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Abstract: Heart rate variability measurements obtained from the 

routinely monitored neonatal electrocardiogram

Author: Dr Chris Dewhurst
Advances in medical care have enabled infants bom up to 18 weeks early to survive however 
there are significant risks associated with promoting this survival. For the smallest babies 
there remains high mortality and morbidity. The earlier identification of pathological 
processes would prompt targeted therapies and in turn hopefully improve their outcome. By 
monitoring the function of the autonomic nervous system (ANS), moving from a 
physiological to a pathological state could be identified before clinical suspicion is raised. 
The assessment that exists between heart beats (heart rate variability, (HRV)) provides a 
window into the functioning of the ANS.

For a measurement to be a useful clinical monitoring tool it must be robust, valid and 
practical. Methods used to analyse HRV in infants has been restricted to the research setting. 
The aims of this thesis were to develop a methodology that is able to use the routinely 
monitored electrocardiogram to produce sophisticated measures of HRV.
A novel R wave detector is presented which is validated with synthetic neonatal ECG data. It 
is assessed against published R wave detectors and shown to be highly accurate at correctly 
identifying the R wave over a range of heart rates, HRV’s and increasing signal noise.
The method to determine frequency harmonics of the neonatal ECG utilises the Lomb 
Scargle periodogram (LSP) and is demonstrated to be much more robust than traditional Fast 
Fourier Transform (FFT) methods. LSP was more accurate than the FFT methods in the 
deriving a known LF:HF ratio across a range of (i) different HR’s, (ii) different HRV’s and 
(iii) missing data.

The developed methodology is then applied to ECG recordings of infants being cared for in 
the neonatal intensive care unit. When applied to the routinely monitored ECG, the method 
was able to measure HRV values in 97% of the recordings. The effect of removal of non
stationeries within the NNi tachogram was assessed and shown to significantly affect the 
HRV metrics. This is important when assessing previous published results which do not 
account for non-stationeries.

The stability of HRV measures in well babies was then investigated. It was demonstrated that 
the majority of HRV measures do fluctuate during routine care but are not statistically 
significantly different from when the babies are recorded in the steady state. The routinely 
monitored ECG is therefore able to represent the underlying autonomic state.
Finally, the method was applied to disparate populations of babies (different gestational age 
groups and well/unwell babies) who would demonstrate different autonomic activity. These 
investigations demonstrate that time domain and Poincare measures of HRV are able to 
detect autonomic differences in the routinely monitored ECG signal and that recordings in the 
real world reflect the experimental world in the preterm population but not in the term 
population.

This thesis presents a method which is able to determine HRV metrics horn the routinely 
monitored ECG signal from babies undergoing intensive care treatment.
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Chapter 1

Introduction, Background and Literature 

review

1.1 Introduction

To sustain a healthy individual homeostasis is requisite. A pivotal component of 

maintaining homeostasis is the intact functioning of the autonomic nervous system 

(ANS), which continually fluctuates, adapting in response to both internal and 

external stimuli. By monitoring ANS function, individuals who remain homeostatic 

can be identified along with those who are changing from a physiological into a 

pathological state. With the progress of information technology it is possible to 

explore the dynamic functioning of the ANS using the variation in intervals between 

successive heart beats, termed “heart rate variability” (HRV).

1.2 The Premature Infant

A preterm infant is defined as one being born before 37 weeks’ gestation. With 

medical advances it is now possible for babies born as early as 23 weeks’ gestation 

and weighing as little as 400g to survive. The risks of promoting this survival are 

significant and include multiple and frequent events such as sepsis, hypotension, 

cerebral intraventricular haemorrhages, acute and chronic pulmonary problems 

including blocked endotracheal tubes, pneumothraces, apnoea and chronic lung 
disease1. There is often little warning of these deleterious events and without 

immediate resuscitation or treatment, death or serious morbidity may occur. Despite 

advances in intensive care the mortality and morbidity rates remain high with infants 

born below 26 weeks gestation having a mortality rate of approximately 50% and 

half of all survivors having moderate or severe disabilities at 6 years of age2;3. The 

aim of neonatal intensive care is to improve the intact survival of these fragile infants.
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The neonatal intensive care unit (NICU) provides continuous routine monitoring of 

various physiological parameters which provide information on the physical state of 

the infant. Whilst information from these signals such as heart rate (HR) and 

respiratory rate are presented at the cotside there is a large volume of ‘hidden’ 

information contained within these physiological recordings which is simply 

discarded. In particular*, information contained with the ECG has been demonstrated 
to provide a window into the functioning of the ANS.

1.3 The Autonomic Nervous System

The peripheral nervous system is divided into the somatic and autonomic nervous 

systems, the latter being represented in figure 1. The somatic nervous system controls 

skeletal muscle under voluntary control and the reception of external stimuli, whilst 

the ANS maintains homeostasis through the regulation of smooth muscle, cardiac 

muscle and glandular secretions. The ANS has both an efferent and afferent system 

which form reflex arcs that pass through the hypothalamus and medulla oblongata, 

enabling the transmission of impulses between the central nervous system and the 
peripheral organ system.

The afferent, or sensory, division of the ANS consists of primary visceral sensory 

neurons which monitor: (i) the levels of carbon dioxide, oxygen and glucose in the 
blood, (ii) arterial blood pressure and (iii) the chemical composition of the stomach 

and gut content. These sensory neurons propagate action potentials which pass to the 

spinal cord via the rami communicantes and the posterior roots. The primary sensory 

neuron synapses with secondary visceral sensoiy neurons transmitting the afferent 

information to the main integration and control areas of the ANS in the medulla 

oblongata, pons and hypothalamus. Here the impulses elicit appropriate reactions in 

efferent nerves via reflex arcs resulting in appropriate modification in the functioning 

of the cardiovascular, respiratory, enteric and other organ systems. In addition, as part 

of the limbic system the hypothalamus receives input from the cerebral cortex. This 

enables cortical activity to stimulate the hypothalamus, in turn affecting autonomic 
activity.
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The motor neurons of the ANS are divided into two divisions, the sympathetic and 

parasympathetic nervous systems (SNS and PNS), on the basis of anatomical and 

functional differences. In general the SNS is excitatory, responsible for so called 

‘fight or flight’ responses, whereas PNS activity is inhibitory or ‘rest and digest’. 

Both divisions consist of myelinated preganglionic fibres which synapse with 

unmyelinated postganglionic fibres which innervate the effector organ. The 

sympathetic preganglionic fibres are in the spinal cord at thoracolumbar levels, 

whereas the parasympathetic preganglionic fibres are situated in the medulla 

oblongata and in the sacral spinal cord. The preganglionic fibres synapse with the 

postganglionic fibres in clusters called ganglia. The sympathetic ganglia are located in 

two sympathetic chains close to the spinal cord, the prevertebral and pre-aortic chains, 

whilst the parasympathetic ganglia are located in close proximity to the target organ, 

for example the submandibular ganglion for the salivary glands and the paracardiac 

ganglia for the heart. Fibres from both divisions of the ANS innervate most organs 

and typically influence in an antagonistic way, with increased activity in one branch 
accompanied by a reduction in the other. The resultant organ function, for example 

heart rate (HR), reflects this continually fluctuating balance.

Parasympathetic
Division Bram Sympathetic

Division
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Figure 1.1 Organisation of the autonomic nervous system (ANS). The sympathetic 

division (right) is stimulated by stressful situations increasing the heart rate cardiac 

output and blood flow to the muscles and inhibiting digestive activity. Stimulation of 

the parasympathetic branch of the ANS (left) leads to increased digestive activity, and 

depresses blood pressure, heart rate and cardiac output. Taken from Morris and 
Maisito 20014

1.4 The Control of Heart Rate

1.4.1 Sinoatrial node and autonomic innervation

Each heart beat originates in the sinoatrial (SA) node located at the junction of the 

superior vena cava and the right atrium. The SA node displays spontaneous 

pacemaker activity, in the human adult firing at a rate of between 100 and 130 action 
potentials per minute5"8. In the newborn, animal work suggests that this intrinsic firing 

of the SA node is at a higher rate due to shortening of the action potential9"12. This 

intrinsic firing rate is modulated by the two branches of the ANS which densely 
innervate the SA node13. During physiological conditions the two components of the 

autonomic nervous system work in balance, with the activation of one limb 
accompanied by the inhibition of the other14. The resultant HR reflects this balance 

between the sympathetic and parasympathetic impulses.

Parasympathetic activation is mediated by the synaptic release of acetylcholine from 

the vagus nerve which acts upon nicotinic and muscarinic receptors in the SA node, 

the atrioventricular (AV) conducting pathways and the atrial muscle. This slows 

depolarisation of the sinoatrial node and also AV conduction, resulting in a reduction 
in heart rate15. Acetylcholine has a very short latency period and a high turnover rate 

which results in a rapid response, enabling the PNS to regulate cardiac function on a 
beat to beat basis16,17.

Sympathetic activation results in an increase in heart rate above the intrinsic level 

generated by the SA node and augmentation of myocardial contractility. In addition, 

the rate of conduction of the cardiac impulse through the heart and the duration of
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contraction is shortened. These effects are mediated through synaptic release of 

noradrenaline which is reabsorbed and metabolised relatively slowly, resulting in 

changes in cardiovascular response over a longer time period16. Following the onset 

of sympathetic stimulation there is a latent period of up to 5 seconds followed by a 

progressive increase in HR which reaches a steady state in 20-30 seconds15. This time 

delay in affecting HR contrasts with the almost instantaneous response to 
parasympathetic activation.

Because of these differences in neurotransmitter function, the two divisions of the 

ANS operate at different frequencies and variations in heart rate related 

predominantly to changes sympathetic or parasympathetic activity can thus be 
identified and quantified18"20.

hi the adult human at rest, parasympathetic activity predominates over sympathetic 

resulting in a reduced SA node firing rate and in turn lowering the resting heart rate to 

60-80 bpm. The opposite is true in the neonate and infant with sympathetic activity 
predominating until approximately 2 years of age21,22. This sympathetic dominated 

balance increases the preterm infant’s heart rate to 110 - 160 bpm. The heart rate will 

increase or decrease depending upon the relative activity of the parasympathetic and 

sympathetic centres which in turn are dependent on reflexes from the afferent visceral 

sensors and factors such as arousal and activity levels23'25. Some reflexes increase 

heart rate through a decrease in vagal tone, an increase in sympathetic activity, or 

both. Other reflexes will decrease the heart rate by the opposite actions. At any one 

time several reflexes are likely to operate simultaneously, maintaining cardiovascular 
homeostasis by producing a variable HR and cardiac output.

1.4.2 Reflexes Influencing Heart Rate 

1.4.2.1 Baroreceptor Reflex

The baroreceptor reflex buffers sudden changes in systemic blood pressure by 

adapting HR and peripheral vascular resistance, aiming to stabilise perfusion pressure 

in the face of disturbances of circulatory homeostasis. The baroreceptor reflex arch
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consists of baroreceptors, afferent nerves, the central nervous system, and efferent 
nerves26. Arterial baroreceptors are present throughout the body with important 

groups found in the aortic arch27, coronary arteries28, splanchnic circulation and the 

carotid bodies. An increase in blood pressure stretches these vessels, resulting in an 

abrupt increase in the discharge frequency of the afferent nerves. Baroreceptor 

stimulation increases the efferent cardiac vagal activity and decreases sympathetic 

activity, resulting in a decrease in SA filing and in turn HR15.

The reflex is typical of a negative-feedback control system as an increase in arterial 

blood pressure (BP) increases the baroreceptor afferent impulses, which in turn 

decrease the arterial pressure through the reflex arc. Heart rate responses are mediated 

mainly by parasympathetic efferent activity, whereas vascular resistance is adapted by 

sympathetic activity only. As both branches of the ANS are involved in the reflex, 

investigating the baroreceptor response provides information on autonomic cardiac 
regulation29,30. Because vascular resistance is difficult to measure, autonomic changes 

related to baroreceptor reflex control are usually studied by evaluating HR and BP 

fluctuations only.

Baroreceptor reflex mediated HR control has been studied more extensively than 

other effector mechanisms (peripheral resistance, venous return and cardiac 

contractility) because of the relatively easy access to the relevant signals (HR and 

BP). The response has been studied by transiently increasing or decreasing arterial 

pressure following the administration of vaso-active agents31,32 or by applying a 

positive or negative pressure pulse to the neck, decreasing or increasing the 

transmural pressure on the carotid sinus region33. By injecting vasoactive drugs, 

arterial BP rises or falls from the equilibrium point (physiological BP) and an input- 
output curve can be constructed34. This input-output relation curve is sigmoidal, 

having a threshold zone in the lower BP values (where RR interval is minimal) and a 

saturation zone in the higher blood pressure values (where RR interval is maximal 
figure 1.2)35.
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Figure 1.2 Figure representing the closed-loop relationship between arterial systolic 

blood pressure and R-R interval in adults. Komer 197434.

Two parameters within this sigmoidal relationship can be determined to estimate 

baroreceptor mediated heart rate control. Firstly, the level at which the reflex responds 

most effectively to changes in BP and secondly, the magnitude of the reflex response 

per unit ot BP deviation from the operating point (baroreceptor sensitivity)34.

In healthy, conscious humans, baroreceptor mediated control of HR is primarily 

mediated by stimulation and withdrawal of parasympathetic activity. Meanwhile, 

sympathetic stimulation, while influencing basal HR, plays a minor role in 

baroreceptor mediated HR control. Evidence for this is demonstrated by the 

observation that whilst HR response to rising and falling BP can be blocked by 

atropine, there is no eftect following the administration of propanolol36’37. In addition, 

the higher baroreceptor sensitivity during BP rise than during fall (30 v,9 10 ms 

mmHg ) suggests a relative low vagal inhibitory tone during resting conditions. As
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the baroreceptor reflex is mediated via the vagal nerve, the baroreceptor response is 

able to modulate HR on a beat to beat basis.

hi summary, the baroreceptor mediated heart rate response to increased arterial BP 

seems to be exclusively mediated by an increase in the cardioinhibitory influence of 

the vagus. In addition the excitation of the sinus node that accompanies baroreceptor 

deactivation is also largely mediated by the vagus. Thus, although the arterial blood 

pressure-heart period relation curve is frequently used as a surrogate of the overall 

state of the baroreceptor reflex system, one should keep in mind that this is a very 

simple representation of the system.

1.4.2.2 Chemoreceptor reflex

Peripheral chemoreceptors are situated in the carotid and aortic bodies with their 

afferent activity stimulated by hypoxia, hypercapnia or acidaemia. Chemoreceptor 

stimulation increases the rate and depth of respiration and influences heart rate. 

However, because HR is also influenced by respiratory efforts, the effects of 

chemoreceptor stimulation may be masked by the secondary effects of the respiratory 

response to changes in oxygen, carbon dioxide concentrations and blood pH15.

1.4.2.3 Other reflexes

There are several other reflexes influencing HR which whilst being studied in the 

adult are poorly understood in the human infant. These include reflexes initiated by; 

(i) Atrial stretch receptors (ii) pulmonary artery stretch receptors, (iii) coronary artery 

chemoreceptors, (iv) abdominal viscera receptors and (v) mesenteric vessel 
baroreceptors.
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1.4.3 Respiratory influences on Heart Rate

In healthy adults changes in HR occur in association with respiration, termed 

respiratory sinus arrhythmia (RSA). In response to inspiration, HR accelerates and 

during expiration HR slows. The mechanism linking the variability of HR to 

respiration is complex and involves both central and reflex interactions. The major 

reflex mechanism is believed to be activation of lung stretch receptors with inspiration 

(Hering-Breuer reflex) and changes in baroreceptor and atrial stretch receptor activity 

induced by changes in intrathoracic pressure15. Fluctuations in HR have been 

observed to persist at the approximate respiratory frequency in the absence of 

respiration and after elimination of pulmonary reflexes. This supports the concept of a 

central respiratory generator, maintaining respiratory/heart period rhythmicity in the 

absence of peripheral input from lung stretch receptors39. Respiratory modulation of 

the HR occurs at a high frequency (approximately 0.25 Hz in the adult or 15 times per 

minute at rest) and can be abolished by vagal blockade40'43 suggesting that RSA is 

mediated by the PNS.
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Chapter 2

Heart Rate Variability

2.1 Introduction

The appreciation that the heart does not beat regularly is not a new one. Examining 

the peripheral pulses to detect abnormalities in HRV dates back over 2000 years with 
Wang Shu-He (265 - 317 A.D) writing;

“If the pattern of the heartbeat becomes as regular as the tapping of a woodpecker or 

the dripping of the rain on the roof the patient will be dead in four days " 44

The study of HRV is based upon the duration of the time interval between successive 
heart beats, or its reciprocal the instantaneous heart rate (IHR) derived from the 
electrocardiogram (ECG). 6.4.3

2.2 The Electrocardiogram

Heart muscle cells contract in response to stimulation by a self propagating wave of 

electric field, begimiing at the sinoatrial node (SA) node. Self propagation occurs 

because, as each myocardial cell contracts, the flow of sodium and potassium ions in 

and out of each cell generates a small electric field which stimulates, in turn, adjacent 

myocardial cells in the direct of propagation of the resulting wave of contraction. The 

electric field dipoles of all myocardial cells contracting / relaxing at any moment sum 

to produce a significant resultant electric field which extends well beyond the heart 

and produces measurable differences in electrical potential (voltage) between points at 

the surface of the body. These voltages, measured at standardised locations, form the 
familiar time varying ECG voltage signals.
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A single normal cycle of the ECG represents the successive atrial 

depolarisation/repolarisation and ventricular depolarisation/repolarisation which 

occurs with every heartbeat. The ECG provides information regarding the overall 

rhythmicity of the heart as well as information about the propagation of the electrical 

signal through the various cardiac structures. A typical ECG record of a normal 

heartbeat (or cardiac cycle), comprising a P wave, a QRS complex and a T wave, is 
shown in Figure 2.1.

RR Interval

T wave

QT interval

Figure 2.1 The ECG recording of a normal heart beat

The P-wave accompanies the depolarisation of the atria. The QRS complex 

corresponds to the depolarization of the ventricles, appearing as a relatively strong 

signal as they contain more muscle mass than the atria. Its complexity arises due to 

the intricate pathway that the spread of activation takes through the ventricles. Shortly 

after the peak of the R-wave the ventricles begin contracting. The T wave represents 

the repolarisation ot the ventricles. Atrial repolarisation is not apparent as a discrete 

component as it occurs during the much stronger ventricular depolarisation.
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Segments, or intervals, between features may also be reported (generally extending 

from one wave to the start of another), see Figure 2.1. For example the Q-T interval, 

defined as the time required for the ventricles to undergo a complete cycle of 

depolarisation and recovery. Interpretation of the ECG involves a sequential analysis 

of each component in the tracing. Since the peak of the QRS complex is a well 

defined feature, the time duration between two consecutive R-waves in the ECG is 

commonly used as the most accurate determination of HR.

2.3 Fiducial marker for beat detection in the ECG

The first step in obtaining a measurement of HRV is the accurate detection of each 

heart beat originating from the sinoatrial node. This is a difficult process made even 

more problematic in the neonate by the presence of large volumes of noise, artefacts 

and ectopic beats. A fiducial marker must be chosen from the ECG which accurately 

reflects the competing action of both branches of the ANS. The most obvious choice 

would be the pomt where the autonomic nervous system exerts its influence, the sino- 

atrial node represented by the p wave on the ECG. However, the p wave has no 

temporally well defined feature and is usually of low amplitude and is therefore often 
difficult to detect45. Conversely, the high amplitude R wave has a temporally well 

defined peak and which is much easier to identify and label as the fiducial marker for 

each heart beat. Care must be taken when using the time between successive R 

waves, the RR interval (RRi) as a proxy measure of the PP interval (PPi) due to the 

variation that exists in the PR interval with changing heart rates. Sympathetic 

activation of the SA node increases nodal firing and in turn heart rate but also leads to 

a shortening of the PR interval as well as the QT interval46, QRS width47 and T 

wave48. However, the magnitude of the beat to beat modulation of the PRi is 

correlated with, and much less significant than that of the RRi49 and so the RRi can be 

used as a reliable method for interbeat measurement50.

The RRi becomes an unreliable proxy measure of PPi if there is disruption to the 

normal coupling of the atria and ventricular electrical activity. This occurs in the 

following situations; atrial flutter, atrial fibrillation, ventricular tachycardia and third 

degree heart block. Fortunately all of these electrical disturbances are uncommon in
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the neonatal population. However, a continuous ECG recording will rarely consist 

entirely of successive “normal” QRS complexes. HRV analysis is only concerned 

with beats that have originated from the SA node, where the ANS is exerting its 

influence. Therefore beats which do not originate from the SA node or signal noise 

which may be detected as a “beat” should be excluded from the HRV metric 

calculation. The corrected time series therefore includes only the normal to normal 

(NN) beats.

2.4 Quantifying Heart Rate Variability

The aim of HRV analysis is to quantify the autonomic status of an individual and 

many different HRV metrics have been proposed to achieve this50. The most widely 

used metrics can be broken down into three main categories; simple time domain 

statistics, frequency domain analysis and non-linear techniques. All of these 

techniques however have a common analytical base, the production of the NN interval 

tachogram (NNi).

2.4.1 NN interval Tachogram

The NN are measured from the accurate detection of each R wave in the ECG (see 

chapter 4) and are graphically presented on the y-axis of a tachogram against the time 

of occurrence. The functional value of the tachogram is therefore the duration of a 

single heart beat (ms) for a given moment in tune. This is an unusual time series in 

that both axes are time intervals and are related to each other 51. Furthermore, since 

the variability in HR occurs on a beat-to-beat basis, the time series is inherently 

unevenly spaced along the horizontal axis. The horizontal distance between each point 

(time stamp) is different for each adjacent pair, with the difference recorded on the 

vertical axis. Alternative methods of producing a tachogram to represent the heart 

rhythm are discussed in chapter 4.
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2.4.2 Time Domain Analysis

Time domain methods use mathematically simple techniques to measure the amount 

of variability present in a pre-specilied time period in a continuous ECG recording. 

After editing the ECG to remove artefacts and non-sinus beats, the normal RR 

intervals, termed normal-to-normal intervals (NNi) (sections 2.4.1 and 4.1), are 

identified and subjected to simple statistical analysis. Time series indices can be 
further divided into two broad categories52;

(a) those derived from the direct measurements of the NNi such as mean 

NNi and standard deviation of the NNi’s (SDNN)

(b) those derived from the differences between adjacent cycles, such as the 

proportion of differences that exceed an arbitrary limit eg 50ms,

Table 2.1 highlights the indices recommended by the Task Force of the European 

Society of Cardiology and the North American Society of Pacing Electrophysiology50

Statistical

Methods

Explanation Component
Measured

Comments

SDNN (ms) Standard Deviation of

the nonnal to normal

QRS complexes. (i.e.

the square root of

variance)

Estimate of

Overall HRV

Result varies depending

on length of recording.

The longer the recording

the more variance is

observed

SDANN (ms) Standard Deviation of

the Average Nonnal

to Nonnal QRS
complex

Estimate of

long-term

components of

HRV

Standard deviation of the

averages of NN intervals

in all 5-minute segments

of the entire (eg 24-hour)

recording.
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Statistical

Methods

Explanation Component

Measured

Comments

SDSD (ms) - Standard deviation of

differences between

adjacent NN intervals

RMSSD (ms) Square root of the

mean squared

differences of

successive NN

intervals

Reflects short

term

variability

NN50*

(count)

Number of interval

differences of

successive NN

intervals greater then

50 ms

Identifies

individuals

with

parasympatheti

c dysfunction

Identifies the number of

NN intervals that exceed

a pre-set threshold ie

50ms

pNN50* (%) NN50 divided by total

number of NN

intervals

Reflects Short

term

variaibilty

Percentage of differences

between adjacent NN that

are greater then 50ms
calculated over a 24 hour

recording

*NN50 is not suitable for the assessment of neonatal HRV due to the higher mean 

HR. Recently, pNN25 has been suggested as a more useful measure for neonatal 

ECGs53.

Table 2.1 Information regarding the different time domain measures of HRV50.

The simplest measurement of HRV is the standard deviation of the NN interval 

(SDNN), i.e. the square root of variance. Since variance is mathematically equal to 

total power of spectral analysis, SDNN reflects all the cyclic components responsible 
for variability in the period of recording50. SDNN is often calculated over a 24-h 

period and therefore encompasses both high frequency and (very) low frequency

15



components seen in a 24-h period. As the period of monitoring decreases, SDNN 

estimates shorter cycle lengths and the total variance of HRV decreases54. It has 

therefore been argued that in arbitrarily selected ECGs, SDNN is not a well defined 

statistical quantity because of its dependence on the length of recording period and it 

is inappropriate to compare SDNN measures obtained from recordings of different 
durations50.

Another commonly used statistical variable is the standard deviation of the average 

NN interval (SDANN) which is calculated from the average NNi in short segments 

(usually 5 minute) of the total monitoring period. An increase or decrease in SDANN 

reflects a relative increase or decrease in sympathetic regulation. The SDNN index is 

calculated from the mean of the 5-min SDNN calculated over 24 hours, which 

measures the variability due to cycles shorter than 5 min50.

The most commonly used measures derived from interval differences include the 

square root of the mean squared differences of successive NN intervals (RMSSD). An 

increase or decrease in this parameter reflects a relative increase or decrease in PNS 
activity.

Spontaneous fluctuations with a predefined time interval can also be characterised, for 

example the number of interval differences of successive NN intervals greater than 50 

msec NN50, or the proportion derived by dividing NN50 by the total number of NN 

intervals and pNN50. NN50 however is not appropriate for the neonate who has a 

much higher mean heart rate. Recently NN25 has been proposed as a more useful 
measurement for neonatal HRV53, These measurements of short-term variation 

estimate high frequency variations in heart rate and thus are highly correlated.

