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Abstract

Preterm infants admitted to the neonatal intensive care unit (NICU) face an array

of life-threatening diseases requiring procedures such as resuscitation and invasive

monitoring, as well as other risks related to exposure to the hospital environment,

all of which may have lifelong implications. For several decades, intensive care

monitoring systems have displayed physiological data such as electrocardiogram

(ECG), blood oxygen saturation and arterial blood pressure signals. Datapoints

were subsequently transposed crudely to paper records in hourly intervals, ren-

dering long-term pattern recognition impossible. In recent years, there has been

considerable work utilising high-definition intensive care physiological data. The

applications of advanced analyses in the NICU range from predictive monitoring

to characterising patterns of disease. Time series analysis of ECG-derived heart

rate data has demonstrated predictive value in early identification of neonatal sep-

sis (Griffin et al. 2001, Moorman et al. 2011) and intraventricular haemorrhage

(IVH) (Tuzcu et al. 2009).

This thesis examined a range of applications for advanced signal analyses in

the NICU, from identifying physiological patterns associated with neonatal out-

comes, to evaluating the impact of certain treatments on physiological variability.

Firstly, the thesis evaluated the potential of detrended fluctuation analysis (DFA),

pre-processing and multivariable models to identify infants at risk of developing

IVH, often interrelated with factors leading to preterm birth and use of mechan-

ical ventilation.

Hypoxia and prolonged apnoeas may also predispose infants to white matter

brain injury and/or IVH. A known respiratory stimulant, caffeine is regularly

administered to infants to prevent and treat apnoea of prematurity, and to fa-

cilitate weaning off mechanical ventilation. The thesis applied Poincare analysis

and DFA to heart rate and arterial blood pressure data to characterise the car-

diovascular impact of caffeine in preterm infants, finding greater pulse pressure

variability and elevated parasympathetic modulation. These observations sug-

gested an enhanced responsiveness of the autonomic nervous system.

Cerebral autoregulation maintains cerebral blood flow despite fluctuations in

arterial blood pressure and is an important consideration for preterm infants
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who are especially vulnerable to brain injury. Using various time and frequency

domain correlation techniques, the thesis found acute changes in cerebral autoreg-

ulation of preterm infants following caffeine therapy.

Nutrition in early life may also affect neurodevelopmental outcomes and mor-

bidity in later life. This thesis developed a range of models for identifying mal-

nutrition risk and demonstrated the predictive value of anthropometry and near-

infrared interactance features in body composition assessment.

This thesis has presented and validated a range of ways in which advanced

analyses including time series analysis, feature selection and model development

can be applied to neonatal intensive care. There is a clear role for these analy-

ses in early detection of clinical outcomes, characterising the effects of relevant

treatments or pathologies and identifying infants at risk of later morbidity.
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Chapter 1

Introduction

This thesis focuses on the application of advanced analysis techniques in the

neonatal intensive care unit (NICU), from the early identification of infants at

risk of intraventricular haemorrhage (IVH) and malnutrition, to characterising

physiological variability associated with caffeine therapy and cerebral autoregu-

lation. This chapter discusses the motivation, objectives and research questions,

and provides an overview of the thesis structure and related publications.

1.1 Research motivation

With technological advancement and the continuous availability of physiological

signals monitored in the NICU, there has been a growing interest in advanced

analyses of these signals for a range applications. Multiple opportunities are now

available to characterise the behaviour of a complex system such as the human

body [1], to identify potentially life-threatening changes (such as the onset of

disease or injury), and to better understand the mechanisms behind treatments

or the conditions under which they may be beneficial or harmful. These analyses

contribute to the improvement of patient outcomes in both the short and long

term.

Monitoring and management of patients in the NICU represents a unique

balance of necessary life-saving procedures with other risks and potentially life-

long impacts. Infants born preterm face the risk of serious brain injury, cere-

bral palsy and other neurodevelopmental outcomes [2–4]. Despite advancements

in perinatal care which include using antenatal corticosteroids and magnesium

sulphate, and the postnatal use of surfactant, their underdeveloped respiratory

systems may still require mechanical ventilation. Cardiorespiratory management

within the first 24 hours of birth is a key contributor to the development and

timing of brain injury such as IVH [5, 6], with the well-recognised association
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that patient-ventilator asynchrony may be a potential causal pathway [7,8]. Ap-

noea of prematurity is similarly linked to immature respiratory control systems.

While the long-term consequences of apnoea are unclear, the short-term effects

include reduced systemic blood pressure and cerebral hypoperfusion, which may

in turn contribute to injury of the immature, pressure-passive brain [9]. Caffeine

is commonly prescribed as a respiratory stimulant to prevent and treat apnoea

of prematurity [10], and to facilitate weaning off mechanical ventilation, being

associated with improved neurodevelopmental outcomes [11, 12]. There is also

evidence for the contribution of nutrition and body fat in early life to neurocog-

nitive development [13,14] and morbidity in later life [15,16].

This thesis examines the role of advanced analyses in neonatal intensive care,

from identifying infants at risk of IVH and malnutrition, to what physiological

insights could be gained using these techniques with respect to caffeine therapy

and cerebral autoregulation. Most studies to date have quantified physiological

changes using linear metrics such as mean and standard deviation (SD). These

metrics fail to take into account the pattern of changes over time or their co-

dependency on one another [1, 17]. In contrast, advanced analysis techniques

such as detrended fluctuation analysis (DFA) and Poincare analysis may better

characterise the non-linear behaviour of systems such as heart rate, respiratory

and blood pressure dynamics. Feature selection and cross-validation techniques

may also offer value in developing and evaluating models to identify infants at

risk of morbidity.

Firstly, this thesis explores the early identification of preterm infants at risk

of developing IVH. Cardiorespiratory management in the early hours of life is an

important risk factor in its development [5, 6], although no specific treatments

have reached consensus. Earlier studies have reported altered heart rate variabil-

ity following the development of IVH [18, 19]. However, there has been limited

work exploring the predictive value of such physiological variability for identifying

risk of IVH in the early hours of life [20]. There may also be value in evaluating

the variability and dynamics of heart rate and blood pressure following caffeine

therapy, the mechanisms of which remain unknown. Previous work in this area

has focused on short- and long-term clinical outcomes [12,21,22], and used linear

analyses to characterise acute physiological changes [23–25]. Non-linear analysis

approaches such as DFA or Poincare analysis may be better placed to handle

the non-stationarities often seen in physiological signals, where statistical proper-

ties are not constant over time. This work also includes the novel application of

detrended cross-correlation analysis, a generalisation of the DFA method, to de-

scribe the dynamic relationship between blood pressure and cerebral oxygenation.

Finally, this thesis develops models to identify neonatal and infant malnutrition.
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Nutrition in early life may have lifelong implications and plays an important role

in neurocognitive development [13, 14], although its widespread measurement is

limited by a lack of simple, cost-effective and portable methods.

1.2 Objectives

The core objectives of this thesis are as follows:

1. To critically appraise the literature on variability analysis as it has been

applied to neonatal intensive care

2. To explore the potential of time series analysis of physiological signals in

the early identification of preterm infants at risk of intraventricular haem-

orrhage

3. To characterise the effect of caffeine, a commonly used treatment for ap-

noea of prematurity, on variability and complexity of heart rate and blood

pressure

4. To characterise the cerebral autoregulation in preterm infants following caf-

feine therapy

5. To identify infants at risk of malnutrition and later morbidity using near-

infrared (NIR) interactance signals for body composition assessment
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1.3 Research Questions

The first objective relates to the following research questions:

1: What advanced analysis techniques have been applied or could be poten-

tially relevant in the neonatal intensive care unit?

The second objective pertains to the following research questions:

2: Can fluctuation analysis and multivariable models be applied to improve

the early detection of IVH in the NICU setting?

3: Can pre-processing techniques improve the performance of DFA?

The third objective relates to:

4: What are the acute affects of a loading dose of intravenous caffeine on the

dynamics of heart rate and arterial blood pressure?

The fourth objective relates to:

5: Can detrended cross-correlation analysis, a relatively novel method to jointly

describe the time patterns of two signals, be used to characterise cerebral

autoregulation?

6: How does caffeine affect variability of cerebral autoregulation?

The fifth objective focuses on:

7: What anthropometric features are associated with neonatal malnutrition?

8: What NIR features can be used to model body composition measures of

nutritional status?
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1.4 Thesis Contributions

The core contribution of this thesis is demonstrating the value of advanced anal-

yses in neonatal intensive care, from predictive monitoring applications to better

characterising of physiological variability associated with specific conditions and

treatments:

1. The thesis presents to the best of our knowledge, the first review on variabil-

ity analysis techniques and the potential for improving outcomes specific to

neonatal intensive care (Chapter 2)

2. The thesis applies DFA to arterial blood pressure and respiratory data,

showing the potential of these techniques in the identification of neonates

at high risk of intraventricular haemorrhage (Chapter 3)

3. The thesis also shows the value of pre-processing data and correcting, if

necessary, for long-term signal drift and other non-linear trends on the

impact of DFA (Chapter 3)

4. Using time series analysis of both heart rate and arterial blood pressure

signals, the thesis shows altered cardiovascular dynamics in preterm infants

following a standard loading dose of caffeine (Chapter 4)

5. The thesis quantifies increased pulse pressure variability following caffeine

which may have implications for caffeine therapy in infants with possible

impaired cerebral autoregulation (Chapter 4)

6. The thesis demonstrates the predictive value of detrended cross-correlation

analysis for characterising cerebral autoregulation in potentially non-stationary

time series (Chapter 5)

7. The thesis demonstrates reduced coherence corresponding and potential im-

proved cerebral autoregulation following a loading dose of caffeine (Chapter

5)

8. The thesis develops and presents linear regression models for neonatal fat

estimation as a gauge for undernutrition (Chapter 6)

9. The thesis demonstrates the potential of near-infrared interactance signals

for detection of neonatal and infant malnutrition (Chapter 6)
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1.5 Presentation of thesis

This thesis is presented as a combination of 1 review and 6 research papers and

consists of seven chapters:

• Chapter 1 provides an overview of the aims and research questions addressed

in this dissertation, followed by the list of publications.

• Chapter 2 (a published journal paper) reviews a number of techniques across

both time and frequency domains for characterising variability of complex

physiological systems. We present these techniques with particular empha-

sis on neonatal intensive care applications, outlining potential areas where

these techniques have offered or may offer predictive value.

• Chapter 3 (a published journal paper) explores the utility of DFA of arterial

blood pressure in the early identification of preterm infants at risk of in-

traventricular haemorrhage. It highlights the importance of pre-processing

and multivariable models in predictive monitoring.

• Chapter 4 (a published journal paper) presents the use of non-linear vari-

ability analysis techniques including DFA and Poincare anlaysis for charac-

terising the cardiovascular impact of caffeine in preterm infants. Caffeine

is often administered in neonatal intensive care as treatment for apnoea of

prematurity or to facilitate weaning off mechanical ventilation.

• Chapter 5 (a manuscript submitted for consideration) compares a range of

techniques for describing cerebral autoregulation in preterm infants. The

analysis focuses on their discriminative value in characterising the acute

effects of caffeine therapy.

• Chapter 6 (a published journal paper and conference paper) focuses on the

identification of neonates and infants at risk of later morbidity and mortality

using anthropometric and NIR interactance features for body composition

assessment.

• Chapter 7 summarises the research findings and discusses directions of fu-

ture work.
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Chapter 2

Literature Review

This chapter addresses the first research question:

1: What advanced analysis techniques have been applied or could be poten-

tially relevant in the neonatal intensive care unit?

The content presented in this chapter is currently published as:

Huvanandana, J., Thamrin, C., Tracy, M., Hinder, M., Nguyen, C. and McEwan,

A., 2017. Advanced analyses of physiological signals in the neonatal intensive

care unit. Physiological Measurement, 38:253-279
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1. Introduction

The management and monitoring of neonates within the neonatal intensive care unit (NICU) 
presents many unique challenges, given the prematurity of the patients admitted as well as the 
criticality and range of conditions observed. The human body is a complex system, compris-
ing numerous interacting components. True to such systems, it is more than the sum of its 
parts (Kane and Higham 2015), i.e. the interactions between the components results in behav-
iour that is far more complex than expected by simply adding the behaviour of the individual 
components. The state of complex systems can be characterised by monitoring changes in pat-
terns over time (Volpe 1989b, Seely and Macklem 2004). This becomes particularly relevant 
in monitoring critical care environments where changes are often abrupt and life threatening.

In recent years, there has been growing interest in modelling and characterising deviations 
from normal physiological patterns, made possible by improved capabilities to process large 
amounts of data. In medicine, particularly in the critical care setting, the analyses of variability 
and physiological patterns over time have shown promising results in predictive monitoring 
for critical illness and the opportunity to adjust healthcare and potentially improve outcomes 
and mortality (Moorman et al 2011 and Sullivan and Fairchild 2015). The work by Griffin and 
Moorman (2001) has demonstrated the potential for early detection of neonatal sepsis with the 
HeRO monitoring system. It uses a proprietary heart rate characteristic (HRC) index to char-
acterise both variability and transient decelerations in heart rate which occur during systemic 
inflammation (Griffin et al 2005). The HRC index becomes increasingly abnormal prior to 
abrupt clinical deterioration or other recognisable clinical indicators suggesting sepsis (Griffin 
and Moorman 2001). In a randomised trial across 9 neonatal intensive care units, Moorman 
et al reported a reduction in mortality by more than 20% compared to settings where this 
information was not displayed (Moorman et al 2011). Such an approach to monitoring offers 
the opportunity to precede abrupt or catastrophic deterioration which may be life-threatening, 
with conventional diagnosis of sepsis often not confirmed until after significant haemody-
namic compromise (Sullivan and Fairchild 2015).

There have been a number of recent reviews in this area. These range from those with a 
focus on the variability analysis techniques available and their underlying assumptions (Seely 
and Macklem 2004, Bravi et al 2011) to the range of applications in clinical settings, includ-
ing but not limited to predictive monitoring, early detection and improving clinical outcomes 
(Ahmad et al 2009b, ChuDuc et al 2013, Billman et al 2015, Sullivan and Fairchild 2015). The 
majority of applications reviewed pertain to the adult population, following successful pre-
diction results in mortality after myocardial infarction (Voss et al 1996, Schmidt et al 1999) 
and the onset of sepsis in adult bone marrow transplant patients (Ahmad et al 2009a, 2009b). 
This paper offers an overview of variability analysis as applied to the neonatal population, or 
more specifically neonatal intensive care, taking into account its unique challenges and condi-
tions. This follows recent promising results in mortality reduction (Moorman et al 2011), the 
clinical interest in identifying patterns of critical illness and the potential to respond in a more 
timely manner to critical conditions that have long-term, even lifelong impacts.

1.1. The neonate

The neonatal period refers to the first 4 weeks of life following term birth delivery at 40 
weeks gestation (Robertson and Rennie 1992). Survival is possible with extreme prematurity 
as early as 23 weeks gestation, and time between neonatal admission and discharge can be as 
long as 17 to 20 weeks in total. For preterm infants, this period is particularly critical; many 
are admitted to the NICU with congenital abnormalities and other conditions such as patent 
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ductus arteriosus (PDA) or may develop an array of conditions ranging from sepsis, necrotis-
ing enterocolitis (NEC) to intraventricular haemorrhage (IVH), where treatment, interventions 
and management can have significant and long-term impacts. Table 1 provides an overview 
of certain NICU-relevant conditions and their current diagnosis. To further complicate their 
management, these conditions may occur concurrently and exhibit similar clinical signs, with 
diagnosis often taking place after significant deterioration or compromise. They are often 
interrelated with factors leading to preterm birth (Villar et al 2006) such as infection and poor 
placental function (acute  =  asphyxia, chronic  =  intrauterine growth restriction). Importantly, 
lifelong injury of tissues such as the retina, brain, kidneys and gastro-intestinal can be related 
in part or wholly to recurrent pathological deviations in the physiological state in preterm 
newborns. Recurrent hypocarbia can be associated in a dose dependent manner with severity 
of brain damage (Collins et al 2001, Erickson et al 2002). There is thus difficulty in charac-
terising the precise and long-term impact of a patient’s stay in the NICU, where assessment of 
developmental outcomes, from physical to neurological, require longer term studies.

1.2. The neonatal intensive care environment

The NICU provides life-saving support for newborns born prematurely. The length of stay 
in the NICU varies with survival, gestational age, birthweight, intrauterine growth restriction 
and use of antenatal steroids (Lee et al 2013). Over this time, management and monitoring 
of the neonate in this environment presents a combination of challenges, from the need for 
intubation and mechanical ventilation to intravenous catheterisation—all the while, risk of 
infection increases with every day of exposure to the hospital environment (Taeusch et  al 
2005). Administration of care in and the introduction of new systems to this environment 
requires consideration of noise and light exposure levels as well as the existing framework for 
monitoring and life-saving support. It also presents the opportunity to initiate individualised 
treatment. A recent report from Moody et al demonstrated the potential for reducing length of 
stay in the NICU through early initiation of developmental care (Moody et al 2017).

1.3. Current monitoring approaches and limitations

Physiological parameters monitored in these units range from oxygen saturation (SpO2) using 
pulse oximetry, heart rate derived from temporal distances between consecutive R peaks in 
the electrocardiogram (ECG) signal, and arterial blood pressure which is measured invasively 
using an umbilical or peripheral arterial catheter. Other parameters include cerebral oximetry 
which is monitored using near-infrared spectroscopy and respiration rate which can be derived 
from chest electrical impedance monitoring.

Conventional monitoring of these physiological parameters involves a limit-based approach, 
where deviations from the set thresholds may trigger alarms to which healthcare providers can 
respond. This approach requires patient-customisation for effective use, such as gestational 
age and birthweight-adjusted limits for arterial blood pressure. Even with appropriate limits 
set, false alarms persist. An excess of alarms contributes to desensitisation or alarm fatigue, 
especially when a high proportion of these may be false or not clinically important. Examples 
include those triggered by instances of excessive tidal volume from deep spontaneous breaths 
during weaning from mechanical ventilation or by motion and other artefacts (Imhoff and 
Kuhls 2006). Addressing alarm overload may also come with a trade-off, with McClure et al 
showing that while longer time windows for averaging SpO2  signals may reduce the number 
of alarms, it may underrepresent the number and severity of events (McClure et al 2016).
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Furthermore, abnormal signals may fail to trigger an alarm and/or a response, as demon-
strated by an analysis of nurse-recorded as well as monitor and algorithm detected apnoea 
events. Of the algorithm-detected prolonged apnoea events, only 26% had nurse documenta-
tion within 1 hr and only 23% activated the monitor’s apnoea alarm (Vergales et al 2014). 
There is also an under-utilised potential to display trends in the data over various timescales 
and make this available for review, which is highlighted by the more recent promising work in 
predictive monitoring (Fairchild et al 2013, Sullivan and Fairchild 2015).

2. Variability analysis techniques

The prevailing notion in variability analysis of biological signals is that illness itself usu-
ally causes a reduction in system variability Goldberger (1997), though the opposite can also 
occur. The available methods for this can be broadly classified into time domain, frequency 
domain or a combination of the two.

2.1. Time domain analysis

These are measures which describe the signals of interest in terms of their variation over 
time. One example are moments, which are statistical quantities that characterise the vari-
ability of a series: x1, x2, x3...xn. The rth sample moment is denoted by µn = 1

n

∑n
i=1 xr

i . For 
a mean-centred series, the moments from n = 2 onwards are referred to as central moments, 
with the second central moment denoting variance, the third skewness, and the fourth kurto-
sis. Standard deviation (SD), that is the square root of the variance, is often used to quantify 
variability. Like the mean, these features are most informative for Gaussian-distributed data, 
where cases which deviate from this may not be discerned or characterised based on time 
features alone (Stanley et al 1999).

In relation to HRV, these parameters are the basis for calculating SDANN, the standard 
deviation of average NN (normal sinus to normal sinus) interbeat intervals of an ECG calcu-
lated for 5 min segments across a 24 h recording, and RMSSD which represents the root mean 
square of differences between adjacent NN intervals (Shaffer et al 2014).

The Poincaré plot is derived from the time domain signal, whereupon a signal is plotted 
against a version of itself shifted by a time log. It offers a visual representation of self-simi-
larity, where reduced variability manifests as increased elongation of the ellipse fitted to the 
data points. This can also be characterised using SD1 and SD2, which represent the standard 
deviation perpendicular and parallel to the line of identity. These two parameters have been 
shown to be highly correlated with other statistics such as SDANN (Brennan et al 2001).

Using HRV as an example, with ECG derived RRn on the x-axis and RRn+1 on the y-axis, 
figure 1 displays examples of regular (a) and irregular (b) neonatal HRV, respectively. Note 
that figures 1 and 2 were generated from data collected as part of a study approved by the 
Sydney West Area Health Service Human Research and Ethics and conducted according to the 
World Medical Association Declaration of Helsinki.

2.2. Frequency/time-frequency domain analysis

Transformations, that is the reproducible and reversible mapping of one set of values to 
another using a function, is at the core of frequency or time-frequency domain analysis. The 
Fourier transform represents one such function, simplifying a given time series as sinusoidal 
waves of varying periods superimposed on one another. This is often applied as the short-time 
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Fourier transform where this transform is applied to the window of interest. Most frequency-
domain features involve the total power over a given frequency band (a–b Hz) and denoted by

∫ b

a
[F(t)]2dt (1)

Figure 1. Poincaré plots showing heart rate variability from two excerpts of neonatal 
heart rate with low (a) and higher (b) levels of regularity. SD1 and SD2 are defined as 
the standard deviation perpendicular to and along the line of identity. For an ellipse 
fitted to approximately 95% of the points in along both of these axes, SD1 and SD2 are 
one half the minor and major axes, respectively. The ratio of SD1/SD2 is thus equivalent 
to the ratio of minor and major elliptical axes.

Figure 2. Statistical self-similarity over various time scales. The subplots (a) to (c) 
show a neonatal electrocardiogram signal over 4, 2 and 1 minute segments, respectively. 
The means (μ), standard deviations (σ) and relative intervals between R peaks appear 
similar regardless of the observed time scale.
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where F(t) represents the fast Fourier transform (FFT). The validity of this approach rests on 
assumptions of periodicity and stationarity (Seely and Macklem 2004), that is, where statisti-
cal properties such as mean and SD remain constant over time. The latter description is not 
often accurate for physiological data such as heart rate and blood pressure signals, which may 
exhibit local or intermittent fluctuations.

The wavelet transform is another such function, where the time series is expressed in terms 
of correlation at varying scales and times to a reference signal or mother wavelet. The process 
is described in further detail elsewhere (Ivanov et al 1996, Torrence and Compo 1998), though 
can also be used to define similar components over a range of frequencies.

These techniques assume stationarity and periodicity of the signal (Mansier et al 1996) and 
are sensitive to artefacts, introducing bias in the calculated low frequency or high frequency 
components. The ranges are also not definitive and may vary depending on the individuals and 
other factors (Furlan et al 1990).

2.3. Fractal analysis and power law behaviour

Fractal analysis deals specifically with self-similarity across various scales. This can mani-
fest geometrically, as observed in many biological structures such as in the human airways 
(ER 1962, Horsfield and Cumming 1968), though can also manifest as statistically identical 
properties over time (Thamrin and Stern 2010). Any given section of a self-similar signal, 
when scaled to the original signal, would exhibit an identical mean and standard deviation, as 
demonstrated in figure 2.

Developed by Peng and co-workers, detrended fluctuation analysis (DFA) is a method used 
to quantify long range power-law correlations (Peng et al 1995). It has since been applied to 

Figure 3. Application of detrended fluctuation analysis, showing the divisions of the 
integrated mean-centred signal into various box sizes (a) and (b). (c) shows the linear 
trend determined for a single box, which is subsequenty removed to determine the root 
mean-squared fluctuation. (d) shows the logarithmic plot of this fluctuation F(n) against 
the box size n, the slope of which is defined as the scaling exponent α.
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various clinical contexts, given its capacity to mitigate the effects of non-stationarities. This 
view has developed since the introduction of this technique, with studies to caution the risk of 
introducing bias in the presence of non-linear trends as well as the need for appropriate pre-
processing (Bryce and Sprague 2012). Its application also requires a substantial number of 
data points (Seely and Macklem 2004).

The application of DFA involves several steps for a given time series x(k):

 (i) Integration of the mean-centred signal

y(k) =
k∑

j=1

x( j)− x̄ (2)

 (ii) Division of the integrated signal into boxes of equal length n and each box is detrended 
by subtracting the local linear trend

 (iii) The root mean square (RMS) fluctuation of the time series is determined using the fol-
lowing expression

F(n) =

(
1
N

N∑

k=1

[y(k)− yn(k)]2
)1/2

 (3)

Figure 4. Illustration of approximate entropy matches and non-matches. A template 
pattern is defined according to pattern length m which is defined by continually shifting 
along the window of analysis. For each of these templates, matches between the 
template and signal are counted when differences between the two do not exceed the 
defined tolerance r. This parameter r is often expressed as a function of the standard 
deviation. Once the fraction of matches from all possible windows of analyses is 
determined for each m-length template, Cm represents the mean of these fractions. This 
process is then repeated for a template of pattern length m + 1, and the approximate 
entropy determined from the natural logarithm of the ratio between Cm and Cm+1.
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  where yn(k) is the local linear trend per box of length n
 (iv) The process detailed in (2) to (3) is repeated for varying box sizes n
 (v) A linear trend is fit to the log-log relationship between box size n and the RMS fluctuation 

F(n) to determine scaling exponent α

F(n) = Anα. (4)

This process is illustrated in figure 3. The scaling exponent α is thought to represent stabil-
ity in the system and is thus deranged in disease. There is some suggestion that either a low or 
high α value may represent pathology (Rojo-Álvarez et al 2007), though clinical interpreta-
tion may be difficult, especially in attributing it to specific pathophysiological causes (Glass 
1999). Power laws governing the distribution of inter-breath intervals, which are related to the 
scaling exponent α, have been associated with maturation in preterm and term infants (Frey 
et al 1998).

2.4. Approximate and sample entropy

We can also approach variability characterisation using entropy or the rate of information 
generated. The work of Grassberger and Procaccia (Grassberger and Procaccia 1983) on the 
extraction of correlation exponent v from time series data served as a precursor for subsequent 
entropy measures (Eckmann and Ruelle 1985). With respect to time series analysis of physi-
ological signals, it is commonly used in the form of approximate entropy (ApEn) or sample 
entropy (SampEn).

ApEn was originally presented by Pincus and is a measure of logarithmic likelihood that 
similar patterns will be further followed by similar patterns (Pincus 1991). A time series with 
a low ApEn is often interpreted as having predictable or deterministic fluctuations. This sta-
tistic denotes the conditional probability that a given template pattern of length m, will not 
be followed by a similar pattern in the proceeding time epoch, within a tolerance of r. This 
is expressed as a fraction of the SD (Pincus 1991), as illustrated in figure 4. Discussions sur-
rounding its use and reliability have targeted the inherent bias towards regularity as it takes 
into account self-matches (to avoid the possibility of ln(0)) (Richman and Moorman 2000).

ApEn is defined according to the following equation:

ApEn = ln
Cm(r)

Cm+1(r)
 (5)

where Cm represents the mean fraction of matches for all possible templates of length m.
In addressing the limitations of ApEn, SampEn was developed, denoting the likelihood 

that two similar sequences for a given window of length m, remain similar at the proceeding 
time epoch, within a tolerance of r (Richman and Moorman 2000). The definition of SampEn 
also displays relative consistency. Put simply, where one record has a lower SampEn than 
another, this observation will be consistent for any given definition of m and r (Lake et al 
2002). The application of these statistics assume stationarity (Pincus and Singer 1996) and 
thus requires appropriate interpretation. Reduced entropy estimates were largely due to the 
presence of non-stationarities (such as spikes in the data, inflating the SD and thus the toler-
ance for identifying matches) and not necessarily an indication of underlying complexity 
changes (Moorman et al 2006, 2011). Analysis is also affected by parameter selection and 
data length.
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2.5. Cross-correlation and multi-signal approaches

The above techniques can also be extended to incorporate multiple sources of information in 
a single feature. Linear dependency between two simultaneously measured time series can 
be quantified with the linear correlation coefficient, r with bounds of  −1 and 1, representing 
perfect negative and positive correlation, respectively. Running correlation coefficients can 
also be calculated for short window definitions, forming the basis for studies on synchronisa-
tion and functional connectivity. Cardiorespiratory synchronisation or coupling represents a 
more signal-specific approach, where a parameter λ indicates the strength of synchronisation 
between heart rate and respiratory signals. This was found to characterise early changes in 
breathing control in infants (Nguyen et al 2012).

Existing variability statistics such as ApEn and SampEn can also be extended to account for 
multiple signals, as in their cross-entropy counterparts, cross-ApEn and cross-SampEn. These 
were introduced to quantify the degree of asynchrony of two time series, where the more 
asynchronous the series, the higher the statistics (Pincus and Singer 1996, Pincus et al 1996, 
Richman and Moorman 2000). More complex measures include multiscale entropy (Costa 
et al 2002, 2005) and multiscale cross-sample entropy (Xia and Shang 2012). Interpretation 
of these measures needs to account for underlying dynamics and the potential influence of 
sampling time and selected time scales (Thuraisingham and Gottwald 2006).

The detrended cross-correlation coefficient, ρDCCA (Zebende 2011), is the fractal analysis 
counterpart to the linear correlation coefficient that can quantify correlations in non-stationary 
signals (Kristoufek 2014). Extensions of this work, such as the generalised detrended cross-
correlation coefficient, have been described elsewhere (Oświęcimka et al 2014, Kwapień et al 
2015, Shen et al 2015).

2.6. Considerations in technique selection and data collection

Technique selection ought to take into consideration the underlying assumptions of each tech-
nique, data requirements (how many data points are required, how large a dataset is required) 
and the impact of deviations from these assumptions. Most of the techniques described above 
depend strongly on assumptions of stationarity, being susceptible to bias when this does not 
hold. An exception to this is DFA, which was originally presented as a means of addressing 
non-stationarities (Peng et al 1995), mainly through the linear detrending step. While this may 
be true of certain non-stationarities, there is also the potential to introduce bias in the presence 
of non-linear trends (Bryce and Sprague 2012). Other assumptions include those of periodic-
ity, permitting valid transformation of a signal to the frequency domain.

Signal availability and the nature of their collection may also impose restrictions on the 
techniques applied. This is certainly the case for EEG, which may not be routinely monitored 
in the NICU environment, as well as for ECG, where sufficient separation of the electrodes 
may not be possible in a small-sized preterm infant, given other monitoring devices and poten-
tial irritation (Baird et al 1992). Blood pressure can be particularly helpful, though its continu-
ous measurement requires an invasive (umbilical or peripheral) arterial catheter. Temperature 
measurements, though continuously available, are not necessarily useful as deviations from 
the normal range may be masked by temperature-controlled incubator environments. The rou-
tine collection of oxygen saturation data from pulse oximetry and its signal availability ren-
ders it a good candidate for analysis, though acute changes in oxygen saturation have not been 
specifically investigated in the context of neonatal conditions such as sepsis or NEC (Sullivan 
and Fairchild 2015).
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The use of plethysmography-derived signals within the NICU context has been limited pre-
dominantly to time domain techniques, though with varying degrees of effectiveness. Renner 
et al evaluated the usefulness of respiratory variations in velocity time integral, peak flow 
velocity as well as the plethysmography variability index (Cannesson et al 2008) for predict-
ing fluid responsiveness in infants (Renner et al 2011). There is also potential for exploring 
features extracted from the raw plethysmography signal, such as respiration rate or those per-
taining to cardiovascular and neural fluctuations. The fluctuations from each manifest in this 
plethysmography signal at different frequencies, allowing each to be distinguished by their 
sinusoidal components (Nilsson 2013). This would be particularly beneficial for cases where 
ECG signals may not be available.

The presence of artefact may also confound clinical interpretation, from movement of the 
patient, mains contamination to the detachment of electrodes. Signal quality measures can 
thus help to contextualise the interpretation of these analyses. These can be applied in the form 
of a threshold for analysis of the selected window or as a means of adjusting the probability 
of prediction, as was used in a neonatal apnoea detection algorithm (Monasterio et al 2012). 
Pre-processing may also play a key role, where removal of cardiac artefact from the CI signal 
improved neonatal apnoea detection (Lee et al 2011) and the removal of non-linear trends 
facilitated valid interpretation of fluctuation analyses (Bryce and Sprague 2012). Removal of 
baseline wander from ECG similarly allows for accurate heart rate acquisition.

Nyquist’s theorem stipulates that the sampling frequency must be at least 2 times the high-
est frequency component of the signal, though the sampling frequency required for accurate 
and non-biased variability analysis may be higher. Motivated by computational efficiency, 
which is especially pertinent for real-time applications, a considerable number of studies have 
investigated the influence of sampling frequency on variability analysis (Merri et  al 1990, 
Garcia-Gonzalez et al 2004, Ziemssen et al 2008, Bhatia et al 2010, Ellis et al 2015, Choi and 
Shin 2017). Some have proposed analysis-driven minimum bounds for sampling frequency, 
such as the >25 Hz for pulse rate analysis from photoplethysmographic signals (Choi and Shin 
2017), >100 Hz for frequency-domain blood pressure variability (Bhatia et al 2010) and the 
caution against sampling at <12 Hz for HRV spectral analysis (Garcia-Gonzalez et al 2004).

3. Clinical applications

Clinical applications of variability analysis are often aimed at predicting the onset of critical 
conditions, leveraging technology and signal processing to assist healthcare providers (Griffin 
et al 2005) as well as prompting further bedside evaluation and consideration of appropriate 
tests or treatments (Fairchild et al 2013). A summary of these conditions and their current 
incidence rates is provided in table 1.

The above techniques have been applied to a range of neonatal intensive care applications, 
from HRV analysis for the prediction of sepsis (Griffin and Moorman 2001, Griffin et al 2003, 
Moorman et al 2006, Sullivan and Fairchild 2015) to early developments in IVH and mortality 
risk prediction (Gilmore et al 2011, da Costa et al 2015) to ECG and EEG analysis for seizure 
detection (Greene et al 2007, Greene de Chazal et al 2007). The following sections offer an 
overview of variability analysis that has been applied in the context of the NICU-relevant 
conditions summarised in table 1.

3.1. Neonatal sepsis and necrotising enterocolitis

Neonatal sepsis is a systemic infection which remains an important cause of morbidity and 
mortality in preterm infants (Stoll et  al 2002). Prolonged hospitalisation may predispose 
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preterm infants to late-onset sepsis due to indwelling vascular catheters and incompletely 
developed immunity (Moorman et al 2011). Late-onset sepsis, hereinafter sepsis, is charac-
terised by an onset of at least 3 d following birth, often originating from the hospital or NICU 
environment (Boghossian et al 2013). Risk of sepsis increases with decreasing birthweight 
and gestational age (Stoll et al 2002) and is associated with PDA, prolonged mechanical ven-
tilation, NEC and bronchopulmonary dysplasia (Neu et al 2008).

It is diagnosed via blood culture, though this may be limited by the low sampling volume 
(<0.5−1 ml) for neonates (Goldstein et al 2005, Connell et al 2007) and has been associated 
with false positives and negatives (Volante et al 2004, Dong and Speer 2014). Diagnosis may 
also not occur until after substantial deterioration or haemodynamic compromise (Sullivan 
and Fairchild 2015). Antibiotics are generally administered in response to confirmed sepsis or 
suspected sepsis on the basis of concerning signs such as increased apnoea episodes, inactivity 
or feeding intolerance (Sullivan and Fairchild 2015). These signs are neither very sensitive nor 
specific to the disease, overlapping with other conditions such as NEC.

Necrotising enterocolitis (NEC) affects the gastrointestinal tract, occurring most commonly 
in the small and large bowel (Henry and Moss 2009). In preterm infants, bacterial colonisation 
of the gut is abnormal and often delayed, which, in combination with external stressors and 
ischemic or hypoxic insults, may lead to mucosal injury. This may also be exacerbated by the 
invasion of certain pathogens, amplifying the inflammatory response (Papillon et al 2013). 
Key risk factors include prematurity and formula feeding though its pathogenesis is not well-
understood (Caplan 2008, Neu et al 2008). Clinical stages can be defined according to Bell’s 
criteria (I to III), with the latter two stages involving significant intestinal distension and ileus 
as confirmed via abdominal radiography (Bell et al 1978).

The premise for the early detection or prior to manifest clinical signs lies in the elevated 
levels of the cytokines which initiate sepsis or sepsis-like illnesses. These were reported by 
Kuster et al to be present up to 2 days preceding clinical diagnosis (Küster et al 1998). The 
general trend observed in these disease states has been a reduction in regularity, a term used 
interchangeably with complexity. Lake et al observed a reduction of SampEn in the lead up to 
clinical diagnosis of neonatal sepsis, while acknowledging its susceptibility to noisy or large 
spkies in the data (Lake et al 2002). In response to this, it was suggested that regularity based 
on the SampEn statistic requires interpretation alongside additional measures of complexity 
and non-stationarity (Lake et al 2002).

Griffin and Moorman observed a reduction in HRV and transient decelerations in heart 
rate (HR) in association with neonatal sepsis and sepsis-like illnesses which preceded clinical 
signs and abrupt deterioration. In some cases, this lead time was as much as 24 h (Griffin et al 
2005), motivating further exploration of this approach. An earlier publication of this work 
explored the use of time domain techniques such as the skewness of the asymmetrical RR 
interval histograms in discerning sepsis cases. A multicentre randomised trial using a novel 
HRC monitoring system was conducted, detecting both variability and transient decelerations 
in heart rate. Moorman et al reported a significant reduction in mortality rates from 10.2% to 
8.1% when this variability information was displayed alongside other signals (Moorman et al 
2011). A retrospective review of this study was also conducted on NEC cases in a subset of 
infants, with reports of significant increases in the HRC index prior to clinical diagnosis of 
NEC (Stone et al 2013). This elevation from the patient-specific baselines were observed from 
16 hours prior to diagnosis of NEC cases requiring surgical intervention and from 6 hours for 
the remaining cases (Stone et al 2013).

Recent work in this area has also demonstrated the potential utility of cross-correlation 
of vital signs in early detection of sepsis and NEC (Fairchild et al 2017). The cross-correla-
tion between HR and SpO2  was one of the best independent predictors of sepsis and NEC, 

Physiol. Meas. 38 (2017) R253

23



R266

Topical Review

increasing prior to diagnosis. This increase was also reported to be greater in NEC cases than 
in those with sepsis. The reported model including this statistic, was combined with HRC 
index from the HeRO monitor and found to significantly improve predictive ability (Fairchild 
et al 2017).

3.2. Intraventricular haemorrhage

Intraventricular haemorrhage (IVH) stands as the most prevalent intracranial haemorrhage in 
preterm neonates and remains a major concern in extremely preterm infants. The severity of 
the haemorrhage is defined by Grades I to IV of the Papile system, reflecting whether the area 
of bleeding is confined to the subependymal germinal matrix (I) or extends to the ventricular 
system (II to IV) (Papile et al 1978). Along with IVH, periventricular haemorrhagic infarction 
(PVHI) and cerebellar infarction are also important conditions for neurodevelopmental prog-
nosis. With increasing survival of infants born preterm, there is a growing number of those at 
risk of permanent brain injury, cerebral palsy or adverse neurodevelopmental outcomes (Volpe 
2008, 2009).

The preferred method for imaging the neonatal brain is cranial ultrasonography (van 
Wezel-Meijler et al 2010); it is highly sensitive in the detection of IVH and/or PVHI and 
cerebellar infarction. It allows the location and extent of the injury to be visualised (Volpe 
1989a). Currently, no treatment for IVH exists, though studies identifying risk factors and 
pathophysiology help to guide clinical care for prevention. One such study identified a strong 
association between improvements in blood pressure and increased in low-frequency variabil-
ity in blood pressure within infants exposed to inotropes, often administered to improve mean 
arterial blood pressure (Vesoulis et al 2017). This variability was quantified using spectral 
analysis of certain low-frequency (0.005–0.16 Hz) components of the blood pressure signal 
and may be used as an adjunctive measure of response to these medications and potentially 
mitigating risk of hypertension-induced IVH (Bel et al 1987) through more optimal titration 
(Vesoulis et al 2017).

Pressure passivity has been observed in cases of intraventricular haemorrhage, where the 
cerebral circulation is affected by fluctuations in system circulation. This autoregulation was 
quantified by Gilmore et al (2011) using COx, a cerebral oximetry index calculated from a 
running window correlation of between the arterial blood pressure (ABP) and cortical reflec-
tance oximetry. A similar approach was employed by da Costa et al (2015) in their definition 
of TOHRx, the running correlation between the tissue oxygenation index (TOI) as measured 
from near-infrared spectroscopy and heart rate (HR). Reduced complexity, as characterised 
by SampEn calculations over multiple time scales (multiscale entropy) was also observed in 
preterm infants who subsequently developed IVH (Sortica da Costa et al 2017).

In retrospective analyses of premature infants following IVH, altered autonomic functions 
have been observed (van Ravenswaaij-Arts et al 1991, Hanna et al 2000), as reflected by HRV 
analysis. The potential for predicting IVH has been explored using DFA to quantify the fractal 
dynamics of heart rate (Tuzcu et al 2009) as well as beat-to-beat mean arterial and systolic 
blood pressure (Zhang et al 2013). Both reported on increased short-term scaling exponent α1 
in infants who subsequently developed IVH.

The impact of impaired cerebral autoregulation associated with IVH and long-term neu-
rodevelopmental outcomes has been reported in literature (Futagi et al 2006, Bolisetty et al 
2013). The dynamic nature and multiple-time-scale (MTS) properties (Zhang et  al 1998, 
2000) of cebral autoregulation has recently been characterised using MTS correlation analysis 
of the mean arterial pressure and regional cerebral tissue oxygen saturation measured using 
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NIRS. Chalak et al reported associations of both in-phase short-term (15 mins) and long-term 
antiphase (4 h) time scales with abnormal neurodevelopmental outcomes in a small number 
(n = 5) of newborns (Chalak et al 2016).

3.3. Patent ductus arteriosus

Patent ductus arteriosus (PDA) is characterised by persistence of the ductus, resulting in 
shunting from the systemic to the pulmonary circulation. Though this is normal at birth, func-
tional closure of the foetal ductus generally occurs within 24 to 48 h of birth (Schneider and 
Moore 2006). Diagnosis is usually through cardiac ultrasound, allowing the degree of con-
striction and nature of the shunt to be characterised. Observational studies of PDA have shown 
a consistent association with various adverse outcomes such as NEC and IVH. Other studies 
have also reported on associations with neonatal chronic lung disease and death (Evans and 
Kluckow 1996, Kluckow and Evans 2000, Noori et al 2009).

Several studies have been focused on how and when to treat PDA (Laughon et al 2004, 
Benitz 2010, Evans 2015), more so than its effect on physiological parameters such as HRV. 
Although the overarching question of treatment continues, variability analysis of PDA-specific 
data may help to characterise other conditions with which it is correlated.

3.4. Neonatal apnoea and seizures

Apnoea, the cessation of breathing, is highly prevalent among very low birthweight infants 
(<1500 g) and often accompanied by bradycardia (HR < 100 beats per minute) and/or oxy-
gen desaturation (SpO2 < 80%). They are considered clinical events if cessation of breathing 
exceeds 20 s or 10 s in the presence of one of the above (Finer et al 2006). An assessment of 
central apnoea in preterm infants supported the inverse relationship between apnoea events 
and gestational and postmenstrual age (Fairchild et  al 2016). This study also reported an 
increase in apnoea events in the presence of bradycardia and desaturation prior to diagnosis of 
sepsis and NEC. Interestingly, such events were not more frequent in infants with IVH after 
adjustment for gestational age (Fairchild et al 2016).

Two main signals pertinent for neonatal apnoea detection are the chest impedance (CI) sig-
nal and the pulse-oximeter derived signal for oxygen saturation, with previous studies explor-
ing the relationship between desaturation and apnoea (Haider et  al 1995, 1996). Effective 
detection of apnoea based on respiration rate has often been confounded by inaccuracy of 
the CI signal, the presence of cardiac artefact and the fact that many infants are on mechani-
cal ventilation (Lee et al 2011, Sullivan and Fairchild 2015). It thus depends on the capacity 
to identify and filter out these artefacts as well as the algorithm for classification of relevant 
events. Validation of one such algorithm showed over 90% agreement with clinical experts 
(Lee et al 2011). This approach involved both the CI and ECG signals, where cardiac artefact 
was filtered from the CI interval and residual fluctuations were subsequently analysed using 
a running standard deviation (SD). Cessation of breathing was identified in excerpts below 
a defined variance threshold (Lee et al 2011). Reduced HRV was also reported for preterm 
infants with apnoea of prematurity compared with term neonates (Henslee et al 1997).

Seizures frequently occur within the neonatal period and are often characterised by rapid 
changes in heart rate, respiration rate and blood pressure (Bassan et al 2008). Other subtle 
seizure phenomena can include altered behaviour, motor manifestations such as peculiar limb 
movements and apnoea. Although there have been small-scale studies on the detection of 
seizures based on variability, specifically using heart rate based features, the precise nature 
of these effects have not been clarified. Vaugh et al observed a reduction in mean heart rate 

Physiol. Meas. 38 (2017) R253

25



R268

Topical Review

during seizure (Vaughn et al 1995), while the converse was reported by Greene et al in their 
investigations (Greene de Chazal et al 2007). The approaches to ECG-based seizure detection 
have utilised features spanning multiple domains (Greene de Chazal et al 2007, Malarvili and 
Mesbah 2009). These included the conventional time domain features such as mean, SD, coef-
ficients of variation and Hjorth parameters for quantifying activity, mobility and complexity 
(Hjorth 1973, Malarvili and Mesbah 2009, Oh et al 2014). Various frequency domain coef-
ficients of power spectral density were also extracted (Greene et al 2008, Temko et al 2011).

Although EEG-based approaches have been explored for adult seizures (Gardner et  al 
2006, Srinivasan et al 2007), similar studies have only recently been conducted on the neona-
tal population, with EEG not routinely monitored in the NICU. An example of this is the early 
work by Lommen et al in developing an algorithm for automated neonatal seizure detection. 
They used frequency analysis for identifying artefacts and reported a rise in the lower bound-
ary of the amplitude-integrated EEG signal during seizures in the studied newborns (n = 13) 
(Lommen et al 2007). Continuous changes inherent in the developing brain may render EEG 
results difficult to interpret at this stage and there are additional technical considerations when 
recording from a neonatal (therefore, small) scalp, ranging from skin resistance to the patho-
logically-bound states of activity.

There also remains the question of treatment and early interventions following detection, 
with potential neurotoxic risks of commonly used seizure medications (Bittigau et al 2002), 
especially given the lack of definitive evidence linking reduced seizure burden with neurode-
velopmental outcomes (Glass et al 2012).

