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Todos os anos, mais de 95 mil recém-nascidos são admitidos nas Unidades de Cuidados 

Intensivos Neonatais (UCIN) do Reino Unido, devido principalmente a partos prematuros ou outras 

complicações que pudessem ter ocorrido, como é o caso da encefalopatia hipóxico-isquémica (EHI), 

que assume 3% de todas as admissões nas unidades referidas. EHI é o termo que define uma complicação 

inesperada durante o parto, que resulta em lesões neurológicas a longo prazo e até em morte neonatal, 

devido à privação de oxigénio e fluxo sanguíneo ao recém-nascido durante o nascimento. Estima-se que 

tenha uma incidência de um a seis casos por 1000 nascimentos.  

Nos países desenvolvidos, a hipotermia é utilizada como método preventivo-terapêutico para 

esta condição. No entanto, existem dois grandes obstáculos para a obtenção da neuroprotecção 

pretendida e totalmente benéfica, na prática clínica. Em primeiro lugar, esta técnica é eficaz se for 

iniciada dentro de seis horas após o parto. Visto que o estado clínico da encefalopatia neonatal evolui 

nos dias posteriores ao nascimento, a sua deteção precoce é um grande desafio. Tal situação pode levar 

a diversos erros nas UCIN, tal como indivíduos sujeitos à terapia de hipotermia desnecessariamente, ou 

ainda mais grave, casos em que recém-nascidos foram inicialmente considerados como saudáveis, não 

tendo sido submetidos à terapia referida, apresentarem sinais de EHI após seis horas de vida.  

A segunda questão prende-se com o facto de a neuroprotecção poder ser perdida se o bebé 

estiver stressado durante o tratamento. Para além disso, não existe nenhuma ferramenta válida para a 

avaliação da dor dos recém-nascidos submetidos a esta terapia. Os obstáculos frisados anteriormente 

demonstram duas necessidades ainda não correspondidas: a carência de um método não invasivo e 

largamente adaptável a diferentes cenários para uma correta identificação de recém-nascidos com maior 

probabilidade de HIE, dentro de uma margem de seis horas após o parto, mas também um método 

preciso de stress em tempo real, não invasivo, que possa orientar tanto pessoal médico, como pais, de 

modo a oferecer um tratamento mais responsável, célere e individualizado.  

Deste modo, a análise do ritmo cardíaco demostra um enorme potencial para ser um 

biomarcador de encefalopatia neonatal, bem como um medidor de stress, através da eletrocardiografia 

(ECG), visto que é um importante indicador de homeostase, mas também de possíveis condições que 

podem afetar o sistema nervoso autónomo e, consequentemente, o equilíbrio do corpo humano.  

É extremamente difícil a obtenção de um parâmetro fisiológico, sem a presença de artefactos, 

especialmente no caso de recém-nascidos admitidos nas UCIN. Tanto no caso da aquisição de ECGs, 

como de outros parâmetros, existe uma maior probabilidade de o sinal ser corrompido por artefactos, 

visto que são longas aquisições, normalmente dias, onde o bebé é submetido a diversas examinações 

médicas, está rodeado de equipamentos eletrónicos, entre outros. Artefactos são definidos como uma 

distorção do sinal, podendo ser causados por diversas fontes, fisiológicas ou não. A sua presença nos 

dados adquiridos influencia e dissimula as informações corretas e reais, podendo mesmo levar a 

diagnósticos e opções terapêuticas erradas e perigosas para o paciente.    

Apesar de existirem diversos algoritmos de identificação de artefactos adequados para o sinal 

cardíaco adulto, são poucos os que funcionam corretamente para o de recém-nascido. Para além disso, 

é necessário bastante tempo tanto para o staff clínico, como para os investigadores, para o processo de 

visualização e identificação de artefactos no eletrocardiograma manualmente.   

Deste modo, o projeto desenvolvido na presente dissertação propõe um novo algoritmo de 

identificação e marcação de artefactos no sinal cardíaco de recém-nascidos. Para tal, foi criado um 

modelo híbrido de um método que tem em consideração todas as relações matemáticas de batimento 

para batimento cardíaco, com outro que tem como objetivo a remoção de spikes no mesmo sinal. O 

algoritmo final para além de cumprir com o objetivo descrito acima, é também adaptável a diferentes 

tipos de artefactos presentes no sinal, permitindo ao utilizador, de uma forma bastante intuitiva, escolher 

 

Resumo 
 



vi 
 

o tipo de parâmetros e passos a aplicar, podendo ser facilmente utilizado por profissionais de diferentes 

áreas. Deste modo, este algoritmo é uma mais-valia quando aplicado no processamento de sinal 

pretendido, evitando assim uma avaliação visual demorada de todo o sinal.  

Para obter a melhor performance possível, durante o desenvolvimento do algoritmo foram 

sempre considerados os resultados de validação, tais como exatidão, sensibilidade, entre outros. Para 

tal, foram analisados e comparados eletrocardiogramas de 4 recém-nascidos saudáveis e 4 recém-

nascidos com encefalopatia. Todos possuíam aproximadamente 5 horas de sinal cardíaco adquirido após 

o nascimento, com diferentes níveis de presença de artefactos.  

O algoritmo final, obteve uma taxa de sensibilidade de 96.2% (±2.4%) e uma taxa de exatidão 

de 92.6% (±3.2%). Como se pode verificar pelos valores obtidos, o algoritmo obteve percentagens altas 

nos vários parâmetros de classificação, o que significa uma deteção correta. A taxa de exatidão apresenta 

um valor mais baixo, comparativamente ao parâmetro da sensibilidade, pois em diversas situações, 

normalmente perto de artefactos, os batimentos normais são considerados como artefactos, pelo 

algoritmo. Contudo, essa taxa não é alarmante, tendo sido considerada uma taxa reduzida, pelo pessoal 

médico. 

Após o processamento do sinal cardíaco dos grupos mencionados acima, um estudo 

comparativo, utilizando parâmetros da variabilidade do ritmo cardíaco, foi realizado. Diferenças 

significativas foram encontradas entre os dois grupos, onde o saudável assumiu sempre valores maiores. 

SDNN e baixa frequência foram os parâmetros que traduziram uma diferença maior entre os dois grupos, 

com um p-value <0.01.  

De modo a corresponder ao segundo obstáculo referido nesta dissertação, outro objetivo desta 

tese foi a criação de um algoritmo que pudesse identificar e diferenciar uma situação de stress nesta 

faixa etária, com recurso ao ritmo cardíaco. Um estudo multidimensional foi aplicado aos diferentes 

métodos de entropia utilizados nesta tese (approximate entropy, sample entropy, multiscales entopy e 

fuzzy entropy) de modo a estudar como os diferentes métodos de entropia interagem entre si e quais são 

os resultados dessa relação, especialmente na distinção de estados normais e stressantes. Para tal, a 

utilização de clusters foi essencial. Dado que para todos os ECGs de bebés saudáveis analisados neste 

projeto foram registados todas as possíveis situações de stress, como é o caso de choro, examinações 

médicas, mudança de posição, entre outros, foram escolhidos 10 minutos do sinal do ritmo cardíaco 

adquirido, antes da situação, para análise. Infelizmente, associado a um evento stressante, na maioria 

dos casos encontra-se uma percentagem bastante alta do sinal corrompida por artefactos. No entanto, 

em alguns casos foi possível observar uma clara distinção de grupos de clusters, indicando que naquele 

período de tempo, houve uma mudança de estado.  

Foi também realizado um estudo intensivo de diversos métodos de entropia aplicados ao grupo 

de sujeitos apresentados nesta dissertação, onde foi provado que o método mais adequado a nível de 

diferenciação é a Fuzzy Entropy (p=0.0078).  

Ainda é possível sugerir alguns aspetos e apontar algumas limitações, no âmbito de poderem 

ser ultrapassadas no futuro. Em primeiro lugar, é necessária a aquisição de mais eletrocardiogramas, 

quer de recém-nascidos saudáveis, quer com encefalopatia hipóxico-isquémica, de modo a aumentar o 

tamanho da amostra e, deste modo diminuir os valores do desvio-padrão em todos os parâmetros 

calculados. Relativamente ao estudo do stress, seria interessante, com uma amostra maior, a definição 

de clusters, de modo a ter uma identificação precisa de situações stressantes. Para além disso, a 

transformação do software atualmente escrito em MATLAB para GUI (interface gráfica do utilizador), 

a fim de tornar mais acessível a sua utilização por profissionais de diversas áreas.  
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In Neonatal Intensive Care Unit (NICU), the heart rate (HR) offers significant insight into the 

autonomic function of sick newborns, especially with hypoxic ischemic encephalopathy condition 

(HIE). However, the intensity of clinical care and monitoring contributes to the electrocardiogram 

(ECG) to be often noisy and contaminated with artefacts from various sources. These artefacts, defined 

as any distortion of the signal caused by diverse sources, being physiological or non-physiological 

features, interfere with the characterization and subsequent evaluation of the heart rate, leading to grave 

consequences, both in diagnostic and therapeutic decisions. Besides, its manual inspection in the ECG 

trace is highly time-consuming, which is not feasible in clinical monitoring, especially in NICU.  

In this dissertation, it is proposed an algorithm capable of automatically detect and mark 

artefacts in neonatal ECG data, mainly dealing with mathematical aspects of the heart rate, starting from 

the raw signal. Also, it is proposed an adjacent algorithm, using complexity science applied to HR data, 

with the objective of identifying stress scenarios. Periods of 10-minute ECG were considered from 8 

newborns (4 healthy and 4 HIE) to the identification of stress situations, whereas for the artefacts 

removal algorithm small portions varying in time length according to the amount of noise present in the 

originally 5 hours long samples were utilised. In this report it is also present several comparisons 

utilising heart rate parameters between healthy and HIE groups. 

Fuzzy Entropy was considered the best method to differentiate both groups (p=0.00078). In this 

report, substantial differences in heart rate variability were found between healthy and HIE groups, 

especially in SDNN and low frequency (p<0.01), confirming results of previous literature.   

For the final artefact removal algorithm, it is illustrated significant differences between raw and 

post-processed ECG signals. This method had a Recall rate of 96.2% (±2.4%) and a Precision Rate of 

92.6% (±3.2%), demonstrating high efficiency in ECG noise removal. Regarding stress measures, 

associated with a stressful event, in most cases there is a high percentage of the signal corrupted by 

artefacts. However, in some cases it was possible to see a clear distinction between groups of clusters, 

indicating that in that period, there was a change of state. Not all the time segments from subjects 

demonstrated differences in stress stages, indicating that there is still room for improvement in the 

method developed.  
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Heart rate is one of the most studied areas in medicine and science, being an important indicator 

of homeostasis, but also of adjacent conditions that may affect the autonomic nervous system, and 

consequently, the equilibrium of the human body. However, there is so much still under research, and 

with the goal to understand the human heart and its influence in the human body, one must consider all 

the processes that lead to the development of such important mechanisms. Therefore, it is very important 

to comprehend not only the adult heart and its influences in the human body, but also the newborn one. 

This aim is more difficult to achieve due to the constant developmental processes occurring.   

The study and understating of heart rate variability is even more significant in infants admitted 

to the Neonatal Intensive Care Unit (NICU) with hypoxic ischemic encephalopathy condition, where, 

besides brain activity, heart rate variability is monitored in periods of several days, with the purpose of 

a better understanding of all the underlying physical processes.  

In the case of HIE newborns, cooling therapy (also referred as hypothermia) is used as a 

preventive-therapeutic method: reduces death and improves survival without disability after moderate 

or severe neonatal encephalopathy. Nevertheless, there are two major issues in ensuing optimal 

hypothermia neuroprotection in clinical practice. The first point is that cooling is effective only if 

initiated within six hours of birth. Early detection of moderate encephalopathy is a challenge, as the 

clinical status of the neonatal encephalopathy evolves over the first few days after birth. This can lead 

to several mistakes in the NICU, where subjects were submitted to treatment unnecessarily, whereas 

many newborns were initially considered to have no or mild HIE, and hence not offered cooling, develop 

signs of moderate encephalopathy after six hours of age, leading to adverse outcomes. The second issue 

is that hypothermic neuroprotection may be lost if the baby is stressed during cooling. Preclinical work 

has shown that cooling therapy in un-sedated and stressed piglets is not neuroprotective [1, 2]. In the 

absence of trustful methods for real-time stress monitoring, clinical staff frequently rely on shivering 

and increase in heart rate to access stress, which is not ideal, since that shivering is not that common in 

this group of babies, due to brown fat metabolism and cooling therapy, which reduces heart rate. Besides, 

there are no valid pain assessment tools for newborns undergoing hypothermia therapy.  

The two issues evolving the one therapy that currently is capable of reduce death and improve 

survival without severe consequences, demonstrate two unmet needs: a widely usable cotside non-

invasive tool for accurate identification of “at-risk” HIE newborns, within six hours of birth and an 

accurate real-time stress monitor for the same group, which can guide clinical staff and parents into 

offering more responsive and individualised care. Thus, heart rate variability analysis presents an 

untapped potential to be a bedside biomarker of neonatal encephalopathy, brain injury and stress monitor 

in hypoxic ischemic encephalopathic newborns, through electrocardiography (ECG).  

Like any other physiological parameter’s acquisition, it is extremely difficult to obtain only the 

desired information without artefacts, especially in the case of HIE newborns, where the presence of 

those in ECGs records is increased by several factors such as medical examinations or electronic 

equipment nearby. Artefacts are defined as any distortion of the signal caused by diverse sources, being 

physiological or non-physiological features. They disrupt the data, influence and camouflage the real 

and correct information of the patient’s health, and, therefore, respective HRV parameters, which leads 

to a wrong prognosis and/or treatment options.  

Thus, there is an urgent need to develop a method that automatically detects artefacts in neonatal 

electrocardiograms, being employed by users with different backgrounds, preventing the extensive and 

time-consuming manually checking of all the data, by researchers and clinical staff. Also, a method 
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using complexity science applied to heart rate, can identify situations of stress without being invasive 

or prolongated, is beneficial in the cases present above. 

Although there are many algorithms regarding artefacts in adult ECGs, few perform well in 

newborns ones, due to all the differences and peculiarities in the signal. This is the principal motivation 

of this dissertation project: the creation of an algorithm capable of identifying and marking artefacts in 

newborn ECG data, mainly dealing with mathematical aspects of beat to beat time. With this in mind, 

the algorithm proposed will be focused and personalised according to the type of ECG and consequently 

artefacts presented. The development of a method that automatically detects noise in neonatal ECG 

would avoid time-consuming visual assessment of all the data, like mentioned before, but also, be an 

addition to the signal processing tools that already exist.  

The second aim of this dissertation is the creation of a method, using heart rate variability, to 

identify and predict stress in newborns. Using several clusters applied to the pos-processed data with 

complexity science, it may be possible to distinguish different states of stress during a period of time. 

Being complexity science very sensitive to the presence of artefacts in the data, the utility of the 

algorithm proposed in the last paragraph is also increased.  

Both algorithms were created and developed in a basis of trial-and-error, since this is the first 

approach on the project. To do it, several methods of analysis and artefacts detections were created, 

comparing those results with manual annotations and calculations of several classification parameters, 

such as Recall or Accuracy. In the section Methods, all the algorithms are described with a higher level 

of detail. The next steps were analysing all the results and understand which aspects of the methods 

could be improved. 

As is understandable, not all attempts for each algorithm could be detailed in this dissertation, 

so only the successful attempts are detailed, and the respective results are included in the Results chapter. 

Furthermore, a discussion of the algorithm’s results is also present, followed by a conclusion for this 

report, with some topics to reflect upon future work on this research area.  
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2.1. Biosignals  
 

Recording a signal to understand the cause of a problem is a common practice in medicine and 

healthcare.  

Biosignal, also called as bioelectric signal, is the definition of all types of signals originated due 

to the physiological processes in the living beings [3], which can be measured and monitored 

continuously, typically recorded as univariate or multivariate time series. These vital signals permit the 

probe the state of the underlying biological and physiologic structures and dynamics [4].  

There are numerous types of biosignals, ranging from electrical to mechanical. They can be 

classified as: biochemical, biomechanical, biomagnetic, biooptical, bioimpedance and bioelectric 

signals. The bioelectric signal is unique to biomedical systems [4]. These signals are generated by 

muscle cells and nerves: in this situation, an action potential is measured with surface or intramuscular 

electrodes, where the electrocardiogram, electromyogram and electroencephalogram are examples of 

such signals.  

Bioelectric signals are considered to be the most important biosignals [4], due to the fact that 

the majority of biosystems use excitable cells that can be used as biosignals to study and monitor the 

main functions of the system.  

In biomedical applications, as in many other applications, the acquisition of the signal is not 

enough. It is necessary to process it to get the relevant information, since the detected signals are 

frequently corrupted with noise. Also, frequently the information cannot be readily extracted from the 

raw signal. For this reason, the signal must be processed to reach useful results [4]. The developments 

in medicine and computer science improved the tools and the knowledge to correctly analyse and 

understand the significance of a particular feature extracted from a biosignals. Several techniques: time- 

or frequency-domain methods including filtering, averaging, spectral estimation are used for such 

purpose. The recent progress of digital technology makes digital rather than analog processing more 

efficient and flexible, in terms of both hardware and software. As referred above, regarding signal 

processing, digital techniques bring more advantages:  the facility of implement complex algorithms, 

the performance is generally more powerful, and the accuracy only depends on the round-off error and 

truncation, whose errors can be controlled by the designer [4].  

 

2.2. Electrocardiography   
 

The electrocardiography (ECG) constitutes a recording of the heart’s electrical activity that 

occurs successively over time [5], and is one of the parameters acquired in several healthcare settings.  

Figure 2.1. contains features that correspond to different event in the cardiac cycle. The P wave 

corresponds to current flows during atrial depolarization and PR interval represents the onset between 

atrial and ventricular depolarization [5]. The most predominant feature of the ECG is the QRS complex, 

result of ventricular depolarization. Furthermore, the T wave is the representation of ventricular 

repolarization. The atrial repolarization does not usually show on an ECG record because it occurs 

simultaneously to the QRS complex [6]. 

An action potential is generated when a muscle contract. After that, there is an absolute 

refractory period, which for cardiac muscle, lasts approximately 250 ms. During the period mentioned, 

the cardiac muscle cannot be re-exited, which results in an inability for heart contraction [7]. For this 

reason, a theoretical heart rate limit is about 4 beats per second or 240 beats per minute.  

 

2. Theoretical Background 
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The newborn’s ECG characteristics are different from the adult ones. The most significant 

difference is the heart rate (HR): the neonate’s heart rate is normally faster than in adults, where the 

newborn normal resting HR is between 90-190 beats per minute (bpm). Furthermore, the QRS duration 

and the PR interval (distance between P wave and R peak) tend to be shorter, due to the smaller heart 

size [8].   

Another significative difference, and the main purpose of this dissertation is the existence of 

more artefacts and noise in newborn’s ECG, when compared to adult ones. The acquisition of these 

exams is done under a stressful medical environment, where is normal that the newborn is submitted to 

several medical exams, which can cause many movement or missing leads. The presence of innumerous 

electronic devices, such as ventilators, monitoring devices, among others near the newborn can also 

influence the present of electromagnetic interference.    

Regulation of the heart in neonatal period has its own peculiarities, based on biochemical, 

morphological and other differences not only in cardiovascular system, but also in the autonomic 

nervous system (ANS) [9]. Since the referred system has two components (sympathetic and 

parasympathetic) that control the rhythm of the heart, the study of its electrical activity and variability, 

with resource to ECG records, gives a non-invasive assessment of the autonomic control of heart rate, 

via both the sympathetic and parasympathetic nervous system [10].  

In cases of illness after delivery, the normal practice is to measure and monitor the heart rate 

and not acquire the ECG. This represents a disadvantage in the sense that several methods, such as time 

and frequency domain, but also complexity science, can be applied to study different features obtained 

with resource to the electrocardiogram. These types of analysis can be more beneficial in terms of 

quantification if the sympathetic and parasympathetic components of the ANS, being useful in terms of 

medical diagnosis and decision.    

Figure 2.1 - Example of a newborn ECG in normal sinus rhythm. 

QRS 

Complex 
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2.3. Heart Rate Variability    
 

Every system can be described with a mathematical model. Having its basis in mathematics, 

chaos theory is focused on the behaviour of dynamical systems that are extremely sensitive to initial 

conditions [11]. While healthy biological systems demonstrate spatial and temporal complexity, disease 

can involve either a loss or increase of complexity [12]. The heart experiences accelerations and 

decelerations on its rhythm, mathematically non-linear and complex. These fluctuations in the time 

intervals between adjacent heartbeats are called heart rate variability (HRV); Thus, heart rate is the 

number of heartbeats per minute [13].  

