Human Electrocardiogram.

    Get PDF
    Accurate measurement of electrocardiograms (ECG) is critical for effective diagnosis of patient’s cardiac functions. Detailed examination of filters’ effects on ECG accuracy, reproducibility and robustness covering a wide range of available commercial products can provide valuable information on the relationship between quality and effectiveness of filters, and assessments of patients’ cardiac functions. In this study, ECG device with 12 leads and built-in filters used for ECG measurements was assessed on human volunteers. Results showed that with respect to measuring QRS wave duration and R-amplitude variation, there was a 4 % inaccuracy when the main filter was ON and OFF, and R-amplitude variation was most pronounced in the V4 lead. Accordingly, variability of R-amplitude and length of QRS wave can be reduced by the use of appropriate lead, and filter activation during the ECG assessment

    Heart beat variability analysis in perinatal brain injury and infection

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2018Todos os anos, mais de 95 mil recém-nascidos são admitidos nas Unidades de Cuidados Intensivos Neonatais (UCIN) do Reino Unido, devido principalmente a partos prematuros ou outras complicações que pudessem ter ocorrido, como é o caso da encefalopatia hipóxico-isquémica (EHI), que assume 3% de todas as admissões nas unidades referidas. EHI é o termo que define uma complicação inesperada durante o parto, que resulta em lesões neurológicas a longo prazo e até em morte neonatal, devido à privação de oxigénio e fluxo sanguíneo ao recém-nascido durante o nascimento. Estima-se que tenha uma incidência de um a seis casos por 1000 nascimentos. Nos países desenvolvidos, a hipotermia é utilizada como método preventivo-terapêutico para esta condição. No entanto, existem dois grandes obstáculos para a obtenção da neuroprotecção pretendida e totalmente benéfica, na prática clínica. Em primeiro lugar, esta técnica é eficaz se for iniciada dentro de seis horas após o parto. Visto que o estado clínico da encefalopatia neonatal evolui nos dias posteriores ao nascimento, a sua deteção precoce é um grande desafio. Tal situação pode levar a diversos erros nas UCIN, tal como indivíduos sujeitos à terapia de hipotermia desnecessariamente, ou ainda mais grave, casos em que recém-nascidos foram inicialmente considerados como saudáveis, não tendo sido submetidos à terapia referida, apresentarem sinais de EHI após seis horas de vida. A segunda questão prende-se com o facto de a neuroprotecção poder ser perdida se o bebé estiver stressado durante o tratamento. Para além disso, não existe nenhuma ferramenta válida para a avaliação da dor dos recém-nascidos submetidos a esta terapia. Os obstáculos frisados anteriormente demonstram duas necessidades ainda não correspondidas: a carência de um método não invasivo e largamente adaptável a diferentes cenários para uma correta identificação de recém-nascidos com maior probabilidade de HIE, dentro de uma margem de seis horas após o parto, mas também um método preciso de stress em tempo real, não invasivo, que possa orientar tanto pessoal médico, como pais, de modo a oferecer um tratamento mais responsável, célere e individualizado. Deste modo, a análise do ritmo cardíaco demostra um enorme potencial para ser um biomarcador de encefalopatia neonatal, bem como um medidor de stress, através da eletrocardiografia (ECG), visto que é um importante indicador de homeostase, mas também de possíveis condições que podem afetar o sistema nervoso autónomo e, consequentemente, o equilíbrio do corpo humano. É extremamente difícil a obtenção de um parâmetro fisiológico, sem a presença de artefactos, especialmente no caso de recém-nascidos admitidos nas UCIN. Tanto no caso da aquisição de ECGs, como de outros parâmetros, existe uma maior probabilidade de o sinal ser corrompido por artefactos, visto que são longas aquisições, normalmente dias, onde o bebé é submetido a diversas examinações médicas, está rodeado de equipamentos eletrónicos, entre outros. Artefactos são definidos como uma distorção do sinal, podendo ser causados por diversas fontes, fisiológicas ou não. A sua presença nos dados adquiridos influencia e dissimula as informações corretas e reais, podendo mesmo levar a diagnósticos e opções terapêuticas erradas e perigosas para o paciente. Apesar de existirem diversos algoritmos de identificação de artefactos adequados para o sinal cardíaco adulto, são poucos os que funcionam corretamente para o de recém-nascido. Para além disso, é necessário bastante tempo tanto para o staff clínico, como para os investigadores, para o processo de visualização e identificação de artefactos no eletrocardiograma manualmente. Deste modo, o projeto desenvolvido na presente dissertação propõe um novo algoritmo de identificação e marcação de artefactos no sinal cardíaco de recém-nascidos. Para tal, foi criado um modelo híbrido de um método que tem em consideração todas as relações matemáticas de batimento para batimento cardíaco, com outro que tem como objetivo a remoção de spikes no mesmo sinal. O algoritmo final para além de cumprir com o objetivo descrito acima, é também adaptável a diferentes tipos de artefactos presentes no sinal, permitindo ao utilizador, de uma forma bastante intuitiva, escolher o tipo de parâmetros e passos a aplicar, podendo ser facilmente utilizado por profissionais de diferentes áreas. Deste modo, este algoritmo é uma mais-valia quando aplicado no processamento de sinal pretendido, evitando assim uma avaliação visual demorada de todo o sinal. Para obter a melhor performance possível, durante o desenvolvimento do algoritmo foram sempre considerados os resultados de validação, tais como exatidão, sensibilidade, entre outros. Para tal, foram analisados e comparados eletrocardiogramas de 4 recém-nascidos saudáveis e 4 recém-nascidos com encefalopatia. Todos possuíam