4. Remaining questions and future directions

A summary of the parameters relevant for each condition and evidence for observed patterns 
in variability is presented in tables 1 and 2.

4.1. Multidimensional approaches for identifying key features and classifying disease

Studies and reviews on variability analysis techniques continue to emphasise the need for mul-
tiple techniques rather than a consensus on the use of a single approach (Seely and Macklem 
2004). Once these individual features have been extracted, it is necessary to evaluate their 
relevance (feature selection) as well as consider approaches for combining this information 
(feature classification).

Feature selection methods can be employed to improve model performance as well as 
mitigate risks of overfitting to the data. These algorithms can be broadly categorised as filter, 
wrapper and embedded approaches which have been reviewed in detail elsewhere (Saeys et al 
2007, Hira and Gillies 2015). Their use must also take into consideration computational effi-
ciency, specificity to the selected classification algorithm as well as the nature and number of 
features extracted.

In terms of classification, approaches ranges from multivariable logistic regression models 
and Bayesian models to decision trees, support vector machines and artificial neural networks, 
the details of which have been extensively reviewed (Michie et al 1994, Kotsiantis et al 2007).

At this stage, a considerable proportion of NICU-specific variability analysis has focused 
on single-parameter models, with an expanding breadth of application for HRV analysis. This 
is particularly true of approaches to identifying sepsis, NEC and IVH cases. A natural path for 
development and improved robustness in this area lies in multivariate models and the combi-
nation of features which have independently been shown to be predictive of such conditions. 
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This is further motivated by the understanding these conditions are systemic and manifest in 
ways that are not limited to a single physiological parameter, spanning cardiac signals to res-
piration rate, arterial blood pressure and oxygen saturation. Their application however is not 
without unique consideration—respiration rate, for example, may be confounded by mechani-
cal ventilation in the NICU context.

HRV and respiration rate variability have been independently shown to offer predictive 
potential in the NICU context and may offer improved prediction performance through com-
bination with each other or other informative features. This approach was adopted by Green 
et al in the discernment of adult organ dysfunction cases and severity characterisation (Green 
et al 2013). ECG and EEG-based features were also combined and reported to improve auto-
matic neonatal seizure detection (Greene et al 2007).

From a classification standpoint, multiclass classifiers also present opportunities to char-
acterise the severity of these conditions. IVH for example, is a suitable candidate for such 
classification, given the staged approach to its diagnosis using the four-grade Papile system 
(Papile et al 1978). Similar approaches to identifying the severity of septic shock in the case of 
neonatal sepsis may also be possible. Among the available approaches for classification, there 
are also varying degrees of complexity. These range from simpler logistic regression models 
to the integration with support vector machines (Temko et al 2011, 2012) and neural networks 
(Srinivasan et al 2007).

4.2. Clinical interpretation

There are a number discussion points surrounding the clinical applications of variability anal-
ysis. Although variability studies may have demonstrated potential to distinguish or classify 
disease states on this basis, there remains the challenge of physiological interpretation of these 
differences. Changes in indices of variability may not necessarily indicate a physiological 
change in system control.

One such example is found in the interpretation of the frequency components of HRV 
which was highlighted early on by the task force paper (Malik 1996). The higher frequency 
component has been associated with parasympathetic input, though there remains conjec-
ture around the interpretation of the lower frequency component. It is thought to be reflec-
tive of both sympathetic and parasympathetic activity (Eckberg 1997, Longin et  al 2005, 
Billman 2007, Shaffer et al 2014) by some, and an indicator of sympathetic excitation by 
others (Malliani et al 1991, Montano et al 2009), though this evidence mostly stems from 
investigations of orthostatic tilt effects on HRV (Reyes del Paso et al 2013). The interpretation 
of such HRV changes also requires consideration that these components may be influenced by 
both non-neural and autonomic mechanisms and their valid interpretation may be reliant on 
controlled studies and specific populations (Lombardi 2011).

Another example is the scaling exponent α from DFA, which can be defined for short and 
long-term (α1 and α2, respectively) ranges. Modelling has aided the understanding of how 
changes in sympatho-vagal activity can impact these exponents calculated for HRV (Rojo-
Álvarez et al 2007), while studies using vagal blockade by atropine have demonstrated an 
increase in the short-term scaling exponent of blood pressure fluctuations (Castiglioni et al 
2011).

These studies have helped to clarify the mechanisms that may influence parameters from 
advanced analyses, although in practice, clinical application and interpretation is often dif-
ficult. Associations between variability parameters and respective pathophysiology may be 
confounded by external influences, such as medically-indicated interventions altering the 
underlying dynamics of the data or mechanical ventilation in the interpretation of respiratory 
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variability parameters. Another factor is limitations in the data acquired, e.g. lack of precision 
in heartbeat detection for HRV or air flow or breath timing for respiratory variability analyses, 
missing data or insufficient length of monitoring, presence of artefacts, linear or non-linear 
trends or violation of assumptions behind the analysis techniques. Finally, there is also the 
possibility that these techniques are simply unable to capture the underlying mechanisms for 
changes in pathophysiology.

Although the exact mechanisms of influence may be unknown and under investigation, we 
may continue to develop an understanding of how variability patterns and their links to the 
onset of conditions such as neonatal sepsis, seizures and IVH.

4.3. Other emerging applications

Characterising physiological variability can also extend beyond neonatal conditions and the 
onset of diseases; it has also been applied in the prediction of extubation-readiness in neo-
nates, with Kaczmarek et al reporting significant HRV reductions in those who failed extu-
bation (Kaczmarek et al 2013). This becomes particularly important when considering the 
increased incidence of neurodevelopmental problems linked to prolonged mechanical ventila-
tion (Walsh et al 2005). A cardiorespiratory approach was also used in this area (Precup et al 
2012), where frequency-based features of HRV and parameters measured using respiratory 
inductive plethysmography were combined for training support vector machine classification.

Several monitoring systems and software have been developed, grounded in the work on 
clinical/physiological variability analysis. The previously described HeRO monitor represents 
a more neonate-specific development, although recent years have seen the introduction of 
continuous individualised multiorgan variability analysis (CIMVA) software. This computes 
features (such as HRV and respiratory rate variability) using a range of variability analysis 
techniques and accepting input from multiple physiological waveforms (Bravi 2013). Systems 
such as these highlight the potential to support clinical decision-making and risk assessment, 
though there remains the question of the extent to which they impact and are responsible for 
the final decision. While specific medical claims are not made in relation to these technolo-
gies, they may still be introduced to these settings as objective tools for clinicians to improve 
prognostication and guide interventions (Seely and Macklem 2004).

5. Conclusion

The neonatal intensive care environment presents many unique challenges to monitoring and 
management of its patients, from the criticality of the conditions faced, the abrupt and sudden 
nature of changes in system state as well as the long-term implications of the treatments done 
at this stage of life. The availability of physiological signals and monitoring systems in the 
NICU establishes a foundation for further signal processing. Variability analysis techniques 
can be utilised to capture short- and long-term data trends, develop markers for risk as well 
as assist understanding of the patterns associated with the onset of illness and other critical 
conditions. In an appropriate context and with sufficient validation, these techniques offer 
caregivers more time in responding to and treating critically-ill patients.
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2.2 Concluding remarks

This chapter reviews several time and frequency domain techniques for variability

analysis as well as current applications in neonatal intensive care, from predictive

monitoring to characterising physiological patterns associated with specific treat-

ments and conditions. In the following three chapters, we explore the potential

for early identification of infants at risk of IVH (Chapter 3), characterise the im-

pact of caffeine therapy on cardiovascular variability (Chapter 4), and describe

the dynamics of cerebral autoregulation (Chapter 5).
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Chapter 3

Identification of preterm infants

at risk of IVH

This chapter presents the early work on model development for the identification

of infants at high risk of developing IVH. This chapter addresses the following

research questions:

2: Can fluctuation analysis and multivariable models be applied to improve

the early detection of IVH in the NICU setting?

3: Can pre-processing techniques improve the performance of DFA?

The work on this chapter utilises detrended fluctuation analysis (DFA), de-

scribed in Chapter 2, to characterise blood pressure and respiratory variability in

preterm infants. The content presented in this chapter is published [26] as:

Huvanandana, J., Nguyen, C., Thamrin, C., Tracy, M., Hinder, M. and McE-

wan, A.L., 2017. Prediction of intraventricular haemorrhage in preterm infants

using time series analysis of blood pressure and respiratory signals. Scientific

reports, 7, p.46538.
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3.1 Prediction of intraventricular haemorrhage

in preterm infants using time series analysis

of blood pressure and respiratory signals
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Prediction of intraventricular 
haemorrhage in preterm infants 
using time series analysis of blood 
pressure and respiratory signals
Jacqueline Huvanandana1, Chinh Nguyen2, Cindy Thamrin2, Mark Tracy3,4, Murray Hinder1,3 & 
Alistair L. McEwan1

Despite the decline in mortality rates of extremely preterm infants, intraventricular haemorrhage 
(IVH) remains common in survivors. The need for resuscitation and cardiorespiratory management, 
particularly within the first 24 hours of life, are important factors in the incidence and timing of IVH. 
Variability analyses of heart rate and blood pressure data has demonstrated potential approaches to 
predictive monitoring. In this study, we investigated the early identification of infants at a high risk 
of developing IVH, using time series analysis of blood pressure and respiratory data. We also explore 
approaches to improving model performance, such as the inclusion of multiple variables and signal pre-
processing to enhance the results from detrended fluctuation analysis. Of the models we evaluated, 
the highest area under receiver-operator characteristic curve (5th, 95th percentile) achieved was 0.921 
(0.82, 1.00) by mean diastolic blood pressure and the long-term scaling exponent of pulse interval (PI 
α2), exhibiting a sensitivity of >90% at a specificity of 75%. Following evaluation in a larger population, 
our approach may be useful in predictive monitoring to identify infants at high risk of developing IVH, 
offering caregivers more time to adjust intensive care treatment.

Intraventricular Haemorrhage (IVH) remains a serious threat to survival for preterm infants and neurodevel-
opmental outcomes1. Despite advances in modern neonatal care such as antenatal steroids, artificial surfactant 
treatment and the use of neuroprotective agents such as magnesium sulphate given to mothers in labour, rates 
of IVH, particularly high grade, remain unchanged. Prematurity, respiratory-distress syndrome and mechanical 
ventilation are among the factors that may predispose infants to IVH. Recent studies have also suggested an asso-
ciation between IVH and cerebral pressure passivity, that is, where changes in cerebral blood flow correspond 
to changes in blood pressure2. The need for resuscitation and cardiorespiratory management of preterm infants 
within the first 24 hours of life play an important role in the development and timing of IVH3,4, where the majority 
of these cases can be detected at their full extent by the end of the first postnatal week5. The potential to identify 
infants at high risk of developing IVH is thus, particularly important.

Retrospective studies of premature infants after the diagnosis of IVH have highlighted altered autonomic 
functions which are reflected by heart rate variability analysis6,7. In particular, one study showed that these differ-
ences could be detected using electrocardiogram data from the first 24 hours of life8. Variability of beat-to-beat 
systolic blood pressure and mean arterial pressure has also been shown to offer useful information in distin-
guishing infants who later developed IVH from those who did not9. Such distinctions were demonstrated using 
detrended fluctuation analysis (DFA), a non-linear time domain technique that is able to quantify long-range 
power law correlations in a given time series. Its application is characterised by a scaling exponent (α) which can 
be calculated over different time scales and indicates the corresponding degree of correlation10,11.

More recent work in this area by Fairchild et al. has demonstrated associations between a heart rate charac-
teristic index and adverse neurodevelopmental outcomes or white matter damage12. Models for early prediction 
of IVH have explored either clinical risk factors, as in the case of Luque et al.13 with an AUC of 0.79, or employed 
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time series analysis techniques and physiological signals as in Tuzcu et al. who reported a sensitivity of 70% and 
specificity of 79% for their model using heart rate variability8.

The objective of this study was twofold; firstly, to explore means of improving prediction of IVH from DFA 
through pre-processing, and secondly, to evaluate the potential of multivariable or multimodal models in the 
prediction of IVH. The latter objective focused specifically on combinations of blood pressure and respiratory 
features and inherently involved an evaluation of robustness as applied in a clinical context. The features evalu-
ated comprised of the mean (μ) as well as short- and long-term scaling exponents derived from DFA (α1 and α2, 
respectively), extracted from five different time series. These were: mean arterial pressure (MAP), systolic blood 
pressure (SBP), diastolic blood pressure (DBP) and pulse interval (PI) series as derived from the arterial blood 
pressure data, as well as the interbreath intervals (IBI) from the respiratory air flow data.

Results
Study Population. The study cohort consisted of 27 low birth-weight (< 1500 g) infants, 8 of which subse-
quently developed IVH. We examined the differences in physiological characteristics and other metadata between 
the two groups, as summarised in Table 1. Although the IVH and non-IVH groups did not exhibit significant dif-
ferences in the collected metadata, certain clinical characteristics, namely, the mean DBP values were observed to 
be significantly different for the two groups after non-linear trend removal (p <  0.05). This established a founda-
tion for fitting the univariate logistic regression models, though evaluation of their overall performance requires 
reference to leave-one-out cross-validation (LOOCV) results.

Effect of Detrending. In the initial stages of model fitting, we observed that in certain instances, the arterial 
blood pressure was subject to non-linear drift. We examined the effect of detrending the arterial blood pressure 
signal and noted that prediction performance of the fitted logistic regression models could be improved. This 
detrending affected the linear blood pressure features in particular, which also propagated to the beat-to-beat 
blood pressure values and thus the scaling exponents derived from DFA (α1 and α2, the short- and long-term 
scaling exponents, respectively). The Mann-Whitney U-test comparisons of the non-detrended features are 
shown in Table 2, where the effect of detrending was characterised by the changes in AUC and p values from the 
two-sided Mann-Whitney U-test. For example, the AUC scores of the mean DBP model improved from 0.757 to 
0.807 subsequent to detrending. A similar increase from 0.757 to 0.771 was also observed for the univariate model 
of the long-term scaling exponent of DBP (DBP α2), motivating the inclusion of this pre-processing step for the 
subsequent analyses. The histograms of mean DBP and DBP α1 are also shown in Fig. 1.

Univariate Predictors of IVH. We fitted univariate logistic regression models using various linear and DFA 
features, taking the mean across all qualifying time windows of data for each subject. We evaluated the AUC, the 
95% confidence interval (5th, 95th percentile) according to the Delong method for determining standard error14, 
as well as the positive likelihood ratio and threshold corresponding to a specificity of 75%. These results are sum-
marised in Table 3. Overall, the short-term fractal exponents (α1) derived from the MAP, SBP and DBP signals as 
well as the mean DBP yielded the highest AUCs. Respiratory variables were not found to be strongly predictive.

Multivariable Predictors of IVH. It was also observed that model performance could also be improved 
through combination of the predictors extracted for the univariate models, as shown in Table 4. Predictor com-
binations that were significantly correlated were excluded to mitigate effects of collinearity. Many of the multi-
variable models exhibited higher AUC scores than univariate models, with the highest being the combination of 
mean DBP and PI α2.

Variable IVH (n = 7) Non-IVH (n = 20) p

Gestational age (weeks) 26.8 ±  1.2 26.9 ±  1.8 0.781

Birthweight (g) 1120 ±  282 1029 ±  293 0.580

Sex (% male) 57.1 ±  49.5 65.0 ±  47.7 0.741

CRIBII 9 ±  1 9 ±  2 1.000

PDA (%) 85.7 ±  35.0 80.0 ±  40.0 0.774

RDS 1.0 ±  0.0 1.0 ±  0.0 1.000

Apgar 1-min 6 ±  1 6 ±  2 0.696

Apgar 5-min 7 ±  1 7 ±  1 0.421

MAP (mmHg) 32.5 ±  6.1 35.2 ±  4.7 0.422

DBP (mmHg) 25.0 ±  3.9 29.0 ±  4.6 0.050

MAPc (mmHg) 32.1 ±  5.6 35.5 ±  4.2 0.234

DBPc (mmHg) 24.6 ±  3.5 29.4 ±  4.1 0.019

Table 1.  Comparison of physiological variables between infants who later developed intraventricular 
haemorrhage (IVH) and those who did not (non-IVH). Values are reported as mean ±  SD. cDenotes 
detrended features, CRIBII is the Clinical Risk Index for Babies score II, PDA is Patent Ductus Arteriosus and 
RDS is Respiratory Distress Syndrome. p values are derived from a two-sided Mann-Whitney U-test where 
significance is defined as p <  0.05.
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Similar results were obtained when evaluating all qualifying windows and with the inclusion of gestational age. 
Note however that the comparisons with the best performing univariate model (i.e. mean DBP, Table 3) were not 
statistically significant (p >  0.05) due to high degree of overlap. The ROC curves for a number of these models are 
displayed in Fig. 2, where the non-linear detrending process to obtain the DBPc μ feature is illustrated in Fig. 3.

Leave-One-Out Cross-Validation. The models were further evaluated using LOOCV, where the proba-
bility estimates of each testing sample were used to construct a receiver-operator characteristic (ROC) curve15,16, 
as summarised in the latter column of Table 4. Delong comparison of these LOOCV ROC curves with the corre-
sponding LOOCV mean DBP model did not exhibit statistically-significant results (p >  0.05), with the exception 
of the mean DBP and SBP α1 combination.

Sensitivity Analysis. The models used to obtain these results were based on the mean feature(s) calcu-
lated from all qualifying 10 min windows for each subject, with a 30 sec overlap. To evaluate how robust these 
results were, we examined the effect of including all individual windows rather than the mean feature per sub-
ject, of using non-overlapping windows and of including gestational age. The first two cases involved use of a 
mixed-model allowing for repeated measures while the latter involved the addition of gestational age as a predic-
tor in the existing multivariable models. In all three cases, we found that mean DBP and PI α2 remained the most 
predictive combination for IVH (where AUC =  0.88, 0.86 and 0.85 for the three cases, respectively, compared to 
the AUC =  0.92 reported in Table 4).

Discussion
Summary of findings. This study evaluated the blood pressure and respiratory features in discerning infants 
with IVH from those without. The highest AUC achieved was 0.921 (95% CI 0.82, 1.00) by the model fitted with 
PI α2 and mean DBP. The results of cross-validation also supported this, with an AUCLOOCV of 0.821 (0.66, 0.99). 
This model exhibited a sensitivity of > 90% at a specificity of 75% which is greater than that reported for the heart 
rate variability-based model from Tuzcu et al. (70% sensitivity, 79% specificity)8. This latter cohort was of a similar 

Variable IVH Non-IVH AUC AUCc p pc

MAP

 μ 32.5 ±  6.1 mmHg 35.2 ±  4.7 mmHg 0.607 0.657 0.422 0.234

 α1 0.96 ±  0.17 0.78 ±  0.19 0.779 0.779 0.033 0.033

 α2 1.10 ±  0.06 1.00 ±  0.18 0.671 0.65 0.194 0.257

SBP

 μ 41.9 ±  9.7 mmHg 42.7 ±  5.4 mmHg 0.564 0.55 0.638 0.719

 α1 0.83 ±  0.11 0.69 ±  0.15 0.764 0.771 0.043 0.038

 α2 1.04 ±  0.08 0.97 ±  0.16 0.643 0.664 0.281 0.213

DBP

 μ 25.0 ±  3.9 mmHg 29.0 ±  4.6 mmHg 0.757 0.807 0.05 0.019

 α1 0.85 ±  0.12 0.68 ±  0.20 0.786 0.807 0.029 0.019

 α2 1.05 ±  0.06 0.93 ±  0.16 0.757 0.771 0.05 0.038

Table 2.  Effect of Detrending. Values are reported as mean ±  SD, p values are from Mann-Whitney U-tests 
from the non-detrended data. AUC is the area under the ROC curve for prediction of IVH. Note that AUCc and 
pc are obtained from the detrended data.

Figure 1. Normalised histograms of (a) mean DBP and (b) DBP α1 for IVH and non-IVH groups. The 
distributions for each group were based on features extracted from all individual windows which met the quality 
criteria.
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size (n =  24), though it was limited to very low birthweight infants (< 1000 g) as opposed to our low birthweight 
cohort, potentially contributing to the difference in IVH representation observed (41.7% compared to 29.6%). 
Although the univariate model fitted with mean DBP exhibited an AUC of 0.807 in the initial analysis, results 
from LOOCV cautioned its use as a sole predictor, with an AUC of 0.607 and a non-significant 95% confidence 
interval of (0.38, 0.88).

Effect of detrending. Out of all the factors we examined, detrending as part of the pre-processing phase 
of analysis resulted in the greatest improvement in prediction of IVH. It rendered both mean DBP and DBP α2 
significantly different (p <  0.05) between the IVH and non-IVH groups, where the AUC scores for two univariate 
models fitted with these features increased from 0.757 to 0.807 and 0.771, respectively (Tables 2 and 3). These 
improvements suggest that long-term drift and/or baseline wander of the blood pressure signals, among other 
aspects of signal quality, may confound the results from DFA as well as linear parameters. The significant contri-
bution of mean DBP is of particular importance, given previous assertions that linear features alone were not an 
informative proxy of cerebral perfusion pressure17 and reports that such features were not significantly different 
between the IVH and non-IVH groups9. This relationship to DBP may also have been a reflection of a widened 
pulse pressure, seen in symptomatic patent ductus arteriosus. It is necessary to note however that this feature was 
not explicitly evaluated in the previous studies. Aside from the detrending, this analysis differed in other aspects 
including the quality control measures for window selection and the evaluation process; the features extracted 
represent the mean of all qualifying 10 min windows across the recording, rather than a single segment. In the 
clinical application of DFA to monitored signals, we strongly recommend examination of signal data to determine 
whether overall detrending is necessary prior to analysis.

Use of bivariate models. Subsequent to detrending, a further increase in AUC achieved through fitting of 
bivariate models, where the combination of mean DBP with MAP α1 and PI α2, for example, exhibited respec-
tive scores of 0.871 and 0.921. This would suggest that relevant, non-redundant information may be captured 
using linear and DFA-based approaches in the prediction of IVH. The short-term scaling exponents for the 
beat-to-beat MAP and SBP, along with mean DBP were shown to be relatively robust markers in prediction 
of IVH for the studied cohort. Although all of the studied infants had triggered ventilation modes (synchro-
nised intermittent positive pressure ventilation), breathing termination was not employed and so the potential 
for adverse patient ventilator interaction was possible. Previous work examining the impact of patient-ventilator 
asynchrony indicates the significant potential for IVH with this phenomenon18,19. These results align with those 
previously reported9 and the altered vagal nerve activity in infants with IVH20. From further evaluation of the 
bivariate models, it was clear that the initial analysis did not necessarily translate to robust and consistent per-
formance in leave-one-out cross-validation. The model with the highest AUC in the initial analysis achieved an 
AUCLOOCV of 0.821 (0.66, 0.99), though it did not exhibit a statistically significant improvement on the univariate 

Model AUC (95% CI) p Threshold LR

MAP

 μ 0.657 (0.37, 0.95) 0.218 31.72 mmHg 2.29

 α1 0.779 (0.60, 0.96) 0.359 0.92 2.86

 α2 0.650 (0.44, 0.86) 0.839 1.08 2.40

SBP

 μ 0.550 (0.20, 0.90) 0.389 37.96 mmHg 2.29

 α1 0.771 (0.58, 0.96) 0.382 0.81 2.86

 α2 0.664 (0.43, 0.90) 0.792 0.94 1.60

DBP

 μ 0.807 (0.62, 0.99) 0.022 26.34 mmHg 2.86

 α1 0.807 (0.64, 0.97) 0.278 0.79 3.43

 α2 0.771 (0.59, 0.95) 0.415 1.02 2.80

PI

 μ 0.543 (0.25, 0.83) 0.759 50.10 ms 1.40

 α1 0.607 (0.38, 0.84) 1.000 0.42 1.40

 α2 0.707 (0.45, 0.97) 0.709 1.08 2.29

IBI

 μ 0.707 (0.46, 0.96) 0.643 115.88 ms 2.40

 α1 0.500 (0.25, 0.75) 0.568 0.52 1.14

 α2 0.557 (0.26, 0.85) 0.813 0.45 0.40

Table 3.  Univariate Logistic Regression models. Models were fitted with mean (μ), short- and long-term 
scaling exponents (α1 and α2, respectively) for five time series: mean arterial (MAP), systolic (SBP) and diastolic 
(DBP) blood pressure, as well as pulse (PI) and interbreath (IBI) intervals. Positive likelihood ratios (LR) and 
corresponding thresholds are reported at a specificity of 75%. 95% confidence intervals (CI) and p values 
reported for the AUC are derived from the Delong approach14 for determining standard error and comparison 
with the reference ROC of the non-detrended mean MAP model.

44



www.nature.com/scientificreports/

5Scientific RepoRts | 7:46538 | DOI: 10.1038/srep46538

reference model (mean DBP)14. It was interesting to note the inclusion of pulse interval-based features in the 
highest-scoring model in both the initial analysis and cross-validation, given its use as an estimate of heart rate 
variability and the reported high correlation between the two21,22. The accuracy of this estimation however, has 
not been clarified, particularly in the neonatal context, though electrocardiogram-based heart rate variability has 
been found to offer useful information in distinguishing infants with and without IVH8.

Addition of respiratory signals. In this study, we found that the addition of respiratory signals did not 
considerably improve model performance. The fractal dynamics of respiration have been applied in the context 
of preterm infants23,24, though not with respect to IVH. As for the models fitted with interbreath interval (IBI) 
features, mechanical ventilation may have contributed to their observed lack of prediction capacity (p >  0.05), 
despite the relevance of respiration mechanics in the development of IVH18. It is also possible that the IBI-based 
features were not suited to characterising patient-ventilator asynchrony.

Clinical significance and application. Hypercarbia, high ventilator pressure and patency of the ductus 
arteriosus are among the factors and events that may influence the fluctuation of blood pressure of preterm 
infants in the neonatal intensive care unit25. Infants who later developed IVH exhibited lower mean DBP and a 
higher DBP α2 (p <  0.05) across the entire recording in this study. Recent studies have reported a range of obser-
vations pertaining to blood pressure and IVH, with the main focus on characterising cerebral perfusion. These 
include reports of IVH being associated with the elevated diastolic closing margin17 and significant deviation 
above a defined optimal MAP value in infants who later developed IVH26.

This approach may be applied to a clinical context in a manner similar to that shown in Fig. 4, offering exam-
ples of both correct and incorrect classification of IVH from the studied cohort. A threshold may be defined 
according to the dashed line in each of the cases (a) to (d), where calculated probabilities exceeding this threshold 

Feature 1 Feature 2 AUC (95% CI) p LR AUCLOOCV

SBP α1 DBP μ 0.843 (0.68, 1.01) 0.009 2.86 0.721 (0.50, 0.94)*

PI α1 DBP μ 0.843 (0.69, 1.00) 0.014 2.86 0.643 (0.40, 0.89)

DBP α1 DBP μ 0.864 (0.72, 1.00) 0.022 2.86 0.750 (0.56, 0.94)

PI α2 MAP μ 0.864 (0.72, 1.01) 0.068 3.43 0.679 (0.46, 0.89)

MAP α1 DBP μ 0.871 (0.74, 1.01) 0.027 3.43 0.743 (0.55, 0.94)

PI α2 DBP μ 0.921 (0.82, 1.02) 0.035 4.00 0.821 (0.66, 0.99)

Table 4.  Multivariable logistic regression models. Features included mean (μ), short- and long-term scaling 
exponents (α1 and α2, respectively) for mean arterial (MAP), systolic (SBP) and diastolic (DBP) blood pressure, 
as well as pulse interval (PI) time series. LR denotes the positive likelihood ratios, the 95% confidence intervals 
(CI) are reported for the AUC. p values are derived from the Delong comparison14 with the non-detrended 
mean MAP model. The corresponding AUCs from leave-one-out cross-validation (AUCLOOCV) are also 
reported, where *denotes a statistically-significant (p <  0.05) difference from the Delong comparison of the 
LOOCV mean DBP model14.

Figure 2. Receiver-Operator Characteristic Curves. These show the ROC curves for the non-detrended 
univariate mean DBP (DBP μ) model, the impact of detrending this feature (DBPc μ), the addition of a 
respiratory feature (IBI α2) as well as two of the highest-scoring models (DBP μ combined with MAP α1 and PI 
α2, respectively).
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could flag infants at high-risk of developing IVH. Further model evaluation requires validation on a larger and 
more balanced cohort to estimate the prediction error and support its potential application in a clinical context.

Limitations. We acknowledge that this study was limited by the size of the dataset (n =  27) as well as rep-
resentation of IVH (29.6%), slightly lower than the referenced 35–45% of incidence reported in neonatal care 
facilities27. Model evaluation was also limited by the low number of IVH cases (n =  8), though our LOOCV and 
sensitivity analyses showed the main findings to be consistent. Another limiting factor was the signal quality of 
the recordings which was managed by implementing quality control measures as part of the feature extraction 
process.

Conclusion
In conclusion, this study found mean DBP and short-term scaling exponents from beat-to-beat MAP, DBP and 
SBP to be useful markers in the prediction of IVH in preterm infants. Non-linear trend removal and the inclu-
sion of additional features such as the short-term scaling exponent (α1) of MAP was able to improve model 
performance. Of the models evaluated, the one that performed consistently in both the initial analysis and 
cross-validation was fitted with mean DBP and PI α2. In a clinical context, such an approach to signal processing 
and predictive monitoring could be applied, where a running 10 min window could continuously evaluate the 
relevant features from qualifying segments of data. Following evaluation in a larger population, these features may 
be helpful in identifying infants at high-risk of developing IVH, offering caregivers more time to adjust intensive 
care treatment.

Methods
Data Collection. Physiological data was collected from the infants within 1–3 hours of birth as part of a pro-
spective clinical investigation at a large tertiary neonatal intensive care unit in Sydney, Australia. The study was 
approved by the Sydney West Area Health Service Human Research and Ethics and conducted according to the 
World Medical Association Declaration of Helsinki. Informed parental consent was obtained in all cases.

Inclusion criteria for the cohort comprised low birthweight (< 1500 g), gestational age (< 30 weeks) and an 
absence of significant congenital anomalies. Of the 46 infants enrolled, 27 infants had arterial blood pressure 
and air flow wave recordings with sufficiently long, artefact-free segments. The average (SD) length of recording 
was 156 (34) mins. Intra-arterial blood pressure was measured using an umbilical or peripheral arterial catheter, 
following single-point calibration to atmospheric pressure, collected using a bedside patient monitor (Philips 
Agilent Systems, Philip Healthcare, North Ryde, Australia), while the raw air flow wave was acquired from a 
ventilator (Babylog 8000, Drägerwerk, Lübeck, Germany). Both signals were sampled at 1 kHz and recorded by 
an analog data acquisition system (ADInstruments, Sydney, Australia). Cranial ultrasounds were performed at 
2, 12, 24 and 36 hours then daily for the first week. The presence and grade of IVH was determined according to 
the Papile system27.

Signal Processing and Data Analysis. Signal processing and feature extraction was completed in Python 
(Python Software Foundation, version 2.7. https://www.python.org/). Each of the arterial blood pressure and 
air flow signals were down-sampled to 125 Hz prior to analysis for computational efficiency. This frequency was 
sufficient for peak detection in both respiratory and blood pressure signals. From the downsampled signals, the 
following time series were extracted; the beat-to-beat MAP, SBP, DBP and PI, as derived from arterial blood pres-
sure, as well as IBIs derived from air flow data. The signal quality constraints of the air flow data limited extraction 
of other respiratory features such as peak flow.

Only the arterial blood pressure signal was found to exhibit significant drift, defined by non-linear trends 
in the diastolic and systolic blood pressure ranges. Thus, the detrending was applied solely to this signal, as 

Figure 3. Detrending of overall segment. (a) shows the original signal and the corresponding non-linear 
trend, while (b) displays the signal after removal of this trend.
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shown in Fig. 3. Such a correction would also minimally impact the derivation of the IBI-based features from 
the air flow signal. The overall trend of each signal was determined using a large-window median filter (window 
width =  1000 ms) on a further downsampled signal and the mean-centred trend was subsequently removed from 
the original arterial blood pressure signal. This approach was similar to the baseline wander removal that has been 
applied widely prior to feature extraction from the electrocardiogram signal28. An example of this detrending 
process is shown in Fig. 3.

The features used in IVH prediction were extracted from a running 10 min window of arterial blood pressure 
and air flow data, shifted in 30 sec increments across the total recording length. This approach was adopted to 
simulate the application of these techniques in a clinical setting, where windows which fulfilled the quality criteria 
were included for feature extraction. This criteria comprised defined ranges for the allowable number of beats 
and breaths in a given window (40–250 beats per minute and > 20 breaths per minute), a maximum limit for an 
absence of detected beats (15 sec) as well as an absence of large spikes in the arterial blood pressure signal (range 

Figure 4. Arterial blood pressure data and the predicted probability for IVH using the highest scoring model, 
mean DBP and PI α2 for correct classification of (a) IVH and (b) non-IVH, as well as incorrect classification of 
(c) IVH and (d) non-IVH. The threshold for classifying IVH, designated by the dashed line was defined at 90% 
specificity and 85% sensitivity. Red and blue markers represent windows that exceeded and did not exceed the 
threshold, respectively.
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of beat-to-beat SBP < 30 mmHg). For each respective time series, outliers were removed by imposing a maximum 
change of 150% from the previous data point and also a maximum loss of 30% for each window. Features includ-
ing the mean (μ), short- and long-term scaling exponents (α1, α2, respectively) from DFA of the five time series 
(MAP, SBP, DBP, PI and IBI) were subsequently extracted.

Developed by Peng and co-workers10, DFA is able to quantify long-range power law correlations and accom-
modate for confounding non-stationarities often seen in real-world signals. It does this through the detrending, 
that is, linear trend removal, step prior to calculating the root-mean squared fluctuation as defined in equation 1.

∑= −
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where y(k) is any given time series, yn(k) the local linear trend for a given segment, and N the number of data 
points in the series for a given round of analysis. The application of DFA is further explained by Thamrin et al.11.

The scaling exponent α is calculated from the gradient of the line fitted to the Log-Log relationship between n 
and F(n). In this case, the short-term scaling exponent was defined over 4–15 beats, as aligned with similar obser-
vations of this data9 and similarly defined for heart rate variability analysis of preterm infants8. The long-term 
scaling exponent was determined across 15–50 beats.

Model Fitting and Evaluation. Statistical analysis was completed using R 3.3.1 software29. Logistic regres-
sion models were used to fit the mean of extracted predictors across all qualifying 10 min windows, while the AUC 
was used to assess accuracy in predicting IVH. Fitted models were evaluated using leave-one-out cross-validation, 
where the predicted probability of each test sample was subsequently compiled and used to generate a ROC curve 
for performance comparison.
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3.2 Concluding remarks

The work presented in this chapter addresses the second aim of the dissertation

to explore the potential for applying signal processing and variability analysis

in the early identification of preterm infants at risk of IVH. In the NICU set-

ting, previous work has uncovered the value in sophisticated time series analysis

of physiological signals for the prediction of IVH within the first few hours of

birth [20, 27]. In this chapter, the thesis builds on the work by demonstrating

that prediction of IVH using DFA can be improved by careful pre-processing of

the signals and combining both linear and non-linear measures of blood pressure

variability, while showing that the inclusion of respiratory features has limited

benefit. The predictive performance of developed models also represents an im-

provement on the initial non-detrended counterparts (Appendix I).

The analysis and model combining mean diastolic blood pressure (DBP µ)

with the long-term pulse interval scaling exponent (PI α2) requires validation on

a larger and more balanced dataset. There are currently no interventions for IVH:

following diagnosis, preterm infants may receive monitoring for hydrocephalus,

haemodynamic and respiratory support as well as supportive care [28]. While such

a model may help to identify high-risk infants and potential predictive variables,

a greater understanding of the mechanisms leading to injury is required.

In this chapter, the thesis found that the combination of both linear and non-

linear metrics holds predictive value in identifying infants at risk of later brain

injury. The techniques for analysing physiological signals are both diverse in ap-

proach and application; they may assist in detection of a functional outcome or

clinically-important events, though they may also facilitate an understanding of

the mechanisms behind certain treatments and therapies routinely used in the

NICU. Pharmacological [29] and animal studies [30] have facilitated the inter-

pretation of scaling exponents from DFA for both heart rate and beat-to-beat

blood pressure time series. The metrics from Poincare analysis have similarly

been shown to reflect parasympathetic and sympathetic influences on these time

series [31, 32]. In the next chapter, we apply similar techniques to characterise

the acute cardiovascular effects of intravenous caffeine, one of the most commonly

administered drugs in the NICU [33].
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Chapter 4

Characterising changes in

cardiovascular dynamics

following caffeine therapy

The prematurity of the patients admitted to the NICU means that their brain reg-

ulated respiratory systems are often insufficiently developed, predisposing them

to significant risk of apnoea and complex interactions between the resultant treat-

ments and concurrent respiratory conditions. While the incidence of respiratory

distress syndrome has decreased markedly with routine use of surfactant, apnoea

of prematurity and recurrent hypoxic events are frequently associated with brady-

cardia/tachycardia and pathological swings in blood pressure. These factors may

place infants at risk of later morbidity, including white matter injury and IVH.

The long-term clinical outcomes of caffeine therapy [11, 12, 21, 22] and the

acute effects on linear measures of variability [23,25] have been previously studied,

though there has been limited work using non-linear analysis techniques. These

techniques may be more suited to evaluating complex cardiovascular behaviour.

This chapter addresses the following research question:

4: What are the acute affects of a loading dose of intravenous caffeine on the

dynamics of heart rate and arterial blood pressure?
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We employ a range of advanced analysis techniques reviewed in Chapter 2 to

characterise the cardiovascular impact of caffeine therapy on preterm infants.

The content presented in this chapter is currently published [34] as:

Huvanandana, J., Thamrin, C., Hinder, M., McEwan, A. and Tracy, M. 2018.

Cardiovascular impact of intravenous caffeine in preterm infants. Acta Paedi-

atrica

4.1 Cardiovascular impact of intravenous caf-

feine in preterm infants
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ABSTRACT
Aim: To evaluate the acute effect of intravenous caffeine on heart rate and blood pressure

variability in preterm infants.

Methods: We extracted and compared linear and nonlinear features of heart rate and

blood pressure variability at two time points: prior to and in the two hours following a

loading dose of 10 mg/kg caffeine base.

Results: We studied 31 preterm infants with arterial blood pressure data and 25 with

electrocardiogram data, and compared extracted features prior to and following caffeine

administration. We observed a reduction in both scaling exponents (a1, a2) of mean arterial

pressure from detrended fluctuation analysis and an increase in the ratio of short- (SD1)

and long-term (SD2) variability from Poincare analysis (SD1/SD2). Heart rate variability

analyses showed a reduction in a1 (mean (SD) of 0.92 (0.21) to 0.86 (0.21), p < 0.01),

consistent with increased vagal tone. Following caffeine, beat-to-beat pulse pressure

variability (SD) also increased (2.1 (0.64) to 2.5 (0.65) mmHg, p < 0.01).

Conclusion: This study highlights potential elevation in autonomic nervous system

responsiveness following caffeine administration reflected in both heart rate and blood

pressure systems. The observed increase in pulse pressure variability may have implications

for caffeine administration to infants with potentially impaired cerebral autoregulation.

INTRODUCTION
Caffeine therapy is prescribed predominantly to prevent
and treat apnoea of prematurity in neonatal intensive care.
In the short term, it reduces the frequency of apnoea,
intermittent hypoxia and use of assisted ventilation (1,2).
Part of the methylxanthine group, caffeine is a nonspecific
inhibitor of adenosine receptors (A1 and A2a receptors) (3).
However, there are conflicting reports on the effects of
caffeine on cardiac function: some studies report increased
(4) or no significant changes (5,6) to left ventricular output.
The Caffeine for Apnoea of Prematurity (CAP) trial was a
large, randomised, placebo-controlled trial to evaluate the
outcomes of caffeine therapy for apnoea of prematurity in
very low birthweight infants over the short and long term
(7,8). Caffeine improves neurocognitive outcomes at cor-
rected 18–21 months and reduces incidence of cerebral
palsy and risk of motor impairment (8). These differences

did not persist at five years follow-up (9), although at
11 years, caffeine therapy was associated with a reduced
risk of motor impairment (10).

Our group examined the effects of a 10 mg/kg loading
dose of caffeine base on cerebral oxygenation and cerebral
blood flow velocity in a group of 40 preterm neonates in
2010. We showed significant reductions in Doppler cerebral
blood flow velocity and cerebral tissue oxygenation
measured via near-infrared spectroscopy (6).

Previous work has examined the clinical outcomes of
caffeine therapy (8,11), the impact of timing and dosage
(12–14), as well as its acute effect on various physiological

Abbreviations

ABP, Arterial blood pressure; CAP, Caffeine for apnoea of
prematurity; DFA, Detrended fluctuation analysis; ECG, Elec-
trocardiogram; HRV, Heart rate variability; MAP, Mean arterial
pressure; PI, Pulse interval; PP, Pulse pressure; SD, Standard
deviation; SE, Standard error.

Key Notes
� Caffeine administration increases beat-to-beat pulse

pressure variability
� A standard loading dose of caffeine alters nonlinear

dynamics of heart rate and blood pressure variability,
increasing SD1/SD2 of mean arterial pressure and
decreasing a1 of heart rate

� Caffeine likely increases autonomic nervous system
responsiveness as shown by detrended fluctuation
analysis and Poincare analysis
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variables (5,6,15). These effects are generally quantified
using linear statistics such as mean and standard deviation
(SD) which may not adequately capture the complex and
nonlinear behaviour of physiological systems. Ulanovsky
et al. (15) found no effect of 15–20 mg/kg loading dose of
caffeine citrate on nonlinear dynamics of the heart rate of
21 preterm infants. This finding may well represent a type II
error due to the small sample size.

Pharmacological studies (16) have contributed to the
understanding of autonomic cardiac control on heart rate
and blood pressure dynamics. In the context of heart rate
variability (HRV), high frequency components (or short
time windows) of heart rate are mainly modulated by
parasympathetic activity. Both sympathetic and parasym-
pathetic activity can be characterised using measures
obtained from the Poincare plot (a plot of each data point
n against the consecutive point n + 1 in a time series) (17).
These measures include variability in the direction perpen-
dicular (SD1) and parallel (SD2) to the line of identity,
reflecting short- and long-term variability, respectively. The
ratio SD1/SD2 is thought to reflect sympathovagal balance
(17). Detrended fluctuation analysis (DFA) is one method
of nonlinear time series analysis developed to characterise
fluctuations over a range of scales (18). This technique has
been applied to characterising heart rhythm dynamics
during development (19) and prior to impending intraven-
tricular haemorrhage (20). Studies using selective auto-
nomic blockade in adult human (16) subjects have helped
to clarify the effect of sympathetic and parasympathetic
activity on the scaling exponents from DFA.

In this study, we aimed to characterise the cardiovascular
impact of a 10 mg/kg loading dose of caffeine base using
both linear and nonlinear variability analysis, newly applied
to our published data set (6). We hypothesise that caffeine
administration would have acute effects on the autonomic
nervous system and blood pressure control, which are
evident from changes in DFA and Poincare measures of
heart rate and blood pressure variability.

PATIENTS AND METHODS
Data collection
This study was approved by the Western Sydney Area
Health Service Human Research and Ethics Committee
(ethics number: 06/062) and informed parental consent
was obtained in all cases. Physiological data from preterm
infants (gestational age <34 weeks) requiring caffeine ther-
apy were collected between August and December 2006.
Eligibility criteria required that caffeine therapy was initi-
ated for either weaning from mechanical ventilation,
reducing extubation failure risk or treatment of apnoea of
prematurity. Infants with significant congenital anomalies
and high-grade peri-intraventricular haemorrhage at the
time of study were excluded.

A loading dose of 10 mg/kg caffeine base was delivered
intravenously to all enrolled infants over half an hour. Data
collection commenced at least 20 minutes prior to caffeine
administration, and concluded at least four hours following

dose completion. Time series analysis focused on two time
points (i) prior to dose administration and (ii) in the two
hours following dose completion, during which plasma
concentrations of caffeine is presumed to be greatest (21).

After single-point calibration to atmospheric pressure,
intra-arterial blood pressure data were measured via an
arterial line (umbilical or peripheral catheter) and collected
using a bedside patient monitor (NCMS Philips Agilent
System, Philips Healthcare, North Ryde, Australia). ECG
data were acquired using the same patient monitor. ECG
was not monitored for certain infants to preserve skin
integrity.

Preprocessing
Signal preprocessing, feature extraction and subsequent
analyses were undertaken in Python (Python Software
Foundation, version 2.7 https://www.python.org/). The
arterial blood pressure signal was down-sampled to
200 Hz. While DFA is generally robust against nonstation-
arities, it can be susceptible to longer term trends. Thus, we
corrected for baseline drift characterised by a series of
median filters (widths of 100, 300, 500 and 1000 ms) and
the analysis techniques were then applied to the detrended
signal. The ECG signal was similarly down-sampled to
200 Hz for computational efficiency and preprocessed
using successive median filters of widths 200 and 600 ms
to characterise the baseline wander (22).

Feature extraction
From the arterial blood pressure signal, we extracted the
beat-to-beat mean arterial pressure, pulse pressure (sys-
tolicn-diastolicn blood pressure for beat n) and the interval
between successive systolic beats (pulse interval). From the
ECG signal, we extracted the RR intervals following R-peak
identification with Hilbert transform-based QRS detector
algorithm (22). From each of these time series, the linear
(mean, SD) and nonlinear (DFA: a1 and a2, Poincare: SD1,
SD2 and SD1/SD2) features were extracted, as explained
further below.

Detrended fluctuation analysis characterises the absence
or presence of long-range correlations in a signal (18) and is
well-suited to cope with nonstationarities (that is, con-
stantly changing statistical properties), which are often
present in physiological signals (23). DFA takes the cumu-
lative sum of the mean-centred signal y, divides it into boxes
of equal size n, detrends each box k then determines the
root mean square fluctuation within the box (Equation 1).
This process is repeated for varying box sizes n. The scaling
exponent a is defined as gradient of the log–log relationship
between box size n and corresponding root mean square
fluctuation F(n).

FðnÞ ¼ 1

N

XN
k¼1

½y (k)� ynðkÞ�2
� �1

2

(1)

A scaling exponent a = 0.5 is characteristic of a com-
pletely random series and an increasing a indicates
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increasing long-range correlations. For DFA of the blood
pressure time series, we partitioned the relationship into
short (a1) and long-term (a2) scaling exponents, defined
respectively as 2 ≤ n ≤ 30 and 35 ≤ n ≤ 200, consistent
with previous work reported for blood pressure (24). For
HRV, these were defined as 2 ≤ n ≤ 16 and 32 ≤ n ≤ 200,
respectively.