HRV is the result of autonomic nervous system (ANS) regulation of the sinoatrial (SA) node, 

where ANS has two components: sympathetic and parasympathetic nervous system [14]. Sympathetic 

activation generates an increase in heart rate with a norepinephrine release at SA node pacemaker cells, 

while parasympathetic activation triggers a decrease in heart rate via acetylcholine [14].   

In newborns, the evaluation of heart rate variability gives a significant information regarding 

the maturation and current dynamical balance of the ANS as well as the capacity of the heart to react to 

the regulatory commands [9]. The HRV values in newborns are also influenced by several factors, 

among which genetics determinants, mode of delivery, gestational and postnatal age [9].  

 

2.4. HRV Analysis Parameters     
 

The analysis of heart rate variability has been increasingly used and improved, in order to 

upgrade the estimation of the state of human body and mind [15]. While the clinical use with the purpose 

of diagnosis of the ECG is well understood, less is known regarding how to utilise it for the study of the 

balance between the sympathetic (SNS) and parasympathetic (PNS) nervous system, and hence mental 

physical stress levels [16].  

With resource to an electrocardiogram, by identifying the QRS, it is possible to get time series 

of the heart rate variation over time. One of the most important indices, the cardiac beat-to-beat interval 

(RRi), is obtained by calculating the intervals between two consecutive occurrences of QRS complexes. 

When compared to the raw ECG, this parameter contains more informative basis for further analysis 

[15]. It is important to refer that in some literature, the term to define the successive heart beats, RRi, is 

also defined as the normal-to-normal interval (NNI).  

In terms of recording time, the recommended length is 24h for a long-term and 5 minutes for 

short-time monitoring [17]. While the short-time recording offers several advantages, for example, easy 

application and post-processing, the long-term recording can keep track of physiological regulations 

related in overall HR changes, including day-night difference [18].  

For stress assessment RRi time series are used, normally with time and frequency domains, but 

also non-linear metrics analysis, that reflects the structural complexity of the signal.  

 

2.4.1. Time domain analysis 
 

Using measurements of the RRi it is possible to obtain time domain indices of HRV, which 

quantify the amount of variability from one heart beat to another. Normally, the processing algorithms 

are applied to sliding time windows of the RRi time series, with the length of the window depending on 

the purpose of the analysis. These time windows can range length from less than a minute up to 24 

hours, depending on the influence of time variance on the parameter desired.  

One of the most important parameters regarding the analysis of the variation of the heart is the 

standard deviation of RR intervals (SDNN), measured in milliseconds (ms). Several articles indicate 
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that the conventional recording standard is 5 minutes [19], but there are also researchers’ proposals of 

ultra-short-term recording periods from 60 s [20] to 240 s [18]. SDNN is a very important parameter 

regarding medical precision in terms of cardiac risk. The values of this parameters differ significantly 

when comparing healthy adults to newborns. For adults the mean of SDNN is around 100 ms [21], 

whereas in newborns, with 72 hours of life, the mean is 47 ms [22].  

 

𝑆𝐷𝑁𝑁 =  
√∑ [𝑅𝑖 − (

1
𝑁 − 1

∑ 𝑅𝑖𝑁
𝑖=1 )]𝑁

𝑖=1

𝑁 − 1
 

 

𝑅𝑖 is the inter-beat interval and N is the total number of RR intervals. 

 

RMSSD is the abbreviation for square root of the mean of the sum of the squares of difference 

between successive RR intervals. RMSSD expresses the cardiac beat-to-beat interval variance in heart 

rate. Below is the equation that defines RMSSD: 

 

𝑅𝑀𝑆𝑆𝐷 = √
∑ (𝑅𝑖 − 𝑅𝑖+1)2𝑁−1

𝑖−1

𝑁 − 1
 

 

Where N is the total number of RR intervals in the evaluated signal and 𝑅𝑖 is the inter-beat 

interval. 

 

This index is one of the time-domain measures utilised to predict the vagally mediated changes 

reflected in HRV [19]. Similar to the parameter above, recording time is recommended to be 5 minutes 

and researchers have proposed ultra-short-term periods of 10 s, 30 s and 60 s [19]. 

pNN50 defines the proportion of number of pairs of successive RR intervals that differ by more 

than 50 ms, divided by total number of RR intervals. This parameter is closely correlated with PNS 

activity [23], but also with High Frequency Power and RMSSD. On the other hand, pNN25 is ruled by 

the same purpose as the above parameter, but with a difference of 25 ms. This index is often applied to 

newborn and children HRV analysis. 

 

2.4.2. Frequency domain analysis 
 

Although the time-domain measures described above give important information regarding the 

heart rate changes, they do not necessarily indicate if it was caused by the SNS or the PNS. Due to a 

clear dominance of a deterministic component in either system, the structural complexity of the RRI 

time series can decrease [15]. Frequency domain analysis can be indeed useful, since they manifest in 

two non-overlapping frequency bands: low and high.  

Importantly, the PNS is responsible for the homeostasis of the body and the SNS controls the 

body’s responses to a perceived threat, being also in charge for the “fight or flight” response [24]. It has 

been previously accepted that the high frequency (HF) power in HRV reflects PNS activity influenced 

by vagal control, while low frequency (LF) power is multifaceted and was before believed to represent 

SNS [25]. Vagus nerve is a motor and a sensory nerve. It is a functionally diverse nerve, offering many 

different modalities of innervation. The efferent fibers are distributed to the involuntary muscles of 

diverse organs, among which the heart.  

Sympathovagal balance reflects the autonomic state resulting from the sympathetic and 

parasympathetic influences [26]. In order to indicate sympathovagal balance, the ratio of the power in 

( 2.1 ) 

( 2.2. ) 
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the LF and HF frequency, the LF/HF ratio is indicated [27].  Nevertheless, due to the nonlinear behaviour 

of the vagus nerve, the LF/HF is not a trusty indicator of stress, as the LF band reflects both SNS and 

PNS activity [28]. Previous work [29] demonstrated  that to the average heart rate of the subject, LF was 

directly related, while HF was indirectly related. As a result, researchers affirmed that LF/HF varied 

depending on the heart rate: lower at slower and higher at faster heart rates. The conclusion was that the 

heart rate can influence LF/HF independent of changes in cardiac autonomic nerve activity.  

The values for different frequencies vary significantly between different group ages. For adults, 

the activity of the SNS influences the LF band of the HRV, from 0.04 to 0.15 Hz, while the PNS is 

represented by the HF band, from 0.15 to 0.4 Hz [17, 30]. In newborns, the low-frequency band varies 

between 0.04 to 0.02 Hz and the high-frequency 0.02 to 2 Hz [30].  

 

2.5. ECG Artefacts 
 

Noise is inherent in most measurements systems and often the limiting factor in the performance 

of a medical instrument. By definition, noise is considered to be a part of the real signal that confuses 

analysis and artefact is defined to be any distortion of the signal caused by diverse sources, such as 

patient movement, respiration, intermittent or detached electrodes and also electromagnetic impedance 

[31].  

In practice, it is possible to observe different kinds of perturbations in heart rate data: baseline 

wander or amplitude changes which can cause missed detection, external noise or electrode motion 

which results in bad detection, power noise and physiological perturbations such as ectopic beats [32].   

Given the long periods of time of acquisitions of various physiological parameters, it is normal 

that some disturbance may occur in those exams, coming from physical sources. Thus, artefacts, corrupt 

the integrity of data, and may even lead to wrong diagnosis and therapeutic decisions.  

Analysing Figure 2.2., is clear the presence of a periodic artefact, with a consistent frequency, 

representing the interference of an electronic device.  

With visual inspection, in Figure 2.3. it is clear that, although the complex QRS is clear, the 

baseline is changed, due to a movement occurred at the acquisition.   

 

 

 

 

 

 

Figure 2.2 - Example of electromagnetic interference artefact. 
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2.6. Complexity Science 
 

Biological control systems do not often behave in a linear manner. Quantifying the complexity 

of these signals in health and disease has been the focus of substantial attention [33-35]. Structural 

complexity can be interpreted as the manifestation of intricate inter-connectivity of elements within a 

system and between a system and its surroundings. Nonlinear analysis in the form of structural 

complexity has recently been used to quantify the degree of randomness in signals [25], especially in 

the identification and quantification of stress.  

Entropy is defined as the loss of information in a time series or signal [36]. Traditional entropy-

based algorithms quantify the regularity or orderliness through the amount of structure in a considered 

time series.  

Currently, the most commonly used methods for biological data are approximate entropy 

(ApEn) and sample entropy (SampEn), but also multiscale sample entropy (MSE) and recently, fuzzy 

entropy (FuzzyEn). There are common input parameters for all the methods: m, the length of data that 

will be compared; r, the similarity criterion and N, the length of the data. Typically, for clinical data in 

adults, m is to be set at 2, r to be set between 0.1 and 0.25 times the standard deviation of the data and 

N as 1000 [33]. Like expected, the confidence and accuracy of the entropy estimate improves as the 

number of matches of length m and m+1 increase.  Although m and r are critical in determining the 

outcome of either method for entropy estimation, no guidelines exist for optimising their values [33].  

Pincus and co-workers developed ApEn as a measure of regularity to quantify levels of 

complexity within a time series [37]. ApEn is approximately the negative natural logarithm of the 

conditional probability that a dataset of length N, having repeated itself within a tolerance r for m points, 

will also repeated itself for m+1 points. 𝐶𝑖
𝑚(𝑟) is the number of 𝑗 ≤ 𝑁 − 𝑚 + 1 such that 

𝑑[𝑥(𝑖), 𝑥(𝑗) ≤ 𝑟)/(𝑁 − 𝑚 + 1)]. The parameter r is commonly expressed as a fraction of the standard 

deviation of the data and, in this way, makes ApEn a scale-invariant measure. We can define: 

 

𝛷𝑚(𝑟) = (𝑁 − 𝑚 + 1)−1 ∑ log(𝐶𝑖
𝑚(𝑟))

𝑁−𝑚+1

𝑖=1

 

Approximate Entropy is defined as: 

 

𝐴𝑝𝐸𝑛 = 𝛷𝑚(𝑟) − 𝛷𝑚+1(𝑟) 

 

Years later, Lake et al [38] developed Sample Entropy. This measure uses the conditional 

probability of the dataset chosen (with length N), having repeated itself for for m +1 points. Then it 

calculates the negative natural logarithm of the product described above. This method doesn’t allow 

self-matches, contrary to Approximate Entropy.  

 

Figure 2.3 - Example of movement artefact. 

( 2.3. ) 

( 2.4. ) 
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The principal reason for the creation of this method was the reduction of ApEn bias, but also 

having a closer agreement with theory for datasets with known probabilistic content. It is important to 

refer that bias is a feature of a specific technique or if its results whereby the expected value of the results 

differs from the true underlying quantitative parameter being estimated. ApEn have two poor properties 

in practice: is heavily dependent on the record length and is uniformly lower than expected for short 

records; also, it lacks relative consistency. In other words, if ApEn of one data set is higher than that of 

another, it should, but does not, remain higher for all conditions tested. In several studies, SampEn has 

demonstrated more consistent results than ApEn [38, 39]. 

The entropy measures above described are maximized for completely random processes and are 

used to quantify the regularity of univariate time series on a single scale. 

In 2002, multiscale entropy was proposed by Costa et al [35]. This method evaluates sample 

entropy of coarse grained (averaged over increasing segment lengths) univariate time series. The 

underlying idea is that course graining defines temporal scales. Hence, a system without structure would 

exhibit a rapid decrease in entropy with an increase in time scale.  

The MSE procedure is more complex than the above ones. Given a one-dimensional discrete 

time series {𝑥1 , … , 𝑥𝑖 , … , 𝑥𝑁}, it is construct coarse-grained time series, {𝑦(𝜏)}, determined by the scale 

factor, 𝜏, according to the equation: 

 

𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

 

 

With 1 ≤ 𝑗 ≤
𝑁

𝜏
 . For scale one, the time series {𝑦(1)} is the simply the original time series [35]. 

The length of each coarse-grained time series is equal to the length of the original time series divided 

by the scale factor, 𝜏. Then, an entropy measure (SampEn) is calculated for each coarse-grained time 

series and plotted as a function of the scale factor 𝜏.  

To sum up, MSE is based on the simple analysis that complex biological and physical systems 

normally demonstrate dynamics that are far from complete regularity and randomness. Instead, complex 

dynamics typically reveal structure on multiple spatial and temporal scales. These multiscales features, 

ignored by conventional entropy calculations, are obviously addressed in the MSE algorithm [35].  

The phenomenon of statistical stability is the definition for a weak dependence of statistics on 

the sample size, if the size is large. To overcome the poor statistical stability in the methods before, it 

was created Fuzzy Entropy [40]. To understand this method, it is important to define Heaviside function: 

 

𝜃(𝑧) =  𝑓(𝑥) = {
1, 𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0

 

 

The belongingness to a given class by whether it satisfies certain precise properties required of 

membership is judged, when considering an input pattern to Heaviside function.  

Chen et al [40] proposed Fuzzy Entropy, where the Heaviside function is replaced by Zadeh 

fuzzy sets. Zadeh induced the “fuzzy sets” concept. By introducing the “membership degree” with a 

fuzzy function 𝜇𝑐(𝑥) which links each point 𝑥 with a real number in the range [0,1]. This way it is 

provided a mechanism for measuring the degree to which a pattern belongs to a given class: the near the 

value of 𝜇𝑐(𝑥) to unity, the higher the membership grade of 𝑥 in the set 𝐶. In FuzzyEn, the method 

described above was introduced and utilised the family of exponential functions: 

 

( 2.5. ) 

( 2.6. ) 

( 2.7. ) 
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exp (−
(𝑑𝑖𝑗

𝑚)
𝑛

𝑟
) 

 

as the fuzzy function to get a fuzzy measurement of two vectors’ similarity based on their shape [40].  

As mentioned above, this method achieves a better statistical stability than the ApEn and 

SampEn. It also adopts the modifications in which SampEn differs from ApEn. Regarding its limitations 

is the focus only on the local characteristics of the sequence [41] and the application is only to relatively 

short physiological signals, by using a small embedding dimension m. 
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3.1. Hypoxic Ischemic Encephalopathy 
 

Hypoxic-ischemic encephalopathy (HIE) is an evolving pattern of neurological dysfunction 

following perinatal hypoxic-ischemic injury. This term defines an unexpected complication during birth, 

which leads to brain injury, due to oxygen and blood flow deprivation to the newborn [42].  

According to Volpe [43], perinatal hypoxic-ischaemic injury remains a major cause of 

neurodevelopmental disability: it is thought to affect between 1 and 6 per 1000 live births and accounts 

for 23% of all neonates’ deaths worldwide [44]. Moreover, 25-30% of survivors develop permanent 

neurodevelopmental abnormalities [45]. Like expected, in more severe HIE, there is an increased risk 

of death or neurodisability. The sequels in survivors include sensory and cognitive problems, cerebral 

palsy and epilepsy [46]. Factors that have been found to be associated with neonatal encephalopathy 

include maternal thyroid disease, socioeconomic status, antepartum hemorrhage and preeclampsia [47].  

Based on the criteria of Sarnat and Sarnat [48], hypoxic ischemic encephalopathy can be classified in 

mild, moderate and severe. The grading is based on the responses of the infants to handling, level of 

consciousness, changes in tone or reflexes, presence of seizures and the duration of the symptoms within 

seven days after birth.  

Gressens et al [49] affirmed that hypoxic-ischemic injury leads to periventricular white matter 

damage in premature infants, whereas term infants develop cortical/subcortical lesions. Recently, whole 

body controlled hypothermia is used as a preventive-therapeutic method aimed at reducing the 

consequences above [50, 51].  

Hypothermia is kept on the body temperature level around 33.5 °C and after the determined 

time, the process of the rewarming last about 12 to 15 hours. It starts almost immediately-to 6 hours 

postpartum and lasts approximately 72 hours. For rewarming, the temperature is increased at a rate of 

0.5°𝐶 every two hours. Several studies [52-54] indicate that hypothermia reduces the release of 

excitatory neurotransmitters, mitigates abnormal ion fluxes, reduces the formation of edema and lactate, 

lowers the rate of blood coagulation and reduces the concentration of leukotrienes. The effect of 

hypothermia or any combination of these factors that complicate cerebral ischemia account for neuronal 

preservation. Apart from hypothermia, no established therapies exist.  

Nevertheless, there are two main issues in guaranteeing optimal hypothermic neuroprotection 

in the NICUs. The first problem is that hypothermic neuroprotection may be lost if the newborn is 

stressed during cooling. Previous work [1, 2] has shown that hypothermia in un-sedated and stressed 

piglets is not neuroprotective. Different cooling trials addressed sedation during cooling, although stress 

counterproductive effects were recognized in all. This is the reason why the control of HRV is extremely 

important in these cases. Heart rate variability stands out as one of the most important stress markers 

[17]. Using time and frequency domains, but also nonlinear metrics, it is possible to monitor any 

alterations in the autonomic nervous system.   

 Furthermore, cooling is effective only if initiated within six hours of birth [55]. As the clinical 

picture of neonatal encephalopathy evolves over the first few days after birth, early detection of 

moderate encephalopathy is a challenge.  

 A good ECG data without noisy segments will reduce the probability of camouflage of real 

information that could lead to wrong prognosis and treatments in these cases. Like mentioned, this is 

one of the main reasons why the study of newborn’s heart rate and the consequent existence of an 

algorithm that can accurately identify and eliminate noisy artefacts is so important.   

 

 

3. State of the Art  
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 3.2. Status of HRV analysis in newborns 
 

In fetal and neonatal period, the regulation of heart has its own peculiarities based on 

morphological, biochemical and several differences, not only in cardiovascular system, but also in the 

central nervous system. These peculiarities during early postnatal life are based mainly on the 

maturity/immaturity of the autonomic nervous system. Besides, several variables such as genetic 

determinants, gestational and postnatal age, medical conditions and environment can influence heart 

rate and heart rate variability [56].  

As referred before, the short-term HRV reflects a dynamical cardiac regulation, which is 

conditioned by the activity of the autonomic nervous system and the ability of the heart to react to the 

regulatory commands. Therefore, an evaluation of the short-term HRV provides and important 

information about maturation and current dynamical balance of the ANS in newborns.  

Important intraindividual stability of HR and HRV was found both in the prenatal period up to 

the age of two years, which indicates clear “inertia” of cardiovascular characteristics (tracking 

phenomenon) that is transmitted from prenatal to postnatal life. As expected, the lower the gestational 

age, the higher the mean HR, lower HRV and blood pressure, being very likely these findings to be 

related to the degree of maturity of the autonomic nervous system [22, 57, 58]. 

In their study, Makarov et al [59] found that heart rate declines with increasing postnatal age, 

whereas in preterm babies the mean HR remains in higher values for a long time.  

Regarding to the mode of delivery, there are studies with contrary results. Gonzales and 

Salirossas [60] demonstrated in their paper that spontaneously delivered newborns had significantly 

higher HR when compared with neonates born by sectiocesarea or with maternal epidural analgesia 

administration. With different results shown, Toth et al [61] demonstrated that HR was higher in 

spontaneously born neonates with epidural analgesia, when compared to neonates with administration 

of maternal analgesia. Later, Kozar et al [62] demonstrated that there were no significant differences in 

HR according to mode of delivery, but also in time domain parameters of HRV. Therefore, the use of 

effective and only a short time acting anaesthetic guarantee equivalent postpartum neonatal adaption, at 

least in terms of chronotropic regulation of the heart.  

The data acquisition of ECG analog signals can vary from research to research. Thoracic ECG 

lead of portable devices for continuous heart rate recording with a sampling frequency of 1000 𝐻𝑧 and 

a telemetric transmission of data to pc were used by Javorka et al [9]. In their research, Metzler et al 

[63] used a bedside cardiorespiratory monitor with a sampling rate of 1000 𝐻𝑧. Kozar et al [62], with 

the purpose of studying the relationship between gestational term and delivery mode, used three neonatal 

ECG electrodes placed on the newborn’s chest to record the RR intervals, using a telemetric system, 

with a sampling frequency of 1000 𝐻𝑧. In terms of pos-processing the ECGs Metzler et al [63] filtered 

using a bandpass between 0.5 − 60 𝐻𝑧 using Butterworth filter with zero-phase distortion. The Hilbert 

transform and an adaptive threshold detection approach created by Ulusar et al [64] were used to identify 

the R wave and beat-to-beat interval, all using MATLAB.  