2.4.3 Poincare Analysis

A further option for analysing HRV data is by depicting the series in a geometric 

pattern, such as the Poincare plot, (figure 2.2). The Poincare map is a representation 

of a time series within an x-y coordinate system, where the values of each pair of 

successive elements define a point in the plot, i.e. each RRi is plotted as a functional
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value of the subsequent RRi (RR versus RR, msec). This creates a correlation 

depiction of consecutive RRi’s. Analysis of this graphical representation can be 

performed by a visual-qualitative inspection of the shape of the displayed point cloud, 

which for a normal healthy adult subject is characteristically oval shaped55.
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Figure 2,2 Poincare plot of an R-R interval tachogram. Ectopic beats (circled) can be 

easily identified as outliers from the central point cloud which represents the “normal” 
beats.
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There are two standard numerical descriptors of the Poincare plot - SD1 and SD2 

(Figure 1).1,2 SD1 measures the dispersion of points belonging to the PP along the 

line perpendicular to the line of identity and depicts short-term HRV. SD2 assesses 

the dispersion of points along the line of identity and portrays both long and short 

term HRV. The ratio SD1 :SD2 thus represents the sympathovagal balance.56’™

Figure 2.3 A sample of Poincare plot with its numerical descriptors SDI and SD2

2.4.4 Frequency Domain Analysis

Whilst time domain indices quantify the overall amount of variability present in the 

ECG recording, they are a non-specific measure of autonomic activity. The 

underlying physiological mechanisms which affect these parameters are not fully 

understood. In the adult it is accepted that time domain variables are dependant
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primarily on vagal stimulation for the bulk of their magnitude with RSA and 

nocturnal bradycardia being two of the most important components60. A shift in the 

autonomic tone towards sympathetic activation will therefore reduce the magnitude of 
these indices61. The effect of vagal tone is not however linear with a greater effect of 

acetylcholine release at slower heart rates further complicating the interpretation of 
time domain indices62. Time domain analysis remains a useful tool however, as only 

minimal (and usually automated) editing of the ECG is required and therefore these 
techniques are easier to apply to long term ECGs with excellent reproducibility63. 

Thus, time domain metrics are useful in detecting abnormalities in autonomic activity 

but cannot be used to quantify specific changes in sympathetic or parasympathetic 
activity16. For this, frequency domain analysis must be performed.

Frequency domain is a term used to describe the analysis of mathematical functions or 

signals with respect to frequency. Although we appear to think and act in the time 

domain, the neurobiological processes that govern our existence are played out in this 
frequency domain64. Frequency analysis is based on the periodicity of various 

biological systems, i.e. a biological signal repeats itself within a determined time 

interval and thereby exhibits a certain frequency. To investigate and quantify these 

frequencies, a signal varying over tune, x(t), (such as the NNi tachogram) must first 

be transformed to amplitude varying over a range of frequencies, X(f). This is 

achieved by spectral analysis.

Spectral analysis reduces the total HRV signal (consisting of numerous repeating 

oscillations) into its constituent frequency components and quantifies the relative 

power of various frequencies. Following transformation into the frequency domain, 

the amount of cyclical variation present at different frequencies can be detected and 

quantified by power spectral analysis (PSA)65. This information can be presented 

graphically by plotting the amount of variation present in a recording on the y axis 

against the frequency at which it occurs on the x axis, (fig 5) By measuring the area 

under the curve at different frequencies (expressed as spectral power) a numerical 

measure of the amount of variability present in given frequency bands can be 
obtained.16 PSA was first introduced into HRV analysis in 1981 by Akselrod et aL66 

who demonstrated that frequency domain analysis allowed the quantification of the 

frequency components representing SNS and PNS activity. Since the introduction of
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PSA in HRV analysis, many authors have applied a variety of power spectral 

estimation techniques. In order to facilitate comparisons between studies, the 

frequency spectrum of an RR interval tachogram has been classified into Spectral 

Power Density present in the following frequency bands: (1) ultra-low frequencies, 

ULF (<0.003 Hz) that include circadian (daily) rhythms; (2) very-low frequencies, 

VLF (0.003-0.04 Hz) thought to be due thermoregulation and humoral (immune) 

systems; (3) low frequencies, LF (0.04-0.15 Hz) usually considered as a marker of 

sympathetic modulation associated with blood pressure phenomenon (baroreceptor 

activity), and both cardiac sympathetic and parasympathetic” nerve activity; (4) high 

frequencies, HF (0.04-0.15 Hz) that are well defined and synchronised to the RSA. 

The total power in the spectrum, regarded as an overall measure for the influence of 

the ANS on the cardiovascular system, is calculated as the size of the entire area 
within all frequencies.

These bands are, however, recommendations for the adult ECG with significant 

differences noted in the neonatal ECG (see section 2.5).

Power [msE]
100 '

o.ooi

0,0001

o.ooooi

Frequency [Hz]

Figure 2.4 Example of an estimate of power spectral density obtained from the entire 

24-hour interval of a long-term recording. Note the logarithmic scales on both axes.
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Variable Frequency measured Component represented
Ultra-low frequency

(ULF)
0 - 0.0033Hz Circadian Rhythms

Very Low frequency

(VLF)
0.0033 - 0.04 Hz Thermoregulation,

Peripeheral vasomotor RAA

systems
Low Frequency (LF) 0.04-0.15 Hz Sympathetic and

Parasympathetic activity
High Frequency (HF) 0.15-0.4 Hz Parasympathetic Activity
LF/HF ratio N/A Sympathetic/parasympathetic

balance

Table 2.2 Frequency domain definitions used in analysis of HRV in adults.

The division of the spectrum into these frequency bands provides physiological 

information about the distinct biological regulatory mechanisms that contribute to 

HRV. There is now considerable frequency domain spectral analysis research data to 

demonstrate that these regulatory mechanisms act at frequencies that are confined 
(approximately) within these bands 14. The HF component describes the beat to beat 

changes related to respiratory rhythm and is widely accepted as a marker of 
parasympathetic outflow67. LF fluctuations in heart rate are often attributed to blood 

pressure variations51. However, the physiological interpretation of the LF band is 

more controversial and although sympathetic and parasympathetic mechanisms can 

operate at these frequencies many authors ascribe fluctuations in the LF band to 
sympathetic activation onlyl4;16;68;69. Certainly, an increase in LF power has 

consistently been observed as a consequence of sympathetic activation (rest -tilt 

manoeuvre, mental stress, haemorrhage, coronary occlusion etc)67.

Fluctuations below the VLF and ULF bands are thought to be due to long-term 

regulatory mechanisms such as the thermoregulatory system, the rennin-angiotensin 

system (related to blood pressure and other chemical regulatory factors) and other 
humoral factors67. In 1998 Taylor et al. showed that the VLF fluctuations appear to 

depend primarily on the parasympathetic outflow70. In 1999 Serrador et al.
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demonstrated that the ULF band appears to be dominated by contributions from 

physical activity and that HRV in this band tends to increase during exercise. They 

therefore assert that any study that assesses HRV using data (even partially) from this 

frequency band should always include an indication of physical activity patterns71.

2.4.5 Sympathovagal balance

The ratio of power in the LF and HF can be used as a measure of the balance between 
the SNS and PNS29. Whilst controversy remains regarding the use of this metric51 it is 

probably a valid estimate in a wide range of physiological situations, particularly 
when investigating the sympathovagal balance under various conditions72, hi addition 

when compared with the individual LF and HF powers, the LF:HF ratio also offers 

the ability to measure whether reciprocal versus non-reciprocal changes have occurred 
in SNS and PNS activity73. It is important to recognize however that in cases where 

both LF and HF are powers are reduced (for example post myocardial infarction) the 

quotient would appear normal despite the pathological change.

2.4.6 Non-linear Analysis

A linear system is one in which the magnitude of a response is proportional to the 

strength of the stimulus. A non linear system does not demonstrate proportionality, 

rather the response is disproportionate: small changes can have dramatic and 
unanticipated effects74. Chaotic dynamics can be used to provide an explanation for 

the different complex and erratic patterns that appear. Chaos refers to the existence of 

behaviour so unpredictable as to appear random because of the inherent perturbations 
in the initial conditions75. It was originally assumed that chaotic fluctuations in 

cardiac electrical activity were produced in pathological conditions, such as during 
atrial or ventricular fibrillation76. However, these views have been challenged 77 and it 

is now accepted that the complex heart rate fluctuations observed during normal sinus 

rhythm in healthy subjects are due in part to deterministic chaos, and that pathological 

states may involve a paradoxical decrease in this type of nonlinear variability74. 

Goldberg has termed the observed loss of chaos as “decomplexification” of the
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signal78, a phenomenon which can be observed in clinical practice, for example 

Cheyne-Stokes respiration pattern in patients with end-stage lung disease, or the 

consistent heart rate in the neonate with severe hypoxic ischaemic encephalopathy.

2.5 Neonatal Heart Rate Variability

Whilst the same autonomic generators of HRV found in the adult are active in the 

neonate, the indices of variability are vastly different. The neonate has a different 

heart rate, respiratory rate and an immature autonomic nervous system which results 

in different parameters for both the time and frequency domain. The investigation of 

heart rate variability and autonomic functioning in the neonate has been hampered by 

studies which have used different frequency domain definitions, durations of 

recordings, and reported units with small sample sizes. The lack of methodological 

standards makes comparison between different studies difficult. In 1996 the Task 

Force for the European Society of Cardiology and The North American Society of 

Pacing and Electrophysiology produced recommendations for the standardisation of 

methodology, defined physiological and pathophysiological correlates and described 

appropriate clinical applications for the study of HRV50. However these 

recommendations are for the adult population and are not appropriate for the study of 
HRV in neonates79.

2.5.1 Frequency Band Definitions

Internationally agreed reconunendations exist for the defined frequency bands for 

human adults HRV. Frequency peaks can be detected at a LF of approximately 0.1 

Hz, representing Mayer’s waves, and at a HF of 0.25 Hz, representing RSA. These 

recommendations are however not applicable to the neonate due to a shift in the HF 
spectrum50. Neonates breathe at between 30 and 90 breaths per minute (0.5 - 1.5 Hz) 

with a heart rate between 100 and 180 bpm (1.7 — 3.0 Hz). Thus, different spectral 

peaks are observed in the frequency domain analysis of neonatal HRV. As yet there is 

a lack of consensus regarding the definition of frequency bands for neonatal HRV and
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there are several reasons for this35. Firstly, preterm infants have an immature 

respiratory drive with periodic breathing and apnoeas, resulting in a continually 

fluctuating respiratory rate. Therefore the high frequency spectral peak in neonates 

may be dispersed. Secondly, as a consequence of this modulating HF peak the signal 

is only stable for a relative short time which limits appropriate signal analysis. 

Thirdly, because of the relatively high respiratory rate the upper spectral limit for the 

HF band poses a particular problem for neonates. Sampling theorem states that the 

maximum frequency that can be measured from spectral analysis of a signal can be no 

greater than half of the sampling frequency. This maxunum is termed the Nyquist 
frequency80. Thus, for investigation of changes in heart rate the cut off for the upper 

pole of the HF band should be half the lowest normal mean heart rate. As a mean HR 

of less than 90 bpm is considered bradycardia in the neonate, the Nyquist criterion 

requires an upper limit of 0.75 Hz (ie (90/2)/60). However, neonatal respiratory rates 

may at times reach 90 breaths per minute. In order for respiration at such a frequency 

to be visible as RSA, the upper limit would have to be 1.5 Hz or twice the limit 
imposed by the Nyquist criterion.

This lack of consensus means that individual investigators have used several different 

frequency bands to investigate HRV. The majority of studies have used 0.15 or 0.2 Hz 

as the cut-off point between LF and HF bands (Table 2.3). However others have 

extended this to 0.5Hz and left a frequency band between the LF and HF band which 
is not measured81'86. The lower border of the LF band starts at 0.02 Hz but if a VLF 

band is also being investigated most studies use 0.04Hz to divide the LF/VLF 
bands81,87'89. The literature shows upper limits ranging from 0.8 to 2.0, according to 

the respiratory peak90'93, or not stated94,95.

24



Subjects LF band (Hz) HF band (Hz)
Aarimaa 1988yf> Preterm, Term 0.02 - 0.2 0..2- 1 .0

Giddens 1985Vi Tenn 0.04-0.2 0.2-?
Dykes 1986y4 Term 0.02 - 0.2 02 ~ ?

Baldzer 19898' (i) Tenn 0.04-0.16 > 0.2 Hz RSA*

Eiselt 199383 Preterm, Term 0.03-0.1 0.4- 1.0

Spassov 1994s2 Term 0.03-0.1 0.4-1.0

Ravens waaijy2;y2 1994,

1995 (ii)

Pretenn 0.04-0.2 < 0.2 Hz RSA*

Chatow 199597 Preterm, Term 0.02 - 0.2 0.2-2.0

Mazursky 1998ys Pretenn 0.02-0.15 0.15-1.5

Salmi 1999s4 Preterm, Term 0.05-0.2 0.5-2.0
Veerappan 2000yy Pretenn 0.03 - 0.4 0.4-1.0
Andriessen 2004 S5;11XJ Pretenn, Tenn 0.04-0.15 0.4-1.5
Andriessen yu Preterm, Term 0.04-0.15 RSA*

Andriessen 2003 yi Preterm 0.03 - 0.2 RSA*

Kliattak 2007 101 Pretenn and Term 0.05 - 0.25 0.25-1.00
Watkins 1996102 Pretenn 0.05 - 0.2 0.2-1.0

Longin 2005**53 Term 0.05-0.15 0.15-0.5
Mehta 2002s7 (iii) Term 0.04-0.15 0.15-0.4
Nakamura 2005 1UJ Pretenn 0.04-0.15 0.15-0.4

De Rogalski Landrot 2007
104

Pretenn and Term 0.04-0.15 0.15-1.4

Longin 2006** 103 Preterm and Term 0.05-0.2 0.2-1.0

Rassi 2004106 Pretenn 0.05 - 0.2 0.2-2.0

Jean-Louis 2004Sb Pretenn 0.03-0.15 0.5-1.0

Smith 2004 Pretenn 0.02-0.2 0.2-2.0

Oberlander 2002 107 Pretenn 0.04-0.15 0.15-0.8

Franco 2000 ms Tenn 0.04-0.15 P24 - p75 (iv)
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(i) VLF 0 - 0.04Hz

(ii) VLF 0.017 - 0.04 , the respiratory sinus arrhythmia (RSA) was defined as a band 
within ± 0.2 Hz of the respiratory frequency obtained from peak amplitude in the 
respiratory power spectrum;

(iii) VLF 0.0033 ~ 0.04 and ULF < 0/0033 also reported from 24 In- recordings

(iv) individualised respiratory bandwidth, defined between p-25 and p-75 of the 
respiratory power spectrum.

RSA = Respiratory Sinus Arrhythmia

** LF was termed MF in these papers and VLF = LF, 0.01 - 0.05Hz

RSA* = ffeq band between 10th and 90th centiles of individualized respiratory 
frequency

Table 2.3 Frequency bands used in previous research into HRV in neonates.

Based on the available literature the frequency ranges of interest in this thesis are as 

follows; the whole frequency band of interest is the range between 0.0 to 1.5 Hz; the 

ULF fi-equency band is defined as < 0.017 Hz, the VLF band is defined as 0.017 - 

0.04 Hz, the LF band is defined as the fi-equency range between 0.04 and 0.15 Hz 

with two HF bands being defined, one 0.15 - 1.5 Hz. and a second being 0.40 - 
1.0Hz.

2.5.2 Baroreceptor response

Data about the ontogeny and function of the baroreceptor reflex and in the human 

infant are limited and conflicting. This is partly due to the limited experimental 

(pharmacological or mechanical) possibilities to challenge the baroreceptor reflex in 
neonates35. The ontogeny of the BR in the human infant has been investigated by 

passive head-up tilting whilst measuring responses in BP, HR and limb blood flow. 

Several investigators have demonstrated that head-up tilting in healthy term and 

preterm infants produces a consistent and significant response in HR98,109'112 whilst

26



other studies did not show evidence of a well developed baroreceptor mediated 
response113,114. In healthy, term infants a fall in blood pressure associated with an 

increase in heart rate in response to passive head-up tilt has been demonstrated109,110 

and can be elicited as soon as 2 hours after birth, becoming more pronounced at 24 
hours112, hi preterm infants (26-37 weeks) passive head-up tilt resulted in significant 

vasoconstriction in the lower limbs with a fall in aortic pressure with an unchanged 
HR115. The inadequate ability to maintain BP and the absence of a tachycardia suggest 

that the premature infant lacks the fully integrated BR response seen in more mature 

infants and adults. More mature preterm infants (33-37 weeks GA) however, show a 

well developed HR response to tilting109. Moreover, by studying preterm infants (28 - 

32 weeks) in a longitudinal fashion the development of the HR response, from 

unchanged to a demonstrable increase, has been elicited98. Thus, the available studies 

of heart rate response to passive head-up tilt in human neonates suggest, at least 

qualitatively, a baroreceptor reflex mediated heart rate response is present and 

matures with advancing postconceptual age.

Few studies have quantified BR sensitivity in neonates. Drouin and Gournay 

measured BRS non-invasively in term and preterm infants using an automated 

oscillometric device for measuring blood pressure which has previously reported as 

giving similar BP readings as an umbilical arterial catheter116. The baroreceptor 

sensitivity was lower in preterm infants (approximately 4 ms mmHg'1, 29-32 weeks) 

than in term infants (approximately 10 ms mmHg'1, 40-41 weeks)117. A subsequent 

longitudinal study in preterm (24 - 36 weeks gestation) and term infants demonstrated 

that baroreflex sensitivity at birth was lower in the preterm group and increased with 

gestational age. BRS also increased with postnatal age, but the values for preterm 

infants at term still tended to be lower than values for full term babies118. Andriessen 

et al further studied BRS by cross-spectral analysis between BP and RRi fluctuations, 

a method which has previously been demonstrated to be an estimate of BRS in 
adults119"122. Andriessen studied stable preterm infants in the first week of life91 and at 

increasing postnatal ages90. The feasibility of this method in stable preterm (28-32 

weeks GA) neonates was demonstrated and showed BRS to be higher in the LF band 
(4.2 ms mmHg [) then in the HF band (1.7 ms mmHg"1) in the first week of life91. 

Further investigation at advancing post natal ages of both preterm (28 - 37 weeks) 

and term infants showed that BRS calculated from the LF transfer gain increased
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significantly with advancing postmenstmal age from 5ms mmHg'1 (preterm) to 15ms 
mmHg1 (term). In agreement with previous studies, an increased NNi HF power 

relative to total power was observed with advancing postmenstmal age suggesting 

increased parasympathetic involvement. Furthermore, BR function was significantly 

correlated with the NNi variability but not with BP variability. This close relationship 

between NNi variability and BRS was also demonstrated in a pharmacological study 

whereby atropine administered to preterm neonates undergoing intubation, reduced 

BRS and NNi variability but had no effect on the BP variability100. These results 

suggest that significant vagal tone is already present in preterm infants.

In summary, whilst the above studies have used different methodologies, with 

different patient populations, it can be concluded that in the human infant: (i) a BR 

mediated HR response can be demonstrated in the immediate postnatal period, (ii) 

BRS is limited in preterm infants but increases with advancing postmenstmal age and 

(iii) BRS increases in response to parasympathetic development.

2.5.3 Chemoreceptor response

ha the full term neonate, the sensitivity of chemoreceptors to carbon dioxide is 

mature with the response to oxygen quickly resetting from the in-utero to ex-utero 
environment over the first few days of life124. The response to hypoxia results in an 

initial increase in minute volume which is poorly sustained followed by a return to, or 

fall below, baseline. This response evolves with advancing postnatal age with the 

increase in minute volume becoming more sustained and the hypoxic depression 
becoming less dramatic125. Preterm infants however demonstrate an immature 

response to hypercapnia which matures with increasing postnatal age126.
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2.5.4 Respiratory Sinus Arrhythmia

The presence of RSA in the human infant is disputed. Studies in both term81,127'131 and 

preterm ’ ’ ’ infants have been able to detect a respiratory peak occurring

during quiet sleep (QS) and sporadically in active sleep (AS). The occurrence of RSA 

in these infants is attributed to regular breathing patterns in QS and associated 

maturity of the parasympathetic nervous system 89'95,128,129,133 hi preterm infants, 

maturation of RSA has been demonstrated with advancing postnatal age 92,10‘. It has 

also been argued that the occurrence of RSA is not dependant on the respiratory rate, 

but more on the breathing stability and amplitude53,94,95 However, several studies have 

failed to detect a peak in the HF spectrum corresponding to the respiratory rate in both 
term53,95 and preterm infants105. Reasons for this failure to detect RSA have been 

proposed and include;

1. Immature central control of respiration. The typical neonate displays 

patterns of irregular breathing even during quiet sleep with the rate and 

tidal volume varying with each breath134. Thus, a stable frequency of 

breathing does not exist and therefore a respiratory peak in the HF 

spectrum cannot be detected.

2. Immature neural pathways for the transfer function from respiration to 
heart rate modulation97. In the adult, respiratory effort modulates the 

heart rate at high frequencies, mediated by parasympathetic activity. 

Parasympathetic immaturity would diminish the propagation of 

respiratory driven changes in the infant. The mechanisms that lead to 

periodic breathing remain unclear, with some authors suggesting unstable 

responses of immature chemoreceptors133.

3. High respiratory rate/small breath amplitude. The neonates high 

respiratory rate coupled with low amplitude makes the detection of a HF 

peak related to respiration difficult95,135. Sampling theory dictates that 

RSA is difficult to verify if the RR exceeds half the mean heart rate, a 

relatively common occurrence in neonates.

In summary, the presence of RSA in the neonate is dependent on there being present 

intact functioning of the ANS, in particular a mature PNS, with a relatively stable
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respiratory pattern. This situation is not uncommon in the term infant, allowing for the 

detection of RSA, but is infrequent in the preterm infant.

2.5.5 Maturation of the ANS

In-utero ANS maturation has been assessed by longitudinal assessment of fetal HRV 

in a small number of studies with diverse conclusions. Prior to 20 weeks gestation 

there is little intrinsic HRV as neither the sympathetic or parasympathetic influences 

exert significant effects despite anatomic functional integrity136. With advancing 

gestation a consistent decrease in baseline heart rate with an increase in variability is 

observed which is attributed to the maturation of the parasympathetic nervous 
system137'140. Frequency domain analysis of fetal magnetocardiograms from 16 to 42 

weeks gestation, in 49 healthy singleton pregnancies showed that total spectral power 

(0.003 - 1.0 Hz) increased with gestation, with the rate of increase slowing 

substantially beyond 32 weeks gestation. The increase in power was more pronounced 

in the LF band but also present in the HF band, suggesting maturation of both PNS 
and SNS activity141. This progressive increase in LF band power age has been elicited 

by others, but coupled with a decrease in HF power in the third trimester139,142.

ANS maturation has also been assessed by studying HRV in healthy infants at 

different gestational and postmenstrual ages (PMA) with several studies 

demonstrating increasing HRV spectral power with advancing ages92'97,103,118’143"146 

Chatow et al demonstrated an increase in HF power and a decrease in LF/HF ratio in 

infants of 34-35 weeks GA compared with 39-41 weeks GA when recorded on day 1 

of life (mean LF:HF ratio 71.4 vs 16.3)97, These findings are supported by a study by 

Longin et al who studied 39 infants within the first 7 days of life divided into two 

gestational age bands; (i) 29 - 32 weeks GA, and (ii) 32 - 35 weeks GA. Short term 

(10 minute) recordings demonstrated a significant increase in total, HF and LF power 

as well as a decrease in the LF/HF ratio when the more mature infants were compared 

with the more preterm ones. Furthermore, the indices reflecting PNS control showed 

the most significant increases105. The results from this study of preterm infants were 

also compared with a cohort of healthy term infants from a previous study by the 
same team53. The tenn infants demonstrated significantly increased HRV in all power
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spectrum bands, with a shift in favour of parasympathetic control reflected by a 

decreased LF/HF ratio. Clairambault et al further defined ANS maturation by 

examining 24 healthy newborns whilst asleep in the first 11 days of life. The infants 

were divided into three postconceptual age groups (31 - 36, 37 - 38, and 39 - 41 

weeks) with LF and HF power estimated over 512 beats. LF power demonstrated a 

steady increase between the groups whereas vagal tone showed marked maturation at 
37 weeks, before plateau at term145. This plateau was not demonstrated however by 

Sahni who demonstrated a steady increase in both time and frequency domain 

measures of HRV in preterm infants (26-37 weeks GA) when studied in three PC A 

groups; (i)31 - < 34 weeks,(ii) 34 - <35 weeks, and (iii) 35 - 38 weeks146. Finally, 

Goumay et al used the baroreceptor sensitivity as an indicator of ANS development 

demonstrating increasing sensitivity with advancing gestational age in preterm infants 
of 24 - 37 weeks GA118.

Longitudinal studies in both term and preterm infants has provided information 
regarding postnatal maturation of the ANS. Patzak147 et al followed 16 healthy term 

infants from the first day of life through to six months of age. Increasing power in all 

frequency bands was observed in the first five days of life which then declined, 

reaching a minimum value at 1-2 months of age. The power in LF, HF and total 

power subsequently increased up to 6 months of age. The LF/HF ratio development 

followed a more irregular course but reached a maximal value at the end of the fust 

month. The early modulation of HRV indices has also been observed in several other 

studies, including; (i) total power increase in infants born at 34-35 weeks gestational 

age (GA) when monitored in the first five days of life132, (ii) increase in time 
domain148 and spectral indices92 in infants born at less than 33 weeks gestation during 

the first three days of life and, (iii) increasing time domain indices in premature 
infants (28 -36 weeks GA) during the first 168 hours of life149.

Long term autonomic development has been studied by investigation of HRV indices 

in infants, children and adults. In a longitudinal study, Schechtman et al.150 reported 

an initial decrease in HRV for all frequencies over the first month of life, followed by 

an increase up to 6 months of age. This pattern was also observed by Massin in a 
cross sectional study of 587 infants151. Finley et al performed a cross sectional study 

of HRV from 24 hour recordings taken from healthy individuals aged 1 month to 24
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years. Increasing LF, HF and total spectral power was demonstrated up to 6 years, 
followed by a decrease in all parameters21. This pattern of an increase up to 6 years, 

followed by decreasing power was also observed by Goto who performed a similar 
study in children up to 15 years old152.