Poincare analyses offer a means of visualising short and
long-term variability, displaying each data point n in a time
series with respect to its neighbouring data point n + 1, for
all points. These recurrence plots can be quantified in terms
of SD1 (the SD in the direction perpendicular to the line of
identity, a measure of short-term variability) and SD2 (the
SD in the direction along it, a measure of long-term
variability (17)), while the SD1/SD2 ratio reflects the
balance between short- and long-term variability.

These features were extracted from a running 10-minute
window of the respective time series, shifted in increments
of 30 seconds. Quality criteria included (i) mean pulse rate
of 40–250 beats per minute, (ii) a maximum of 10 seconds
without detected peaks and (iii) a maximum loss of 20% for
each time series following removal of outliers (>150%
change from previous data point). For eligible windows,
outlier removal affected <2.5% of all data points. Two
additional criteria were applied to the arterial blood
pressure signal: (iv) a maximum period of 10 seconds with
sub-zero signal and (v) a maximum of 20% of the signal
showing evidence of clipping (<0.05 mV change between
subsequent systolic blood pressure points).

Statistical analysis was performed using R version 3.3.1
(R Core Team, 2012) and lme4 (Bates, Maechler & Bolker,
2012). We used a linear mixed-effects model to analyse the
relationship between the extracted features and caffeine,
adjusting for gestational age and birthweight Z-score
calculated from Fenton growth charts (25) (fixed effects)
and including intercepts for subjects as a random effect.
Residual plots showed no curvature or pattern, with no
obvious deviations from normality. Statistically significant
variables (defined as p < 0.05) were confirmed with likeli-
hood ratio tests of the full model against the model without
the effect in question.

Sensitivity analyses
There were 11 subjects with arterial blood pressure data and
six subjects with ECG data that had insufficient high-quality
data at both time points (prior to and following caffeine
administration). As a sensitivity analysis, we restricted the
data set to the 20 and 19 subjects with complete arterial
blood pressure and ECG data, respectively. We then
determined the mean feature for each subject and compared
pre- and postcaffeine values using a paired t-test or
Wilcoxon test, depending on confirmed normality
(Shapiro–Wilk test, p > 0.05).

RESULTS
Of the 40 infants enrolled in the previously published study
(6), 31 had available arterial blood pressure data and 25 had

ECG data (16 infants with both signals available). The
characteristics of both subsets are summarised in Table 1.
Mean (SD) length of data collected for all infants was 365
(176) minutes.

Table 2 summarises the mean and SD from all infants for
features from linear statistical analysis, Poincare analysis
and DFA. Figure 1 summarises the a1 and SD1/SD2 ratio
changes across each of the four physiological time series.
Linear mixed-model coefficients are summarised in
Table S1. Following caffeine administration, mean arterial
pressure a2 decreased significantly, while SD1/SD2 from
Poincare analysis increased. An example of increased an
increased SD1/SD2 ratio is shown in Figure S1. These
changes were driven predominantly by an increased SD1, a
marker of short-term variability. Mean arterial pressure a1
also exhibited a significant albeit mild decrease following
caffeine.

Mean pulse pressure was not altered significantly follow-
ing caffeine administration, though SD increased. We
similarly observed an increase in SD1 and SD2 with their
ratio not significantly altered. For HRV, a1 was lower at the
postcaffeine time point. Figure S2 shows plots from DFA
and Poincare analysis of a single analysis window of ECG
data. Our cohort of preterm infants exhibited similar albeit
slightly lower scaling exponents for HRV and blood
pressure than those reported previously (15).

Following a sensitivity analysis, the direction of change of
all variability parameters in this subset remained consistent
with those reported in Table 2. Statistical significance also
held for all parameters except for pulse pressure a1 (paired
t-test p = 0.063).

DISCUSSION
Caffeine is widely used in the neonatal intensive care unit as
a respiratory stimulant to reduce the frequency of apnoea
and to aid weaning from mechanical ventilation (1). It is
thought to act as an adenosine antagonist at the A1 and A2a

receptors, stimulating the central respiratory centres and
increasing chemoreceptor responsiveness to hypercapnia

Table 1 Cohort characteristics for preterm infants with arterial blood pressure data
(ABP subset) and with electrocardiogram data (ECG subset)

Variable ABP subset (n = 31) ECG subset (n = 25)

Gestational age (weeks) 27.0 (23.6–33.3) 29.0 (24.3–33.3)

Birthweight (g) 934 (552–2100) 1265 (681–2100)

Postnatal age (days) 2.0 (0.1–7.8) 1.7 (0.1–7.8)

Sex (M/F) 17/14 (54.8%:45.2%) 15/10 (60%:40%)

Intubated 30 (96.8%) 15 (60%)

CPAP 1 (3.2%) 3 (12%)

No respiratory support 0 (0%) 7 (28%)

RDS 28 (90.3%) 19 (76%)

Died 1 (3.2%) 0 (0%)

Data are presented as median (range) or number (%).

CPAP = Continuous positive airway pressure, RDS = Respiratory distress

syndrome.
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(1,26). Loading of caffeine is generally commenced when
the preterm infant is still invasively ventilated and requiring
positive pressure ventilation, often from soon after delivery.
Alterations in inspiratory and expiratory pressures with
subsequent changes in mean airway pressure and blood
gases impact significantly on intracranial pressure (27). The
potential for additive negative impact with airway pressure
changes and caffeine is not to be overlooked. Considerable
uncertainty remains regarding the effect of caffeine, with
conflicting evidence of cardiac, blood pressure and cerebral
blood flow effects (4–6) and increased vagal or sympathetic
tone quantified by HRV analyses (15,28). Caffeine may
increase vagally mediated HRV, although these findings are
largely reported in adults with studies with heterogeneous
study design and demographics (29).

We compared both linear and nonlinear measures of
heart rate and blood pressure variability at two time points;

prior to a loading dose of caffeine and in the two hours
following dose completion. Using linear mixed modelling,
we found that the linear measures of variability (mean, SD)
for mean arterial blood pressure and heart rate did not
change significantly following caffeine (Table 2). While our
findings are consistent with previous studies (5,15), it may
be that the linear metrics do not adequately capture altered
dynamics in heart rate and blood pressure control. The
decrease in a1 of HRV following caffeine administration
from a mean (SD) of 0.92 (0.21) to 0.86 (0.21) (linear
mixed-effects coefficient �0.06, standard error 0.02,
p < 0.01) suggests weaker long-range correlations, consis-
tent with an increase in parasympathetic activity (16).

We observed a mild increase in variability (SD) of pulse
pressure, which may be an important consideration in
infants with impaired cerebrovascular autoregulation: dis-
cordance between systemic and cerebral blood flow may
contribute to brain injury. Analysis of long-term outcomes
from the CAP trial has nevertheless shown no adverse
neurodevelopmental outcomes in infants receiving caffeine
therapy rather than placebo (7,9,10).

The observed changes in heart rate and blood pressure
dynamics may represent a range of influences and condi-
tions. For example, the increase in vagal tone may simply
represent a gradual relaxation of the subjects over the
monitoring period or maturation of the autonomic nervous
system, rather than the direct effect of caffeine. Nakamura
et al. (19) reported correlations between postnatal age and
the HRV scaling exponents (a1, a2) over several days to
weeks. Given the two-hour window over which features
were extracted for the second time point, the latter effect
may be minor, although it can nevertheless be disregarded
as the study did not include a control group of infants not
receiving caffeine. These findings suggest an enhanced
reactivity of the autonomic nervous system (29) following
a loading dose of caffeine in preterm infants, as charac-
terised by increased vagally mediated heart rate and blood
pressure variability.

Ulanovsky et al. (15) showed nonlinear HRV metrics
were unchanged in a cohort of preterm infants following a
loading dose of caffeine. They compared similar metrics
from a 10-minute window extracted from each time point
for each subject: prior to dose administration and in the one
to two hours following completion. Comparisons showed
no significant alterations in these parameters which may
represent a type II error. Our subset of 31 infants with
arterial blood pressure data had a median (range) gesta-
tional age of 27 (23.6–33.3) weeks (6), notably more
preterm than the mean (SD) 30.3 (2.5) weeks gestation in
the 21 infants reported by Ulanovsky et al. (15). This earlier
study also compared a single window at each time point,
which may not adequately account for natural variability
within each subject.

To our knowledge, this is the first study to examine
changes in nonlinear dynamics of blood pressure variability
following caffeine administration in preterm infants. The
decrease in mean arterial pressure a1 (1.12 (0.21) to 1.07
(0.16), linear mixed-effects coefficient �0.06, standard error

Table 2 Summary of extracted features of heart rate and blood pressure variability
prior to caffeine administration (precaffeine) and in the two hours following dose
completion (postcaffeine)

Feature Precaffeine Postcaffeine Coefficient (SE)

Mean arterial pressure

Mean (mm Hg) 40 (7.2) 41 (7.1) 0.26 (0.39)

SD (mm Hg) 2.4 (0.81) 2.5 (0.68) 0.08 (0.11)

a1 1.12 (0.21) 1.07 (0.16) �0.06 (0.02)*

a2 1.0 (0.14) 0.96 (0.12) �0.04 (0.02)*

SD1 0.99 (0.49) 1.2 (0.46) 0.21 (0.06)**

SD2 3.2 (1.1) 3.3 (0.92) 0.06 (0.15)

SD1/SD2 0.34 (0.15) 0.37 (0.14) 0.05 (0.02)**

Pulse pressure

Mean (mm Hg) 22 (5.5) 21 (4.7) �0.60 (0.64)

SD (mm Hg) 2.1 (0.64) 2.5 (0.65) 0.34 (0.10)**

a1 0.68 (0.18) 0.73 (0.14) 0.05 (0.02)*

a2 0.95 (0.14) 0.95 (0.13) �0.01 (0.02)

SD1 1.7 (0.71) 1.9 (0.7) 0.21 (0.07)*

SD2 2.4 (0.77) 2.9 (0.79) 0.44 (0.12)**

SD1/SD2 0.76 (0.32) 0.71 (0.27) �0.04 (0.03)

Pulse interval

Mean (ms) 420 (29) 410 (25) �1.40 (0.83)

SD (ms) 22 (8.2) 26 (9.4) 0.80 (0.43)

a1 0.79 (0.26) 0.76 (0.22) �0.04 (0.03)

a2 0.96 (0.13) 1 (0.12) 0.06 (0.03)

SD1 2.9 (0.98) 3.3 (1.3) 0.59 (0.27)*

SD2 5.5 (2.4) 6.4 (2.5) 0.95 (0.55)

SD1/SD2 0.64 (0.27) 0.58 (0.19) �0.03 (0.04)

Heart rate interval

Mean (ms) 88 (6) 86 (5.4) �1.7 (0.99)

SD (ms) 7.6 (3.6) 8.9 (3.5) 1.3 (0.8)

a1 0.92 (0.21) 0.86 (0.21) �0.06 (0.02)**

a2 0.87 (0.1) 0.91 (0.17) 0.03 (0.03)

SD1 4.9 (3.1) 6.1 (3.7) 1.10 (0.69)

SD2 9.3 (4.2) 11 (3.9) 1.40 (0.93)

SD1/SD2 0.51 (0.18) 0.54 (0.2) 0.03 (0.02)

Mean (SD) features for all subjects at each time point are presented for both

linear and nonlinear analyses. Linear mixed-model coefficients for the

caffeine variable and standard error (SE) are also included, and statistical

significance from likelihood ratio tests denoted by *p < 0.05, **p < 0.01.
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0.02, p < 0.05) suggests an altered complexity that may also
be associated with increased vagal tone. This finding was
also reflected by Poincare analysis with an elevated SD1/
SD2 ratio for mean arterial pressure (17,30). In adult
subjects, vagal blockade by atropine has led to an increased
short-term scaling exponent for the beat-to-beat blood
pressure time series, while sympathetic inhibition by cloni-
dine conversely reduced these exponents (16). It is also
possible that the changes in the blood pressure scaling
exponents were driven by those in heart rate: altered RR
intervals influence the period of diastolic decay in the
arterial pressure pulse via the Windkessel mechanism and
may alter systolic blood pressure by shortening or length-
ening the period of diastolic filling (16).

The altered heart rate dynamics in this cohort of infants
were more clearly discerned using DFA than by Poincare
analysis. The improved sensitivity of DFA over Poincare
analysis for time rather than amplitude-based features also
remained true of pulse interval which is often used as a

proxy of heart rate, despite susceptibility to cardiorespira-
tory coupling. It is possible that DFA, which specifically
quantifies correlations over time, may be more suited to
temporal metrics such as pulse and heart rate intervals,
whereas Poincare analysis, which quantifies variability, may
better describe amplitude-based metrics such as mean
arterial and pulse pressures.

One of the limitations of this study was the signal quality
of the arterial blood pressure data, where artefacts and
evidence of clipping may have influenced the extracted time
series. We sought to mitigate this by applying quality control
criteria and adopting maximal thresholds for abrupt varia-
tions in beat-to-beat values (quality criteria iv). Another
limitation was that not all subjects had sufficiently high-
quality data at both time points, although sensitivity
analyses of the results with the restricted subset of data
showed consistent results. We also used a linear mixed-
effects model for the statistical analysis to mitigate the
impact of missing values. As there was no control group of

Figure 1 Precaffeine and postcaffeine plots of (A) short-term scaling exponents from detrended fluctuation analyses and (B) the SD1/SD2 ratio from Poincare analyses
of the following time series: the beat-to-beat mean arterial pressure (MAP), pulse pressure (PP), pulse interval (PI) and heart rate intervals (RR). Values plotted are pre-
and post-mean values of all qualifying windows for each subject. Closed circles and open triangles denote pre and postcaffeine administration, respectively.
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infants not receiving caffeine therapy, there is also potential
that other factors or postnatal development may have
influenced the findings. This study was also limited by the
sample size and the concurrent availability of ECG and
arterial blood pressure data. The statistical analysis of HRV
features was based on a different albeit overlapping subset
of infants.

CONCLUSION
This study demonstrated that with a standard loading dose
of caffeine, preterm infants showed enhanced autonomic
nervous system responsiveness, reflected by indices of
parasympathetic activity from both heart rate and blood
pressure systems. Our findings improve our understanding
of the mechanisms behind caffeine therapy. The use of
advanced nonlinear analyses of heart rate and blood
pressure variability used in this study may be applicable in
other contexts of cardiovascular control. Our observation of
increased pulse pressure variability may also hold implica-
tions for caffeine administration to infants with potentially
impaired cerebral autoregulation.
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Additional Supporting Information may be found in the
online version of this article:

Figure S1 Examples of SD1/SD2 from Poincare analysis of
mean arterial pressure showing broadening of ellipse
following caffeine administration in a single infant.

Figure S2 Examples of (a) detrended fluctuation analysis
and (b) Poincare analysis of heart rate for a single analysis
window.
Table S1 Summary of linear mixed model coefficients
(standard error) and statistical significance for gestational
age in weeks, birthweight Z-scores and caffeine (pre-
caffeine = 0, post-caffeine = 1). Statistical significance is
denoted by *p < 0.05, **p < 0.01.
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Supplementary Table S1 Summary of linear mixed model coefficients (standard error) and 
statistical significance for gestational age in weeks, birthweight Z-scores and caffeine (pre-
caffeine = 0, post-caffeine = 1). Statistical significance is denoted by *p < 0.05, **p < 0.01. 

 

Feature Gestational age Birthweight Z-score Caffeine 

Mean arterial pressure 

Mean 0.95 (0.43)* 2.3 (1)* 0.26 (0.39) 
SD 0.086 (0.049) 0.028 (0.11) 0.081 (0.11) 

1 -0.0038 (0.014) 0.009 (0.033) -0.056 (0.025)* 

2 -0.028 (0.0086)** 0.0015 (0.02) -0.042 (0.016)* 

SD1 0.069 (0.032)* 0.0021 (0.075) 0.21 (0.056)** 
SD2 0.1 (0.068) 0.048 (0.15) 0.055 (0.15) 
SD1/SD2 0.016 (0.011) -0.0089 (0.025) 0.049 (0.015)** 

Pulse pressure 

Mean 0.12 (0.42) 0.63 (0.99) -0.6 (0.64) 
SD 0.085 (0.045) 0.02 (0.1) 0.34 (0.095)** 

1 -0.016 (0.012) 0.0053 (0.027) 0.047 (0.021)* 

2 -0.012 (0.0091) 0.027 (0.021) -0.011 (0.024) 

SD1 0.11 (0.048)* -0.037 (0.11) 0.21 (0.073)* 
SD2 0.067 (0.055) 0.08 (0.12) 0.44 (0.12)** 
SD1/SD2 0.03 (0.02) -0.035 (0.047) -0.042 (0.027) 

Pulse interval 

Mean 0.91 (0.39)* 0.34 (0.9) -1.4 (0.83) 
SD 0.34 (0.11)** 0.056 (0.25) 0.8 (0.43) 

1 0.014 (0.019) 0.011 (0.044) -0.035 (0.032) 

2 -0.014 (0.0095) 0.018 (0.021) 0.061 (0.029) 

SD1 0.23 (0.095)* -0.097 (0.21) 0.59 (0.27)* 
SD2 0.42 (0.15)* 0.12 (0.34) 0.95 (0.55) 
SD1/SD2 -0.00025 (0.016) -0.012 (0.037) -0.03 (0.038) 

Heart rate interval 

Mean 0.48 (0.45) 0.13 (1.1) -1.7 (0.99) 
SD -0.3 (0.23) 0.73 (0.57) 1.3 (0.8) 

1 0.052 (0.015)** 0.016 (0.037) -0.064 (0.021)** 

2 0.028 (0.0085)** 0.012 (0.021) 0.029 (0.031) 

SD1 -0.58 (0.21)* 0.26 (0.53) 1.1 (0.69) 
SD2 -0.19 (0.26) 1 (0.66) 1.4 (0.93) 
SD1/SD2 -0.045 (0.013)** -0.025 (0.031) 0.03 (0.025) 
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Supplementary Figure S1 Examples of SD1/SD2 from Poincare analysis of mean arterial 

pressure showing broadening of ellipse following caffeine administration in a single infant. 

Panels (a) shows the arterial blood pressure data and (b) the calculated SD1/SD2 ratio from 

beat-to-beat mean arterial pressure (MAP) from each 10-minute running window, where 

dashed lines delineate the period of caffeine base administration. Solid grey lines prior to and 

following caffeine correspond to the SD1/SD2 ratio extracted from Poincare plots in panels (c) 

and (d), respectively. 
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1 
 

Supplementary Figure S2 Examples of (a) detrended fluctuation analysis and (b) 

Poincare analysis of heart rate for a single analysis window. Closed circles and open 

triangles denote pre- and post-caffeine base administration, respectively. 
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4.2 Concluding remarks

The work presented in this chapter addresses the third aim of the dissertation to

characterise the cardiovascular impact of caffeine therapy in preterm infants.

Caffeine is widely prescribed as a respiratory stimulant in neonatal intensive

care, with considerable work on long-term clinical outcomes [12, 21, 22] and the

acute impact on blood pressure or cerebral blood flow [23, 25]. Work using non-

linear analysis techniques has been limited, and where they have been applied,

yielded negative results [35]. The thesis found altered dynamics in both heart rate

and arterial blood pressure, consistent with increased vagal tone [31,32]. This is

important for two reasons; firstly, many extremely low birthweight infants being

treated for apnoea of prematurity have impaired cerebrovascular autoregulation,

thus caffeine induced variability in cardiovascular function may be deleterious.

Secondly, the large multi-centre trial of caffeine versus placebo (the Caffeine for

Apnoea of Prematurity (CAP) trial) showed neurodevelopmental advantage at

18-21 months [12], which largely dissipated by 5 years of age [21]. These ob-

servations in a small cohort warrant further investigation in a larger dataset.

In addition to comparisons of long-term outcomes, advanced analysis of physio-

logical variability aids our understanding of the acute effects of caffeine, and in

clarifying its potential benefits or harms in preterm infants. The thesis may thus

contribute to our understanding of the mechanisms behind caffeine therapy.

Both this chapter and Chapter 3 have identified the importance of both linear

and non-linear approaches to characterising the behaviour of complex physiologi-

cal systems such as the dynamics of heart rate and arterial blood pressure control.

Multivariable techniques such as correlation analysis incorporate multiple signals,

and represent another path of development in this area [28] (Chapter 2).

In the next chapter, the thesis builds on these techniques and examine the

utility of correlation analysis in characterising cerebral autoregulation in preterm

infants, adding to our understanding of the effects of caffeine therapy.
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Chapter 5

Characterising cerebral

autoregulation in preterm infants

Cerebral autoregulation is the mechanism by which cerebral blood flow is main-

tained relatively constant over a range of perfusion pressures. This dynamic au-

toregulation is sensitive to changes in arterial pressure, and has been characterised

using techniques including transfer function analysis [36], coherence analysis [37]

and time domain correlation [38].

Dynamic cerebral autoregulation in preterm infants is an important contrib-

utor to risk of brain injury and adverse neurodevelopmental outcomes; autoregu-

latory dysfunction has been postulated as a causal pathway of brain injury such

as IVH in this population [39]. Near-infrared spectroscopy (NIRS) offers a means

of non-invasively monitoring cerebral oxygenation, which, coupled with continu-

ous measurements of systemic blood pressure, allows this dynamic relationship

to be described. Monitoring of this relationship may play an important role in

identifying infants at risk of autoregulatory dysfunction and later brain injury. It

may also facilitate a greater understanding of commonly administered treatments

such as caffeine therapy in the NICU, the long-term clinical outcomes of which

have been previously studied in the Caffeine for Apnoea of Prematurity (CAP)

trial [12, 21,22]. This chapter addresses the following research questions:

5: Can detrended cross-correlation analysis, a relatively novel method to jointly

describe the time patterns of two signals, be used to characterise cerebral

autoregulation?

6: How does caffeine affect variability of cerebral autoregulation?

We apply a range of correlation analysis techniques to characterise cerebral

autoregulation in a novel manner.
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The content presented in this chapter is currently under review with Acta Pae-

diatrica.

5.1 The effect of caffeine loading on cerebral au-

toregulation in preterm infants
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Abstract 

Aim: To evaluate cerebral autoregulation changes in preterm infants receiving a loading 

dose of caffeine base. 

Methods: Cerebral autoregulation was determined with correlation analyses of the mean 

arterial pressure (MAP) and tissue oxygenation index (TOI) time series. Data from two 

timepoints were used: prior to and in the 2 hours following administration of 10 mg/kg 

caffeine base (equivalent to 20 mg/kg caffeine citrate). 

Results: Time domain analyses showed a reduced correlation between MAP and TOI 

following caffeine administration. These reductions were observed across the cerebral 

oximetry index (linear mixed-model coefficient -0.093, standard error 0.04; p = 0.028) and 

the detrended cross-correlation coefficients (ρ1 coefficient -0.061, standard error 0.029; p = 

0.046, ρ2 coefficient -0.12, standard error 0.04; p = 0.006 and ρ5 coefficient -0.13, standard 

error 0.055; p = 0.025), and suggested an acute improvement in cerebral autoregulation. 

Features from detrended cross-correlation analysis exhibited greater discriminative value 

than other methods between pre- and post-caffeine timepoints. 

Conclusion: We observed a reduced correlation between MAP and TOI from near-infrared 

spectroscopy. These findings suggest an acute enhanced capacity for cerebral 

autoregulation following a loading dose of caffeine in preterm infants, contributing to our 

understanding of the physiological impact of caffeine therapy. 

 

Key notes: 

• Following caffeine base administration, preterm infants exhibit falls in TOI and 

cerebral blood flow velocity. 
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• Preterm infants exhibited reduced correlation between arterial blood pressure and 

cerebral oxygenation, suggestive of enhanced cerebral autoregulation which may 

counter the direct effects of vasoconstriction 

• Detrended cross-correlation analysis may be used to describe cerebral 

autoregulation in preterm infants 

 

Introduction 

Cerebral autoregulation is a mechanism by which cerebral blood flow is maintained 

relatively constant over a range of perfusion pressures. It can be thought of as the dynamic 

relationship between the arterial blood pressure (the system input) and cerebral blood flow 

(the system output). Impaired cerebral autoregulation is common in very preterm infants (1) 

and is considered a risk factor for brain injury. In particular, it has been proposed as a 

potential contributor to the development of intraventricular haemorrhage (IVH) (2). 

Varying approaches have been adopted for quantifying the relationship between 

mean arterial pressure (MAP) and the tissue oxygenation index (TOI), a commonly-used 

surrogate for cerebral blood flow. These techniques range from time domain correlation (1, 

3) to frequency domain coherence (4, 5) and transfer function analyses (6, 7). Some preterm 

infant studies have also used the pressure passivity index (1, 8) which denotes the 

percentage of time with high correlation or concordant changes between the two signals, 

though this approach requires dichotomization to ‘intact’ and ‘impaired’ cerebral 

autoregulation. 

There has been limited work evaluating time and frequency domain features of 

cerebral autoregulation in preterm infants following caffeine loading. Caffeine given to 

preterm infants, many extremely premature to reduce apnoea of prematurity and prevent the 

need for intubation, are often in vunerable cardiovascular states. Many factors such as 

infection, mechanical ventilation and hypotension require inotrope support and may result in 
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significantly labile blood pressure. A study by Eriksen et al. compared cerebral oximetry 

index (COx), a metric of autoregulation, and frequency domain coherence, reporting poor 

correlation between them (9). Vesoulis et al. (6) have also applied transfer function to 

characterise the capacity of preterm infants to dampen fluctuations in MAP as a measure of 

cerebral autoregulation. 

The Caffeine for Apnoea of Prematurity (CAP) trial showed that caffeine improved 

neurodevelopmental outcomes at a corrected 18-21 months of age (10) and reduced risk of 

motor impairment at 11 years follow-up (11), compared to placebo. Following a loading dose 

of caffeine, our group previously showed reduced cerebral perfusion using Doppler blood 

flow velocity and TOI (12), and increased pulse pressure variability from continuous arterial 

blood pressure data (13). The potential deleterious or beneficial impacts of these acute 

changes to cerebral autoregulation required further evaluation. The aim of this study was 

thus to evaluate and compare the effect of caffeine loading on cerebral autoregulation in 

preterm infants using a range of correlation techniques. 

Patients and Methods 

Data collection 

Physiological data was collected as of a study approved by the Western Sydney Area 

Health Service Human Research and Ethics and conducted according to the World Medical 

Association Declaration of Helsinki. Informed parental consent was obtained in all cases. 

The examined cohort comprised of infants with gestational age < 34 weeks who required 

caffeine therapy for any of the following reasons: weaning from mechanical ventilation, 

reducing risk of extubation failure, and treatment of apnoea of prematurity. Infants with 

significant congenital anomalies and high-grade peri-intraventricular haemorrhage at time of 

study were excluded. 

Thirty infants had concurrently available MAP and TOI data. Arterial blood pressure 

data were collected via an umbilical or peripheral arterial catheter, following single point 
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calibration to atmospheric pressure. Cerebral near-infrared spectroscopy (NIRS) data were 

collected simultaneously via the NIRO-300 system (Hamamatsu Photonics, Hamamatsu 

City, Japan), with smoothed mean values acquired at 6 Hz. NIRS offers a measure of 

cerebral oxygenation by emitting and receiving NIR light at specific wavelengths (775, 825, 

850 and 904 nm) to determine a range of variables: oxygenated haemoglobin (HbO2) and 

deoxygenated haemoglobin (HHb). TOI is defined as: 

𝑇𝑂𝐼 =  
𝐻𝑏𝑂2

𝐻𝑏𝑂2 + 𝐻𝐻𝑏
 

MAP and TOI data were extracted from two timepoints relative to intravenous 

administration of 10 mg/kg of caffeine base: 20-30 minutes prior to start of dose (pre-

caffeine) and 1-2 hours following dose completion (post-caffeine). 

Pre-processing 

Signal processing was completed in (Python Software Foundation, version 2.7. 

https://www.python.org/). We completed beat-to-beat extraction of MAP from the arterial 

blood pressure data down-sampled to 100 Hz. For running 10-minute windows shifted in 5-

minute intervals with sufficient pulses (40-250 beats per minute), we extracted a range of 

features to describe cerebral autoregulation. The techniques applied to the aligned time-

series of MAP and TOI are described in the following sections. 

Coherence analysis 

Magnitude-squared coherence (MSC) is defined as: 

𝑀𝑆𝐶(𝑓) =
|𝑆𝑥𝑦(𝑓)|2

[𝑆𝑥𝑥(𝑓)𝑆𝑦𝑦(𝑓)]
 

where Sxx is the autospectrum of changes in mean arterial pressure, Syy that of changes in 

cerebral oxygenation and Sxy the cross-spectrum between the two signals. Magnitude-

squared coherence approaching 1 suggests an increasing linear relationship while 
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coherence approaching 0 suggests a loss of this relationship or a potentially non-linear 

relationship between the given input (MAP) and output (TOI). 

MAP and TOI signals were first down-sampled to 2 Hz (9), and mean coherence 

determined in the very low frequency (CohVLF; <0.003 Hz) and low frequency (CohLF; 0.003 – 

0.004 Hz) ranges. 

Time domain correlation analysis 

The COx index, proposed initially by Brady et al. (3) is defined as the moving linear 

correlation coefficient between cerebral perfusion pressure and cerebral oximeter 

waveforms. They defined a sliding window of 5 minutes in length and shifted it in increments 

of 1 minute to obtain 6 correlation coefficient r values for a 10-minute epoch, with the mean 

of these being the calculated COx value for the given epoch (3). 

We down-sampled the MAP and TOI signals to 0.1 Hz and determined the 

corresponding COx and regression coefficient (slope the fitted line) for each qualifying 10-

minute window. 

Cross-correlation analysis 

The cross-correlation coefficient quantifies the degree of linear correlation between 

two signals, following adjustment for a time delay. Like COx, potential coefficient values 

range from -1 to 1, denoting perfectly negative and positive correlation, respectively. A study 

evaluating cerebral autoregulation in adult patients has applied cross-correlation to arterial 

blood pressure and cerebral blood flow velocity signals (14), though limited work exists in 

preterm infants. 

From the 0.1 Hz down-sampled MAP and TOI time series, we determined the cross-

correlation coefficient r and time delay  (± 30 seconds which encompasses the 10 seconds 

or less of the time lag associated with normal autoregulation (15)). 

 Detrended cross-correlation analysis 
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Detrended cross-correlation analysis is a generalisation of the detrended fluctuation 

analysis method (16, 17) which has been applied widely to physiological data. The 

corresponding cross-correlation coefficient ρDCCA has been proposed by Zebende et al.  (16) 

to quantify the degree of cross-correlation between nonstationary time series. Like the cross-

correlation coefficient, it is bound by -1 and 1. It is calculated as follows: the two series 𝑦1(𝑘) 

and 𝑦2(𝑘) with same length N are first mean-centred and integrated to obtain 𝑅1(𝑘) and 

𝑅2(𝑘), respectively, where k = 1, …, N. For a given box size n, the time series are divided 

into N-n overlapping boxes and the covariance of the residuals is determined: 𝑓𝐷𝐶𝐶𝐴
2 (𝑛, 𝑖) =

 1 (𝑛 + 1)⁄ ∑ (𝑅1(𝑘) − �̃�1,𝑖(𝑘))(𝑅2(𝑘) − �̃�2,𝑖(𝑘))𝑖+𝑛
𝑘=𝑖  where �̃�1,𝑖(𝑘) and �̃�2,𝑖(𝑘) are the local 

linear trend in each box beginning at i. The covariance of residuals across all boxes is 

averaged to determine 𝐹𝐷𝐶𝐶𝐴
2 (𝑛). The coefficient ρDCCA is then expressed as: 

𝜌𝐷𝐶𝐶𝐴 =  
𝐹𝐷𝐶𝐶𝐴

2 (𝑛)

𝐹𝐷𝐹𝐴1(𝑛)𝐹𝐷𝐹𝐴2(𝑛)
 

where 𝐹𝐷𝐶𝐶𝐴
2 (𝑛) is the detrended covariance function, and 𝐹𝐷𝐹𝐴1(𝑛) and 𝐹𝐷𝐹𝐴2(𝑛) are the 

detrened variance functions for 𝑦1(𝑖) and 𝑦2(𝑖), respectively. Figure 1 shows two excerpts of 

raw traces corresponding to a low and high absolute value of ρ. 

To the best of our knowledge, this technique has not been applied for characterising 

cerebral autoregulation. We extracted detrended cross-correlation coefficient for 3 window 

sizes from the 0.1 Hz down-sampled MAP and TOI signals: 1 minute (ρ1), 2 minutes (ρ2) and 

5 minutes (ρ5). 

Statistical analysis 

R version 3.4 (R Core Team, 2012) and lme4 (Bates, Maechler & Bolker, 2012) were 

used for statistical analysis. Statistical significance for all models was defined as p < 0.05. 

To determine the mean weighted feature for a single subject, features were weighted 

according to the variability (SD) of the MAP time series (4, 9). Using univariate linear 

regression modelling, we first determined the relationship between weighted features and 
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the corresponding  gestational age and birthweight z scores from Fenton growth charts (18). 

We also determined the Spearman rank correlation between the weighted features of 

cerebral autoregulation. 

Hahn et al. found a minimum time of 1.3-3.7 hours was needed to discriminate 

between subjects using measures of coherence (4). Given the data available at both pre- 

and post-caffeine timepoints, all qualifying windows were taken into consideration via linear 

mixed modelling. We evaluated the effect of caffeine on the extracted features, adjusting for 

gestational age and birthweight z scores and including a random intercept for each subject. 

Statistical significance of independent variables was evaluated using likelihood ratio tests of 

the model with and without the variable in question (19). 

Results 

The cohort characteristics (n = 30) are summarised in Table 1. Infants had a mean 

(SD) gestational age of 27 (2.3) weeks, with birthweight 1080 (400) grams and postnatal age 

at evaluation of 2.6 (2.2) days. 

Effect of caffeine therapy 

Figure 2 provides examples of the change in weighted mean for a) a coherence 

feature (cohLF), b) time-domain correlation analysis (COx) and c) a detrended cross-

correlation feature (ρ2). From mixed model analysis (Table 2), coherence features did not 

change significantly between timepoints (cohVLF; p = 0.915 and cohLF; p = 0.479). In contrast, 

caffeine base administration contributed significantly to the reduction in time-domain 

correlation metrics: COx (p = 0.028), ρ1 (p = 0.046), ρ2 (p = 0.006) and ρ5 (p = 0.025). 

Relationship between extracted features, gestational age and birthweight 

 Univariate linear regression modelling showed that cohLF was mildly and inversely 

correlated with gestational age (linear coefficient -0.0073, standard error 00.0033; p = 0.037, 

supplementary table S1). In this dataset, COx and ρ1 exhibited a negative linear relationship 
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with birthweight, independent of sex and gestational age. Examples of these relationships 

are also presented in supplementary figure S1. 

Correlation between cerebral autoregulation features 

Evaluation of the correlation between features identified significant associations 

between all time-domain features (Supplementary table S2). Autoregulation capacity as 

estimated by coherence measures at both very low and low frequencies were not strongly 

correlated with time domain features, nor each other. COx was strongly and linearly 

correlated with ρ5, potentially due to the fact that both are based on correlations in the time 

domain, and to the similar running window size (5 minutes) over which the features were 

determined. The coefficient from cross-correlation was correlated with both COx and ρ5, 

though the time delay was not correlated with any of the other metrics. 

Discussion 

In this study, we evaluated various time and frequency domain features to describe 

cerebral autoregulation in preterm infants following a loading dose of caffeine base. Caffeine 

is a non-specific inhibitor of adenosine receptors (20) and among the most frequency-used 

medication in neonatal intensive care (21). Evaluation of long-term outcomes from the CAP 

trial have shown improved neurodevelopmental outcomes at corrected 18-21 months of age 

(10), though differences were attenuated and no longer significant at 5 years follow-up (22). 

At 11 years follow-up however, infants in the caffeine therapy was associated with reduced 

risk of motor impairment (11), though little is known on its underlying mechanisms. 

Our original study with the same cohort showed significant reduction in two different 

parameters of cerebral blood flow that being doppler cerebral blood velocity and reduced 

TOI (12). This finding suggested some cause for caution particularly in the most preterm 

unstable babies likely to exhibit impaired cerebral autoregulation. High correlation or 

concordance is often interpreted as an impaired cerebral autoregulation, where linear 

changes in arterial blood pressure correspond to similar changes in cerebral blood flow. This 

74



has similarly been observed by Vesoulis et al. using a frequency domain approach to 

quantify dampening of the fluctuations in MAP and TOI signals (6). There is also evidence to 

suggest greater variability in cerebral oxygenation in preterm infants with a 

haemodynamically-significant PDA (8) and that treatment via surgical ligation may result in 

an acute impairment of cerebral autoregulation (23). Placing the original finding of this cohort 

with two parameters of reduced cerebral blood flow at 1 hour post-caffeine loading dose with 

these findings of potentially improved cerebral autoregulation post loading dose are 

reassuring that benefits accrue acutely with loading dose of caffeine in preterm newborns at 

risk of impaired cerebral autoregulation. 

To our best knowledge, this is the first paper to examine changes in cerebral 

autoregulation following a loading dose of caffeine therapy in preterm infants, and the first to 

apply detrended cross-correlation analysis to describe these changes. We observed a 

reduction in time-domain correlation as characterised by COx, ρ1, ρ2 and ρ5 in order of 

increasing sensitivity. Coherence in the LF range similarly trended towards this, though was 

not statistically-significant. This reduction (where changes in TOI are less correlated with 

those in MAP) is congruent with an improved capacity to autoregulate and may offer insight 

into the CAP trial findings (10, 24). The findings are in agreement with a recent study in 

adults (25) examining the effect of 200 mg caffeine which reported reduced cerebral blood 

flow with concurrent improved cerebral autoregulation, quantified by rate of regulation (26). 

A possible explanation for these observations may be the caffeine-induced inhibition 

of the adenosine receptors: adenosine induces dilation of cerebral vessels (27), and may 

thus play a role in cerebral autoregulation (25, 28). The resulting cerebral vasoconstriction 

may then alter the dynamic autoregulation. Further work is required to understand if the 

observed effects are consistent in other cohorts and persist through maintenance dose 

administration, especially given the tolerance effect observed in adults (29). 

Detrended cross-correlation analysis may offer a robust means of characterising 

cerebral autoregulation, particularly given its greater discriminative power in identifying 
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altered cross-correlation between MAP and TOI following caffeine base administration. The 

primary difference between detrended cross-correlation analysis and the other time domain 

techniques lies in the detrending which is not addressed by other techniques: it may 

potentially be more suited to monitoring longer-term changes in cerebral autoregulation 

where non-stationarities are likely to be present. This observation nevertheless requires 

further validation over larger monitoring periods. 

The relatively poor discriminative value of the frequency-domain based features may 

have been due in part to the quantity of data available. Previous work using similar 

measurements have acknowledged the dependence of subject-specific estimations (4) on 

data quantity. These frequency-domain approaches are relatively insensitive to phase shifts 

between MAP and TOI signals. Phase shifts between signals have previously been 

proposed  as markers of cerebral autoregulation (30)  though has seldom been reported in 

previous studies. Despite earlier speculation that the time delay may hold autoregulatory 

information, this feature was not particularly discriminative, nor related to other measures of 

autoregulation. This may have been due in part to the sampling frequency (0.1 Hz) which 

may not have been sufficiently sensitive to capture these phase shifts. 

Study limitations 

Data quality and the concurrent availability of MAP and TOI signals limited the 

available data for analysis; not all subjects had arterial blood pressure lines and of those that 

did (n = 30), the presence of artefact necessitated the exclusion of certain pre- or post-

caffeine timepoints. We cannot entirely attribute the observed effect to caffeine base 

administration, given the absence of a control group not receiving caffeine. The total 

evaluation time at each timepoint may also have been insufficient to discriminate between 

infants and thus, potential effects of caffeine. There may also have been other influencing 

factors which were not accounted for in statistical analysis: for example, the partial pressure 

of CO2 (4) is an important regulator of cerebral blood flow and can thus affect the TOI signal. 
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Conclusion 

We applied a range of time and frequency domain techniques to characterise 

cerebral autoregulation in preterm infants. We observed a reduction in COx and detrended 

cross-correlation coefficients over a range of time windows (ρ1, ρ2 and ρ5), suggestive of an 

improved capacity of cerebral autoregulation following a loading dose of caffeine therapy. 

These observations help to clarify the underlying mechanisms and serve as a first step 

towards understanding the findings of the Caffeine for Apnoea of prematurity trial. These 

further  observations of the  caffeine cohort reported in this journal (12) help to clarify the 

underlying cerebrovascular physiological changes and potential mechanisms of harm and 

benefit. The discriminative value of the detrended cross-correlation coefficient also support 

its potential for cerebral autoregulation monitoring in preterm infants, an important step in 

understanding commonly-used treatments and risk stratification. 
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Table 1 Summary of cohort characteristics. Continuous variables are summarised as mean 

(SD) and binary variables are expressed as number (percentage, %) of the specified 

category.  

Variable Summary (n = 30) 

Gestational age (weeks) 27 (2.3) 

Birthweight (grams) 1080 (400) 

Male sex 16 (53.3 %) 

Postnatal age (days) 2.6 (2.2) 

Continuous Positive Airway Pressure 1 (3.3 %) 

Ventilated (%) 29 (96.7 %) 

Respiratory distress syndrome (%) 27 (90 %) 

Died (%) 1 (3.3 %) 
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Table 2 Linear mixed model coefficients (standard error) and statistical significance for 

characterising the impact of caffeine on multivariable features, adjusted for gestational age 

and birthweight z scores from Fenton charts. BW: birthweight, CC: cross-correlation. 

Statistical significance denoted by *p<0.05, **p<0.01. 

 Caffeine p Gestational age p BW z scores p 

CohVLF -0.0035 (0.033) 0.915 -0.0016 (0.0047) 0.734 -0.023 (0.011) 0.033* 

CohLF -0.0057 (0.0081) 0.479 -0.0029 (0.0021) 0.186 -0.0083 (0.0046) 0.083 

COx -0.093 (0.04) 0.028* 0.0029 (0.0089) 0.746 -0.056 (0.019) 0.007** 

Reg -0.05 (0.047) 0.287 -0.0089 (0.01) 0.398 -0.054 (0.022) 0.039* 

CC r 0.017 (0.021) 0.414 -0.0044 (0.0056) 0.434 0.019 (0.012) 0.122 

CC  0.024 (0.22) 0.913 0.035 (0.039) 0.377 0.012 (0.087) 0.889 

ρ1 -0.061 (0.029) 0.046* 0.0013 (0.0066) 0.84 -0.05 (0.014) 0.002** 

ρ2 -0.12 (0.04) 0.006** -0.0015 (0.01) 0.885 -0.048 (0.021) 0.034* 

ρ5 -0.13 (0.055) 0.025* 0.003 (0.015) 0.845 -0.054 (0.032) 0.107 
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Figure legends 

Figure 1 Example of traces for mean arterial pressure (MAP) and tissue oxygenation (TOI) 

time series corresponding to a lesser ρ (a) and greater ρ (b). Closed and open circles denote 

MAP and TOI time series, respectively. 

 

Figure 2 Changes in cerebral autoregulation prior to (pre) and in the 2 hours following (post) 

caffeine administration, measured by a) cohLF, b) COx and c) ρ2. Features weighted 

according to MAP variability for each timepoint  
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Figure 1 Example of traces for mean arterial pressure (MAP) and tissue oxygenation (TOI) 

time series corresponding to a lesser ρ (a) and greater ρ (b). Closed and open circles denote 

MAP and TOI time series, respectively. 
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Figure 2 Changes in cerebral autoregulation prior to (pre) and in the 2 hours following (post) 

caffeine administration, measured by a) cohLF, b) COx and c) ρ2. Features weighted 

according to MAP variability for each timepoint, 
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Supplementary table S1 Relationship between cerebral autoregulation features and gestational 

age and birthweight. Model coefficients (standard error) from univariate linear regression are 

presented, with statistical significance denoted by *p<0.05. BW: birthweight, CC: cross-

correlation. 

 
Gestational age p BW z scores p 

cohVLF 0.00081 (0.0098) 0.935 -0.023 (0.022) 0.309 

cohLF -0.0073 (0.0033) 0.037* -0.0061 (0.0082) 0.463 

COx 0.011 (0.014) 0.428 -0.061 (0.03) 0.05* 

Reg -0.00052 (0.012) 0.965 -0.028 (0.027) 0.296 

CC c -0.0058 (0.007) 0.414 0.015 (0.016) 0.373 

CC  0.028 (0.077) 0.717 -0.14 (0.18) 0.439 

ρ1 0.0065 (0.0097) 0.508 -0.049 (0.021) 0.023* 

ρ2 0.009 (0.015) 0.542 -0.048 (0.033) 0.154 

ρ5 0.022 (0.019) 0.255 -0.061 (0.044) 0.175 
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Supplementary table S2 Summary of Spearman correlation coefficients between extracted 

features. Statistical significance denoted by *p<0.05, **p<0.01, ***p<0.001. CC: cross-correlation. 

 
cohLF COx Reg CC r CC  ρ1 ρ2 ρ5 

cohVLF 0.158 0.394* 0.422* -0.176 -0.014 0.3 0.352 0.392* 

cohLF 
 

-0.034 -0.108 -0.078 -0.057 -0.069 0.005 -0.146 

COx 
  

0.745*** -0.489** -0.069 0.802*** 0.876*** 0.943*** 

Reg 
   

-0.254 0.041 0.630*** 0.719*** 0.736*** 

CC r 
    

-0.01 -0.21 -0.309 -0.562** 

CC  
     

-0.102 -0.157 0.01 

ρ1 
      

0.896*** 0.656*** 

ρ2 
       

0.802*** 
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Supplementary figure S1 Scatter plots of linear relationship with gestational age and 

birthweight for cohLF (panels a, b), COx (c, d) and ρ1 (e, f), respectively.  
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5.2 Concluding remarks

The work presented in this chapter addresses the fourth aim of the dissertation to

characterise cerebral autoregulation in preterm infants following caffeine base ad-

ministration. The thesis applied a range of techniques including detrended cross-

correlation and time-domain correlation, finding acute improvements in cerebral

autoregulation following caffeine administration. The detrended cross-correlation

coefficient was also more discriminative in this context, potentially due to detrend-

ing and mitigation of non-stationarities. This work further contributes to our un-

derstanding of the CAP trial findings of improved neurocognitive outcomes [12]

and later reduced risk of motor impairment [22] associated with caffeine. It also

identifies the potential of detrended cross-correlation analysis, a generalisation of

the DFA method, to characterise cerebral autoregulation in preterm infants.