In their paper, “Heart rate variability in encephalopathic newborns during and after therapeutic 

hypothermia”, Massaro et al [65] processed the acquired data at 256 𝐻𝑧, using MATLAB. After, ECG 

data was isolated and bandpass filtered between 0.5 − 70 𝐻𝑧 using Butterworth filter with zero-phase 

distortion. Like almost every research involving the study of heart rate, the R wave was identified using 

adaptive Hilbert transform approach [66]. The RR interval was converted into evenly sampled data using 

cubic-spline interpolation at a sample rate of4 𝐻𝑧. Goulding et al [30] used the Pan-Tompkins method 

[67] in order to get the R peaks of the ECG waveforms, in each one hour recording. The time of each R 

peak was adjusted using quadratic interpolation. Therefore, each ECG file was divided into 5 minutes 

epochs and all the HRV features ere estimated from those intervals. The interpolation was performed 

using Hermite splines [68] and the sampling frequency was 256 𝐻𝑧. The frequency-domain 
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representation of the interpolated RR interval was estimated using a Periodogram [17]. In their research, 

Lasky et al [69] used Custom Lab View (National Instruments Inc., Austin, Tex., USA) instrumentation 

to record the ECG from the leads used for clinical monitoring of vital signs. The latencies of the start of 

the P wave, the start of the Q wave, the Q, R and S peaks, the end of the S wave, the T peak, the end of 

the T wave, and the peak of the U wave (if present) were measured for 10 consecutive heart beats from 

segments of stable and artefact-free ECG. Furthermore, the R waves of QRS complexes were identified 

and a vector of interbeat intervals was generated to analyse HRV. In almost all the literature regarding 

HRV processing the methods are similar to what is described above.  

Temko et al [44] segmented into 60 s the 1-hour HR signal. Normally,  a window length of 2 to 

5 minutes is recommended to calculate short-term HRV in adults [17]. However, the resting HR of a 

newborn infant is on average twice for a typical adult. Thus, the window length can be set to 60 s in 

newborn analysis and a set of 60 features is then extracted from each 60 s epoch of ECG. These features 

have been used in apnoea studies [48], automated ECG-based neonatal seizure detection [48], sleep 

monitoring [70], sepsis monitoring [71], central nervous system innervations in adults, and detection of 

food allergy from paediatric ECG. 

 

3.3. Artefact detection and removal  
 

Electrocardiograms are often corrupted by different types of artefacts and many efforts have 

been taken to develop their quality by reducing the noise or artefacts. Artefacts in the ECG can lead to 

the spurious quantification of RRIs, which might result in substantial misinterpretation of the data [72]. 

Results of Berntson and Stowell [73] revealed that even a single artefact, occurring within a 128-s 

interbeat interval series, can impart substantial spurious variance into all commonly analysed frequency 

bands, including that associated with respiratory sinus arrhythmia. They emphasize the importance of 

artefact awareness for studies of heart period variability [12]. 

In the study of electrocardiograms, there is a high percentage of ectopic beats. Ectopic heartbeats 

are small changes in a heartbeat that is otherwise normal, which leads to extra or skipped heartbeats. 

The most two common types of ectopic heartbeats are premature ventricular contractions and premature 

atrial contractions, caused by changes in the blood (low potassium level, for example), decrease in blood 

supply to the heart or enlarged heart. Furthermore, spikes are also present in electrocardiograms. 

Although most them represent the heart emission of a series of electrical discharges, some assume a 

bigger and physiologically impossible value, leading to a wrong interpretation of the data. They can be 

caused by movement or by an electronic equipment near by the acquisition. Thus, the removal of ectopic 

beats and spikes remains an important point to considered when dealing with artefact removal 

techniques, due to their influence on the studied data. 

Analogue or digital filters are commonly employed to reduce the influence of interference 

superimposed on the ECG [31]. However, digital filters and adaptive methods can be applied to signal 

whose statistical characteristics are stationary in many cases. Traditionally, many algorithms for noise 

reduction in ECG’s use either spatial or temporal averaging techniques. Assuming noise to be random 

and stationary, the noise reduction by the temporal averaging requires a larger number of time frames 

for effective noise reduction that is proportional to the square root of the number of frames or beats 

averaged [74, 75]. On the other hand, the main drawback of spatial averaging is the physical limitation 

of placing a large number of electrodes in the same region [31, 76]. Besides liner noise filtering, 

numerous adaptive filtering methods have been proposed for separation and detection of the component 

waves from noisy ECG’s. One of those was proposed by Talmon et al [77], describing an adaptive 

Gaussian filter for detection of the QRS component from noisy ECG’s: the adaptive tuning was 

performed on the frequency response of the Gaussian filter, in order to minimize the distortion of the 
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undisturbed signal by the filter. In the same field, Thakor et al [78] described a second method for 

adaptive noise cancellation of ECG recordings and worked on the principle that electromyography noise 

recorded using two different orthonormal limb leads are uncorrelated.  

The quasi periodic pattern of the cardiac signal has also been employed, by synchronizing the 

parameters of the filter with heart period signal [79, 80]. Another proposed methods include subspace 

rotations [81], neural networks [82], and bi-spectral analysis [83]. A few years later, some authors 

applied independent component analysis techniques to enhance the quality of the cardiac signal [31, 82, 

84].  

Nevertheless, almost all the methods presented above are only partially successful. The first 

reason is that some of the noise and artefacts are random in nature and have a wide range of frequency 

content. Because of that, filters fail to remove the interference when it is within the same frequency 

range as the cardiac signal. The second reason is that the filters often lead to a reduction in the amplitudes 

of the component waves, the Q-, R- and S-waves or the QRS complex.  

Lippman et al [85] analysed several approaches for correcting artefacts in interbeat intervals 

(IBI), including linear and cubic spline interpolation, nonlinear predictive interpolation and exclusion 

of ectopy-containing data segments. In linear interpolation, when ectopic beats are identified, the RR 

intervals immediately preceding and after the ectopic beat are marked for replacement. The total time 

encompassed by these RR intervals is determined, and the number of new beats that is to be inserted is 

computed by diving the total time by the average and after the beats to be replaced. In the general case, 

where a sequence of 𝑁 RR intervals represents sequential ectopic beats, the number of RR intervals to 

be insert (𝐵) is:  

 

𝐵 =  
∑ 𝑅𝑅𝑖

𝑖+𝑁
𝑗=𝑖

[(𝑅𝑅𝑖−1 + 𝑅𝑅𝑖+𝑁+1)/2]
 

 

After determination of the number of RR intervals to insert, they are computed using linear 

interpolation, with the sinus-to-sinus RR interval preceding and after those which were being replaced 

used as the endpoints of the line.  

For the cubic spline interpolation, the initial process is the same as described above. To perform 

the interpolation, four RR intervals (two RR intervals preceding and two after those to be replaced) were 

used as anchor points already on the “curve”, and the RR intervals to be inserted were computed by the 

method of cubic splines. Regarding nonlinear predictive interpolation, ectopic beats were identified and 

marked for replacement, and the number of beats to insert was computed as described above for linear 

interpolation [85]. A sequence of the 𝑀 RR intervals before and the 𝑁 RR intervals after the sequence 

of ectopic beats to be replaced is defined. This step result in a sequence of 𝑀 + 𝐵 + 𝑁 RR intervals, in 

which the initial 𝑀 and final 𝑁 RR intervals are obtained using the values in the RR interval sequence. 

The factors from the sequence of 𝑀 + 𝐵 + 𝑁 RR intervals are compared with the 𝑀 and 𝑁 intervals 

from all other RR interval sequences that could be obtained from the entire 5-minute listing of RR 

intervals, which were 𝑀 + 𝐵 + 𝑁 beats long and contain no ectopic beats. With resource of Cartesian 

distance metric, the closest matching such sequence of RR intervals is found and the middle 𝐵 RR 

intervals from the sequence extracted. After these RR intervals are adjusted (in order to their mean would 

be the same as the mean of the 𝑀 + 𝑁 RR intervals surrounding the ectopy-containing segment), they 

are inserted into the RR interval list in place of the ectopic beats.  

In view of these considerations, and the increasing applications of heart period variability 

measures in psychophysiological studies, an important question arises as to the quantitative impact of 

unsolved artefacts in the heart period data [73]. This is even more important when working with newborn 

data, where this group age has significantly more presence of noise and artefacts in ECG records. In 

( 3.1. ) 
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many situations, the “human eye” plays an important role, being considered the gold standard to discern 

heart rate characteristics. Yet, the visual inspection process used in the conventional filter method is 

very slow and cumbersome because it requires the presence of a specialist and the handling of a huge 

amount of data.  

One approach to the issue of presence of artefacts in the HR signal has been to exclude those 

beats that occur outside of a physiologically plausible range [86]. In their work, Wessel et al [87] used 

a filter based on the adaptive values of the mean and the standard deviation which change and adapt 

both themselves in a way that follows the variability of the series under analysis. In the same context, 

Govindan et al [88] proposed a two-step process to correct noisy segments in heart rate data. This process 

has the aim of replacing spikes with upward deflection and downward deflecting, with the median value 

of 10 beats starting 15 beats back in time from the current position; if 15 points were not available, it 

was used the available number of points to calculate the median. In order to do it, it was used the ratio 

of the local maximum in relation to average of immediate local minima on both sides of the maximum. 

Assuming that in the short term time, a normal healthy human RR time series is characterised 

by a few dominant frequency components which tend to change quite slowly, Clifford et al [89] created 

a timing threshold system that distinguishes artefacts, ectopy and sinus beats.  The classification system 

is based on the frequency of artefacts occurrences in relation to state changes. In their paper, a state 

change is considered to have occurred if the mean of the 100 segments before is significantly different 

from the mean of 100 segments after the considered RR interval, or if their variances are expressively 

different. Also, they defined the percentage change as ∆𝑅𝑅𝑛: 

  

 

 ∆𝑅𝑅𝑛 = 100 ×  
𝑅𝑅𝑛 − 𝑅𝑅𝑛−1

𝑅𝑅𝑛−1
 

 

Where if | ∆𝑅𝑅𝑛| is greater than some threshold λ, the two beats that constitute the current RR 

interval are defined to be a non-sinus beat pair, and, consequently be ignored. The choice of the threshold 

depended on the prevalence of artefact, the application and the associated tolerances. However, the use 

of a strict threshold may lead to problems at stage changes. For example, when the heart rate increase, 

the  ∆𝑅𝑅𝑛 is often greater than 20%. Also, the use of threshold gives rise to either Type I, or more likely, 

Type II errors, especially when unaccounted interindividual differences in baseline heart rate are present. 

ARTiiFACT, a software tool for processing electrocardiograms and interbeat intervals, was 

proposed by Kaufmann et al [90]. For removing artefacts, this method derives the artefact detection 

criterion from the distribution of IBI differences of the individual subject and applies percentile-based 

distribution indices. The next step in this process is to remove artefacts in the first and fourth quartile 

and estimate the overall standard deviation based on the interquartile range. This way, this method 

calculates an individual threshold criterion for beat-to-beat differences to identify artefacts.    

In their paper, “Heart Rate Variability as a Biomarker for Sedation Depth Estimation in ICU 

Patients”, Nagaraj et el [91], in order to remove artefacts created due to the effect of mechanical 

ventilation, calculated the differences between adjacent RRI and the inter-quartile range of the absolute 

value of RRI difference was measured. The outliers above a set threshold of 98% quartile were identified 

as artefacts which were discarded. The missing samples were later adjusted using a linear interpolation.  

Logier et al [32] in their work of algorithm detection, considered a 20’s samples moving 

window, mean 𝑚20 and standard deviation 𝜎20 values, to establish the two thresholds: 𝑚20 − 2𝜎20 and 

𝑚20 + 2𝜎20. Therefore, any sample outside the range described is submitted to three conditions:  𝑅𝑅𝑖 <

𝑚20 − 2𝜎 20  and 𝑅𝑅𝑖+1 < 𝑚20 + 2𝜎 20 ;  𝑅𝑅𝑖 < 0.75𝑅𝑅𝑖−1  and 𝑅𝑅𝑖+1 < 0.75𝑅𝑅𝑖−1 ; 𝑅𝑅𝑖 >

1.75𝑅𝑅𝑖−1. If the sample agrees with one of these conditions, it is marked as a wrong sample. Otherwise, 

( 3.2. ) 
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it is placed as an indeterminate sample. In such case, all new sample will be stored until the detection of 

a correct sample, inside of the first threshold or in one of the conditions described.  

It is important to refer that artefacts can be treated in two ways: deletion or estimation. In one 

hand, deleting artefacts prevents incorrect estimation of artefacts IBIs, but unavoidably crops the data 

set, which reduces data reliability and may bias it, especially when noisy parts are correlated 

systematically with experimental conditions. On the other hand, interpolation maintains both, the length 

and structural characteristics of the IBI series, but contains the risk of misestimating the inserted IBIs. 

In conclusion, the performance of the techniques will depend on the particular application [90].  

 

 

 3.4. Complexity Science and Stress Study  
 

Stress changes the physiological balance of autonomic nervous system. As mentioned before, 

both components of this system operate simultaneously and balance each other dynamically in normal 

situations [92]. When stress is given acutely, sympathetic system gets activated to increase the heartbeat 

and breathing rates, but also the perspiring activity of adrenal glands. When stress is stopped, 

parasympathetic system takes over to decrease the heartbeat, sweating, and breathing rates [17].  

Heart rate variability stands out as one of the most important stress markers [17]; several studies 

investigated cardiovascular reaction induced by stress using HRV focussing on acute, laboratory 

stressors: cognitive [93-95], psychomotor challenges [96] and physical stressors [97-99]. Also, real life 

stressors are often applied [100, 101].  

Besides the time domain parameters to analyse the variations in homeostasis [19, 23], frequency 

domains are also used to describe important information regarding heart rate changes [24, 26]. However, 

the LF/HF has received some criticism as a measure of cognitive and physical aspects of stress [15]. 

Accumulating published literature clearly demonstrate the assumption of LF/HF reflect precisely 

sympatho-vagal balance oversimplifies the complex non-linear interactions between the sympathetic 

and the parasympathetic divisions of the autonomic nervous system [102-105]. In other words, changes 

in heart rate do not result from the dimple algebraic summation of the sympathetic and parasympathetic 

nerve activity.  

To overcome it, non-linear metrics are applied within the framework of a complex systems 

approach to human physiology and serve as a toolset for investigation of complex inter-organ interaction 

in the body. Several studies in which entropy has been used to assess the effects of stress on signal 

complexity have concluded that stress reduces the complexity within cardiac signals, supporting the 

complexity loss theory.   

Pincus et al [106] discovered that for different groups of fetuses (acidotic and nonacidotic 

fetuses) ApEn values were significantly different, affirming that “ApEn appears to be able to detect 

subtle and possibly important differences in heart rate that are not visually apparent”. In their work, they 

conclude that larger ApEn values correspond to greater randomness and unpredictability and smaller 

values to more instances of recognizable patterns or features in data. Caldirola et al [107] showed that 

patients with panic disorder showed greater entropy in baseline respiratory patterns, indicating higher 

levels of irregularity and complexity in their respiratory function.  

Regarding SampEn, Lake et al [38] found that entropy falls before clinical signs of neonatal 

sepsis. One important finding is that entropy estimates inevitably fall in any record with spikes.  

Years later, Costa et al [35] claimed that MSE  consistently indicates a loss of complexity with 

aging, atrial fibrillation and congestive heart failure.  

According to Chanwimalueang et al [25] in their musician’s stress study, before and during 

performances in both low- and high-stress conditions (with no audience and in front of an audition panel, 
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respectively), like expected, the cardiovascular reactivity of the participants was pronounced in the high-

stress condition. In the nonlinear domain, both multiscale entropy and fuzzy entropy indicated an 

increase in entropy values from the pre-performance to performance period, this is, from the low-to high 

stress condition. In the same field, Williamon et al [108] investigate psychosocial stress in public 

performance, with a single expert pianist. They provided evidence of a reduction in HRV complexity in 

response to increased stress levels and concluded that the complexity of HRV was expressively lower 

during the high-stress performance and the SampEn method exhibited better discrimination between the 

stress conditions, compared with standard spectral analysis.  

Vuksanovic and Gal [109] results showed that non-linear measures could detect the influence 

of arithmetic stress aloud on automatic modulation of the heart rate.   

Regarding stress in newborns, less is known, and no study has yet used complexity science 

applied to HRV as a useful tool to predict and study precisely newborns stress. Lucchini et al [110], in 

their research related to premature babies exposed to sudden infant death syndrome, proved that entropy 

measures can be extremely helpful in detecting critical medical conditions.  

It is known that the mode of delivery influences the stress response. An article written by Taylor 

et al [111] shown that baby’s stress (salivary cortisol) and crying response to inoculation at 8 weeks was 

related to mode of delivery, with the greatest response shown in those born by assisted delivery and the 

least response in those born by elective caesarean section.  

More studies regarding oxidative stress exist in the literature [112, 113], although, as referred 

before, no one uses heart rate variability to predict stress in newborns. 
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The current chapter focuses on the description of the algorithms developed through this research 

project. All the algorithms were developed on MATLAB R2017a (The MathWorks, Inc., Natick, 

Massachusetts, USA).  

This chapter contains all the information regarding the ECG acquisition and processing of the 

data used in this research project.  

Furthermore, the first part of this section will consist on an explanation of each noise reduction 

algorithm’s method and their assembly. On a second part, regarding the use of complexity science 

applied to stress study, the processes are also described.   

 

4.1. ECG Acquisition  
 

The ECG signals that were used as training and testing set were not acquired as part of this 

project, and therefore the author took no part in the process. However, it is relevant to explain how the 

data were acquired, for the sake of clarifying.  

All the ECGs signals from healthy newborns (aged < 6 hours) were acquired in the NICU from 

two hospitals in central London: Queen Charlotte’s and Chelsea Hospital and Hammersmith Hospital, 

whereas the ECG signals from encephalopathic babies were acquired in the NICU from five NHS 

hospitals: Medway, Coventry, Norwich, Newcastle and Imperial NHS Trust. A total of 8 subjects were 

considered for this project (4 healthy and 4 HIE). Subjects’ age and gender were not discriminated.  

Electrocardiograms are obtained using 3 electrodes on chest: right upper chest, left upper chest 

and midline of axillary line, 5th rib, using the device Faros 180 (Figure 4.1.), with a frequency sample 

of 500 𝐻𝑧.  

 

 

 

 

 

 

 

 

 

 

4.2. HR Processing Algorithms 
  

The R peaks of the ECG waveforms in each recording were automatically identified using an 

algorithm developed by Chanwimalueang et al [114]. In their work, they proposed a new method which 

combines matched filtering and Hilbert transform (MT-HT) to precisely detect R peaks.  

 

4. Methods 
 

Figure 4.1 – Example of a Faros 180 device. 
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The idea of matching filtering is to start from a defined waveform or function and to search for 

a similar pattern in a time series. By taking the convolution between the conjugate of the defined mother 

pattern ℎ(𝑘) and the original signal 𝑥(𝑛) with length 𝑁, the matching filtering is performed: 

 

𝑦(𝑘) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝑁−𝑘

𝑘=0

 

 

The result of the equation presented above is a high amplitude at times when the time series 

resembles the mother pattern and a low amplitude elsewhere. This technique is advantageous for 

locating the QRS complex in the ECG. 

Regarding the Hilbert transform is frequently used to extend a real function into the complex 

domain. The equation is shown below, where 𝑥(𝑡) is a real function and the complex output of the 

transform is 𝑥ℎ(𝑡).  

 

𝑥ℎ(𝑡) = 𝐻[𝑥(𝑡)] =
1

𝜋
∫ 𝑥(𝜏)

1

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 

 

By taking the Fourier transform, it results in a 𝜋 2⁄  phase-lead for a negative frequency and a 

𝜋
2⁄  phase-lag for a positive frequency. In an analytic from it can be written as 𝑠(𝑡) = 𝑥(𝑡) + 𝑗𝑥ℎ(𝑡) in 

which the Euclidean norm of the complex from is calculated from: 

 

|𝑠(𝑡)| = √𝑥2(𝑡) + 𝑥(ℎ)2(𝑡) 

 

The amplitude of the norm represents the local maxima or the envelope of signal 𝑥(𝑡). Applying 

the HT to 𝑥(𝑡) and computing it magnitude |𝑠(𝑡)| result in a positive envelope of the ECG data which 

is convenient to locate the R peak within a specific time window.  