2.5.6 ANS development in the preterm infant

The premature infant has less ANS activity, as demonstrated by reduced HRV, than 

the term infant, hi order to investigate the effect that being born prematurely has on 

ANS development, preterm infants must be compared with term infants at a 

comparable postmenstrual age (PMA). Early studies compared the baseline HR of 

healthy preterm infants (29 - 36 weeks) with term infants at matched PMAs. Pretenn 

infants had an elevated HR which persisted until approximately 7 months 
chronological age153. This elevation in pretenn HR was also observed by Eiselt et al83 

who in addition showed that HRV, as measured by spectral power, was lower in 

pretenn infants at term conected gestational age (CGA) compared with term infants. 

Furthermore, when recordings were compared during different sleep states there was 

no difference in heart rate or HRV in preterm infants in contrast to the stark changes 
seen with term infants83. Similar spectral power results were demonstrated by Patural 

et al when EGG recordings taken at corrected term age for premature infants were 

compared with those taken Rom term infants. Parasympathetic activity, reflected by 

HF power, was significantly lower in the pretenn infants than in the teim infants and 

when the preterms were divided into three GA birth groups (<28, 28 - 31, 32 - 37 

weeks) the observed effect was greater with increasing prematurity154.

Studies using different methods to elicit autonomic control have reached similar 

conclusions. ANS activity as elicited by baroreceptor sensitivity was significantly 

lower at teim CGA in preterm infants (<33 weeks) when compared with full term 
infants (5.6 vs 8.9 ms mmHg’1)118. Tuladhar used reflex heart rate responses elicited 

by non-arousing trigeminal stimulation to assess autonomic functioning in term and 

pretenn (26 - 32 weeks GA) infants. The increase in heart rate was significantly less 

in pretenn infants than term infants at 2 - 3 weeks coirected postnatal age, but not at 2 

- 3 months. Again, no difference between sleep state HR was observed in preterm
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infants, a phenomenon which was present in the term infants. To assess the long term 

prognosis for ANS functioning in preterm infants Patural et al investigated a cohort of 

30 preterm infants (25 - 37 weeks) and 14 term infants at theoretical term, 2-3 years 
and at 6-7 years of age104. Reduced spectral power in preterms at birth was observed 

at term CA. However, these differences were not present at the subsequent recordings 

at 2-3 and 6-7 years of age. The preterm infants ANS development demonstrated 

rapid development, becoming equivalent to the term controls at 2 years of age.

From the above studies, it can be seen that the ANS, and in particular parasympathetic 

activity, increases with gestational age and early postnatal life. The preterm infant 
demonstrates reduced variability, and diminished ANS activity compared to the term 

infant. In addition, upon reaching the age of term infants, ANS function remains 

lower in preterm infants than in term infants. Whilst preterm birth and the intensive 

care enviromnent may be the cause for this observation, the impact of low fetal ANS 

activity on premature delivery is not known.

2.5.7 Influence of behavioural and sleep state

Several studies have demonstrated significant differences in heart rate variability 

during either active (AS) or quite sleep (QS) in term infants. Heart rate, long term 

variability (LTV) and low frequency spectral indices are increased during AS, whilst 

high frequency spectral power and short term variability is increased in QS in term 
infants128,155-158 The increase in LTV in AS has been suggested to arise due to the 

changes in breathing patterns and /or body movements that occur in AS79. Increased 

short term variability (STV) may in part be explained by the increase in RSA 

accompanying slower, more regular breathing pattern in QS89. Studies of the effect of 

sleep state in the preterm infant however provide conflicting results. Whilst some 
investigators92,132,145,159 have detected similar patterns in preterms (26-37 week) to 

those observed in term infants, the increase in STV indices are not to the same 

magnitude. Furthermore, others have not detected a difference in heart rate between 
sleep states160,161,53,105.
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The effect of sleep position on autonomic functioning has been investigated due to its 

relationship with sudden infant death syndrome (SIDS). The prone position is 

considered to be a major risk factor for SIDS162,163 and has also been demonstrated to 

be associated with an increase in heart rate and a reduction in HRV in term 
infants108’164"166, suggesting increased sympathetic activity. Preterm infants studied at 

different gestations and post natal ages have demonstrated similar results to term 
infants86,146,167'169 but the observed differences are more apparent in QS than in AS 

146,168. It has been proposed that the modification of autonomic control when sleeping 

prone decreases the reserve for further reflex circulatory adjustments, increasing the 
risk for SIDS170.

2.6 Clinical studies of pathological influences on neonatal 

HRV

2.6.1 Pulmonary Disease

Early observational studies performed in preterm infants demonstrated that long term 

HRV, as assessed by simple time domain statistics, was reduced in respiratory distress 

syndrome (RDS) and that the magnitude of this reduction was related to the severity 
of RDS149,171"173. Furthermore, the reappearance of HRV was associated with 

increased survival whereas, in infants who died, the reduced variability 

remained ’ ’ . They were flaws in these early studies, particularly the lack of

confounder reporting/analysis (eg ventilatory status, sepsis, birth weight, gestation) 

but their results were in agreement with a later studies which did correct for 

confounding variables174.

The mechanism responsible for reduced HRV in RDS is not fully understood. It has 

been suggested that the reduced compliance of the surfactant deficient lung leads to a 

reduction in respiratory movements, thus lessening the mechanical respiratory effect 

on haemodynamics and in turn HRV96. No studies have been undertaken investigating 

the effect of exogenous surfactant administration, thus increasing lung compliance, on 

neonatal HRV. Central activity in the medulla oblongata may be transiently depressed 

in the presence of hypercarbia resulting in reduced modulation of heart rate174. It has
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also been proposed that whilst the PNS functions properly, the SNS is attenuated 

possibly owing to poor regulation of blood pressure93. This would agree with studies 

that found reduced LTV but not STV in infants with RDS.

The effect of mechanical ventilation has been demonstrated in anaesthetised adult 

patients where reversal of the normal RSA pattern has been described175. That is, the 

heart rate decreased during mechanical lung inflation in contrast to the increase in HR 

related to spontaneous inspiratory effort. This phenomenon may be due to the positive 

intrathoracic pressure direct effect upon the aortic baroreceptors or the negative 

intrathoracic pressure occurring during expiration instead of inspiration (Bainbridge 
reflex)93. In ventilated, non-sedated preterm infants, this reversal of RSA has been 

demonstrated in some studies (<29 weeks GA)106 but not in others (<33 weeks GA)93. 

Rassi et al obseived reversed RSA in pretenns who were receiving synchronised 

intermittent mandatory ventilation (SIMV), and a normal RSA pattern in infants who 

were receiving high frequency oscillatory ventilation (HFOV). The frequency of 

HFOV was thought to be too high to be obseived within the HF band of 0.2 - 2Hz, 

and the infants own respiratory effort appeared to reproduce the normal RSA pattern. 

However, van Ravenswaaij et al did not demonstrate reversal of RSA but the presence 

of ‘artificial’ RSA which mimicked the normal pattern. Entrainment of the central 

respiratory activity by artificial ventilation was proposed as a possible mechanism for 

this occurrence, a phenomenon which has been described in both animals176 and 
humans177. This entraimnent is only present with intact vagus neives and is mediated 

via the lung stretch receptors, thus, the more mature preterm infants in this study may 

synchronise their inspiratory activity with the ventilator, resulting in RSA, in the 
presence of mature PNS development.

2.6.2 Brain injury

Clinically, the most striking abnormality of reduced HRV occurs in term infants who 

have suffered hypoxic brain injury. Physiological trend graphs demonstrate a heart 

rate which shows very little variation for several days. This clinical observation is 

reflected by a case control study of asphyxiated term infants who demonstrated 
diminished RSA and HF power.178 Moreover, Mcintosh et al have demonstrated that
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in term infants the degree of reduction in HRV is proportional to the severity of 
hypoxic ischaemic encephalopathy (HIE)179, In preterm infants, reduction in HRV has 

also been observed in cases of; (i) asphyxia and (ii) a large (grade IV) intraventricular 
haemorrhage (F/H)148.

In a small case-control study by Watkins et al, spectral analysis of very low biith 

weight (VLBW) infants (<1500 grams) on the first day of life showed that infants 

with low HF power on day 1 of life were more likely to be diagnosed with an 
intraventricular haemorrhage (IVH) by day 7102. However, this observation is only 

evidence of association and whilst the two groups were closely matched for birth 

weight and Fi02 requirements, there is no mention of the potentially confounding 

variables of gestational age or illness severity.

A study by Hanna et al180 of 19 VLBW infants recorded at 32 to 37 weeks corrected 

gestational age attempted to characterise the maturation of HRV indices in brain 

injured infants and also determine if a correlation between HRV and long term 

outcomes such as length of hospital stay, neurodevelopmental outcome and diagnosis 

of cerebral palsy exists. The recordings were taken from infants who had been 

previously recruited to a study investigating physiological response to sensoiy 

stimulation with simple time domain measures (SDNN, SDNN and SDANN index 

and RMSD) longitudinally assessed. The ECGs were recorded after receiving 

multisensory stimulation and the infants were followed up until 1 year of age to assess 

neurodevelopmental outcome. The subjects were stratified by the presence and nature 

of brain injury as follows; no brain injury, periventricular leucomalacia, grade III/IV 

IVH, or a combination of periventricular leucomalacia (PVL) and grade III/IV IVH. 

HRV was different for each type of brain injury. Compared to the non injured group, 

PVL was associated with an increase in all HRV indices, whereas IVH demonstrated 

a significant reduction in HRV. This may however reflect the length of time in stage 1 

sleep, which was significantly less in infants with PVL. Determinates of the HRV 
indices were investigated by multivariate, stepwise regressive models which 

demonstrated that using routine demographic and physiological variables in the 

models could account for the observed HRV indices in the non-injured and FVH 

groups but not in the PVL group. Moreover, the determinants were different, with the 
non-injured group.
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Only in the non brain injured group was a significant correlation found between HRV 

indices and longer term outcomes (gestational age at discharge, length of hospital 

stay and neurodevelopmental index scores (mental (MDI) motor (PDI) indices from 

the revised Bayley Scale of Infant Development (Bayley II))). Increased SDNN and 

SDNN index were related to increased scores for MDI, decreased total length of 

hospital stay and earlier gestational age at discharge. That is, the more variability 

present, the better the outcome at 1 year of age. This however did not hold for the 

brain injured group where the relationships did not reach significance. The occurrence 

of cerebral palsy was significantly related to the SDNN and SDNN index across all 

groups by using analysis of variance (ANOVA). In multivariate models that included 

central neural injury, gestational age at birth, birth weight, age at study, and mean 

heart and respiratory rates to describe the various long term outcomes, the accuracy of 

the models was improved significantly by the addition of HRV indices. The group 

concluded that in the non brain-injured infant there is the potential for HRV indices to 

be used as a prognostic marker for neurodevelopmental outcome. The time domain 

HRV indices which estimate low frequency activity were highly correlated with 

neurodevelopmental outcome in this group, thus suggesting parasympathetic and 

cerebral cortex maturity. They hypothesised that the reduction in HRV seen in cases 

of IVH is due to reduced sensory processing in the brain at 32-36 weeks, which may 
be a neuroprotective strategy180. However, no comment is made about the degree of 

ventricular dilatation or presence of cerebral oedema or hydrocephalus which may 
result in reduced HRV.

In summary, brain injuries in preterm and term infants appears to affect HRV with 

patterns that are distinguishable from the non brain injured infant and between injury 

types by simple time domain analyses. The relatively small number of these types of 

brain injuries occurring and the relatively large number of potential confounding 

variables makes research into using HRV analyses as a potential prognostic tool 

extremely difficult. However, the potential for analysing intra-individual changes in 

HRV for use as a monitoring tool to detect or predict the presence of intraventricular 

haemorrhages in the acute setting is a fiature possibility.
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2.6.3 Sepsis

Late onset neonatal sepsis is a major cause of mortality and morbidity in preterm 

infants. VLBW infants with confirmed sepsis have a 2.5 fold increase in mortality and 
more than 30% increase in hospital stay181. The early diagnosis and prompt treatment 

of sepsis is therefore a priority. Griffin et al have, over several years, developed a 

potential early warning screening tool for late onset neonatal sepsis by investigating 

the reduced heart rate variability and transient decelerations that occur up to 24 hours 
before clinical signs of sepsis182’188. They have termed these decelerations and 

reduced HRV, “Heart Rate Characteristics” (HRCs) and have used various techniques 

to ascribe low, medium and high risk HRC’s to neonatal ECG recordings. Firstly, the 

skewness, or the third moment about the mean, of NNi when plotted on a histogram 
was used185, later refined to a more flexible measure of “skewness”, termed sample 

asymmetry187. In addition, HR entropy is assessed as this has been demonstrated to be 

reduced prior to the onset of sepsis189. The authors suggest that monitoring HRC is 

useful as a screening test for the development of sepsis188. They argue that HRC 

monitoring has a receiver operator curve (ROC) area (0.76), positive predictive value 

(15% risk of sepsis, urinary tract infection (UTI), or death in next 7 days) and a 

significant increase in risk for the high to low risk recordings to warrant being used as 
a screening tool182,188. However, whilst these results are encouraging they do not 

demonstrate a tool which presently can initiate or change management. A positive 

predictive value (PPV) of 15% indicates a high number of false positive results, which 

is also commonly seen with biochemical tests for neonatal sepsis190.

hi an additional study the accuracy of HRC in predicting sepsis was further assessed 

by ascribing a “sepsis” risk score to HRC as well as clinical information (feed 

intolerance, apnoea, Immature white cell count proportion etc)186. It was demonstrated 

that whilst HRC monitoring in the preceding 24 hours is correlated to the risk of 

developing sepsis, provides independent information towards the diagnoses and 

becomes abnormal in infants who develop sepsis, it added little information to those 

infants deemed at high risk from their clinical features alone. That is, a low HRC did 

not exclude the risk of sepsis in an individual deemed at risk from their clinical 

features alone. It was argued that whilst HRC monitoring uses existing data, and is
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associated with imminent non-specific illness, it can be used as an adjunct to clinical 
information in predicting late onset sepsis.

In addition to using HRC to predict the development of sepsis the research team have 

also included HRCs in a regression model with demographic and laboratory data, 

producing an HRC index to predict adverse events (sepsis, UTI or death). This HRC 

index was validated in two centres, demonstrating that high risk HRC measurements 

had a 5 to 6-fold increased risk for an adverse event in the following 24 hours, 

increasing to 6 to 7-fold when associated with abnormal laboratory investigations191.

The development of the above described method is unique in that it is the only 

example of neonatal HRV monitoring which is available to be used in the clinical 

environment. HRC monitoring currently appears to be a non-specific marker of illness 

development, however it may lead to new monitoring strategies with future 

refinement and investigation. HRC monitoring has recently been approved in the USA 

by the FDA and the team are now investigating whether or not it improves the 

outcome for preterm infants in a multicentre study.

2.6.4 Patent Ductus Arteriosus

Infants with a PDA had a higher heart rate and short term variability but reduced long 

term variability when compared with matched controls. Interestingly, these 

observations did not change following successful closure with indomethacin174. In 

another study however, successful closure of the duct with indomethacin associated 

with an improvement in ventilation, demonstrated a reduction in mean heart rate and 

an inciease in long term variability. Infants whose ventilatory requirements did not 

improve showed smaller changes in HRV, while those who deteriorated showed no 

change in HRV indices . The authors suggested that the changes seen following 

successful closure are due to an improvement in brain stem oxygenation. However, no 

comment is made on the reduction in preload and left ventricular failure which 
accompanies the successful closure of a PDA.
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2.6.5 Small for Gestational Age

Infants who are small for gestational age (SGA) with intra-uterine growth restriction 

(IUGR) are at a higher risk of perinatal mortality/morbidity193’194, sudden infant death 
syndrome195"197, have poorer neurodevelopmental outcome198 and in adulthood have a 

higher risk of cardiovascular disease (the Barker hypothesis199). Spassov et al 

conducted a case control study, analysing ECG recordings taken from term infants 

who were either SGA (<3ld percentile for weight) or appropriate for gestational age 

(AGA) . SGA infants had a faster resting heart rate and reduced power within all 

fiequency bands except for LF during quiet sleep. Galland et al investigated HRV 

during sleep at rest and also following head up tilting in SGA (<10th centile) and AGA 

infants up until 3 months of age. Importantly they excluded infants whose mothers 

had smoked during pregnancy as this has been shown to suppress autonomic activity 

both in utero and in early life200'202. Whilst mean heart rate and ‘raw’ HRV were not 

significantly different, when the HR was included as a covariate, SDRR/SDARR (a 

measure related to the LF:HF ratio) became significantly higher in the SGA than in 

the AGA infants. This is suggestive of higher sympathetic and lower vagal tone in 

SGA infants. Following the intervention of tilting, the heart rate reflex responses were 

reduced in SGA infants, suggesting a less mature or compromised ANS. Moreover, 

these differences persisted when tested at 1 and 3 months of age. These results 

suggest that SGA infants are less able to respond to both intrinsic and extrinsic 

stressors, such as blood pressure fluctuations, and may partly explain the increased 

incidence of SIDS seen in these infants.

The highei sympathetic tone in SGA infants supports the hypothesis suggested by 
Barker199. Sympathetic over-activity is well recognised in association with increased 

cardiac mortality, stroke, diabetes, higher systolic blood pressure and increased 

percentage of body fat.
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2.7 Previous methodologies used to investigate neonatal 
HRV

The above review demonstrates the heterogeneous nature of previous research into 

neonatal heart rate variability. However, whilst the studies vary in methods, indices 

and conclusions the majority have a common theme. That is, they are limited to the 

lesearch environment and do not use methodologies which are applicable to clinical 

monitoring and utilisation. Frustratingly, the monitoring environment on the NICU 

already contains the raw ECG data required to obtain heart rate variability indices, yet 

the methods to obtain clinically applicable metrics are not presently available. 

Challenges to developing these methods include the quality, enormity and variety of 

the data produced and the equally enormous clinical issues of what to monitor, when 

and how to monitor it, in whom, and how it can be used to diagnose specific illnesses. 

The only example of HRV measurements being used in the clinical environment is in 

Virginia, USA. Griffin et al have used a measure of heart rate variability and transient 

decelerations, termed “Heart Rate Characteristics” (HRC), to continually monitor 

preterm infants at risk of sepsis. The result is a monitoring system which, according to 

the research group, allows the diagnosis and treatment of sepsis in infants who have 

yet to displayed signs of illness188. The research team must be applauded for their 

methodical, systematic approach to tackling the assessment of heart rate variability to 
detect the onset of sepsis.

The other reported methods used to assess heart rate variability vary in their 

applicability to be used as a clinically useful monitoring tool. For example, whilst 

frequency domain analysis provides information regarding the function of both 

branches of the autonomic nervous system it has been demonstrated to be of limited 

usefulness in detecting abnormal records203 even when using the superior method of 

Lomb periodogram analysis suggested by Moody204. Whilst being recognised as a 

good measure of cardiac risk in adults, it is argued that Fourier analysis of ECG data 

is piactically unieliable (and hence clinically impractical) as a single ectopic, missed 

or misread beat in a 15 minute sequence can change the spectral parameters by up to 
400%205. The major problem with using the Fourier transform to provide spectral 

components of the ECG is that in order to provide reliable results it assumes that the 
signal is stationary, i.e. that the same frequency components are present throughout
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the whole recording. Whilst this assumption can be overcome by paying particular 

attention to experimental protocols and recording conditions in physiological studies, 

using the Fourier transform method to monitor frequency changes in “real world” 

ECG recordings is impractical. The autonomic nervous systems raison d’etre is to 

continually adapt to both internal and external stimuli and is therefore, by definition, 

continually fluctuating in its activity. Methods to detect these fluctuations are thus 

required to accurately describe the relative functioning of both branches of the 

autonomic nervous system. These methods require the ability to simultaneously 

describe the ECG signal in both frequency and time domains.

Rassi et al have described a time domain method to quantify the frequency 

components within neonatal ECGs. The LF and FF components were extracted from 

the RRi tachogram by using Finite Impulse Response (FIR) filtering. A 256th order 

filter with a low cut-off of 0.2Hz and a high cut-off of 2.0 Hz was used for the HF 

components, with the LF components obtained by a 512lh order filter with cut-offs at 
0.05Hz - 0.2 Hz.106. Finite Impulse Response filters are a type of digital filter which 

are simple to implement and introduce a linear phase shift and thus a constant time 
delay206. This time delay can be easily eliminated, to preserve the original time 

relationship. Rassi et al studied the interrelations between LF and HF components 

over short time periods (resolution of one period of LF oscillations i.e. 0.2 Hz or 5 

seconds) and demonstrated that in most cases an increase in the LF component is 

correlated with a decrease in the HF component (and vice versa) with a time delay. 

This observation in very short time windows is in agreement with previous studies 

which have examined sympathovagal balance over much longer periods (from tens of 
seconds to several days)92,97. Of most interest however is the methodology employed, 

which allows the near real time quantification of LF and HF components in the time 

domain. However, since publishing the results of this analysis on 9 preterm infants 

recordings of 45 minutes duration, the research team have not used this technique to 

investigate autonomic functioning in preterm infants in either physiological or 

pathological conditions.
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2.8 Methodologies proposed for the investigation of neonatal 

HRV in this thesis

The aims of this thesis are to develop a method which is capable of taking the raw 

ECG data obtained from the routine monitoring of neonates in intensive care and to 

produce HRV metrics which can be utilised to provide clinically useful measurements 

of autonomic activity. This will take several steps, namely;

i. Recording the neonatal ECG

ii. Identifying each normal heart beat

iii. Quantifying both time and frequency domain parameters of HRV

iv. Comparing HRV measures in different groups of babies with expected 

differences in ANS activity

The methodology will be developed and validated with ECGs containing neonatal 

characteristics with known parameters. It will then be applied to real world data 

obtained by the routine monitoring of babies in the NICU.

43



Chapter 3

Monitoring on the Neonatal Intensive Care Unit 

and Methodology Development

3.0 Background

In the past decade there has been a rapid proliferation in the use of information 

technology on the neonatal intensive care unit. This has arisen because of the need to 

represent the increasing volumes of data being produced by the more sophisticated 

cotside monitoring and the expanding number of diagnostic tests available. To aid 

clinicians, patient information systems have been developed which receive 

information directly from the cotside monitors, ventilators, laboratories and other 

hospital systems. Clinical documentation can then be inputted by the attending 

physicians and nursing staff to provide a complete, cotside patient management 

system. These systems have been proven to be valuable and accurate tools for 

documentation, data collection, and the on-screen display of patient information " .

However, whilst it is recognised that intensive care environments lend themselves 

particularly well to computer involvement, it is essential that computers are not used 

simply because they are advanced technology and imperative that they do not 

detrimentally interfere with direct patient care ’ " .

3.1 Physiological Monitoring in Neonates

Physiological parameter monitoring is of vital importance when caring for sick 

infants. The reasons for this include;

a. They are physically small, enclosed within incubators, sometimes 

inside plastic bags to maintain their temperature or under phototherapy 

lights to heat jaundice. This makes observation of their clinical status 

difficult.
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b. The fragile infant requires as little handling as possible to ensure 
thermal and fluid stability1 and to allow adequate rest between 

potentially frequent handling procedures213.

c. Neonatal units often have a 1:2 or 1:3 nurse/patient ratio. 

Physiological trend screens can be viewed from a distance, enabling 

the attending teams to assess an unstable baby away from the cotside.

d. Sick infants deteriorate quickly, in seconds or minutes. This is due to 

immature homeostatic systems as well as the inability to communicate 
a deteriorating condition1.

It can be appreciated that neonatal patients are uniquely disadvantaged due to their 

size and inability to communicate. Clinical information available from neonatal 

patients may frequently be limited to the physiological parameters measured on the 
monitors214. It is therefore of vital importance to obtain as much information as 

possible about the status of the infant from these parameters.

The information provided by physiological monitoring aids decision making 

regarding management and also acts as an alert to any change in condition of the 
baby215. An infant being cared for on the NICU will have the following signals 

monitored routinely;

i. Heart Rate. ECG electrodes placed on the infant’s chest detect the 

intrinsic electrical activity within the heart. The ECG records the 

vector sum of all the electric dipole moments throughout the 

myocardium and produces a combined trace. The monitor will then 

measure the time between each R wave to calculate the instantaneous 
heart rate.

ii. Respiratory Rate. The chest ECG electrodes also detect impedance 

across the chest wall. As the chest moves with respiration, the 

impedance fluctuates and is recorded as a “respiration”.

hi. Oxygen Saturations. A pulse oximeter is attached to the infant’s limb 

and measures the percentage of oxygenated haemoglobin and blood 

flow past the probe. Oximeters are capable of distinguishing pulsatile 

flow from other more static signals (such as tissue or venous signals)
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and so will provide only arterial saturations. The pulsatile, arterial flow 

can also be used to provide information regarding the heart rate, 

iv. Blood Pressure. The measurement by an umbilical or peripheral 

arterial catheter is widely accepted as the optimum method for 
monitoring blood pressure216. Using oscillometric cuff methods may 

overestimate the blood pressure if it is low, providing false reassurance 

. The umbilical arterial catheter is inserted through the umbilical 

arteries and sits in the aorta. The catheter is connected to a fluid filled 

line which in turn is connected to a pressure transducer. Pressure 

changes in the aorta are transmitted along the fluid filled line and the 

pressure waveform is detected by the transducer, resulting in a pressure 

reading as well as a blood pressure waveform.

All infants receiving intensive care will have their heart rate, respiratory rate and 

oxygen saturations measured. Blood pressure monitoring is reserved for the sicker 

babies as it requires the insertion of an invasive, intra-arterial catheter. Occasionally 

an individual baby may require cerebral electrical activity monitoring, either by 

electroencephalogram or cerebral function monitoring, but this is not, as yet, routine. 