aproximadamente 5 horas de sinal cardíaco adquirido após o nascimento, com diferentes níveis de presença de artefactos. O algoritmo final, obteve uma taxa de sensibilidade de 96.2% (±2.4%) e uma taxa de exatidão de 92.6% (±3.2%). Como se pode verificar pelos valores obtidos, o algoritmo obteve percentagens altas nos vários parâmetros de classificação, o que significa uma deteção correta. A taxa de exatidão apresenta um valor mais baixo, comparativamente ao parâmetro da sensibilidade, pois em diversas situações, normalmente perto de artefactos, os batimentos normais são considerados como artefactos, pelo algoritmo. Contudo, essa taxa não é alarmante, tendo sido considerada uma taxa reduzida, pelo pessoal médico. Após o processamento do sinal cardíaco dos grupos mencionados acima, um estudo comparativo, utilizando parâmetros da variabilidade do ritmo cardíaco, foi realizado. Diferenças significativas foram encontradas entre os dois grupos, onde o saudável assumiu sempre valores maiores. SDNN e baixa frequência foram os parâmetros que traduziram uma diferença maior entre os dois grupos, com um p-value <0.01. De modo a corresponder ao segundo obstáculo referido nesta dissertação, outro objetivo desta tese foi a criação de um algoritmo que pudesse identificar e diferenciar uma situação de stress nesta faixa etária, com recurso ao ritmo cardíaco. Um estudo multidimensional foi aplicado aos diferentes métodos de entropia utilizados nesta tese (approximate entropy, sample entropy, multiscales entopy e fuzzy entropy) de modo a estudar como os diferentes métodos de entropia interagem entre si e quais são os resultados dessa relação, especialmente na distinção de estados normais e stressantes. Para tal, a utilização de clusters foi essencial. Dado que para todos os ECGs de bebés saudáveis analisados neste projeto foram registados todas as possíveis situações de stress, como é o caso de choro, examinações médicas, mudança de posição, entre outros, foram escolhidos 10 minutos do sinal do ritmo cardíaco adquirido, antes da situação, para análise. Infelizmente, associado a um evento stressante, na maioria dos casos encontra-se uma percentagem bastante alta do sinal corrompida por artefactos. No entanto, em alguns casos foi possível observar uma clara distinção de grupos de clusters, indicando que naquele período de tempo, houve uma mudança de estado. Foi também realizado um estudo intensivo de diversos métodos de entropia aplicados ao grupo de sujeitos apresentados nesta dissertação, onde foi provado que o método mais adequado a nível de diferenciação é a Fuzzy Entropy (p=0.0078). Ainda é possível sugerir alguns aspetos e apontar algumas limitações, no âmbito de poderem ser ultrapassadas no futuro. Em primeiro lugar, é necessária a aquisição de mais eletrocardiogramas, quer de recém-nascidos saudáveis, quer com encefalopatia hipóxico-isquémica, de modo a aumentar o tamanho da amostra e, deste modo diminuir os valores do desvio-padrão em todos os parâmetros calculados. Relativamente ao estudo do stress, seria interessante, com uma amostra maior, a definição de clusters, de modo a ter uma identificação precisa de situações stressantes. Para além disso, a transformação do software atualmente escrito em MATLAB para GUI (interface gráfica do utilizador), a fim de tornar mais acessível a sua utilização por profissionais de diversas áreas.In Neonatal Intensive Care Unit (NICU), the heart rate (HR) offers significant insight into the autonomic function of sick newborns, especially with hypoxic ischemic encephalopathy condition (HIE). However, the intensity of clinical care and monitoring contributes to the electrocardiogram (ECG) to be often noisy and contaminated with artefacts from various sources. These artefacts, defined as any distortion of the signal caused by diverse sources, being physiological or non-physiological features, interfere with the characterization and subsequent evaluation of the heart rate, leading to grave consequences, both in diagnostic and therapeutic decisions. Besides, its manual inspection in the ECG trace is highly time-consuming, which is not feasible in clinical monitoring, especially in NICU. In this dissertation, it is proposed an algorithm capable of automatically detect and mark artefacts in neonatal ECG data, mainly dealing with mathematical aspects of the heart rate, starting from the raw signal. Also, it is proposed an adjacent algorithm, using complexity science applied to HR data, with the objective of identifying stress scenarios. Periods of 10-minute ECG were considered from 8 newborns (4 healthy and 4 HIE) to the identification of stress situations, whereas for the artefacts removal algorithm small portions varying in time length according to the amount of noise present in the originally 5 hours long samples were utilised. In this report it is also present several comparisons utilising heart rate parameters between healthy and HIE groups. Fuzzy Entropy was considered the best method to differentiate both groups (p=0.00078). In this report, substantial differences in heart rate variability were found between healthy and HIE groups, especially in SDNN and low frequency (p<0.01), confirming results of previous literature. For the final artefact removal algorithm, it is illustrated significant differences between raw and post-processed ECG signals. This method had a Recall rate of 96.2% (±2.4%) and a Precision Rate of 92.6% (±3.2%), demonstrating high efficiency in ECG noise removal. Regarding stress measures, associated with a stressful event, in most cases there is a high percentage of the signal corrupted by artefacts. However, in some cases it was possible to see a clear distinction between groups of clusters, indicating that in that period, there was a change of state. Not all the time segments from subjects demonstrated differences in stress stages, indicating that there is still room for improvement in the method developed