 

The MF-HT algorithm is performed by shifting time windows for the length of the ECG time 

series. All the process is explained in a graphic diagram in Appendix I. The former is applied to find 

several potential QRS that are similar to a template QRS patterns. It utilises a single QRS pattern 

manually selected once, to avoid artefacts when estimating this complex computationally. In case of 

multiple ambiguous R peaks, the possible occurrences in time are limited by a dynamical time window 

which depends on the standard deviation of previously detected RR intervals. Therefore, the selection 

of the R peaks is computed using the cross correlation between potential QRS and the template. The 

main feature of this algorithm is the automated R peak search using the MF-HT method and the 

simultaneous computation of the RR intervals. The R peak detection run automatically until an uncertain 

peak is found. Also, the program pauses, and the user can select the R peak from various choices: one 

of the suggested peaks as identified by MF-HF, manually selecting a peak or ignoring the detected peak. 

The extraction and editing of the HRV from ECG data is facilitated by an interactive graphic user 

interface (Figure 4.2.). 

During the preprocessing, a notch filter at the power line frequency and a filter with a passband 

of 8 − 30 𝐻𝑧 (the frequency range composing the QRS), are applied to the original data. It is important 

to refer that both filters are 6th order IIR Butterworth filters.  

 

 

( 4.1. ) 

( 4.2. ) 

( 4.3. ) 
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For the next steps, HRV Analysis Toolbox, created by the group that hosted this dissertation , 

was used. Although there are no papers published with the method, there are several articles that describe 

its functionalities [15, 16]. This toolbox has the purpose of processing all kinds of RR intervals and 

posteriorly obtain the HRV parameters required.  

Like the algorithm described before, this toolbox is ruled by the principle of reusable functions 

and the flexibility of the steps, that can be performed in a user-selected order, added or removed from 

the main algorithm.  

By default, the main steps of this toolbox are: removing unwanted beats; excluding missing 

segments; detrending; calculation of stress parameters (time domain, frequency domain and 

complexity); plotting stress parameters over time; plotting stress parameters in 2D and classifying 

according to scenarios.  

In the first step of this algorithm, the purpose is to remove long RRI due to missing heart beats, 

but also to remove sharp features on these intervals. This method also identifies time windows where 

too many RR intervals are missing, with a threshold of 30% missing in 20s time windows. Regarding 

detrending, it removes low-frequency trend that affect parameters such as SDNN and sample entropy. 

The cut-off is lower than 0.04 𝐻𝑧, which is the lower cut-off of LF. 

Although the toolbox was performing relatively well, the resulting parameters of this analysis were 

wrong and completely different from what was expected. The main reason for this situation was the 

large number of artefacts and noise present in the analysed ECGs. Due to this, there was an urgent need 

to implement an algorithm in this toolbox that could precisely identify and reject noisy segments. The 

development of it is the first aim of this dissertation and is described in the following chapters.  

 

 

 

 

 

 

Figure 4.2 – Software for R peak extraction using the MF-HT algorithm. 
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4.3. Artefacts Removal Algorithm 
 

As mentioned in the previous chapter, there was an urgent need to create an algorithm that could 

precisely identify and reject noisy segments and artefacts in neonatal electrocardiograms, but also to be 

utilised by users with different backgrounds, where it would be possible to add and remove steps and 

change the order of them.  

Therefore, the first aim of this dissertation  was the creation and development of an algorithm 

that could accomplish the requirements above. For its creation, mathematical aspects of beat to beat time 

were considered. 

 It is important to refer that all intervals considered as noise were ignored by the algorithm, by 

changing their value to NaN (Not a Number). All the steps were run four times for each analysis.  

  Below are the detailed steps of the proposed algorithm:  

 

Step 1 – Normally, in healthy stages the normal heart rate in newborns can vary between 90-190 bpm 

[115]. In sick conditions, it can come down until 60 bpm. In terms of RR intervals values, it corresponds 

to values above 1000 ms, due to the conversion present below: 

 

𝑚𝑠 =  
60000

𝐵𝑃𝑀
 

 

 Therefore, the first step of the proposed algorithm is to exclude all the RRI values above 1000 ms, i.e., 

below 60 bpm. 

 

Step 2 – In the same context as the step before, Step 2 also works with physiologically impossible 

values. In stressful events, newborns HR can increase until 200 bpm. For this reason, the present step 

eliminates all the RR intervals that assume values below 300 ms that correspond to intervals bigger than 

200 bpm.  

 

Step 3 – After the elimination of physiological impossible values, another aspect to consider is the 

abrupt changes in small data segments. This step discards all RR intervals that are outside of a range of 

+/- 50% of the mean of the last 10 intervals.  

 

Step 4 – Still considering abrupt changes in minor segments of the RR data, Step 4 discard the intervals 

whose difference from the previous interval is not within 5 standard deviation of the mean of the 

previous 512 differences. This is also justified by the presence on all ECG waveforms of certain artefact 

presence caused by clinical interference, myoelectrical noise and other spurious inputs.    

 

Step 5 – After the process with the steps present above, which are more focused on the relations between 

closer RR intervals, there are still some noisy segments that were not eliminated. In terms of data, this 

means that, within long segments of excluded data (represented by NaN), there are one or two RR values 

in the middle of the excluded segment. This situation can induce to artificial and false parameters of 

HRV. To correct that, all values are transformed to binary: NaN to 1 and RR intervals to 0. After that, 

it is calculated the sum of intervals of 5, 6, 8 and 10, using MATLAB command movsum, depending of 

which situation above described occurs. Each time a number 0 (correspondent to a RR interval) matches 

a certain sum of the sliding window (for two existing values, for sums of 6 is 5, for sums of 8 is 6: for 

one value present, for sums of 5 is 2, 3 or 4 and for sums of 10 is 5) the RR interval value considered 

will be eliminated (Figure 4.3.).  

( 4.4. ) 
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Step 6 – Based on the paper written by Logier et al [32], considering a 20’s sample moving window, 

mean (𝑚20) and standard deviation (𝜎20) values are used to establish two thresholds as: 

 

[𝑚20 − 5𝜎20    , 𝑚20 +  5𝜎20] 

 

This interval includes 99% of the valid RR values. Therefore, 1% of valid values, representing the RR 

extremes values of the window, will be detected as perturbations. After this first selection, to 

differentiate between valid samples and perturbations, any sample outside the threshold mentioned 

before is submitted to three conditions: 

𝑅𝑅𝑖  < 𝑚20 − 5𝜎20 𝑎𝑛𝑑 𝑅𝑅𝑖+1 > 𝑚20 + 5𝜎20 

𝑅𝑅𝑖  < 0.75𝑅𝑅𝑖+1 𝑜𝑟 𝑅𝑅𝑖+1 < 0.75 𝑅𝑅𝑖−1 

𝑅𝑅𝑖  > 2 𝑅𝑅𝑖−1 

If the sample agrees with one of these conditions, it is marked as noise.  

Step 7 – This step considers the standard deviation of all signal length, after all the steps mentioned 

before. The purpose is to eliminate (with a 99% confidence interval) all the intervals whose difference 

from the previous one is not within 5 times the total standard deviation.   

Step 8 – The last step also considers physiologically impossible values. In this case, it excludes the 

intervals which have a difference bigger than 200 ms from the previous one.  

 

 

 

 

Figure 4.3 – Example of the process developed on Step 5. In this case, sums of 6 were done, to eliminate the RR 

intervals between the ignored parts.  

( 4.5. ) 

( 4.6. ) 

( 4.7. ) 

( 4.8. ) 
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4.4. Other Algorithms 
 

Faced with the same problems originated by the presence of noisy segments and spikes in 

neonatal data, Govindan et al [88] in their paper “ A spike correction approach for variability analysis 

of heart rate sick infants” proposed a two-step process to correct spikes in HR data. Being working with 

the same objectives as the group the author is insert is, it is beneficial and will improve this dissertation 

if a comparison between the two methods is done. 

Superficially, the first step involves an iterative procedure to correct spikes based on the ratio 

of the local maxima to their immediate minima, on both sides exceeding a predefined tolerance. The 

second step involves repeating the first step for different tolerance values. The threshold that yields 

optimal correction is identified using the root mean square (RMS) of the difference between the 

corrected HR and the uncorrected HR. The threshold for which RMS was a minimum or remained 

unchanged for two or more tolerance values is identified as an optimal threshold.  

Considering the sequence 𝑥𝑖, 𝑖 = 1 𝑡𝑜 𝑁 to denote HR. The first step is to identify the local 

maxima and minima in 𝑥𝑖 where a local maximum is defined if a point 𝑥𝑖 > 𝑥𝑖−1 and 𝑥𝑖 ≥ 𝑥𝑖+1 and a 

local minimum is if a point is insert in 𝑥𝑖 < 𝑥𝑖−1 and 𝑥𝑖 ≤ 𝑥𝑖+1. For each local maximum, 𝑟𝑖 is defined 

as the ratio of the local maximum to the average of immediate local minima on both sides of the 

maximum. If there is no local minimum on one of the sides of the maximum, it is used the side for which 

the minimum is available and then its calculated 𝑟𝑖. The next step is to confirm if 𝑟𝑖 > 𝜖, the point is 

replaced with the median value of 10 beats starting 15 beats back in time from the current position. If 

15 points are not available, it is used the available number of points to calculate the median. To correct 

spikes with downward deflection, it is calculated 60
𝑥𝑖

⁄ , which represents the conversion in RR intervals. 

The sub-steps described before are followed again to correct spikes with upward deflection. At the end 

of this process, the sequence is converted back to HR.  

The steps above mentioned are repeated until the sequence entering a correction step remained 

the same at the end of the step. In other words, until the sequence requires no further corrections.  

For Step 2, Step 1 (described before) is repeated for different values of 𝜖. It is calculated the 

RMS of the difference between uncorrected HR and corrected HR. The correction is considered optimal 

if either RMS value remained almost the same value for two or more consecutive 𝜖 values. This indicates 

that most of the spikes were corrected without compromising the actual RR interval. Mathematically, 

optimal 𝜖∗ is identified as: 

 

𝜖∗ = 𝑚𝑖𝑛{𝑅𝑀𝑆𝑗 − 𝑅𝑀𝑆𝑗+1}, 𝑗 = 1 𝑡𝑜 𝑛 − 1 

 

Where 𝑛 is the number of 𝜖 values. The total of 21 𝜖 values, starting from 1.05 to 2.05 was used, 

in steps of 0.05.  

 

4.5. Assembling the algorithms  
 

Govindan’s method try to accomplish its objective via the identification and replacement of 

spikes in data, whereas the algorithm proposed by the author is more directed to the identification and 

rejection of medium to long artefacts occurring in newborns ECGs. In other words, these algorithms try 

to reach the same objectives with different approaches.  

After a discussion with the clinical staff, the idea of a third algorithm, joining both methods 

proposed before, was suggested, mainly due to its potential on identifying several different types of 

artefacts in this type of data.  

( 4.9. ) 
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Therefore, according to the type of data that is being studied, the user has the freedom to choose 

which type of steps are more suitable to insert in the noise removal process.   

 

  4.6. Algorithm Validation 
 

After the development of the algorithms proposed in the previous chapter, the validation of them 

is an important step to consider. The methods had to be checked with visual inspection – the current 

method available before – to assess if the algorithms were identifying and rejecting artefacts as it should 

be. This evaluation of the algorithm’s performance considered four different classifications: recall, 

accuracy, precision and F1 score. To support the acquisition of these classifications, the confusion 

matrix method, frequently used in machine learning, was used.  The confusion matrix is a specific table 

layout that allows visualization of the performance of an algorithm. Each row of the matrix represents 

the instances in a predicted class while each column represents the instances in an actual class Table 

4.1. [116].  

 

 

 

Actual Class 

Condition 

Positive 

Condition 

Negative 

Predicted 

condition 

Predicted 

condition 

positive 

True Positive 

(TP) 

False Positive 

(FP) 

Predicted 

condition 

negative 

False Negative 

(FN) 

True Negative 

(TN) 

 

 

In the case of this research project, the actual class is if the peak is noisy or not. Consequently, 

the predicted condition is if the algorithm recognise the peak as noisy or not. The True Positive (TP) is 

defined as all the peaks of signal that represent artefacts and that are marked as that by the algorithm. 

False Positive (FP) explains the condition of normal peaks that are marked by the algorithm as peaks 

representing noise. False Negative (FN) is defined as the noisy segments that are not marked as noisy 

by the algorithm. Lastly, True Negative (TN) describes the condition when a peak is good, and the 

algorithm considered it as good peak too.  

The four different types of classification evaluate algorithm’s performance, allowing for its 

optimization upon training and testing with the data available. 

 

Recall – when the algorithm detects an interval that is indeed a noisy segment. This parameter is 

calculated when dividing the number of artefacts correctly detected by the algorithm by the overall 

number of artefacts in the data: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑡𝑙𝑦 

# 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Table 4.1 – Confusion matrix applied to the algorithm. 

( 4.10. ) 
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Accuracy – it is a measure of statistical bias. This parameter is calculated when diving the number of 

artefacts peaks marked as noise and the number of good peaks marked as good peaks, by all the number 

of peaks in the data: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑝𝑒𝑎𝑘𝑠 𝑚𝑎𝑟𝑘𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑡𝑙𝑦

𝑎𝑙𝑙 𝑝𝑒𝑎𝑘𝑠
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

 

Precision – this parameter refers to how close estimates from different samples are to each other. In this 

case, the calculation is done by diving the number of artefacts detected correctly by the algorithm, by 

all the peaks marked correctly or incorrectly by the same method.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑡𝑙𝑦

#𝑝𝑒𝑎𝑘𝑠 𝑚𝑎𝑟𝑘𝑒𝑑 𝑎𝑠 𝑛𝑜𝑖𝑠𝑒
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 

F1 Score – This parameter considers both precision and the recall of the data. It is the harmonic mean 

of precision and recall: 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

 

4.7. Entropy Study  
 

Considering all the advantages in using complexity science to differentiate between different 

groups, normally healthy and sick ones, several methods were applied to the data used on this 

dissertation , with the main objective to discover which entropy method performs better to distinguish 

between groups.  

For this analysis and comparison, algorithms of approximate entropy [33], sample entropy [38], 

multiscale entropy [35] and fuzzy entropy [41] were employed. Appendix V and Appendix VI describe 

the algorithms that used the entropy methods mentioned above. It is important to refer that the several 

entropy methods were not altered from its original process. The selected parameters were: embedding 

dimension, 𝑚, was defined with the value of 3, the tolerance, 𝑟 was 0.20 times the standard deviation of 

the data, and the 𝑁, the number of points used was 1000.  

For defining which scales are more suitable to distinguish the two groups, considering 

multiscale and fuzzy entropy, the number of points used, 𝑁, is bigger than 3 × 104 points, a major value 

than the previous analysis.  By this, the when coarse-grain reach up to scale 20 the shortest time series 

has, at least, 1500 points.  

For fuzzy entropy the order chosen was 2. It is important to refer that the parameters were found 

empirically.  

 

 

 

 

 

( 4.11. ) 

( 4.12. ) 

( 4.13. ) 
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4.7.1. Multidimensional Entropy Study  
 

To a better understanding how entropy can be useful on determining whether it is a stressful or a 

normal event, a multidimensional analysis using different entropy methods was proposed. Two different 

analysis, using in each case 3 methods were employed: Approximate Entropy, Sample Entropy and 

Multiscale Entropy; and Sample Entropy, Multiscale Entropy and Fuzzy Entropy.  

For both cases, as before, the parameters were: 𝑚 = 3, the tolerance, 𝑟 was 0.20, and  𝑁 = 1000. 

To identify clusters, it was used the command from MATLAB: 𝑘𝑛𝑛𝑠𝑒𝑎𝑐ℎ(𝑋, 𝑌). This command finds 

the nearest neighbour in 𝑋 for each query point in 𝑌 and returns the indices of the nearest neighbours in 

a column vector. This method first uses the Minkowski distance metric, and then the Chebyshev distance 

metric [117].  

The Minkowski distance is a metric in a normed vector space which can be considered as a 

generalization of both the Euclidian distance and the Manhattan distance [118]. The Minkowski distance 

of order 𝑝 between two points 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) is defined as: 

 

𝐷(𝑋, 𝑌) =  (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝⁄

 

 

Manhattan distance [119], 𝑑1, is a form of geometry in which the usual distance metric of 

Euclidian geometry is replaced by a new metric in which the distance between two points is the sum of 

the absolute of their Cartesian coordinates 𝑑1, between two vectors 𝑝 and 𝑞 is defined as: 

 

𝑑1(p, q) = ‖𝑝 − 𝑞‖1 =  ∑‖𝑝𝑖 − 𝑞𝑖‖

𝑛

𝑖=1

 

 

Lastly, Chebyshev distance is a metric defined on a vector space where the distance between 

two vectors is the greatest of their differences along any coordinate dimension [120]. Given two vectors 

or points, 𝑝 and 𝑞, with standard coordinates 𝑝𝑖 and 𝑞𝑖, Chebyshev distance is: 

 

𝐷𝐶ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑣(𝑝, 𝑞) ≔  𝑚𝑎𝑥𝑖(|𝑝𝑖 − 𝑞𝑖|) 

 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was also employed 

on this research. It is a density-based clustering algorithm, proposed by Ester et al [121]. This method 

discovers neighbours of data points, within a circle of radius (in this case 𝜀 = 5) and joins them into the 

same cluster. For any point, that its 𝜀-neighborhood contains a predefined number of points, the cluster 

is enlarging to contain its neighbours, as well. Nevertheless, for the unallocated points, if the number of 

points in the zone is less than predefined threshold, the point is considered as noise. By this, this 

algorithm can also distinguish the normal and noisy data.  

 

 

 

 

 

( 4.14. ) 

( 4.15. ) 

( 4.16. ) 
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In this chapter, the results obtained from the previously described methods are presented. To 

clarify the interpretation process, the results for each step of the algorithms will be shown, as well as an 

example of every algorithm’s result.  

The results for the four classification criteria (Recall, Accuracy, Precision and F1 Score) are 

also presented, as a way of demonstrating the overall results of the algorithm. 

Regarding the entropy study involving complexity science, all the comparisons between healthy and 

sick newborns are demonstrated. The multidimensional study, with different clusters methods, will be 

also presented in this chapter.  

 

5.1. Silva&Rosenberg algorithm 
 

Silva&Rosenberg was the name given to the artefact removal algorithm created by the author, in 

partnership with a team in Communication and Signal Processing Group, at Imperial College London.  

This chapter will go through an elucidative explanation of the results for each step of this algorithm, 

clarifying the output of every process within the algorithm. The focus will be in small portions of signal 

from the 5 hours long samples of data from various subjects. It will be possible to see the raw signal 

along with the corrections made by the algorithm. 

In this sample of signal, it is possible to observe artefacts periods, clearly different from normal 

signal acquires with ECG. The artefactual periods can vary, depending on the source, from few seconds 

to minutes. It is important to note that the utility of the steps of the algorithm can vary, depending on 

the amount and the type of noise present.  

The blue lines on the top represent the ECG signal and the orange crosses the R peaks. Below, there 

are the RR intervals plotted along with the recorded time. The red line indicates the identified and reject 

artefact.  

The following figures illustrate the first steps of the proposed algorithm. In those are represented 

the exclusion of RR intervals above 1000 ms and below 300 ms, corresponding, respectively, to values 

below 60 bpm and above 200 bpm. These values are physiological impossible for a newborn heart rate.  

 

 

 

 

 

 

 

 

 

 

 

 

5. Results  
 

Figure 5.1 – Example of the first step of Silva&Rosenberg algorithm. In this case, a RR interval 

greater than 1000 ms was rejected. 
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With the examples above, artefacts caused by missing beats, as shown in Figure 5.1. or from 

other origins, like in Figure 5.2 and Figure 5.3., can be correctly marked as noise by the algorithm.   

On the last figure, it is possible to observe some beats that, on a first approach, may look good 

for further analysis. However, the peaks on that area are considered as noisy, due to the third step of this 

algorithm: identification of abrupt changes in small segments. This step discards all the RR intervals 

that are outside a range of +/- 50% of the mean of the last intervals. Still considering the identification 

of rapid changes in minor segments, step 4 discards the intervals whose difference from the previous 

interval is not within 5 standard deviation of the mean of the previous 512 differences. The next figures 

are examples of these conditions.   

 

 

 

Figure 5.2 – Example of the second step of Silva&Rosenberg algorithm. In this case, a RR 

interval smaller than 300 ms was rejected. 

Figure 5.3 – Example of Silva&Rosenberg algorithm. 
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As explained in the chapter Methods, the target of the fifth step of this algorithm are long 

segments of noise. Succinctly, it eliminates remaining values of RR intervals in long artefacts periods.   