Finally, more sophisticated monitoring tools are available but are currently only being 

utilised as research tools including; (a) Near Infrared Spectroscopy which enables the 

non-invasive monitoring of tissue oxygenation and haemodynamics, (b) Cerebral 

Impedance Tomography, which can detect real time changes in cerebral blood volume 
and intraventricular haemorrhage220.

3.1.1 Physiological trend monitoring on the NICU

Physiological data is unique as it is continuously recorded, providing both 

instantaneous monitoring and the ability to observe time-stamped fiends in 

physiological parameters. Longitudinal measurements obtained from continuous 

monitoring can be displayed in trend graphs, allowing changing pathology to be 

observed in real time. This trend monitoring has three main areas of use; (i) as a real 

time clinical aid to patient management, e.g. apnoea of the newborn; (ii) as a research
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tool, demonstrating the effects of procedures on physiology; (iii) for educating 
members of staff about how physiological events develop.

On the NICU at LWH infonnation obtained from standard monitoring equipment is 

presented by cotside computers as trend graphs. These graphs can be manipulated to 

provide trends over varying time periods, from minutes through to days, (figure 3.1). 

Figuie 3.1 displays the trend graph for heart rate, oxygen saturations (Sp02), 

respiratory rate and blood pressure for an individual baby over a 24 hour period. On 

the right hand side of the figure, the numbers correspond to the instantaneous 

recordings of the physiological parameters. In this example it can be seen that the 
heart late and blood pressure are steadily decreasing from the beginning of the 

recording until 02:00. At this time there is an abrupt increase in both of these 

parameters which corresponded with the commencement of inotropic support.

47



©o»

82

§5
82

8S
52

^2

S5
82

&
OMO

85

8-
OCKp

*040

Du.
cd
<uc
3
C/3
C/3

Cu
T3
O
o

g
cd

"cdi-i

O*->cd•~
'E-

C/3

(N
O
C-

GO

C/3
3
O

§
Xo
<lT
"cdt-i

t:
cd
(U

-C
<D-a
H

-ca.
cd
&b

-o
c
a>

cd
o

‘5b
o

J3
D-

(D
cu
J-
3.
©I

3
O

J=l
o
<N

C/33
O

’>
CD

cu

u.

>
O
C/3T3
C<u

5 ^2

-o
gcd

CUcd
i-i
ex)
<u

<u-
O
CD

.’H
-*-»
OX)

•c
CD

■4—*

co
<D

X)
E3c
C/3

c
CD
E
(DM3
cd
<D
E
V)3
O
CD
Gcd
G
cd*->
C/3

_C
C/3
cd
T3S
C
O
57

oo
,d-



Fi
gu

re
 3.

2a

t

sg
r*HD

2
?&
rno
•*r-f

?S
rwo

sS
rHO
*4p4

Sg
r*D
"*9"4

sS
r\%0<

sg
ruo
—- •

rUo
T«lrH

2g
mo 1
sS ▼

ritO 2
«r u

c
E

*1
o
IA

CT1



Fi
gu

re
 3

.2
b

o
LO



The physiological trend graphs can be manipulated, with both the x axes (time) and y axes 

(measurement) having an adjustable scale. The clinical importance of this is clearly 

demonstrated in figure 3.2a and b, where the same recording viewed over different time 

scales yields different patterns. The blood pressure recording when viewed over 10 hours 

demonstrates rhythmic fluctuations in blood pressure which are not apparent when the trend 
for 50 minutes is observed.

Observation of these trend graphs is used by clinicians to aid in the clinical assessment of the 

infant. The accuracy of this method has not previously been assessed. In work related to this 

thesis, clinicians were able to determine whether or not a neonate developed sepsis with 53% 

sensitivity and 80% specificity when the preceding 48 hours of physiological trend graphs 

was observed. When clinicians were confident, their accuracy in correctly assigning the 

record as being from an infant who did or did not develop sepsis was 82% (IQR 67-88)221. 

(See section “Publications arising from this thesis”).

3.2 The Monitoring Environment on the Neonatal Unit

The monitoring environment consists of two separate networks, the unity and hospital 

networks These networks are connected to a PC (termed “datacollectl”) allowing the 

exchange of data between them. The two networks utilise a patient data management system 

called “The Badger System” which integrates the data and presents all laboratory results, 

physiological monitoring, radiological reports, ventilator information and patient notes at the 
cotside in a web based browser.

The unity network consists of the physiological monitors which display the physiological 

waveforms (ECG, plethysmography, blood pressure and respiratory rate) for each baby at the 

cotside. The hospital network consists of the cotside PCs and the NICU server. The NICU 

server stores all current patient data within the Badger System, obtains and stores 

physiological trend data and is responsible for the storage and retrieval of all laboratory data. 

The data is then provided to the Badger system for display at the cotside.
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Figure 3.3 A schematic overview of the two networks and the datacollect PCs. Datacollect2 
is the PC used to obtain the waveform data used in the thesis.

3.3 Acquisition of Physiological Waveform Data

The first step in analysing heart rate variability is the acquisition of the raw ECG data. All 

infant physiological data is sent from the solar 8000 monitors to the datacollect PC via a 

private Ethernet referred to as the unity network (see above). For this thesis, a separate PC 

was installed, termed datacollect2, which sat alongside datacollect 1 and is also connected to 

both the unity network and the general hospital network, (figure 3.3).

A data acquisition program called “solar 8000 waveform capture” was installed on 

Datacollect2. This program was written by Clevermed (the team who are responsible for the 

development of the Badger system) using the Delphi development environment (program 

language based on Pascal). The data acquisition program is activated by double clicking on 

the “solarSOOOwaveformcapture” icon on datacollect2. This opens up the user interface 
(figure 3.4).
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*|* Solar 8000 Waveform Capture

IP address of monitor

Start

Stop

17 Record waveform data 

FI Verbose packet log

12/02/200714:10:27
Ready.

Channels being received:

l; ecg i
□ ECG 2
□ ECG 3
□ ECG 4
□ Resp
□ BP
□ Sp02

Figure 3.4 The Solar 8000 waveform capture program window

Each cotside monitor has a unique IP address. By inputting this into the window “IP address 
of monitor, and selecting the start button, the program begins to acquire the data across all 

channels that are currently being monitored (figure 3.9).

• !' Solar 8000 Waveform Capture HEJB
IP address of monitor:

|l2G.2 86 1 53
12/02/2007 14:12:32
Receiving data from 126.2.86.153

Start

Stop

17 Record waveform data 

I- Verbose (jacket log

Channels being received:

@ ECG 1
0 ECG 2 
0 ECG 3 
0 ECG 4 
0 Resp 
0 BP 
0 Sp02

Figure 3.5 The IP address relating to a particular cotside monitor is inputted. All 7 channels 
are “ticked” indicating they are all being recorded.

53



Given the IP address of a particular monitor, the software obtains packets of wave data at 4 

Hz. The monitor returns 0.25 seconds worth of wavefonn data for every available data 

channel. The monitors provide waveforms at different sampling rates depending on the 

channel. The ECG data are sampled at 240Hz, whilst the blood pressure (BP), respiratory 

pattern (Resp) and plethysmography (Sp02) waveforms are sampled at 60Hz. The ECG 

channels are termed “ECG 1”, “ECG 2” and “ECG3” representing the different leads that are 

recorded from the three ECG skin probes. ECG 4 is a redundant channel.

The encoded binary data received from each monitor is then converted by the waveform 

acquisition software into plain text. The data packets returned by each monitor contain 

sequence numbers, but no timestamp. The time to which each sample corresponds is 

estimated by the data collection machine. Whilst in theory, sample transmission is affected by 

network latency and contention, the use of the dedicated unity network means that latency is 

of the order of milliseconds and dropped packets are rare. Multiple instances of the software 

can be run simultaneously to obtain waveform data from several different monitors.

The waveform data is saved as ‘comma separated variable’ or \csv’ text files. These files can 

be read by a variety of software programs including Microsoft excel and Matlab, enabling 

subsequent visualisation and signal processing of the recorded signal. Once imported into 

Microsoft excel it is possible to create a line graph of each of the three channels, which 

results in the typical characteristic ECG wave pattern. An example of the file imported into 

excel with a short sample line chart can be seen in figure 3.10.
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Figure 3.6 The derived text file of ECG wavefonn data is imported into excel. By plotting a 

line chart the original wavefrom pattern can be visualised.

The CSV file format is also able to be read by a variety of programs which can apply 

sophisticated signal processing techniques to obtain further infonnation from the signal, for 

example HRV. The program used in this thesis for signal processing is Matlab© (Matlab 7.5, 

The MathWorks Inc., Natick, MA, 2007). Matlab© is a software package for scientific and 

engineering computation which integrates numerical analysis, matrix computation, signal 
processing and graphics.
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3.4 HRV analysis Schematic

The analysis of HRV in either the time or frequency domain consists of several steps which 

are summarised in figure 3.11. Further description of the HRV analysis will be demonstrated 

in the following chapters.

RR interval 
Rejection

Artifact
Identification

TIME
DOMAIN

FREQUENCY
DOMAINMicrocomputer

Digitising

EGG
Recording

interpolation 
+ Sampling

NN Data 
Sequence

RR Data 
Editing

Figure 3.7 Flow chart summarizing individual steps used when recording and processing the 

ECG signal in order to obtain data for HRV analysis.
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Chapter 4

Automatic R wave detection in Neonatal ECG 

recordings

4.1 Terminology used to describe R waves and their intervals

The terminology used to describe the time interval between R waves can be confusing. RR 

refers to the time interval between two successive R-waves in the ECG. These can include 

ectopic beats where an R wave is present. The normal-to-nonnal R-wave (NN) refers to the 

time interval between two successive “normal” R waves, that is R waves occurring along 

with a p wave, indicating normal propagation of electrical impulses through the heart muscle. 

The RR interval time series (RRi) plots successive RR intervals producing a graphical display 

of the RR intervals. This display includes RR intervals, with ectopic or missing beats being 

potentially identified as outliers (see figure 4.1). The normal-to-normal interval time series 

(NNi) applies the same rules but only includes the “normal” RR intervals.

2.0-i

J

1.5 H

1
5 III

oc cc

0.5

0.0 4—------t- --------,-------------------------,-------------------------,-------------------------,------------,------------,
o 2 4 6 8 K)

Time (hours)

Figure 4.1 RR interval time series (RRi). Each RRi interval is plotted against time, producing 
a graphical display of the RRi.
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4.2 Automatic R wave detection in adult ECG recordings

The first step in obtaining a measurement of HRV is the accurate detection of each heart beat 

originating from the sinoatrial node. As discussed in 2.3, the fiducial marker for each beat is 

the “normal” R wave. This is a difficult process, made even more problematic in the neonate, 

by the presence of large volumes of noise, artefact and ectopic beats.

Standards produced by the Task Force of the European Society of Cardiology and The North 

American Society of Pacing and Electrophysiology state that it is necessary to use a well 

tested algorithm in order to locate a stable and noise-independent reference point50. A large 

variety of methods for the accurate detection of the interbeat interval have been proposed and 

used, featuring high percentages of correct detection. All of these studies have been 

conducted using Adult derived ECGs. There are no published data on the accuracy of fiducial 
point detection in neonatal ECGs.

Friesen et al. compared nine QRS detection algorithms with different types and volumes of 
synthesized noise 3. The QRS detection methods were based on: i) amplitude and first 

derivative, ii) first derivative only, iii) first and second derivative, and iv) digital filtering. All 
of these algorithms used fixed detection thresholds. The algorithms were evaluated with a 

“gold standard” ECG which was obtained from a human volunteer. A single cycle of the 

ECG was digitised, copied and appended to itself repetitively to make a 32 second ECG 

record strip. This gave an ECG with a constant heart rate (62bpm), QRS complex (80ms) and 

R-wave amplitude (1.08mV). The added noise consisted of five different representative 

sources: i) electromyographic noise, ii) powerline interference, iii) baseline drift due to 

respiration, iv) abrupt shifts in baseline and v) a composite of the above, and were added to 

the ECG at four different levels: 25,50,75 and 100 percent of the maximum amplitude.

No single algorithm in the study was superior for all types of noise. The digital filter 
algorithm adapted from Engelese and Zeelenberg224 was able to perform well with different 

combinations of noise but became less accurate with noise greater than 50% of the maximum 

signal amplitude. However, the effectiveness of the digital filter algorithm were in part 

attributed to the powerline notch filter which could also be used in a pre-processing stage for 

any of the other algorithms. The choice of “gold standard” ECG in this study is questionable. 

Whilst the repetitive short segment ECG provides a constant waveform pattern with constant 

characteristics, the true underlying dynamics of a recorded ECG can never be known45. The
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authois do not comment on how they determined the benchmark fiducial point for the QRS 

complex to which they then compare the different algorithms’ accuracies. Furthermore, 

Daskalov et al, applied these algorithms to selected synthesised signals containing records 

with pionounced baseline drift. The results were unsatisfactory, presumably due to the use of 

fixed detection thresholds, whereas adaptive ones would be more appropriate225,226.

Other studies have used digitised ECG recordings from human subjects taken from the 

anhythmia database from the Massachusetts Institute of Technology and Beth Israel Hospital 

(MIT-BH). This database contains 48 half-hour exceipts of two-channel ambulatory ECG 

iccoidings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 

1975 and 1979. The recordings are digitized at 360 Hz per and independently annotated by 

two or more cardiologists. The annotations labels point to specific locations within the 
xecoiding and describe events at those locations, for example, the occurrence of each 

individual heart beat ("beat-by-beat annotations"). The annotations are computer-readable

and are used as the “gold standard” to assess the accuracy of the various QRS detection 
methods74.

Poli et al. used a generic algorithm for QRS detection whereby complexes were emphasised 

with respect to the rest of the signal by polynomial filters and compared to an adaptive 

threshold. The authors reported 99.60% sensitivity (Se) and 99.51% specificity (Sp)227. This 

method is however unable to perform in real time. Afonso et al proposed hardware filter 

banks foi ECG signal decomposition, where several parameters were independently 

computed and combined in a decision rule. The authors reported Se = 99.59% and Sp = 

99.56% for their real-time, single-channel beat detection algorithm228. Dotsinsky and 

Stoyanov developed a heuristic, pseudo-real-time algorithm for ventricular beat detection for 

a single-channel ECG recording, based on steep edges and sharp peaks evaluation criteria. 

They reported Se = 99.04% and Sp = 99.62%, obtained with two channel recordings229 

Moraes et al combined two different algorithms working in parallel - the first was taken 

from the work of Englese and Zeelenberg224 and the other was based on Pan and 
Tompkins230, and Ligtenberg and Kunt231. They reported Se = 99,22% and Sp = 99.73% after 

having excluded records of patients with a pacemaker fitted. After excluding recordings 

containing high amplitude noise, the statistical indices rises to Se = 99.56% and Sp = 99.82%
232 *

. Li et al used wavelet transforms for detection. They reported 0.15% false detections in 

46 files fiom the database . Christov et al used two real-time detection adaptive threshold
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algorithms. The threshold combined three parameters: an adaptive slew-rate value, a second 

value which rises when high-frequency noise occurs, and a third one intended to avoid 

missing of low amplitude beats. The algorithms were used with all MIT-BIH arrhythmia 

ECGs and demonstrated sensitivity Se = 99.69% and specificity Sp ~ 99.65% for Algorithm 1 
and Se = 99.74% and Sp = 99.65% for Algorithm 2226.

By using the standardised MIT-BIH database, the performance of the various algorithms can 

be compared; however the choice of these recordings as “gold standard” does have 

limitations. The annotation method relies on human input to correctly identify the 

instantaneous heart beat. This “expert” interpretation is flawed as human input is affected by 

factors apart from the presented waveform. In this thesis the chosen “gold standard” is 

synthetic ECG signals with known input variables. This complies with guidelines for HRV 

analysis which state that equipment should be tested with signals of known HRV properties 

rather than with databases of already digitised ECGs50. Furthermore, the large variety of QRS 

detection algorithms, and the continuous efforts for their enhancement, proves that 
universally acceptable solution has not yet been found226.

4.3 Accurate R wave detection in Neonatal ECG recordings

The accurate detection of the fiducial R wave is made more difficult in the neonatal ECG by 

the increased presence of noise and artefact in the ECG. Noise can be referred to as persistent 

contaminant of the signal whereas artefacts indicate transient interruption such as limb 
movement45. Noise and artefact contamination are a particular problem in the analysis of 

neonatal ECGs due to the intensive care environment, their small physical size and immature, 

frequent movements. Sources of contaminants include223:

I. Power line interference. Mains electricity is provided at 50Hz with an amplitude 
of up to 0.5 of full scale deflection (FSD) of the ECG amplitude;

II. Electrode contact noise/artefact. Loss of contact or movement between the 

electrode and skin results in either complete or partial loss, saturation at FSD 

levels or baseline jumps in the ECG signal. This is a particular problem in 

premature neonates who are initially cared for in a humid environment and have 

immature, thin skin which makes constant electrode attachment difficult;
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III. Electromyographic (EMG) noise. Electrical activity due to muscle contractions is 

visible between 50 and 10,000 Hz in adult patients with a mean amplitude of 0.1 

of the FSD level, hi premature neonates movements are primitive, non-purposeful 

and can be myoclonic in nature. These result in EMG noise and can also disrupt 

the contact between the ECG electrodes leads and skin;

IV. Baseline drift. This usually occurs from respiration at approximately 0.15 of FSD 

at frequencies between 1 to 2 Hz in neonates;

V. Electrical device noise. Noise generated by other medical equipment present in the 

patient care environment at frequencies between 100kHz and 1MHz. Neonatal 

Intensive Care units have a large number of electrical devices including cotside 

PC’s, drug infusion pumps and monitoring equipment.

VI. Quantisation noise and aliasing. This is the distortion of the signal that occurs 

when the continuous, analogue ECG is converted to a digital signal for processing.

It can be seen that detecting characteristics in the neonatal ECG provides a significant 

challenge due to the high levels of signal to noise ratio (SNR). Also, the problem of missing 

data due to loss of electrode contact and ectopic beats increased the complexity in accurately 

identifying each normal heart beat. An example of a typical neonatal ECG can be seen in 
figure 2

There have been no reported comparisons of beat detection algorithms for ECGs with 

neonatal characteristics. Neonatal ECG characteristics and morphology differ greatly from 

adult ECG recordings (see section 2.5). The preterm neonatal heart beats at 100 - 180 beats 

per minute and has a morphology which alters with increasing age. The QRS axis in preterm 

neonates lies between 65 and 174 degrees, which is “right deviated” when compared with 

adult ECGs, and is narrow (80ms), increasing with age. QRS morphology in the newborn 

may have more notches and direction changes than in adults. The Q wave may have a large 

amplitude (0.55mV in lead III) and secondary R waves may be present234. As the work in 

this thesis was to use noisy, routinely monitored ECG recordings from neonates resident in 

the intensive care unit a novel R wave detector was required.
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Figure 4.2 Example of a typical routinely monitored neonatal ECG demonstrating the 
high volume of signal noise.

4.4 Development of an R wave detector

The R wave detector was developed with Professor A.C. Fisher, Department of Medical 

Physics and Clinical Engineering at the Royal Liverpool University Hospital. All the HRV 

analysis tools were developed in the MatLabK language extended with the Signal Processing 

and Statistics Toolboxes (Mathworks Inc., Nantucket). The RR detector relies on the energy 

in the R wave component of the ECG in the limited bandwidth around 16 to 18 Hz being by 

far greater than in any other part of the cardiac cycle235. The main features of the RR 

detection algorithm are presented in figure 4.3.
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Input raw ECG sampled at 240Hz

Normalise w.r.t. mean absolute value

Exit with vector of RR intervals to 2ms resolution

Rectify
Represent as positive going peaks

Create RR intervals 
Create simple Laplacian differences

Detect approx. R maxima 
Differentiate (FIR) and locate 

(+ve to-ve) zero crossings

Estimate high resolution R maxima 
Fit local cubic polynomials: 

solve for maxima (resolution 2ms)

Notchfilter at 17Hz
emphasise high frequency components 

(R waves)

Low pass filter at 10Hz (FIR) 
Smooth peaks to reduce HF noise: improve 

statistical accuracy of local maxima

Figure 4.3 Schematic representing the steps in identifying the R wave

The raw ECG when sampled at 240Hz (Fs) is assumed to have a bandwidth of 120Hz i.e. up 

to the Nyquist frequency at 0.5Fs. By normalising the data with respect to its mean absolute 

value and notch pass-band filtering using a high performance design (128-coefficient least- 

squares Finite Impulse Response (FIR)filter), the R wave energy is effectively isolated as a 

bipolar feature. This is rectified to positive-going only by computing its absolute value and 

smoothing the result with a 10Hz Infinite Impulse Response (HR) Butterworth filter which 

results in a series of ‘low noise’ peaks which statistically imply the occurrence of ‘R events’. 

The temporal locations of the maxima of these peaks are relatively easily determined by low- 

pass differentiation (using a 64 coefficient FIR implementation) and locating the +ve to -ve 

zero-crossing transitions. The resolution of this stage is limited by the rather conservative Fs 

of the ECG recording (240Hz). By resampling (up-sampling by xlO) the data segments +/- 10
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ms around the approximate temporal positions of the R events implied by the differentiation 

and zero-crossing operations (as above), and then determining the maxima of the local least- 

squares cubic polynomials fitted to these 20ms intervals, CR events’ can be inferred to a 

resolution of-2ms. The RR intervals are subsequently determined from the simple Laplacian 
difference of the R event vector.

4.5 Validation of the method

The above methodology resulted in the development of two R-wave detectors: i) an 

‘approximate’ detector which detects the peak position of the QRS complex from the zero 

ciossings of diffeience vectors and ii) an ‘accurate’ detector which, in addition, interpolates 

around the QRS complex to find the R wave with greater resolution. A third R wave detector 
was obtained from the PhysioNet forum74.

PhysioNet is an internet based forum which belongs to the Research Resource for Complex 

Physiologic Signals, a cooperative project between Boston's Beth Israel Deaconess Medical 

Centre/Harvard Medical School, Boston University, McGill University and Massachusetts 

Institute of Technology. This resource consists of three main components74;

1. PhysioNet. An online forum for the dissemination and exchange of recorded 

biomedical signals and open-source software for signal analysis.

2. PhysioBank. An archive of digital recordings of physiologic signals, including 

ECGs, for use by the biomedical research community. PhysioBank contains 

signals from healthy adult subjects and patients with a variety of medical 

conditions including sudden cardiac death, congestive heart failure, and sleep 

apnoea. There are currently no EGG recordings from infants or children.

3. PhysioToolkit. Contains a library of open source software for signal 

processing and analysis which is free to download and use. It includes 

software which can detect physiologically significant events using both simple 

techniques and more novel methods such as nonlinear dynamics and also 

allow the interactive display and characterisation of signals.
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An R wave detectoi developed by Dr. Gari Clifford, Massachusetts Institute of Technology, 

was obtained fiom the PhysioToolkit. This R wave detector is based on Pan and Tompkins230 

algorithm. Dr Clifford was contacted and assisted in this thesis by altering the R wave 

detector to belter suit the characteristics of the neonatal ECG recordings. A dynamical model 

foi geneiating synthetic ECG signals termed ECGSYN238 was also downloaded from the 

PhysioToolkit and used to produce ‘gold standard’ ECGs with known parameters.

It is of vital importance that any signal processing technique used in the analysis of HRV is 

evaluated and quantified in its performance. Whilst ECG recordings from human subjects are 

available in databases such as PhysioBank the lack of internationally agreed upon 
benchmarks means that it is impossible to compare competing signal processing techniques. 

The definition of such benchmarks is hindered by the fact that the true underlying dynamics 

of a real ECG can never be known. This void in the field of biomedical research requires a 

gold standard, where an ECG with well understood dynamics and known characteristics is 
made freely available238.

This need to evaluate signal processing techniques motivated McSharry and Clifford to 

develop ECGSYN, a dynamical model for generating synthetic ECG signals where the user 

has the flexibility to input desired characteristics238. ECGSYN is freely available through the 

PhyisoNet website in Matlab and C open source code or can be utilised in a Java applet. 

ECGSYN is based upon time-varying differential equations and is continuous with 

convincing beat-to beat variations in morphology and interbeat timing. Extremely realistic 

ECG signals with complete flexibility over the choice of parameters that govern the structure 

of these ECG signals in both the temporal and spectral domains are produced. In addition the 

morphology of the P, QRS and T complexes can be folly specified.

The key features of ECGSYN include45;

i. Ability to generate multiple ECGs at a range of heart rates and HRV 

paiameteis. The heait rate standard deviation and spectral components within 

two frequency bands are folly user defined. Algorithms can therefore be tested 

on a vast range of ECGs, some of which can be extremely rare and therefore 
underrepresented in databases.

ii. The sampling frequency can be varied and the response of an algorithm can be 
evaluated.
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iii. The signal is noise free, so noise can be incrementally added and a filter 

response at different frequencies and noise levels can be evaluated for 
differing physiological events.

For evaluating and quantifying the performance of the R wave detectors, ECGSYN was 

utilised to produce a database of synthetic “neonatal” ECGs. These ECGs included normal 

values for heart rate and HRV (standard deviation of heart rate) obtained from previous 
studies of term and preterm infants53,87,149. White noise was then added to the EGG 

recordings in increasing increments to assess the performance of the R wave detectors with 
increasing SNRs.

Two hundred and forty ECGs were synthesized each with unique input characteristics. The 
following parameters were used:

1. Internal Sampling Frequency. This is the frequency at which the underlying EGG 
is produced. This was set at 480Hz.

2. External Sampling Frequency. The frequency which the underlying EGG is 

sampled. Set at 240 Hz, the same sampling frequency that the SolarBOOOwaveform 
program samples EGG data on the neonatal unit.

3. Heart Rate. ECGs were produced with a range of different heart rates reflecting 

rates seen in previous studies of term and preterm infants53,87,149.