The following chapter focuses on model development for detection of malnu-

trition and body composition monitoring in neonates and infants.
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Chapter 6

Malnutrition detection and

nutritional status assessment

using near-infrared interactance

Previous advanced analysis work in the NICU has focused heavily on the detection

of life-threatening outcomes and clinically-important events. In more recent years,

there has been growing acknowledgement of nutrition in the management and

monitoring of neonates [40]. With the complexity of conditions and procedures

faced by patients of the NICU, extrauterine growth restriction remains common,

particularly in those who are critically-ill [41]. Malnutrition in early life has

both short- and long-term consequences [42]. For example, being born small-

for-gestational age (that is, having a birthweight below the 10th percentile at

a given gestational age) is associated with later risks of cardiovascular disease

and type II diabetes [43, 44]. Barker et al. also find evidence that the pace

and pathway of growth in early life influences morbidity risk in later life [15,16].

Adequate nutrition is necessary for neurocognitive development [13, 14]; work

by Richards et al. have demonstrated the association between birthweight and

postnatal growth and cognitive development [45].

While growth itself is not a functional outcome, it offers an indication of

health, disease and nutrition [40]: measuring and monitoring growth is necessary

for identifying infants at risk of malnutrition. Existing approaches for monitor-

ing nutritional status include simple anthropometric metrics such as weight or

weight-for-length z scores, as well as air displacement plethysmography (ADP)

which is considered one of the criterion methods of body composition assessment

in the paediatric population [46–48]. ADP may not be practical in certain circum-

stances, given cost and portability (for example, in low-middle income countries),

as well as the need to place the subject in an enclosed chamber (for example, if
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on mechanical ventilation or connected to other monitoring systems).

This chapter addresses the following research questions:

7: What anthropometric features are associated with neonatal malnutrition?

8: What NIR features can be used to model body composition measures of

nutritional status?

This chapter applies a range of feature selection techniques to identify potentially

predictive features for nutritional assessment, and to develop models for identi-

fying infants at risk of malnutrition and/or later morbidity.

The content presented in this chapter is currently published as:

• Huvanandana, J., Carberry, A.E., Turner, R.M., Bek, E.J., Raynes-Greenow,

C.H., McEwan, A.L., Jeffery, H.E. 2018. An anthropometric approach to

characterising neonatal morbidity and body composition, using air displace-

ment plethysmography as a criterion method. PLOS ONE, 13, e0195193.

• Huvanandana, J., Jones, P., Jeffery, H.E., Carberry, A.E., Norris, S. and

McEwan, A.L., 2017, December. A near-infrared interactance model for the

estimation of infant body composition. In Life Sciences Conference (LSC),

2017 IEEE (pp. 149-152). IEEE.
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6.1 An anthropometric approach to character-

ising neonatal morbidity and body composi-

tion, using air displacement plethysmogra-

phy as a criterion method
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Abstract

Background

With the greatest burden of infant undernutrition and morbidity in low and middle income

countries (LMICs), there is a need for suitable approaches to monitor infants in a simple,

low-cost and effective manner. Anthropometry continues to play a major role in characteris-

ing growth and nutritional status.

Methods

We developed a range of models to aid in identifying neonates at risk of malnutrition. We

first adopted a logistic regression approach to screen for a composite neonatal morbidity,

low and high body fat (BF%) infants. We then developed linear regression models for the

estimation of neonatal fat mass as an assessment of body composition and nutritional

status.

Results

We fitted logistic regression models combining up to four anthropometric variables to predict

composite morbidity and low and high BF% neonates. The greatest area under receiver-

operator characteristic curves (AUC with 95% confidence intervals (CI)) for identifying

composite morbidity was 0.740 (0.63, 0.85), resulting from the combination of birthweight,

length, chest and mid-thigh circumferences. The AUCs (95% CI) for identifying low and high

BF% were 0.827 (0.78, 0.88) and 0.834 (0.79, 0.88), respectively.

For identifying composite morbidity, BF% as measured via air displacement plethysmog-

raphy showed strong predictive ability (AUC 0.786 (0.70, 0.88)), while birthweight percen-

tiles had a lower AUC (0.695 (0.57, 0.82)). Birthweight percentiles could also identify low

and high BF% neonates with AUCs of 0.792 (0.74, 0.85) and 0.834 (0.79, 0.88). We applied
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a sex-specific approach to anthropometric estimation of neonatal fat mass, demonstrating

the influence of the testing sample size on the final model performance.

Conclusions

These models display potential for further development and evaluation in LMICs to detect

infants in need of further nutritional management, especially where traditional methods of

risk management such as birthweight for gestational age percentiles may be variable or

non-existent, or unable to detect appropriately grown, low fat newborns.

Introduction

Neonatal body composition assessment plays an important role in characterising the nutri-

tional and dietary status of newborn infants. Those with limited body fat face risks of increased

mortality and morbidity, with undernutrition linked to inhibited long-term growth and cogni-

tive development [1, 2]. A 2010 report from the World Health Organization (WHO) attributed

undernutrition as a contributing factor in one third of child deaths under five years of age [3].

The majority of these deaths occur within the first few days of life and in low and middle

income countries (LMICs) [4].

Current validated methods for measuring body composition such as air displacement

plethysmography (ADP), dual x-ray absorptiometry and hydrometric methods are often

impractical in LMICs, given stipulations of portability, cost and operational expertise. Anthro-

pometric measures such as mid-upper arm circumferences (MUAC), birthweight for gesta-

tional age percentiles (henceforth birthweight percentiles) and weight-for-length Z scores are

commonly used in place of these more complex techniques to gauge undernutrition [5].

Simple cut-offs have been defined for MUAC to screen for moderate and severe acute mal-

nutrition and although they have been evaluated in older infants (aged 6–60 months) with

respect to risk of mortality [6], there is a lack of similar data on its reliability and association

with these risks in younger infants (under 6 months). MUAC and abdominal circumference

also reflect adiposity [7]. Head circumference reflects brain volume and thus intrauterine

brain development [8, 9] while chest circumference has been shown to be a significant predic-

tor of low birthweight [10, 11], commonly used to identify infants at risk from undernutrition.

Though these circumferences have not been extensively evaluated in relation to malnutrition

risk, their simplicity and scalability may render them suitable candidates for screening use in

LMICs. In the newborn period, birthweight percentiles and less often, weight-for-length Z

scores are traditionally used to identify malnutrition, though as with all anthropometry, they

may be susceptible to measurement inaccuracies. Birthweight percentiles are limited by

unknown or inaccurate gestational age in LMIC settings and cannot detect the appropriately

grown (10-90th percentile) low fat newborn at risk of significant morbidity [12].

ADP has often been used as the reference method in infants, and has been previously vali-

dated for this population [13–15]. Carberry et al. have reported that body fat % (BF%) as mea-

sured by ADP offers a better composite measure of poor neonatal outcome than conventional

birthweight measurements [12].

Anthropometric equations for the estimation of neonatal body fat have been developed

against a range of reference methods. These include total body water as measured via total

body electrical conductivity [16, 17], ADP [18, 19] and dual x-ray absorptiometry [20]. A

recent validation of four anthropometric equations using skinfold thickness measurements
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demonstrated poor explanation of variance (R-squared ranging from 0.55–0.63) between the

developed equations and against ADP [21]. High inter-individual variability in the first few

days of life may have contributed to the poor agreement observed and there is thus a need for

caution in interpretation of the results from predictive equations.

Most models for the estimation of neonatal body fat account for sex of the infants using a

single variable in the linear regression model (often 1 = male, 0 = female) [16–19]. This may

not allow sufficient adjustments for sex-specific anthropometry [22] and may be biased by the

predominance of either sex in the dataset used for model development.

The aim of this work was to develop anthropometric models for various applications within

the first few days post-delivery. We sought to develop logistic regression models for identifying

infants at risk of malnutrition, first using a composite measure of neonatal morbidity previ-

ously developed [12], while the second and third were to screen for low and high BF% neo-

nates measured via the reference method, ADP. We also developed a linear regression model

using a sex-specific approach to directly estimate neonatal fat mass (FM) using anthropometric

features and thus characterise nutritional status.

Materials and methods

Data collection

Eligible neonates were term (>37 weeks), singletons born at Royal Prince Alfred Hospital,

Sydney during September and October 2010. Those with major congenital abnormalities were

excluded from the study. Further details of recruitment and study data collection have been

previously reported [12]. Briefly, there were 782 eligible neonates born during the study

period, 581 of whom were enrolled in the study (75% recruitment rate). Of these, 524 neonates

had valid and complete measurements and were included for model development.

Body composition data including BF% and FM was collected via ADP (PEA POD;

COSMED, Concord, USA) and anthropometric measurements were collected within

48 hours of birth. ADP applies basic gas laws to determine the body volume from that of

the air displaced by the infant in an enclosed chamber, maintained at a constant tempera-

ture. Together with the weight measurement from the PEA POD scales, the density of

the subject can be determined and, assuming a two-compartment model and constant

density for each fat and fat-free mass, the weights of each component can be determined.

BF% measurements from ADP was used as the gold standard for subsequent model

development.

Anthropometric measurements (length and head, mid-upper arm, mid-thigh, abdominal

and chest circumferences) were standardised using skills-based educational methods and com-

petency confirmation [23]. Length was measured to approximately 0.1 cm heel to crown using

an Easy-Glide Bearing Infantometer (Perspective Enterprises, Portage, MI). Weight on day of

measurement (henceforth, weight) was measured to the nearest gram using the integrated

PEA POD scales. To simulate the accuracy of standard scales in LMICs, weight was subse-

quently rounded to the nearest 5 grams during pre-processing. Circumferences were measured

using a paper tape measure. Anthropometry and length were taken by a single researcher

except for a subset of approximately 40 infants where duplicate measurements were taken

[24].

Ethics. The study was approved by the Human Research Ethics Committees of Royal

Prince Alfred Hospital and the University of Sydney (HREC/09/RPAH645, SSA/09/RPAH646,

and University of Sydney Ref. No. 12732). Informed parental written consent was obtained,

and participation was voluntary.
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Model development and statistical analyses

Data processing and feature selection was completed in Python (Python Software Foundation,

version 2.7.11 https://www.python.org/), with further statistical analysis undertaken in R 3.3.1

[25].

Neonatal morbidity screening. Composite neonatal morbidity was defined on the basis

of hypothermia, poor feeding and extended length of stay, as previously described [12]. This

composite measure associated with undernutrition was developed using univariate logistic

regression to identify the combination of variables that could identify small-for-gestational

age neonates based on birthweight percentiles [12]. We completed an exhaustive search of

all possible combinations of linear, inverse and square transformations of anthropometric

features. Note that for all measures, gestational age was excluded from the feature set for

model development as this may be unknown or unreliable in LMICs. We also examined the

greatest AUC achieved by a model excluding length as a feature and compared model perfor-

mance using the Delong method [26], should length boards and appropriate training not be

available.

Logistic regression models were constructed using a maximum of four original features,

balancing computational efficiency and model performance. Receiver-operator characteristic

(ROC) curves were generated for each feature combination, providing an indication of sensi-

tivity and specificity in identifying the class denoting composite morbidity. The final models

were selected based on those which maximised the area under the ROC curves (AUC), a mea-

sure of predictive ability.

Screening of low and high BF% neonates. A similar approach was adopted for screen-

ing of low and high BF% neonates, which were defined respectively as 1 SD below and above

the mean, stratified by sex. These cut-offs were consistent with previous work finding the

low BF% infants exhibited greater risk of composite neonatal morbidity [12]. Logistic regres-

sion models were developed independently using an exhaustive search for combinations

of transformed features that yielded the greatest AUC for identifying low and high BF%

neonates.

Estimation of neonatal fat. For the estimation of neonatal fat mass (FM) using a linear

regression model, relevant features and commonly-used combinations of anthropometric

measures were included in the complete set of features. We sought to characterise the

underlying drivers behind weight-for-length ratio (W/L) and its higher powers, W/L2 (body

mass index) and W/L3 (ponderal index) [27]. Inclusion of all three ratios would introduce

multiple collinearity effects and thus, factor analysis was applied to determine the ratio for

inclusion in the complete feature set. Weight rather than birthweight was used in these ratios

given the weight loss observed in the first few postnatal days [28] and the varying ages at

measurement.

To mitigate the influence of varying ranges, all continuous variables were standardised

(mean = 0, SD = 1). Feature selection was then undertaken using recursive feature elimination,

ranking features by their linear model coefficients, repeatedly removing them from the model

and determining the optimal set of features. This was determined through minimisation of the

root mean squared error score (RMSE) based on 10-fold cross-validation of the dataset. Once

the set of features was determined, model fitting was completed on the sex-specific subgroups

with the non-standardised features.

The performance of the sex-specific models was compared against combined sex models fit-

ted to the determined feature set combined with a binary variable denoting sex (male = 1,

female = 0). For the combined sex model, we also included sex-anthropometry interaction

terms and examined the effect on the final model.
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Model evaluation

Logistic regression models. We compared the developed logistic regression models

against common anthropometric indices using the Delong method for comparison of corre-

lated ROC curves [26]. Logistic regression models were further evaluated using leave-one-out

cross-validation, with models rejected if the AUC from this was less than or equal to 0.5. This

involved using all samples except one in fitting the logistic regression model and subsequently

evaluating the predicted probability of the omitted sample. The process was repeated for all

samples and the probabilities used to construct a ROC curve for evaluation of the leave-one-

out cross validation AUC.

Linear regression models for neonatal fat mass estimation. To investigate the motiva-

tion for sex-specific model fitting, we compared anthropometric and other characteristic dif-

ferences between male and female neonates. We applied a student’s t-test for continuous

variables such as birthweight, length and head circumference and a chi-squared test for cate-

gorical variables. We then compared the performance of sex-specific models for a range of test

sample sizes by first dividing the dataset into sex-stratified halves, a training and a testing set.

The male and female portions of training set were used to fit sex-specific linear estimation

models while an equal-sized subset containing an even distribution of sexes was used to fit the

combined sex model. We continually and randomly restricted the testing set, determining

RMSE of fat-free mass, FM and BF% estimations for each sample size over 100 iterations. The

overall process was repeated for 10 divisions of training and testing sets and the mean RMSE

calculated for a given sample size.

Results

The characteristics of the population are summarised in Table 1, with continuous variables

expressed as mean and standard deviation (SD) and categorical variables as percentages (%).

Logistic regression models

We developed logistic regression models to screen for a composite measure of neonatal mor-

bidity as well as low and high BF% neonates.

Neonatal morbidity screening. From the exhaustive search of all possible 4-feature mod-

els to screen for neonatal morbidity, the following features were frequently included in high

scoring models: weight or birthweight, chest or abdominal circumference, mid-thigh circum-

ference and length. The greatest AUC achieved was 0.740 (0.63, 0.85) by the combination of

birthweight, length, chest and mid-thigh circumferences (Fig 1). The composite feature is

defined in Eq 1, where circumference is denoted by circ.

CFmorbidity ¼
birthweight � chestcirc

length� thighcirc
ð1Þ

The greatest AUC for a model without length as a feature was 0.736 (0.62, 0.85) and com-

bined the product of birthweight and abdominal circumferences, divided by that of head and

mid-thigh circumferences. The AUC score difference between the reported model (Eq 1) and

this length-free model was minimal and not significant.

We compared the ROC curves of the developed models with those of commonly used met-

rics. Table 2 reports the AUC, standard error and p-values from the Delong method for com-

paring correlated ROC curves [26]. The developed model (AUC 0.740 (0.63, 0.85)) displayed a

high degree of overlap with the BF% ROC curve (AUC 0.786 (0.70, 0.88)) which exhibited the
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next highest AUC. MUAC had a significantly poorer AUC of 0.655 (0.51, 0.80) (p = 0.046)

than that of BF%.

Screening of low and high BF% neonates. The logistic regression models for low and

high BF% exhibited AUCs of 0.827 (0.78, 0.88) and 0.834 (0.79, 0.88) respectively (Fig 1).

The features used to construct the corresponding composite features are summarised in Eqs 2

and 3.

CFlow� fat ¼
weight 2

length� chestcirc
ð2Þ

CFhigh� fat ¼
headcirc � length2

birthweight � weight
ð3Þ

Linear regression models

Feature selection. Factor analysis was applied to the W/L ratio and its 2 higher powers to

determine which of the ratios to be included in the set for subsequent feature selection and

to avoid multiple collinearity effects. Results showed that 89.5% of the variance could be

explained by a single underlying factor, driven mostly by W/L2 (R-squared > 0.99). This ratio

exhibited a R-squared of 0.874 with W/L and 0.809 with W/L3. R-squared between W/L and

W/L3 was 0.472.

Recursive feature elimination identified the combination of weight, head circumference,

mid-thigh circumference and W/L2 as the optimal set of features for neonatal FM estimation.

Table 1. Comparisons of anthropometry and body composition measures for male and female neonates. An independent t-test (two-tailed) was applied to compare

continuous variables and a chi-squared test for categorical variables (neonatal composite morbidity and proportions in each fat range). Statistical significance is denoted by
�p<0.05, ���p<0.001.

Characteristics Male Female p

n 272 252

Birthweight (g) 3533 ± 475 3366 ± 411 <0.001���

Weight (g) 3359 ± 448 3193 ± 398 <0.001���

Length (cm) 50.4 ± 1.9 49.2 ± 1.7 <0.001���

Gestational age (weeks) 39.6 ± 1.1 39.5 ± 1.2 0.120

Age at measurement (days) 1.17 ± 0.6 1.19 ± 0.6 0.695

Mid-upper arm circumference (cm) 11.0 ± 1.0 10.9 ± 0.9 0.0897

Head circumference (cm) 35.0 ± 1.1 34.1 ± 1.1 <0.001���

Mid-thigh circumference (cm) 15.1 ± 1.3 15.0 ± 1.2 0.568

Abdominal circumference (cm) 30.6 ± 2.2 30.5 ± 2.0 0.511

Chest circumference (cm) 32.7 ± 1.8 32.4 ± 1.6 0.023�

Neonatal composite morbiditya (%) 3.7 3.2 0.176

Proportion low fat (%) 12.5 14.7 0.100

Proportion moderate fat (%) 71.7 71 0.199

Proportion high fat (%) 15.8 14.3 0.143

Body fat % 8.89 ± 4.0 10.09 ± 3.9 <0.001���

Fat mass (g) 310 ± 167 332 ± 155 0.119

aComposite neonatal morbidity defined as a composite of hypothermia, poor feeding and extended length of stay. Previously described in [12]

https://doi.org/10.1371/journal.pone.0195193.t001
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Linear estimation of neonatal fat mass. The sex-specific and combined sex linear regres-

sion model coefficients are detailed in Table 3. Weight and W/L2 were significant predictors of

male and female neonatal FM, whereas head circumference was significant (p = 0.018) in the

male population only. All three models exhibited similar R-squared statistics of approximately

Fig 1. Receiver-operator characteristic curves and predicted probabilities for developed logistic regression

models. Panels (a), (c) and (e) display the ROC curves for each of the developed (CF) models and other comparative

models for the identification of composite neonatal morbidity [12], low BF% and high BF%, respectively. Comparative

models include those fitted using body fat percentage (BF%), weight for length (W/L), mid-upper arm circumference

(MUAC) and birthweight percentile (BWpctl). Corresponding boxplots in (b), (d) and (f) show the predicted

probabilities from the corresponding CF logistic regression models for each of the two classes: negative (N) and

positive (M: composite neonatal morbidity, L: low BF% and H: high BF%).

https://doi.org/10.1371/journal.pone.0195193.g001
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0.59. For the combined sex model, all variables including sex were significant predictors of

neonatal fat mass. There were no significant interactions between sex and anthropometric fea-

tures (p> 0.3).

Model evaluation. To characterise model performance, we evaluated RMSE and R-

squared statistics for both sex-specific and combined sex models for a range of test sample

Table 2. Comparison of receiver-operator characteristic curves for the prediction of composite neonatal morbidity, low and high fat BF% using the Delong method

[26]. For each pair of logistic regression models, the standard error and p-value from the Delong method for ROC curve comparison are reported [26]. Comparisons

include BF% from ADP, weight-for-length-for-gestational age (W/L/GA), weight-for-length-squared (W/L2), mid-upper arm circumference (MUAC), birthweight percen-

tiles (BWpctl) and developed composite feature (CF). Statistical significance is denoted by �p<0.05, ��p<0.01 ���p<0.001.

Model AUC (95% CI) W/L2 MUAC BWpctl CF

Composite neonatal morbidity

BF% 0.786 (0.70, 0.88) 0.055, 0.24 0.066, 0.046� 0.062, 0.141 0.061, 0.453

W/L2 0.726 (0.61, 0.84) 0.061, 0.239 0.047, 0.510 0.04, 0.729

MUAC 0.655 (0.51, 0.80) 0.067, 0.548 0.07, 0.227

BWpctl 0.695 (0.57, 0.82) 0.051, 0.376

CF 0.740 (0.63, 0.85)

Low BF%

W/L/GA 0.817 (0.77, 0.87) 0.012, 0.174 0.028, 0.006�� 0.011, 0.031� 0.014, 0.455

W/L2 0.800 (0.75, 0.85) 0.029, 0.035� 0.021, 0.712 0.019, 0.141

MUAC 0.740 (0.68, 0.80) 0.030, 0.076 0.028, 0.002�

BWpctl 0.792 (0.74, 0.85) 0.018, 0.056

CF 0.827 (0.78, 0.88)

High BF%

W/L/GA 0.836 (0.79, 0.88) 0.011, 0.06 0.026, ��� 0.010, 0.832 0.047, 0.961

W/L2 0.816 (0.77, 0.87) 0.028, 0.001�� 0.177, 0.309 0.049, 0.715

MUAC 0.726 (0.67, 0.78) 0.026, ��� 0.047, 0.02�

BWpctl 0.834 (0.79, 0.88) 0.044, 0.998

CF 0.834 (0.79, 0.88)

https://doi.org/10.1371/journal.pone.0195193.t002

Table 3. Linear regression model coefficients for estimation of neonatal fat mass in grams.

Variable Intercept Weight (g) circhead (cm) circthigh (cm) W/L2 (g/cm2) Sex

Male

Coefficient -309.54 0.226 -19.93 15.74 243.53 -

SE 261.74 0.035 8.35 8.42 105.11 -

p 0.238 <0.001��� 0.018� 0.063 0.021� -

Female

Coefficient -677.90 0.190 -8.280 11.47 390.141 -

SE 270.16 0.038 8.705 7.95 105.060 -

p 0.013� <0.001��� 0.342 0.150 <0.001��� -

Combined sex

Coefficient -445.45 0.212 -14.857 13.191 312.795 -47.21

SE 186.35 0.0255 6.008 5.780 74.00 10.14

p 0.017� <0.001��� 0.014� 0.023� <0.001��� <0.001���

R-squared statistics for the male, female and combined sex regression models were 0.589, 0.591 and 0.590, respectively. Units for each variable are shown in parentheses,

with coefficients, standard error (SE) and p value from linear regression model fitting shown for the sex-specific and combined sex models. The variable denoting sex

comprises 1 = male and 0 = female. Statistical significance is denoted by

�p<0.05,

���p<0.001.

https://doi.org/10.1371/journal.pone.0195193.t003
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sizes, displayed in Fig 2. The R-squared statistics for combined sex and sex-specific models

were similar, as also reflected by model fit to the complete dataset in Table 3 (R-squared com-

bined: 0.590, male: 0.589, female: 0.591), though sex-specific models tended to exhibit a lesser

RMSE in the estimation of FM, FFM and BF%.

Discussion

Summary of findings

In this study, we developed and evaluated a range of models for characterising neonatal nutri-

tional status. Using a composite neonatal morbidity, we developed a model to detect under-

nourished newborns which exhibited an AUC of 0.740 (0.63, 0.85). We also examined the

greatest AUC achieved by a model excluding length as a feature and found that a combination

of birthweight, abdominal, head and mid-thigh circumferences yielded a AUC of 0.736 (0.62,

0.85).

Fig 2. Mean model RMSE and R-squared statistics for estimations of body composition parameters at a testing sample size. Panels (a)-(b) fat free

mass (FFM), (c)-(d) fat mass (FM) and (e)-(f) body fat percentage (BF%) measured via air displacement plethysmography. Population was divided into

two sex-stratified halves, with the first half used to fit male and female-specific linear estimation models and an equally-sized subset containing an even

distribution of sexes used to fit the combined sex model. The second half or test set was then randomly and repeatedly restricted with root mean

squared error (RMSE) and R-squared determined for each iteration.

https://doi.org/10.1371/journal.pone.0195193.g002
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Models for identifying low and high BF% neonates exhibited AUCs of 0.827 (0.78, 0.88),

and 0.834 (0.79, 0.88), respectively. This suggests potential for application in LMICs, offering a

low-cost and scalable approach for screening at birth, though this may depend on measure-

ment accuracy and reproducibility, availability of appropriate equipment, training and evalua-

tion of competency [24]. These factors considered, the models could nevertheless motivate

the routine collection of anthropometric measurements, especially considering the socio-eco-

nomic transition that many LMICs are undergoing, with both under and overnutrition present

at birth.

Neonatal morbidity screening

The combination of birthweight, length, chest and mid-thigh circumferences exhibited the

greatest AUC of 0.740 (0.63, 0.85) to identify neonatal morbidity. AUC from leave-one-out

cross-validation was 0.698. It was interesting to note the presence of the birthweight-to-length

ratio, possibly corrected for chest and mid-thigh circumferences as a potential marker for

composite neonatal morbidity. Neither of these circumferences have been routinely used as a

marker of adiposity, though chest circumference has been identified as a strong predictor of

low birthweight [10] and there have been similar correlations reported between mid-thigh cir-

cumference, antenatal nutrition [29] and birthweight [30].

The model excluding length as a feature exhibited a AUC of 0.736 (0.62, 0.85) and did not

exhibit a significantly poorer performance than that where length was included. Given the

more expensive and bulkier nature of length boards compared with paper tape measures for

circumference measurements, this length-free composite measure may be preferred for use in

LMICs.

MUAC is a simple and fast measurement widely-used to detect undernutrition in LMICs.

Though MUAC in infants under 6 months may have predictive value for infant death [31], the

difference between the ROC curves for MUAC and BF% would suggest that prediction of mor-

bidity as defined by our composite measure in this population may be improved by accurate

measurement of BF% if available, or by using our anthropometric model, subject to further

evaluation and validation in an independent dataset. Our model exhibited an AUC of 0.740

(0.63, 0.85) which was the next highest to BF%, among other comparisons including W/L2

(0.726 (0.61, 0.84)), birthweight percentiles (0.695 (0.57, 0.82)) and MUAC (0.655 (0.51, 0.80))

(Fig 1, Table 2).

Screening of low and high BF% neonates

Both models yielding the greatest AUC for screening low and high BF% contained a ratio

between weight and length in some form, with the low BF% neonates consisting of weight,

length and chest circumference and the high BF% containing birthweight, weight, length and

head circumference.

The developed model for screening low BF% neonates exhibited a AUC of 0.827 (0.78,

0.88), greater than that of the W/L for gestational age model, though the difference was not sta-

tistically-significant. In contrast, the W/L for gestational age exhibited the greatest AUC of

0.836 (0.79, 0.88) for identifying high BF% neonates, consistent with previous reports of

increasing BF% with increasing gestational age [32], due to rapid fat gain late in gestation [33].

This is followed by both the composite feature and the birthweight percentile models with

AUCs of 0.834 (0.79, 0.88), suggesting that for this cohort, accounting for multiple anthropo-

metric measures performs no better than considering the birthweight percentile alone, despite

the latter being considered a limited predictor of morbidity and mortality. Such percentiles are

nevertheless problematic as gestational age is frequently unreliable in LMICs.
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Linear estimation of neonatal fat

Anthropometric models for the estimation of neonatal fat mass developed by Catalano et al.

[16], Schmelzle et al. [20] and Deierlein et al. [18] exhibit an R-squared of 0.84, 0.94 and 0.81,

respectively. A direct comparison between our models and those developed previously is diffi-

cult given the lack of corresponding skinfold thickness measurements, differences in the crite-

rion method for FM estimation and demographic variations. Our developed models exhibited

an R-squared of 0.59 for both male and female populations, accounting for a lower variance in

FM than previous reported models. This highlights the important contribution and correlation

of skinfold measurements to FM estimation, though without considerable practice, these mea-

sures may have poor reproducibility amongst multiple users [34].

Comparisons of sex-specific anthropometry revealed that males tended to be longer and

heavier than females, with larger head and chest circumferences on day of measurement

(Table 1). The male neonates in our cohort also had lower BF%, which also remains consistent

with previous studies [32]. In the anthropometric models previously developed for estimation

of body composition [16–20], sex is often not included or adjusted for using a binary variable

in the linear regression model. This adjustment for sex differences in anthropometry and body

composition may well be inadequate, especially for robust model development. Though vari-

ability in body composition measures were similar across both sex-specific and combined sex

models, we observed a greater estimation error for the combined sex models (Fig 2) and a dif-

ferent combination of variables that were significantly predictive of fat mass between male and

female-specific models (Table 3).

The population-specific nature of body composition also extends beyond sex; there are also

differences between infants of different ethnicities [35, 36], that may be genetic, biological,

environmental or composites of these. Body composition is also influenced by perinatal char-

acteristics, infant feeding methods [37] and days after birth, with infants undergoing an initial

weight loss particularly during the first four postnatal days [28]. In this period, energy intake is

limited until breastfeeding is established by day 5 when fat stores are no longer needed as alter-

native energy stores and energy is expended to the requirements of extrauterine life including

thermoregulation, fluid balance and respiration [38, 39]. These factors contribute to high vari-

ability observed in the neonatal period and thus need to be considered in robust model devel-

opment and application.

The changes in RMSE and R-squared with testing set size in Fig 2 demonstrate the influ-

ences of both training and testing sets on the performance and robustness of the final model.

These results support sex-specific model fitting, highlighting the potentially inflated error

from combining both male and female subjects in the same model with a single variable

adjusting for sex. It also aids in establishing a context for model evaluation, with different tar-

get variables (fat-free mass, FM and BF%) tending towards different degrees of correlation

with anthropometric variables. An understanding of model fit and robustness extends beyond

R-squared which characterise the relationship between two variables, rather than agreement or

differences between them. Despite similar R-squared statistics across both combined sex and

specific model estimations of neonatal body composition, the RMSE tended to be lower for

sex-specific models.

Strengths and limitations

The strengths of this study include the large sample size of neonates and the use of ADP as the

criterion method which has been specifically validated in this population [13–15]. The model

development for detecting neonatal morbidity was limited by the low representation (3.4%) of

neonatal morbidity [12]. Although we approached this by using leave-one-out cross-validation
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for model evaluation, there is a need for further evaluation on a population with higher neona-

tal morbidity. The optimal measurement of morbidity may change in a different population,

as the composite score used for this analysis was based on a logistic regression analysis of

potentially significant factors in the given population [12]. This dataset would ideally be

sourced from LMICs where demographic characteristics align with the intended area of appli-

cation for the model.

Due to the accurate measurement of weight using the integrated PEA POD scale, further

validation of accurately measuring weight for the models may be required. Anthropometry

including length and circumference measurements were also not obtained in duplicate except

for a small subset of approximately 40 infants [24].

Body composition estimation in the neonatal population is especially difficult given the

varying criterion methods, the growing evidence to suggest poor agreement between gold stan-

dards in this population [40] and the variation in body composition during the first few days

of life. The model development and potentially, predictive ability, may be improved by adjust-

ing for additional features such as skinfold measurements, which were not collected in this

dataset. Evaluation in an independent population to gauge estimation error and robustness of

predictive ability for neonatal morbidity, low and high BF% infants is also needed.

Conclusions

The greatest burden of neonatal and infant undernutrition and morbidity lies in LMICs,

where there is an urgent need for suitable, simple approaches to monitor and manage infants.

Using combinations of anthropometric features, we fitted models for application in these set-

tings that could detect composite morbidity with an AUC of 0.740 (0.63, 0.85) in neonates

in the first few days of life. Composite features involving simple, accurate, easily-measured

anthropometric features could also identify low BF% infants with an AUC of 0.827 (0.78,

0.88). These models have demonstrated potential for further development and evaluation in

LMICs for identifying infants in need of further nutritional management.
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A near-infrared interactance model for the estimation of infant body
composition

Jacqueline Huvanandana1, Peter Jones1, Heather E Jeffery1,2, Angela E Carberry1,2, Shane Norris3

Alistair L McEwan1

Abstract— In low and middle income settings, there is a
pressing need for simple, low-cost and robust ways of determin-
ing infant body composition. Measuring and monitoring body
composition plays an important role in addressing the burden
of child deaths under five, where depleted fat stores may put
infants at risk of mortality, morbidity in later life and delayed
cognitive development. In a subset of 41 infants aged between
2 and 8 months, we develop and evaluate a potential model
for using near-infrared interactance (NIR) features for the
estimation of infant fat mass and the deuterium dilution method
as the reference method. Model evaluation demonstrates the
potential of NIR to capture variability in body composition,
with a correlation of R = 0.90 and Bland-Altman agreement
(mean bias with 95% confidence intervals) of -8 (-553, 536) g
with fat mass estimated by a four-compartment (4C) model.
With continued development in the larger dataset, this model
may enable simple and low-cast body composition assessment
of infants in low and middle incomes settings where the burden
of infant deaths is greatest.

I. INTRODUCTION

A 2010 UNICEF/WHO report identified undernutrition
as a contributing cause in over one third of child deaths
under five [1]. The vast majority of these deaths occur
in low and middle income countries [2] where access to
criterion methods such as air-displacement plethysmography
(ADP), dual x-ray absorptiometry and deuterium dilution
are not practical given cost, portability, possible risks and
operational expertise. Simple and scalable measures such
as anthropometry may be more suited to these contexts,
though they have their own limitations: mid-upper arm
circumferences are widely used for screening moderate and
severe acute malnutrition cases, though there is limited data
on its reliability and predictive value for mortality in infants
under 6 months. Weight-for-length or body mass index Z
scores may be susceptible to inaccuracies in the measurement
of length [3]. Skinfold thickness measurements may play
an important role in anthropometric estimations of body fat,
though its reproducibility may be limited by training and
between multiple users [4].

The motivation underpinning the use of near-infrared
(NIR) interactance in body composition assessment stems

*This work supported by a Bill and Melinda Gates Foundation Grant ID
number: OPP1111820

1School of Electrical and Information Engineering, University of Sydney,
Sydney, Australia

2Sydney School of Public Health, University of Sydney, Sydney, Aus-
tralia

3MRC/Wits Developmental Pathways for Health Research Unit, Depart-
ment of Paediatrics, Faculty of Health Sciences, University of Witwater-
srand, Johannesburg, South Africa

from early work by Conway et al. [5] who reported observed
differences in the NIR spectra from samples of pork fat and
two subjects of different body composition. They reported
peaks in the spectrum corresponding to pure fat and water
at wavelengths of 930nm and 970nm, respectively. More
recent work in this area suggested the potential predictive
value of optical density ratios in detecting changes in fat
thickness using NIR [6], with a pilot study using NIR to
estimate neonatal body fat measured from air-displacement
plethysmography reporting a model fit of R > 0.8 in a cohort
of 26 neonates [7]. This suggests that the variance in body
fat percentage (BF%) can be explained in part by changes in
the NIR reflection profiles, though validation of this model
in an independent set of infants was not undertaken.

There is increasing acknowledgment that body composi-
tion and nutritional status has important implications for mor-
tality, long-term growth, neurocognitive development [8][9]
and morbidity in later life [10][11]. This is further motivated
by the findings that BF% has displayed a greater predictive
value than birthweight percentiles for identifying composite
morbidity in a neonatal population [12].

In this study, we developed a model using NIR features for
the estimation of infant fat mass using deuterium dilution as a
reference. We evaluated the model agreement and correlation
with fat mass and BF% as measured by a four-compartment
(4C) model. We also compared model performance to that of
weight-for-length-squared or body mass index (BMI) and the
Slaughter equation for infant body composition assessment
using sum of skinfold thickness measurements [13]. The
former is often used as a proxy for adiposity in infants,
with the use BMI Z-scores for monitoring infant growth.
The latter equation, though originally developed in infants
and youth (8-29 years) [13], has been validate in a number
of populations, including infants from birth to four months
[14] [15].

II. METHODS

A. Ethics

This study was approved by the Ethics Committee at the
University of Sydney (USyd) and the University of Witwater-
srand (Wits) (USyd HREC number: Project No.: 2015/595;
Wits HREC number: M150774). The study has also been
registered on the Australia and New Zealand Clinical trials
Registry (ANZCTR) number: ACTRN12615001318572. The
infants and children enrolled were recruited from the Soweto,
South Africa pregnancy and follow up clinics over a period
of 9 months (April to December 2016).
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B. Data collection

Data collected included weight, length, body composition
data using deuterium dilution, dual x-ray absorptiometry
(DXA) and NIR scans. Weight was measured using elec-
tronic scales (Seca 376, Hamburg, Germany). Length was
measured using an infantometer (Harpenden, Holtain Model
702) which has a fixed headboard and moveable footboard
following a two-trained person technique. Each infant was
administered a dose of deuterium, a stable non-radioactive
isotope of hydrogen and saliva samples were collected and
analysed in duplicate at 1.5 and 3 hours following dose
administration. This allowed for total body water to be
estimated and used to determine fat free mass (FFM), fat
mass (FM = mass−FFM ) and thus, fat mass percentage
(BF% = 100 · FM/mass). Bone mineral content was
measured via DXA (Hologic DiscoveryA DXA S/N 86254
APEX software version 4.0.2, Hologic Inc., Waltham, MA,
USA). Skinfold measurements were conducted in duplicate
using handheld callipers at four anatomical locations; triceps,
subscapular, mid-thigh and flank.

All NIR measurements were preceded by reference scans
against ambient light and a dark material. NIR measurements
were acquired using a spectrometer (QEPro, Ocean Optics),
with reflection profiles determined by customised software
developed in-house using LabView (QEProInterface v3.1).
Figure 1 shows the acquisition of a single NIR measurement
on the anterior thigh. For this study, scans were acquired at
four anatomical locations; sub-scapular, flank, mid-thigh and
triceps. Two sets of measurements were acquired at each of
these sites.

Fig. 1. Measurement conducted on the anterior thigh using the Ocean
Optics QEPro NIR device

Anthropometric and body composition characteristics of
the selected population are summarised in Table I.

Pre-processing, model development and statistical analysis
were completed using Python (Python Software Foundation,
version 2.7 https://www.python.org/) and the Sci-kit Learn
package [16]. Pairs of reflection profiles at a given scan lo-
cation that met the quality criteria (reflection values between
0 and 100%) and agreed within 10% in the 850-1100nm
range were averaged prior to feature extraction. Features
were constructed by determining exhaustive combinations of
reflection at wavelengths in the range of 850-1100 nm, in
increments of 10 nm and expressing the ratio between them

TABLE I
SUMMARY OF DATASET CHARACTERISTICS

Variable Mean ± SD
n 41
Male (%) 48.8%
Age (months) 4.1 ± 1.7
Weight (g) 6835 ± 1477
Length (g) 62.2 ± 4.8
Subscapular skinfold (mm) 9.3 ± 1.9
Triceps skinfold (mm) 9.5 ± 1.9
Flank skinfold (mm) 11.5 ± 2.7
Mid-thigh skinfold (mm) 19.8 ± 3.6
Fat-free mass (g) 4889 ± 979
Fat mass (g) 1946 ± 645
Body fat percentage (%) 28.0 ± 5.2

as a percentage. This resulted in a set of 300 features for a
given scan site.

For feature selection and model evaluation, the dataset (n
= 41) was initially divided into two sex-stratified subsets, a
training (n = 20) and a testing set (n = 21). In light of the
small training set size available, we first reduced the feature
set to those which exhibited a correlation (p < 0.05) with the
target variable, fat mass as measured by deuterium dilution.
On this reduced feature set, we then completed an exhaustive
search of up to two features and the weight-for-length (W/L)
ratio. For each combination of features, the mean estimation
error from leave-one-out cross-validation was determined.
This process involves fitting all except one sample from the
training set to the target variable and evaluating the excluded
sample, with a repeat of this process for every possible
sample. The feature combination selected for model fitting
was determined by minimisation of the mean estimation
error.

A linear regression model for the esimation of fat mass
in grams (g) was fit using the selected features. This model
was subsequently evaluated on the testing set by determining
correlation and Bland-Altman agreement with fat mass and
corresponding BF% as estimated via the 4C model described
in equation 1. This 4C model was based on that adopted by
Fomon et al. [17] and Butte et al. [18].

FFM =
1009.4108 · TBW + 1000 ·BMC

994− 2.87851 · TBKFFM
(1)

where fat-free mass (FFM), total body water (TBW) and
bone mineral content (BMC) are in kg. The total body
potassium (TBK) is in mEq/kg FFM and estimated for male
and female infants using equations 2 and 3, respectively.
These were based on polynomial curve fits to the table for
TBK (mEQ/kg) from Fomon et al. [17].

TBK = 0.0009m3 − 0.0505m2 + 1.1047m+ 49.108 (2)

TBK = 0.0011m3 − 0.0629m2 + 1.2957m+ 49.113 (3)

To characterise the utility of the NIR model in this
equation, we also evaluated model performance of three other
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comparisons; a linear regression model fitted to infant BMI
and sex, the Slaughter equation (equations 4 and 5 for male
and female infants, respectively) where

∑
SFT is based on

the sum of subscapular and triceps skinfold thicknesses in
mm and DXA. The latter is often considered one of the
criterion methods for infant body composition assessment,
though its cost and portability considerations may hinder its
application in low and middle income settings.

BF%M = 1.21×
∑

SFT − 0.008×
∑

SFT 2− 1.7 (4)

BF%F = 1.33×
∑

SFT − 0.013×
∑

SFT 2 − 2.5 (5)

III. RESULTS

The linear regression model for estimation of infant
fat mass (g) is expressed in equation 6, with coefficients
summarised in Table II. Model coefficients showed both
NIR features and W/L to be significant predictors of fat
mass. Table III summarises Bland-Altman agreement and
correlation for the model estimations of fat mass and BF%
with the selected reference values.

FM = β1
R920

R1090
+ β2

R930

R1090
+ β3

W

L
+ ε (6)

TABLE II
LINEAR REGRESSION MODEL COEFFICIENTS FOR ESTIMATION OF FAT

MASS

Feature Estimate Standard error p
β1 -421.82 126.64 0.0042
β2 539.30 141.79 0.0016
β3 28.62 3.31 0.0016
ε -12206.67 3874 0.0062

IV. DISCUSSION

Using a subset of n = 41 infants aged 2-8 months, we
evaluated the potential for using NIR in estimation of infant
body composition. Models were fitted to a training set (n =
20) and using fat mass and BF% as measured by deuterium
dilution as the reference method. They were subsequently
evaluated on the testing set (n = 20) against the 4C model
estimates. Limits of agreement with the 4C model for in
the testing set were -8 (-553, 536) for fat mass (g) and
0.1 (-7.07, 7.24) for BF%. These limits were comparatively
narrower than from estimations based on the BMI model (-
40 (-736, 656) g FM and -1.1 (-12.4, 10.2) BF%) and the
Slaughter equation [13] (706 (10, 1401) g FM and 9.9 (1.1,
18.8) BF%). This suggests that NIR model does not strongly
underestimate nor overestimate both fat mass and BF%. The
BMI model tended to overestimate fat by 40 g with 95% of
measurements falling within 736 g above and 656 g below
the fat mass estimates from the 4C model. The Slaughter
equation considerably underestimated infant fat mass, with a
mean bias of 736 g in the testing set. The NIR model may

TABLE III
CORRELATION AND LIMITS OF AGREEMENT WITH INFANT FAT MASS (FM)

AND BODY FAT PERCENTAGE (BF%) FOR BOTH TRAINING AND TESTING

SETS1 . THE NIR MODEL IS SHOWN ALONGSIDE OTHER MODELS BASED ON

A COMBINATION OF BODY MASS INDEX AND SEX (BMI), THE SLAUGHTER

EQUATION BASED ON SUM OF SKINFOLD THICKNESSES (SFT) AND DUAL

X-RAY ABSORPTIOMETRY (DXA)
Model Agreementtrain Rtrain Agreementtest Rtest

FM
(g

)

NIR 0.0 (-414, 414) 0.95 -8 (-553, 536) 0.90
BMI 0.0 (-868, 868) 0.76 -40 (-736, 656) 0.81
SFT* 638 (-110, 1385) 0.88 706 (10, 1401) 0.86
DXA -216 (-1018, 587) 0.93 -134 (-891, 623) 0.92

B
F%

NIR -0.1 (-6.8, 6.6) 0.80 0.1 (-7.1, 7.2) 0.70
BMI -0.8 (-13.3, 11.7) 0.27 -1.1 (-12.4, 10.2) 0.33
SFT 9.1 (-0.2, 18.5) 0.54 9.9 (1.1, 18.8) 0.47
DXA -2.9 (-13.2, 7.4) 0.83 -1.4 (-11.8, 9) 0.77

1 All training set statistics reported against the deuterium dilution
estimations, while testing sets were validated against the 4C model
* Note that no model fitting was undertaken for training set skinfold
thickness models. Bland-Altman analysis and correlation reported for
the Slaughter prediction equations [13]

have exhibited stronger agreement and lower mean bias in
the testing set as it was fit specifically to the given population
of South African infants.

The model trained using BMI (weight-for-length-squared)
and sex features exhibited the poorest (R = 0.76) model fit
to fat mass in training set, compared with 0.95 and 0.88
for NIR and SFT, respectively. This also translated to the
poor correlation (R = 0.27) with BF% as predicted by the
4C model. It is possible that infant fat mass could not be
sufficiently explained by BMI and sex variables or that these
variables were better correlated with an overall measure of
BF%. BMI may have also been influenced by inaccuracies
in the measurement of length [3].

The large mean bias of 706 g observed for fat mass
estimations for the Slaughter equation suggests a tendency
for the SFT model to underestimate fat mass. This may have
been due the high inter-individual variability observed in
childhood and the population-dependence of these anthropo-
metric models. Previous validations of the Slaughter equation
on neonates and infants were undertaken on populations of
mostly Caucasian subjects [14][15] and there is a general
understanding that anthropometry varies between infants of
different sexes and ethnicities [19][20][21]. The correlation
(R = 0.86) with fat mass suggests that these anthropometric
features (sum of triceps and subscapular skinfolds) are still
able to explain considerable variance in infant body compo-
sition.

DXA is among the criterion methods for infant body
composition assessment, though it may not be suited to use
in low and middle income settings due to cost, operational
expertise required and portability. It consistently exhibited
strong correlation in fat mass and BF% predictions, though
it displayed a mean bias of -134 g and -1.4 BF% for testing
set estimations, with wider limits agreement than the NIR
model. This could be explained by the large contribution
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of deuterium dilution against which the NIR model was
fitted to the total body water component of the 4C model.
This stands in contrast to DXA bone mineral content which
forms a smaller portion of the compartment model. In the
infant population, there also remains uncertainty around
the agreement between gold standard methods for body
composition assessment [22].