 

 

 

 

 

 

 

 

 

 

Figure 5.4 – Example of the third and fourth step of Silva&Rosenberg algorithm. 

Figure 5.5 – Example of the fifth step of Silva&Rosenberg algorithm. 
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After all the steps exemplified before, step 6 reutilises the concept of step 3 and 4, with more 

conditions to the data analysed. Therefore, the next step considers all the length of the signal, and 

eliminates, with a 99% confidence interval all the intervals which difference from the previous one is 

not within 5 times the total standard deviation.  

The last step excludes the remaining values for the intervals which have a difference bigger than 

200 ms from the previous one. Since this algorithm works with time differences, the mentioned step will 

also identify and reject peaks that have a voltage physiologically impossible, like shown on the figures 

below.  

 

  

 

 

 

 

 

 

 

 

Below there are some examples of the output of the data, after the application of the present 

algorithm, from small to long segments of noise. It is important to refer that the majority of segments 

present are from HIE newborns, where the presence of ECG artefacts is higher.   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.6 – Example of the last step of Silva&Rosenberg algorithm. 

Figure 5.7 – Example of Silva&Rosenberg algorithm performance for long noisy segments. 
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Although the algorithm performs indeed well, there are some cases where not all the length of 

the artefact is identified, as exemplified in Figure 5.10. Like expected, these situations will influence 

the validations parameters for the algorithm proposed.  

 

 

 

 

 

 

 

 

Figure 5.8 – Example of Silva&Rosenberg algorithm performance for short noisy segments. 

 

 

 

Figure 5.9 – Example of Silva&Rosenberg algorithm performance for electromagnetic 

artefacts. 

 

 

 

Figure 5.10 – Example of Silva&Rosenberg algorithm error.  
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Table 5.1. shows the validation results for Silva&Rosenberg algorithm, for all the data analysed. 

Table 5.2 presents the mean and standard deviation of all the four criteria. All the process for the 

obtention of these values is explained in the previous section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

By observing both tables presented above, it is possible to conclude that all the parameters 

assume higher values, around 90%, with few exceptions. The main reason for some lower values is 

exemplified by Figure 5.10: although the algorithm identified most noisy intervals, there are some of 

them that are still considered good. This happens principally because the present algorithm works with 

temporal aspects of the data.  

HIE subjects have lower values for all the parameters, mainly due to the higher presence of 

artefacts from different sources. This factor is also confirmed by the results presented in Table 5.2., 

where all the HIE parameters have a lower value. For both groups, accuracy assumes the higher value, 

describing how peaks are correctly marked. Recall, an important type of classification, that translates 

the number of artefacts properly detected by the algorithm, by the overall number of artefacts in the 

data, assumes also a higher value on the data from both groups.  

 

 

Subjects 

Silva&Rosenberg Algorithm  

Recall Accuracy Precision F1 Score 

#1 Healthy 97.50 97.93 98.91 98.20 

#2 Healthy 93.53 99.89 96.39 97.94 

#3 Healthy 91.97 92.87 95.19 92.04 

#4 Healthy 98.26 99.95 98.43 98.34 

#1 HIE 94.95 93.83 94.64 94.79 

#2 HIE 94.72 95.90 93.41 96.46 

#3 HIE 80.75 82.91 82.96 82.35 

#4 HIE 94.55 95.77 93.55 95.55 

Criteria 
Mean ± Standard Deviation (%) 

Healthy HIE 

Recall 95.3 ± 2.6 91.2 ± 6.0 

Accuracy 97.6 ± 2.8 92.1 ± 5.3 

Precision 97.2 ± 1.5 91.1 ± 4.7 

F1 Score 96.6 ± 2.6 92.2 ± 5.7 

Table 5.1 – Results of Silva&Rosenberg algorithm, for all subjects.  

Table 5.2 – Mean of the results from Silva&Rosenberg algorithm, for all subjects.  
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5.2. Other algorithms 
 

As explained in the chapter Methods, Govindan and his team [88] proposed a two-step process 

to correct spikes and consequently artefacts, in HR data. This section will go through an explanation of 

results for this algorithm, applied to the same data as the Silva&Rosenberg method. The focus will also 

be in 5 hours long samples of data from the same subjects. Also, a view of the all signal, before and after 

the alterations will be shown.  

 

The following figures illustrate the performance of this algorithm, with its full signal length. On 

the top row it is represented the raw HR, the second and the third illustrate the first iteration for HR and 

RR intervals; fourth and fifth row represent also the same parameters as before, but for a second 

iteration. The last graphic represents the final output, where in orange there is the post-processed signal.   

 

 Figure 5.12 – Example of Govindan algorithm process. 

 

 

 

Figure 5.11 – Example of Govindan algorithm process.  
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It is important to refer that, originally in this method, all the peaks considered as noise would be 

replaced by a value calculated involving the median adjacent. In the case of this research, all the peaks 

were replaced with NaN values, like the previous method. Different subjects assume different optimal 

values, 𝜖∗. 

Observing the two examples above (Figure 5.11 and Figure 5.12), for spikes or short segments 

of noise, the algorithm performs well.  Regarding extended segments of artefacts, as it can be observed 

on Figure 5.11, the algorithm cannot identify all the peaks on those parts, maintaining artefacts in the 

final output signal.  

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the tables above, it is evident that the results are scattered, which can be confirmed 

by the values of standard deviation in almost all the parameters. The main reason for this situation is the 

different number of artefacts and spikes present, which vary from subject to subject. Like mentioned 

before, this method is more suitable for data with numerous spikes. Having HIE data a superior number 

of spikes and, therefore, artefacts, it is normal that in this case, some parameters assume a bigger value, 

when compared to healthy ones. Even though there are differences on the classification parameters 

values, precision assumes the bigger difference between groups. Precision refers to how close estimates 

from different samples are to each other. In other words, it exemplifies the number of peaks detected 

correctly by the algorithm, by all the peaks marked by the same one. In this case, the algorithm was 

more precise on HIE data, probably due to a bigger number of noisy segments in these data 

Subjects 
Govindan Algorithm  

Recall Accuracy Precision F1 Score 

#1 Healthy 46.39 99.18 95.61 62.47 

#2 Healthy 79.44 99.12 87.88 83.45 

#3 Healthy 64.99 98.28 53.65 58.78 

#4 Healthy 37.41 99.48 81.25 51.23 

#1 HIE 68.62 98.31 95.14 90.68 

#2 HIE 54.94 99.03 98.62 70.57 

#3 HIE 54.56 95.52 95.66 69,48 

#4 HIE 64.52 96.01 91.88 75.80 

Criteria 
Mean ± Standard Deviation (%) 

Healthy HIE 

Recall 57.0 ± 16.3 60.6 ± 6.0 

Accuracy 99.0 ± 0.4 97.2 ± 1.5 

Precision 79.5 ± 15.8 95.3 ± 2.3 

F1 Score 63.9 ± 11.9 76.6 ± 8.4 

Table 5.3 – Results of Govindan algorithm, for all subjects.  

Table 5.4 – Mean of the results from Govindan algorithm, for all subjects  
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5.3. Assembling the algorithms 
 

Considering that both algorithms proposed, although with different approaches, try to reach the 

same objectives, and their results indicate a better performance for different groups, the idea of 

combining the two of them into a third algorithm raised, mainly due to its potential on identifying 

correctly different types of artefacts in ECG data.  

This chapter will go through an exemplification and explanation of the algorithm results. The 

focus will be in small portions of signal from the 5 hours long samples of data from various subjects. It 

will be possible to see the raw signal along with the corrections made by the algorithm. Graphics 

illustrating the influence of this algorithm in HRV analysis parameters will also be present in this 

chapter.  

The blue lines on the top represent the ECG signal and the orange crosses the R peaks. Below, 

there are the RR intervals plotted along with the recorded time. The red line indicates the identified and 

reject artefact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 – Example of the final algorithm performance.  

 

 

 

Figure 5.14 – Example of the final algorithm performance for long artefacts. 
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Observing the figures above, is possible to affirm that the final algorithm can correctly identify 

those segments as noise, varying from spikes to long portions. By joining two algorithms, 

Silva&Rosenberg, that has its higher performance on medium to long noisy segments, and Govindan’s 

method, which is very good on identifying spikes, the creation of this final algorithm is certainly 

beneficial when working with data with different types of artefacts. 

With the final artefact detection algorithm developed, the demonstration of the overall results 

from every subject in the study is crucial. Table 5.5. and Table 5.6. shows the results for its validation, 

for all the data analysed.  

Regarding the results shown below, there is an increase in all the parameters when comparing 

to Govindan’s and Silva&Rosenberg’s, mainly due to the combination of methods to reach different 

types of artefacts. Recall, which is one of the most important parameters since it defines the result of the 

number of artefacts correctly detected by the overall number of artefacts in the data, assumes higher 

values in both groups, with a slightly increase in the healthy group. Accuracy always assume higher 

values: since this parameter is calculated when diving the number of artefacts correctly detected by the 

algorithm by the overall number of artefacts in the data, these parameters have higher values due to the 

Figure 5.15 – Example of the final algorithm performance for small artefacts. 

 

 

 

Figure 5.16 – Example of the final algorithm performance for spikes. 
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ability of both methods identify different types of artefacts. Precision in the last algorithms and in the 

final one assumes the smallest value because of the incorrectly marking of normal peaks as noise, 

normally in long segments, by the algorithm. F1 score, which considers both recall and precision, 

assumes a higher and similar value in both groups.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figures above demonstrate the before and after of HRV parameters, after the application of 

the reject noise algorithm, demonstrated before. The blue line represents the raw signal and the orange 

one exemplifies the post-processed signal. The long areas in orange, similar to rectangles, characterise 

the area of the ECG that was totally ignored by the algorithm, due to the higher number of artefacts 

present on the zone. The x axis is the real time when the signals were acquired.  

Observing Figure 5.17 and Figure 5.18, the difference between the raw signal and the post-

processed one is clear. Most of the spikes and segments that are artefacts were correctly ignored by the 

algorithm. Regarding the parameters, it is evident that entropy in high and low frequency bands, but also 

HF and LF are more sensible to the presence and posterior elimination of noisy segments, being reflected 

in oscillations in the data. Additionally, pNN25 assumes values lower than expected due to the higher 

percentage of artefacts in both cases.  

 

 

 

Subjects 
Final Algorithm  

Recall Accuracy Precision F1 Score 

#1 Healthy 98.84 99.82 98.20 98.52 

#2 Healthy 95.20 99.80 90.32 92.54 

#3 Healthy 92.74 99.90 92.00 92.37 

#4 Healthy 98.36 99.79 90.10 97.73 

#1 HIE 95.11 99.57 94.24 98.89 

#2 HIE 94.54 99.74 91.55 95.38 

#3 HIE 90.30 99.76 92.86 94.55 

#4 HIE 95.93 98.54 93.05 94.49 

Criteria 
Mean ± Standard Deviation (%) 

Healthy HIE 

Recall 96.2 ± 2.4 93.9 ± 2.1  

Accuracy 99.8 ± 0.0  99.4 ± 0.5  

Precision 92.6 ± 3.2 92.9 ± 0.9 

F1 Score 95.2 ± 2.8  95.8 ± 1.8 

Table 5.5 – Results of the final algorithm, for all subjects.  

 

Table 5.6 – Mean of the results from the final algorithm, for all subjects.  
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Figure 5.17 – HRV parameters before and after the application of the reject noise algorithm.  

 

 

 

Figure 5.18 – HRV parameters before and after the application of the reject noise algorithm.  
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5.4. HRV Parameters  
 

After all the post-processing involved, especially regarding the noise removal process, the time 

comes to analyse heart rate variability parameters and its differences among the two groups: healthy and 

hypoxic ischemic encephalopathic newborns. In this section will be presented the means and standard 

deviations of the main parameters (heart rate, SDNN, rMSSD, pNN50, pNN25, HF, LF and sample 

entropy) as well as the respective graphics in relation to the hours of life. Four newborns were include 

in each outcome group.  

 

 

It is important to refer that, for the HIE group, ECG data was not acquired within two hours of 

birth. Since these babies are born with many complications, they are summited to several medical exams 

as soon as the birth. For this reason, the acquirement of data for this research project could only start 

around 3 hours after birth. 

 

 

 

 

HRV 

Parameters 

Normal Group  

HR SDNN rMSSD pNN50 pNN25 HF LF SE 

 

Hour 3 124.59 31.954 0.5157 0.4173 1.9715 1.665E-05 0.00016 0.7244 

Hour 4 119.24 39.382 0.4940 0.3643 2.2319 1.910E-05 0.00022 0.6648 

Hour 5 131.22 32.725 0.5164 0.4181 4.1950 2.519E-05 0.00019 0.6321 

Hour 6 127.80 32.137 0.5447 0.4966 3.0564 2.031E-05 0.00026 0.5479 

Hour 7 117.70 41.455 0.5760 2.5413 10.083 4.363E-05 0.00045 0.6551 

Hour 8 110.63 43.539 0.5792 5.5506 15.878 6.789E-05 0.00047 0.6600 

Hour 9 116.33 36.799 0.5614 3.7225 16.021 7.588E-05 0.00038 0.6887 

Hour 10 113.12 43.511 0.5498 2.6365 8.5308 5.789E-05 0.00035 0.6027 

Hour 11 110.37 47.640 0.5826 8.3465 21.592 6.314E-05 0.00053 0.6802 

HRV 

Parameters 

HIE Group  

HR SDNN rMSSD pNN50 pNN25 HF LF SE 

 

Hour 3 120.66 17.434 0.4821 0.0859 0.1715 2.542E-05 9.26E-05 0.5046 

Hour 4 116.09 20.917 0.4984 0.0637 4.7566 2.408E-05 0.000309 0.6459 

Hour 5 111.36 12.785 0.4640 0.0814 5.6470 2.875E-05 6.11E-05 0.4810 

Hour 6 106.49 15.033 0.4893 0.2509 2.1810 1.114E-05 0.000117 0.6039 

Hour 7 105.38 16.705 0.5116 0.5041 4.2615 1.888E-05 9.98E-05 0.6211 

Hour 8 108.69 15.768 0.5497 0.4855 3.9136 1.719E-05 9.38E-05 0.6636 

Hour 9 108.60 23.260 0.5229 0.5301 3.6549 1.743E-05 0.000149 0.6056 

Hour 10 102.03 15.689 0.5439 0.7632 5.3533 1.720E-05 9.62E-05 0.5323 

Hour 11 102.37 16.014 0.5500 1.6383 3.1404 2.857E-05 9.62E-05 0.4532 

Table 5.7 – HRV parameters per hour of life, for the normal group. 

 

Table 5.8 – HRV parameters per hour of life, for the HIE group.  
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HRV Parameters 
                      Mean ± Standard Deviation (%)  

Healthy HIE p-value 

HR 118.97 ± 6.67 109.91 ± 5.62 0.048 

SDNN 37.084 ± 5.001 17.087 ± 5.0101 < 0.01 

rMSSD 0.5396 ± 0.0292 0.5124 ± 0.0300 0.106 

pNN50 2.8720 ± 2.6634 0.4893 ± 0.4955 0.017 

pNN25 10.166 ± 7.298 4.5925 ± 1.698 0.018 

HF 5.030E-05 ± 3.219E-05 2.703E-05 ± 2.115E-05 0.008 

LF 0.00034 ± 0.00012 0.00013 ± 0.00072 <0.01 

SE 0.6467 ± 0.1564 0.5680 ± 0.1588 0.015 

Table 5.9 – Mean of the HRV parameters for both groups. 

Figure 5.19 – Heart rate parameter through time after 

birth (h) of healthy and HIE groups. 

 

 

 

Figure 5.20 – SDNN parameter through time after 

birth (h) of healthy and HIE groups. 

 

 

 

Figure 5.21 – rMSDD parameter through time after 

birth (h) of healthy and HIE groups. 

 

 

 

Figure 5.22 – Sample entropy parameter through time 

after birth (h) of healthy and HIE groups. 
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When comparing the healthy and HIE groups, a clear difference was found: measured HRV 

parameters were reduced in neonates with HIE. Analysing Table 5.9. it is possible to infer that all HRV 

measures are different from one group to another, with substantial differences for SDNN (p-value 

<0.01), low- and high- frequency (p-value=0.008 and p-value<0.01), pNN50 and pNN25 after a few 

hours of life. It is clear a considerable increase in low- and high- frequency values through hours of life, 

for the healthy group. This might be explainable with the maturation of the autonomic nervous system.  

Regarding heart rate, the values are similar within groups, with a slight difference of 10 beats per 

minute. This might have influenced the results of rMSDD for not being different between healthy and 

encephalopathic neonates, since this parameter defines the square root of the mean of the sum of the 

squares of difference between successive RR intervals.  

 

 

 

 

 

Figure 5.23 – pNN50 parameter through time after 

birth (h) of healthy and HIE groups. 

 

 

 

Figure 5.24 – pNN25 parameter through time after 

birth (h) of healthy and HIE groups. 

 

 

 

Figure 5.25 – HF parameter through time after birth 

(h) of healthy and HIE groups. 

 

 

 

Figure 5.26 – LF parameter through time after birth (h) 

of healthy and HIE groups. 
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5.5. Entropy Study  
 

In a first stage, the RR sequences of the HIE and healthy groups were applied to approximate 

entropy, sample entropy, multiscale entropy and fuzzy entropy to analyse the trends of the different 

entropy measures with 𝑟 increasing from 0 to 1 (Figure 5.27 to Figure 5.30).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 – Approximate entropy with r increase in both groups. 

Figure 5.28 – Sample entropy with r increase in both groups. 
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Analysing the figures above, Fuzzy entropy exhibits a better consistency, when compared to the 

other methods. The inherent reason for the poor statistical stability in the approximate, sample and 

multiscale entropy is that these methods are based on the Heaviside function of the classical sets. Fuzzy 

entropy (Figure 5.30) overcome the poor statistical stability, as we can see from the figures shown 

above, mainly due to the replacement on the method, of the Heaviside function by the Zadeh fuzzy set.   

When 𝑟 is smaller, all the methods show a bigger difference between the two groups, confirming 

previous literature, where the suggested values for 𝑟 are between 0.15 and 0.20 [36, 38].  

For sample entropy (Figure 5.28), values for 𝑟 = 0 are null, due to its mathematical equation. 

Since SampEn is the negative logarithm of the probability that if two sets of simultaneous data points 

of length 𝑚 have distance < 𝑟, then two sets of simultaneous data points of length 𝑚 + 1 also have 

distance < 𝑟. Since the value of 𝑟 is 0, then the sample entropy will be also 0.  

Additionally, multiscale and fuzzy entropy, for 𝑟 = 0, their entropy results are also null, since 

their mathematical base is also sample entropy.  

Figure 5.29 – Multiscale entropy with r increase in both groups. 

Figure 5.30 – Fuzzy entropy with r increase in both groups. 
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Regarding scales, below are the figures for the two groups, representing entropy measures 

(multiscale and fuzzy) according to different scales. In these cases, the 𝑟 utilised was 0.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In both cases, there is a discrepancy between the two groups. The strongest separation for 

multiscale entropy is obtained for time scale 8, being constant for all the further scales. In the case of 

fuzzy entropy, the solidest separation is around scale 12.  

Using independent samples t-test, a study between the different scales of the two methods, for 

the healthy and HIE group was performed (Table 5.10.). For the multiscale entropy analysis, the p-value 

was lower for the scales 16, 17 and 20 and for the fuzzy entropy the scales were 17, 18 and 19. A smaller 

p-value indicates that there is a statistical difference between the two groups. Although, it is important 

to note that higher scales indicate less data in the analysis.  

 

Figure 5.31 – Multiscale entropy with scale increase in both groups. 

Figure 5.32 – Fuzzy entropy with scale increase in both groups. 
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After applying the approximate, sample, multiscale and fuzzy entropy to the RR sequences of 

the HIE and healthy groups, the results of entropy measures are shown in the table below (Table 5.11.). 

Considering a confidence interval of 99%, the independent sample t-test results demonstrated that ApEn 

(𝑝 = 0.0679), SampEn (𝑝 = 0.0416) and multiscale entropy (𝑝 = 0.0313) had no statistical value 

between the two groups; while fuzzy entropy (𝑝 = 0.0078) had a significant difference. This result 

showed that FuzzyEn, for this data, has a better performance in distinguishing the hypoxic ischemic 

encephalopathic newborns from the healthy ones. Decreasing the confidence interval for 95%, like fuzzy 

entropy, multiscale entropy demonstrates a noteworthy difference, whereas sample entropy has a 

borderline result.  