4. Standard Deviation of heart rate. Normal values obtained from previous studies 
informed the range of input standard deviations

5. Time of recording. Each EGG recording lasted for 60 minutes.

6. LF:HF ratio was fixed at 0.5 as for this assessment of the R wave detectors the 

frequency components were not of interest.

Following the production of 40 ECGs with different heart rates and standard deviations, 

random white noise was added using the Matlab function “awgn” at 6 uniform fractions of 

the amplitude of the ECGSYN produced waveforms of 1,4. The accuracy of the three R wave 
detectors in detecting each QRS complex was then assessed.
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Parameter Input Values

Heart Rate 60, 80, 100, 120, 140, 160, 180, 200 bpm
HRV (stdev of HR) 0, 1,2,4, 6, 8
SNR 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

Table 4.1 Input parameters for investigation of R wave detector methodologies on 
synthesized neonatal ECGs.

The exact location for each R wave peak was determined by the ECGSYN programme and 

this was the ‘gold standard’ position of the R wave. The three R wave detectors (Liverpool 

approximate, Liverpool accurate and Clifford) were then assessed in their ability to detect 

each QRS complex by comparing the estimated position of the R wave with the real position 

of the R wave. The root mean square error (RMSE) for each estimated R wave was then 

calculated, with the mean RMSE results for the entire recording being used to compare the 
different methods.

The three R wave detectors were then assessed and compared in their ability to correctly 

identify these three parameters with: i) increasing heart rate, ii) increasing standard deviation 
of heart rate and hi) increasing noise levels withm the ECG.

Of the 240 ECGs, 56 were unable to be analysed as the three methods were unable to detect 

any R waves. All the “failed” ECGs had a SNR of 0.5. The three methods were however able 

to detect R waves in 13/67 (24%) of the ECGs with an SNR of 0.5 though with a low degree 
of accuracy.
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RR detect accurate RR detect approx Physionet RR detect
RMSE 0.9 (0.5- 1.3) 0.9 (0.7- 1.4) 39.3 (0.6-63.2)

Table 4.2 Accuracy of the three methods for R wave detection. Values are the median of the 

Root Mean Square Errors for the 184 synthetic ECG recordings.

The R wave detectors accuracy was also compared in their accuracy when confronted with 

changes in heart rate, HRV and noise. The median RMSE for each of the R wave detectors is 
summarised in Figures 4.2 to 4.7.
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Figure 4.4 Line chart demonstrating the median RMSE for the three R wave detection 
methods with increasing heart rate
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Figure 4.5 Line chart demonstrating the median RMSE for the three R wave detection 

methods with increasing heart rate variability
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Figure 4.6 Line chart demonstrating the median RMSE for the three R wave detection 
methods with increasing levels of noise
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Figure 4.7 Line chart demonstrating the median RMSE for the two R wave detection 
methods developed for this thesis with increasing heart rate
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Figure 4.8 Line chart demonstrating the median RMSE for the two R wave detection 

methods developed for this thesis with increasing levels of noise.
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Figure 4.9 Line chart demonstrating the median RMSE for the two R wave detection 

methods developed for this thesis with increasing heart rate variability

It can clearly be seen that the R wave detectors developed for this thesis (Liv RR detect 

accurate and approx) were much more accurate in correctly identifying the position of each R 

wave than those developed by the Physionet team, even after adjustments had been made to 

better suit the characteristics of the neonatal ECG. The RMSE for both the Liv RR detectors 

had a mean of 0.9, with the Physionet RR detect method being highly inaccurate with mean 

RMSE being 39.3. This would make the Physionet RR detector unusable in detecting R 

waves in the neonatal ECG. Interestingly, the Liverpool RR approximate estimator 

demonstrated a narrower interquartile range than the accurate R detector. The additional step 

of interpolation adds no benefit in correctly identifying the exact position of the R wave and 

was thus abandoned.
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Accurate detection of the R wave is absolutely crucial as the first step in determining HRV 

indices. In this chapter it has been demonstrated that the available R wave detectors are not 

suitable for accurate R wave detection in ECGs with characteristics of those recorded from 

infants being monitored in the NICU.
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Chapter 5

Frequency domain analysis of RR time series

Frequency domain is a term used to describe the domain for analysis of mathematical 

functions or signals with respect to frequency, rather than tune239. A time-domain graph 

shows how a signal changes over time, whereas a frequency-domain graph shows how much 

of the signal lies within each given frequency band over a range of frequencies. A given 

function or signal can be converted between the time and frequency domains with a pair of 

mathematical operators called a transform. An example is the Fourier transform, which 

decomposes a function into the sum of a (potentially infinite) number of sine wave frequency 

components. The 'spectrum' of frequency components is the frequency domain representation 

of the signal. The inverse Fourier transform converts the frequency domain function back to a 

time function. There are several different transforms used for this, though the commonest 

being those based on the Fourier transform (FT) (or its discrete equivalent the DFT). Prior to 

performing spectral analysis, the HRV must be represented by a signal to represent the heart 

rhythm.

5.1 A signal to represent the heart rhythm

The NNi’s derived from the ECG must first be combined to construct a representative signal 

of the HRV. As discussed in 1.5.3.1, this is usually in the form of the NNi tachogram 

whereby each NNi is plotted against the time of occurrence. Alternatively, the instantaneous 

heart rate can be plotted. Furthermore, as well as the cardiac event series (NNi or IHR) being 

plotted against the time of occurrence, they can also be plotted as a function of beat number. 

Each of these methods of constructing the HRV signal introduces complications for 

performing spectral analysis in the frequency domain and is discussed below.
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5.1.1 Interval time function (Classic NNi tachogram)

The most intuitive approach is to plot the interval event series as a function of time, whereby 

the duration of each NN interval is represented on the vertical axis and plotted against the 

time of occurrence on the horizontal axis. This is an unusual event series given that both axes 

are related to each other, representing time between beats, and results in an inherently 

unevenly sampled signal. This form of the heart rate signal is therefore not well suited to the 

standard Fourier analysis (see 5.2) which demands a constant time interval.

In order to overcome this, a signal must be derived from the original event series that can be 

defined at all times and hence transformed onto a prescribed (regularly spaced) time axis. The 

simplest way to achieve this is by tachogram resampling, which involves applying 

interpolation methods to the original time series to obtain a new representative signal. The 

regularly sampled form can now be further processed using standard Fourier analysis. 

Resampling results in a semi-continuous tachogram whereby the rate is assumed constant 
within each event interval240. This resulting signal exhibits unnatural abrupt changes at the R- 

wave occurrence and since it is biologically unfeasible that the signal is discontinuous, linear 

and higher order, resampling methods are preferred and are just as simple to apply. The 

distortion which resampling introduces is generally underappreciated when reporting HRV 

metrics. The action of replacing the known data with evenly sampled points requires the 

assumption of some underlying model which describes the relationship between each 
point241. Linear interpolation, although stable, leads to rough approximations which are 

biologically unrealistic. Higher order schemes on the other hand are prone to instabilities and 

in general fail to fully capture the causal dynamics of the signal. Resampled spectra may 
often be comparable by visual inspection240 yet even subtle degrees of smoothing can 

manifest as large differences in the frequency spectrum and thus misrepresent the derived 
HRV metrics241.

5.1.2 Interval beat series

This is the sequence of NN intervals plotted regularly as a function of beat number. This 

approach produces an equi-spaced event series which can be considered as a regularly 

sampled wavefoim, and is useful in that it can be directly processed using standard
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procedures for spectral analysis (e.g. FT). However since the heart beat series is a function of 

beat number rather than time, spectral estimation results in an analysis not strictly in the 

fi-equency domain as we normally consider it but in the beat domain, also known as the 
sequency or beatquency domain212’242. Cycles-per-beat is substituted for cycles-per-second 

(Hertz) in the equivalent frequency representation making the resulting spectrum somewhat 

difficult to interpret. DeBoer et al compared HRV signals as a function of beat number and 

time . They found that the resulting spectra exhibited similar characteristics in appearance, 

however did not compare quantitatively derived values of HRV metrics.

5.1.3 Instantaneous heart rate

A related series may also be derived from the heart period by taking the series of the 

reciprocals of the NN intervals and plotting them as a function of time. This signal is 

lepiesentative of the instantaneous heart rate. Few investigators question the choice between 

heart period and heart rate, however interestingly both Molin and Santos found the spectrum 

of inverse intervals to be superior (exhibiting decreased spectral leakage)243,244. Although the 

i elation between the two may seem trivial and the signals hold the same information content, 

comparison between the two has shown considerable discrepancies, and the selection 

between heart rate and period can significantly affect the interpretation of the results245. The 

IHR must also be submitted to resampling schemes to obtain an evenly sampled waveform 
amenable to spectral analysis.

5.1.4 Low pass filtered event series (spectrum of counts)

More complicated (physiologically based) schemes to reconstruct the heart rate modulating 
signal have also been considered. The most widely used is the so-called low pass filtered 

event series (LPFES) introduced by Hyndman and Molin in 1975 who arrived at the method 
by employing an integrated pulse-frequency modulator (IPFM) as an underlying model for 
pacemaker activity246.

The IPFM model simulates beat occurrence times by imitating the function of the sino-atrial 

node. An input signal is integrated until a preset reference value is reached at which point the
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device sends out a pulse (‘heartbeat’) and the integrator is reset to zero before repeating the 

process. By assuming an underlying IPFM model, evenly sampled data can be obtained by 

passing the cardiac event series through a LP~filter. The resulting continuous signal is 

subsequently sampled and the spectrum calculated by a DFT. However, it is difficult to 

design a low-pass filter with an ideal frequency response, and many implementations lose 

fidelity of the heart rate reconstruction as they fail to preserve the high frequency 
components247. Reconshucting the modulating signal based on the IPFM model is still an 

active area of research yet there remains controversy in the accuracy of such an approach.

All four ECG derived signals arc quite closely related however, each has its inherent 
limitations when performing spectral analysis with the FT248. There is however an alternative 

to the FT that avoids the resampling conundrum and for which no underlying model needs to 

be formulated, the Lomb-Scargle periodogram (section 5.4).

5.2 Fourier Transform

The Fourier transform fits harmonic equations to time-varying data, yielding the frequency 

components of the original signal. (Figure 5.1).

There are several common conventions for defining the Fourier transform (/) of an integrable 

function /: R —> C. A simple definition is thus:

A /'CO

/(€)=/ f{x)e-2^dx
J —QQ

When the independent variable x represents time (with SI unit of seconds), the transform 

variable £ represents frequency (in heitz).

For HRV analysis, the time varying NNi tachogram (with units in seconds) is transformed to 

the frequency domain with the resultant function being with units s'1 or Hertz (Hz). The fast 

Fourier transform (FFT) is merely a discrete Fourier transform (a specific type of Fourier
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transfonn used when sampling a continuous function) that greatly speeds computation and is 
highly efficient249.

-0.5-

-1.0-

- 1.5-

Time (seconds)

s\/\f
0.00 0.05 0.20 0.25 0.30 0.35 0.40 0.45

Frequency (Hz)

Figure 5.1 Example of a Fourier transform. The original signal in the time domain can be 

demonstrated to have two major frequency components at approximately 0.025Hz and 0.3 

Hz. following the Fourier transform.
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Four common distortions may arise in using the fast Fourier transform250:

1. Aliasing. The sampling theorem states that an accurate determination of spectral 

components is possibly only at frequencies no greater than the Nyquist critical 

frequency, determined as one-half of the sampling rate. Therefore if fluctuations in 

heart rate are under investigation, the high frequency cut-off point should be half the 

lowest normal mean heart rate. Signals at frequencies above the Nyquist critical 

frequency will be erroneously translated to below the Nyquist limit in X(f), Assuming 

the heart rate to be 150 beats per minute (equal to 2.5 Hz), tire Nyquist criterion 

requires an upper limit of the respiratory frequency of 75 breaths per minute (equal to 
1.25 Hz).

2. Spectral Leakage. Oscillations at frequencies that produce exactly 1, 2, 3, etc., 

cycles over the record duration will produce narrow peaks at the corresponding 

frequencies. However, any other frequency oscillations present in the signal will 

produce broad peaks. Tapering the end of the time-domain sample removes the 

discrepancy between the start and end of the record, minimising spectral leakage. 

Tapering is achieved by using a time-domain sampling window {e.g. a triangle shaped 
Parzen window).

3. Errors due to non-equidistant sampling. Time-domain data for transformation by 

the Fourier transform are assumed to be sampled at a constant interval. However, the 

raw heart rate can only be computed after a beat occurs. Because beats occur at 

varying rates, new heart rates are available at irregular intervals. To overcome this 

issue, interpolation and resampling is used to produce equidistant sampling of the 
signal, (see 5.2.)

4. Errors due to lack of stationarity. The Fourier transform assumes stationarity of the 

frequencies components within the signal. That is, the data segment is assumed to 

have the same spectral characteristics throughout. However, this is difficult to assure 

in physiological studies. The compromise is between the reduced resolution of short 

collection periods and the spectral distortions from non-stationarity over longer 
periods.
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Thus, FFT techniques require the cardiac event series to be;

1. Equidistantly sampled

2. Within the nyquist frequency and

3. Stationary

These limitations in the use of FFTs hinder their utilisation in the production of PSDs of 

HRV from the cardiac event series, particularly those derived from “real world” recordings 

obtained from the NICU where significant noise and missing beats are present and where 

stationarity is not commonplace. There is however an alternative to the FFT which avoids the 

problems of resampling and for which no underlying model needs to be formulated, the 
Lomb-Scargle periodogram. (see 5.4)

5.3 Resampling for Spectral estimation

Resampling transforms an irregularly sampled process, such as the NNi tachogram, into an 

equidistantly sampled signal. This signal can then be utilised by Fourier techniques to 

produce PSDs. Resampling always causes spectral bias, due to aliasing and to shifting of the 

observation times and results in an inaccurate representation of the cardiac event series. 

Figure 5.2 illustrates how resampling schemes can distort an underlying signal. In this 

example the unevenly sampled points (marked by *) are equivalent to each heart beat with 

the underlying signal taking the form of a sinusoid (blue line). Resampling at 7Hz using 

linear and (red) and cubic spline interpolation (green) interpolation241. Linear resampling 

results in a very crude approximation of the signal whereas the cubic spline passes closely 

through the real data points and generates a reasonably accurate representation of the 

underlying signal. However, it can be seen that even this method underestimates the peaks 

and houghs. The accuracy will further decline if the true form of the signal is not sinusoidal 
in nature51.
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0.97 E

Figure 5.2 The effect of interpolative resampling on a perfect sinusoid. The ideal waveform 

represented by the blue solid line is unevenly sampled at points * physiologically 

representative ot the beat occurrence. The linearly resampled signal is represented by and 

the cubic spline by -o-.

5.4 The Lomb-Scargle periodogram

The Lomb-Scargle periodogram was introduced as a method for deriving the PSD of 

unevenly sampled signal in 1976 by astronomer Nicholas Lomb251. In using the Lomb 

method, resampling onto an even timescale is unnecessary and the pitfalls introduced therein 

(see above) are avoided. The principle is based on a least squares method of fitting sinusoids 

to samples ot data; a sine wave can be fitted to a set of observations and thus obtain a single 

point ot a spectrum. That component can then be subtracted and the process repeated until a 

spectrum results with the desired frequency resolution. Previously the high computational 

burden ot the Lomb method proved a major obstacle to its general use and thus its application 

for HRV analysis25" . In 1989, Press and Rybicki, developed a fast algorithm for 

implementing the Lomb periodogram"53. Given the advantages of such an approach, several
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papers have presented PSD analyses using the Lomb periodogram on unevenly sampled heart 
rate signals 51,241,254,255. Moody applied the Lomb method to an artificial heart rate time series 

demonstrating that for noise-free HR signals AR, FFT (of cubic resampled R-R interval 

series) and the Lomb methods provided equivalent spectral estimates51; yet the Lomb proved 

to be more robust in the presence of random noise and ectopic beats. Laguna et al similarly 

concluded the superior performance of the Lomb estimate when compared with classical 

methods of PSD estimation with resampling (cubic spline and linear)255.

More recently, Clifford and Tarassenko, published a set of systematic experiments to quantify 

the exact errors resulting from the resampling process in the spectral estimation of HRV 

signals, focusing on different levels of noise and ectopy241. They found that the FFT 

overestimated the LF:HF ratio by approximately 50% with linear resampling and 10% with 

cubic spline resampling whereas the Lomb was found to be more accurate on both artificial 
and real data75. Furthermore replacement or removal of artefactual beats compounded these 

errors, whereas the Lomb method performed consistently up to a high percentage (20%) of 
beat removal.

5.5 Dealing with missing data and ectopic beats

ft is seldom possible to acquire a HR time series for a sizeable length of time without the 

occurrence of cardiac ectopies (abnormal beats that occur with an unusual timing) or beats 

that cannot be reliably detected (missing beats). Ectopic beats can be regarded as such when 

they have intervals of less than or equal to 80% of the previous sinus beat256. Since this 

phenomenon will result in beats which occur substantially earlier than that of a normal event, 

the shortened R-R intervals will create higher frequencies in the spectrum. This may lead to 

an overestimation of the HF components of the HRV metrics. On the contrary the effect of 

missing beats will lead to extended R-R interval durations which will lead to extended RRi’s, 

leading to an overestimation of the LF components. These artefacts within the EGG must be 

detected and either corrected or removed. Fourier based methods require interpolation of 

these missing or ectopic beats otherwise stationarity is lost. However the spectral estimates 

derived from the heart rate data may be distorted in the process.
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Neonatal ECG recordings are more susceptible to corruption due to the reasons set out in 

3.1.1. Using neonatal (and adult) ECGs with simulated (single and multiple beat) artefact 

removal, Peters et al found that the VLF and LF powers could be calculated consistently for 

up to 25% of con-ected data, but the HF (adult: 0.15-0.4 Hz, newborns: 0.4-1.5 Hz) power 

estimates were underestimated particularly for newborns due to the effect of the 
resampling257. In this study, the R-R intervals were also deleted at random for up to 50% of 

the dataset. Spectral analysis was performed using the FFT on evenly resampled form of the 

data. They concluded that only short data segments free of artefact should be used if the HF is 

to be considered, or that only the LF region be used in fetal monitoring258. They also warned 

against the use of normalised values which incorporate the HF components. The investigators 

fail to consider however their information limits, for example the validity of the VLF power 

metric due to the short amount of data analysed (192 seconds), which is significantly less 

than that that recommended by the Task Force (300 seconds) (assuming a sampling 

frequency of 1000Hz). They also attempt to resolve frequencies up to 1.5 Hz which would 

require an average of 3 bps (576 beats in 192 seconds) which is rather a high expectation 

even for neonatal data. It is therefore no surprise that the HF components were severely 

affected by the missing data which effectively reduces the sampling rate to unacceptable 

levels. Resampling at 4Hz merely creates the illusion of a high temporal resolution whereas 

in reality we are constrained to obtain glimpses of the (ideal) signal once per beat at most259 .

In contrast with the above findings the LF power component has also shown to be unreliable 

with inconsistent data as the loss of stationarity induced by removal of the missing segments 

preferentially affects the lower frequency components. Birkett et al compared the effects of 

dealing with missing segments by beat replacement or removal260. Either the intervals 

corresponding to ectopic beats (and the three beats following) were estimated by interpolation 

(linear or cubic-spline) or the segment was completely discarded. It was found that the low 

frequency power calculations (by FFT) were significantly higher when interpolative 

resampling was used as opposed to removal, whereas the HF were relatively unchanged 

between the two. Lippman et al also concluded that removal of sections worked better than 

beat replacement by interpolation but found that the HF component was underestimated, in 

addition to the overestimation of the low frequencies261. This may be due to the differences 

in length of data used; the former use 24 hour recordings260 whereas the latter use 5 
minutes261. It is not recommended that metrics derived from different signal durations be 

compared50.
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The results in the aforementioned study by Clfford and Tarassenko are in agreement with 

these observations demonstrating that cubic resampling results in an overestimation of the 

LF/HF-ratio and reported that the LF over-estimation is the dominant error241. The PSD 

estimate using interpolation prior to an FFT was found to grow linearly with the number of 

ectopics removed. In addition to the FFT they also look at the performance of the LSP on 

incomplete data and found that the accuracy remained even when 20% of the data points 

were missing.

Alternative schemes to resampling have also been proposed to deal with missing data. 

Albrecht and Cohen earned out experiments to examine two different methods for 

characterising the HR power spectrum of data over bad intervals containing (low incidences 
of) ectopic or missing beats262. They compared two schemes for dealing with ectopic beats. 

The first method made no explicit assumptions about the specific value of the HR in the bad 

intervals and thus used only the original data points. Missing beats were dealt with by 

constmcting a windowing function (varying from 1 to 0 to 1) over the bad interval and then 

estimating the position of the R wave on the product of the windowing function and the HR. 

The second method simply constructed linear splines across bad intervals to replace ectopic 

beats. Against the theoretical reasoning the first method performed quite badly (for many 

typical R-R tachograms) in the HF power estimates whereas the ad-hoc method of splining 

performed better, demonstrating substantially lower variance. This is due to the fact that the 

linear spline has essentially no high frequency content and therefore adds little noise to the 

HF band of the spectrum.

Time domain HRY measures are also susceptible to corruption due to missing data and noise. 

Kim et al looked at the effect of noisy data and missing data on the associated time domain 
metrics263. They compared several statistical measures derived from the time series for 

various amounts of missing data from (length 0 -100 seconds) from 5 minute tachograms to 

demonstrate the errors that arose between the original and incomplete tachograms. The mean 

NN was found to be the most robust parameter to missing data and remained practically 

uninfluenced by corrupt data.

The presence of ectopic beats has been shown to (falsely) elevate the standard deviation 

(SDNN), masking the detection of a depressed SDNN which may be indicative of congestive 
heart failure264.
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5.6 Zero-meaning, detrending and signal stationarity

In any time series which has non-zero mean, such as the heart rate, a windowing function will 

introduce significant distortion of the lower frequencies in the spectrum by artificially 

reducing the values near the beginning and end of the series to zero. Such artefact is easily 

corrected for by subtracting the mean value of the time series from each sample point, a 
process called zero-meaning51,259.

PSD estimation inherently assumes that the signal is at least weakly stationary, however real 

HRY series rarely conform to this ideal. R-R interval series of longer durations often show 

baseline trends representative of long term variations (for example demonstrative of 

differences between sleep and wake states). If the modulations are not stable then the results 

of frequency analysis are less well defined obscuring detailed information about autonomic 
regulation50. Any methods that attempt to characterise specific periodicities over time may be 

distorted by slow linear or complex fiends. This is a challenging issue because non- 
stationarities in HRV are not uncommon265. If a section of the data exhibits significant 

changes in the mean or variance over the length of the window, the HRV estimation 

technique can no longer be trusted. A number of methods have been proposed to correct for 

this.

The initial approach to the problem should be to prevent (or more realistically to minimise) 

non-stationarities by ensuring that test conditions (and subject conditions) remain stable 

throughout the recording period. Whilst this is applicable to the research setting this does not 

lend itself to using HRY analysis as a clinical tool in the “real world” setting. Even when 

stability of the test conditions is obtained, non-stationarities may still appear in the heart 

period series. Some investigators argue that all such changes should be regarded as relevant 

and part of the HRV and do not apply any non-linear detrending51. However, many consider 

such pre-processing to be absolutely necessary and deal with persistent trends by other 
means266.

Weber et al suggest that HRV data should be systematically tested for non-stationarities and 

only segments within which (weak) stationarity is satisfied should be chosen for spectral 
analysis265. However, this introduces selection bias and the conclusions drawn may not be 

representative of the data as a whole.
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Alternatively, it is more common practice to detrend the signal by removing the baseline 

trend from the window prior to analysis based on linear267 or polynomial models268. 

Ashkenazy et al found that distinction between healthy subjects and patients, using the (time 

domain) SDNN as a measure of HRV, was more successful when detrending was first 

applied to the R-R interval series (7-8 minutes in length) by subtracting a running local 
average269. In frequency domain analysis, the strong VLF component has been found to 

distort other frequency bands, especially the LF component of the spectram270. The 
application of band-pass filters267,268 to isolate a frequency range of interest can improve the 

accuracy of estimating a constant periodicity superimposed on slower trends. However, the 

target itself may not be stationary (such as RSA) and cannot simply be removed or 
extracted271. Taivainen et al presented a detrending method based on the smoothness priors 

formulation270 which operates like a time-varying FIR high pass filter. The frequency 

response can thus be adjusted which allows the RSA component to be separated by adjusting 

a single parameter. De Beer et al used a customised filtering technique applicable to neonatal 

data in order to reach an agreeable compromise between LF frequency resolution and HF 
time resolution272. As, with regal'd to the duration of the recording, the optimum lengths for 

accurate analysis of the LF and HF components are conflicting: the higher the frequency of 

interest, the shorter should be the duration of the recording and the lower the frequency of 

interest, a longer duration of recording is required50. This is of particular importance for 

neonatal data where the difference between the HF and LF bands is greater. The relevant 

portions of the spectram are thus analysed individually (using appropriate window lengths) 
by filtering the respective bands separately before FFT spectral analysis.

Although moderate violations of stationarity may not seriously affect spectral estimation of 
HRV266, the issue of stationarity is important and should not be ignored273. This is 

particularly so in the case of premature infants who, due to an immature autonomic 

regulation, demonstrate high incidences of signal non-stationarity due to a rapidly fluctuating 
heart rate and blood pressure274. One must however, check the frequency response of any 

filter (detrending scheme) to ensure that the spectral components of interest are not adversely 
affected in the process.

hi summary, a large number of HRV studies use resampled R-R interval series for spectral 

analysis by conventional means (FT). However, there is no consistent approach to the 

resampling scheme (or sampling rate) used. Furthermore, when resampling schemes are
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employed in the presence of missing data we have to stretch even further the assumptions 

made about the underlying signal which often has undesirable effects in the frequency 
domain.

It is apparent that ectopic beats must be removed but it remains unclear what level of artefact 

correction is tolerable. Furthennore the error is dependent on the spectral estimation and pre

processing method employed, therefore one should always be cautious when projecting any 
findings from individual studies to investigations in general.