Feature selection was based on the combination of wave-
length ratios which minimised the mean estimation error
from leave-one-out cross-validation of the training set. The
selected features included R920/R1090 and R930/R1090, in-
terestingly close to the peak of pure fat at 930nm as reported
by Conway et al [5]. This suggests a direct relationship
between the attenuation observed at 930nm and the variation
in fat mass. The significant contribution (p < 0.01) of
these features to the estimation of fat mass is in line with
previous observations [6][7], though direct comparisons to
the reported correlations are difficult given the different
dependent variables (fat mass rather than BF%) and refer-
ence methods (the 4C model rather than air-displacement
plethysmography).

The small dataset size (n = 41) limited the possible
number of features and scan locations for inclusion in
model development, though we applied leave-one-out cross-
validation as a means of mitigating this. Dataset size also
hindered further subdivisions of the data which, for example,
by age, which may have impacted the model; BF% has
been observed to plateau in infants in the 6-9 month age
range [18]. A larger sample size of this population will be
available for further validation of this model, with n = 651
infants recruited in total. Total body potassium (TBK) was
not measured independently via a potassium counter and
instead was estimated based on reference equations, which
may impact the accuracy of the 4C model.

V. CONCLUSIONS

This study evaluated the potential of near-infrared inter-
actance for use in infant body composition assessment. The
developed models exhibited a mean difference of -8 (-553,
536) for fat mass (g) and 0.1 (-7.07, 7.24) for BF% as
measured by a 4C model. They exhibited narrower limits
of agreement compared with a BMI and sex-based linear
regression model, the Slaughter [13] equation using sum of
skinfold thickness measurements and the estimations from
DXA. Subject to further model development and validation
on a larger dataset, this model combining NIR features of
reflection ratios and W/L offers a simple, fast and low-cost
approach for infant body composition in low and middle
income settings where the burden of infant deaths is greatest.
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6.3 Concluding remarks

The work presented in this chapter addresses the fifth aim of the thesis to identify

infants at risk of malnutrition and later morbidity. We apply feature extraction

and selection techniques to develop two sets of models: logistic regression models

to identify malnutrition, measured by a composite neonatal morbidity as well as

by low and high body fat percentage (BF%), and linear regression models for the

estimation of infant fat mass and BF%. In our cohort of (n = 524) term neonates,

we identified a composite neonatal morbidity with an area under receiver-operator

characteristic curve (AUC with 95% confidence interval) of 0.740 (0.63, 0.85). We

also developed a model using near-infrared interactance features that exhibited a

correlation of 0.90 and Bland-Altman agreement (mean bias with 95% confidence

intervals) of -8 (-4553, 536) g for fat mass with a gold standard method. These

results represent improved performance and narrower limits of agreement com-

pared with other accessible methods such as BMI and sex-based linear regression

models, skinfold thickness measurements and the estimations from DXA.
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Chapter 7

Conclusions and Future Work

This chapter summarises the research work undertaken as part of this PhD which

focuses on the application of advanced analyses to physiological signals in neona-

tal intensive care. These applications range from the early identification of infants

at risk for later morbidity including IVH and nutritional deficiency, to the char-

acterisation of cerebral autoregulation and the physiological impact of caffeine

therapy.

7.1 Major contributions of the current work

This section offers an overview of the main findings and/or contributions of each

chapter.

Chapter 2 Literature Review

This chapter critically appraised the available literature on physiological variabil-

ity and its relevance in neonatal intensive care. It discussed current of advanced

analyses to assist NICU caregivers in decision-making/risk assessment, and to

characterise underlying mechanisms affecting physiological variability. This chap-

ter also discussed the limitations of implementation, challenges in clinical appli-

cation, and potential pathways of development.

Chapter 3 Identification of preterm infants at risk of IVH

This chapter examined the potential for early identification of infants at risk of

developing IVH. We applied DFA to arterial blood pressure and air flow data

within 1-3 hours of birth, and found a combination of linear and non-linear fea-

tures (mean diastolic blood pressure and the pulse interval α2) able to discern

infants who later developed IVH with a sensitivity > 90% at a specificity of 75%.
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This chapter highlighted the importance of pre-processing in the application of

DFA and the predictive value of combining both linear and non-linear metrics in

quantifying variability.

Chapter 4 Characterising changes in cardiovascular dynam-

ics following caffeine therapy

This chapter applied both linear (mean, SD) and non-linear (DFA: α1, α2 and

Poincare: SD1, SD2 and SD1/SD2) analyses to physiological data from a cohort

of preterm infants receiving caffeine therapy. We found altered non-linear dy-

namics in heart rate and arterial blood pressure control using DFA and Poincare

analysis that suggest elevated parasympathetic activity following a loading dose

of 10 mg/kg caffeine base. This work has demonstrated increased pulse pres-

sure variability (SD) in the 2 hours post-caffeine, which may have important

implications for caffeine administration in preterm infants with impaired cerebral

autoregulation. The findings in this chapter also stand in contrast to the only

other study examining these techniques [35] which reported no altered cardiovas-

cular activity in a cohort of 21 infants. This may have been due to differences in

varying gestational age between the cohorts, and the use of a mixed-modelling

approach in our study to compare changes over multiple windows of analyses,

rather than a single timepoint before and after caffeine administration.

Chapter 5 Characterising cerebral autoregulation in preterm

infants

This chapter evaluated a range of time and frequency-domain techniques to char-

acterise the correlation between two physiological signals, some of which were

reviewed in Chapter 2. We observed a reduction in time-domain correlation fol-

lowing a loading dose of 10 mg/kg caffeine base. These observations contribute

to our understanding of CAP trial results, where caffeine was associated with

improved neurodevelopmental outcomes at 18-21 months follow-up [12] (though

not persisting at 5 years [21]), and reduced risk of motor impairment at 11 years

follow-up [22]. We also demonstrated the potential of detrended cross-correlation

analysis in characterising cerebral autoregulation, as shown by its discriminative

value in identifying the effects of caffeine and its correlation with other time

domain techniques.
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Chapter 6 Malnutrition detection and nutritional status

assessment using near-infrared interactance

This chapter focused on the nutritional aspect of neonatal care which plays a

role in morbidity and mortality in later life. The developed models were able to

identify a composite measure of morbidity with an AUC of 0.75 (0.63, 0.85), and

low BF% neonates with an AUC of 0.836 (0.79, 0.88). NIR interactance signals

were also shown to have predictive value in estimating fat mass and BF%, with

the fitted model exhibiting narrower limits of agreement with a gold standard

method compared to other accessible methods for body composition assessment.

The models presented in this chapter have shown potential for screening infants

in need of further nutritional management in the NICU and in low and middle

income settings.

7.2 Future research directions

Chapter 3 Identification of preterm infants at risk of IVH

While we have performed internal validations and sensitivity analyses to evaluate

the robustness of the results, these models require validation on an independent

and larger dataset as a next step towards their use in the NICU. Continuous mea-

sures of systemic blood pressure were obtained via arterial lines. With the shift

towards non-invasive monitoring, it may be of interest to explore photoplethys-

mography as an alternative to extract similar pulse interval and amplitude-based

features used in the final model.

The model could also be extended for multi-class classification, allowing for

stratification of the IVH classes according to the Papile system (I to IV). Further

work in the area may involve the inclusion of cross-correlation features or other

variability analysis techniques that may account for the interaction between res-

piratory and blood pressure signals which may better capture patient-ventilator

asynchrony.

Chapter 4 Characterising changes in cardiovascular dynam-

ics following caffeine therapy

There is continued interest in caffeine therapy and its acute and long-term effects

on preterm infants. We have shown that non-linear analysis can characterise

cardiovascular impact following a loading dose of caffeine in preterm infants.

This analysis may be extended to compare the differences in non-linear dynamics
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between a standard 20 mg/kg and higher 80 mg/kg loading dose of caffeine citrate,

and similarly, for early versus routine (12 hours after birth) administration.

Chapter 5 Characterising cerebral autoregulation in preterm

infants

The work in this chapter may be extended understand tolerance effects during

maintenance doses for caffeine therapy. Given the suggestion that impaired cere-

bral autoregulation may be a causal pathway for brain injury such as IVH, it

may also be of interest to understand how these metrics change in the lead up to

diagnosis, though no specific treatment for IVH has reached consensus. We may

nevertheless continue to characterise the risk factors to help guide clinical care for

its prevention. Further work in clarifying the physiological meaning of and other

factors contributing to the detrended cross-correlation coefficient is also needed,

alongside validation against a gold standard measure of autoregulation, as was

done for the cerebral oximetry index in an infant animal model [38]. The appli-

cation of detrended cross-correlation analysis to describe cerebral autoregulation

also requires the inter- and intra-subject variability to be evaluated.

Chapter 6 Malnutrition detection and nutritional status

assessment using near-infrared interactance

We applied feature selection techniques for development of models in identifying

risks of nutritional deficiency and later morbidity. The anthropometric models

for detection of a composite neonatal morbidity requires further validation on

a dataset with greater representation of malnutrition. Given the small sample

size of the training and testing set for development of the near-infrared interac-

tance model, this approach should be extended to the larger/complete dataset

when available. Feature selection and dimensionality reduction (such as princi-

pal component analysis or factor analysis) may also yield different key features

in a larger cohort and thus, external validation on an independent dataset with

greater representation of morbidity and/or malnutrition is also required.

7.3 Summary

The monitoring and management of preterm infants neonatal intensive care rep-

resents a unique challenge, balancing life-threatening conditions, treatments or

procedures with potentially life-long implications, and the demands of extrauter-

ine life. The opportunities to apply advanced analyses in this context are varied,
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contributing to a greater understanding of the physiological variability in relation

to conditions such as IVH, mechanisms such as cerebral autoregulation, malnutri-

tion as a risk factor for later morbidity, and the effects of prescribed treatments.

These analyses may be incorporated into a multi-parameter model for risk strat-

ification of patients in neonatal intensive care. One example from adult intensive

care is the continuous individualised multiorgan variability analysis (CIMVA)

software which computes features such as those of heart rate and respiratory rate

variability from multiple physiological waveforms [50]. These analyses may also be

incorporated into monitoring equipment and made available to caregivers, which

may facilitate earlier interventions for critical events/conditions and improved

outcomes in both the short and long term.
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Abstract—Despite the decline in mortality rates for extremely
preterm infants, intraventricular haemorrhage (IVH) remains a
threat to their survival. In this study, we sought to explore logistic
regression models for predicting IVH as they would be applied
in a clinical setting, using features derived from respiratory and
blood pressure signals. Calculated predictors included mean (µ)
and the short- and long-term scaling exponents (α1, α2) from
detrended fluctuation analysis. The model fitted with short-term
scaling exponent (α1) of the beat-to-beat diastolic blood pressure
(DBP) exhibited an area under receiver-operator characteristic
curve (AUC) of 0.788 (0.62, 0.96), with a sensitivity of approxi-
mately 0.875 at a specificity of 0.75. Of the multivariable models
explored, the highest AUC was 0.831 (0.66, 1.00), combining
µDBP with α1 of the beat-to-beat systolic blood pressure (SBP).

I. INTRODUCTION

The past decades have seen a decline in mortality rates
for extremely preterm infants, though intraventricular haem-
orrhage (IVH) remains common in survivors, often causing
permanent brain injury and being associated with poor neu-
rodevelopmental outcomes [1]. Prenatal factors leading to
preterm birth inter-relate to the need for resuscitation and
cardiorespiratory management within the first 24 hours of life.
These play an important role in the development and timing
of IVH [2]. The potential to identify infants at high risk of
developing IVH may inform management at this critical stage.

Motivated by retrospective studies that have observed al-
tered autonomic functions in cases of IVH [3][4], recent stud-
ies have explored detrended fluctuation analysis (DFA) as a
means of quantifying this. Their findings suggest the relevance
of blood pressure and heart rate variability in distinguishing
infants with IVH and those without, characterised by the
short-term scaling exponent from DFA [5][6]. This is also in
alignment with the reported association of IVH with cerebral
blood pressure passivity, that is, where linear changes in
cerebral blood flow result in linear changes to blood pressure
[7]. Early studies have demonstrated associations between of
patient-ventilator asynchrony and increased incidence of IVH
[8][9]. This study aimed to explore the potential of features
derived from blood pressure and respiratory signals in dis-

cerning preterm infants with IVH from those without, in both
univariate and multivariable logistic regression models. This
entailed an evaluation of the robustness of these predictors as
applied in a clinical context.

II. METHODS

A. Data Collection

Data collection was undertaken at a large tertiary neonatal
intensive care unit in Sydney, Australia, as part of a prospective
clinical investigation, following informed parental consent.
Physiological data, including intra-arterial blood pressure mea-
surements and ventilator-derived air flow was collected from
the infants in the 1-3 h period following birth. The cohort
consisted of low birth-weight (< 1500 g), a gestational age
of < 30 weeks and an absence of significant congenital
anomalies.

The study was approved by the Sydney West Area Health
Service Human Research and Ethics and conducted in ac-
cordance with the World Medical Association Declaration of
Helsinki.

B. Signal Processing and Data Analysis

Of the 46 infants enrolled, 28 had sufficiently long and
artefact-free arterial blood pressure and airflow recordings.
The former was measured using an umbilical or peripheral
arterial catheter, collected using a bedside patient monitor
(Philips Agilent Systems, Philip Healthcare, North Ryde, Aus-
tralia), and the raw airflow wave from a ventilator (Babylog
8000, Drägerwerk, Lübeck, Germany). Both signals were
sampled at 1 kHz and recorded by a data acquisition sys-
tem (ADInstruments, Sydney, Australia). Of these 28 in-
fants, 8 subsequently developed IVH and all except 1 were
mechanically-ventilated.

Signal processing and feature extraction was com-
pleted in Python (Python Software Foundation, version 2.7.
https://www.python.org/). Prior to analysis, both arterial blood
pressure and airflow signals were down-sampled to 125 Hz for
computational efficiency. This was sufficient for peak detection
of the respective signals. A sliding 10 min window, shifted
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in 30 sec increments, was used across the total recording
length. This was done to simulate the manner in which these
predictors could be calculated in a clinical setting. Windows
which satisfied the quality criteria were included for analysis.
This quality criteria involved defining bounds for the allowable
number of detected beats (40 − 250 beats per minute) and
breaths (> 20 breaths per minute) in a given window. The
windows were also excluded if no pulse was detected for a 15
sec interval or large spikes in the systolic blood pressure were
identified. For each 10 min window that qualified, the extracted
features were as follows; the mean (µ) and DFA-derived short-
and long-term scaling exponents (α1, α2, respectively) of
the beat-to-beat mean-arterial (MAP, mmHg), systolic (SBP,
mmHg) and diastolic (DBP, mmHg) blood pressure, as well
as the pulse interval (PI, ms) between consecutive diastoles,
delineating a complete cycle. From the corresponding airflow
window, µ, α1 and α2 were also extracted using the inter-
breath (IBI, ms) intervals, delineated by consecutive maxima.

DFA is a non-linear, time domain-based method for quanti-
fying long-range power law correlations. Developed by Peng
and co-workers [10], it involves the removal of the local linear
trend prior to determining the root-mean squared fluctuation,
thus accounting for non-stationarities which often confound
analyses of real-world signals. This fluctuation is defined as:

F (n) =

√√√√ 1

N

N∑

k=1

[y(k)− yn]2 (1)

where y(k) is any given time series, yn(k) the local linear
trend for a given segment, and N the number of data points in
the series for a given round of analysis. The scaling exponents
represent the gradients of the log-log relationship of n and
fluctuation F (n) over a particular window size. In this case,
the window sizes defined for the short- and long-term scaling
exponents were 4-15 and 15-50 beats, respectively [5]. The
application of DFA is further explained by Thamrin et al [11].

The means of each feature across all selected running
windows were used to fit both univariate and multivariable
logistic regression models. Model performance was evaluated
based on the area under the receiver-operator characteristic
curve (AUC).

III. RESULTS

A. Univariate Predictors of IVH

A Students T-test comparison of the individual predictors
between the two groups is shown in Table I. Note that the
features represent the mean across all windows selected for
analysis of a given recording.

Table II displays the performance of all fitted univariate
logistic regression models. The p-values reported for the ROC
are based on a comparison with a chance classifier (AUC =
0.5). The 95% confidence intervals (CIs) for the AUC are also
provided [12]. On the basis of confidence intervals that did
not span across AUC = 0.5 and the pROC values reported,
the statistically significant ROC curves were found to be the

TABLE I
COMPARISON OF FEATURES BETWEEN INFANTS WHO LATER DEVELOPED
INTRAVENTRICULAR HAEMORRHAGE (IVH) AND THOSE WHO DID NOT

(NON-IVH)

Feature IVH Non-IVH p
MAP
µ 32.2±5.7 mmHg 35.2±4.7 mmHg 0.187
α1 0.95±0.16 0.78±0.19 0.038
α2 1.10±0.06 1.00±0.18 0.152

SBP
µ 41.1±9.3 mmHg 42.7±5.4 mmHg 0.608
α1 0.85±0.12 0.69±0.15 0.015
α2 1.06±0.09 0.97±0.16 0.155

DBP
µ 25.0±3.7 mmHg 29.0±4.6 mmHg 0.049
α1 0.85±0.11 0.68±0.20 0.037
α2 1.02±0.08 0.93±0.16 0.126
PI
µ 421±26 ms 419±33 ms 0.908
α1 0.62±0.09 0.62±0.08 0.905
α2 0.76±0.20 0.65±0.11 0.152
IBI
µ 950±71 ms 950±71 ms 0.864
α1 0.58±0.05 0.57±0.06 0.763
α2 0.54±0.06 0.52±0.04 0.252

Values are reported as mean±SD

Fig. 1. Histograms of DBP α1 for IVH and non-IVH groups over all analysed
windows

short-term scaling exponents (α1) for the beat-to-beat MAP,
SBP and DBP. The long-term scaling exponent α2 for DBP
exhibited an AUC of 0.706 (p < 0.05), despite not being
significantly different (p > 0.05) across the two groups from
a t-test comparison (Table I). The only predictive linear feature
was mean DBP, yielding an AUC of 0.750 (0.55, 0.95). Given
space constraints, we have included the histograms of only the
best performing feature (DBP α1) exhibiting an AUC of 0.788
(0.62, 0.96) in Fig. 1, and one of the respiratory features (IBI
α2) with an AUC of 0.644 (0.37, 0.92) for reference in Fig.
2.
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TABLE II
UNIVARIATE LOGISTIC REGRESSION MODELS

Model AUC pROC Odds Ratio pOR

MAP
µ 0.638 (0.37, 0.91) 0.318 3.00 (0.54,16.69) 0.406
α1 0.781 (0.61, 0.96) 0.002 9.00 (1.35,59.79) 0.043
α2 0.688 (0.49, 0.88) 0.06 5.00 (0.87,28.86) 0.151

SBP
µ 0.613 (0.30, 0.93) 0.483 5.00 (0.87,28.86) 0.151
α1 0.787 (0.61, 0.97) 0.002 9.00 (1.35,59.79) 0.043
α2 0.675 (0.44, 0.91) 0.137 3.00 (0.54,16.69) 0.406

DBP
µ 0.750 (0.55, 0.95) 0.013 1.80 (0.31,10.39) 0.843
α1 0.788 (0.62, 0.96) 0.001 21.00 (2.05,215.19) 0.009
α2 0.706 (0.51, 0.90) 0.042 3.00 (0.54,16.69) 0.406
PI
µ 0.519 (0.27, 0.77) 0.884 1.00 (0.15,6.64) 1.000
α1 0.525 (0.27, 0.78) 0.845 1.00 (0.15,6.64) 1.000
α2 0.631 (0.36, 0.91) 0.352 1.80 (0.31,10.39) 0.843
IBI
µ 0.594 (0.35, 0.84) 0.456 1.80 (0.31,10.39) 0.843
α1 0.550 (0.30, 0.80) 0.698 1.00 (0.15,6.64) 1.000
α2 0.644 (0.37, 0.92) 0.31 1.80 (0.31,10.39) 0.843

95% CI reported for AUC [12] and odds ratios
Odds ratios reported at a specificity of 0.75

Fig. 2. Histograms of IBI α2 for IVH and non-IVH groups over all analysed
windows

B. Multivariable Predictors of IVH

The possible improvements to IVH prediction using mul-
tivariable logistic regression models are shown in Table III,
while the receiver-operator characteristic (ROC) curves for
two models with the highest AUC are displayed in Fig. 3.
The pROC values reported are those from the Delong method
comparison with one of the univariate linear feature models
(mean MAP, AUC = 0.638) [12]. Though improvements in the
AUC were achieved, the only model to perform statistically
significantly better than this reference was the combined

TABLE III
MULTIVARIABLE LOGISTIC REGRESSION MODELS

Model AUC pROC Odds Ratio pOR

µMAP ,
µDBP 0.800 (0.61, 0.99) 0.377 9.00 (1.35,59.79) 0.043
α1,MAP ,
µDBP 0.806 (0.64, 0.97) 0.062 5.00 (0.87,28.86) 0.151
α1,MAP ,
α1,SBP 0.812 (0.65, 0.97) 0.298 21.00 (2.05,215.19) 0.009
α1,DBP ,
µDBP 0.813 (0.65, 0.97) 0.059 5.00 (0.87,28.86) 0.151
α2,PI ,
µDBP 0.825 (0.67, 0.98) 0.121 5.00 (0.87,28.86) 0.151
α1,SBP

µDBP 0.831 (0.66, 1.00) 0.003 5.00 (0.87,28.86) 0.151

95% CIs reported for AUC [12] and odds ratios
Odds ratios reported at a specificity of 0.75

Fig. 3. Receiver-Operator Characteristic Curves

SBPα1 and mean DBP model (p < 0.01). It is necessary
to note however, that these were not statistically significant
when compared with the best performing model (DBP α1,
Table II) which is also shown in Fig. 3.

IV. DISCUSSION

The objective of this study centred on evaluating features for
their capacity to discern infants who later developed IVH from
those who did not. Of the univariate models, the highest AUC
achieved was 0.788 (0.62, 0.96) and 0.787 (0.61, 0.97) for the
short-term scaling exponents of DBP and SBP, respectively.
The model that yielded the overall highest AUC of 0.831
(0.66, 1.00) was the combination of mean DBP and SBP α1.
This was also the sole model of those evaluated to exhibit
statistically significant improvement on the reference model
(mean MAP, AUC = 0.638).

The comparison of AUC improvements, though not statis-
tically significant compared to the best performing univariate
model (DBP α1, AUC = 0.788), would suggest a potential to
improve classification performance with additional variables.
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The odds ratios however, need to be taken into consideration
for model evaluation. In the ROC sensitivity range of 0.75-0.9,
the univariate models exhibit equal if not higher specificity to
the multivariable models. The improvement in AUC for the
latter models is sourced from the increased sensitivity in the
higher range of specificities (0.9-1.0). This would suggest that,
depending on the intended application of the model, whether
to exclude infants at low-risk of developing IVH, or to identify
those at a high-risk, different markers may be used.

Despite the relevance of respiration mechanics in the de-
velopment of IVH, this study found that individually, the
respiratory features explored (µIBI , IBI α1 and IBI α2) were
not effective predictors of IVH. This is particularly evident
in the significant overlap Fig. 2 between both groups. All of
the subjects had synchrony between ventilator inflations and
patient breathing with a sensitive flow trigger system captured
with a hot wire pneumotach integral to the mechanical ven-
tilator. It is also possible these three features were not suited
to capturing significant, adverse patient-ventilator interaction
leading to IVH that was alluded to in earlier studies [8][9].
An avenue of further exploration may involve cross-correlation
or means other than linear combination of these features for
multivariable evaluation.

The predictive capacity of the short-term scaling exponents
(α1) for beat-to-beat MAP, SBP and DBP are in alignment
with previously reported findings [5], and their high correlation
would suggest that general fluctuations in blood pressure can
be used as markers for identifying infants at high-risk of
developing IVH. These fluctuations may be influenced by
factors including high ventilator pressure, possibly reducing
venous return to the pulmonary circulation, and patency of the
ductus arteriosus [13]. Recent studies have also used blood-
pressure derived features as proxies for cerebral perfusion,
where features explored include the diastolic closing margin
[14], and significant deviations from a subject-specific optimal
value for MAP [15]. These findings are also in alignment
with the altered vagal nerve activity reported in infants with
IVH [16], where studies have observed that vagal blockade by
atropine could lead to increased short-term scaling exponents
of blood pressure, although the exact mechanism of influence
is not clear. Of all models evaluated, the highest AUC achieved
was 0.831 (0.66, 1.00). This model was fitted using mean DBP
and SBP α1, which could be a reflection of a widened pulse
pressure as seen in symptomatic patent ductus arteriosus.

The short-term scaling exponents of the beat-to-beat fluc-
tuations in blood pressure were shown to be relatively robust
markers in identifying IVH. The considerable overlap in the
histograms in Figs. 1 and 2 would caution the use of a
single frame of reference for comparison of the two groups,
irrespective of the feature’s predictive capacity. In accounting
for all qualifying windows however, a degree of separation is
possible, as shown in Table I, comparing the mean of these
markers.

Limitations of the study include the size of the dataset
(n = 28), the representation of IVH of 29% and signal
quality. The latter of these was addressed through the quality

controls applied to exclude certain segments windows from
the analysis.

V. CONCLUSION

Overall, this study found the short-term scaling exponents
of beat-to-beat MAP, DBP and SBP, as well as mean DBP
to be relatively robust markers in identifying infants at high-
risk of developing IVH. The prediction performance improved
marginally through linear combination of these features. In a
clinical context, such an approach to predictive monitoring
could be adopted. That is, a running 10 min window could
continuously evaluate the blood pressure short-term scaling
exponents for sufficiently high-quality windows and identify
high-risk infants using a defined mean threshold.
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Abstract
This study developed algorithms to decrease the arrhythmia false alarms in 
the ICU by processing multimodal signals of photoplethysmography (PPG), 
arterial blood pressure (ABP), and two ECG signals. The goal was to detect 
the five critical arrhythmias comprising asystole (ASY), extreme bradycardia 
(EBR), extreme tachycardia (ETC), ventricular tachycardia (VTA), and 
ventricular flutter or fibrillation (VFB). The different characteristics of the 
arrhythmias suggested the application of individual signal processing for 
each alarm and the combination of the algorithms to enhance false alarm 
detection. Thus, different features and signal processing techniques were used 
for each arrhythmia type. The ECG signals were first processed to reduce the 
signal interference. Then, a Hilbert-transform based QRS detector algorithm 
was utilized to identify the QRS complexes, which were then processed to 
determine the instantaneous heart rate. The pulsatile signals (PPG and ABP) 
were processed to discover the pulse onset of beats which were then employed 
to measure the heart rate. The signal quality index (SQI) of the signals was 
implemented to verify the integrity of the heart rate information. The overall 
score obtained by our algorithms in the 2015 Computing in Cardiology 
Challenge was a score of 74.03% for retrospective and 69.92% for real-time 
analysis.

Keywords: intensive care unit, photoplethysmography, arterial blood 
pressure, electrocardiogram, asystole, arrhythmia false alarm,  
signal quality index
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1. Introduction

An intensive care unit (ICU) involves a large number of medical devices, background noise 
and alerting signals of the devices with a number of attending medical staff (Donchin and 
Seagull 2002). An ICU aims to monitor the biological signals of patients in critical condi-
tions. The monitoring systems often incorporate alarms to attract staff attention (Donchin and 
Seagull 2002). The alarms from the physiological monitors can be classified into technically 
correct or false groups (Lawless 1994). False alarms are alerting signals of monitoring equip-
ment with no associated clinical cause (Chambrin et al 1999) or relation with life-threatening 
conditions of the patient (Donchin and Seagull 2002). Studies show that over 85% of the ICU 
alarms are false (Lawless 1994, Chambrin 2001, Sendelbach and Funk 2012) and that they 
have a number of negative effects. The extra noise generated by the false alarms negatively 
impacts the patient’s sleep and increases the stressors in ICU which can reduce the recovery 
rate (Novaes et al 1997). The unwanted alarms can also lead to vital monitoring equipment 
being switched off (Lawless 1994). Also, the medical staff lose sensitivity to frequent false 
alarms which in turn increases the likelihood of missing true alarms (Clifford et al 2006). 
Alarm fatigue is a destructive outcome of the large number of false alarms in ICU in which 
the clinical staff ignore the alerting signals or change the settings to a level of deactivation 
which has been identified as a critical health and safety problem (Sendelbach and Funk 2012).

The disruptive consequences of false alarms can be alleviated in two ways. The first solu-
tion is automatic detection of false alarms and the source of the alarm. Secondly, medical staff 
can help solve the issue by persistent observation of the systems and signals and diagnosing 
the false alarms (Imhoff and Kuhls 2006).

In this paper, we developed a signal processing system for automatic detection of the fol-
lowing arrhythmias: ventricular tachycardia (VTA), ventricular fibrillation or flutter (VFB), 
extreme tachycardia (ETC), extreme bradycardia (EBR) and asystole (ASY) by processing 
one or more of the following signals: the photoplethysmography (PPG), the arterial blood 
pressure (ABP), and two electrocardiogram (ECG) signals. To train and test our system, we 
have used the signals of the 2015 Computing in Cardiology Challenge Dataset. The detec-
tions are then used to assess the validity of alarms generated by ICU equipment with goal of 
identifying false alarms. The signal processing algorithms we describe here are the basis of 
our entry in the PhysioNet/Computing in Cardiology Challenge 2015. An early description 
of these algorithms were published in Computing in Cardiology Challenge 2015 (Sadr et al 
2015).

2. Input data

The input dataset was provided by the PhysioNet/Computing in Cardiology Challenge 2015 
(Clifford et al 2015). The dataset incorporates 1250 arrhythmia alarms which were selected 
randomly from four hospitals in US and Europe. Less than three alarms from the five arrhyth-
mia types were selected from an individual patient and they are often more than five minutes 
apart. The dataset was divided into 750 open-access recordings used as a learning set and 
500 recordings for test set which were hidden. Train and test set were comprised of sig-
nals recorded from different patients. Five hundred and ninety recordings in the training data 
included four signals comprising of two ECG signals and two pulsatile signals (the photople-
thysmogram (PPG) and arterial blood pressure (ABP)). While the first ECG signal was mostly 
lead II and the second ECG signal was mostly lead aVr, there were a number of recordings 
where different leads were recorded. One hundred and sixty recordings in the training data 
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comprised of three of the four signals listed above (i.e. two ECG and one pulsatile or one ECG 
and two pulsatile signals). Each patient had a maximum of two recordings of separate alarms 
in the dataset. The chosen recordings had been annotated by three or more experts and the 
alarm outcome was determined by agreement of at least two-thirds of the experts. Recordings 
that did not have a two-thirds agreement were excluded. Each alarm was annotated as ‘true’, 
‘false’, or ‘impossible to tell’. Each record includes an alarm at the fifth minute from the start 
of the record and the corresponding arrhythmia event happens within ten seconds of the alarm. 
If further arrhythmias occurred before the fifth minute of a record, they were not annotated. 
The repeated alarms and information from alarms prior to the annotated one are not employed 
to reduce the probability of transferring errors from one alarm to the next one. Resampling 
was applied to the four sensor signals at the rate of 250 Hz, 16 bit. Band pass filtering in the 
range of 0.05–40 Hz was implemented with an FIR filter. Also, common notch filters were uti-
lized for noise removal of powerline noise. Pacemaker and other noise artefacts still existed in 
the ECG signals. In some cases, movement artefacts, failure in sensor connection, line flush, 
coagulation and other interferences also influenced the pulsatile signals.

3. Signal analysis

The block diagram of the proposed system for false arrhythmia alarm detection is shown in 
figure 1. A high level description of system is provided here and more detail is given in sec-
tions 3.1–3.3. The top-down order of the signal blocks represents the priority for signal selec-
tion in the analysis process.

VTA detection relied solely on features extracted from the ECG signals which were pro-
cessed without noise removal and using template matching. QRS detection was applied to 
the ECG for identification of QRS complexes. A reference waveform template was generated 
from the first QRS and subsequent QRSs were compared to the reference to determine if they 
were irregular beats. If five or more beats were deemed irregular in the alarm segment then the 
VTA alarm confirmation was set to true, otherwise it was set to false.

The alarm confirmation procedure of asystole and tachycardia were similar. First, signal 
interference was removed from the ECG signals. QRS beats were detected from the clean 
ECG signals and discriminating features were extracted. A segment of the ECG signal con-
taining the alarm was identified and SQI measurements determined. A similar process was 
applied to the ABP and PPG signals resulting in SQI and feature values. Finally, for the alarm 
segment, the features of the ECG signals, the ECG SQI measures, the features and SQI meas-
ures of the available pulsatile signals served as inputs to assess the validity of the tachycardia 

Figure 1. Block diagram of the proposed system for arrhythmia false alarm detection 
in the ICU. Abbreviations: arterial blood pressure (ABP), electrocardiogram (ECG), 
signal quality index (SQI), ventricular flutter or fibrillation (VFB), ventricular 
tachycardia (VTA).
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alarms. Processing for the asystole alarm evaluation was similar except that we did not use the 
SQI measures of the ECG signals.

The process of detecting bradycardia and VFB false alarms were identical. The pulsa-
tile signals were employed to diagnose these two arrhythmias. After distinguishing the onset 
beats of ABP signals, features were measured and the segment of the alarm was identified for 
criteria assessment and SQI evaluation. The available pulsatile signals, ABP and PPG, were 
processed similarly, with the exception of the PPG processing which included a quantile seg-
mentation step prior to onset detection. This was followed by feature extraction and identify-
ing the alarm segment and the features in that segment. Finally, the SQI of the alarm segment 
was measured and the features from available ABP and PPG with their SQI measures were 
used to confirm the bradycardia or VFB alarm status.

In the following sections, we first describe the signal processing methods for interference 
removal, heartbeat identification, SQI measurement and feature extraction for the ECG, PPG 
and ABP signals. We then describe our hierarchical processing of the ECG and pulsatile sig-
nals to determine the final alarm status.

3.1. ECG signals

In order to diagnose the high risk arrhythmias, the ECG signals are functional and informative. 
The recordings in the Challenge dataset are comprised of lead II and/or lead aVr and/or other 
leads. The block diagram of the proposed system to detect false arrhythmia alarms in the ICU 
containing the ECG signal processing algorithm is shown in figure 1. The ECG signals are 
mostly corrupted by movement artefact, pacemaker, and fibrillator signals. A first step was to 
detect and remove these artefacts. Filtration, described below, was applied to the raw ECG sig-
nals to remove the unwanted interference. The filtered signals were then processed to find the 
QRS complexes. After calculation of RR-intervals from the QRS detection points and apply-
ing the above signal processing steps, there were still QRS complexes in some recordings that 
were not detected successfully. To attempt to recover these missed signal beats, we detected 
heart beats in the other sensor channels and then used the beat detections across all channels to 
obtain an enhanced recognition. The final step was feature extraction for arrhythmia detection.

3.1.1. Interference removal. The ECG signals of the challenge database were distorted by 
motion artefact, powerline interference, baseline drift, displacement of sensors and instru-
mentation noise produced by pacemakers. Baseline drifts lead to deformation of the ST seg-
ment which plays an important role in arrhythmia detection, results in failure in false alarm 
recognition. Thus, elimination of baseline wander is an essential part of interference removal 
for detecting arrhythmias and false alarms.

Interference removal was performed by applying filters for noise reduction. The ECG sig-
nals of the database were distorted by baseline wander noise which originated from move-
ment, respiration and perspiration affecting the electrode impedance (Tinati and Mozaffary 
2006). Baseline wander noise affects the low frequency component of the ECG signals (Jain 
and Shakya 2014) and can influence the clinical interpretation of ECG signal. In this study, 
baseline wander noise was removed by two median filters (de Chazal et al 2003). The first 
median filter with 200 ms width is applied to remove the QRS complexes and P waves. Then, 
the resulting PQRS-free signal is used to apply the second median filter. The width of the 
second median filter was 600 ms to eliminate T waves. Thus, the output of the second median 
filter did not include the information from the ECG waves and contained only the baseline 
wander. By subtracting the output of the second median filter from the raw input ECG signals, 
the resulting signal contained the P-QRS-T complexes minus baseline wander. This method 
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was applied to both available ECG signals of each recording. The result of implementing this 
algorithm on an ECG signal of the Challenge training set is shown in figure 2, where baseline 
wander noise is easily seen in figure 2(a) of the ECG recording (a64). The resulting signal 
after this interference removal is shown in figure 2(b) which reveals that interferences includ-
ing the baseline wander were appropriately eliminated. Subsequent to interference removal 
and denoising the ECG signals, QRS detection was applied to the signals. Reliable identifica-
tion of QRS complexes is difficult due to the changing nature of their morphology and the 
influence of unwanted interference on the ECG signal (Thakor et al 1984). By removing the 
unwanted interference from the ECG signals, we can improve the likelihood of successful 
arrhythmia detection. The other important factor is the changing morphology of the QRS 
complexes which were taken into account in the utilized QRS detection algorithm explained 
in the following section.

3.1.2. RR interval and signal segment selection. The first step toward feature extraction for 
arrhythmia recognition by ECG signal is QRS detection. There are various QRS detection 
algorithms but selecting a reliable method is highly significant for false arrhythmia alarm 
recognition. In this work, the QRS complexes were identified by a Hilbert transform based 

Figure 2. Sample result of applying interference removal to ECG signal (a64) and 
noise removal. (a) Raw ECG lead II with Asystole as a false alarm. (b) The result of 
applying interference removal on the input ECG. Stars are the R peaks detected by 
Hilbert QRS algorithm.

Figure 3. Result of the application of Hilbert QRS detector on ECG II signal after 
interference removal.
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algorithm (Benitez et al 2001). The result of applying Hilbert QRS detector on an ECG signal 
of the Challenge training set which contains missing values is shown in figure 3. The Hilbert 
QRS detector employed in this study (Shouldice et al 2004, Redmond and Heneghan 2006) 
was tested on various ECG signals and leads. It was reported to reliably detect QRS com-
plexes of all common leads with a satisfactory noise tolerance (Shouldice et al 2004). The 
algorithm used in this paper was previously tested on the MIT-BIH Arrhythmia database and 
obtained 98.4% positive predictive accuracy and sensitivity of 98.5% (Hickey et al 2004).

Finally, the QRS detections were used for feature extraction. The RR-intervals were deter-
mined by calculating the time difference between two adjacent QRS detections. Then, the 
information closer to the alarm is utilized for false alarm identification. Thus, the segment 
comprising the alarm is selected for arrhythmia recognition. In this study, the alarm segment 
begins 16 s prior to the alarm and is ended by the alarm which occurs at the fifth minute of 
the signal.

3.1.3. ECG SQI. Visual observation of QRS detection points and corresponding RR intervals 
revealed that some of the heart beats were missed or falsely detected. Missing value intervals 
and noisy alarm segments can produce issues in signal processing and suspect QRS detection 
points. Also, ECG artefact was reported as a reason for false arrhythmia alarms (Aboukhalil 
et al 2008). Therefore, before further processing, the quality of the ECG signal was assessed.

In order to assess the quality of the ECG signal, signal quality index (SQI) was exploited to 
determine if it possessed reliable information for false alarm detection. The signal evaluation 
index has been widely studied (Silva et al 2011, Clifford and Moody 2012).

In this paper, four tests were applied to determine the ECG SQI. If the alarm segment 
satisfied the tests, it was allowed to proceed for further processing. The first test determined 
if the segment was empty. No heart beat in the segment indicated a failure of the heart beat 
identification algorithms and was indicative of the presence of significant signal interference. 
In the second test, the number of the detected QRS detection complexes or the available 
beats of each ECG signal was measured in the segment. This test allowed recognition of the 
signals with a high proportion of missing heart beats and the inspection of the proportion of 
motion artefact, failure in sensor attachment and other noises in the segment. The minimum 
number of beats was set to ten beats. If an ECG signal segment contained less than this mini-
mum, it was not considered further in arrhythmia detection. The third test was the maximum 
RR-interval or minimum heart rate. This test examines the physiological reliability of the 
heart rate and indicates the noisy alarm segments and missed QRS complexes. The maximum 
measure of the third test was set to six seconds. If all RR-interval in a segment were less than 
six seconds, the test was passed. The fourth ECG SQI test was the standard deviation of the 
ECG in the segment containing the alarm. This test helps identify the segments with a high 
percentage of noise and artefact. The optimum standard deviation was adopted as 0.05 over 
the whole segment. These tests address most of the observed corruptions on the ECG signals 
comprising the level of noise and the percentage of missed or spurious QRS detections in the 
segment. The output of the ECG SQI algorithm determines whether the ECG signal is satis-
factory for next processing.

It should also be noted that not all steps of the ECG SQI were evaluated for all of the 
arrhythmia detections. Studies identified that SQI evaluation diminished the accuracy of 
arrhythmia diagnosis due to their noisy manifestation (Behar et al 2013). Since the behaviour 
of some of the arrhythmias such as VTA is homogenous to noise structure, ECG SQI reduced 
the performance and was removed from the false alarm detection of those arrhythmias. Further 
details will be described in section 3.3.
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3.2. Pulsatile signals

It is reported that implementation of pulsatile signals which contain cardiac cycles improves 
the diagnosis of false arrhythmia alarms when combined with cardiac cycle information from 
ECG signals (Aboukhalil et al 2008). In the PhysioNet/CinC Challenge 2015 dataset, one or 
both arterial blood pressure (ABP) and photoplethysmogram (PPG) signals were available and 
we utilized them to reduce the false alarm rate. The signal processing algorithms of the sample 
submission provided by the PhysioNet/CinC Challenge 2015 were utilized for determining 
the beat onset points from the pulsatile signals and arrhythmia identification in this study. We 
provide a short description of these algorithms in the next sections.

3.2.1. ABP signal. Arterial blood pressure (ABP) was another signal used to verify the false 
arrhythmia alarms. As it is recorded separately to the ECG leads, it rarely contains identical 
interference to the ECG signal (Aboukhalil et al 2008). Also, ABP is regarded as the pressure 
signal with the least noise and artefact (Clifford et al 2006).

There were three PhysioNet open-source algorithms employed to process the ABP. In 
order to find the onset of the ABP pulses, the ‘wabp’ algorithm was executed on ABP signal 
(Goldberger et al 2000). The Length transform is exploited in this technique (Zong et al 2003) 
and noise removal and feature enhancement was applied through the algorithm. Following 
this, ABP features were calculated with the ‘abpfeature’ algorithm. The features include 
systolic pressure, diastolic pressure, systolic area, and mean pressure on the onset beats of 
the ABP pulses. Next, ABP quality index (SQI) was estimated by the ‘jSQI’ algorithm at 
each ABP detected beats (Sun et al 2004). The ABP SQI algorithm explores if the features 
are physiologically plausible. The features that were not clinically reliable were eliminated. 
Lastly, the time between the pulse onsets in the ABP signal was measured to generate pulse 
intervals of ABP signal to be used for further signal processing.

3.2.2. PPG signal. The other pulsatile signal used for false alarm detection was the pho-
toplethysmogram (PPG) which was available in many of the recordings in the learning set of 
PhysioNet/CinC Challenge 2015. The open-source PhysioNet algorithms were employed to 
process the PPG signal. Firstly, the signal was divided into three partitions by the open-source 
‘quantile’ algorithm. The three quantiles used were 5%, 50% and 95%. Next, the subtraction 
of third quantile and first quantile was measured and employed to detect pulse onsets. The 
onset beats of the PPG waveform was verified with ‘wabp’ algorithm (Goldberger et al 2000). 
Then, the pulse intervals were measured by the difference of the adjacent onset beats and used 
to calculate the heart rate. Finally, the PPG signal quality was evaluated with ‘ppgSQI’ algo-
rithm through a beat template correlation technique.

3.3. Alarm detection

The segment containing the alarm from the available signals of each recording was selected 
from the 16 s prior to the alarm ending. The heart rates and intervals corresponding to the 
alarm segment were used for further signal processing. This study aimed to recognize the false 
arrhythmia alarms in real-time and avoid using the data following the alarm occurrence. Our 
proposed algorithm can also be implemented in a retrospective manner which uses the infor-
mation after the alarm. In the PhysioNet/CinC Challenge 2015 dataset, the alarms were set to 
appear at five minutes after the beginning of the signal. To guarantee alarm inclusion in the 
segment, the segment started 16 s before the alarm time. Next, the beats in the alarm segment 
were identified for the available signals of each recording and the corresponding RR-intervals, 
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pulse intervals and heart beats were chosen. Finally, the features were calculated from the 
heart rates, RR-intervals or pulse intervals of the pulsatile waveforms. It should be noted that 
signal processing for each arrhythmia alarm condition were separately executed with different 
models and features (Behar et al 2013).

3.3.1. Multimodal signal. Interference in the ECG signal could be a source of the false 
arrhythmia alarms. Using other leads of the ECG signal simultaneously with other signals to 
combine the information could improve the diagnosis (Aboukhalil et al 2008). Thus, exploit-
ing information from multimodal signals enhances the arrhythmia detection. It was reported 
that false arrhythmia alarms were better recognized by multimodal signal fusion which was 
widely discussed in the PhysioNet/Computing in Cardiology Challenge 2014 (Moody et al 
2014). Various algorithms studied robust detection of the heart beats for multimodal record-
ings and signal fusion purposes (Silva et al 2015).

The highest score of the challenge was achieved by a SQI based method (Johnson et al 
2015). They noted that the onset of the ABP pulses appear with a delay after the heart pumps 
blood out of left ventricle. The delay between detected onset beats of the blood pressure wave-
form and R peaks of the ECG signals were collected and the R peaks were matched according 
to the delay (Silva et al 2015). Then, the SQI measures of the signals were used to identify the 
high quality signal (ECG or ABP) which was then used for heart beat detection (Johnson et al 
2015). A major focus was on employing different peak detectors for blood pressure and ECG 
signal to compare and evaluate their detection outcome.

In our study, the Hilbert QRS detector identified the QRS complexes with a decent acc-
uracy (Hickey et al 2004, Shouldice et al 2004). So the QRS detections of the ECG signals 
were reliable measures with which to proceed the signal processing and advance to the pulse 
onsets of pulsatile signals provided by ‘wabp’ algorithm. Also the accuracy of the Hilbert 
QRS detector implied that application and comparison of other peak detectors for ECG sig-
nals is not essential.

Considering the available signals in the majority of the training set, the signals were pri-
oritized from ECG signals to the pulsatile signals for feature extraction. However, unwanted 
interferences can corrupt the signal properties which are significant measures for arrhythmia 
detection. As previously mentioned, the noisy signals are known as a major source of false 
arrhythmia alarms (Aboukhalil et al 2008). Thus, the SQI of the signals were evaluated to 
identify noisy signals. If the signal passed the SQI tests, then features of the signal were 
extracted. The signal SQI measures were processed in the following order of first available 
ECG, second ECG, ABP and PPG. The SQI of the ECG signals was evaluated as explained 
in section 3.1.3. For all alarms with the exception of bradycardia and VFB, the result was 
decided based on the highest priority signal with the best quality of those considered and the 
alarm suppression or trigger was determined by that signal. For bradycardia and VFB, all con-
sidered signals satisfying the quality criteria were used in the decision-making process. The 
algorithm has been shown in the block diagram of the system in figure 1.