As expected, almost all the values for the healthy group are superior, when compared to the HIE 

group. The standard deviation is bigger on the second group, mainly due to acute fluctuations in the RR 

sequences caused by arrythmias or exterior interferences.  

 

 

 

 

Scale 
p-values 

MSE FE 

1 0.0444 0.0549 

2 0.0382 0.0176 

3 0.0313 0.0078 

4 0.0254 0.0049 

5 0.0214 0.0038 

6 0.0164 0.0030 

7 0.0171 0.0026 

8 0.0106 0.0018 

9 0.0108 0.0016 

10 0.0075 0.0015 

11 0.0079 0.0012 

12 0.0072 0.0011 

13 0.0072 0.0010 

14 0.0079 0.0007 

15 0.0068 0.0007 

16 0.0061 0.000 

17 0.0048 0.0005 

18 0.0064 0.0005 

19 0.0065 0.0005 

20 0.0059 0.0007 

Table 5.10 – p-values for different MSE and FE scales 

between normal and HIE group. 
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The boxplots of four entropy measures are present above, in Figure 5.33. In all the methods, 

the differences between groups are similar, being the HIE group always with lower entropy values.  

 

 

 

 

 

 

 

 

 

 

Entropy 

measures 

Healthy group 
 

HIE group 

p-values 
Mean Maximum Minimum SD Mean Maximum Minimum SD 

ApEn 0.3583 0.5492 0.2383 0.0901 0.2127 0.4554 0.0652 0.1576 0.0679 

SampEn 0.2644 0.4013 0.1819 0.0633 0.1394 0.3560 0.0532 0.1255 0.0416 

MSE 0.5367 0.7239 0.3972 0.1048 0.2774 0.7330 0.1078 0.2637 0.0313 

FuzzyEn 0.1910 0.2464 0.1456 0.0328 0.0775 0.2337 0.0155 0.0906 0.0078 

ApEn SampEn MSE FuzzyEn 

Table 5.11 – The results of ApEn, SampEn, MSE and FuzzyEn between normal and HIE groups. 

Figure 5.33 – The distribution ranges of ApEn, SampEn, MSE and FuzzyEn between HIE and 

healthy groups.  
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5.5.1. Multidimensional Entropy Study 
 

With the aim of investigating how different methods of entropy interact with each other and 

which are the results of that interface, especially to distinguish and identify stressful and normal states, 

a multidimensional study was applied to the entropy methods used on this dissertation.  

Giving that for all the healthy babies on the research project it was registered all the stress events 

during hospital stay, it is more intuitive to select the time frame for the type of event wanted. These 

events can be crying, feeding, sleeping, medical examination, vomit, position change, among others. It 

is important to note that, for this analysis, the time window must not be too large, since the changes are 

very subtle.  

On a first analysis, approximate, sample and multiscale entropy were employed. After that, on 

a second one, approximate entropy was replaced by fuzzy entropy. 

For the initial case, it was registered that the baby started crying at 11:30. For this analysis, a 

time window of 10 minutes before the event was employed.  

 Figure 5.34 – Multidimensional study involving approximate, sample and multiscale 

entropy in a stressful situation.  

Figure 5.35 – Stage difference, approximate, sample and multiscale entropy measures during a stressful situation.  
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The main reason for choosing a time window ten minutes before the event and a few minutes 

after was due the fact that something must have happened before the crying and alterations in the 

autonomic nervous system and consequently on the heart rate should be present. This could be confirmed 

by both 3D graphics present above (Figure 5.34 and Figure 5.36).  

 

 

Figure 5.36 – Multidimensional study involving sample, multiscale and fuzzy entropy in a 

stressful situation.  

Figure 5.37 – Stage difference, sample, multiscale and fuzzy entropy measures during a stressful situation.  
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In the same context, below are the results for a low-stress condition, where no register of stress 

event was written, for the same subject. 

 

 

 

 

It is clear the difference regarding the 3D plots between a stressful and a normal status. In the 

last case (Figure 5.38), it is only possible to identify 2 states, even though they are indeed close to each 

other.  

 

 

 

 

Figure 5.38 – Multidimensional study involving approximate, sample and multiscale entropy in 

a non-stressful situation.  

Figure 5.39 – Stage difference, approximate, sample and multiscale entropy measures during a non-stressful 

situation.  



50 
 

 

Regarding the analysis using fuzzy entropy instead of approximate entropy (Figure 5.40), the 

results are more non-stationary, which is reflected on the respective 3D plot.  Nevertheless, it is also 

possible to distinguish two different clusters, corresponding to the previous results.  

 

 

 

 

 

Figure 5.41 – Stage difference, sample, multiscale and fuzzy entropy measures during a non-stressful situation.  

Figure 5.40 – Multidimensional study involving sample, multiscale and fuzzy entropy in a non-stressful 

situation.  
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Chapter 6 focusses on the analysis and discussion of the results presented in this dissertation. 

The logic of this chapter will be the same as the previous one, with the aim of keeping the same 

organization through it. First, the creation process, results and validation values of the final artefact 

removal algorithm are discussed. The next section contains a critical overview of the HRV parameters 

obtained for both groups (healthy and HIE newborns). The last one is regarding all the complexity 

science methods, applied to the data presented in this dissertation.  

 

6.1. Artefact removal algorithm  
 

Heart rate and its variability are extremely important in critical care medicine. Nevertheless, 

given the regular assessments and medical interventions in the NICU, distortion of the signal by artefacts 

is a major problem that restricts the accurate evolution of this important physiological measure. This 

issue is even bigger when considering newborn ECGs, where the intensity of clinical care and 

monitoring contributes to the signal to be often noisy and contaminated with artefacts from various 

sources. To culminate this issue, Silva&Rosenberg algorithm was created to identify and mark all the 

artefacts in this type of data. The method was based on mathematical aspects of beat to beat time, with 

a major focus on physiological impossible values.  

Regarding the steps of this algorithm, the phases that identified more artefacts were the first and 

second steps, where it was excluded the RR intervals above 1000 ms and below 300 ms, but also the 

last step, which eliminated all the RR intervals which had a difference bigger than 200 ms from the 

previous one. This indicate the type of noise present in the ECGs, normally originated by detached 

electrodes or missing beats. The last step is also beneficial in terms of removing spikes in the data.  

In this algorithm, the most robust step is step 5. Facing the artefacts presented in the data and 

working in the basis of trial-and-error, it was clear that in long segments of noise, there were still some 

peaks that were considered by the algorithm as good. As referred, since the algorithm is based on 

mathematical aspects of the data, even if the R peaks are positioned in a wrong position but its relations 

with other peaks are within the thresholds defined previously, the algorithm consider those as “good” 

peaks. The fifth step of the proposed method can prevent these situations to happen, improving the 

chance of having acquired correct information and, this way, increasing validation parameters.   

The remaining steps evolving standard deviation and medians of the signal have less impact 

than the referred ones above. Still, they are important parts of the process, helping on the identification 

of subtly artefacts, like demonstrated in Figure 5.4.  

Observing Tables 5.1. and 5.2., it is possible to conclude that almost all the validation 

parameters assume higher values, around 90%. In the case of healthy data, accuracy assume the higher 

value, whereas in the HIE group it is F1 Score. Recall assumed a large value (95.31 ± 2.63 %), when 

compared to HIE (91.24 ± 6.03 %). All the parameters have big values of standard deviation, mainly 

due to different amounts of artefacts in the ECGs, but also because only a small amount of data was 

used. As expected, HIE subjects have lower values for all the parameters, mainly due to higher presence 

of artefacts from different sources. 

Although the presented algorithm has higher rates of validation, mainly due to a correct 

identification of medium to long noisy segments, in almost all cases, spikes were not marked as artefacts 

by the algorithm. To solve the situation presented above, Govindan’s algorithm [88] was modified and 

applied to the same data: in the original method, all the peaks identified as noisy where replaced with 

the median value of 10 beats starting 15 beats back in time from the current position. In the case of this 

 

6. Discussion   
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dissertation, all the values considered by the algorithm as artefacts were replaced by NaN values, which 

means that they were eliminated.  

In terms of results, as it is possible to analyse in Figure 5.11, the algorithm performed well when 

faced with spikes. In terms of medium to long noisy segments, only few were identified, as we can 

confirm for the validation results of Table 5.3. and 5.4. Recall for the healthy group had a rate of 57.05% 

(± 16.30 %) and for HIE a rate of 60.66% (± 6.08 %). The main reason for the difference of these 

validation results and for the scattered parameters, when comparing to the first algorithm, is mainly 

because most data analysed had more long artefacts segments than spikes, but also due to the different 

number of artefacts and spikes present, which vary from subject to subject. 

Accuracy is the result when the number of artefact peaks marked as noise and the number of good 

peaks marked as good peaks by the algorithm, is divided by the total number of peaks in data. It is also 

a measure of statistical bias. In the methods presented before, for the two groups, this parameter assumed 

high rates, due to a large value of good peaks marked correctly.  

The two algorithms presented above tried to reach the same objectives, although with different 

approaches. Joining two algorithms, Silva&Rosenberg, that has its higher performance on medium to 

long noisy segments, and Govindan’s method, which is very good on identifying spikes, the creation of 

one final algorithm is certainly beneficial when working with data with different types of artefacts, 

which is reflected in the new validation rates (Table 5.5 and 5.6).  

Observing Figures 5.13 to 5.15 one can affirm that the final algorithm can correctly identify 

segments as noise, varying from spikes to long portions. For the final method, Recall assumed higher 

rates for both groups. Healthy group had a rate of 96.28% (±2.47) whereas the HIE had a rate of 93.97% 

(±2.17) for this validation parameter. F1 score, which considers both recall and precision, assumes a 

higher and similar value in both groups. Precision (which is the ratio of the number of artefacts detected 

correctly by the algorithm, by the number of peaks marked correctly or incorrectly by the same method) 

continues to assume the lowest rate for both groups (Healthy=92.65 ± 3.28 % and HIE=92.92 ± 0.95 %) 

because of the wrong marking, by the algorithm, of good peaks as noisy segments. Nevertheless, this 

rate was considered to be lower enough by the medical staff, when these results were presented. This 

translate one limitation to consider: lack of a reliable approach to identify an appropriate threshold that 

would correctly distinguish spikes from physiological components.   

Analysing the data after the process that marks the R peaks in the ECG, it was possible to notice 

that the algorithm does not perform well in all situations, marking peaks in wrong locations. This can 

contribute to the camouflage of the results and influence the performance of the artefact removal 

algorithm, since the noise removal process is based on mathematical relations of the beat-to-beat. By 

this, and to improve the performance of the algorithm and, more importantly, to obtain the true values 

of heart rate analysis, it is wise to check manually if the R peaks are marked correctly, before starting 

the signal processing process and consequent HRV analysis. Thus, a suggestion for future work is the 

creation of an algorithm that could help on this aspect, by verifying if the R peaks were well marked 

before starting the processing process. 

Observing Figure 5.17 and 5.18, that represent HRV features before and after the application of the 

artefact reject algorithm, it is evident the enormous increase on the stability of those parameters. This 

translates the enormous advantage of applying this algorithm to ECG data, where the probability of 

having real and reliable information is increased.   
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6.2.HRV parameters  
 

 

Resorting to post-processing techniques and the artefact removal algorithm presented in this 

dissertation, heart rate variability analysis parameters were obtained for two groups: healthy and HIE 

newborns.  This study used electrocardiograms acquired between 3 and 11 hours after birth.  

The advantage of the ECG signal is that it is straightforward, well-defined and leads to easy 

calculation of HRV [46]. A difficulty can arise in the interpretation of the HRV parameters, where, in 

addition to HIE, heart rate variability is influenced by many factors such as blood pressure, temperature, 

autonomic nervous system dysfunction, among others. 

When comparing healthy and encephalopathic neonates it was found a reduction in all HRV 

parameters: heart rate, SDNN, rMSSD, pNN50, pNN25, low- and high- frequency and sample entropy. 

SDNN and low frequency represented the HRV features with lower p-value (<0.01), translating into the 

HRV parameters that are most important in differentiating both groups. Regarding the other features, all 

of them assumed as well good values, with an exception for rMSSD, since both results were extremely 

similar.  

Within the subcortical structures of the brain, the brainstem contributes to HRV control, and 

brainstem injury will result in reduced control and contractility [43], which can justify the differences 

in all the parameters above described. Regarding HF and LF, in previous literature is assumed that HF 

feature is mediated by the parasympathetic system, whereas LF represents sympathetic activity [15, 30, 

99]. These features demonstrated reduced values when compared to the healthy group, implying a 

reduction in overall autonomic function in the neonatal encephalopathic group. Since autonomic nervous 

system plays a significant role in balancing the hemodynamic response to hypoxia and hypercapnia, it 

is normal that both HF and LF values are lower for the HIE group [122].  

Almost all the differences were constant with time, with exceptions to pNN25, pNN50, low- 

and high- frequency, as can be observed in Figures 5.23 to Figure 5.26, where there was a clear increase 

for the healthy group. This might be explainable with the maturation of the autonomic nervous system. 

It is important to refer that since the data analysed was small (4 healthy newborns and 4 HIE newborns), 

the results were normalise for the graphics present on the mentioned chapter, due to high discrepancies 

with values. This translates a limitation of the project and a suggestion for future work: the acquisition 

of more ECGs, whether from healthy or HIE newborns, with the purpose of increasing the data size, and 

therefore reduce the discrepancies within values of the same parameter.    

The results demonstrate that HRV is a useful tool for the prediction of long-term 

neurodevelopmental outcome, which could be advantageous for NICUs without access to 

electroencephalography, especially when decisions related to therapeutic and interventions are required. 

Even when EEG is available, using HRV as a tool could be extremely beneficial as a way of assuring 

the best options for the patient. Besides, it confirms the idea that a bedside tool could provide a more 

objective measure of patients “at-risk” of HIE, but also, with more research to improve the accuracy, 

helping distinguish between grades of hypoxia ischemic encephalopathic [30].  
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6.3. Entropy Study  
 

The use of entropy methods to define and quantify the complexity of physiological signals in 

health and disease in human data has become quite popular within the past 20 years [36]. It has been 

confirmed that HRV analysis is important in early detection and quantitative evaluation of diseases, 

being different methods of entropy part of that group. In this dissertation, approximate entropy, sample 

entropy, multiscale entropy and fuzzy entropy were employed to the RR sequences of the HIE and 

healthy groups. 

From Figure 5.27 to Figure 5.30, it is demonstrated the trends of all the entropy methods with 

𝑟 increasing from 0 to 1. Previous literature [36, 38] suggests that 𝑟 values should be between 0.15 and 

0.20. In this analysis, all the methods showed a bigger difference between the two groups, when 𝑟 was 

smaller, confirming this way the presented values for this parameter. Fuzzy entropy exhibits a better 

consistency, when compared to the other methods. The inherent reason for the poor statistical stability 

in the approximate, sample and multiscale entropy is that these methods are based on the Heaviside 

function of the classical sets: it is based in a two-state classifier that judges two vectors as either similar 

or dissimilar, without intermediate states [41]. Fuzzy entropy overcome the poor statistical stability due 

to the replacement on the method, of the Heaviside function by the Zadeh fuzzy set.   

Using a 𝑟 of 0.20, in Figure 5.31 and Figure 5.32 it is possible to observe multiscale entropy 

and fuzzy entropy plotted according to different scales. For both methods, healthy values were always 

superior to HIE ones, increasing through the scales. By observing both figures, the strongest separation 

for multiscale entropy is obtained for time scale 8, being constant for all the further scales. In the case 

of fuzzy entropy, the solidest separation is around scale 12. Of note, the weakest separation between the 

two groups occurred for scale one, which is the only scale studied by approximate and sample entropy. 

Table 5.10 demonstrates a study between the different scales of the two methods, for the healthy 

and HIE group, using independent samples t-test. For the multiscale entropy analysis, the p-value was 

lower for the scales 16, 17 and 20 and for the fuzzy entropy the scales were 17, 18 and 19. It is important 

to refer that higher scales indicate less data in the analysis. This concept is also illustrated by values 

suggested in previous literature [38]  , where it is claimed that the most suitable scales are 2 and 3. 

In the next table (Table 5.11) it is demonstrated the results of various entropy measures applied 

to the RR sequences of the healthy and HIE groups. For all the entropy measures, the healthy group 

assumed higher values, with a smaller standard deviation, when compared to the HIE ones. Considering 

a confidence interval of 99%, the independent sample t-test results demonstrated that ApEn (𝑝 =

0.0679), SampEn (𝑝 = 0.0416) and multiscale entropy (𝑝 = 0.0313) had no statistical value between 

the two groups; while fuzzy entropy (𝑝 = 0.0078) had a significant difference. This result showed that 

FuzzyEn, for this data, has a better performance in distinguishing the hypoxic ischemic encephalopathic 

newborns from the healthy ones. However, it is important to notice that one of the limitations of Fuzzy 

Entropy is that it focuses only on the local characteristics of the sequence. However, the global 

fluctuation in the large scales has been widely found in the sequence. ApEn and SampEn are commonly 

used in HRV analysis due to the ease of their calculations and the small data requirements [34]. Yet, 

and as confirmed in this research, these two entropy measures present poor statistical stability.  

Observing the boxplots in Figure 5.33, it is clear that the distribution ranges of the different 

methods in the HIE group are larger than those in the healthy group. One reason for this situation could 

be that the course of HIE is often accompanied by a larger presence of artefacts (that interfere with the 

acquisition of heart rate), but also arrythmias. Furthermore, the RR sequence of a HIE newborn without 

arrythmias has a regular change caused by the weakening of the regulatory function of the autonomic 

nervous system.   



55 
 

Regarding the multidimensional entropy study, it was investigated how different methods of 

entropy interact with each other and which are the results of that interface, especially to distinguish and 

identify stressful and normal states. 

Associated with a stressful event, there is a high percentage of the signal corrupted by artefacts. 

However, in some cases it was possible to see a clear distinction between groups of clusters, indicating 

that in that period, there was a change of state. Not all the time segments from subjects demonstrated 

differences in stress stages, indicating that there is still room for improvement in the method developed.  

One a first analysis, approximate, sample and multiscale entropy were employed during a 

segment of time of HR data that represent the moment of a stressful event. After that, for the same data, 

approximate entropy was replaced by fuzzy entropy.  

For the stressful event, in both cases (Figure 5.34 and Figure 5.36) it is possible to see a clear 

distinction of the two major groups and, within each group, another transition. The major two groups 

undoubtedly represent a transition of stage, between normal to stressful. When considering the four 

stages present on the graphics, it could translate intermediate stages: relaxed, normal, low-stress and 

high stress. Considering that stress is normally represented by a decrease in complexity science, it is fair 

to assume that the clusters that represent the transitions in stress state are the ones located at left. 

Regarding the replacement of approximate entropy for fuzzy entropy, there was no change between the 

two figures presented. However, the use of fuzzy entropy is advisable due to a better statistical 

probability. 

In the case of no register of stress written, for the same subject and for the same features, Figure 

5.38 and Figure 5.40 were obtained. Like expected, it is clear a difference between a stressful and a 

normal status. In the last case, it is only possible to identify 2 states, even though they are close to each 

other. With this type of conditions (where supposedly the newborn was not submitted to any kind of 

stressful event) the variations in entropy measures are not that abrupt and significant. Considering the 

last four stages mentioned above, in the case of a non-stressful event, for this subject, the results indicate 

that these conditions might be among normal and low-stress. When considering Figure 3.40, where it 

was applied fuzzy entropy instead of approximate entropy, the results are less stationary, being reflected 

in the graphic. Nevertheless, it is possible to distinguish two different groups, corresponding to the 

results described above.  
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Heart rate and its variability offers significant insight in critical care medicine. For newborns 

with hypoxic ischemic encephalopathy, this feature is even more significant due to its influence on the 

classification and evaluation of this condition. Nevertheless, the heart rate of the infants monitored in 

the NICU is susceptible to artefacts, due to the intensity of clinical care and monitoring. These artefacts 

interfere with the characterization and subsequent evaluation of the heart rate, leading to serious 

consequences, both in diagnostic and therapeutic decisions.   

Although there are many algorithms developed by other groups regarding artefacts in adult 

ECGs, few perform well in newborns ones, due to all the differences and peculiarities in the signal. 

Also, they create artificial values as a way of reducing the presence of noise in this type of data, 

camouflaging and not reflecting the correct and true information.  

The algorithm developed in this dissertation focused on the mathematical aspects of beat to beat 

time and on a well-known method to correctly eliminate spikes. The principal aim of it is to identify 

artefacts in different types of ECG data, intermixed with artefactual and non-artefactual periods of time. 