The Lomb-Scargle periodogram is regarded as a reliable method for performing spectral 
analysis of unevenly sampled data, and is thus ideal for HRV analysis. Moreover the method 

is fairly tolerant of occasional gaps in data (missing beats), a phenomenon which has been 

shown to significantly confound the standard FT methods, hi this thesis, the Lomb-Scargle 

periodogram will be used to produce PSDs of neonatal ECGs.

5.7 Development of a new method of frequency domain analysis 
appropriate for analysis of neonatal RR interval times series

In the conventional HRV tachogram, the time axis is represented either as the actual time 

taken directly from the EGG record at which each RR-interval (or NN-interval) is calculated 

or the indirect time as calculated as the running cumulative sum of RR-intervals. Thus, each 

RR-interval is time-stamped, and significantly, the time axis is irregularly sampled. The 

majority of published spectral HRV analysis work employs interpolative resampling to remap 

the RR interval tachogram onto a regularly-spaced time axis at, typically, 250ms (milli
seconds) intervals to facilitate analysis.

Resampling introduces noise and distortion, corrupting both the fine detail of the higher 

frequency components, whereas detrending significantly attenuates the estimate of low 

fi-equency power. The conventional approach to the spectral representation of the HRV 

tachogram consists of firstly, detrending in the time domain, and secondly, power estimation 

in the frequency domain. The detrending operation, as a time domain operation, is a high-
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pass filter, usually with a cut-off at very low frequency, such as ~0.005Hz. There is no 

universally accepted formal justification for such an operation other than that it minimises the 

effects of medium term non-stationarity within the immediate time epoch (observation 

window) of interest. To accommodate the requirements of these conventional processing 

techniques, the data must be resampled onto a regular (uniform) time axis. This is readily 

achieved by cubic spline interpolation but does so at the expense of introducing low 

fiequency noise and distortion by ‘smoothing’ higher frequencies which compromises 

accuracy and is therefore inappropriate in this present study.

Stationarity is an axiomatic requirement in estimating the power distribution with respect to 
frequency. The data of a section of the HRV tachogram are informally assumed stationary if 

their variance is unchanging. The most commonly adopted practice is to establish the 

frequency limit of stationarity as the reciprocal of the length of the sampling window. Whilst 

this might be justifiable as being pragmatic, it is in fact difficult to apply if the detrending 

method cannot be characterised explicitly by its frequency response.

A number of methods have been described which identify a trend component in the HRV 

tachogram such that it can be removed by simple subtraction. These methods include fixed 

coefficient low-order polynomials267’275 adaptive high-order polynomials268 and more 

recently, the smoothing priors approach270’276 (SPA). Whilst polynomials can be efficiently 

applied directly to the HRV tachogram, their frequency response is effectively poor. The SPA 

exhibits a well-described second-order response but does require the tachogram to be 

lesampled onto a regular' time axis. The SPA approach is based on the definition of a 

Gaussian Process (GP) with a stationary and continuous covariance function, evaluated at 

legular intervals on the time axis. The GP effectively defines a class of functions which act as 
smoothers.

For the purposes of this neonatal study and the challenging nature of the ECG data, a more 

robust and accurate method of determining the conventionally defined spectral HRV 

components was needed than is currently available in commercial systems designed, 
predominantly, for the analysis of adult HRV.

In paiallel with this thesis additional work by Professor Tony Fisher, Professor David Groves 

and Katie Sanders within the department of medical physics and clinical engineering at the 

Royal Liverpool University Hospital developed and investigated a novel method for
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determining the frequency components within the NNi tachogram using the LSP. When the 

LSP method was compared to two FFT methods (FFT with linear interpolation and FFT with 

cubic spline interpolation), the LSP was demonstrated to be superior in the following;

i. Deriving a known LF:HF ratio across a range of different HRs

ii. Deriving a known LF:HF ratio across a range of different HRVs

hi. Deriving a known LF:HF ratio across a range of beat removals, remaining 

within 15% of the true LF:HF ratio even when 50% of the RRi data points are 
removed.

The LSP was less accurate when compared with the FFT methods in deriving a known 

LF:HF ratio when ectopic beats were present. This demonstrates the importance of accurate 

beat detection as the presence of a single ectopic beat causes unacceptable distortion of the 

frequency spectrum. With the LSP providing LF:HF ratios within 15% even when 50% of 

data points are missing, it is safer to be over cautious when determining the R wave as a 

missing beat will affect the spectral analysis much less than the inclusion of an ectopic beat in 
the NNi time series.

The improvement in accuracy is achieved by avoiding any requirement to resample the data 

at both stages of processing, either for detrending the RR tachogram of for estimating spectral 

power from the detrended tachogram. Further, the combination of techniques is far less 
sensitive to ‘missing’ and ‘false’ RR intervals and, together with improved accuracy of 

measurement, are more appropriate to the unavoidably ‘noisy’ neonatal ECG recordings. The 

two new analysis methods developed are described in Appendix B with the comparisomn 

between the LSP and FFT methods described in Apppendix C.

5.8 Summary

Frequency domain analysis is essential to determine the functioning of both branches of the 

ANS. FFT methods have been used to determine the frequency components within the NNi 

tachogram however they are unsuitable for the routinely monitored neonatal ECG signal. A 

novel method for frequency domain analysis was therefore required. This method avoids the 
pitfalls of the FFT methods by using the LSP without resampling of the NNi tachogram.
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The “real world” neonatal ECG contains high levels of artefact and missing data. Whilst the 

FFT techniques can only be performed on continuous data, the LSP can be calculated over 

the entire length of the signal, despite missing data, and is able to interpret frequencies well 

below those detected by the FFT. This allows a more complete picture of the underlying FIR 
signal.

The LSP has thus been demonstrated to provide a much more accurate and robust method for 

producing frequency domain HRV analysis of real world ECG’s and is the method of choice 
for determining the PSD of the routinely monitored neonatal ECG.
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Chapter 6

Methods for assessment of Neonatal ECGs

6.1 The Liverpool Neonatal ECG Recording Bank

ECG’s were recorded from neonates who were receiving care on the NICU at LWH. Routine 

neonatal ECG monitoring uses a three lead ECG configuration to form the Einthoven triangle 

- two electrodes are placed onto either side of the chest and a third on the outer aspect of one 

thigh. The electrodes are relatively large in size, compared to the size of a pretenn infant, and 

there is therefore no “standard” lead positioning as in the full 12 lead ECG.

For this thesis, ECGs were recorded for different time durations on a variety of well and 
unwell babies. These included:

1. Twenty minute, observed recordings.

2. Two hour unobserved recordings.

3. Longer term recordings, lasting Rom 12 hours up to several days.

Recordings consisted of the routinely monitored ECG signal over 3 channels. These 

recordings were stored on datacollect2 PC (section 3.3) before being transferred on to a 

password protected external hard disk drive. The recordings contained no identifiable 

information. They were subsequently downloaded from the hard disk drive to the computer 

servers in the medical physics and clinical engineering department and processed using the 
methodology described in chapters 4 and 5.
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These recordings fonned a bank of different lengths of recordings on a variety of babies. The 

following demographic and clinical data was collected for each recording in the bank:

i. Gestational age at birth

ii. Age at recording

iii. Birth weight and weight at recording

iv. Antenatal details (maternal smoking, drugs used, steroid administration, 

presence of pregnancy induced hypertension)

v. Birth details (Apgar score and cord pH if available)

vi. Clinical infonnation (respiratory support, method of feeding presence/absence 

of; PDA on echocardiogram, intraventricular haemorrhage or periverintricular 
leucomalcia on cranial ultrasound scan)

vii. Current medications (inotropes, morphine, caffeine, midazolam, 
phenob arbitone)

viii. Septic status — free from infection, sepsis in subsequent 24 hours, currently 

suspected sepsis, currently confirmed sepsis

ix. Outcome (died, chronic lung disease, retinopathy of prematurity, necrotising 

enterocolitis) (see Appendix A)

The Liverpool Neonatal ECG Bank consisted of 315 recordings, varying in length from 20 

minutes to 154 hours. These recordings were taken over a 2 year period by the author. The 

full details of the Liverpool neonatal ECG recording bank are recorded in Appendix A. The 

recordings were divided into durations of recording: 20 minute, 2 hours and longer term 
recordings.

6.1.1 20 minute recordings

These recordings were made whilst the baby was observed to ensure they were not handled, 

had continuous ECG measurements and suffered no clinical deterioration during the 

recording. Recordings were performed whilst the infants were asleep at least 30 minutes 

after a feed and where they were not disturbed throughout the duration of the recording. Prior 

to the recording the electrodes were adjusted so as to provide a positive R wave in lead II. No 

other manipulation of the ECG leads occurred and the morphology of the ECG on channels I
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and III was not considered. Recordings were discontinued if the clinical condition of the baby 

necessitated handling, care givers entered the incubator or the ECG leads became detached. 

Recoidings continued if the baby had a bradycardic event or if there was visible noise on the 

ECG. The observer noted the sleep state (quiet or active) based upon criteria as described by 
Sheldon222. The 20 minute recordings represented the “experimental” environment for babies 

in the resting or steady state. Demographic data for all of the observed 20 minute recordings 
are presented in table 6.1.

Gestational Age at birth (weeks) 28.2 (24.1 -41.9)
Birth Weight (grams) 1000 (530-3350)
Sex 43 male, 35 female
Age at recording (days) 8(0-96)
Corrected GA at recording (weeks) 31.3 (24.9-41.9)

Table 6.1 Demographic data (median (range)) for all of the 78 observed (20 minute) 
recordings

6.1.2 2 hour recordings

The recordings of 2 hours duration were made from infants routine receiving care on the 

neonatal unit. These recordings were not observed and reflect the “real world” neonatal ECG. 

Recoi dings were commenced at any point in the infant’s care routine and continued if the 

infants required any intervention or the ECG leads became disconnected. The full range of 

gestational and postnatal ages of infants were included. A subgroup of infants had 

unobserved recordings made immediately following an observered recording, allowing the 

compatison between HRV recorded in the “real world” and the “experimental” environement 
to be made (Chapter 9).

Within the 2 hour recordings, HRV measures were obtained from 20 minute time epochs. 

Each 20 minute epoch would overlap the previous epoch by 10 minutes. For example, in a 2 

hour recording there would be eleven 20 minute epochs (0 - 20 mins, 10 - 30 mins , 20 -
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40mins etc.). The resultant HRV metric for the 2 hour recording is the median value of each 
20 minute epoch within the recording.

Demographic data for all of the unobserved 2 hour recordings is given in table 6.2

Gestational Age at birth (weeks) 28.4(23.1 -41.9)
Birth Weight (grams) 1077 (515-4620)
Sex 52 male, 48 female
Age at recording (days) 8 (0-120)
Corrected GA at recording (weeks) 31.9(24.7-42.0)

Table 6.2. Demographic data (median (range)) for all of the 100 unobserved (2 hour) 
recordings

6.1,3 Longer term recordings

Unobseived recordings from2 hours up to 154 hours were also made. These recordings were 

not used for analysis in this thesis but remain in the Liverpool Neonatal ECG bank for future 
study.

6.1.4 Rejected Recordings

Prior to any processing of any 20 minute epoch the percentage of missing NNi data for each 

of the three ECG channels was calculated from the total record. Any record that had in excess 

of 10% of the NNi data missing was excluded from further analysis. From methodology 

development it is known that with 10% of data points missing the LSP is accurate in 

identifying the frequency bands within 3% (Appendix C, table C.5). If more than one 

channel contained less than 10% missing data then all available channels were analysed with 

the resultant HRV metrics representing the mean values across all channels.
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6.2 HRV analysis

HRV analysis was performed on 20 minute epochs within the NNi tachogram. The HRV 

metrics obtained were:

1. Time Domain measures

a. Variance of the NNi (Var) (ms2)

b. Standard deviation of the NNi (SD) (ms)

c. Mean NNi (ms)

d. Kurtosis (kurt)

e. Skewness (skew)

2. Frequency Domain measures

a. Ultra Low Frequency (ULF) (<0.017Hz)

b. Very Low Frequency (VLF) (0.017 - 0.04 Hz)

c. Low Frequency (LF) (0.04 and 0.15 Hz)

d. High Frequency,, (HFa) (0.15-1.5 Hz)

e. High Frequencya (HFb) (0.40 - 1.0Hz)

f. Low Freqency to High Frequencya ratio (LF: HFa)

g. Low Freqency to High Frequencyt, ratio (LF: HFb)

3. Non linear measures

a. Poincare SD1 (PCSD1)

b. Poincare SD2 (PCSD2)

c. Poincare SD1: Poincare SD2 ratio (PCSD1 :SD2)

6.3 Statistical Analysis

For non-related samples, the Mann Witney test was used for continuous data and Fishers 

exact test used for categorical data. To compare the HRV metrics before and after the 

removal of non-stationaries the Wilcoxon signed rank test was used.
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For recordings which were longer than 20 minutes duration and therefore contained 

overlapping epochs, the data, by definition, were not independent. Thus simple statistical 

methods were not suitable for data analysis. The data were analysed using a statistical model 

which is described below. Firstly the data was transformed to better match the Gaussianity 

assumption required by the analysis. The method of analysis used consisted of fitting a 

regression line y=a*x+b, where y represents each of the measured quantities, and x is a 

binary variable denoting the gestational age category the infant belonged to.

After the fit, the esthnated variances of the parameters a and b were corrected non- 

parametrically (using Huber's method) to take into account the possible correlations due to 

overlapping data segments and repeated measurements. The null hypothesis of no effect 

corresponds to the null hypothesis that the parameter a=0. The method implemented an 

unbalanced ANOVA design (variance corrected), which in turn can be thought of as a 
generalisation of the t-test. As the analysis required transformation and modelling of the data, 

a p value <0.05 cannot be used. Instead a p value <0.01 is considered statistically significant.

6.4 Experiments performed

In chapters 7-12 the results of several experiments using the recordings in the Liverpool 

Neonatal ECG bank are presented. A brief summary of these experiments is provided below.

6.4.1 Ability to produce HRV metrics (Chapter 7)

This thesis has thus far demonstrated that it is possible to produce HRV metrics from 

synthesized neonatal ECGs (chapter 4, Appendix C). hi Chapter 7, the developed method is 

applied to routinely monitored neonatal ECGs to determine its ability to produce HRV 

metrics from these recordings. For this experiment, all of the 20 minute and 2 hour ECGs 

within the recording bank were selected. For demographic details of the babies which these 

recordings were taken from see table 6.1 and 6.2.
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6.4.2 Determining the effect of removal of non-stationeries (Chapter 8)

Non-stationaries within the NNi tachogram distub the underlying harmonic273. In chapter 8, 

HRV measuies were obtained from all of the 20 minute recordings both before and after the 

removal of non-stationaries. The results after removal were compared to those before 

removal to assess the impact of removing non-stationaries on HRV measures. For 

demographic details the babies which these recordings were taken from see table see table 
6.1.

6.4.3 Stability of the HRV metrics (Chapter 9)

To assess how the HRV metrics fluctuate during routine neonatal care, several “well” infants 

had a “real world” (unobserved) recording made immediately after having an “experimental” 
(observed) recording.

Well infants were defined as those who were spontaneously breathing, free of sepsis or did 

not develop sepsis in the subsequent 48 hours, were not on morphine or sedative medication 

(midazolam or phenobarbitone), had no evidence of a patent ductus arteriosus and did not 

have an intraventricular haemorrhage larger greater than grade 2.

The observed, 20 minute recording represented the “experimental” or “steady” state. The 

unobserved, 2 hour recording represented the “real world” state. For each baby, the HRV 

values obtained in the real world state were compared to the HRV value obtained during 

the “steady” state, providing a ratio thus allowing the total variation for each HRV metric 

throughout the 2 hour recording to be demonstrated. The demographic data for the 16 babies 

who were used in this experiment are presented in table 6.3. The HRV results for this 
experiment are presented in chapter 9.
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Baby
Ref. No.

Sex GA at birth
(weeks)

Age at
recording
(days)

CGA at
recording

No. of epochs
contributing
to HRV

measure (%)
1 m 27.4 47 34.1 6(55)
2 f 31.3 1 31.4 11 (100)
3 f 31.7 8 32.9 11 (100)
4 m 30.7 8 31.9 8(73)
5 m 36.9 1 36.9 9(82)
6 m 25.7 9 28.3 11 (100)
7 f 41.9 1 42.0 10(91)
8 m 28.6 34 33.4 7(64)
9 f 31.9 57 40.0 11 (100)
10 f 31.3 7 32.3 11 (100)
11 m 31.3 10 32.7 11 (100)
12 m 32.3 8 33.4 11 (100)
13 f 26.1 3 26.6 10(91)
14 m 27.6 4 28.1 11 (100)
15 f 30.4 1 30.6 11 (100)
16 f 27.3 11 28.9 11 (100)

Table 6.3 Demographic data and the number of 20 minute epochs contributing to the 2 hour 

recordings for each observed/unobserved pair.

6.4.4 Comparing HRV in different gestational age groups (Chapters 10,11 and 12)

Previous work has demonstrated that more mature infants have increased variability, with 

differences in frequency power distributions when compared with less mature 

infants92’97’105,118,143'146. To determine if the methodology developed for this thesis was able to 

detect similar differences, infants who were less than 10 days of age and “well” (see 6.2.3) 

were selected from the Liveipool Neonatal ECG bank. Infants less than 10 days of age were 

selected to minimise the deleterious effect that intensive care has on the developing 

autonomic nervous system.
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The first comparison used 20 minute observed recordings, comparing HRV measures in 
babies < 32 weeks and > 32 weeks corrected gestational age (CGA) at the time of recording 

(demographics in table 6.3). This experiment was repeated using the recordings of 2 hours 

duration (demographics in table 6.4). These experiments determined if the HRV measures, 

and in turn autonomic activity, were measurably different in the two gestational age groups.

32 weeks (n=18) > 32weeks (n=14) p value
Gestation at birth (weeks)

Birth Weight (grams)

Age recorded (days)

Gestation Age recorded (weeks) 
CPAP (%)

Caffeine (%)

AN Steroids (%)

27.1 (26.0-30.4)

1070(870- 1305)

3.0 (1.0-5.8)

28.1 (26.9 -31.0)

8(44)

16(89)

17(94)

34.7(32.4-35.5)
2183 (1401 -2880)

3.5 (1.0 - 6.8)

34.7(33.0-35.8)

0(0)

1(7)
9(64)

<0.0005

<0.0005
0.954

<0.0005
0.004

<0.0005
0.064

Table 6.4 Demographic and clinical data for the observed recordings from well preterm (<32 

weeks GAA) and near term or term babies. Mann Witney test used for continuous data and 
Fishers exact test used for categorical data.
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< 32 weeks (n=21) > 32 weeks (n=14) P value
Gestation at birth (weeks) 27.9(26.7-30.1) 32.6(32.0-34.2) <0.0001
Birth Weight (grams) 1020(768-1349) 1816(1647-2361) <0.0001
Age recorded (days) 3(2-7) 4(1-8) 0.708
Gestation Age recorded (weeks) 28.4 (26.7-30.3) 33.6(32.7-35.2) <0.0001
CPAP (%) 5(48) 0(0) 0.0689
Caffeine (%) 13(62) 3(21) 0.0364
AN Steroids (%) 17(81) 12(86) 1.0000

Tabic 6.5 Demographic and clinical data for the unobserved recordings from well preterm 

(< 32 weeks GAA) and near term or term babies (> 32 weeks). Mann Witney test used for 
continuous data and Fishers exact test used for categorical data.

6.4.5 ( omparing HRV in “experimenta^, and “real world” recordings in well babies
(Chapters 10, 11 and 12)

Subsequent to comparison in 6.2.4, for each of the gestational age groups (< 32 weeks and > 

32 weeks) the HRV results from the observed 20 minute recordings (experimental state) and 

the unobserved 2 hour recordings (real world state) were compared. This experiment 

determined if the HRV measures in the real world were the same as when measured in the 
experimental state.

To ensure that the experimental and real world populations were similar, demographic 

and clinical data were compared. This demonstrates that the groups were similar (table 6.5 
and 6.6).
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Observed (18) Unobserved (21) P value

Gestation at birth (weeks) 27.1 (26.0-30.4) 27.9(26.7-30.1) 0.78

Birth Weight (grams) 1070(870- 1305) 1020 (768- 1349) 0.51

Age recorded (days) 3(1-6) 3(2-7) 0.71

Gestation Age recorded (weeks) 28.1 (26.9 -31.0) 28.4 (26.7-30.3) 0.89

CPAP (%) 8(44) 5(48) 0.20

Caffeine (%) 16(89) 13 (62) 0.07

AN Steroids (%) 17(94) 17(81) 0.35

Table 6.6 Comparison of demographic and clinical data for the observed and unobserved 

recordings taken from well preterm (< 32 weeks) babies. Mann Witney test used for 

continuous data and Fishers exact test used for categorical data.

Observed (14) Unobserved (14) P value

Gestation at birth (weeks) 34.7(32.4-35.5) 32.6(32.0-34.2) 0.44

Birth Weight (grams) 2183 (1401 -2880) 1816(1647-2361) 0.58

Age recorded (days) 3.5 (1.0 - 6.8) 4(1-8) 0.80

Gestation Age recorded (weeks) 34.7(33.0-35.8) 33.6 (32.7-35.2) 0.44

CPAP (%) 0(0) 0(0) 1.00

Caffeine (%) 1 (7) 3(21) 0.60

AN Steroids (%) 9(64) 12(86) 0.39

Table 6.7 Comparison of demographic and clinical data for the observed and unobserved 

recordings taken from well term and near term (> 32 weeks) babies. Mann Witney test used 
for continuous data and Fishers exact test used for categorical data.
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6.4.6 Comparing HRV in “well” and “unwell” babies (Chapters 10,11 and 12)

To assess if the HRV measures were able to detect differences between two distinct groups of 

babies, HRV results obtained from 2 hour recordings of “well” babies were compared to 
those who were “unwell”.

Well babies are defined in 6.2.3. It would be expected that the “unwell” babies would have 

differences in autonomic functioning and would thus have differences in HRV measures.

The comparison between the two different populations of babies described in 6.2.4 and 6.2.5 

is presented in chapters 10,11 and 12. The chapters are divided into time domain, frequency 

domain and Poincare measures of HRV. The same babies recordings are used for these three 
chapters.

Well, Spontaneously

breathing (N=8)
Unwell, Ventilated
(N = 8)

P value

GA at birth (weeks) 28.4 (25.6 - 33.1) 28.6(25.4-33.8) 0.958
Birth Weight 972 (770 - 2080) 1070 (810- 1952) 1.000
Age at recording (days) 12.5 (3.5-2.5) 15.5(2.5-28.5) 0.958
CGA at recording 32.4(29.1 -34.4) 32.5 (29.0-35.9) 0.958
Sepsis (%) 0 5(63) 0.100
IVH > Grade 2 0 5(63) 0.100
PDA 0 1(13) 0.500
Morphine 0 6(75) 0.004
Caffeine 5 (63) 1(13) 0.059

Table 6.8 Demographic and clinical data for unobserved recordings from well, spontaneously 

breathing babies matched with unwell, ventilated babies for gestational and post natal age. 

Mann Witney test used for continuous data and Fishers exact test used for categorical data.

103



To aid in presentation of the results, the results from the experiments listed in 6.2.4, 6.2.5 and 

6.2.6 are presented over three chapters (10, 11 and 12), divided by the nature of the HRV 

measure: Time domain (chapter 10), frequency domain (chapter 11) and Poincare measure 
(chapter 12).
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Chapter 7

Ability to obtain HRV metrics from the routinely 

monitored neonatal ECG

7.1 Introduction

This thesis has demonstrated that the developed methodology is able to produce HRV metrics 

from synthesized neonatal ECG’s (4.5 and appendix C). Before any clinical investigation can 

be undertaken it is important that the method is also capable of producing HRV measures 

from the routinely monitored neonatal ECG. The first assessment applied the method of 

determining HRV measures to the observed, “experimental” 20 minute ECG recordings 

Subsequently, the method was applied to the “real world” recordings of infants undergoing 

routine care on the NICU who were not observed. This demonstrated the ability of the 

method to produce HRV metrics from the routinely monitored, “real world” neonatal ECG.

7.2 Methods

From the Liverpool Neonatal ECG bank obseived recordings of 20 minutes duration and 2 

hour, unobserved recordings were obtained. For the 20 minute recordings, each of the three 

ECG channels recorded were assessed to determine if they contained in excess of 10% of 

“missing” NNi data and were therefore unsuitable for analysis (6.1.4). For example, if a 

channel within the 20 minute recording contained > 2 minutes where a R wave could not be 

detected, then it was rejected for analysis. Any channels with > 90% of data available were 

then subject to the methodology to determine the HRV components within the ECG.