Combining the features and information of multimodal signals and evaluating the signal 
quality addressed the intervals with missing values or noises such as failure in sensor attach-
ment and motion artefact as an observed issue in the challenge training set. This approach 
with multimodal signals benefits false arrhythmia alarm assessment in dealing with signals 
recorded in a real environment. This paper analyzed each arrhythmia through a different 
approach which will be explained in the following section. The contribution of each signal of 
training data in arrhythmia alarm detection is shown in table 1. It was identified after imple-
menting and running the algorithm with the training set. It could be seen that multimodal 
signals benefit the arrhythmia recognition differently with various usage distributions. For 
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instance, the table demonstrates that 75.4% of the asystole alarms were detected by the first 
ECG signals and 13.9% of the asystole alarms were detected by PPG signals. Only 5.7% of 
the asystole alarms could not be suppressed using any of the four input signals.

3.3.2. Asystole detection. Asystole (ASY) was defined as an absence of a heart beat for at least 
four seconds (Clifford et al 2015). Thus, the minimum threshold for asystole detection was set 
to four seconds with a tolerance of 0.5 s. The priorities of signals used for asystole detection 
were defined as the first ECG, followed by the second ECG followed by the available pulsatile 
signals. The criteria for using the ECG signals encompassed successful beat detection, a maxi-
mum RR-interval of less than the defined threshold for signal quality and a standard deviation 
(SD) within the defined threshold. This was less restrictive for use of the lower priority pulsatile 
signals where an availability of detected beats was sufficient. As is shown in the block diagram 
of the system in figure 1, the ECG SQI measures were not employed in asystole detection. This 
algorithm design decision was made as we found that implementing SQI measures tended to 
knock out heart beats, which increased the likelihood of false asystole alarm detections. The 
first signal to satisfy the aforementioned selection criteria was then used to determine the alarm 
result. The feature used for asystole was the maximum RR-interval of the segment which, if 
above the specified threshold and tolerance, triggered an alarm and otherwise, suppressed it. An 
alarm on the selected sensor resulted in the final decision being set to true alarm.

3.3.3. Extreme bradycardia detection. Extreme bradycardia (EBR) was defined as five con-
tinuous beat intervals greater than 1.5 s (Clifford et al 2015). We detected extreme bradycardia 
by processing the estimated minimum heart beats and identifying five or more consecutive 
beats with intervals exceeding 1.5 s. The pulsatile signals were exploited for EBR alarm rec-
ognition and the minimum heart rate of the available ABP and PPG signals were measured. 
Five or more consecutive beats with intervals exceeding 1.5 s were identified. The average 
heart rate of the beats were calculated and the minimum of these average heart rates in the 
alarm segment was recognized as the features called ‘Low HR’. Firstly, the SQI of the pulsa-
tile signal was assessed. The SQI threshold for pulsatile signals set to 0.9. If the SQI of the sig-
nal satisfied the threshold, then the alarm segment was checked if it contained beats meeting 
the above criteria. If the feature was over the threshold with the tolerance for either pulsatile 
signals of ABP or PPG, the alarm was set to true. Otherwise, the alarm was assigned to false.

3.3.4. Extreme tachycardia detection. Extreme tachycardia (ETC) was defined as a heart rate 
elevation of more than 140 beats per minute for 17 consecutive beats (Clifford et al 2015). The 
algorithm begins with processing the first ECG signal, followed by the second ECG and the 
pulsatile signals, in the same order as that for asystole detection. The last feature of the ECG 
SQI which was the standard deviation of the segment was omitted in the SQI evaluation for 
tachycardia alarm detection. Instead, a minimum number of beats defined for tachycardia served 

Table 1. The use of each signal in the decision criteria for each arrhythmia in the 
training set.

Signals Asystole (%) Bradycardia Tachycardia VFB VTA

First ECG 75.4 Not used 100% Not used 88.6%
Second ECG 1.6 Not used Not used Not used 3.2%
ABP 3.4 10.1% Not used 22.4% Not used
PPG 13.9 13.5% Not used 8.6% Not used
Not suppresseda 5.7 76.4% 0% 69.0% 8.2%

a Algorithm was not able to suppress the alarm using any of the four input signals.
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as an additional criterion for signal selection. This threshold was set to 11, which was chosen 
based on an iterative process, varying the threshold and adjusting according to the tachycardia 
detection performance on the training set. If ECG SQI reported a high quality signal and there 
was a sufficient number of beats detected in the segment, the signal was utilized for the next 
phase of tachycardia detection. Tachycardia minimum threshold was set to 110 bpm with a 
tolerance of 10 bpm. For the ABP signal, the SQI was compared to the threshold of 0.9 and the 
number of identified beats in the alarm segment was compared to the minimum acceptable beats 
for tachycardia detection. The heart rates from the selected signal were then able to trigger an 
alarm in two ways; the first was if the number of beats exceeded 30 for the acquired segment 
or secondly, if the number of beats above the tachycardia threshold and tolerance exceeded the 
minimum acceptable beats. If neither of these criteria were fulfilled, the alarm was suppressed.

3.3.5. Ventricular tachycardia detection. Ventricular tachycardia (VTA) was defined as five 
or more ventricular beats with heart rate higher than 100 beats per minute (Clifford et  al 
2015). Diagnosis of VTA was obtained by a template subtraction process using the raw ECG 
signals only. We did not use the pulsatile signals for VTA. Also, by removing the ECG SQI 
measures used in the other alarms from the process, the performance of false alarm detection 
was enhanced as VTA signals generally had poor SQI.

The first QRS complex in the series was taken as the reference template against which 
the subsequent waveforms were compared. A beat-to-beat sliding window was applied to the 
alarm segment to detect each QRS complex. The standard deviation (SD) and mean value of 
each QRS waveform were subsequently calculated and compared with the peak of the wave-
form. The complexes with peaks that did not lie within 1 SD of the mean were chosen for eval-
uation. Then, the mean value of each complex as well as the mean of the template waveform 
was removed. The waveforms with a SD that did not lie within 0.6 of the overall SD of the 
segment were labeled as ‘irregular’ waveforms. This feature was called ‘filter vector’. If there 
were four or more irregular waveforms in the alarm segment, that is, the minimum threshold 
of 5 beats for VTA with a tolerance of 1 beat, the VTA alarm was set to true. Otherwise, it was 
labeled as a false alarm.

3.3.6. Ventricular flutter or fibrillation detection. Ventricular flutter or fibrillation (VFB) was 
assumed to be fibrillatory, flutter, or oscillatory waveform for at least 4 s (Clifford et al 2015). It is 
recognized as a difficult condition to detect using ECG signal (Clayton et al 1993, Jekova 2000). 
Different methods were applied in the studies such as threshold crossing intervals (TCIs) (Thakor 
et al 1990), autocorrelation function (ACF) (Chen et al 1987), and complexity measure (Zhang 
et al 1999) which the results were compared in studies (Clayton et al 1993, Jekova 2000). The 
comparisons showed the importance of threshold tuning and choosing the appropriate criteria.

To detect VFB in this study, the ABP SQI was evaluated and compared to the threshold 
of 0.9. If SQI was above threshold, then the maximum heart rate in the alarm segment was 
compared to the VF threshold. The VFB threshold was set to 250 bpm with a tolerance of  
10 bpm. If the maximum heart rate of alarm segment was greater than the VFB threshold with 
the tolerance, the VFB alarm was set to true. A similar algorithm was repeated for PPG signal. 
Either of the pulsatile signals satisfying the criteria resulted in an alarm being triggered.

4. Results and discussion

The results of train and test set are shown in tables 2 and 3 respectively. The best alarm detec-
tion was achieved for the tachycardia alarm which obtained a score of 96% for train and 99% 
for test set. The average score of train set was 79%. While for the test set, the real-time score 
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achieved 69.9% and retrospective score reached 74% which was placed among the top ten 
scores of the PhysioNet/Computing in Cardiology Challenge 2015.

While ECG signals assisted in arrhythmia detection, the noisy characteristics of ECG 
signals were found to trigger false alarms. Hence, multiple steps were taken to minimize 
the corruption and negative effect of artefact. Interference removal of ECG signal, signal 
quality index, and utilizing information from multimodal signals was investigated to dif-
ferentiate the inferences and improve false alarm detection. On the other hand, in some 
arrhythmias, interference removal, noise reduction and examining the signal quality did 
not help in false alarm reduction. We did not apply interference removal to ECG for the 
VTA arrhythmias. This was because the VTA signals exhibited behavior similar to the 
noise which our noise removal algorithms were designed to remove. For further improve-
ment, a redesign of our noise removal algorithms so they did not knock out the VTA 
signal could enhance the results. The VTA alarm identification was reported as the most 
difficult alarm for detection among the entries of the PhysioNet/Computing in Cardiology 
Challenge 2015 (Clifford et al 2015). An analysis of algorithms of the top scored entries 
revealed that better VTA and VFB alarm detection was achieved through algorithms that 
included descriptive statistics and QRS detection by amplitude envelopes using Fourier 
and Hilbert transform (Plesinger et al 2015), statistical analysis and hand-selected trans-
form (Plesinger et  al 2015), phase wrapping and machine learning (Ansari et  al 2015) 
and adaptive frequency tracking and adaptive mathematical morph ology approach (Fallet 
et al 2015). The top entries utilized all of the signals comprising the ECG signals for VFB 
detection. In our approach, ECG signals were not utilized in the VFB and extreme brady-
cardia detection algorithms, and hence incorporating ECG information may improve the 
false alarm detection of these arrhythmias.

Table 2. The results of true positive rates, true negative rates, and scores of  
training set.

TP FP FN TN
TPR 
(%)

TNR 
(%)

Score 
(%)

Asystole 0.164 0.057 0.016 0.762 91.11 93.04 87.11
Bradycardia 0.517 0.247 0 0.236 100 48.86 75.3
Tachycardia 0.936 0.043 0 0.021 100 32.81 95.7
VFB 0.103 0.19 0 0.707 100 78.82 81.0
VTA 0.246 0.361 0.015 0.378 94.25 51.15 58.87

Average 0.393 0.18 0.006 0.421 98.50 70.05 79.49
Gross 0.383 0.225 0.009 0.383 97.70 62.99 73.94

Table 3. Results of final submission from test set.

TPR (%) TNR (%) Score (%)

Asystole 78 93 82.46
Bradycardia 100 52 71.13
Tachycardia 100 80 99.10
VFB 100 59 65.52
VTA 91 55 58.07

Real-time 95 65 69.92
Retrospective 98 66 74.03
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Table 4 shows a list of the features that were incorporated and contributed in each arrhyth-
mia alarm detection. It demonstrates which features were responsible in making the decision 
of each arrhythmia alarm identification. The last feature of the table, ‘Number over threshold’, 
refers to the number of beats above the tachycardia threshold and tolerance which exceeded 
the minimum acceptable beats. The results of arrhythmia detection and their employed fea-
tures of table 4 suggest that the drawback of the proposed algorithm is the variety of features 
used. The more features employed, the better detection is achieved. We obtained our best 
result with extreme tachycardia alarm detection which the results of this exploration at table 4 
showed to have the largest variety of features.

The various characteristics of the arrhythmias led to different implementation processes 
for individual arrhythmia alarm detection. This meant that some required noise reduction, 
while others needed the application of raw data with minimal noise removal. SQI evalua-
tion improved the processing performance in some of the arrhythmia detection. Thus, a fixed 
method of signal quality evaluation is not suitable for analysis of a variety of arrhythmias with 
different properties. The evaluation techniques should be adapted to each arrhythmia.

The proportion of each arrhythmia alarm detected by each signal of training set is shown in 
table 1. Since we had the hierarchical or priority-based approach to selecting the signals to use 
(i.e. ECG was used firstly, then ABP followed by PPG), we did not necessarily use all of the 
signals to make the final decision. The results are comparable with the obtained scores from 
train and test set. It can be observed that asystole alarm identification was mainly detected by 
the first ECG signal and the distributions match the order of selection criteria. For instance, the 

Table 4. The features that were selected in the evaluation process for each alarm type.

Featuresa Asystole Bradycardia Tachycardia VFB VTA

Number of first ECG  
beats

√ √ √

Max RR of first ECG √ √
First ECG SD √
Number of second ECG  
beats

√ √ √

Max RR of second ECG √ √
Second ECG SD √
Number of ABP  
beats

√ √ √

Max pulse  
intervals of ABP

√

ABP SQI √ √ √
Low HR of ABP √
Max HR of ABP √
Number of PPG beats √ √ √
Max of RR PPG √
PPG SQI √ √ √
Low HR of PPG √
Max HR of PPG √
Length of filter vector √
Number over threshold √

a The features were measured over the alarm segment and the detected beats and peaks in the 
segment.
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ECG signals were firstly investigated for asystole detection and then the algorithm progressed 
to pulsatile signals for processing. The results from investigating the usage of the signals (see 
table 1) validated our  assumption of giving the highest priority to ECG signals for asystole 
detection. It revealed that only 5.7% of the asystole alarms were not suppressed. In contrast, 
76.4% of the bradycardia alarms and 69.0% of the VFB alarms were not suppressed by input 
signals. As we did not utilise ECG signals for detection of either of these alarms, the results 
suggest that utilising the ECG signals may improve suppression of these false alarms. The 
VTA alarm detection algorithm relied heavily on the first ECG signal for heart beat detection. 
A small number of cases (3.2%) were detected with second ECG signal and 8.2% were not 
successfully suppressed.

We found that varying the threshold setting significantly affected false alarm detection. 
Thus, implementation of parameter optimization methods such as SVM (support vector 
machine) as a threshold tuning and model selection algorithm could enhance the scores.

As a final comment, we describe one signal processing step we trialed and abandoned as it 
did not result in improvement in the scores of either the train or test set. The signal process-
ing step attempted to boost the heart rate identification by multimodal signal integration. The 
algorithm examined the detected beats of the ECG signals. In case of low quality ECG signals 
or missing beats, it switched to pulsatile signals. In order to match the R peaks of ECG with 
pulse onsets of pulsatile signals, the delay between R peaks of ECG signals and pulse onset 
of pulsatile signals was measured. We adapted a fusion method proposed in the PhysioNet/
Computing in Cardiology Challenge 2014 by Johnson et al (2015). The peaks of the avail-
able ECG signals and pulsatile signals in the alarm segment were checked. In the case that 
more than 90% of the R peaks were followed by the pulse onsets of the pulsatile signal, the 
delays between the peaks were measured. The average of the delays in the alarm segment 
was set to the delay for the whole segment containing the alarm. A default delay value of 
200 ms was used for the segments which did not satisfy the criteria. Then, the R peaks and the 
corresp onding pulse onset beats of the pulsatile signal were compared in a one second window 
through the whole alarm segment. The percentage of the R peaks matching the pulsatile onset 
beats in an interval of the corresponding delay between them was calculated. If the matching 
rate was above 90% then the signal quality was deemed acceptable. As our algorithm was not 
successful, further work is needed to improve the integration technique. Finding an optimum 
matching rate and adjusting the delay for the available signals could enhance the performance 
of the algorithm.

5. Conclusion

Our result placed us among the top ten scores of the PhysioNet/Computing in Cardiology 
Challenge 2015. Our proposed system achieved the highest score in detecting tachycardia 
false alarms. Our best performing algorithm used multimodal signals, combined the infor-
mation from ECG and pulsatile signals, extracted and evaluated a number of features of the 
signals for alarm identification. Modification of the signal quality measures for different 
arrhythmias rather than employing a fixed SQI for every arrhythmia, setting the threshold in 
an iterative performance evaluation, and considering various possible effects of each arrhyth-
mia on the features of the signals enhanced the arrhythmia identification performance. For 
future alarm management systems, a modified noise removal algorithm, adaptive SQI mea-
surements for each arrhythmia, multimodal signal integration with optimum matching rate 
and adjusted delay could improve the performance.
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Appendix III

Length-free near infrared measurement of new-

born malnutrition

I contributed to the data modelling and statistical analysis with biostatistics guid-

ance from Alun Pope. This paper established a foundation for the data modelling

approach that was further developed and described in Section 6.
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Length-free near infrared 
measurement of newborn 
malnutrition
Fatin Hamimi Mustafa1, Emily J. Bek1, Jacqueline Huvanandana1, Peter W. Jones1, 
Angela E. Carberry1, Heather E. Jeffery1,2,3, Craig T. Jin1 & Alistair L. McEwan1

Under-nutrition in neonates can cause immediate mortality, impaired cognitive development and 
early onset adult disease. Body fat percentage measured using air-displacement-plethysmography has 
been found to better indicate under-nutrition than conventional birth weight percentiles. However, 
air-displacement-plethysmography equipment is expensive and non-portable, so is not suited for 
use in developing communities where the burden is often the greatest. We proposed a new body fat 
measurement technique using a length-free model with near-infrared spectroscopy measurements on a 
single site of the body - the thigh. To remove the need for length measurement, we developed a model 
with five discrete wavelengths and a sex parameter. The model was developed using air-displacement-
plethysmography measurements in 52 neonates within 48 hours of birth. We identified instrumentation 
required in a low-cost LED-based screening device and incorporated a receptor device that can increase 
the amount of light collected. This near-infrared method may be suitable as a low cost screening tool 
for detecting body fat levels and monitoring nutritional interventions for malnutrition in neonates and 
young children in resource-constrained communities.

Accurate determination of the nutritional status of newborns is a major public health problem because 
under-nutrition increases the risk of immediate mortality and impacts on growth and cognitive development1. 
According to the World Health Organization (WHO), 44% of all under-five child deaths every year are neonates 
in their first 28 days of life, with most of these deaths occurring in the first week of life and the greatest incidence 
of these occurring in low-middle income settings2. Accurate assessment of body composition is vital as early 
identification of under and over nutrition in neonates and children and can guide interventions for nutritional 
management for clinicians and health-care workers3. Conventional approaches for recognising under-nutrition 
include the use of population-based percentiles (< 10th, 5th, or 3rd percentiles), which rely on weight for gestational 
age and sex4. An alternative to the weight percentiles is to measure body composition.

A variety of methods are available to assess body composition in neonates and children. One high-cost 
technique uses the PEA POD system, a method based on air displacement plethysmography (ADP). The ADP 
technique (PEA POD; COSMED, Concord, CA) is often considered the criterion method for determining body 
composition and is accurate, safe, and noninvasive5. Carberry et al. showed that under-nutrition and risk of 
neonatal morbidity are more closely associated with body fat percentage (BF%) measured using ADP rather than 
the conventional birth weight percentiles4. Another high cost and highly accurate technique is dual-energy X-ray 
(DEXA), however its use is limited to one scan per year as it uses low dose ionising radiation6. Deuterium dilution 
for the measurement of total body water may be an ideal method for newborns as it involves less compliance, 
but requires trained staff for accurate dose delivery and sample collection, and carries a risk of delay due to time 
requirements for sample processing. Other techniques such as hydrostatic underwater weighing are unsuitable 
for newborns while less expensive techniques such as a skinfold thickness measurements require a high degree 
of training and can be inaccurate with poor predictive value due to incorrect lifting of the skin fold during the 
measurement, especially in lean newborns7. In this light, there is an urgent need for low cost and portable devices 
to assess body composition and nutrition as a point of care tool.
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A relatively new technique for measuring body fat levels in neonates and children uses the near-infrared 
(NIR) interactance method. The NIR interactance method studies the response of light at specific wavelengths to 
variations in thickness of the subcutaneous fat layer. The principle is based on light interaction with the various 
tissue types including the skin, muscle, bone and fat. Depending on the wavelength and optical properties of each 
tissue, the light is absorbed or reflected by different magnitudes before being captured by a photo-detector8. NIR 
is considered safe, rapid and noninvasive if the power of the incident light is low enough not to heat the skin. This 
method can also be made mobile and affordable, where a NIR device can be directly connected and easily moni-
tored via portable computing devices. However, the NIR method is limited by its sensitivity to hydration and skin 
color8,9. NIR body fat has been studied extensively in the adult population8,10–12, but there is limited research on its 
use in neonates and young children13. Studies have found that healthy neonates and adults possess different skin 
structures including thickness of skin layers, size of cells and size of fibres, where the parameters are smaller in 
neonates14–16. Neonatal skin appeared to be more hydrated than adult skin under an electron micrograph14,16 and, 
in general, water content in newborns was higher than in adults at 81% compared to 73%17.

Previously, we found that NIR measurements taken on the newborn’s thigh combined with weight and length 
data can provide a reasonable estimate for BF%18. The device was based on inexpensive LEDs and photodiodes. 
In this paper we consider a reflectance NIR measurement system having two different configurations: with and 
without a cosine corrector device connected at the collecting side of the probe. The cosine corrector acts as an 
optical diffuser that allows light to be collected from a wider range of angles compared with capturing the light 
using an uncorrected sub-miniature A-type (SMA) fibre cable.

We have developed a statistical model to estimate BF% in newborns from NIR reflectance measurements 
based on BF% from ADP measurements. As hydration is the major concern affecting NIR measurements in 
newborns, we exploit the NIR spectral absorption peaks of fat and water. Our model utilises three different ratios 
using five different wavelengths and an additional sex parameter. Our aim is to develop the best model for NIR 
measurement based on the ADP measurements, not to compare the two measurement methods at this stage.

Methods
Data Collection. The NIR measurements were taken at the tertiary referral hospital, Royal Prince Alfred 
Hospital (RPAH), Sydney between September 2014 and December 2014 on newborn of various ethnic back-
grounds. Maternal conditions during pregnancy, birth details and maternal and paternal demographics including 
ethnicity, age, height, weight, date of birth, and education background were recorded. The measurements of all 
subjects were conducted in duplicate or triplicate on the skin surface of both anterior and medial thighs. The 
thigh was chosen as the measurement site because it is a convenient location that is accessible while breastfeeding. 
All devices were tested for medical safety by the RPAH Biomedical Engineering department and were found to 
meet IEC60601 medical safety regulations.

Measurement Set up. A schematic of the NIR measurement setup is illustrated in Fig. 1. The cosine correc-
tor device is shown with a dotted line to indicate that it may or may not be included in the measurement process. 
A tungsten halogen light (Mikropack HL-2000-FHSA, 6.7 mW, 360 nm to 2400 nm range) was connected to a 
3D-printed fibres holder via a SMA fibre (Thorlabs, M28L01, ∅ 400 μ m, 0.39 NA). The holder was designed with 
two holes positioned at − 45° and + 45° angles to the normal surface to locate the transmitter and receptor fibres 
respectively. At the receptor side, another SMA fibre (Thorlabs, M14L01, ∅ 50 μ m, 0.22 NA) was used to optically 
connect the holder to a spectrometer (Ocean Optics QEPRO-FL, 350 nm to 1100 nm range, SNR 1000:1) and then 
the response signal was recorded for 20s with OceanView 1.4 software (Ocean Optics). The measurement was 
repeated on different subjects with a cosine corrector (Thorlabs CCSA1, ∅ 4 mm) coupled between the holder and 
the SMA fibre receptor.

BF% and weight were recorded by the PEA POD ADP measurement system. The BF% was determined by 
placing the naked newborn inside a closed chamber and air displacement was measured using pressure and 
volume changes. Body density was calculated from measured body mass and the calculated body volume19. 
Gestational age and length were obtained from the PEA POD database for data analysis.

Diffuse Reflectance Model. A simplified diffuse reflectance model of a layered medium, R(x, y) from the 
Radiative Transfer Equation (RTE) with a corrected diffuse approximation (CDA) was defined20:

∫π γ γ γ γ= − ′
−

R x y t I x y d( , ) 2 ( ) ( , , , 0) (1)
NA

1

Figure 1. Near-infrared body fat measurement set up. Dotted object is the cosine corrector.
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where NA is defined as the numerical aperture of the detector used that is aligned normally to the boundary plane 
at z =  0, the t(γ) is the Fresnel transmission coefficient due to the refractive index mismatch at the boundary, and 
the quantity I’ relates to I as:

∫γ
π

γ ϕ γ γ′ = −
π

π

−
I x y z I x y z d( , , , ) 1

2
( , , , , ) (2)

where I(γ, ϕ, x, y, z) is the radiance over the range of angles (γ =  cosine ϑ, and ϕ) exiting the skin collected by the 
detector at positions indicated by the vector <x, y, z>. The angle ϑ is the elevation angle with respect to the z-axis 
in spherical coordinates, while ϕ is the azimuthal angle of the position vector. Note that the range of − π <  ϕ < π 
is due to the assumption of uniform scattering. The I(γ, ϕ, x, y, z) depends on the optical properties: the absorp-
tion coefficient as function of absorption length, μa (la), the scattering coefficient as function of scattering length,  
μs (ls), and the anisotropy, g. In detail these are given by:

γ ϕ
γ
π
γ φ β γ γ δ φ

Ο β Ο α

=

+ − − −

+ +

I x y z H z f x y

H z x y z k H z x y z

( , , , , ) ( , ) ( , )
2

[1 ( , )] ( , , ) 3 [ ( , )] ( , , )

( ) ( ) (3)
z

1

2 1 3
2

where β =  1/w(μs), α =  μa/μs, k1 =  1/3μs(1 −  g). The w is the beam width, the φ (x, y, z) is the solution of the 
boundary value that can be solved either by Laplace’s equation or the diffusion equation. Meanwhile, the f(x, y) is 
the incident beam profile, which is set as Gaussian beam, and Hn (n =  1, 2, 3) denotes a half space Green’s func-
tion20. Whilst the t(γ) from equation (1) is given by:

γ
θ

θ θ
=

+
t n

n n
( ) 2 cos

cos cos (4)
1 1

1 1 2 2

where n1 and n2 are the refractive indices of the ambient material and skin respectively, θ1 is the transmission 
angle of the light source and θ2 is the reflected angle of the light from the skin. The NA from equation (1) is given 
by:

σ=NA n sin (5)i

where ni denotes the refractive index of material outside the fibre, which in our case is the air (n =  1), and σ 
donates maximum half acceptance angle of the fibre or cosine corrector. The NA of the used cosine corrector is 
1.0 compared to 0.22 of the SMA fibre as stated in section 2.2, which result in acceptance angles from 0° to 180° 
and from 77.3° to 102.7° for the cosine corrector and the SMA fibre cable respectively.

Statistical Model Development. In previous NIR studies, the absorbance (A) ratio at two different wave-
lengths, A(λ1)/A(λ2) was derived by K. Norris et al. in order to remove and normalise the baseline offset21. The 
idea of a ratio at two different wavelengths was used in developing our statistical model. To reduce the influence 
of water absorption, our preference was given to select ratios that were based on wavelengths highly influenced 
by fat and water9,22,23. Figure 2 shows the scattering spectrum of the subcutaneous fat layer, absorption spectrum 
of pure fat, absorption spectrum of melanin, absorption spectrum of pure water and also calculated absorption 
spectrum of subcutaneous fat layer following the Meglinski’s equation model. From Fig. 2, the dominant effect of 
water can be observed between 850 nm and 1050 nm. The spectral curve of the subcutaneous fat layer imitates the 
curve of pure water even though the peak of pure fat is clearly at 930 nm. This is due to the water content in the 
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Figure 2. Absorption coefficient spectrum of melanin, absorption coefficient spectrum of pure water, 
absorption coefficient spectrum of pure fat and absorption coefficient spectrum of subcutaneous fat layer 
and scattering coefficient spectrum of subcutaneous fat layer. 
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subcutaneous fat layer9. Scattering has a high influence in the subcutaneous fat layer (in Fig. 2), but the unidenti-
fied fat and water constituents over the spectrum make them difficult to separate.

We planned to use more than two wavelengths that were highly influenced by fat and water to counter the 
effect of melanin in the epidermal layer9, shown in Fig. 2. As a consequence of the high absorption possessed by 
the melanin spectrum, we only selected subjects from the white skin category in developing our statistical model 
due to very low number of subjects from the other skin categories.

We used Matlab software (Version R2012b; Mathworks Incorporated, Natick, Massachusetts), SPSS (Version 22),  
Microsoft Excel (Version 2013) and R (Version 3.3.1) to perform the statistical analysis. Linear piecewise inter-
polation was first applied on the spectrometer readings to determine the reflection in 10 nm intervals within the 
range of 850 nm to 1100 nm. The model development process involved evaluating all possible ratios of these read-
ings to determine key combinations of wavelengths that exhibited the highest correlation with BF% measured by 
ADP. A maximum of three sets of ratios and sex were used as input variables for an ordinary least-squares linear 
regression model, with NIR BF% as the target variable and BF% from ADP as a reference. Model performance was 
evaluated on the basis of coefficients between the predicted and actual values (significant level of 0.05, two-tailed 
test). The prediction of BF% by NIR was evaluated against ADP BF% from regression lines. The distribution of 
the data was tested using a Shapiro-Wilk test to ensure that the differences were normally distributed (Gaussian). 
Residuals were also plotted to compare variability of the developed model over the range of ADP measurements.

Ethics. This study was approved by the Human Research Ethics Committee of the Royal Prince Alfred 
Hospital, Sydney, Australia and all experimental methods were carried out in accordance with relevant guidelines 
and regulations (Protocol No.; X14-118, HREC/09/RPAH/645). Informed and written consent was obtained from 
the parents of the newborns.

Results
Sixty subjects were first measured using ADP. They were then split into two cohorts: Cohort 1 was measured using 
the NIR device with a cosine corrector fitted (the first 30 subjects) and Cohort 2 was measured without a cosine 
corrector (the next 30 subjects). To mitigate the risk of excessive movement, the newborns were measured while 
sleeping, immediately after a feed or during feeding. Figure 3(a,b) show NIR reflection spectra obtained from NIR 
measurements with using the cosine corrector and without using the cosine corrector respectively both for the 
anterior and medial thighs of two subjects. The subject selection was based on those having the highest and the 
lowest BF% from the ADP measurements. At this level of detail there appeared to be baseline offsets of the spectra 
that supported the implementation of ratios at two different wavelengths in the developed model.

Table 1 shows the characteristics of the neonates studied (total n =  60: n =  30 for each cohort). The develop-
ment of the model in this study only considered white skin subjects (total n =  52: n =  26 for each cohort) due 
to the high influence of melanin over NIR spectra. The data for dark skin subjects could not be meaningfully 
modeled due to low numbers (total n =  8: n =  4 for each cohort). We found significant correlation between NIR 
absorption using the cosine corrector and ADP for both anterior and medial thighs of white skin subjects (corre-
lation coefficient, R =  0.877 and R =  0.839 respectively) as shown in Table 2. Root Mean Squared Error (RMSE) 
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Figure 3. Near-infrared reflection from the anterior and medial thighs of the highest and lowest BF% of two 
subjects in each cohort (a) with cosine corrector, (b) without cosine corrector.
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and p-values of Cohort 1 (white skin subset) of both sites are generally lower than those of Cohort 2. This is attrib-
uted to the greater light detection obtained using the cosine corrector.

The residual plots shown in Fig. 4 with and without the cosine corrector for both anterior and medial thighs 
of white skin subjects are evenly and are randomly dispersed throughout the x-axis (fitted value), which indicates 
that the assumptions of linearity and homoscedasticity are valid. The Shapiro-Wilk test also shows that the data 
sets follow a normal distribution.

The model based on white skin subjects utilised three different reflection ratios at five different wavelengths 
and a parameter of sex as:

= + + + +BF A A r A r A r A G% (6)1 2 1 3 2 4 3 5

where BF% is the body fat percentage measured using ADP, r1 is the ratio of 890 nm/1020 nm, r2 is the ratio of 
920 nm/1010 nm, r3 is the ratio of 1010 nm/900 nm, and G is the sex which is assigned the value of 1 for male and 0 
for female. A1, A2, A3, A4, and A5 indicate the constant coefficients of the respective parameter. The values of these 
constant coefficients were obtained following a statistical model and are shown in Table 3.

Illustrated in Table 4 are the mean and standard deviation of the NIR BF% obtained from equation (6) and 
the ADP BF% of the two cohorts for the anterior and medial thighs of white skin subjects. Notice that the mean 
value for ADP BF% and NIR BF% are completely in agreement. The variability of the measurements is less for 
NIR (2.83%) than ADP (3.62%). The residual plots show a dissimilarity of variability between cohorts, where the 

White Skin* Dark Skin* Total Sex
Body Fat % 

(Mean ± SD)
Gestational Age 

Weeks (Mean ± SD)
Weight Kg 

(Mean ± SD)
Length cm 

(Mean ± SD)

Cohort 1 With 
cosine corrector

26 (Caucasian-23 
(88%)), Asian-3 (12%)) 4 (Asian-4 (100%)) 30 63% Male 10.10 ±  3.41 39.28 ±  1.60 3.23 ±  0.49 49.57 ±  3.18

Cohort 2 Without 
cosine corrector

26 (Caucasian-16 (62%), 
Asian-10 (38%))

 4 (Asian-3 (75%), 
Aboriginal-1(25%)) 30 50% Male 11.13 ±  3.72 39.47 ±  1.27 3.31 ±  0.43 49.42 ±  2.19

Table 1. Characteristics of 60 subjects studied. *Based on ethnicity information with skin colour recorded.

Anterior thigh Medial thigh

R RMSE P-value R RMSE P-value

Cohort 1 (white skin subset, n =  26) 0.877 1.77 < 0.001 0.839 2.0 < 0.001

Cohort 2 (white skin subset, n =  26) 0.519 3.38 0.143 0.519 3.38 0.143

Table 2. Results from statistical analysis of NIR absorption for anterior and medial thighs of white skin 
subjects (total n = 52: n = 26 for each cohort).
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Figure 4. Residual plots of NIR BF% and ADP BF% with white skin subjects (total n = 52: n = 26 for each 
cohort). Plot (a) NIR with cosine corrector on anterior thigh, (b) NIR with cosine corrector on medial thigh,  
(c) NIR without cosine corrector on anterior thigh while (d) NIR without cosine corrector on medial thigh.
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residual of the NIR with the cosine corrector (Fig. 4(a,b) for anterior and medial thighs respectively) was lower 
than the NIR without using the cosine corrector (Fig. 4(c,d) for anterior and medial thighs respectively) demon-
strating less variability with the cosine corrector.

The regression lines of the NIR model BF% against the ADP BF% show that the NIR model over-estimates 
BF% for lean neonates, with the cosine corrector (Fig. 5(a,b)) reducing the over-estimation of BF% compared to 
the model without the cosine corrector (Fig. 5(c,d)).

Melanin or skin colour has been found to influence NIR measurements on skin9. We extended our analysis 
to include all subjects of both cohorts (n =  60: n =  30 for each cohort) for anterior and medial thighs using our 
developed NIR BF% model. The effect of including the mixed skin colours in the analysis is reflected in the 
statistical results in Table 5, which shows reduced correlation values and higher RMSE and p-values than those 
presented in Table 4. Nevertheless, the statistical results in Table 5 (mixed skin colour) are consistent with the 
results in Table 4 (white skin colour only) in showing that NIR using the cosine corrector was always better than 
NIR without using the cosine corrector.

As the choice of using three different wavelength ratios was somewhat arbitrary, we show the effects on R 
using between one and five ratios in our NIR BF% model for white skin colour subjects in Table 6 (n =  26 of 
cohort 1 for both anterior and medial thighs). The selection of wavelengths was still referred to absorption peaks 
of water and fat. The increases of R which resulted from increasing the number of wavelength ratios used agrees 
with a study of breast imaging by Lo et al., which they found that adding more wavelengths up to eight improved 
extraction errors24. Although the R continues to increase with the number of wavelength ratios used, the increase 
is leveling off and the inclusion of these additional wavelengths would involve more cost in the final device which 
is intended for use with discrete diodes for low cost. We included the subject length parameter in Table 6, row 5 
for comparison with other independent ratios of NIR where it can be seen that it provides at least as much infor-
mation as two additional ratios or three additional wavelengths.

Discussion
To our knowledge, this is the first study developing NIR BF% for neonates using BF% from a gold standard body 
composition ADP technique to develop models. Our findings showed that NIR configuration with the cosine cor-
rector resulted in the highest correlation and the lowest residual. We found that the NIR measurements after add-
ing the cosine corrector showed higher correlation between NIR BF% and ADP BF% (R =  0.877 and R =  0.839 for 
anterior and medial thighs respectively on white skin subjects). The NIR using the cosine corrector also showed 
the lowest residuals with the ADP BF% indicating the ability to fit an improved model. The improvement offered 
by the cosine corrector in the NIR body fat measurement demonstrates the importance of appropriate equipment 
and device selection in NIR configurations. This was in agreement with a study by Hwang et al., in which they 
used varied types of LEDs with different view angles (lamp at 20° over miniature chip at 120°) in NIR phantom 
experiments resulting in higher sensitivity by the miniature chip25.

Anthropometric parameters (e.g.; length and weight) and age were not included in our developed model as 
these measurements are often unknown or inaccurate in low resource settings. Our objective was to determine 
whether this NIR technique could be used independently for easy point of care measurement of nutritional status. 
Our developed model however depended on an additional parameter, sex, because this factor influences BF% at 
birth26. Nevertheless, the sex parameter is always accessible and does not need any equipment. Measurement of 
length has been used as one of the primary indicators of foetal, neonatal and child nutrition27. However, length 
measurements are often problematic due to inter- and intra-observer variability unless appropriate equipment 
including an appropriate length board with extensive training are used27. The Futrex device requires anthropo-
metric parameters of age, weight, height and level of exercise in their developed model28. Those parameters may 
often be inaccessible or unreliable, especially in a low-income setting.

A1 A2 A3 A4 A5

Cohort 1 (white skin subset)

 Anterior thigh − 317.70 255.18 − 83.25 193.38 − 1.64

 Medial thigh − 186.79 225.77 − 141.47 115.04 − 1.81

Cohort 2 (white skin subset)

 Anterior thigh − 214.29 103.11 − 0.64 128.45 2.26

 Medial thigh − 225.26 111.74 1.27 127.77 − 2.07

Table 3.  Values of the constant coefficients used in equation (6).

ADP BF% (Mean ± SD) %

NIR BF% (Mean ± SD) %

Anterior thigh Medial thigh

Cohort 1 (white skin subset, n =  26) 10.44 ±  3.373 10.44 ±  2.832 10.44 ±  2.830

Cohort 2 (white skin subset, n =  26) 11.26 ±  3.617 11.26 ±  1.875 11.26 ±  1.876

Table 4. Mean and standard deviation of NIR BF% in equation (6) and ADP BF% of two cohorts of white 
skin subjects (total n = 52: n = 26 for each cohort).
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Past NIR subcutaneous fat studies using simulations and phantom measurement methods have found that 
light reflection increases logarithmically with the thickness of the fat layer25,29. The logarithmic relationship can 
be attributed to the high influence of fat on light scattering. As the thickness of fat increases, more light is scat-
tered back to the ambient surface until at a critical thickness, the point where the light is saturated and there is no 
increase in backscattered light with any further increases of the thickness of fat. This critical thickness constrains 
the NIR method to the lower subcutaneous fat thicknesses associated with undernutrition in neonates and chil-
dren. For example the subcutaneous fat layer beneath the thigh skin of low birth weight and normal full term 
neonates were found to be 1.7 mm to 3.0 mm and 3.0 mm to 5.0 mm respectively12. To our knowledge, there have 
been no specific studies to determine NIR maximum thickness detection, which might rely on the type of NIR 
devices used and acceptance power source emitted25.

The strengths of our study include that this was the first development of NIR BF% models using BF% from 
ADP as a reference in a newborn population in order to look at the potential of direct and low cost LED-based 
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Figure 5. Linear regression lines of NIR BF% and ADP BF% with white skin subjects (total n = 52: n = 26 
for each cohort). Plot (a) NIR with cosine corrector on anterior thigh, (b) NIR with cosine corrector on medial 
thigh, (c) NIR without cosine corrector on anterior thigh while (d) NIR without cosine corrector on medial 
thigh.

Anterior thigh Medial thigh

R RMSE P-value R RMSE P-value

Cohort 1 (all subjects, n =  30) 0.820 2.10 < 0.001 0.719 2.53 < 0.001

Cohort 2 (all subjects, n =  30) 0.363 3.74 0.45 0.420 3.64 0.28

Table 5. Results from statistical analysis of NIR absorption for anterior and medial thighs of all subjects 
(total n = 60: n = 30 for each cohort) with (Cohort 1) and without (Cohort 2) a cosine corrector.

No. 
Cohort 1 – With Cosine 

Corrector (n = 26) R/RMSE (Anterior thigh) R/RMSE (Medial thigh)

1 BF% =  r1 +  G 0.498/3.05 0.462/3.12

2 BF% =  r1 +  r2 +  G 0.602/2.87 0.721/2.49

3 BF% =  r1 +  r2 +  r3 +  G +  r4 0.877/1.81 0.839/2.05

4 BF% =  r1 +  r2 +  r3 +  G +  r4 +  r5 0.879/1.84 0.854/2.01

5 BF% =  r1 +  r2 +  r3 +  G +  L 0.891/1.71 0.867/1.88

Table 6. BF% estimations, R and RMSE of less and more than three ratios. Ratios of r1, r2, and r3 are the 
ratios in equation (6) while added ratios of r4, and r5 are 930 nm/1050 nm, and 970 nm/930 nm respectively and 
L is length. Subjects are from white skin colour (n =  26 for Cohort 1).
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NIR device being comparable to the gold standard ADP in screening undernutrition and morbidity in newborns. 
NIR commercial devices, such as Futrex have only targeted on children above 5 years to adult populations30–32. 
Since this study was only conducted in newborns, other populations across infancy (newborn up to 2 years) with 
higher number of subjects, different skin colours and environments (temperatures) need to be investigated in 
order to establish the developed model and to formally test levels of agreement on a different dataset than that 
used to develop the models. Testing for agreement with several other gold standard body composition techniques 
using new NIR dataset is also essential to ensure the robustness of the NIR BF% model. For implementation, 
five LEDs could be allocated around a low-cost cosine corrector that couples to a wavelength-range detector and 
filters.

In conclusion, we have developed a NIR-based BF% model using gold standard ADP measurements. The 
developed NIR BF% models have utilised three ratios at five different wavelengths with the introduced cosine 
corrector to determine newborn body composition. The results showed significant correlation and agreement 
with ADP. We have shown that our device may have the potential to identify undernourished newborns who are 
at significant risk of associated morbidity such as hypothermia, hypoglycaemia and mortality in settings where a 
gold standard device would not normally be available. This is particularly useful for low resource settings where 
equipment to screen for hypoglycemia (glucometers, blood glucose analysis) and hypothermia (low reading ther-
mometers) are limited or lacking. In such settings, a point of care, accurate, robust and low-cost device is needed 
to distinguish between the pathologically versus constitutionally small for gestational age neonates. The future 
plan is to test the device in a randomised controlled trial measuring relevant health outcomes.
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Appendix IV

How do different brands of size 1 Laryngeal Mask

Airway compare to facemask ventilation in a ded-

icated Larygeal Mask Airway teaching manikin?

I contributed to the signal processing of and feature extraction from the ventilator

data.
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AbstrAct
background International neonatal resuscitation 
guidelines recommend the use of laryngeal mask airway 
(LMA) with newborn infants (≥34 weeks’ gestation or 
>2 kg weight) when bag-mask ventilation (BMV) or 
tracheal intubation is unsuccessful. Previous publications 
do not allow broad LMA device comparison.
Objective To compare delivered ventilation of seven 
brands of size 1 LMA devices with two brands of face 
mask using self-inflating bag (SIB).
Design 40 experienced neonatal staff provided 
inflation cycles using SIB with positive end expiratory 
pressure (PEEP) (5 cmH2O) to a specialised newborn/
infant training manikin randomised for each LMA and 
face mask. All subjects received prior education in LMA 
insertion and BMV.
results 12 415 recorded inflations for LMAs and face 
masks were analysed. Leak detected was lowest with 
i-gel brand, with a mean of 5.7% compared with face 
mask (triangular 42.7, round 35.7) and other LMAs 
(45.5–65.4) (p<0.001). Peak inspiratory pressure was 
higher with i-gel, with a mean of 28.9 cmH2O compared 
with face mask (triangular 22.8, round 25.8) and other 
LMAs (14.3–22.0) (p<0.001). PEEP was higher with i-gel, 
with a mean of 5.1 cmH2O compared with face mask 
(triangular 3.0, round 3.6) and other LMAs (0.6–
2.6) (p<0.001). In contrast to other LMAs examined, i-gel 
had no insertion failures and all users found i-gel easy 
to use.
conclusion This study has shown dramatic 
performance differences in delivered ventilation, mask 
leak and ease of use among seven different brands of 
LMA tested in a manikin model. This coupled with no 
partial or complete insertion failures and ease of use 
suggests i-gel LMA may have an expanded role with 
newborn resuscitation as a primary resuscitation device.

IntrODuctIOn
Laryngeal mask airways (LMA) are listed in 
the International Liaison Committee on Resuscita-
tion (ILCOR) neonatal resuscitation guidelines as 
a means of assisting positive pressure ventilation 
(PPV) during resuscitation of term and near-term 
infants where face mask PPV is not adequate and 
resuscitator skills to effect endotracheal intubation 
are insufficient.1 LMA may also be of assistance 
with newborn infants with rare significant cranio-
facial abnormalities such as Pierre Robin syndrome 
where upper airways obstruction is severe and 
endotracheal intubation even in expert hands may 

be very difficult. Simply put, the LMA may be a 
life-saving device when ‘you can’t ventilate and 
you can’t intubate’.2 3 Assessment of LMA for use 
by local birth attendants (physicians and midwives) 
in developing and developed countries in manikin 
models compared with face mask PPV showed 
the feasibility of training and use of LMA in these 
settings and recommended further evaluation.4–6

The 2005 Cochrane review on the use of LMA 
versus bag-mask ventilation or endotracheal intu-
bation comments that evidence from observational 
studies suggests LMA can provide rescue airway 
and achieve effective PPV during newborn resusci-
tation if both bag-mask ventilation and intubation 
have been unsuccessful.7 Two recent prospective, 
unblinded, randomised, controlled trials comparing 
LMA to face mask ventilation for newborn ≥34 
weeks’ gestation found there was less need for 
endotracheal intubation using LMA and it was 
more effective than face mask.8 9

What this study adds?

 ► Size 1 LMAs tested in this manikin study 
showed marked performance variation.

 ► The i-gel brand LMA showed superior 
performance for provision of peak 
inspiratory pressure, positive end expiratory 
pressure and mask leak compared with other 
LMAs and face masks tested.

 ► Inexperienced users of LMA showed higher 
proficiency in attaining adequate lung inflation 
and ease of insertion using i-gel brand LMA.
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What is already known on this topic?

 ► The International Liaison Committee on 
Resuscitation guidelines recommend use of 
LMA at newborn resuscitation if adequate 
face mask positive pressure ventilation or 
endotracheal intubation insertion cannot be 
accomplished.