The final algorithm, in addition to fulfilling the objective described above, is also adaptable to different 

types of artefacts present in the signal, allowing the user, in a very intuitive way, to choose the type of 

parameters and steps to be applied, being easily usable by professionals from different areas. 

The cross validated classification results showed that the proposed algorithm can detect artefacts 

in newborns electrocardiograms, with an overall Recall rate of 95%, accomplishing the purpose of its 

creation.  

This dissertation contained another algorithm with the purpose of identifying stress situations 

in newborns. To reach that goal, it was created a multidimensional method employing the different 

entropy methods used in this research. This algorithm was suitable to see how the different entropy 

methods interact with each other and what the results of this relationship are, especially in the distinction 

of normal and stressful states. Unfortunately, associated with a stressful event, there is a high percentage 

of the signal corrupted by artefacts. However, in some cases it was possible to observe a clear distinction 

of groups of clusters, indicating that in that period, there was a change of state. 

This study has also demonstrated significant differences in heart rate parameters between 

healthy and HIE neonates. Also, comparing several methods of entropy, fuzzy entropy had a better 

performance in distinguishing the HIE subjects from the healthy subjects. These results demonstrate the 

potential of HRV features as physiological markers of HIE in neonates, as well as a useful predictor of 

long-term neurodevelopmental outcome. 

As with any project, more can still be done and improved. Firstly, it is necessary to acquire more 

electrocardiograms, either from healthy newborns or with hypoxic-ischemic encephalopathy, to increase 

the sample size and thus decrease the values of the standard deviation in all the calculated parameters. 

Regarding the stress study, it would be interesting, with a larger sample, the definition of clusters, to 

have an accurate identification of stressful situations. In addition, the transformation of the software 

currently written in MATLAB to GUI (graphical user interface), with the purpose of making it more 

accessible by professionals from different areas. Regarding the algorithms proposed, the creation of an 

algorithm that could verify if the R peaks were well marked before starting the processing process would 

be extremely beneficial in the artefact detection, improving the ranges presented in Table 5.6.  
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This section contains the appendices referring to the project developed in this dissertation. The 

original MATLAB codes written through this project are also include in this chapter, with the objective 

of demonstrate the computational logic of each algorithm.  

 

 

Appendix I – Diagram describing the algorithm used to extract R peaks from ECGs; 

 

Appendix II – Silva&Rosenberg Algorithm; 

 

Apendix III – Altered Govindan’s Algorithm; 

 

Appendix IV – Main HRV analysis Algorithm; 

 

Appendix V – Entropy Measures Algorithm; 

 

Appendix VI – Multidimensional Entropy Study Algorithm; 
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Appendix II 

%% Artefact reject algorithm ( Silva&Rosenberg) 

% Mariana Santos Silva 

 

function out = HRV_rejectnoise2(varargin) 

  
parameter_fields = {'Directory', 

'out','selection','Corrections','saving','plotting'}; 
default_values   = {'',1 ,'all','Raw','no', 1}; 
[Directory, out, selection, Corrections, saving, plotting] = 

gen_getInputParams(parameter_fields, default_values, varargin); 

  
if and(~isstruct(out), strcmp(Directory,'')) 
    error('The directory or ''out'' need to be specified') ; 
end 

  
% Find all files of interest and load them: 

  
if ~isstruct(out) % if out and Directory are specified, out wins 
    names_RR = gen_findFiles(Directory,'*', '_RR', '.mat'); 
    [filePaths, fileNames, out] = gen_loadFiles(names_RR); clear names_RR 
else 
    filePaths = out.filePaths; 
    fileNames = out.fileNames; 
end 

  
if strcmp(selection,'all') 
    selection = (1:length(fileNames)); 
end % If not, it must be a vector containing indices 

  
corrects = strsplit(Corrections, '--'); 

  
for k = selection 
    subject = out.(gen_getLetterIndex(k)); 
    for correction = corrects 
        node    = gen_sup_loadNode(subject, correction{1}); 
        if ~isstruct(node) 
            disp(['Skipping HRV_rejectnoise for (', num2str(find(k == 

selection)),'/',num2str(length(selection)),'): ', [fileNames{k}], ' ...']); 
        else 
            disp(['Checking for noisy segments in (', num2str(find(k == 

selection)),'/',num2str(length(selection)),'): ', [fileNames{k}], ' ...']); 

             
            rr_time_raw     = node.rr_time; %non-interpolated time points of RRI 
            rr_val_raw      = node.rr_val; %non-interpolated values of RRI 

             
            %% Steps 
            % Enables the user to switch the filters to be used in the 
            % analysis. 1 is on and 0 is off. 
            F1=1; 
            F2=1; 
            F3=1; 
            F4=1; 
            F5=1; 
            F6=1; 
            F7=1; 
            F8=1; 

             
            for i=1:4 

                 
                if i == 1 
                    rr_val_tmp = rr_val_raw; 
                    rr_time_tmp = rr_time_raw; 
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                else 
                    A= exist ('rr_val_new','var'); 

                     
                    if A == 0 
                        % This case shouldn't happen: 
                        %                        error('No new variable was 

created') 
                        rr_val_tmp = rr_val_raw; 
                    else 
                        rr_val_tmp = rr_val_new; 
                        rr_time_tmp = rr_time_new; 
                    end 
                end 
                total_raw = length(rr_val_tmp); 
                rr_val_excl_extremes = rr_val_tmp; 

                 
                if F1==1 
                    %%      F1     %% 
                    %Exclude the values above 1000 ms (60 bpm) 
                    idx_max = find( abs(rr_val_tmp) > 1000); 
                    rr_val_raw_excl_max= rr_val_tmp; 
                    rr_val_raw_excl_max(idx_max) = nan; 
                    rr_val_excl_extremes(idx_max) = nan; 

                     
                    %Calculates the % of data excluded of F1 
                    F1_size=length(idx_max); 
                    F1=(F1_size)/(total_raw); 
                end 

                 
                if F2==1 
                    %%      F2     %% 
                    %Exclude the values below 300 ms (200 bpm) 
                    idx_min = find(abs(rr_val_tmp) < 300); 
                    rr_val_raw_excl_min = rr_val_tmp; 
                    rr_val_raw_excl_min(idx_min) = nan; 
                    rr_val_excl_extremes(idx_min)= nan; 

                     
                    %Calculates the % of data excluded of F2 
                    F2_size=length(idx_min); 
                    F2=(F2_size)/(total_raw); 
                end 

                 
                if F3==1 
                    %%      F3     %% 
                    % Go through the rr_val_excl_extremes in intervals of 10 

intervals, calculating the mean and 
                    %standard deviation in each one 
                    %Intervals that are outside of a range of +/- 50% of the mean 
                    %of the last 15 intervals are discarded 

                     
                    rr_val_F3 = rr_val_excl_extremes; 

                     
                    new_mean = movmean(rr_val_F3,10,'omitnan'); 
                    new_std = movstd(rr_val_F3,10,'omitnan'); 

                     
                    idx_interval=find(and((abs(rr_val_F3) > 

(new_mean+(0.5*rr_val_F3))),(abs(rr_val_F3)< (new_mean-(0.5*new_mean))))); 
                    rr_val_excl_extremes(idx_interval+1)=nan; 

                     
                    %Calculates the % of data excluded of F3 
                    F3_size=length(idx_interval); 
                    F3=(F3_size)/(total_raw); 
                end 

                 
                if F4==1 
                    %%      F4     %% 
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                    %Discard the intervals whose difference from the previous 
                    %interval is not within 5 standard deviations of the mean of 
                    %the previous 512 differences (64-second moving window-512 
                    %samples) 

                     
                    rr_val_F4=rr_val_excl_extremes; 
                    difference_F4 = diff(rr_val_F4); 
                    mean_4 = movmean(difference_F4,512,'omitnan'); 

                     
                    idx_4=find( and( (abs(difference_F4) > 

(5*(std(mean_4)))),(abs(difference_F4) < (5*(std(mean_4)))) ) ); 
                    rr_val_excl_extremes(idx_4+1)=nan; 

                     
                    %Calculates the % of data excluded of F4 
                    F4_size=length(idx_4); 
                    F4=(F4_size)/(total_raw); 
                end 

                 
                if F5==1 
                    %%      F5     %% 
                    %After the processing with the filters above, there are some 
                    %noisy parts that are not eliminated, having excluded values 

(NaN) with RR values. 
                    %Considering that the NaN represent eliminated parts, it does 
                    %not make sense having RR intervals between this values. 

                     

                     
                    for j=1:5 

                         
                        new_rr_val_extremes=rr_val_excl_extremes; 

                         
                        new_rr_val_extremes(~isnan(new_rr_val_extremes))=0; %Change 

numbers to 0 
                        new_rr_val_extremes(isnan(new_rr_val_extremes))=1; %Change 

Nan to 1 

                         
                        sum_rri_5=movsum(new_rr_val_extremes,5); %Calculates the 

sum of intervals of 5 
                        sum_rri_6=movsum(new_rr_val_extremes,6); %Calculates the 

sum of intervals of 6 
                        sum_rri_8=movsum(new_rr_val_extremes,8); %Calculates the 

sum of intervals of 8 
                        sum_rri_10=movsum(new_rr_val_extremes,10); %Calculates the 

sum of intervals of 8 

                         
                        %For one value between NaNs 
                        

rr_val_excl_extremes(and((new_rr_val_extremes==0),(sum_rri_5==4)))=nan; 
                        

rr_val_excl_extremes(and((new_rr_val_extremes==0),(sum_rri_5==3)))=nan; 
                        

rr_val_excl_extremes(and((new_rr_val_extremes==0),(sum_rri_5==2)))=nan; 

                         
                        %For two value between NaNs 
                        

rr_val_excl_extremes(and((new_rr_val_extremes==0),(sum_rri_6==4)))=nan; 
                        

rr_val_excl_extremes(and((new_rr_val_extremes==0),(sum_rri_8==6)))=nan; 

                         
                        %Delete the isolated values between NaNs 
                        

rr_val_excl_extremes(and((new_rr_val_extremes==0),(sum_rri_10==5)))=nan; 

                         
                    end 
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                    %Calculates the % of data excluded of F5 
                    F5_size=length(new_rr_val_extremes)-

length((rr_val_excl_extremes)); 
                    F5=(F5_size)/(total_raw); 
                end 

                 
                if F6==1 
                    %%      F6     %% 
                    %Threshold with a 20's moving window, with 99% Confidence 

Interval 
                    %(changed to 5sd, to be according to the previous filters) 

                     
                    rr_val_std  = rr_val_excl_extremes; 

                     
                    M = movmean(rr_val_std,20,'omitnan'); 
                    S= movstd(rr_val_std, 20,'omitnan'); 

                     
                    idx_F6= find(rr_val_std < abs(M-5*S)); 
                    idx_F61= find(rr_val_std > abs(M+5*S)); 

                     
                    rr_val_std(idx_F6+1)=nan; 
                    rr_val_std(idx_F61+1)=nan; 
                    rr_val_excl_extremes(idx_F6+1)=nan; 
                    rr_val_excl_extremes(idx_F61+1)=nan; 

                     
                    %% After conditions %% 

                     
                    %% C1: RRi<M-2S and RR(i-1)>M+2S 

                     
                    for i=1:length(rr_val_std) 
                        if i==1 
                            idx_C1=find(abs(rr_val_std)>2000); 
                        else 
                            idx_C1=find(abs(rr_val_std(i))<(M(i)-2*S(i)) & 

abs(rr_val_std(i-1))>(M(i-1)*2*S(i-1))); 
                        end 
                    end 

                     
                    %% C2: RRi<0.75R(i+1) or RR(i+1)<0.75RR(i-1) 
                    for i=1:length(rr_val_std) 

                         
                        if i==length(rr_val_std) || i==1 

                             
                            idx_C2=find(abs(rr_val_std)>2000); 

                             
                        else 
                            idx_C2=find(abs(rr_val_std(i)) < 0.75*rr_val_std(i+1)) 

| abs(rr_val_std(i+1)) < 0.75*rr_val_std(i-1); 
                        end 

                         
                    end 

                     
                    %% C3: RRi>  2RR(i-1) 
                    for i=1:length(rr_val_std) 
                        if i==1 
                            idx_C3=find(abs(rr_val_std)>2000); 
                        else 
                            idx_C3=find(abs(rr_val_std(i)) > 2*abs(rr_val_std(i-

1))); 

                             
                        end 
                    end 

                     
                    %             rr_val_excl_extremes(idx_C1+1)=nan; 
                    rr_val_excl_extremes(idx_C2+1)=nan; 
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                    rr_val_excl_extremes(idx_C3+1)=nan; 

                     

                     
                    %Calculates the % of data excluded of F6 
                    F61_size = length(idx_F6); 
                    F62_size = length(idx_F61); 
                    %             F63_size = length(idx_C1); 
                    F64_size = length(idx_C2); 
                    F65_size = length(idx_C3); 

                     
                    %             F6_size = F61_size + F62_size + F63_size + 

F64_size + F65_size; 
                    F6_size = F61_size + F62_size +  F64_size + F65_size; 
                    F6=(F6_size)/(total_raw); 
                end 

                 
                if F7==1 
                    %%      F7     %% 
                    %Excludes the intervals which difference is five times the 

total standard 
                    %desviation 

                     
                    rr_val_7  = rr_val_excl_extremes; 

                     
                    std_total = std(rr_val_7, 'omitnan'); %std of the data 
                    difference = diff(rr_val_7); 

                     
                    idx_F7 = find(abs(difference) > 5*std_total); 

                     
                    rr_val_excl_extremes(idx_F7+1)=nan; 

                     
                    F7_size=length(idx_F7); 
                    F7=(F7_size)/(total_raw); 
                end 

                 
                if F8==1 
                    %%      F8     %% 
                    %Exclude the RR interval differences bigger than 200 
                    %(physiological impossible) 

                     
                    rr_F8 = rr_val_excl_extremes; 
                    diff_F8 = diff(rr_F8); 

                     
                    idx_F8 = find( abs(diff_F8) > 200); 

                     
                    rr_val_excl_extremes(idx_F8+1)=nan; 

                     
                    F8_size=length(idx_F8); 
                    F8=(F8_size)/(total_raw); 

                     

                     
                    rr_time_new = rr_time_tmp(~isnan(rr_val_excl_extremes)); 
                    rr_val_new  = 

rr_val_excl_extremes(~isnan(rr_val_excl_extremes)); 
                end 
            end 

             
            A= exist ('rr_val_new','var'); 

             
            if A == 0 
                %                 error('No new variables were created') 
                rr_val_new = rr_val_raw; 
                rr_time_new = rr_time_raw; 
            end 
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            %% 
            % Plots only the new RRI 
            if plotting 
                figure; clf; hold all; title(['New RRI, after ' num2str(i) 

'iterations, correction: ' correction{1}]) 
                plot(rr_time_raw, rr_val_raw,'+'); 
                plot(rr_time_new, rr_val_new); 
                legend('previous RRIs', 'new RRI time series') 
            end 

             
            min_rr=min(rr_val_raw); 
            max_rr=max(rr_val_raw); 
            F=[F1, F2, F3, F4, F5, F6, F7, F8]; 

             

             
            fprintf('The maximum of RR intervals(raw) is %d. \n ',max_rr); 
            fprintf('The minimum of RR intervals(raw) is %d. \n',min_rr); 

             
            %% Calculate the ratio of removed RRI: 
            rr_time_raw     = subject.Raw.rr_time; %Non-interpolated time points of 

RRI 
            rr_time_corr    = rr_time_new; %Time points of RRI after corrections 

             
            length_raw = length(rr_time_raw); 
            length_corr = length(rr_time_corr); 

             
            usefulDuration_fraction =(length_corr)/(length_raw); 
            %% 

             
            RR_TIME = rr_time_new(1):1/node.RR_fs:rr_time_new(end); 
            RR_VAL = 

interp1(rr_time_new(1:end),rr_val_new(1:end)/1000,RR_TIME,'pchip'); 

             
            node_new = []; 
            node_new.rr_val         = rr_val_new; 
            node_new.rr_time        = rr_time_new; 
            node_new.RR_fs          = node.RR_fs; 
            node_new.rr_val_interp  = RR_VAL'; 
            node_new.rr_time_interp = RR_TIME'; 
            node_new.usefulDuration_fraction = usefulDuration_fraction; 
            node_new.updated        = clock; 
            node_new.Filters        =F; 
            node_new.Validation        = rr_val_excl_extremes; 

             
            subject     = gen_sup_addNode(subject, node_new, [correction{1} 

'++noise']); 
            clear node_new; 

             
            if strcmp(saving,'save') 
                disp(['Saving (', num2str(find(k == 

selection)),'/',num2str(length(filePaths)),'): ', fileNames{k}, ' ...']); 
                corrs = strsplit(correction{1}, '++'); 
                % eval([corrs{1} ' = subject.(corrs{1});']); % corrs{1} will 

usually be 'Raw' 
                % save([filePaths{k}(1:end-4), '.mat'], corrs{1}, '-append'); 
                gen_sup_saveVariable([filePaths{k}(1:end-4), '.mat'], corrs{1}, 

subject.(corrs{1})) 
            end 

             
        end 

         
    end 
    out.(gen_getLetterIndex(k)) = subject; 
end 
end 
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Appendix III 
 
%% Trial to replicate Govindan work (2016) on noise reduction 

%Mariana Santos Silva 09/04/2017 

 

clear 

tic 

E = 1.05:0.05:2.05; 

  

figure(5); clf; % To have a handle to refer to 

  

% Load data - only once since that can be slow 

L = load('data.mat'); 

rr_time_loaded = L.Raw.rr_time; 

rr_val_loaded  = L.Raw.rr_val; 

  

RMS_correction = nan(1,length(E)); 

iter = RMS_correction; 

for k = 1:length(E) 

    e = E(k); 

     

    rr_val = rr_val_loaded*0.001; % Change RRI to seconds 

     

    % Step 1 

    yy_adjusted = rr_val; 

    yy_start = nan(size(yy_adjusted)); 

     

    iteration_counter = 0; 

    while ~isequal(yy_start, yy_adjusted) 

        iteration_counter = iteration_counter + 1; 

        if iteration_counter > 300 

            break; 

        end 

        yy_start = 60./yy_adjusted; % Starting with heart rate (from next iteration 

it's step 1.d) 

         

        % Outsource the next part, since it is used four times in this script: 

        yy_adjusted = replace_maxima(yy_start, e); 

    end 

    iter(k) = iteration_counter; 

     

    % Check, if last step was in HR or RRI; transform to HR 

    if mean(yy_adjusted)<10 

        HR = 60./yy_adjusted; 

    else 

        HR = yy_adjusted; 

    end 

     

    %%Calculation of the RMS of the difference between uncorrected HR and corrected 

HR 

    RMS_correction(:,k) = rms(HR-60./rr_val); 

     

    % Step 2: iteration for different e 

end; clear k e; 

toc 

disp(iter); 

  

%% Step 2 

%Identification of the optimal E: E*=min{RMSj-RMSj+1}, j=1 to n-1 

difference_RMS  = -diff(RMS_correction); 

[~, idx_e_opt]  = min(difference_RMS); 

opt_e = E(idx_e_opt); 

%RMS plotted as a function of E 

figure(6); clf; 

plot(E,RMS_correction); 

title('RMS plotted as a function of E'); 

xlabel('E') 

ylabel('RMS') 
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hold on 

  

%% Step 3 %% 

%Calculation of all the parameters with the optimal e and plots of 

%different phases 

rr_time = rr_time_loaded./60; 

% Step 1 

yy_adjusted = rr_val_loaded*0.001; % Change RRI to seconds 

yy_start = nan(size(yy_adjusted)); 

  

figure(5); clf; 

subplot(6,1,1) 

plot(rr_time_loaded./60, 60./yy_adjusted)% Change time axis to minutes 

title('Uncorrected HR'); 

xlabel('Time (minutes)') 

ylabel('HR (min)') 

  

iteration_counter = 0; 

while ~isequal(yy_start, yy_adjusted) 

    iteration_counter = iteration_counter + 1; 

    yy_start = 60./yy_adjusted; % Starting with heart rate (from next iteration 

it's step 1.d) 

     

    yy_adjusted = replace_maxima(yy_start, opt_e); 