Each 2 hour recording consists of 11, overlapping 20 minute time epochs (6.1.2). For each 2 

hour recording the number of 20 minute epochs containing > 90% of NNi data, and therefore 

contributing to the overall HRV result, was determined.
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7.3 Results

7.3.1 “Experimental” observed recordings

Seventy eight observed recordings were made from forty nine infants. The median gestation 

age at birth of the infants was 28.2 weeks (range 24.1 to 41.9 weeks), birth weight lOOOg 

(range 530 to 3350g) with the median CGA of recording being 31.3 weeks (range 24.9 to 
42.0 weeks), (table 6.1)

Of the 78 recordings, 76 provided HRV metrics. Two recordings were unable to produce any 

HRV metrics as all 3 channels within these recordings had missing data in excess of 10% of 

the total data for that channel. The “best” channel for these two rejected recordings had 

10.9% and 11.5% of the data missing. For the remainder, 27 (34.6%) recordings provided one 

suitable channel, 27 (34.6%) provided two channels, and 22 (28.2%) provided 3 channels 

(table 7.1). The median percentage of data present for the “best” channel for each recording 
was 98.7% (IQR 97.0 - 99.6%). The HRV metric for each recording is determined from 

averaging the result from all channels where there is less than 10% of data missing. If only 

those channels which were used to produce HRV metrics are considered, the median percent 

of data present was 97.4%v (IQR 94.3 to 99.0%). (Table 7.1)

No. recordings with 0 channels >90% data 2 (2.6%) I
No. recordings with 1 channel >90% data 27 (34.6%)
No. recordings with 2 channels >90% data 27 (34.6%)
No. recordings with 3 channels >90% data 22 (28.2%)
“Best” channel % data present (median(IQR)) 98.7% (97.0 - 99.6%)
% Data present for channels used for HRV 97.4% (94.3 - 99.0%)

Table 7.1 Details of the number of channels available to produce HRV measures from 
the 76 20 minute ECG recordings
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7.3.2 “Real World” unobserved recordings

One hundred recordings were made from 97 babies. The median gestation age at birth of the 

infants was 28.4 weeks (range 23.1 to 41.9 weeks), birth weight 1077g (range 515 to 4620g) 

with the median age of recording being 31.9 weeks (range 24.7 to 42.0 weeks), (table 6.2)

97 out of the 100 recordings were able to provide a HRV measure within the 2 hour window, 

that is there was at least one 20 minute time epoch which was suitable for analysis. The 

median number of epochs included to produce the HRV metric was 10 (IQR 8-11) with 

nearly half (47%) of all 2 hour recordings having all 11 time epochs contributing.

No. recordings producing HRV metric 97 (97%)
Median number of time epochs producing a HRV metric 10(8-11)
No. recordings with HRV medics from all 11 time epochs 47 (47%)
No. recordings with HRV metric from > 6 time epochs 87 (87%)

Table 7.2 Details of the number of time epochs available to produce HRV measures 
from the 100 2 hour ECG recordings

7.4 Discussion

The developed methodology was able to produce HRV metrics in 97% (observed) and 98% 

(unobserved) of recordings. The developed method is thus demonstrated to be able to produce 

HRV measures from routinely monitored neonatal ECG signals. Under “experimental” 
(observed) conditions, approximately l/3rd of recordings will provide HRV data from all 3 

ECG channels, one third from 2 channels and one third from all 3 channels. The two 

recordings which were unable to provide HRV metrics contained < 12% of missing data. 

Given that the ESP is accurate to within 4.4% even when 15% of data points are removed 

(appendix C), it could be argued that the cut off at 10% of missing data points is over 
cautious.
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With the “real world” unobserved recordings, a 2 hour time window will provide a HRV 

measurement 97% of the time. The majority of these (87%) will provide HRV metrics more 

than half the tune whilst nearly half will provide a HRV metric at all times. Given that the 

method is producing sophisticated frequency domain measures of HRV these are encouraging 

results in the development of using HRV as a monitoring tool.

7.5 Conclusion

The method developed for use in this thesis is effective at producing HRV measures from 

neonatal ECG recordings from babies who are receiving routine neonatal care in the NICU. 

Ninety seven per cent of recordings of 2 hours duration were able to provide HRV metrics, 

demonstrating that the method is robust enough to be used to monitor HRV using the “real 
world” ECG recorded in the NICU.
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Chapter 8

The effect of removing non-stationaries

8.1 Introduction

The underlying HRV harmonic is disturbed by the presence of non-stationaries273. How these 

non-stationaries are dealt with prior to producing HRV metrics is rarely discussed in the 

published research with there being no assessment of the impact they may have on overall 

HRV reported in the neonatal literature. Whist there is important information within these 

non-stationaries, such as the presence of bradycardic events prior to the onset of neonatal 

sepsis, they disturb the underlying harmonic within the NNi tachogram. In this chapter, HRV 

metrics before and after the removal of non-stationaries will be compared to assess the impact 
of removing non-stationaries.

8.2 Methods

Recordings of 20 minute duration were selected from the Liverpool Neonatal ECG bank and 

analysed to produce HRV metrics before the removal of non-stationaries. Following the 

removal of non-stationaries the same recordings produced a second set of HRV metrics. The 

results before and after removal of removal of the non-stationaries were compared using the 

Wilcoxon signed rank test with a p value <0.05 indicating a statistically significant 
difference.
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8.3 Results

Seventy six 20 minute ECG recordings and were subjected to the developed methodology to 

produce HRV metrics. The demographics for these babies is in table 6.1. Following the 

removal of non-stationaries overall variability is, unsurprisingly, reduced (standard deviation 

ot RRi 16ms vs. 13.5ms, p<0.0005). Removing non-stationaries also significantly reduced 

the kurtosis, Poincare SD1 and SD2, the frequency components VLF, LF, HF and the 

LF:HF+ ratio. (Table 8.1). Examples of the non-stationary data removed can be seen in 
figures 6.2, the removed data highlighted in red.

Raw RRi tachogram Processed RRi tachogram %diff p value
Variability (ms2) 255.9(113.9-407.8) 183.5 (99.4-268.1) -28.3 <0.0005
Standard deviation (ms) 16.0(10.7-20.2) 13.5 (10.0- 16.4) -15.3 <0.0005
Mean RRi (ms) 390.2 (367.4 - 423.8) 388.7 (366.3 -424.0) -0.4 0.424
Kurtosis 6.49 (3.38- 18.60) 3.90 (3.16-5.15) -39.9 <0.0005
Skew -0.133 (-0.922-0.424) 0.000 (-0.393 - 0.338) -99.9 0.295
Poincarre SD1 3.92 (3.18 -4.58) 3.37 (2.77-4.15) -13.9 <0.0005
Poincarre SD2 19.73 (13.65 -26.38) 15.97(12.42-20.49) -19.1 <0.0005
ULF (Hz) 0.302 (0.191 -0.375) 0.307 (0.175 -0.407) 1.4 0.261
VLF (Hz) 0.631 (0.535-0.757) 0.606 (0.474-0.721) -3.9 0.001
LF (Hz) 0.244 (0.142-0.416) 0.177 (0.123 -0.261) -27.4 <0.0005
HF (Hz) 0.046 (0.026 - 0.089) 0.036 (0.022 - 0.055) -22.0 <0.0005
HF+ (1.0Hz) 0.058 (0.031 -0.096) 0.067 (0.038 - 0.093) 14.7 0.263
LF:HF ratio 4.98 (4.11 -6.60) 5.37 (3.55 - 7.34) 7.9 0.897
LF:HF+ ratio 2.38 (1.57 - 3.23) 1.84(1.19-2.80) -22.8 <0.0005

Table 8.1 Effect of removing non-stationarities within the neonatal ECG on the derived F1RV 

metrics (Median and IQR). Wilcoxon signed rank test used for analysis.
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8.4 Discussion

Overall variability, as measured by the standard deviation of the RR interval, Poincare SD1 

and SD2, is unsurprisingly reduced when non-stationaries are removed from the NNi 

tachogiam. In addition, the power in each of the VLF, LF and HF frequency bands is 

reduced. The non-stationaries contribute a significant amount of the variation seen in HRV.

The neonate is particularly prone to the presence of non-stationaries with the majority of 

published reports of neonatal HRV failing to acknowledge their presence. It is important that 

the characteristics of these non-staionaries are presented as they may contain important 
clinical information about the current homeostatic state of the infant. This is particularly 

pievalent, foi example, in the septic infant who demonstrates increasing episodes of 
bradycardia. If the RR intervals within these bradycardic events are used to calculate HRV 

metrics, they may overestimate the true underlying HRV harmonic.

8.5 Conclusion

The presence of non-stationeries has a significant effect on the resulting HRV metrics. It is 

assumed that the removal of these non-stationeries allows the underlying HRV harmonic to 

be assessed and allows the underlying ANS activity to be measured. Caution must be 

undertaken when lesults from previous studies are interpreted where non-stationeries have 

not been taken into consideration as the resultant HRV metrics may reflect the effect of these 

non-stationeries and not the underlying HRV harmonic. Comparisons between the results 

obtained in this thesis and from other studies must also be interpreted with caution as non- 

stationeries will be removed from the NNi tachogram when subjected to investigations in the 
following chapters.
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Chapter 9

Stability of HRY metrics during routine neonatal 
care

9.1 Introduction

Traditional HRV analysis has used recordings of infants in ideal, “laboratory” conditions. 

That is when they are asleep, undisturbed with electrodes remained constantly attached in the 

ideal position. Infants being cared for in the neonatal intensive care unit undergo frequent 

disturbances to their steady state. Painful procedures, routine hygiene cares, feeds and noise 

will all affect the infant causing changes in the infant’s autonomic functioning. For a HRV 

metric to be a useful clinical monitoring measurement, this background clinical “noise” must 

have minimum effect on the measurement. The HRV measurement recorded during normal 

intensive care management must closely resemble that recorded in the obseived steady state. 

In this chapter, the stability of each HRV metric measured during routine intensive will be 
determined.

9.2 Methods

The obseived, 20 minute recording represented the “experimental” state. The unobserved, 2 

hour recording represented the “real world” state. Sixteen “well” babies (see 6.2.3) had 

unobseived (“real world”) recordings of 2 hours duration taken immediately after the 

obseived 20 minute (“steady state”) recordings had been completed (table 6.3). For each 

baby, the HRV values obtained from the “real world” recording were compared to those from 

the “experimental” recording providing a ratio. This ratio compared the median HRV 

measuie in the real world recording with the HRV measure from the 20 minute 

“experimental” recording. In addition, the HRV metric for each individual 20 minute epoch 

within the 2 hour “real world” recording was compared to the value obtained from the 20
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minute “experimental” recording, allowing the total variation throughout the 2 hour recording 

to be demonstrated.

As the comparison was between one 20 minute epoch and several, overlapping 20 minute 

epochs (see 6.1.2) and multiple analyses were undertaken, simple statistical analysis was not 

suitable to determine significant differences. The statistical methods used are described in 
6.3.

To determine if individual babies demonstrated more variability than others, a summary 

statistic for all of the HRV measures in the 2 hour recording for each baby was produced. The 

ratio for each HRV metric was made positive and then the median HRV ratio for each baby 
was determined.

9.3 Results

Sixteen well infants had observed/unobserved paired ECG recordings. The median gestational 

age at birth was 31 weeks (IQR 27.5 - 31.7), age at recording 8 days (3-10) with corrected 

gestational age at recording 32.5 weeks (30.1 - 33.6) (table 6.3). All of the 16 two hour 

recordings provided HRV measurements. The mean number of 20 minute epochs contributing 

to the 2 hour median HRV metric was 10 (standard deviation 1.7, range 6-11) with 10 out of 

the 16 recordings being of sufficient quality to produce HRV metrics for all 11 20 minute 

epoch. Demographic data and information regarding the number of time epochs contributing 

to the unobserved measurements is listed in table 6.3.
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There was a wide range of variation between babies in the unobserved:observed ratios observed. 

Some babies showed a marked reduction 0.25 (baby 16, table 9.2) when “real world” were 

compared with “experimental” HRV measures, whilst others showed an overall increase in the 

HRV measures. Correlating the median ratio for each baby with gestational age at birth (r2 = 
0.06), age at recording (r2 = 0.03) and CGA at recording (r2 = 0.06) showed no significant 

correlation

An example of the variation seen in the 20 minute epochs for the SD of the RRi for two 
unobserved recordings is in figure 9.1.

The HRV metrics which remained most stable when the unobserved recordings were compared 

to the observed recordings were mean RRi (median ratio 0.98 (IQR 0.94 - 1.03)) and PCSD1 

(0.94 (0.83 - 1.10)). The HRV metrics which demonstmted stability with an IQR of 0.5 - 1.5 

when the unobserved recordings were compared to the observed recordings were mean PCSD2 

(1.22 (0.96 -1.43)), PCSD1:SD2 ratio (0.74 (0.62 - 0.99)), ULF (0.85 (0.67 - 1.39)), VLF (1.18 

(0.84 - 1.37)), LF (1.20 (0.73 - 1.28)), and the ratio LF:HF (0.92 (0.60 - 1.10)). (Table 9.3).

When the statistical model described above was applied, overall variability (reflected in Variance 

and standard deviation of the NNi) and kmtosis demonstrated statistically significant differences 

between observed and non-observed recordings (table 9.3). The other HRV measures were not 

statistically significantly different between the “real world” and “experimental” recordings.
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Figure 9.1 Line chart demonstrating variation in the standard deviation in heart rate over a 2 

hour period (red line). The blue line represents the value obtained from the observed recording. 

(ECG 64 and 58). It can be seen in fig a (ECG 64 and 58, pair 3) that the SD shows little 

variation from the observed recording. In fig B (ECG 68 and 73, pair 10 ) the SD fluctuates 

between 1.2 to 7.0 times the observed data.
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UnobservedtObserved Ratio
Median (IQR)

F Stat p-value

Variability 2.11 (1.01-3.91) 7.81 0.014
Standard deviation 1.45 (1.00- 1.98) 7.81 0.014
Mean RRi 0.98 (0.94- 1.03) 1.71 0.21
Kurtosis 1.94 (0.96-3.21) 7.7 0.014
Skew 0.72 (-4.0- 1.62) 2.16 0.16
Poincare SD1 0.94 (0.83- 1.10) 0.062 0.81
Poincare SD2 1.22 (0.96 -1.43) 1.97 0.18
Poincare SD1:SD2 0.74 (0.62-0.99) 1.91 0.19
ULF 0.85 (0.67- 1.39) 0.12 0.73
VLF 1.18(0.84-1.37) 3.54 0.08
LF 1.20 (0.73- 1.28) 1.62 0.22
I-1F 1.18(0.84-1.63) 3.27 0.091
HF+ (1.0Hz) 0.90 (0.48- 1.14) 1.2 0.29
LF:HF ratio 0.92 (0.60- 1.10) 1.76 0.2
LF:HF+ratio 1.20 (0.81 - 1.68) 1.05 0.31

Table 9.2 Ratios of unobserved:observed HRV measures for the entire recording with statistical 

anlaysis (see text) to determine if the unobserved results were artistically significantly different 
to the observed results.
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9.4 Discussion

This chapter has explored the fluctuation of the HRV measures in well babies. For a HRV metric 

to be a useful clinical monitoring tool it must perform well in the real world enviromnent of tire 

neonatal intensive care unit. That is, be able to detect the underlying autonomic activity of the 

neonate and not be altered by routince care practises. Only the SDNN and the kurtosis of the 

NNi is significantly different when “real world” recordings are compared to those recorded in the 

“experimental” state. The HRV metrics which most closely reflect the resting autonomic status 

are mean RRi and Poincare SD1 (ratio 0.98 (0.94 - 1.03) and 0.94 (0.83 - 1.1).

The continually modulating HRV metrics may simply reflect the fluctuating activity of the ANS 

in response to undetermined stressors. However, one would also expect that the underlying 

homeostatic autonomic functioning to remain constant over a 2 hour period in a well baby. 

Babies who are moving from the “well” to “unwell” state may manifest this in either (or both) of 
the following ways;

i. change in the absolute median value of the HRV metric reflecting change in “quantity” 
of autonomic functioning

ii. change in the modulation of the HRV metric reflecting a change in the ability of the 

ANS to respond to different stressors.

The results demonstrate that the HRV metrics fluctuate to vaiying degrees during routine 

neonatal care. Those most closely reflecting the steady state are the Poincare measures SD1, 

SD2, and the ratio (SD1 :SD2) with the LF:HF ratio also being relatively static. The low and high 

frequency bands, standard deviation, skew and kurtosis showed most variability. Standard 

deviation and kurtosis demonstrated statistically significant differences when observed and 

unobserved recordings were compared. This is expected as these metrics will increase with 

increasing length of recording; the more RRi measured the more variability will be observed. 

The statistical significant differences between these metrics is evidence that they are affected by 

events occurring whilst the baby is not being observed during measurement. Therefore changes 

in these in any experiment conducted with the baby not being observed may be due to 

‘unobserved events’ rather than that being tested by the particular experimental design. However,
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for the other HRV metrics, the non-significant differences between observed and unobserved 

recordings indicate that unobserved recordings do reflect the “resting” ANS state. Thus it is valid 

to use unobserved, “real world” recordings of neonatal ECGs to produce HRV metrics in further 

experiments. Due to the small sample size however, caution should be exercised in the 
interpretation of p-values in this chapter.

In addition to the fluctuation of the HRV metrics, individual babies demonstrated different 

degrees to which their HRV measures fluctuated during routine neonatal care. There was no 

con-elation to gestational age at birth or CGA at recording with these fluctuations.

9.5 Conclusion

In this small observational cohort most HRV metrics recorded in the “real world” reflected those 

measured in the “stead}7 state”. The expected increase in overall variability and kuitosis with 

increasing length of recording is demonstrated. Other HRV measures however were not 

statistically significantly different when real world HRV measures were compared to those in the 

steady state. Caution must be taken due to the small sample size and further work with larger 

populations would be able to determine if the results of this investigation remain valid.
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Chapter 10

Time domain measures

10.1 Introduction

To determine if the developed methodology is able to distinguish between different ANS activity 

states, recordings of different populations of babies were selected from the Liveipool Neonatal 

ECG bank. These populations consisted of:

1. Different gestational age groups. Previous work has demonstrated that more mature 

infants demonshate increased variability, with differences in frequency power 

distributions when compared with less mature infants92,97,105,118,143'146. To determine if 

the observed recordings and die methodology developed for this thesis was able to 

detect similar differences, the HRV results obtained from preterm (<32 weeks 

gestational age) and near term/teim infants (>32 weeks gestational age) were 

compared.

2. ‘Well” and “Unwell” babies. For a metric to be a useful monitoring tool it must be 

able to deteimine between the physiological and pathological state with differences 

measurable both inter and intra individual. The developed methodology was applied 

to two distinct groups of babies (“well” and “unwell”, see 6.1.2) to determine if the 

measured variables were able to distinguish between the two groups. If any of the 

metrics are potential clinically useful monitoring tools they should be able to detect 

differences in HRV indices

Time domain HRV measures were compared within these distinct clinical groups to deteimine if 

statistically significant differences were present.
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10.2 Methods

To determine the HRV differences between babies at different gestational ages, infants who were 

less than 10 days of age and “well” were selected. Well infants are defined in 6.2.3. Infants less 

than 10 days of age were selected to minimise the deleterious effect that intensive care has on the 

developing autonomic nervous system. The HRV results obtained from preterm (<32 weeks 

gestational age) and near term/tenn infants (>32 weeks gestational age) were compared.

Two methods of recording were used - the observed 20 minute recordings and the unobserved 2 

hour recordings. To compare the results between the gestational age groups from 20 minute 

recordings the Mann-Whitney test was used for comparison. As the 2 hour recordings contained 

overlapping time window epochs (6.1.2) the data, by definition, were not independent. Thus 

simple statistical methods were not suitable for data analysis. Statistical analyses are described in 
6.3.

To detennine if the HRV measures in the “real world” were similar to those in the “steady state”, 

the results from die unobserved recordings were compared with those from the observed 

recordings for each of the gestational age groups (< 32 weeks and <32 weeks

The comparison between “well” and “unwell” babies only used recordings of 2 hours duration. 

This was because there were limited numbers of observed recordings of well babies as they 

underwent more frequent clinical interventions and handling episodes. Unwell, ventilated babies 

were matched with the spontaneously breathing well babies for gestational and post natal age at 

time of recording. Ventilated babies were included if they had any of die above conditions and 

were thus deemed “unwell”. The statistical analysis described above to compare gestational age 

groups with 2 hour recordings was applied for this comparison.
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10.3 Results

For the comparison between different gestational age groups thirty two 20 minute observed 

recordings and thirty five 2 hour unobseived recordings were obtained from well infants in the 

first 10 days of life. Demographic data for both the observed and unobserved is presented in 
tables 6.4 and 6.5 respectively.

For both obseived and unobserved infants the birth weight was significantly lower for the more 

immature infants as expected. Also, the infants less than 32 weeks gestational age were more 

likely to be receiving caffeine (16 vs. 1, p = <0.0005 and 13 vs. 3, p - 0.0364) and/or continuous 

positive ahway pressure support (CPAP) (8 vs. 0, p=0.004, 5 vs. 0 0.0689). There was a non

significant trend toward increased administration of antenatal steroids in the more immature 
infants. (Table 6,4 and 6.5)

Eight 2 hour recordings were identified from babies who were ventilated and were defined as 

“unwell”. For each unwell case, a well control baby was matched for gestational and post natal 

age. The characteristics of the “well” and “unwell” babies are shown in table 10.3.

10.3.1 Comparing HRV in different gestational age groups

From the obseived 20 minute recordings, mature infants demonstrated increased mean RRi (i.e. 

slower heart rates). There was no difference in the variability, kurtosis or skew between different 
GA groups, (table 10.4).
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< 32 weeks (n = 18) > 32 weeks (n=14) P value
Variability (ms2) 150.5 (98.7-242.5) 274.0 (108.9-570.8) 0.145
Standard deviation (ms) 12.3 (9.9-15.6) 16.6 (10.4-23.9) 0.145
Mean RRi (ms) 393 (365-421) 454(405 - 474) 0.016
Kmtosis 3.8 (3.0-5.8) 4.0 (3.3-4.6) 0.866
Skew -0.28 (-0.46 - 0.45) -0.18 (-0.67-0.08) 0.512

Table 10.1 Median and IQR for the time domain HRV values obtained from 20 minute observed 

xecoidings in well babies comparing preterm (<32 weeks GAA) with infants near term or term.

When the longei, two hoiu lecoidings were analysed the mean RRi was increased in the more 

matine babies (426.2 ms vs. 387.9 ms) but did not reach the statistical significance required of p 
<0.001 for the statistical analysis, (table 10,5)

< 32 weeks (n=21) >32 weeks (n=14) F stat P value
Variability (ms2) 132.9 (98.3-236.0) 467.0(407.1 -606.7) 22.12 <0.0001
Standard deviation (ms) 11.6 (9.9-15.4) 21.6 (20.2-24.4) 5.59 <0.0001
Mean RRi (ms) 387.9 (366.9-403.1) 426.2 (410.7-446.2) 5.89 0.016
Kurtosis 4.47 (3.30-7.16) 2.98 (2.93-3.23) 18.59 <0.0001
Skew 0.272 (-0.109-0.564) 0.070 (-0.262-0.145) 0.92 034

Table 10.2 Median and IQR fbi the time domain HRV values obtained from 2 hour unobserved 

recordings in well babies comparing preterm (<32 weeks GAA) with infants near term or term. 
See main text for statistical analysis used.
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10.3.2 Comparing HRV in “experimental” and “real world” recordings in well babies

In preterm babies (< 32 weeks GA) none of the time domain HRV measures were statistically 

significantly different between the “experimental” (observed) and “real wolrd” (unobserved) 

recordings, (table 10.6).

Experimental (u = 18) Real World(n = 21) P value

Variability (ms2) 150.5 (98.7-242.5) 132.9(98.3-236.0) 0.96

Standard deviation (ms) 12.3 (9.9-15.6) 11.6(9.9-15.4) 0.99

Mean RRi (ms) 393 (365-421) 387.9(366.9-403.1) 0.99

Kurtosis 3.8 (3.0-5.8) 4.47 (3.30-7.16) 0.28

Skew -0.28 (-0.46 - 0.45) 0.272 (-0.109-0.564) 0.90

Table 10.3 Median and IQR for the time domain HRV values obtained from preterm babies (< 

32 weeks) in observed and unobserved recordings. See main text for statistical analysis used.

In the term and near term babies increased SD of the NNi, mean RRi and skewness to the right of 

the NNi were present in the unobserved recordings compared to the observed recordings and 

were highly statistically significantly different (p>0.0001). (table 10.7)
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Experimental (n = 14) Real World (n = 14) P value |

Variability (ms2) 274.0(108.9-570.8) 467.0 (407.1 -606.7) <0.0001

Standard deviation (ms) 16.6 (10.4-23.9) 21.6 (20.2-24.4) <0.0001

Mean RRi (ms) 454 (405 - 474) 426.2 (410.7-446.2) <0.0001

Kurtosis 4.0 (3.3-4.6) 2.98 (2.93-3.23) 0.12

Skew -0.18 (-0.67-0.08) 0.070 (-0.262-0.145) <0.0001

Table 10.4 Median and IQR for the time domain HRV values obtained Rom term and near term 

babies (> 32 weeks) in observed and unobserved recordings. See main text for statistical 
analysis used.

10.3.3 Comparing HRV in “well” and “unwell” babies

Comparing well with unwell babies demonstrated a statistically significant difference in 

skewness of the RRi only with the well babies demonsfiating a negative skew (-0.35 (-0,46 - - 

0.28)) and the unwell babies a positive skew (0.16 (-0.06 - 0.76). (Table 10.6)
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“Weir (n = 8) “Unwell” (n = 8) Trans
F

stat
P value

Variability (ms“) 272.7(197.3-401.6) 227.3 (166.4-303.7) Log 1.3 0.26
Standard deviation

(ms)
16.5(14.0 -20.0) 15.1 (12.9-17.4) Id 2.05 0.26

Mean RRi (ms) 381.9(373.8-387.2) 397.5 (384.6-439.2) Log 1.58 0.21
Kurtosis 3.39 (3.12-3.62) 3.78 (3.50-5.07) Arc 3.89 0.051
Skew -0.35 (-0.46 - -0.28) 0.16 (-0.06-0.76) Arc 14.5 0.0002

Table 10.5 Median and IQR for the time domain HRV values obtained from 2 hour unobserved 

recordings in spontaneously breathing compared with ventilated babies. See text for statistical 

methods applied. Trans* = Transformation applied to data, logarithmic, arcan or identity.

10.4 Discussion

Comparing infants recorded at different gestational ages demonstrates differences in time 

domain HRV metrics. More mature infants (>32 weeks corrected gestational age at the time of 

recording) had increased mean RRi (i.e. faster heart rates) in both the observed and unobserved 

groups. Increased variability (increased standard deviation of RRi) with reduced kurtosis 

(indicating a wider spread) was also present in the more mature babies during unobserved 

recordings, common with previous investigations of HRV in different gestational age groups 
(section 2.5.5).