 ► Use of non-inflatable LMA in paediatric 
patients is beneficial due to possible cuff 
hyperinflation of inflatable cuff types.

 ► Efficacy of LMA use during neonatal resuscitation 
remains unclear.
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Figure 1 Laryngeal mask airway tested, physical characteristics: (1) Ultimate, (2) PRO-Breathe, (3) Supreme, (4) Unique, (5) air-Q, (6) AuroOnce and 
(7) i-gel.

Original article

Training for use of LMA in newborn resuscitation requires 
leak-free manikins with anatomically correct pharyngeal struc-
tures to apply LMA cushion to seal. Size 1 LMA brands differ 
substantially in stiffness of angled tube, the angle of the tube, tube 
internal diameter, and the size, shape and type of mask cushion 
(inflatable with a syringe, auto inflate with PPV or non-inflatable 
contoured gel) (figure 1). This suggests the potential for varia-
tion in performance characteristics. Studies to date of compari-
sons between LMA brands have been limited to up to three LMA 
model comparisons.10–15 Clinical studies of LMA use in infancy 
by anaesthetists have been conducted in more controlled clinical 
situations of elective surgery with stable patients; brand compar-
isons have focused on ease of use, time to insert and inflation 
pressure at which audible leak occurs.10–12 The neonatal resusci-
tation focus on sufficient tidal volume (TV) with least peak infla-
tion pressure, in newborn infants with significant lung disease, 
has dictated the search for devices and methods to reduce face 
mask leak. There is a need to guide clinicians how a range of 
different LMA devices perform in dedicated LMA training mani-
kins and clinical practice at birth.

We aimed to examine delivered ventilation and airway leak 
to an anatomically correct manikin head designed specifically to 
train in LMA use attached to a neonatal test lung. This crossover 
study was designed to test seven size 1 LMAs compared with two 
face masks (round and triangular). Our null hypothesis was that 
there would be no differences between face mask and brands of 
LMA in the rate of successful insertion (LMA), delivered venti-
lation, maximal inflation pressure, mask leak and particularly 
the ability to achieve targeted positive end expiratory pressures 
(PEEP). Primary outcomes were the delivered ventilation to the 
manikin, and the secondary outcomes were the insertion failure 
tally and subjective assessment of ease of LMA insertion.

MethODs
Forty clinicians in a busy tertiary neonatal intensive care unit (9 
consultants/fellows, 13 registrars and 18 nurses) agreed to partic-
ipate in this study. All were experienced in bag-mask ventilation 

and variably less experienced with LMA use. A new AirSim Baby 
manikin head (JR10001, TruCorp, Belfast, Ireland) was modi-
fied by changing the supplied lung bag to a test lung (SmartLung 
Infant, IMT Medical, Buchs, Switzerland) with a static compli-
ance of 2 mL/cmH2O and resistance of 50 cmH2O/L/s, simulating 
a near-term infant (figure 2). Seven internationally available size 
1 LMA single-use devices were examined: (1) Ultimate (Ulti-
mate Medical, Tianjin Medis, China), (2) PRO-Breathe (Well 
Lead Medical, China), (3) LMA Supreme (The Laryngeal Mask, 
Seychelles), (4) Unique LMA (The Laryngeal Mask), (5) air-Qsp 
(Cookgas, Malaysia), (6) AuroOnce (Ambu A/S, Ballerup, 
Denmark) and (7) i-gel (Intersurgical, Wokingham, Berkshire, 
UK).

Two face mask devices were compared with LMA: (1) Ambu 
(Ambu A/S) triangular size infant (Part No 252 052) and (2) 
Laerdal (Stavanger, Norway) round size 1 (Part No 851600). 
PPV was supplied using an Ambu self-inflating bag (SIB) (SPUR 
II Part No 335 102 000) with Ambu manometer and PEEP valve 
(0–20 cmH2O, Part No 199 102 001). Two neonatal respiratory 
function monitors (RFM) (Florian, Acutronics, Switzerland, and 
Cosmo Novametrix) were used to determine the TV, flow and 
inflation pressures at two points. At point 1, the pneumotach 
of the Florian RFM was sited between the SIB and the proximal 
end of the device under test (LMA or face mask). At point 2, 
the pneumotach of the Cosmo RFM was sited between the test 
lung and the manikin head. Both RFMs were calibrated with 
an external syringe of known volume and pressure/flow via a 
traceable reference ventilator analyser (PF300, IMT Medical). 
Participants were blinded to both RFM displays. The manikin 
head was assessed for system leak and leak points at the base of 
the head where airway bifurcates and the corner of the lip was 
sealed with silicone. Test lung, manikin head and measurement 
system (RFM pneumotach’s proximal pressure lines) were pres-
surised to a static pressure of 50 cmH2O, and over 120 s there 
was no fall in pressure, indicating the system was leak-free.

A PowerLab data acquisition system (Part No ML880, ADIn-
struments, Australia) with a sample rate of 200 Hz and 
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Figure 2 Manikin/lung test set-up.

table 1 Delivered test lung respiratory data, device insertion failures and device insertion rating

Primary outcomes secondary outcomes

Mask leak,* % PeeP,* cmh2O PIP,* cmh2O
Inflation volume,* 
mL Max PIP,*‡ cmh2O

LM insertion†
Failures, no failure/
partial/complete

LM insertion† 
easy/Difficult

Estimated mean 
(SE)

Estimated mean 
(SE)

Estimated mean 
(SE)

Estimated mean 
(SE)

Estimated mean 
(SE)

Face mask

M1. Triangular 43.0 (0.44) 3.0 (0.04) 22.7 (0.18) 28.1 (0.19) 29.5 (0.87) 40/0/0 40/0

M2. Round 34.9 (0.39) 3.6 (0.04) 25.5 (0.16) 31.3 (0.17) 31.6 (0.80) 40/0/0 40/0

Laryngeal mask

1. Ultimate 48.8 (0.38) 2.2 (0.03) 20.6 (0.16) 30.3 (0.17) 25.5 (0.84) 36/2/2 34/6

2. PRO-Breathe 64.7 (0.40) 1.3 (0.04) 16.5 (0.16) 25.4 (0.17) 20.9 (0.81) 33/6/1 26/14

3. Supreme 46.2 (0.37) 2.4 (0.03) 22.0 (0.15) 29.0 (0.16) 29.2 (0.81) 37/3/0 38/2

4. Unique 64.5 (0.40) 0.7 (0.04) 14.3 (0.16) 27.2 (0.18) 18.5 (1.01) 26/9/5 27/13

5. air-Q 58.5 (0.39) 1.0 (0.04) 16.8 (0.16) 28.9 (0.17) 22.4 (0.83) 28/12/0 25/15

6. AuroOnce 62.2 (0.41) 0.7 (0.04) 17.0 (0.17) 29.7 (0.18) 19.5 (0.83) 28/7/5 16/24

7. i-gel 4.0 (0.42) 4.8 (0.04) 29.5 (0.17) 34.5 (0.19) 36.7 (0.95) 40/0/0 40/0

*Parameters significant at p<0.001, analysis of variance for repeated measures, estimated means with SE.
†Frequency counts for LMA only tested, Fisher’s exact test, p<0.001.
‡Averaged four maximal inflations to achieve highest possible PIP.
LM, laryngeal mask; PEEP, positive end expiratory pressure; PIP, peak inspiratory pressure. 
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a laptop computer collected analogue signals for volume, 
airflow and airway pressure from both RFMs. Respiratory 
parameters from each RFM (peak inspiratory pressure (PIP), 
PEEP, TV), for each breath, were determined by a customised 
program software algorithm (Python Software Foundation).

Leak during PPV was determined as (TV proximal (SIB) − TV 
distal (test lung))/TV proximal (SIB)×100.

Each subject received extensive instruction and practice 
with both face mask and LMA insertion/cuff inflation with 
each brand using the manikin head over several sessions. 
Competency with each method was assessed in the training 
phase by the instructor determining adequate test lung infla-
tion and lack of audible leak.

Participants were asked to deliver 2 min of PPV aiming 
to achieve adequate test lung inflation for each randomised 
device; a 2 min rest period was provided between each test 

sequence. If the LMA device required cuff inflation, a volume 
of 4 mL was used, reflecting recommended maximum infla-
tion volume. If the subject judged test lung inflation inade-
quate or there was no test lung movement, this was noted as 
an unsuccessful attempt; a second placement of the device 
was allowed, and two unsuccessful attempts were noted as a 
complete failure. Successful PPV following the second inser-
tion was judged a partial failure (table 1). PEEP valve was 
set at 5 cmH2O and PIP was not specified beyond adequate 
test lung inflation. The inflation rate (40–60) is as per 
ILCOR guidelines.1 At the end of each sequence the subjects 
were instructed to provide four inflations of maximum SIB 
compression to determine if delivery of PIP up to the SIB 
overpressure value of 40 cmH2O (+/−5 cmH2O) could be 
achieved, simulating the need to increase PIP during PPV at 
resuscitation.3 16
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Figure 3 Box and whisker plot: test lung delivered positive end expiratory pressure. The median of 25–75th centile for box and whiskers is 1.5× IQR 
(above and below), which gives the upper and lower adjacent values. PEEP, positive end expiratory pressure.

Figure 4 Box and whisker plot: mask leak. The median of 25–75th centile for box and whiskers is 1.5× IQR (above and below), which gives the 
upper and lower adjacent values.
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Data analysis
The analysis using Stata V.14 examined the mean and SD for 
PIP, PEEP, TV and mask leak. Analysis of variance for repeated 
measures was used to determine differences between device 
types, with estimated means reported with their SEs (table 1) 
with p values-adjusted F test using Box’s conservative epsilon. p 
Values of <0.05 were considered significant. Pairwise compari-
sons between groups were assessed with Bonferroni correction. 
LMA insertion attempts were grouped as frequency counts of 
subjects (no failure, partial or complete failure), and participant 

impression of ease of insertion (dichotomised to easy or difficult) 
per device was examined by Fisher’s exact test.

resuLts
There were 12 415 inflations recorded and analysed. The i-gel 
LMA consistently and statistically outperformed all other devices 
tested (table 1). Box and whisker plots demonstrate the median 
and spread of values for primary outcomes (PEEP in figure 3 and 
leak in figure 4).

group.bmj.com on August 12, 2017 - Published by http://fn.bmj.com/Downloaded from 

162



F5Tracy MB, et al. Arch Dis Child Fetal Neonatal Ed 2017;0:1–6. doi:10.1136/archdischild-2017-312766

Original article

Primary outcomes
The mask leak observed with i-gel LMA of 5.7% was dramati-
cally lower than all other devices observed, including face mask 
(ranging from 37.5% to 65.4%, p<0.001) (table 1 and figure 4). 
The i-gel LMA provided the highest mean PIP of 28.9 cmH2O 
compared with the other devices (ranging between 16.3 and 
25.5 cmH2O, p<0.001) (table 1). The i-gel delivered PEEP was 
closest to the set value of 5.0 cmH2O, with others ranging from 
0.6 cmH2O to 3.6 cmH2O (p<0.001) (table 1 and figure 3). 
Comparing the maximal average PIP for the four inflations 
targeting the highest peak inflation pressure possible, the i-gel 
LMA delivered a significantly higher mean value of 38.4 cmH2O 
compared with other devices, ranging from 18.5 cmH2O to 32 
cmH2O (p<0.001) (table 1).

secondary outcomes
The i-gel LMA was regarded by all 40 (100%) subjects as easy 
to insert, which compared with the range of subjective ratings 
for the other LMA from 16 (40%) with AuroOnce LMA to 38 
(95%) with the Supreme LMA. All subjects were able to insert 
the i-gel LMA the first time with minimal leak. All other LMAs 
had at least one first insertion failure and four LMA brands had 
two failures recorded for subjects ranging from 1 to 5 in total.

DIscussIOn
We believe this is the first comprehensive study in a dedicated 
LMA manikin model looking at the performance of several 
brands (n>3) of size 1 single-use LMA devices compared with 
face mask PPV. The laryngeal structure of the AirSim Baby 
manikin head is modelled on CT scans of anatomically normal 
infants aged 2 months (TruCorp, personal communication). 
Anatomically correct laryngeal structure is vital to train LMA use 
and allow assessment of LMA cushion leak. During the design 
phase, the RFM pneumotach positioned between the SIB and the 
LMA tube connector frequently indicated 100% leak with some 
brands of LMA when the test lung was clearly moving. Thus, 
a single point pneumotach measurement at the delivery device 
(SIB) may not account for differing leak characteristics during 
inspiratory and expiratory flow past the LMA seal. A second 
pneumotach sited at the test lung was required to assess system 
leak relative to TV (figure 2).

The superiority of the i-gel LMA to deliver ventilation 
compared with the other LMAs and face mask tested was unex-
pected given the group of experienced neonatal resuscitators. 
The ease of use of the i-gel LMA coupled with no insertion fail-
ures indicates the physical structure of the LMA does significantly 
influence performance at least in this manikin model. Many of 
the LMAs tested in our study were rated by the users as difficult 
to insert. This paralleled the higher rates of partial or complete 
failure to establish a useable laryngeal seal. The provision of an 
effective PEEP may well be desirable in preterm infants, with 
some degree of surfactant deficiency and abnormally low lung 
compliance. Intubation with endotracheal tubes is frequently 
associated with many adverse physiological changes including 
hypoxia, bradycardia and raised blood pressure (cerebral and 
arterial).17 The use of LMAs to provide PPV may mitigate some 
of these unwanted and potentially harmful physiological effects 
associated with intubation.

Recent interest in delivering surfactant via LMA18–20 has led 
to its experimental use below ILCOR recommended weight 
(>2000 g) or gestation (>34 weeks)1 in multicentre RCT in the 
USA, with results awaited.21 The LMA used in this multicentre 
RCT, the Unique LMA in our study, did not provide adequate 

PEEP (2.3 cmH2O) and had a lower mean and maximal achiev-
able PIP of 20.7 and 25 cmH2O compared with the i-gel LMA 
mean and maximal achievable PIP of 28.9 and 38.4 cmH2O. 
Inability to achieve PIP higher than 24 cmH2O with size 1 LMAs 
has been reported in other manikin studies.22 This may be rele-
vant as preterm infants who are surfactant-deficient may require 
rapid escalation of peak inflation pressures and adequate PEEP 
during resuscitation.3

Limitations are as with any manikin study in generalising 
device performance to human subjects. The AirSim Baby JR1001 
(TruCorp) is designed for training airway management in infants 
0–6 months of age. Our results may not be generalisable to 
other brands of LMA not tested in particular reusable devices 
or use with other brands of manikin. Visualisation of test lung 
movement by participants may not be the same as assessment of 
chest wall movement in a human or a full body newborn infant 
manikin.

Results in this dedicated manikin model concur with find-
ings of recent two brand LMA prospective studies comparing 
i-gel conducted in infants and children undergoing elective 
surgery.10–12 23 However one study by Drake-Brockman et al24 
found the PRO-Breathe LMA superior to i-gel LMA in a wide age 
range of children (0–16 years) with LMA size range of 1.5–3. A 
study by Lee et al25 in a lower age range of infants (10 months–5 
years) found the Classic LMA had similar leak pressure to the 
i-gel LMA but longer insertion time.

A further important aspect not explored in this study nor in 
other studies we are aware of is the use of a flow-dependent 
t-piece resuscitator with an LMA device. T-piece resuscitators, 
in particular the Neopuff (NPR), have become a very popular 
device to resuscitate preterm newborns and infants with the 
provision of PEEP.1 26 27 Previous work has shown the NPR is 
slower to adjust up the PIP during resuscitation than with SIBs.16 

28 29 The ability to quickly adjust the inflation pressure to respond 
to inadequate clinical response most likely due to mask leak may 
be important with the use of LMA devices given the variance 
of ventilation performance seen in this study. The clear supe-
riority of the i-gel LMA with dramatically less leak and stable 
PEEP levels, compared with the traditional face mask SIB in this 
study, was unexpected. In our view, this warrants human studies 
to confirm this finding. Our group is currently examining the 
comparative performance of SIB and NPR with LMA devices, 
and beginning human infant studies to compare leak with face 
mask and i-gel LMA in the resuscitation of moderately preterm 
infants.

The emergency use of LMA devices during resuscitation of 
newborn infants is a time-critical procedure. We did not examine 
the additional time required for manual cuff inflation. We spec-
ulate devices that do not require manual inflation (i-gel with a 
solid gel cushion and the auto inflate cuff with the air-Qsp LMA) 
may allow shorter time to PPV and be simpler to use overall. 
This may be important with less experienced LMA users in the 
clinical setting of delivery suite or home birth.

cOncLusIOn
This study has shown dramatic performance differences in 
delivered ventilation, mask leak and ease of use among seven 
different brands of LMA tested. PPV with the i-gel LMA with a 
solid gel laryngeal cushion had superior performance character-
istics than the triangular or round face mask. This coupled with 
no partial or complete insertion failures and ease of use suggests 
i-gel LMA may have an expanded role with newborn resuscita-
tion as a primary resuscitation device.
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Appendix V

Vibroarthrography for early detection of knee os-

teoarthritis using normalized frequency features

I contributed to the signal processing of and feature extraction of the normalised

frequency features.
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Abstract
Vibroarthrography is a radiation-free and inexpensive method of assessing the condition of knee cartilage damage during
extension-flexion movements. Acoustic sensors were placed on the patella and medial tibial plateau (two accelerometers) as
well as on the lateral tibial plateau (a piezoelectric disk) to measure the structure-borne noise in 59 asymptomatic knees and
40 knees with osteoarthritis. After semi-automatic segmentation of the acoustic signals, frequency features were generated
for the extension as well as the flexion phase. We propose simple and robust features based on relative high-frequency
components. The normalized nature of these frequency features makes them insusceptible to influences on the signal gain,
such as attenuation by fat tissue and variance in acoustic coupling. We analyzed their ability to serve as classification features
for detection of knee osteoarthritis, including the effect of normalization and the effect of combining frequency features of
all three sensors. The features permitted a distinction between asymptomatic and non-healthy knees. Using machine learning
with a linear support vector machine, a classification specificity of approximately 0.8 at a sensitivity of 0.75 could be
achieved. This classification performance is comparable to existing diagnostic tests and hence qualifies vibroarthrography
as an additional diagnostic tool.

Keywords Vibroarthrography · Cartilage degeneration · Osteoarthritis · Chondromalacia · Non-invasive diagnosis
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1 Introduction

Osteoarthritis (OA) is a clinical syndrome characterized
by the progressive degeneration of articular cartilage and
potentially involving the entire joint, including the syn-
ovium and underlying bone. It is among the most com-
mon causes of pain and disability in the middle-aged and
elderly demographic and the leading cause of impairments
in activities of daily life [8, 21]. Although joint biology
and the pathogenetic mechanisms that lead to OA are not
sufficiently understood, evidence suggests that age-related
structural alteration in articular cartilage, as well as abnor-
mal joint anatomy and pathological reaction patterns of
chondrocytes to injury, contributes to the degeneration of
articular cartilage and subsequent joint reaction [20, 48].

1.1 Early detection of OA

The detection of cartilage defects at an early stage remains
an area of interest: X-ray imaging of the knee joint only
provides an approximation of the articular cartilage as soft
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tissue is not depicted, and visible joint narrowing and
osteophytes typically manifest in the later stages of OA.
Although knee arthroscopy is the current gold standard
method for detection of degenerative changes in articular
cartilage, its use for OA diagnosis has been abandoned
due to its invasive nature and inefficacy as a therapeu-
tic tool [7, 22]. Recent studies have shown that magnetic
resonance imaging (MRI), although a commonly used diag-
nostic tool for identification of cartilage damage, provides
moderate sensitivity with high specificity [32]. Moreover,
these methods are unable to characterize the functionality of
articular cartilage, which could be detected during dynamic
knee movements, where roughness, softening, degeneration,
or the state of lubrication can be assessed [17, 27, 38].
Table 1 provides an overview of the advantages and dis-
advantages of different diagnostic methods used for artic-
ular cartilage degeneration detection [18, 36, 42, 57].
A non-invasive routine diagnostic method for early detec-
tion of cartilage damage is crucially important for early
optimizing treatment, clinical management, and delaying
the progression of joint degeneration.

1.2 Vibroarthrography

Vibroarthrography (VAG) is emerging as a candidate for
non-invasive, cost-efficient, and dynamic detection of knee
joint disorders.

It is expected that pathological conditions in the knee
joint, such as the degeneration of articular cartilage, will
correspond to variations in VAG signals, these being the
vibrations or acoustic signals emitted from the knee joint
during active movement [24, 26, 31, 44]. Current research
has demonstrated the potential of VAG as a method for
distinguishing between normal and pathological knees with
progressive degeneration of articular cartilage. Vibrations
generated in the joint during active movement of the knee
can offer insight into the articular cartilage and its state of

roughness, degeneration, or lubrication [52]. An elaborate
and comprehensive introduction to the technology can be
found in [62].

The idea of diagnosing joint pathologies through the
evaluation of acoustic joint emissions dates back to 1885
when Heuter described the localisation of loose bodies in
the knee joint by use of a stethoscope [9]. Similar stetho-
scope evaluations of the joint pathologies followed (Blod-
gett in 1902 [5]; Bircher in 1913 [4]; Walters in 1929 [58]).
In the following years, doctors transitioned from evaluating
pure sound intensity to analyzing sound frequency, wave-
length, and quality by use of microphones, thereby eliminat-
ing subjective interpretation (Erb in 1933 [15]; Fischer and
Johnson in 1961 [16]).

During the 1980s to 1990s, the use of vibration sen-
sors became prevalent and sophisticated signal analysis was
now possible. During this time, several acoustic phenom-
ena linked to physiological biomechanical motion as well as
pathological joint degeneration were discovered. Moussavi
et al. found that signals obtained from symptomatic knees
exhibit an overall higher energy [33]. Observation of the
frequency domain also revealed distinctions in the activity
range, where normal signals generally expressed character-
istics between 0–100 Hz. This range was considerably lower
than that of pathological signals which extended beyond
200 Hz [33]. This was also supported by the findings by
McCoy et al., who found signals associated with degener-
ation of articular cartilage to be “bizarre” and “irregular,”
predominantly in the range of 300–600 Hz [31].

Active knee extension and flexion has been shown to pro-
duce certain acoustic characteristics, including the patellar
click [31]. This is an isolated, transient signal found to be
maximal directly over the patella. McCoy et al. observed
that the incidence of this click was related to the cycle
speed of the knee. Faster cycles were shown to produce an
increased amplitude and occurrence of the patellar clicks.
The angle at which these clicks occurred ranged from 19

Table 1 Qualitative comparison of different clinical diagnosis methods

CT MRI Ultrasound Arthroscopy VAG

Operating costs Low Very high Very low Medium Very low

Applicability Limited Limited Broad Medium Broad

Investment costs Medium High Low Low Very low

Inter-observer variability Low Medium Very high High Low

Duration of examination 2 min 30 min 10 min 60 min 5–10 min

Invasivity Ionizing radiation None None Invasive, operative risk None

Documentation capability Good Good Very poor Good Good

Output data Image Image Image Image Sound

Sensitivity to artifacts High, i.a. metal High, i.a. metal Very high, manifold Almost no artifacts High

Measurement condition Static Static Static Static Dynamic
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to 55º, approximately corresponding to the position at which
the iliotibial tract crosses the lateral femoral condyle. Spec-
ulation remains as to the origin of the acoustic signal,
although the most probable cause is the changing patellar
orientation and its area of contact with adjacent facets [31].
These clicks manifested as sharp bursts in the time domain
as well as wide-band activity in the frequency domain [33].
Their use as a distinguishing feature in knee injury diag-
noses is also uncertain due to the prevalence of these fea-
tures in normal joints [64]. Another acoustic characteristic is
that of physiological patellofemoral crepitus (PPC), a man-
ifestation of patellar slip-stick friction produced when the
extension-flexion cycle speed of the knee joint is less than
5º per second [3, 23]. PPC and its quality, amplitude, and
distribution in the movement cycle can be useful indicators
for cartilage integrity, where increased cartilage deterio-
ration is associated with higher amplitudes and greater
incidence of the crepitus signal [23, 31]. Schindler et al. also
observed a signal associated with the synovial plicae (see
Table 2), a fold in the synovial lining of the knee joint cap-
sule which is often found in the knee joint but is mostly
asymptomatic [49]. It may produce acoustic characteristics
during impingement on the femoral condyles throughout
the extension-flexion cycles [31]. In patients with menis-
cal injuries, McCoy et al. also identified the meniscal
signals [31], which were characterized by a large displace-
ment, being largest on the affected side and appearing at
approximately the same angle in each extension-flexion
cycle. Table 2 shows a summary of acoustic characteris-
tics of the knee joint mentioned above in the literature
review.

In the 2000s, several advanced methods of signal analy-
sis were proposed with encouraging results: Krishnan et al.
used adaptive time-frequency analysis to screen for knee
cartilage pathologies [26] and Umapathy et al. described
the use of local discriminant bases to classify their test
subjects [55]. Further signal analysis methods include prob-
ability density functions using Parzen windows [46], radial
basis functions [44] and power spectral analysis (Rangayyan
et al., 2013 [43]), and high frequency acoustic emissions
(Prior, Mascari [41]), as well as bivariate feature distribution
estimation, maximal posterior probability decision (Wu et
al., 2013 [61]), and the use of entropy or envelope amplitude

measures [63]. Various techniques have been developed for
processing features extracted from VAG signals in order to
characterize normal and abnormal knees. These techniques
include linear prediction [33, 54], adaptive muscle contrac-
tion interference cancelation [65], adaptive time-frequency
analysis [26], wavelet decomposition [55], and statistical
parameters [44, 45]. Using these signal analysis techniques,
the authors achieved impressive results in the distinction of
normal and abnormal joints with classification accuracies
ranging from 77.5% [26] and 78.7% [55] to 91.4% [24], and
areas under the curve (AUCs) of receiver operating charac-
teristics in the ranges of 0.82 [44], 0.91 [61], and 0.92 [43,
45] to 0.96 and even 1.0 [43].

Building on the promising results reported in the prior
art, the purpose of this work was to develop a measurement
system and procedure that are both highly sensitive and suit-
able to the clinical environment. The intention was to verify
and improve upon the classification accuracy of features
obtained from healthy knee joints and joints affected by
chondromalacia and osteoarthrosis by analyzing multiple
sensor signals that were gained from a larger subject test
group. We further chose to focus on earlier stages of car-
tilage degeneration by only including patients presenting
MRI scans of their knee joints, whose beginning patholog-
ical joint lesions may not have been visible in X-ray, as
to test the efficiency of VAG as a screening tool for those
patients who may still benefit from treatment to slow down
the cartilage degeneration.

This work presents a classification approach that uses
linear support vector machines together with simple yet
normalized and therefore amplitude-robust features that are
based on relative high-frequency components.

2Methods

For detection of osteoarthritis, we developed a setup of
acoustic sensors (see Section 2.1). After semi-automatic
segmentation, we calculated simple and robust feature
vectors (see Section 2.2) which we assessed in their ability
to distinguish between healthy and non-healthy knees. With
the feature vectors, we performed a classification study (see
Section 2.3) using support vector machines.

Table 2 Acoustic
characteristics of the knee joint Name Source

Patellofemoral crepitus Patella

Patellar click Patella, medial, and lateral femoral condyle (maximum over the patella)

Lateral band signal Lateral femoral condyle

Meniscal signal Patella, medial, and lateral femoral condyle (maximum on the affected side)

Synovial plica signal Medial and lateral femoral condyle
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2.1 Materials

To obtain a clinical database of vibroarthrography signals,
the measurement setup was installed to study the recruited
cohort of patients and healthy volunteers.

2.1.1 Measurement system

The measurement system was developed to acquire mechan-
ical vibrations emitted from the human knee joint, as well as
to track the relative joint angle during extension and flexion
movement. Two miniature accelerometers and one piezo-
electric disk were attached to each knee joint by using two
mounting techniques: (1) direct adhesive mounting where
sensors were directly fixed to the surface of the skin using
medical glue as in Figs. 1b and (2) mounting via elec-
trocardiography (ECG) pads where sensors were mounted
to the top side of a custom-built adapter, whereas the
bottom side of the adapter contains a snap button that

connects to common ECG pads as in Fig. 1c. This mounting
technique proved to be more convenient in clinical applica-
tion, providing easier and faster sensor mounting, as well as
higher sensor stability during the measurement.

The technical details of the two sensor types are given
in Table 3. The sensors were attached to the skin over
the patella, the medial tibial plateau, and the lateral tibial
plateau (see Fig. 1b, c). These specific anatomical locations
offer an optimal contact area, which is the closest to
the bone surface, minimizing the influence of skin and
subchondral soft tissue on the propagating acoustic signal.
In order to stabilize the range of motion of the knee joint
during measurements, various sizes of knee orthoses were
developed to account for inter-individual variations in leg
size. Each of these orthosis prototypes incorporates an angle
potentiometer that is aligned with the axis of rotation of
the orthosis and located on the lateral side of the orthosis.
The VAG signals and the relative knee angular signal are
simultaneously acquired at 16 kHz sampling frequency and

Fig. 1 a Schematic diagram of
the VAG measurement system.
Channels (1) to (3) are used to
record the VAG knee signals,
while channel (4) records the
corresponding angular signal. b,
c Vibration sensors are attached
to the skin of a volunteer
wearing the developed knee
orthosis: two accelerometers
(channels (1) and (2)) are placed
over the knee patella and over
the medial tibial condyle, a
piezoelectric disk (channel (3))
over the lateral tibial condyle. A
potentiometer is located at the
center of the orthosis rotation to
track the angle of the active
movement (channel (4))

(a)

(b) (c)
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Table 3 Technical details of hardware components used for the
measurement system

Type Main specification

Accelerometer1 Frequency range 1–8000 Hz (± 5%), sensitivity
10.09 mV/(m/s2), measurement range 50 m/s2,
resonant frequency 38,300 Hz, constant current
excitation 2–20 mA.

Piezoelectric disk2 Resonant frequency 4400 Hz, impedance 300�.

Potentiometer3 Resistance 10k�, linearity ± 5%, tolerance 3%,
mechanical angle 320 ± 5º.

Data acquisition4 Four single-ended simultaneous channels with
24-bit resolution, support for IEPE inputs with
current source 4 mA, high-pass filter 0.5 Hz

1Model 352A24, PCB Piezotronics, Inc., USA
2Model EPZ-27MS44F, Elektrotechnik Karl-Heinz Mauz GmbH,
Germany
3Model SW22E-10K, ETI Systems, Inc., USA
4Model DT9837, Data Translation, Inc., USA

24 bits/sample via a four-channel data acquisition unit.
The high sampling frequency was chosen in line with the
frequency range of the accelerometer, as the upper limit
of the actual VAG signals was not known at the beginning
of the study. The recordings of the four channels were
processed using a MATLAB-based signal acquisition tool.

2.1.2 Measurement protocol

The measurement protocol comprises a calibration phase
and an active movement phase. During the calibration
phase, the leg of the volunteer rests at an angle of 90º in the
knee joint for 3–5 s, then the leg is extended towards the 0º
knee angle and held at the position of the greatest/maximal
extension the patient is able to reach for 3–5 s. During the
subsequent active movement phase, the volunteer performs
15 repeated leg extension-flexion cycles with pauses of
approximately 3–5 s between cycles. One cycle consists of
extending the leg from the 90º knee angle to fully extended
position which is then followed by flexion back to the
neutral position of 90º joint angle (see Fig. 1a). Volunteers
were asked to complete each extension-flexion cycle in 3–
5 s. For all volunteers, two sets of measurements for each
knee were recorded in a measurement session.

2.1.3 Clinical database

The clinical database used in the present work consists of
data from 30 healthy subjects and 39 patients with articular
cartilage damage at different stages of the disease; see
Table 4.

All patients selected for the study presented MRI scans
no more than 12 months old. The MRI findings, which

Table 4 Clinical database

Healthy Patients

Female 14 24

Male 16 15

Age 26.9 ± 4.18 55.2 ± 13.5

BMI1 22.6 ± 2.80 27.4 ± 6.34

OKS2 47.7 ± 1.14 27.5 ± 11.32

1Average body mass index, where available
2Average Oxford Knee Score, where available

were selected as the reference diagnostic for categorizing
the knee conditions, were subsequently assessed by
a radiologist, based on the Outerbridge classification
system [34, 35] and additional parameters such as location
and size of the findings as well as other pathological
findings within the joint were determined. Table 5
summarizes the standardized patients’ diagnoses and Fig. 2
reveals how scores from the patient questionnaire correlate
with the diagnoses. Additional metadata including their age,
gender, and body mass index (BMI) was also obtained.
Furthermore, the influence of other demographic and
clinical factors, such as occupation, sport activities, and
medical history associated with pathological conditions,
was investigated. The Oxford Knee Score (OKS), a
standardized joint-specific patient questionnaire consisting
of 12 questions covering function and pain associated with
the knee, was collected for all volunteers [13, 14]. The
healthy volunteers were characterized by being below the
age of 36 and having no knee-related symptoms such as pain
or instability (OKS > 45), no history of major knee joint
trauma or pathologies such as Osgood-Schlatter disease, and
no previous invasive clinical treatment of the knee joint. In
doing so, the prevalence of a healthy joint condition could
be assumed and unnecessary imaging could be avoided.

An evaluation of the MRI-based Outerbridge classifi-
cation against the outcome of the patient questionnaire in
Fig. 3 clearly revealed that patients were not always aware
of their chondromalacia. In our study, 36% of the OA stage
4 or manifest osteoarthrosis cases actually classified them-
selves as having an OKS of ≥ 30 out of 48. According to

Table 5 Diagnoses of knee diseases

Diagnosis Number of cases (knees)

Chondromalacia grade II 3

Chondromalacia grade III 12

Chondromalacia grade IV 16

Manifest OA 9
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Fig. 2 Evaluation of the MRI-based Outerbridge classification against
age. Each sample represents one knee

[60, Chapt. 25], such scores may indicate “mild to moderate
arthritis.” Twelve percent even had an OKS of 40 and above,
which may indicate “satisfactory joint function.” In some
patients, the chondromalacia was not associated with a pos-
itive OKS result despite having clinical symptoms that led
to the initial orthopedic evaluation and imaging in the first
place. The mismatches showcase that many OA patients
experience no clear subjective symptoms or impairments,
revealing the need for patient screening with easy-to-use and
inexpensive technology.

2.2 Signal processing

From the VAG signals, we extracted extension and flexion
cycles using semi-automatic segmentation, which were used
to calculate knee-specific feature vectors for classification.

2.2.1 Segmentation

As described in the previous sections, each VAG signal
consists of a calibration phase followed by 15 leg extension-
flexion cycles. The segmentation of the extension-flexion
cycles was conducted using the relative angular signal

Fig. 3 Evaluation of the MRI-based Outerbridge classification against
the outcome of the patient questionnaire (Oxford Knee Score). Each
sample represents one knee

acquired from the embedded angle potentiometer. This
relative angular signal was negatively proportional to the
knee angle. Therefore, peaks in the signal correspond to full
knee extension. The analog signal was low-pass filtered (RC
filter, cut-off frequency 4.5 Hz) to suppress signals from
small-scale muscular movement or tremor and to ensure
that only large-scale extension and flexion movements are
evaluated.

A local maxima search was executed to locate all
possible maxima tmax,i . Then, a local minima search
directly to the left of a certain maximum tmax,i defined
the start ts,i , and another local minima search directly to
its right defined the end te,i of an extension-flexion cycle,
where i is the cycle index. These points determined three
kinds of segments of each cycle: the extension segments
[ts,i , . . . , texte,i], the flexion segments [tf les,i , . . . , te,i], and
the cycle segments [ts,i , . . . , te,i], which are illustrated in
Fig. 4. texte,i and tf les,i were initially set to tmax,i . After
this basic annotation, the extension and flexion segments
were then shortened to exclude the resting phase around
tmax,i with angular velocity below an experimentally trained
threshold, resulting in texte,i ≤ tmax,i ≤ tf les,i . After the
automatic segmentation steps, unsuccessful segmentations
were corrected manually in a graphical user interface and
the VAG knee signals acquired from the three sensors were
segmented according to the indices ts,i , texte,i for extension
and tf les,i , te,i for flexion phases as shown in Fig. 4.

2.2.2 Censoring

Artifacts originating from incidents such as mechanical pull
on the sensor cable during measurement were identified
using two main criteria. The cycles were discarded if they
contained values at the saturation limit of the A/D converter,
while those of artifact-free VAG signals were observed to be
substantially below this limit. The second criterion entailed
a comparison of the variances; a cycle was excluded if its
variance exceed twice that of the overall segment. Cycles
shorter than a second were also excluded as these did not
adhere to the specified measurement protocol.

2.2.3 Spectrum normalization and feature extraction

In this work, we studied either exclusively the extension
cycles or the flexion cycles of the VAG measurements. To
represent the characteristics of the measurements, the power
spectra of all extension or flexion cycles in a measurement
were calculated, normalized, and then averaged. To
facilitate averaging, power spectra of 3.9 Hz/bin resolution
were estimated using Welch’s method [59] using a Hann
window with a segment length of 4096 samples and 50
percent overlap. The estimated power spectra of each
cycle Ŝxx[f ]i were first normalized so that their power
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Fig. 4 VAG raw signal of the patella sensor (top; normalized) and
angular raw signal (bottom; normalized, negatively proportional to the
knee angle) of a measurement, which includes the calibration phase
followed by an active movement phase. The vertical lines represent

extension and flexion cycles determined by local maxima and minima
of the angular signal. The segmentation procedure for the ith cycle
with i = 3 (gray shadow) is here highlighted

between 10 and 8000 Hz was one and then averaged. This
normalization was found to be essential, pushing our results
from an area under the ROC curve (AUC) of 0.66 for
training and testing on the full population (full pop.) and an
AUC of 0.57 for fivefold cross-validation (fivefold CV) to
AUCs of 0.89 and 0.85, respectively (for the latter results,
see Fig. 11).

Similar to [28], the partial sum of the power spectrum
components between a lower frequency limit l and an upper
limit u was then defined as

Rl,u =
u∑

f =l

Ŝxx,M [f ], (1)

where f runs over the bins contributing to the power
contained in the signal between l and u.

On top of providing an amplitude-independent feature,
normalization on cycle level ensures that no cycle can
contribute disproportionally to the spectrum of the measure-
ment, which confines the impact of strong signal artifacts.

The VAG signals are caused by the movement of the
leg, and the velocity of that movement may correlate
strongly with the pathological condition of the knee. This
led to the suspicion that VAG frequency characteristics
were also influenced by the rotational speed of the leg
rather than the pathological condition alone. We therefore
explored the possibility of classification based on the
movement duration, i.e., the duration of the leg movement
between flexion and extension or extension and flexion. We
considered the movement duration to be a robust substitute

for computing the average absolute angular velocity, which
is susceptible to noise as a temporal derivative signal. The
movement durations of the extension or flexion cycles in a
measurement were averaged to form the mean movement
duration feature Dc.

2.2.4 Knee-specific feature vectors for classification

The combination of features at the position of a sensor
was structured as a feature vector and stored for each
measurement. Three sensors were present on the knees
during the measurements; see Fig. 1a. When information
from multiple sensors was taken into consideration for
classification, their feature vectors were concatenated to
form a vector of higher dimension.

Then, feature vectors from multiple measurements of
the same knee were averaged. In line with the protocol,
two measurements were recorded for each knee—except
for five cases where only one measurement was acquired
and three cases where three measurements were recorded.
The resulting feature vector that was used for classification
purposes was hence knee-specific; i.e., healthy volunteers
and patients were represented by up to two cases of
diagnosed knees each in the classification study. Case data
was collected for both knees of the healthy volunteers
except for one (30 healthy volunteers, 59 knees in the
classification study). Only for one patient, the pathological
condition of both knees was known (39 patients, 40 knees
in the study).
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2.3 Classification

The knee-specific feature vectors were used for classifi-
cation experiments with a linear support vector machine
(SVM) [12, 56], a machine learning algorithm.

2.3.1 Support vector machine

The aim of the SVM approach, which is a supervised
learning technique based on the theory of structural risk
minimization, is to discriminate d-dimensional data xk ∈
R

d into two classes {−1, 1} using a hyperplane decision
surface wT x + b = 0. In the linearly separable case, the
hyperplane is optimized such that the margin 2

‖w‖ between

the data points wT x+ + b = 1 and wT x− + b = −1
(support vectors) and the hyperplane is maximized, which
is achieved by maximizing the following cost function ∀k:

max
w,b

2

‖w‖ s.t.

{
wT xk + b ≥ 1 if yk = 1
wT xk + b ≤ −1 if yk = −1

, (2)

where yk ∈ {−1, 1} assigns classes to the samples k in the
training data xk .

The advantages of SVMs are their high performances
in practical applications, effectiveness in high dimensional
data, robustness and flexibility in dealing with noisy
features [6, 19, 50]. For linear SVMs, in case the data is
not linearly separable, Eq. 2 has no solution. In this work,
we therefore utilized the standard linear SVM classifier (C-
support vector classification) as implemented in the scikit-
learn modules for Python [6, 10, 12, 37], which solves a
soft-margin variant of the classification problem that allows
for mis-classifications and margin violations to happen.
To achieve this, slack variables ζk and a regularization
parameter C are introduced. In a dual problem of Eq. 2,

min
w,b

‖w‖ s.t. yk

(
wT xk + b

)
≥ 1∀k, (3)

ζk is introduced to allow for mis-classifications and margin
violations to happen, and an additional cost term is
introduced to penalize these, which is weighted with C:

min
w,b,ζk

‖w‖ + C
∑

k

ζk s.t. yk

(
wT xk + b

)
≥ 1 − ζk∀k. (4)

As result of a training, the SVM produces a hyperplane
decision surface wT x + b = 0, which is then used
to compute scores for test data samples that predict
class membership. With a classifier that provides such
class membership scores, it is possible to produce very
sensitive or very specific classifications, depending on the
threshold that decides on the class membership. One can
naturally produce ideal true positive rates (TPRs) of 1 (ideal
sensitivity) when this threshold is set to the lowest score in
the dataset, and all test samples are classified positive. A
false positive rate (FPR) of 0 (ideal specificity) is achieved

for a threshold at the maximum score in the dataset when
all of the samples are classified negative. To produce curves
of the receiver operating characteristics (ROC) such as
Figs. 11 or 10, the discrimination threshold was varied
across all possible thresholds, illustrating the performance
of the classifier and the bandwidth of application scenarios.
In this process, single samples may cause a step in the curve
in either TPR or FPR.

Before processing the datasets, the knee-specific feature
vectors were scaled to prevent features of great range
to dominate those with smaller range in the SVM
optimization problem and to avoid related numerical
difficulties [19, Sect. 2.2]. In particular, the components in
the feature vectors were centered to zero mean across the
dataset, and each component was then standardized to have
unit variance across the samples in the dataset.

An exhaustive grid-search procedure was performed in
order to identify the optimal regularization parameter C ∈
{10−3, 10−2, · · · , 103} [19, Sect. 3.2], as no consensus
exists on an analytical choice [11, Sect. 2]. Parameter C

controls the trade-off between smoothness of the decision
boundary and classification error on the training set, i.e.,
between false positives and false negatives. According
to [11, 51], C can, e.g., be chosen in the range of the SVM
output values, which are ∈ {0, 1} in the present training
and test dataset, justifying our initial search in {10−3,

10−2.5, · · · , 103}. Optimization of C, however, led to ROCs
with almost exactly the same areas under the curve as we
obtained with C = 1. For this reason, C was set to 1 for the
results we present in this work.

We weighted the regularization parameter to balance the
classes in the training of the SVM as our dataset was biased
towards healthy knees (59, against 40 patient knees). A
heuristic balancing approach from the scikit-learn module
was used for this purpose that weights C differently for each
class c with a weight of wc = average class size

class size , as proposed
in [25]. Weights were computed from the class members as
presented with each training set in the cross-validation.

By using the kernel trick, the concept of SVMs can be
extended to perform non-linear classifications. In case
the data xk is not linearly separable in the input space,
non-linear mapping functions ϕ(xk) can be used to
transform it into a higher dimensional space where such
separation is possible. Kernels are the inner product of
the underlying transformation k(xk, xl) = 〈ϕ(xk), ϕ(xl)〉,
which represents the data in the dual quadratic programming
problem. However, SVMs with non-linear transformations
are prone to over-fitting [2, 53]. To illustrate this behavior
on the present data (see Fig. 12), we used the scikit-
learn implementions of radial basis function kernels
(k(xk, xl) = exp(−γ ‖xk − xl‖2)) and polynomial kernels
(k(xk, xl) = (γ 〈ϕ(xk), ϕ(xl)〉 + r)d ). Parameters {γ ∈
{10−5, 10−4, · · · , 101}} and {d ∈{2, 3, 4}, r ∈{10−2, 10−1,
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100}} were optimized in a grid-search procedure. The
regularization parameter C was set to 1.

The two non-linear SVMs were indeed found to facilitate
an over-fitting on the present data (see Fig. 12). As they
had only marginally better performance than linear SVMs
in full population training, the focus of this study was
put on the use of linear SVMs. In other words, the main
underlying pathology-related phenomenon was assumed to
be sufficiently linearly separable in the features space.

2.3.2 Features evaluation with SVMs

To assess the ability of different features to discriminate
between patient knees and healthy knees, we plotted the
histograms for the respective groups. To understand how
well they would perform in a threshold-based classification
scenario, we conducted experiments by fitting SVM
decision hyperplanes on our training dataset, which were
initially both trained and tested on the full population (full
pop.); see Figs. 5 and 8.

Full training and testing has two advantages: it is an
exhaustive experiment that does not rely on the choice of
a random cross-validation subset, and it further produces
scores that are comparable across the tested samples, which
is important when making ROC curves. However, it is not
suitable to estimate how well the machine learning would
perform on new data; i.e., it is not suitable to estimate
how well the performance figures can be generalized.
To access this capability for the proposed SVM, cross-
validation was used. A natural choice would be leave-
one-out cross-validation. However, if only one sample is
excluded from each training, the models that are trained to
make predictions are very similar, and the outcome of the

Fig. 5 Histograms of frequency feature R25,8000 for sensors from the
patella, medial tibial condyle (t.c.), and lateral tibial condyle (t.c.).
The SVM is trained and tested on the full population, and the AUC
is calculated (in brackets: AUC of averaged ROC curve of a fivefold
cross-validation). Each sample represents one knee

cross-validation experiment is then not reliable (if multiple
such experiments were to be conducted, their outcomes
would have great variance).

Therefore, we decided to have less overlap between the
training datasets and split the dataset into only five random
test subsets of approximately the same size (fivefold cross-
validation), and we averaged the ROC curves of these five
splits; see Figs. 10 and 11. Finally, to find the hyperplane
that is best based on our knowledge to date, we then trained
the SVM on the full population.