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    Advances in Electrocardiograms

    Get PDF
    Electrocardiograms have become one of the most important, and widely used medical tools for diagnosing diseases such as cardiac arrhythmias, conduction disorders, electrolyte imbalances, hypertension, coronary artery disease and myocardial infarction. This book reviews recent advancements in electrocardiography. The four sections of this volume, Cardiac Arrhythmias, Myocardial Infarction, Autonomic Dysregulation and Cardiotoxicology, provide comprehensive reviews of advancements in the clinical applications of electrocardiograms. This book is replete with diagrams, recordings, flow diagrams and algorithms which demonstrate the possible future direction for applying electrocardiography to evaluating the development and progression of cardiac diseases. The chapters in this book describe a number of unique features of electrocardiograms in adult and pediatric patient populations with predilections for cardiac arrhythmias and other electrical abnormalities associated with hypertension, coronary artery disease, myocardial infarction, sleep apnea syndromes, pericarditides, cardiomyopathies and cardiotoxicities, as well as innovative interpretations of electrocardiograms during exercise testing and electrical pacing

    Advanced analyses of physiological signals and their role in Neonatal Intensive Care

    Get PDF
    Preterm infants admitted to the neonatal intensive care unit (NICU) face an array of life-threatening diseases requiring procedures such as resuscitation and invasive monitoring, and other risks related to exposure to the hospital environment, all of which may have lifelong implications. This thesis examined a range of applications for advanced signal analyses in the NICU, from identifying of physiological patterns associated with neonatal outcomes, to evaluating the impact of certain treatments on physiological variability. Firstly, the thesis examined the potential to identify infants at risk of developing intraventricular haemorrhage, often interrelated with factors leading to preterm birth, mechanical ventilation, hypoxia and prolonged apnoeas. This thesis then characterised the cardiovascular impact of caffeine therapy which is often administered to prevent and treat apnoea of prematurity, finding greater pulse pressure variability and enhanced responsiveness of the autonomic nervous system. Cerebral autoregulation maintains cerebral blood flow despite fluctuations in arterial blood pressure and is an important consideration for preterm infants who are especially vulnerable to brain injury. Using various time and frequency domain correlation techniques, the thesis found acute changes in cerebral autoregulation of preterm infants following caffeine therapy. Nutrition in early life may also affect neurodevelopment and morbidity in later life. This thesis developed models for identifying malnutrition risk using anthropometry and near-infrared interactance features. This thesis has presented a range of ways in which advanced analyses including time series analysis, feature selection and model development can be applied to neonatal intensive care. There is a clear role for such analyses in early detection of clinical outcomes, characterising the effects of relevant treatments or pathologies and identifying infants at risk of later morbidity