     

    if iteration_counter >300 

        break; % Emergency exit 

    end 

    if or(iteration_counter == 1, iteration_counter == 3) 

        figure(5) 

        subplot(6,1,iteration_counter+1) 

        plot(rr_time, yy_adjusted); 

        title(['Iteration ' num2str((iteration_counter+1)/2) ', \epsilon = ' 

num2str(opt_e)]); 

        xlabel('Time (minutes)') 

        ylabel('HR (min)') 

    elseif or(iteration_counter == 2, iteration_counter == 4) 

        figure(5) 

        subplot(6,1,iteration_counter+1) 

        plot(rr_time, yy_adjusted); 

        title(['Iteration ' num2str(iteration_counter/2) ', \epsilon = ' 

num2str(opt_e)]); 

        xlabel('Time (minutes)') 

        ylabel('RRI (s)') 

    end 

end 

  

% Check, if last step was in HR or RRI; transform to HR 

if mean(yy_adjusted)<10 

    HR = 60./yy_adjusted; 

else 

    HR = yy_adjusted; 

end 

  

HR_corrections_removed = HR; 

HR_corrections_removed(HR~=60./(rr_val_loaded*0.001))=nan; 

  

figure(5) 

subplot(6,1,6); hold all; 

plot(rr_time, HR); 

plot(rr_time, HR_corrections_removed); 

title('Final output'); 

xlabel('Time (minutes)') 

ylabel('HR (bpm)') 

hold on 
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Appendix IV 

% Main HRV processed and analysis algorithm  

% Apply after _RR has been created 

close all; clear; clc; 

tic 

  

% Independent of TW: 

AddPatientData          = 0; 

AddEventData            = 0; 

RemoveIrregularities    = 1; 

DetrendRRI              = 1; 

% Dependent on TW: 

StressComplexity        = 1; 

StressFrequency         = 1; 

StressTime              = 1; 

% Post-processing: 

  

% Plotting: 

CreateLinePlots         = 1; 

CreateBandPlots         = 1; 

CreateBandPlotsAll      = 1; 

  

%  

ExportToExcel           = 0; 

  

% Classification 

Categorising            = 0; 

  

Directory   = [gen_getOwnCloudDirectory() '\Results_Thesis\']; 

Interval    = 60; 

TWs         = [300]; 

saving      = 'save'; 

select      = 'all'; 

  

corrects     = 'Raw--Raw++Govindan--Raw++DUD++SP++noise--Raw++Govindan++DetrendH--

Raw++DUD++SP++noise++DetrendH--Raw++DUD++SP++noise++Govindan'; 

plotCorrects = 'Raw--Raw++DUD++SP++noise++Govindan'; 

% For Calculations: 

TimeParams  = 'avgHR--SDNN--rMSSD--pNN50--pNN25'; 

% For Plotting and Analysis: 

LineParams  = 'HR--RRI--LFiA--LFp--HFiA--HFp--LFSE--SDNN--HFSE--pNN25'; 

BandParams  = 'HFp--LFp--HFiA--LFiA--HFSE--LFSE--avgHR--SDNN--rMSSD--pNN50--pNN25'; 

ClasParams  = 'HFp--LFp--HFiA--LFiA--SEAll--TFSE--HFSE--LFSE--avgHR--SDNN--pNN25--

rMSSD--pNN50'; 

E_beg       = '';%'Useful start'; 

E_end       = '';%'Useful stop'; 

E_nam       = 'Test';%'Useful'; 

  

% Make compatible with all operating systems: 

Directory = strrep(Directory, '\',  gen_getFolderDelimiter); 

Directory = strrep(Directory, '/', gen_getFolderDelimiter); 

  

%%%%% 

names_RR = gen_findFiles(Directory, '*', '_RR', '.mat'); % For only one file 

replace '*' 

[filePaths, fileNames, out] = gen_loadFiles(names_RR); clear names_RR 

%%%%% 

%%% To clean all calculated data apart from raw RRI and meta-data: 

% ECG_clearRRFiles(Directory, 'prefix','*') 

%%%%% 

  

%% 

  

if AddPatientData 

    

HRV_addPatientData_HIE('pathFolder',Directory,'pathFile','C:\Users\Utilizador\ownCl

oud\HIE\UpdateMarianaMay\Data-Wilhelm-2\birthdates.csv'); 
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end 

  

if AddEventData 

    HRV_addEventData_HIE('pathFolder',Directory); 

end 

  

if RemoveIrregularities 

    out = HRV_rejectPeaks('PeakType','DownUpDown', 'Corrections','Raw', 

'fact_std',4, ... 

       'out',out, 'saving',saving, 'selection',select, 'plotting',0); 

    out = HRV_rejectPeaks('PeakType','SinglePeaks', 'Corrections','Raw++DUD', 

'fact_std',10, ... 

       'out',out, 'saving',saving, 'selection',select, 'plotting',0); 

    out = HRV_rejectnoise2('Corrections','Raw--Raw++DUD++SP','out',out, 

'saving',saving, 'selection',select, 'plotting',0); 

    out = HRV_rejectGovindan('Corrections','Raw--Raw++DUD++SP++noise','out',out, 

'saving',saving, 'selection',select, 'plotting',0, 'median2nan','yes'); 

   out = HRV_markRejections('Corrections','Raw--Raw++Govindan--Raw++DUD++SP++noise-

-Raw++DUD++SP++noise++Govindan', 'W',20, 'fraction',0.3, ... 

       'out',out, 'saving',saving, 'selection',select, 'plotting',0);% A bit more 

than specified 5s since that was excluding one RRI between normal peaks 

end 

  

if DetrendRRI 

     out = HRV_detrend('Corrections','Raw--Raw++Govindan--Raw++DUD++SP++noise', 

'method','highpass', ... 

         'out',out, 'saving',saving, 'selection',select); 

     % One detrending algorithm should be enough 

%      out = HRV_detrend('Corrections','Raw--Raw++Govindan--Raw++DUD++SP++noise', 

'method','movAvg',   ... 

%         'out',out, 'saving',saving, 'selection',select); 

end 

  

%% Calculate stress indices 

for TW = TWs 

    if StressTime       % Stress indices in the time domain 

        out = HRV_calcStressIndexOneD('Types',TimeParams, 'TW',TW, 

'Interval',Interval, ... 

            'Corrections',corrects, 'saving',saving, 'selection',select, 

'out',out); 

    end     

     

    if StressComplexity % Stress indices in the frequency domain 

        out = HRV_calcStressIndexOneD('Types','SEAll', 'TW',TW, 

'Interval',Interval, ... 

            'saving',saving, 'selection',select, 'out',out, 

'Corrections',corrects); 

        out = HRV_calcStressIndexTwoD('Types','SE',    'TW',TW, 

'Interval',Interval, ... 

            'saving',saving, 'selection',select, 'out',out, 

'Corrections',corrects); 

    end 

    if StressFrequency  % Stress indices in the frequency domain 

        out = HRV_calcStressIndexTwoD('Types','power--instAmp', 'Age','Newborn', 

'TW',TW, 'Interval',Interval, ... 

            'saving',saving, 'selection',select, 'out',out, 

'Corrections',corrects); 

    end 

end 

  

%% Plot line plots 

for TW = TWs 

    if CreateLinePlots % Plot stress parameters over time 

        A_S = ''; A_E = 'start--stop'; 

        HRV_plotLines('Types',LineParams, 'TW',TW, 'Interval',Interval, ... 

            'AnnoStart',A_S, 'AnnoEnd',A_E,  'showComments','no', ... 

            'saving',saving, 'selection',select, 'out',out, 

'Corrections',plotCorrects); 
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    end 

     

    if CreateBandPlots 

        EBuffer     = ones(length(strfind(E_beg,'--'))+1,2)*round(TW/2); 

        [Data, D_info] = HRV_extractStressIndices('Types',BandParams, 'TW',TW, 

'Interval',Interval, ... 

            'EventBegins',E_beg, 'EventEnds',E_end, 'EventNames',E_nam, 

'EventBuffer',EBuffer, ... 

            'out',out, 'selection',select, 'Corrections',corrects); 

        HRV_plotAreasTime(Data, D_info, 'BySubjects');         

    end 

end 

  

  

%% Temporary Solution to extract the full files 

if ExportToExcel 

    TW = TWs(1); 

    for i = 1:length(fileNames) 

        out.(char(64+i)).info.Events{1,1} = 'Tmp_Start'; 

        out.(char(64+i)).info.Events{1,2} = 0; 

        out.(char(64+i)).info.Events{2,1} = 'Tmp_Stop'; 

        out.(char(64+i)).info.Events{2,2} = 1e12; 

    end 

    E_beg = 'Tmp_Start'; 

    E_end = 'Tmp_Stop'; 

    E_nam = 'all'; 

    EBuffer         = ones(length(strfind(E_beg,'--'))+1,2)*round(TW/2); 

    [Data, D_info]  = HRV_extractStressIndices('Types',BandParams, 'TW',TW, 

'Interval',Interval, ... 

        'EventBegins',E_beg, 'EventEnds',E_end, 'EventBuffer',EBuffer, 

'EventNames',E_nam, ... 

        'out',out, 'selection',select, 'Corrections',corrects); 

    % Data: cell-Array containing the HRV tables for all subjects and 

    % corrections; there is one row per subject and one column per correction; 

    % the order of rows and columns corresponds to the fileNames and corrects, 

    % respectively (it's also the order of the entries in D_info). Every cell 

    % contains one table for all times and parameters as specified in 

    % BandParams. Normally you would choose certain events, but in this case 

    % it's the whole files. 

    for k = 1:length(D_info.FileNames) 

        for c = 1:length(D_info.Corrections) 

            file = D_info.FileNames{k}; 

            correction = D_info.Corrections{c}; 

            TableToExport = Data{k,c}; 

            % I'm not sure about the following line: 

            writetable(TableToExport,[correction '.xls'],'Sheet',file); 

        end 

    end 

end 

  

for TW = TWs 

    if CreateBandPlotsAll 

        EBuffer         = ones(length(strfind(E_beg,'--'))+1,2)*round(TW/2); 

        [Data, D_info]  = HRV_extractStressIndices('Types',BandParams, 'TW',TW, 

'Interval',Interval, ... 

            'EventBegins',E_beg, 'EventEnds',E_end, 'EventBuffer',EBuffer, 

'EventNames',E_nam, ... 

            'out',out, 'selection',select, 'Corrections',corrects); 

        % HRV_plotAreasTime(Data, D_info, 'MixSubjectsAll'); 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        for i = 1:length(fileNames) 

            if strcmp(fileNames{i}(1:2),'H0') 

                D_info.Labels{i} = 'Healthy'; 

            else 

                D_info.Labels{i} = 'HIE'; 

            end 

        end 

        D_info.Directory = Directory; 
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %%% 

        %%% Assign colours to people according to sickness: 

        %%% 

        Idx_HIE                = find(not(cellfun('isempty', strfind(D_info.Labels, 

'HIE')))); 

        Idx_Healthy            = find(not(cellfun('isempty', strfind(D_info.Labels, 

'Healthy')))); 

        Idx_Unsure             = find(not(cellfun('isempty', strfind(D_info.Labels, 

'Unsure')))); 

        colours_HIE            = autumn(numel(Idx_HIE)+1);     % +1 to avoid yellow 

        colours_Healthy        = summer(numel(Idx_Healthy)+1); % +1 to avoid yellow 

        colours_Unsure         = gray(numel(Idx_Unsure)+1);    % +1 to avoid white 

        colours                = nan(length(fileNames),3); 

        colours(Idx_HIE,:)     = colours_HIE(1:end-1,:); 

        colours(Idx_Healthy,:) = colours_Healthy(1:end-1,:); 

        colours(Idx_Unsure,:)  = colours_Unsure(1:end-1,:); 

         

        HRV_plotAreasTime(Data, D_info, 'SubjectsPerEventAll', 'colours',colours) 

    end 

     

    %% 

    if Categorising 

         

        EBuffer     = ones(length(strfind(E_beg,'--'))+1,2)*round(TW/2); 

         

        corrects = 'Raw++DUD++SP++DetrendH--Raw'; 

        out.A.info.Label = {'Healthy'}; 

        out.D.info.Label = {'Healthy'}; 

        out.E.info.Label = {'Healthy'}; 

        [Data, D_info] = HRV_extractStressIndices('Types',ClasParams, 'TW',TW, 

'Interval',Interval, ... 

            'EventBegins',E_beg, 'EventEnds',E_end, 'EventBuffer',EBuffer, 

'EventNames',E_nam, ... 

            'out',out, 'selection',select, 'Corrections',corrects); 

         

        if 0 % All correction and parameter combinations: 

            [trainedClassifier, DataTable_Values, validationAccuracy] = 

HRV_classifyScenarios(Data, D_info, ... 

                'sameCorrection', 'Label', 'Group','all', ... 

                'KernelFunction','polynomial', 'saveResults','no', 

'includeTime','no', ... 

                'combinations2Dplots',{'Raw__HFiA','Raw__LFiA'; 

'Raw__HFp','Raw__LFp'}); 

        else % Specify mix of correction and parameter 

            corrections = strsplit(corrects, '--'); 

            CorrectionParam = {corrections{2},'HFiA'; corrections{2},'LFiA'; ... 

                corrections{2},'HFp'; corrections{2},'LFp'; ... 

                corrections{2},'HFSE'; corrections{2},'LFSE'; ... 

                corrections{2},'TFSE'; corrections{2},'rMSSD'; ... 

                corrections{2},'pNN25'; corrections{1},'SDNN'; 

corrections{1},'SEAll'}; 

             

            [trainedClassifier, DataTable_Values, validationAccuracy] = 

HRV_classifyScenarios(Data, D_info, ... 

                'individualCorrection', 'Label', 'Group','all', 

'CorrectionParam',CorrectionParam, ... 

                'KernelFunction','polynomial', 'saveResults','no', 

'includeTime','no', ... 

                'combinations2Dplots',{'Raw__HFiA','Raw__LFiA'; 

'Raw__HFp','Raw__LFp'}, 'Margin',1/3); 

        end 

    end 

end 

  

toc 
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Appendix V 

 

%% Entropy measures algorithm  

% Mariana Santos Silva 

 

%% Clear and load data 

clear all; 

load('babyData.mat'); 

  

N = 1000; 

P = 3; 

  

%% Plot filtered RRI data 

L = length(babyData); 

figure; hold on; 

for i = 1:L 

    time = babyData{i}.rr_time; 

    RRI = medfilt1( babyData{i}.rr_val, 5 ); 

     

    plot(time, RRI); 

end 

grid on; grid minor; 

set(gca, 'fontsize', 16); 

  

%% Compute entropy measures for RRI data 

  

dataPath = ['C:\Users\ms8517\ownCloud\Multidimensional_Analysis\']; 

  

for i = 9:9 

    time = babyData{i}.rr_time; 

    realTime = datetime(babyInfo{i,1}.DateStartDevice) + seconds(time); 

    RRI = medfilt1( babyData{i}.rr_val, 5 ); 

     

    idx = [1:length(RRI)-N+1; N:length(RRI)]; 

     

    M = size(idx,2); 

    M = 5000;  

     

    %ApEn = zeros(M, 1); 

    %SampleEn = zeros(M,1); 

    MSE = zeros(M, P); 

    %FuzzEnt = zeros(M, P); 

     

    for j = 1:M 

        tmp = RRI(idx(1,j):idx(2,j)); 

        r = 0.2 * std(tmp); 

        ApEn(j) = ApEntr(3, r, tmp); 

        SampleEn(j) = sampleEntropy(tmp, 3, r, 1); 

        MSE(j, :) = ECG_TC_mmse(tmp, 3, 1, P)'; 

        FuzzEnt(j, :) = mmfe(tmp,3,1,0.15,2,P)'; 

        [i, 100*j/M] 

    end 

     

save([dataPath, 'results_MSE\MSE_baby_' num2str(1) '.mat'], 'MSE'); 

end 

  

%% 

  

  

for ii = 1:1 

     

    time = babyData{ii}.rr_time; 

    realTime = datetime(babyInfo{ii,1}.DateStartDevice) + seconds(time); 

    RRI = medfilt1( babyData{ii}.rr_val, 5 ); 

    idx = [1:length(RRI)-N+1; N:length(RRI)]; 

    ApEn = load([dataPath 'results_Ap\ApEn_baby_' num2str(ii) '.mat']); 

    ApEn = struct2array(ApEn); 
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    SampleEn = load([dataPath 'results_SE\SampleEn_baby_' num2str(ii) '.mat']); 

    SampleEn = struct2array(SampleEn); 

     

    figure; 

    ax1 = subplot(2,1,1); hold on; 

    plot(realTime(idx(2,:)), ApEn, 'linewidth', 2); 

    plot(realTime(idx(2,:)), SampleEn, 'linewidth', 2); 

    legend('Approx. Entropy', 'Sample Entropy') 

    set(gca, 'fontsize', 18) 

     

    ax2 = subplot(2,1,2); hold on; 

    plot(realTime(idx(2,:)), RRI(idx(2,:)), 'linewidth', 2); 

    set(gca, 'fontsize', 18); 

    legend('RRI') 

     

     

    linkaxes([ax1, ax2], 'x') 

     

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

Appendix VI  

 

%% Multidimensional Entropy Study algorithm  

% Mariana Santos Silva 

 

%% Clear and load data 

clear all; 

load('babyData.mat'); 

  

dataPath = ['C:\Users\Utilizador\ownCloud\Multidimensional_Analysis\']; 

  

%% 

% choose baby 

ii = 1; 

  

% choose samples to analyse 

a = 3500; 

b = 5000; 

  

% choose scale of multiscale entropy to use 

scale = 3; 

  

% window size for entropy measures 

N = 1000; 

  

time = babyData{ii}.rr_time; 

realTime = datetime(babyInfo{ii,1}.DateStartDevice) + seconds(time); 

idx = [1:length(time)-N+1; N:length(time)]; 

realTime = realTime(idx(2,:)); 

  

ApEn = load([dataPath 'results_Ap\ApEn_baby_' num2str(ii) '.mat']); 

ApEn = struct2array(ApEn); 

SampleEn = load([dataPath 'results_SE\SampleEn_baby_' num2str(ii) '.mat']); 

SampleEn = struct2array(SampleEn); 

MultiScEn = load([dataPath 'results_MSE\MSE_baby_' num2str(ii) '.mat']); 

MultiScEn = struct2array(MultiScEn); 

Fuzzy = load([dataPath 'results_Fuzzy\FE_baby_' num2str(ii) '.mat']); 

Fuzzy = struct2array(Fuzzy); 

  

All_filts = [ApEn(a:b,:), SampleEn(a:b,:), smooth(MultiScEn(a:b, scale), 5)]; 

  

All_filts = [SampleEn(a:b,:), smooth(MultiScEn(a:b, scale), 5), Fuzzy(a:b,scale)]; 

  

[Idx,D] = knnsearch(All_filts, All_filts, 'K', 2); 

epsilon = 0.03; 

idx = DBSCAN(All_filts, epsilon, 5); 

  

c = [0.2143    0.8935    0.1305; 

    0.5938    0.9052    0.0916; 

    0.2208    0.5387    0.1187; 

    0.5984    1.2011    0.1300; 

    0.5998    0.9085    0.1321]; 

  

% [idx, centroids] = kmeans(All_filts, 5, 'Start', c); 

  

figure; hold on; 

colormap(jet); 

scatter3(All_filts(:,1), All_filts(:,2), All_filts(:,3), 15, idx); 

  

grid on; grid minor; 

set(gca, 'fontsize', 16); 

  

view(3); 

  

xlabel('Sample Entropy'); 

ylabel('Multiscale Entropy (scale = 3)') 

zlabel('Fuzzy Entropy (scale = 3)'); 
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%% 

colors = [0    0.4470    0.7410; 

    0.8500    0.3250    0.0980; 

    0.9290    0.6940    0.1250; 

    0.4940    0.1840    0.5560; 

    0.4660    0.6740    0.1880; 

    0.3010    0.7450    0.9330; 

    0.6350    0.0780    0.1840; 

    0 0 0; 

    0    0.4470    0.7410; 

    0.8500    0.3250    0.0980; 

    0.9290    0.6940    0.1250]; 

  

tit_str = {'State', 'Approx. En.', 'Sample En.', 'Multiscale En.'}; 

  

figure; 

ax(1) = subplot(4,1,1); hold on; 

plot(realTime(a:b), idx, 'linewidth', 2); 

grid on; grid minor; axis tight; 

ylabel(tit_str{1}) 

set(gca, 'fontsize', 16); 

  

for ii = 1:3 

    ax(ii+1) = subplot(4,1,ii+1); hold on; 

    plot(realTime(a:b), All_filts(:, ii), 'linewidth', 2, 'color', colors(ii+1,:)); 

    grid on; grid minor; axis tight; 

    ylabel(tit_str{ii+1}) 

    if(ii==3) 

        xlabel('Time'); 

    end 

    set(gca, 'fontsize', 16); 

end 

  

linkaxes(ax, 'x') 

 