3 Results

The characteristics of the frequency feature of Eq. 1 were
assessed for a lower limit of 25 Hz and an upper limit
of 8000 Hz in Fig. 6, which shows the distribution of
the summed and averaged relative high-frequency com-
ponents of all three sensors per subject, while Fig. 5
shows the individual components for all sensor signals.
The distribution clearly shows a difference in distribu-
tion of healthy subjects and patients during flexion, while
the difference in distribution is less pronounced during
extension. Though the exact cause remains speculative,

(a) Extension

(b) Flexion

Fig. 6 Histograms of the sum of the frequency features R25,8000
(patella) + R25,8000(medial tibial condyle) + R25,8000(lateral tibial
condyle). Each sample represents one knee. a Extension. b Flexion
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we assume that this is due to the greater muscle tension
necessary to raise the leg to full extension compared to
slowly dropping it to the neutral position, which likely pro-
duces strong mechanical excitations of the knee joint during
the extension phase, rubbing cartilage against tibia and
femur.

Figure 5 provides an overview of the R25,8000 frequency
feature for each individual sensor. Again, a difference in
distribution between healthy volunteers and patients can be
seen during flexion cycles for the patella and medial tibial
plateau sensors, with patients tending to present higher rela-
tive frequency components. The lateral tibial plateau sensor
shows a greater overlap of healthy subjects and patients, as
do all three sensors during the extension cycle.

Figure 7 shows the distribution of the relative high
frequency components for all subjects per sensor during
flexion. As can be seen for the patella and medial tibial
plateau sensor, patients’ measurements are concentrated
close to 0 for the R75,8000 components and also have less
contribution to the R25,75 component. This indicates good
linear separability. For the lateral tibial plateau, there is no
such clear distinction.

(a) Patella

(b) Medial tibial condyle

(c) Lateral tibial condyle

Fig. 7 Scatter plot of the R75,8000 feature against the R25,75 feature
for flexion. Each plot represents a sensor; each sample represents one
knee. a Patella. b Medial tibial condyle. c Lateral tibial condyle

Optimal frequency boundaries were derived from a com-
prehensive parameter study. In order to quantify the ability
of the frequency features to classify into patient knees and
non-patients knees, the SVM model was trained and tested
on the full population. The optimal frequency boundary
of c = 25 Hz for Rc,8000 was obtained from training
a three-dimensional linear SVM on the Rc,8000 features
of the three sensors. Figure 8b reveals that for features
derived from the flexion phase, a lower limit of 25 Hz
results in the best area under the ROC curve (AUC) of 0.85
for Rc,8000 when c ∈ {25, 50, . . . , 100, 250, . . . , 1000}.
Again, a comparison with Fig. 8a reveals a superior
performance of features from the flexion phase. The
frequency boundaries for combinations of two features were
obtained from training a six-dimensional linear SVM, where
two features of three sensors were combined to identify
the best performing parameter combination, in this case
with an AUC of 0.89 for Ra,b and Rb,8000 with a =
25 and b = 75, where optimization was performed on
a, b ∈ {25, 50, . . . , 100, 250, . . . , 1000}. Figure 9 shows
the resulting estimated probabilites for each knee when the
SVM model is trained and tested on the full population with
optimal parameters.

Based on the features shown in Fig. 7, a six-dimensional
linear SVM was then trained and cross-validated using
fivefold cross-validation; see Fig. 10 where an average AUC
of 0.85 was obtained for the random split shown. In Fig. 11,
ROC curves are further shown for the optimal features of
the three-dimensional case and the six-dimensional case,
first when trained on the full population and second when
trained using fivefold cross-validation. It can be seen that
the SVM that operates on R25,75 and R75,8000 performs
slightly better than the SVM that makes use of R25,8000. The
similar performance in the fivefold cross-validation and in
the training on the full population suggests that results may
be generalized.

Based on the knowledge to date, i.e., based on the
two trainings on the full population shown in Fig. 11, the
parameters in Table 6 were found for the optimal hyperplane
decision surface

wT (x − mT )diag(s)−1 + I = 0, (5)

where mT and s are parameters that represent the scaling of
the data before the SVM classification. Values are provided
for both the three-dimensional case (R25,8000) and the six-
dimensional case (R25,75, R75,8000).

Given the high sampling frequency used in this work
(VAG signals are usually recorded in the range of below
1000 Hz [1]), it may be assumed that a significant fraction
of the acquired high-frequency components are dominated
by noise, i.e., signals that do not originate from the
physiological or pathophysiological physics of the knee. To
assess this assumption, the study of Fig. 8 was repeated
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Fig. 8 Extension and flexion:
area under the ROC curve for
different frequency boundaries a

and b in linear SVM setups with
features Ra,b and Rb,8000—or
with feature Rc,8000 alone. In the
SVM training, the regularization
parameter was set to C = 1. The
SVM was trained and tested on
the full population. a Extension.
b Flexion

(a) Extension (b) Flexion

with the upper limit of the frequency ranges set to
1250 Hz instead of 8000 Hz and with the frequency features
normalized with respect to the 10–1250 Hz power spectrum
instead of 10–8000 Hz. It was revealed that this changed the
characteristics of Fig. 8a, b only marginally (deviations of
the areas under the ROC curves were on average 0.01 and up
to 0.05, and the characteristic patterns were maintained—
especially the situation and magnitude of the maxima
between 25 and 10 Hz), revealing (a) that high-frequency
components beyond 1250 Hz were indeed dominated by
noise and (b) that the proposed methods are not susceptible
to such noise. For clinical applications, a lower sampling
frequency would further reduce the price of a measurement
device.

Classification with the two non-linear SVMs was found
to lead to an over-fitting on the present data: in the results
of Fig. 12, similar or slightly improved areas under the
curve with respect to Fig. 11 were achieved for training on
the full population (full pop.) (0.88 and 0.94 over 0.89),

Fig. 9 Histogram of the estimated probabilities for the testing data of
the SVM with features R25,75 and R75,8000 flexion. The SVM is trained
and tested on the full population and probabilities are assigned to the
samples using Platt scaling as implemented in LIBSVM [10, 29, 40].
Each sample represents one knee

but worse results for fivefold cross-validation (fivefold
CV) (0.83 and 0.83 compared to 0.85) revealed an over-
fitting on the training population compared to the linear
SVM.

When challenging the validity of the results in this
work, one may naturally suspect the average speed of
knee movement to be the root cause of differences in the
frequency-based features we present. Lower speeds may
mean lower frequencies, and patients may have moved their
knees faster or slower than healthy volunteers. However,
with the histograms of Fig. 13, it is apparent that the
average duration of extending or flexing the leg Dc, i.e., the
reciprocal of the average speed of movement, is distributed
very similarly for both groups, with the exception of one
outlier. This could further be underlined in a classification
based on feature Dc alone: classification with linear SVMs

Fig. 10 Receiver operating characteristics (ROC) curves of the
SVM with features R25,75 and R75,8000 for fivefold cross-validation
(flexion). The dashed curve represents the interpolated average of the
five ROC curves obtained in the cross-validation
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Fig. 11 Receiver operating characteristics (ROC) curves: SVM with
linear (LIN) kernels with features R25,75 and R75,8000, as well as
R25,8000 for flexion. ROC curves are shown for training and testing on
the full population (full pop.), as well as for fivefold cross-validation
(5-fold CV), where the curves represent the average of the five ROC
curves obtained

was found to be only slightly better than guessing (AUCs
for Dc alone were 0.60 for extension, 0.58 for flexion),
revealing that such bias does not exist or influence the
results in our study significantly.

4 Discussion

Figure 2 shows the age of the subject versus the Outerbridge
classification. As chondromalacia typically affects middle-
age to elderly patients, the distribution of patients is skewed
towards older age. Although the participants of the study
were selected with great care and emphasis on achieving
highly comparable groups of healthy volunteers and patients
in order to minimize the likelihood of confounders, the
groups present noticeable differences in variables such
as their average age and BMIs. Age differences between
both groups however are hard to avoid, since the disease
we focused on in this study, the degeneration of articular
cartilage, is linked to higher age. Since chondromalacia
and osteoarthritis mainly affect middle-aged and elderly
patients, volunteers for the healthy group were excluded
if they were above the age of 35 as to minimize the

Fig. 12 SVM with non-linear kernels (RBF: radial basis function,
POLY: polynomial); results for features R25,75 and R75,8000, flexion

likelihood of them presenting cartilage damage which they
were unaware of and which would falsify the measurements
of the control group. Although the presence of cartilage
damage could not be ruled out in the presumably healthy
subjects by MRI due to logistical and financial reasons,
as well as issues of the compliance of study participants,
exclusion criteria for participants (see Section 2.1.3) were
designed to only include those for whom optimal joint
health could be assumed. Further, it could be shown that
there is no linear correlation between the age and the sum of
the features we used in the classification.

It may further be hypothesized that the amount of soft
tissue under the sensors, especially in patients with higher
BMIs, had an influence on the measurements’ frequency
characteristics. However, an assessment of the relation
between the BMI and the sum of the frequency fea-
tures R25,8000(patella) + R25,8000(medial tibial condyle) +
R25,8000(lateral tibial condyle) revealed a correlation of
only 23%. This suggests that no linear dependence exists
and underlines that the choice of relative features and/or the
placement of sensors on areas with good bone contact were
successful measures for minimizing measurement bias from
BMI-related knee characteristics.

A weak point of this study is the prevalence of various
additional knee disorders in the patient group: Many
patients presented ligament injuries or meniscal damage and

Table 6 Parameters of the SVM hyperplane decision surfaces (Eq. 5) for training on the full population. Order of features in the vector dimensions
is patella, medial t.c., and lateral t.c. for R25,8000 (3-D) or for R25,75 and then R75,8000 (6-D)

SVM wT mT I s

3-D wT = (1.10 0.93 − 0.20)T I = 0.10 mT = (0.25 0.32 0.30)T s = (0.21 0.24 0.18)

6-D wT = (0.83 0.67 0.63 0.09 − 0.12 − 0.51)T I = −0.04 mT = (0.08 0.17 0.15 0.18 0.21 0.10)T s = (0.05 0.20 0.14 0.17 0.11 0.11)
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Fig. 13 Study of the mean duration of extending or flexing the leg as
a potential bias: histograms of feature Dc. Each sample represents one
knee

joint pathologies which heavily correlate with chondroma-
lacia and/or osteoarthrosis. Whether the differences in the
observed signals indeed stem from these problems or degen-
eration of cartilage remains an open question. However, the
assumption that an increase in bone-to-bone contact causes
an increase in relative high-frequency components is jus-
tified due to the underlying mechanics. Furthermore, the
assessment of MRI scans by only one radiologist to deter-
mine the ground truth for the signal classification may be
seen as problematic, especially since recent studies sug-
gest moderate sensitivity of the MRI in detection of knee
joint cartilage degeneration, as well as a moderate interrater
reliability in the Outerbridge classification [47]. Further
studies involving patients undergoing knee arthroscopy may
improve results by providing diagnoses and CM/OA grades
that are not restricted by the technical limitations of MRI
and less prone to subjective interpretation.

Nonetheless, the discrepancy between MRI and/or
clinical diagnoses in our patients group and their OKS
suggests that many patients may not be fully aware of the

Fig. 14 Evaluation of the MRI-based Outerbridge classification
against the sum of relative high-frequency components for the flexion
phase. Each sample represents one knee

developing cartilage degeneration, while others experience
great discomfort from comparably minor cartilage lesions.
This proves the need for a cost- and time-efficient objective
diagnostic tool to screen for cartilage degeneration, so
early treatment can be initiated for those patients who
require it.

Figure 14 shows the sum of all frequency features versus
the clinical diagnosis, directly underlining the usefulness
of the proposed features. By using features based on
relative high-frequency components that are little sensitive
to variances in signal gain, the SVM achieved a good linear
separation and classification of healthy subjects and patients
with a specificity of, e.g., 0.8 and a sensitivity of 0.75 when
choosing an appropriate point on the ROC curve. Other
medical diagnostic tools and tests such as MRI perform
similarly well, with comparable values, cf., e.g., [30, 39].
Because of its performance, non-invasiveness and ease-of-
use, we view vibroarthrography as a valid low-cost method
for the detection of cartilage degeneration. A potential
clinical application of the technology would be the quick
objective assessment of knee joint status and screening for
cartilage degeneration while in the examination room in
order to assist the doctor in his decision, whether further
diagnostic measures (i.e., MRI) or treatment are necessary.
VAG may also enable consistent monitoring of the knee
condition which can play a crucial role combined with
conservative treatment and lifestyle adjustments, eventually
leading to better early management of OA.

5 Conclusions

As was shown, simple features based on relative high-
frequency components allow to distinguish between healthy
and non-healthy subjects. Due to the proposed normaliza-
tion, classification improved by an increase in the AUC of
more than 0.20. We think this is rooted in that normalized
features are robust against all signal acquisition or attenu-
ation steps that influence the signal gain, such as fat tissue
and variance in acoustic coupling due to sensor placement.

Machine learning techniques are able to linearly separate
and classify cartilage defects. The sum of relative high
frequency components can directly serve as an indication to
the physician to justify further screening of the knee with
more elaborate and expensive methods.

The presented method achieves a similar automated clas-
sification performance (0.80 sensitivity/0.75 specificity) as
human interpretation of MRI images: McCauley et al. [30]
report 0.86 sensitivity/0.74 specificity in detection of chon-
dromalacia patellae using MRI, respectively. Pihlajamaki et
al. [39] report 0.83 sensitivity/0.84 specificity for MRI for
stage III chondromalacia. In the authors’ opinion, this qual-
ifies vibroarthrography using the presented robust features
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as a valid method for the detection of cartilage degeneration
in the knee joint.

The features used in this paper are heuristical. Future
research should focus on modeling the knee joint mechanics
to derive acoustic features from a realistic model. This
will result in theoretically founded features that incorporate
both temporal and frequency aspects and could improve the
accuracy of vibroarthrography further.

Compliance with Ethical Standards
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Appendix VI

How do different LMA brands compare to face-

mask ventilation in a LMA teaching manikin?

I contributed to the signal processing of the ventilator data.

183



among babies of Indigenous mothers and teenagers in Australia.

Confirmation with a longer time series is needed.

Reference: 1AIHW 2016. Monitoring the health impacts of

mandatory folic acid and iodine fortification. Cat. no. PHE 208.

Canberra: AIHW.

THE EFFECTIVENESS DURING MULTITASKING AND
WITH BACKGROUND NOISE OF NOVEL PULSE
OXIMETER SONIFICATIONS DESIGNED FOR
MONITORING PREMATURE NEONATES

Kelly Hinckfuss1*, Penelope Sanderson1, Robert Loeb2, Birgit

Brecknell1, David Liu1, Helen Liley3

1University of Queensland, the 2University of Arizona,

the 3Mater Mothers Hospital

Background: Previous research indicates that the pulse oxim-

eter auditory display could be improved by adding features that

indicate the general clinical range of neonatal SpO2. We investi-

gated the impact of background noise and a demanding arithme-

tic task on participants’ monitoring accuracy with different pulse

oximetry auditory displays.

Method: We classified SpO2 into five ranges suggested for

premature neonates on oxygen support: Very Low (80–83); Low

(84–89); Target (90–95); High (96–98), Very High (99–100).

Three sonifications were tested: 1) the Beacon84 sonification

played a beacon (intermittent reference tone) before every 8th or

4th pulse tone, depending on severity of target range deviation;

2) the Tremolo37 sonification added a vibrating quality to the

pulse tones (3 or 7 cycles, depending on severity); 3) Control +

Alarms used conventional variable-pitch pulse tones with alarm

limits of 96% and 88%. Eight non-clinicians completed all sonifi-

cation conditions in counterbalanced order. Background hospital

sound (50 to 65 dBA) played continuously. After training, partici-

pants completed thirty 30-second trials while performing arith-

metic tasks, and indicated (a) when SpO2 transitioned into or out

of target range, and (b) the SpO2 range in which each trial

finished.

Results: Accuracies at identifying transitions and SpO2 range

were Beacon84 (76%, 70%), Tremolo37 (83%, 67%), Con-

trol + Alarms (49%, 45%). T-tests revealed significant perfor-

mance differences with each novel sonification versus the

control sonification (p <.01 for all comparisons, Bonferroni cor-

rections applied). There were no differences in arithmetic task

accuracy.

Conclusions: Novel pulse oximeter sonifications improve

monitoring during multitasking compared with conventional

variable-pitch pulse tones plus alarms.

CAN AMBU SELF-INFLATING BAG AND NEOPUFF
INFANT RESUSCITATOR PROVIDE ADEQUATE AND
SAFE MANUAL INFLATIONS FOR INFANTS UP TO
10 KGS WEIGHT?

Mark Tracy1*, Rajesh Maheshwari1, Dharmesh Shah1, Murray

Hinder1

1Westmead Hospital Neonatal ICU

Background: Manual resuscitation devices for infants and

newborns must be able to provide adequate ventilation in a safe

and consistent manner across a wide range of patient size (0.5 to

10kgs) and differing clinical states. There is little comparative data

assessing performance of common infant manual resuscitation

devices such as Neopuff t-piece resuscitator (NTPR) and Ambu

self-inflating bag (SIB) across the manufacturers recommended

operating weight range.

Method: Five experienced clinicians delivered targeted venti-

lation to three lung models differing in compliance, delivery pres-

sures and inflation rates; Pre-term (0.5 mL/cmH2O, 25/5cmH2O,

60 per minute), Term (3 mL/cmH2O, 30/5 cmH2O, 40 per

minute) and Infant (9 mL/cmH2O, 35/5 cmH2O, 30 per minute).

The NTPR was examined with three gas inflow rates (5, 10 and

15LPM).

Results: 3309 inflations were collected and analysed. The

NTPR was unable to reach set peak inflation pressures and

exhibited seriously elevated PEEP with all inflow gas rates

(p < 0.001) in the infant model. The Ambu SIB accurately

delivered targeted pressures in all three models.

Conclusions: The Ambu SIB was able to accurately deliver

targeted pressures across all three models from preterm to infant.

The NTPR infant resuscitator was unable to deliver the targeted

pressures in the infant model developing clinically significant

levels of inadvertent PEEP which may pose risk during infant

resuscitation.

HOW DO DIFFERENT LMA BRANDS COMPARE TO
FACEMASK VENTILATION IN A LMA TEACHING
MANIKIN?

Mark Tracy1*, Archana Priyadarshi1, Krista Lowe1, Dimple

Goel1, Jacqueline Huvanandana2, Murray Hinder1

1Westmead Hospital Neonatal ICU, the 2Dept Engineering and

IT, BMET Institute, Sydney University

Introduction: ILCOR and AAP recommend the use of Laryn-

geal Mask Airway (LMA) with newborn infants (?34wk gestation

or >2Kg weight) requiring resuscitation when face mask ventila-

tion or tracheal intubation is unsuccessful. No data exists to allow

broad LMA device comparison. We compared 7 brands of size1

LMA devices with two brands of facemask using Ambu self-

inflating bag (SIB).

Methods: 40 experienced neonatal staff trained in resuscita-

tion provided 2 min PPV cycles using Ambu SIB with manometer

and PEEP valve (set to 5cmH2O) for each LMA, and facemask

randomly sequenced. All subjects received prior training in LMA

insertion. A specialised LMA newborn training manikin head was

attached to a leak free test lung with compliance of 2 ml/cmH2O.

Subjects were required to provide sufficient pressure to observe

test lung inflation.

Results: 12,415 recorded inflations for 7 brands of LMA and

2 face masks were analysed using ANOVA for repeated measures.

Leak detected was lowest with I-Gel brand; mean 5.7% com-

pared to facemask (triangular 42.7% round 35.7%) and other

LMAs (means ranging from 45.5% to 65.4%) p < 0.0001. PIP

was higher with I-Gel; mean 29cmH20 compared to facemask

(triangular 22.8, round 25.9) and other LMAs (means ranging

from 14.4 to 22.0) p < 0.0001. PEEP was higher with I-Gel; mean
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5.0cmH20 compared to facemask (triangular 3.0, round 3.6) and

other LMAs (means ranging from 0.6 to 2.6) p < 0.0001.

Conclusion: I-Gel LMA performed better than all other LMAs

and facemasks/SIB evaluated in this study.

NEOPUFF T-PIECE RESUSCITATOR: DOES DEVICE
DESIGN AFFECT DELIVERED VENTILATION?

Murray Hinder1*, Pranav Jani2, Archana Priyadarshi1, Alistair

McEwan3, Mark Tracy1

1Westmead Hospital Neonatal ICU, the 2Westmead Hospital,

the 3Dept Engineering and IT, BMET Institute, Sydney University

Background: The T-piece resuscitator (TPR) is in common use

worldwide to deliver positive pressure ventilation during resuscita-

tion of infants <10 kg. Ease of use, ability to provide positive end-

expiratory pressure (PEEP), availability of devices inbuilt into resus-

citaires and cheaper disposable options have increased its popularity

as a first-line device for term infant resuscitation. Research into its

ventilation performance is limited to preterm infant and animal

studies. Efficacy of providing PEEP and the use of TPR during term

infant resuscitation are not established.

Method: A single operator experienced in newborn resuscita-

tion provided positive pressure ventilation in a randomised

sequence to three different Crs models (0.5, 1 and 3 mL/cmH2O)

at three different set PIP (20, 30 and 40 cmH2O). Set PEEP

(5 cmH2O), gas flow rate and inflation rate were the same for

each sequence.

Results: A total of 1087 inflations were analysed. The delivered

mean PEEP was Crs dependent across set PIP range, rising from 4.9

to 8.2 cmH2O. At set PIP 40 cmH2O and Crs 3 mL/cmH2O, the

delivered mean PIP was significantly lower at 35.3 cmH2O.

Conclusions: As Crs increases, the Neopuff TPR can produce

clinically significant levels of auto-PEEP and thus may not be

optimal for the resuscitation of term infants with healthy lungs.

PROGESTERONE THERAPY DURING PREGNANCY
INCREASES MATERNAL BUT NOT FETAL CORTISOL OR
NEUROSTEROID CONCENTRATIONS IN GUINEA PIGS

Julia Shaw1, Hannah Palliser1, Jonathan Hirst1*
1University of Newcastle

Background: Progesterone (PROG) therapy in pregnancy is

used to reduce the risk of preterm labour however the effects

on the steroid profile of the fetus remain unclear. We have pre-

viously found PROG therapy in male preterm guinea pig neo-

nates leads to increased cortisol and reduced myelination.

Hence, we aimed to determine the effects of PROG treatment

on steroid profiles and neurodevelopmental markers in guinea

pig fetuses.

Method: Pregnant guinea pig dams were administered PROG

or vehicle orally (GA29-61) and saliva collected daily. Fetal brains

and plasma were collected at GA62 (preterm) and GA69 (term).

We measured salivary PROG and plasma cortisol by EIA and the

neurosteroid, allopregnanolone (ALLO), by RIA. The myelination

marker, myelin basic protein (MBP) and astrocyte marker, glial

fibrillary acidic protein (GFAP), were quantified by

immunohistochemistry.

Results: PROG treatment significantly increased both mater-

nal salivary PROG and cortisol levels. Plasma ALLO levels were

unchanged. Term female fetuses exhibited raised PROG levels

whilst both cortisol and ALLO levels remained unaffected. Fetal

MBP and GFAP expression were also largely unaffected with only

preterm males displaying reduced GFAP expression in the hippo-

campal CA1.

Conclusions: The placental barrier adequately protected the

fetus from increased maternal cortisol following maternal PROG

administration, however the treatment was not sufficient to raise

ALLO levels.

DOES THE HOSPITAL ENVIRONMENT INFLUENCE TEST
ORDERING PATTERN AND FREQUENCY IN
PREMATURE NEONATES?

Hodge TL*1,2, Widjaja CE1,3, Holberton J3, Fan WQ1,2

1University of Melbourne, Melbourne, Australia
2The Northern Hospital (TNH), Melbourne, Australia
3The Mercy Hospital for Women (MHW), Melbourne, Australia

Email: tayhodge@gmail.com

Background: This study investigates differences in premature

neonate test ordering patterns and frequencies between the spe-

cial care nurseries of two hospitals. Institution specific factors

may influence test ordering. Reducing unnecessary tests can

impact patient burden and hospital expenditure.

Method: Data was retrospectively collected on neonates born

over two-years from TNH (n = 267) and MHW (n = 391). Neo-

nates were aged between 32–36 weeks gestation (GA), weighed

>1500 g at birth (BW), were seizure free and required no respira-

tory support.

Results: TNH’s mean GA (34.69 � 0.99 weeks) and BW

(2303.79 � 442.64 g) were similar to MHW’s (GA 34.67 � 1.24

weeks and BW 2294.50 � 461.32 g): p = 0.80 and p = 0.82 respec-

tively. TNH’s outcomes did not differ significantly from MHW’s

(mean � standard error lengths of stay of 11.6 � 0.41 vs 11.6 �
0.40 respectively, p = 0.44). TNH’s mean (� standard error) test-

ordering rate of 1.11 � 0.06 tests/patient/day was significantly

lower than MHW’s rate of 1.40 � 0.07 tests/patient/day (p < 0.01).

On average TNH ordered significantly fewer tests than MHW on

days 1 and 2 of admission (2.54 � 0.17 vs 3.62 � 0.13, p < 0.01

and 1.63 � 0.11 vs 2.17 � 0.12, p < 0.01 respectively). Patterns of

test types ordered and rates of tests requiring recollection differed

between the hospitals.

Conclusions: Despite having demographically similar cohorts,

significant differences in premature neonate test-ordering prac-

tices exist between TNH and MHW. Further investigation is war-

ranted given potential patient and financial consequences.

GOLDEN HOUR MANAGEMENT PRACTICES FOR
INFANTS <32 WEEKS GESTATIONAL AGE IN CANADA

Kate Hodgson1*, Michael Dunn2, Mary Seshia3, Georg

Schmoelzer4, Vibhuti Shah5

1Royal Women’s Hospital, the 2Sunnybrook Health Sciences

Centre, the 3University of Manitoba, Winnipeg, the 4Royal

Alexandra Hospital, the 5Mount Sinai Hospital, Toronto

44 Journal of Paediatrics and Child Health 53 (Suppl. 2) (2017) 3–117
© 2017 Paediatrics and Child Health Division (Royal Australasian College of Physicians)

Abstracts

185



Appendix VII

A comparison of low-cost body composition as-

sessment using near-infrared interactance in in-

fants aged 0-2 years
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Model development for body composition assessment using near-infrared 

interactance in infants aged 0-2 years 

J Huvanandana1, P Jones1, H Jeffery1,2, A Carberry1,2, S Norris3, A McEwan1 

1 School of Electrical and Information Engineering, University of Sydney, NSW, Australia 

2 Sydney School of Public Health, University of Sydney, NSW, Australia 

3 MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, 

Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa 

Introduction 

Inexpensive and accessible body composition measurement represents an important step in 

addressing global development and nutritional needs. Historically, measures of infant 

malnutrition and growth centred around weight percentiles for a given age, with the widespread 

use of reference charts from the World Health Organization (WHO). This lead to classifications of 

small, appropriate and large for gestational age infants, as demarcated by the 10th and 90th weight 

percentiles. Although weight-for-age offers an understanding of infant growth to a certain extent, 

it is not sensitive to stunted growth and thus does not capture infants who fail to reach linear 

growth potential. Another commonly used anthropometric measure is mid-upper arm 

circumference which often guides assessments of wasting. Though this measure is easily 

obtained, its reliability and the relationship to mortality in this population is not well-

characterised. 

A 2010 UNICEF/WHO report identified undernutrition as a contributing cause in over one third 

of child deaths [1]. The major proportion of these deaths occur within the first year of life, 

particularly in the neonatal period and in low-middle income settings [2]. Malnutrition has also 

shown impacts beyond infancy, with links to diabetes and obesity in later life [3]. Body fat also 

plays a neuroprotective role, with undernutrition in early life potentially affecting later 

neurodevelopmental outcomes [4, 5]. 

There are various approaches to body composition assessment, ranging from dual x-ray 

absorptiometry (DXA) to air-displacement plethysmography (ADP). When it comes to suitability  

Of the non-cadaveric methods, the four-compartment model is considered the criterion method 

for body composition assessment. This multicompartment approach involves the independent 

assessment of various fat-free mass (FFM) components, allowing for a more robust albeit indirect 

estimation of body fat. The FFM is typically divided into water, protein and mineral mass 

components. The total body water component is assessed through deuterium dilution where 

saliva and urine samples collected prior to ingesting a dose of deuterium and following an 

equilibration period are analysed [6]. The bone mineral content is derived from dual x-ray 

absorptiometry (DXA). Total body protein mass can be measured using potassium counting. Some 

multicompartment approaches also require body volume which can be assessed through 

densitometry methods such as air-displacement plethysmography. 

Anthropometric approaches may suitable for use in low and middle income settings, given their 

simplicity and scalability. Relevant metrics include birthweight, weight-for-length or body mass 

index (BMI: weight for length-squared) and their corresponding percentiles. Thought important 

measures, work by Carberry et al. [7] has demonstrated that measures of body fat percentage 

(BF%) may be more predictive in identifying a composite neonatal morbidity compared with 

birthweight percentiles. Mid-upper arm circumferences (MUAC) may also be used in screening 
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for acute malnutrition, though there is limited data on its reliability and predictive value for 

mortality in infants under 6 months. 

Given that a large proportion of infant deaths under five occur in the neonatal period and the 

majority of these are in low and middle countries, there is a clear need for a simple, low-cost and 

portable method for rapid assessment of body composition. Near-infrared (NIR) interactance, has 

previously been explored and used as an input to body composition assessment, with several 

studies evaluating the agreement between commercially-available devices operating on these 
principles with other reference methods [8, 9] and the development of models surrounding body 

composition [10].  

The near-infrared (NIR) region of the electromagnetic spectrum spans from approximately 600-

1300 nm, where the absorption properties of tissue vary according to its constituents. These 

include water, fat and collagen. Early studies of NIR spectrometry by Conway et al. [11] identified 

visible peaks in the spectral profile measured from the triceps of adult subjects, corresponding to 

the pure fat absorption band at 930 nm and pure water absorption band at 970 nm [11].  

Building on this work, the primary aim of this paper is to develop a model using features extracted 

from NIR interactance for the estimation of infant fat mass and BF%. The second aim is to 

compare the performance of this model against other accessible methods of body composition 

assessment for low and middle-income countries, using DXA as the reference method. The 

comparative measures for adiposity and/or nutritional status include mid-upper arm 

circumference, weight-for-length, weight percentiles and sum of skinfolds. 

Methods 

Study Population 

This study was approved by the Ethics Committee at the University of Sydney (USyd) and the 
University of Witwatersrand (Wits) (USyd HREC number: Project No.: 2015/595; Wits HREC 
number: M150774).  The study has also been registered on the Australia and New Zealand Clinical 
trials Registry (ANZCTR) number: ACTRN12615001318572. The infants and children enrolled 
were recruited from the Soweto, South Africa pregnancy and follow up clinics over a period of 9 
months (April to December 2016). Inclusion criteria included well infants born at term (37-41 
weeks) with an absence of major congenital anomalies, morbidity and chronic health problems 
from birth (within first 48 hours) up to 24 months of age. Other inclusion criteria included ≤ 24 
months of age at measurement, mother’s age > 18 yrs, singleton pregnancy, living within the study 
area as well as English literacy and comprehension. Infants that had undergone any DXA scans in 
the prior 12 months were also excluded from enrolment. Informed parental written consent was 
obtained and participation was voluntary. 
 
Data Collection 

The data in this study was collected as part of a population-based cross-sectional study of ages 

from birth (within 48 hours) to 24 months. Subject data included anthropometric measures such 

as weight, length, head and mid-upper arm circumferences. Weight was measured using 

electronic scales (Seca 376, Hamburg, Germany). Length was measured using an infantometer 

(Harpenden, Holtain Model 702) which has a fixed headboard and moveable footboard following 

a two-trained person technique. Head, abdomen, thigh and mid-upper arm circumferences were 

measured using a metal tape measure. Skinfold measurements were conducted using handheld 

callipers at four anatomical locations; triceps, subscapular, mid-thigh and flank. Other metadata 

including sex and ethnicity was also included.  
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For all participants, BF% was measured using dual x-ray energy absorptiometry (DXA) (Hologic 

DiscoveryA DXA S/N 86254 APEX software version 4.0.2, Hologic Inc., Waltham, MA, USA) with 

relevant paediatric software installed. The DXA measurement involved the infant lying flat on a 

scanner bed to measure bone mineral content (BMC) and total body fat %. Bone mineral content 

information was also collected to serve as inputs for the final 3-compartment model. Fat mass is 

determined from weight and BF%. 

Prior to NIR measurements, reference scans against ambient light and a dark material were 
obtained. The spectrometer (QEPro, Ocean Optics) collected a range of wavelengths in the range 

of 350-1100 nm, with reflection profiles determined by customised software developed in-house 

using LabView, QEProInterface v3.1, adjusting the measured intensity for the dark and light 

calibration scans. The NIR measurements were conducted through the skin's surface at 4 the 

anatomical locations where skinfold thickness measurements were obtained; triceps, 

subscapular, mid-thigh and flank for approximately 30 seconds performed by a researcher 

(Appendix 1). Two sets of measurements were taken at each of the four sites. 

All measurements were conducted in duplicate by two-trained researchers. Any pair of 

measurements falling outside the maximum allowed differences were repeated by both 

researchers. If this second pair of measurement values again exceeded the limits for the 

measurement, the researchers repeated the measurement for a third and final time. 

Model Development 

Pre-processing, model development and statistical analysis were completed using Python 

(Python Software Foundation, version 2.7 https://www.python.org/). 

Feature selection and parameter fitting was undertaken on a randomised division (two thirds) of 

the dataset and subsequently evaluated on the remaining third. The division was stratified based 

on age, that is, similar distributions of ages across the training and testing subsets. Two 

population groups were defined for model development; 0-8 months and 9-25 months inclusive. 

The prime motivation for this age division was observed plateau or slight decline in BF% 6-9 

months of age, as also observed by Butte et al. [12]. The model development process involved two 

stages; first, the feature selection and the second, model fitting on a subset (training and 

validation set) of the available data. 

The wavelength range of interest spanned 850-1100 nm, with potential features being sampled 

from 10 nm intervals. Feature selection from this pool of 25 features for each measurement site 

(subscapular, flank, triceps and thigh) involved a backward elimination approach, recursive 

feature elimination (RFE) with cross-validation. A wrapper-based technique for feature selection, 

this RFE involved the continual removal of lowest-ranked features – the reflection % values at the 

respective wavelengths, from the model. The 2-fold cross-validated mean-squared error was 

evaluated at each point of elimination, with the optimal set of features defined by the minimised 

error. An example of this process if shown in Figure 1. Model fitting was subsequently undertaken 

on the selected features for male- and female- specific divisions of each age group. 

Results 

Of the 651 eligible term infants (37–42 weeks gestational age) aged from birth (48 hours) up to 

24 months, 416 (63.9%) had available DXA measurements. Of these, 370 infants (88.9%) had 

complete NIR and anthropometric measurements and were included in the model development. 

The characteristics of the study population are summarised in Table 1.  

Table 2 summarises the wavelengths selected from the recursive feature selection process. Linear 

coefficients are based on the regression model fitted to the training set. Equation (1) shows the 
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generalised example for the 0-8 month group, with n reflection-based features, weight for length 

(g/cm) and sex (male = 1, female = 0). Note that reflection values are expressed as the difference 

in reflection from that at wavelength x to that at 930 nm, normalised by the reflection at 970 nm 

(equation 2). 

𝐵𝐹% = 1𝑅1 + 2𝑅2 +  3𝑅3 … 𝑛𝑅𝑛 +   
𝑊

𝐿
+  𝑆 +   

Where  is the intercept and Rx is derived using reflection (r) at wavelength x:  

𝑅𝑥 =
𝑟𝑥− 𝑟970

𝑟930
(2) 

Principal component analysis (PCA) of the various weight-length ratios (W/L, W/L2 and W/L3) 

was undertaken in each of the groups. A single component could account for 86.7% and 92.9% of 

the total variance in the 0-8 and 9-25 month age groups, respectively. This lower proportion could 

potentially be due to inaccuracies in length measurements in the younger group [13]. This 

motivated the inclusion of W/L in the 0-8 month group and W/L2 in the 9-25 month group. In the 

former instance, W/L accounted for 55.8% of the variation in body fat, while W/L2 explained 

29.4% for the older group. The W/L and W/L3  ratios explained 22.6% and 22.4% of the variance 

in percentage body fat for the older group.  

Model evaluation and comparison with other anthropometric methods was undertaken on the 

remaining third (testing set) of the data. Correlation and Bland-Altman agreement for each of the 

models are summarised in Table 3 with Bland-Altman plots for all models across the trainings 

groups displayed in Figure 2. 

The agreement of NIR model measurements with body fat % as measured by DXA was 0.32 (-

9.39, 10.03) for the 0-8 month group and -0.63 (-9.58, 8.31) for the 9-25 month group. The 

transformed FM estimations from the product of BF% and weight (g) are also included, showing 

a greater R fit statistic. To better characterise the sensitivity of the model we also evaluated the 

variability of predicted % fat values between consecutive sets of NIR measurements. Mean (SD) 

difference in the BF% estimate was 1.84 (1.55) and 1.80 (1.58) for the 0-8 month and 9-25 month 

groups, respectively. 

The precision of the developed models in estimating BF% in an independent sample was further 

evaluated using cross-validation [14]. The cross-validated estimation errors across each of the 

methods are shown in the boxplots for each population in Figure 3. The inclusion of NIR 

interactance features to the W/L and sex models for each group exhibited a lower distribution of 

error from cross validation. The next lowest errors were achieved by sum of skinfold thickness 

measurements. 

Discussion 

Estimation of body fat and comparison with other models 

This study focused on the comparison of NIR interactance-based models for the estimation of 

body fat against other accessible methods for low-middle income settings and population (infants 

aged 0-2 years). These models were evaluated based on Bland-Altman agreement with DXA-

derived BF% and FM, the variance explained by each of the models measured by R and the 

distribution of standard error across 100 repetitions of cross-validation. 

Across both age groups (0-8 months and 9-25 months), NIR displayed narrower 95% limits of 

agreement from Bland-Altman analysis. There was also no important bias between any of the 

methods of comparison and DXA, with little evidence of curvature in the residuals or proportional 
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bias. This supports the inclusion of NIR interactance features in the estimation model for infant 

body fat, which may help to improve the robustness of basic anthropometric indices such as 

weight/length2 which has been considered a potential proxy for adiposity. 

The sum of skinfold thickness displayed the next highest agreement and correlation with DXA 

across both groups, and the highest (R = 0.835) for the prediction of FM in the 9-25 month group. 

However, it is also necessary to consider operator training requirements when comparing the 

methods. SFT measurements generally require a high degree of training and are conducted in 
duplicate with defined tolerance to ensure agreement [15]. There is also a tendency for skinfold 

thickness measurements to overestimate fat in lean infants and underestimate it in those with 

more fat [16]. 

Wavelength selection 

The wavelength range for feature selection spanned 850-1100 nm. Recursive feature elimination 

identified wavelengths in the range of 900-1000 nm range as most relevant for the body fat 

estimation model. This range encompassed peaks of water (930 nm) and fat (970 nm) reported 

in literature [11]. 

Reproducibility 

Additional analysis to characterise the reproducibility of the NIR models was undertaken using 

single sets of NIR measurements acquired by different observers. Mean (SD) absolute differences 

in the BF% estimates were 1.84 (1.55) and 1.80 (1.58) for the 0-8 month and 9-25 month groups, 

respectively. 

Strengths and Limitations 

One of the strengths of this study is the large population based sample across a wide range of age 

groups (0-2 years). We also used DXA, one of the gold standard methods for body composition, 

as the reference method for model development. 

The model development for the estimation of body fat in infants aged 0-2 years was limited by 

the non-normal distributions of the infant data collected, as well as the relatively low 

representation of ‘low fat’ infants, with Z-score plots on WHO percentile charts indicating 

skewness towards the higher end across skinfolds. 

The model developed used DXA as the criterion method, which is considered one of the gold 

standard techniques for measuring body composition. However one of the considerations and 

potential limitations is that in the paediatric population between gold standards such as DXA and 

ADP do not agree as well [17] as in other populations. This serves as motivation for further 

development and evaluation using a multi-compartment approach, which will be explored in 

future work using deuterium dilution as in input for the three-compartment (3C) model. 

Conclusion 

This study developed and evaluated models using near-infrared interactance features in 

comparison to other portable and accessible methods for infant body composition assessment in 

low-middle income settings. The two NIR models offered a more robust means of body fat 

percentage estimation in infants aged 0-25 months, showing a lower distribution of estimation 

error across multiple cross-validation repetitions (figure 3). The developed NIR models exhibited 

a mean difference with DXA BF% of 0.32 (-9.39, 10.03) in the 0-8 month group and -0.63 (-9.58, 

8.31) in the 9-25 month group.  
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Figure 1 Recursive feature elimination for BF% estimation in 0-8 months. Figure shows the mean 

squared error minimisation across all 25 wavelengths at three locations; subscapular, triceps and 

thigh.  
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Table I Study population characteristics. Of the 651 infants aged 0-24 months enrolled, 416 

(63.9%) had available DXA measurements. Of these, 370 (88.9%) had complete NIR and 

anthropometric measurements. 

Variable 0-8 months 9-25 months 

n 201 169 

Age (months) 3.1 ± 2.1 15.4 ± 4.8 

Male % 52.7 47.3 

Weight (g) 6060 ± 1760 9790 ± 1580 

Length (cm) 59.4 ± 6.9 75.8 ± 6.3 

Fat mass (g) (DXA) 1724 ± 953 2365 ± 842 

Body fat % (DXA) 26.4 ± 9.8 23.9 ± 6.6 

Mid-upper arm circumference (cm) 13.1 ± 2.0 14.9 ± 1.8 

Subscapular skinfold (cm) 9.0 ± 2.4 9.1 ± 4.7 

Flank skinfold (cm) 10.6 ± 3.4 10.2 ± 3.0 

Thigh skinfold (cm) 18.5 ± 5.1 18.5 ± 4.3 

Triceps skinfold (cm) 9.0 ± 2.1 9.5 ± 2.0 
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Figure 2 Bland-Altman plots for body fat percentage and fat mass. Panels (a) and (b) correspond 

to the body fat percentage (BF%) agreement of NIR with DXA and fat mass (g), respectively for 

the 0-8 month group. Panels (c) and (d) are the corresponding plots for the 9-25 month group. 
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Table 2 Model wavelengths and coefficients for each age group. Scan locations are shown with 

wavelengths in nm are shown in parentheses. Reflection based features were generated by 

determining the difference with reflection at 970 nm and normalising to that at 930 nm (equation 

2). 

 0-8 months 9-25 months 

Feature 1 subscapular (980) 32.76 subscapular (900) -6.48 

Feature 2 subscapular (990) -15.54 subscapular (910) 8.14 

Feature 3 thigh (1000) -12.75 subscapular (940) -13.49 

Feature 4 thigh (1010) 6.70 subscapular (950) 15.92 

Feature 5 triceps (850) -7.64 triceps (900) 17.81 

Feature 6 triceps (860) 8.44 triceps (910) -29.38 

Feature 7 triceps (1000) 17.34 triceps (920) 10.95 

Feature 8 triceps (1010) -12.68 - - 

Feature 9 W/L 0.2482 W/L2 13.915 

Feature 10 Sex -3.489 Sex -1.910 

Constant  10.91  11.18 
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Figure 3 Distribution of root mean squared error (RMSE) from 5-fold stratified cross-validation 

for (a) 0-8 months and (b) 9-25 months. The boxplots represent the median and interquartile 

range. 
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Table 3 Overview of correlation and Bland-Altman agreement. Methods for comparison include 

weight for length (W/L), a linear regression fit to weight, sex and length (W + S + L), sum of 

skinfold thicknesses (SFT) and mid-upper arm circumference (MUAC). The training set fit, 

including correlation (R) and Bland-Altman agreement are shown. Independent Testing set R and 

agreement are also included. Bland-Altman agreement is displayed as mean difference (95% 

confidence intervals). Model fit to body fat % was also transformed to fat mass by multiplying by 

weight (g). 

 Target Model Train R Train Bland-Altman Test R Test Bland-Altman 

B
o

d
y

 F
at

 %
 

0
-8

 m
o

n
th

s NIR 0.83 0.02 (-10.83, 10.87) 0.863 0.32 (-9.39, 10.03) 

W/L 0.73 -0.00 (-13.29, 13.29) 0.787 0.48 (-11.14, 12.11) 

W+S+L 0.358 -0.00 (-18.16, 18.16) -0.31 3.04 (-15.80, 21.89) 

SFT 0.773 -0.00 (-12.33, 12.33) 0.801 1.44 (-9.85, 12.73) 

MUAC 0.649 -0.00 (-14.79, 14.79) 0.582 1.38 (-16.22, 18.97) 

9
-2

5
 m

o
n

th
s NIR 0.729 0.13 (-9.54, 9.80) 0.549 -0.63 (-9.58, 8.31) 

W/L 0.48 -0.00 (-12.38, 12.38) 0.475 -0.10 (-9.09, 8.88) 

W+S+L 0.218 -0.00 (-13.78, 13.78) 0.278 -0.60 (-10.57, 9.38) 

SFT 0.453 -0.00 (-12.59, 12.59) 0.648 0.16 (-7.83, 8.15) 

MUAC 0.435 -0.00 (-12.71, 12.71) 0.481 -0.22 (-8.99, 8.54) 

F
at

 m
as

s 

0
-8

 m
o

n
th

s NIR 0.924 -1.78 (-701.34, 697.78) 0.95 27.70 (-590.42, 645.82) 

W/L 0.885 -1.90 (-855.91, 852.10) 0.926 34.53 (-718.91, 787.98) 

W+S+L 0.834 -86.88 (-1156.33, 982.57) 0.924 54.14 (-990.89, 1099.17) 

SFT 0.9 -18.70 (-815.26, 777.85) 0.932 63.68 (-645.15, 772.51) 

MUAC 0.871 -32.11 (-932.79, 868.57) 0.861 70.33 (-977.71, 1118.37) 

9
-2

5
 m

o
n

th
s 

NIR 0.849 15.38 (-927.15, 957.91) 0.79 -65.37 (-904.48, 773.74) 

W/L 0.726 17.56 (-1211.19, 1246.32) 0.77 11.78 (-894.34, 917.91) 

W+S+L 0.703 
-40.36 (-1442.58, 
1361.86) 0.733 

-83.82 (-1028.63, 
860.99) 

SFT 0.72 
-11.13 (-1254.82, 
1232.56) 0.835 1.69 (-754.65, 758.03) 

MUAC 0.698 -1.26 (-1277.15, 1274.63) 0.762 -20.70 (-887.45, 846.04) 
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Appendix I 

 

 

Measurement conducted on the anterior thigh using the Ocean Optics QEPro NIR device 
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