    Intelligent monitoring and interpretation of preterm physiological signals using machine learning

    Get PDF
    Every year, more than one in ten babies are born prematurely. In Ireland of the 70000 babies delivered every year, 4500 are born too early. Premature babies are at a higher risk of complications, which may lead to both short-term and long-term adverse health outcomes. The neonatal population is especially vulnerable and a delay in the identification of medical conditions, as well as delays in the initiating the correct treatment, may be fatal. After birth, preterms are admitted to the neonatal intensive care unit (NICU), where a continuous flow of information in the form of physiological signals is available. Physiological signals can assist clinicians in decision making related to the diagnosis and treatment of various diseases. This information, however, can be highly complex, and usually requires expert analysis which may not be available at all times. The work conducted in this thesis develops a decision support systems for the intelligent monitoring of preterms in the NICU. This will allow for an accurate estimation of the current health status of the preterm neonate as well as the prediction of possible long-term complications. This thesis is comprised of three main work packages (WP), each addressing health complication of preterm on three different stages of life. At the first 12 hours of life the health status is quantified using the clinical risk index for babies (CRIB). This is followed by the assessment of the preterm’s well-being at discharge from the NICU using the clinical course score (CCS). Finally, the long-term neurodevelopmental follow-up is assessed using the Bayley III scales of development at two years. This is schematically represented in Figure 1 along with the main findings and contributions. Low blood pressure (BP) or hypotension is a recognised problem in preterm infants particularly during the first 72 hours of life. Hypotension may cause decreased cerebral perfusion, resulting in deprived oxygen delivery to the brain. Deciding when and whether to treat hypotension relies on our understanding of the relation between BP, oxygenation and brain activity. The electroencephalogram (EEG) is the most commonly used technology to assess the ‘brain health’ of a newborn. The first WP investigates the relationship between short-term dynamics in BP and EEG energy in the preterm on a large dataset of continuous multi-channel unedited EEG recordings in the context of the health status measured by the CRIB score. The obtained results indicate that a higher risk of mortality for the preterm is associated with a lower level of nonlinear interaction between EEG and BP. The level of coupling between these two systems can potentially serve as an additional source of information when deciding whether or not to intervene in the preterm. The electrocardiogram (ECG) is also routinely recorded in preterm infants. Analysis of heart rate variability (HRV) provides a non-invasive assessment of both the sympathetic and parasympathetic control of the heart rate. A novel automated objective decision support tool for the prediction of the short-term outcome (CCS) in preterm neonates who may have low BP is proposed in the second WP. Combining multiple HRV features extracted during hypotensive episodes, the classifier achieved an AUC of 0.97 for the task of short-term outcome prediction, using a leave-one-patient-out performance assessment. The developed system is based on the boosted decision tree classifier and allows for the continuous monitoring of the preterm. The proposed system is validated on a large clinically collected dataset of multimodal recordings from preterm neonates. If the correct treatment is initiated promptly after diagnosis, it can potentially improve the neurodevelopmental outcome of the preterm infant. The third WP presents a pilot study investigating the predictive capability of the early EEG recorded at discharge from the NICU with respect to the 2-year neurodevelopmental outcome using machine learning techniques. Two methods are used: 1) classical feature-based classifier, and 2) end-to-end deep learning. This is a fundamental study in this area, especially in the context of applying end-to-end learning to the preterm EEG for the problem of long-term outcome prediction. It is shown that for the available labelled dataset of 37 preterm neonates, the classical feature-based approach outperformed the end-to-end deep learning technique. A discussion of the obtained result as well as a section highlighting the possible limitations and areas that need to be investigated in the future are provided
    corecore