For preterm babies the time domain measures of HRV were similar when the results of those 

recorded in the “real world" were compared with those recorded in the “experimental” state. This 

demonstrates that the real world measures of HRV reflect the underlying autonomic activity and 

are not influenced by the routine care given. However, the more mature babies showed highly 

significant differences when the real world measures were compared to the experimental 

measures. This statistically significant difference may reflect a more mature and active ANS, 

which is fluctuating physiologically in response to minor stressors experienced during routine
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care. This compares with the more immature ANS which does not respond to these minor 

stressors. This increased fluctuation/responsiveness requires further investigation to determine its 

cause. In addition, this “variability of the HRV” should be investigated to determine if it 

provides useful clinical information over and above the individual HRV measures.

In the well babies skewness was toward the left and skewed to die right in die unwell babies. 

Skewness is a measure of the asymmetry of variables: with a negative skew the left tail is longer 

with the mass of the distribution concentrated on the right of the median, i.e. there are relatively 

few low values; with a positive skew the right tail is longer with the mass of the distribution 

concentrated on the left of the median i.e. there are relatively few high values, hi the context of 

this study it means that the unwell babies had more NNTs that were shorter than the median, 

resulting in a higher heart rate. This skewness was also detected by Griffin and Moorman’s team 

when analaysing HRV in septic infants and is utilised in dieir production of their heart rate 
characteristics measure286.

10.5 Conclusion

In this chapter, time domain measures of HRV were compared to determine if there were 

differences between two distinct groups of babies. As expected, mean RRi were statistically 

significantly different between preterm and more mature infants. Kurtosis was also different 

between these babies when recordings were taken from babies undergoing routine care.

HRV measures in preterm babies were the same when measured in the real world and 

experimental state. However, in term babies, real world measures of HRV were significantly 

different from those recorded in the experimental state, possibly indicating the increased 
maturation of the ANS.

Only skewness of the RRi was statistically significantly different between the two groups when 

well and unwell babies were compared. The usefulness of time domain measures of HRV using 

“real world” neonatal ECG as a descriptor of autonomic activity are demonstrated in this
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chapter. Time domain measures warrant further investigating as a useful measure of HRV using 

routinely monitored neonatal ECG signals.
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Chapter 11

Frequency domain HRV Measures

11.1 Introduction

In chapter 10, time domain measures of HRV were demonstrated to be statistically significantly 

different between distinct groups of babies and when “real world” HRV was compared with 

“experimental” HRV in mature babies but not in more preterm babies. Frequency domain 

measures quantify the activity of both branches of the ANS activity and therefore provide direct 

information on the relative activity of the PNS and SNS (2.4.4). However, traditional FFT 

methods are unusable for routinely monitored signals (5.2). In this chapter, the developed 

method which utilises the LSP will be assessed to determine if frequency domain measures of 

HRV values are different between different populations of babies and between “real world” and 

“experimental” recordings

11.2 Methods

From the Liverpool Neonatal ECG bank, the same recordings as in chapter 10 were selected, that 

is recordings taken from different gestational age groups (<32 weeks and >32 weeks) and 

well/unwell babies. The two gestational age groups included observed 20 minute and unobseived 

2 horn* recordings. The frequency domain HRV measures from the gestational age groups and the 

well/unwell pairs were compared using the statistical analyses described in section 10.2.

To determine if the HRV measures in the “real world” were similar to those in the “steady state”, 

the results from the unobserved recordings were compared with those from the observed 

recordings for each of the gestational age groups (< 32 weeks and <32 weeks).

130



11.3 Results

The patient demographics for the three compared populations of babies are presented in section 
10.3.1.

11.3.1 Comparing HRY in different gestational age groups

For the short term recordings the frequency bands of more mature infants demonstrated 

decreased power in the VLF (0.49 vs. 0.64) and increased power in the LF (0.33 vs. 0.15) and HF 

(0.06 v.v. 0.03) power band (table 11.1). hi the longer term recordings there were no statistically 

significant differences between either the two gestational age groups (table 11.2) or the well and 

unwell babies (table 11.9) with any of the frequency measure of HRV.

<32 weeks (n=18) >32 weeks (n=14) P value

ULF 0.29 (0.16-0.43) 0.20 (0.10-0.30) 0.168
VLF 0.64 (0.48 - 0.74) 0.49 (0.31 -0.58) 0.009
LF 0.15 (0.09-0.23) 0.33 (0.22-0.38) 0.002
HF 0.03 (0.02 - 0.06) 0.06 (0.02-0.07) 0.045
HF+ (1.0Hz) 0.06 (0.04-0.10) 0.07 (0.05-0.12) 0.613
LF:HF ratio 6.40 (4.01 - 8.60) 5.25 (3.35 - 8.48) 0.613
LF:HF+ ratio 1.93 (1.09-2.65) 2.35(1.23-3.70) 0.357

Table 11.1 Median and IQR for the frequency domain HRV values obtained from 20 minute 

observed recordings in well babies comparing preterm (<32 weeks GA) with infants near term or 
term.
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<32 weeks (n=21) >32 weeks (n=14) F stat P value
ULF 0.31 (0.22-0.43) 0.310 (0.155-0.336) 4.55 0.034
VLF 0.64 (0.55 - 0.70) 0.619 (0.532-0.651) 0.96 0.33
LF 0.21 (0.17-0.28) 0.218(0.199-0.228) 0.66 0.42
HF 0.07 (0.03-0.10) 0.043 (0.033 - 0.052) 0.14 0.71
HF+ (1.0Hz) S.or* (0.29'4 -9.92'4) 1.59 (1.39- 1.78) 4.55 0.034
LF:HF ratio 3.68 (2.11 -5.85) 5.32 (4.72 - 6.03) 0.07 0.79
LF:HF+ratio 5.20 (2.21 - 12.7) 14.72 (11.83 - 17.3) 6.55 0.011

Table 11.2 Median and IQR for the frequency domain HRV values obtained from 2 hour 

unobserved recordings in well babies comparing pretenn (<32 weeks GAA) with infants near 

term or term. See main text for statistical analysis used.

11.3.2 Comparing HRV in “experimental” and “real world” recordings in well babies

Similar results to those seen for the time domain measures (10.3.2) were obtained when the 

frequency measures were compared between the observed an unobserved recordings. The 

preterm population showed no statistically significant differences (table 11.3) however the more 

mature babies had increased power in the ULF and HP bands along with an increase in the 

LF:HF ratios, (table 11,4)

132



Experimental (n=18) Real world (n=21) P value

ULF 0.29 (0.16-0.43) 0.31 (0.22-0.43) 0.40

VLF 0.64 (0.48 - 0.74) 0.64 (0.55-0.70) 0.83

LF 0.15 (0.09-0.23) 0.21 (0.17-0.28) 0.29

HF 0.03 (0.02 - 0.06) 0.07 (0.03-0.10) 0.27

HF+ (1.0Hz) 0.06 (0.04-0.10) 3.99"4 (0.294 - 9.9T4) 0.72

LF:HF ratio 6.40 (4.01 -8.60) 3.68 (2.11 -5.85) 0.95

LF:HF+ratio 1.93 (1.09-2.65) 5.20 (2.21 - 12.7) 0.96

Table 11.3 Median and IQR for die frequency domain HRV values obtained from preterm 

babies (< 32 weeks) in observed and unobserved recordings. See main text for statistical 

analysis used.

Experimental (n=14) Real world (n=14) P value

ULF 0.20 (0.10-0.30) 0.310(0.155-0.336) <0.0001

VLF 0.49 (0.31 -0.58) 0.619(0.532-0.651) 0.57

LF 0.33 (0.22-0.38) 0.218(0.199-0.228) 0.38

HF 0.06 (0.02 - 0.07) 0.043 (0.033-0.052) <0.0001

HF+ (1.0Hz) 0.07 (0.05-0.12) 1.59(1.39- 1.78) 0.70

LF:HF ratio 5.25 (3.35 - 8.48) 5.32 (4.72 - 6.03) <0.0001

LF:HF+ratio 2.35 (1.23-3.70) 14.72(11.83 - 17.3) <0.0001

Table 11.4 Median and IQR for the frequency domain HRV values obtained from term and near 

term babies (> 32 weeks) in observed and unobserved recordings. See main text for statistical 

analysis used.
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11.3.3 Comparing HRV in “well” and “unwell” infants

There were no statistically significant differences in frequency domain measures when well 

babies were compared with unwell babies, (table 11.3). VLF was approaching a statistically 

significant difference but did not meet the requirement of a pvalus <0.01 as required by the 
statistical analysis (see 6.3)

“Weir (n=8) “Unwell” (n=8) Trans. F-stat P value
ULF 0.380 (0.309-0.475) 0.26 (0.23-0.54) Log 0.73 0.39
VLF 0.75 (0.66-0.82) 0.68 (0.61 -0.72) Log 4 0.047
LF 0.15(0.12-0.16) 0.16(0.13-0.18) Log 0.6 0.44
HF 0.03 (0.02 - 0.04) 0.04 (0.03 - 0.07) Log 0.62 0.43
HF+ (1.0Hz) 0.002.(0.001 -0.005) 0.004 (0.001 -0.005) Log 0.21 0.65
LF:HF ratio 4.93 (3.31 -5.89) 3.75(1.84-6.10) Log 0.2 0.65
LF:HF+ ratio 611.0 (204.7-752.4) 408.5 (209.6- 1625.8) Log 0.56 0.45

fable 11.5 Median and IQR for the frequency domain HRV values obtained from 2 hour 

unobserved recordings in spontaneously breathing compared with ventilated babies. See text for 

statistical methods applied. Trans* = Transformation applied to data.

11.3 Discussion

Statistically significant differences were detected in frequency domain measures when more 

mature babies were compared with more premature babies in the short term recordings. More 

mature babies demonstrated decreased power in the VLF and increased power in the LF and HF 

power band. VLF HRV represents numerous influences on the heart, including thermoregulation, 

the renin-angiotensin system, and endothelial factors423. The VLF power band has not been 

extensively studied in the newborn infant and the increased power seen in the more immature 

babies requires further investigation to determine its ontogeny and if this is a reflection of a more
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immature ANS. LF, representing sympathetic control, and HF representing parasympathetic 

control showed increasing power when more mature babies were compared with preterm babies. 

This is in common with die findings of Longin et al105 and reflects the increased activity within 

the ANS with advancing gestational age. The LF:HF ratio did not differ between gestational age 

categories.

The same pattern was seen when the frequency domain measures in the unobserved and observed 

recordings were compared as was seen when the time domain measures were compared in 

10.3.2; the preterm babies showed no difference with the term babies having significant 

differences in the ULF and HF band, and in the LF:HF ratio. This difference between preterm 

and more mature babies supports the results in chapter 10 that the more mature babies are 

demonstrating an increase in ANS maturation activity by having increased fluctuating HRV 
measures.

When the longer term recordings were analysed there were no statistically significant differences 

between either the gestational ages or between the well and unwell babies. This may reflect the 

small sample sizes or the sampled population. However as statistically significant differences 

were detected in the observed recordings it may be that the continually fluctuating ANS activity 

when the babies are awake and receiving routine neonatal care masks the more subtle changes 
which occur between the two groups.

11.4 Conclusion

Frequency domain measures were significantly different between different gestational age 

groups when obseived short term recordings were compared but not when longer term 

recordings were compared. Though the sample sizes are small, the null hypothesis cannot be 

rejected and the data in this diesis do not support the use of frequency domain measures as a 

useful measure of HRV in the routinely monitored neonatal ECG.
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Chapter 12

Poincare measures

12.1 Introduction

Poincare measures offer an attractive option when considering the routinely monitored ECG as 

they inherently deal with ectopics and missing data. Poincare SD1 represents fast beat to beat 

variability and has been shown to correlate highly with both RMSSD and HF power284,285. 

Poincare SD2 reflects longer term HRV changes and has been show to correlate with the LF:HF 
ratio285. In addition, in chapter 8 it was demonstmted that Poincare SD1 and SD2 measures 

taken during routine neonatal care closely match the steady, resting state when infants are asleep.

12.2 Methods

From the Liverpool Neonatal ECG bank, the same recordings as in chapter 10 and 11 were 

selected, that is recordings taken from different gestational age groups (<32 weeks and > 32 

weeks) and well/unwell babies. The two gestational age groups included observed 20 minute and 

unobserved 2 hour recordings. The Poincare HRV measures from the gestational age groups and 

the well/unwell pairs were compared using the statistical analyses described in section 10.2.

To determine if the HRV measures in the “real world” were similar to those in the “steady state”, 

the results from the unobserved recordings were compared with those from the observed 

recordings for each of the gestational age groups (< 32 weeks and <32 weeks
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12.3 Results

The patient demographics for the three compared populations of babies are presented in section 

10.3.1.

12.3.1 Comparing HRV in different gestational age groups

In the 20 minute recordings, Poincare SD1 was greater in the more mature group, suggesting 

increased short term variability, but this did not reach statistical significance (4.4 vs. 3.4, p = 

0.059). There was no difference between either Poincare SD2 or the ratio between Poincare SD1 

and SD2. For the 2 hour recordings, Poincare SD2 was increased in the more mature babies (23.3 

v.v. 13.5, p = 0.0019). (table 12.2) The other Poincare measures showed no significant differences 

between the two gestational age groups.

< 32 weeks (n=T8) > 32 weeks (11=14) P value
PCSD1 3.4 (2.7-4.2) 4.4 (3.4 - 5.4) 0.059
PCSD2 15.7(12.3-20.8) 18.4(13.7-23.2) 0.464
PCSD1 :SD2 0.22 (0.14-0.31) 0.20 (0.17-0.34) 0.424

Table 12.1 Median and IQR for the Poincare HRV values obtained Rom 20 minute observed 

recordings in well babies comparing preterm (<32 weeks GA) with infants near term or term.

137



<32 weeks (ii=21) >32 weeks (n=14) F stat P value

PCSD1 3.2 (2.41-3.9) 3.6 (3.2-3.9) 2.7 0.1

PCSD2 13.5 (10.6-17.9) 23.3 (20.5-25.4) 9.87 0.0019

PCSD1:SD2 0.22 (0.17-0.33) 0.15(0.14-0.18) 3,95 0.048

Table 12.2 Median and IQR for the Poincare HRV values obtained from 2 hour unobserved 

recordings in well babies comparing preterm (<32 weeks GA) with infants near term or term. See 

main text for statistical analysis used.

12.3.2 Comparing HRV in “experimental” and “real world” recordings in well babies

When the Poincare measures were compared between the observed and unobserved recordings 

they demonstrated the same differences as seen in Chapters 10 and 11, namely that the results 

from the preterm babies were the same (table 12.3) but the more mature babies demonstrated 

statistically significant differences (table 12.4). In the more mature babies there was an increase 

in PCSD2 with a decrease in PCSD1 and die SD1:SD2 ratio.

Experimental (n = 18) Real World (ii=21) P value

PCSD1 3.4 (2.7-4.2) 3.2(2.41-3.9) 0.05

PCSD2 15.7(12.3-20.8) 13.5 (10.6-17.9) 0.44

PCSD1:SD2 0.22 (0.14-0.31) 0.22 (0.17-0.33) 0.84

Table 12.3 Median and IQR for the Poincare HRV values obtained from preterm babies (< 32 

weeks) in observed and unobserved recordings. See main text for statistical analysis used.
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Experimental (n = 14) Real World (n=14) P value

PCSD1 4,4 (3.4-5.4) 3.6 (3.2-3.9) <0.0001

PCSD2 18.4(13.7-23.2) 23.3 (20.5-25.4) <0.0001

PCSD1:SD2 0.20 (0.17-0.34) 0.15 (0.14-0.18) <0,0001

Table 12.4 Median and IQR for the Poincare HRV values obtained from term and near term 

babies (> 32 weeks) in observed and unobserved recordings. See main text for statistical 
analysis used.

12.3.3 Comparing HRV in “well” and “unwell” infants

There were no statistically significant diffemeces between the Poincare measures in well and 
unwell babies (table 12.3).

“Well” (n=8) “Unwell” (n=8) Trans. F-stat P value
RPC SD1 3.39 (2.86-4.13) 3.28 (2.79-4.54) Log 0.02 0.88
RPC SD2 20.2 (17.2-26.4) 17.5 (16.0-20.2) Identity 2.72 0.1

PCSD1:PCSD2 0.16(0.121-0.217) 0.17(0.165-0.262) Log 0.53 0.47

Table 12.5 Median and IQR for the Poincare HRV values obtained from 2 horn* unobserved 

recordings in spontaneously breathing compared with ventilated babies. See text for statistical 

methods applied. Trans* = Transformation applied to data.
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12.4 Discussion

In the observed recordings, there was a non-significant trend towards increased Poincare SD1 in 

the more mature babies reflecting increased short term variability and parasympathetic input. 

Poincare SD2 and the ratio PCSD1:SD2 were not significantly different.. In the longer term 

recordings SD2 was statistically significantly greater in the more mature babies. SD2 is a 

measure of both long and short term HRV and correlates with the LF:HF ratio, reflecting 
sympathovagal balance285. The increased SD2 in this study demonstrates die increased activity of 

the ANS in more mature babies. Whilst there was an observed increase in the SD1 in more 

mature babies this did not reach statistical significance in the longer term unobserved recordings.

The statistical significant differences in the unobserved versus observed recordings being present 

in the more mature babies and not in the preterm babies again supports the possibility that the 

more mature babies manifest there advancing activity with an increase in the fluctuation of the 

HRV measures.

None of the Poincare measures were different between well and unwell babies, suggesting that 

Poincare measures whilst perhaps being useful in detecting the change sin HRV in matrutring 

ANS are not able to detect the different changes seen in well and unwell babies.

12.5 Conclusions

Poincare HRV measures were not statistically significantly different between the short tenn 

observed recordings at different gestational ages. The limited number of RRi in the 20 minute 

segment may be insufficient to produce HRV Poincare measures and future work should 

investigate to determine if longer recording periods are more suitable to Poincare analysis. In the 

longer term recordings Poincare SD2 measures of HRV are able to detect differences in 

autonomic functioning between different gestational age groups. This is encouraging for 

Poincare measures being used as a HRV monitoring tool.

140



The difference between preterm and more mature babies was again manifested by increased 

variability of the HRV measures in the more mature babies during routine care.
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Chapter 13

Discussion and Conclusions

Investigating the autonomic nervous system activity by determining heart rate variability is not a 

new research tool. However, despite the technique being developed over the past three decades, 

its utilisation as a clinical monitoring tool remains elusive. The first step toward this 

development is die proof of concept that die sophisticated measures of HRY can be detennined 

from the routinely monitored neonatal ECG signal. The thesis has demonstrated diat this can be 

achieved. The thesis describes a complete process from acquisition of the ECG signal (chapter 

3), identification of the fiducial marker for the heart beat (R interval) (chapter 4), filtering the 

RRi tachogram and utilising the Lomb Scargle periodogram to produce die power within the 

various frequency bands (Chapter 5 and Appendices B and C). The developed methodology was 

validated using 240 synthetic ECGs and 500 synthetic RRi tachograms (Chapter 4 and appendix 

C). Synthetic data was chosen to validate the mediod as it allows “known” inputs to be 

detennined by the methodology, providing a true gold standard. This is in contrast to validating 

the method with “real world” ECGs whereby the true fiducial marker for the heart beat is 
unknown.

The developed methodology for R wave detection was compared with a widely available R wave 

detector from Physionet. The developed R wave detector was significantly more accurate in 

determining the R wave across increasing heart rates, heart rate variability and noise within the 
signal (section 4,5).

One of the greatest challenges to “real world” data is the presence of both missing data or ectopic 

beats. To produce spectral estimates of HRV in this thesis, the Lomb Scargle Periodogram was 

compared with the more traditional fast Fourier Transform. The LSP was accurate at determining 

the relative powers within the syndietic RRi data across various heart rates and consistently 

outperformed the FFT with increasing proportions of missing or ectopic beats. The findings 

demonstrating that the LSP is able to remains within 5% accuracy when up to 20% of the data 

are missing, and within 15% when up to 50% of the data are missing. The cubic spline fast
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Fourier transform lias this level of accuracy when only 5-10% of data are missing. Thus the LSP 

is much more ideally suited to use when investigating routinely monitored and was subsequently 

employed for this (Appendix C).

During the development of the methodology, over 300 ECG recordings were obtained from 

babies on the NICU. These ranged from 20 minute recordings from babies who remained 

undisturbed through to recordings from extremely sick infants which lasted several days. These 

recordings along with the corresponding demographic and clinical data formed the Liverpool 

Neonatal ECG bank. This is the only bank of neonatal ECGs which exists and is available for 

future research work.

The developed methodology was then applied to recordings from this bank to detennine if the 

method could potentially be used as a clinically useful monitoring tool. In the first instance, the 

ability of the method to produce HRV measures from routinely monitored neonatal ECG 

recordings was determined. When applied to these ECG signals, the method was able to produce 

HRV measures from 97% of recordings thus demonstrating that the method is robust enough to 

be used to monitor HRV using the “real world” ECG data (Chapter 7).

Subsequently, whilst acknowledging the important clinical information non stationaries contain 

within the NNi tachogram, in this thesis they were removed so as to concentrate on the 

underlying harmonic fluctuation within the NNi. It is demonstrated that the removal of non

stationeries has a large and significant effect on the measured HRV metrics (Chapter 8). This 

highlighted the importance of presenting the method of dealing with non-stationaries when 

results from HRV analysis are reported.

Following the removal of non-stationaries, the fluctuation of HRV measures during routine 

neonatal care was investigated. Most HRV metrics recorded in the “real world” reflect those 

recorded in the “experimental” state. As expected, the standard deviation of NNi and kurtosis did 

demonstrate statistical significance between the “real world” and “experimental” measurements. 

The lack of statistically significant differences between the other HRV measures demonstrates 

that routine monitoring can be used to produce HRV metrics. (Chapter 9)
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HRV measures were then compared in different populations of babies. Two distinct populations 

were chosen where an expected difference in autonomic functioning would be expected and has 

been demonstrated in previous research studies. Babies in two different gestational age groups 

and “well” and “unwell” babies were compared. The different HRV measures were compared 

within these groups to determine if significant differences were detectable. The studies 

demonstrated that in the routinely monitored neonatal ECG both time domain and Poincare 

measures were statistically significantly different between both tire gestational age groups and 

the “well” and “unwell” babies. Increased HRV with advancing gestational age as well as 

increased skewness of NNi’s in unwell babies was demonstrated. This supports the methodology 

developed as being robust as the results tally with those reported by other authors. Frequency 

measures, whilst demonstrating increased maturity of the ANS when the “experimental” 

recordings were compared, was not statistically significantly different when the real world ECGs 

were compared. Whilst the small numbers included in this thesis do not exclude frequency 

domain measures from being used to monitor HRV from routinely monitored signal, the results 

do not promote its use currently (Chapters 10,11 and 12).

Using the 20 minute and 2 hour recordings from well babies, a striking difference was seen 

between preterm and more mature babies. The HRV values for preterm babies were the same if 

the babies were recorded for one 20 minute “experimental” style recording or if they were 

recorded over 2 hours in the “real world”. The preterm babies HRV measures remain relatively 

constant whilst they are well. HRV measures from the routinely monitored ECG in babies < 32 

weeks can be used to quantify steady state autonomic activity. This contrasts with the more 

mature babies where the majority of HRV measures fluctuate during routine care. (Chapters 10, 

11 and 12) . This may reflect tire more mature ANS which is responding to minor stressors and 
fluctuating physiologically.

The long temi aim for this area of research was to produce a continuous metric from babies 

being routinely monitored in the neonatal intensive care unit. This metric could then be 

investigated as an “early warning system” for the development of neonatal illness and/or be a 

predictor of outcome for a variety of clinical conditions. A continually produced number with a 

relative risk of “illness” within the next 24-48 hour's is envisaged. During the writing of this 

thesis Moorman’s research team from Virginia presented and subsequently published their
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clinical monitoring system which followed the above plan. They use relatively simple measures 

of HRV (standard deviation, sample entropy, and asymmetry function analysis) to produce a 

summary statistic for the HRV sepsis (tenned the HeRO™ score). The HeRO™ monitoring 

system was subjected to a randomised controlled trial involving 3003 VLBW, demonstrating a 

22% reduction in mortality when HeRO scores were available to the clinical team286. The team 

of approximately 30 engineers, mathematicians and clinicians have been working on this system 

for approximately 12 years and must be applauded for the excellent work in bringing this system 

from the research setting to a commercially available product.

The HeRO™ monitoring system is now the “gold standard” (and only) HRV monitoring system 

used in die NICU. I have made contact with Randall Moorman and his team who have visited the 

NICU at LWH. They too have been aware of the work in this thesis and collaborating with LWH 

into future work investigating HRV as a clinically useful monitoring tool.

This thesis has been the first step towards developing sophisticated measures of HRV as a useful 

clinical monitoring tool. It can be used as a “manual” for future researchers, demonstrating how 

to obtain, store, pre-process and obtain die NNi from the routinely monitored neonatal ECG. It 

has been demonstrated that time domain and Poincare measures show most promise as a 

monitoring tool whereas frequency domain measures are probably better suited to the 

experimental environment. The fluctuation of HRV measures from 20 minute time periods has 

been shown to occur in more mature babies and not in preterm babies. This requires further 

investigation as this is likely to reflect the advancing maturation of the ANS.
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Chapter 14

Further Work

Chapter 8 demonstrated that the presence of non-stationeries had a significant effect on the 

resulting HRV metrics. It is assumed that the removal of these non-stationeries allows the 

underlying HRV harmonic to be assessed, thus allowing the underlying ANS activity to be 
measured273. Whilst the removal may be warranted for frequency domain analysis, the 

information contained within the removed data may provide additional information. For 

example, the clinical observation of increased bradycardic events prior to a diagnosis of sepsis 

would support the view that the non-stationaries do contain relevant clinical information. The 

information in these non-stationaries was not used in this thesis and further investigation of the 

“spikes” within the NNi tachogram is required. If babies have continual HRV measures 

recorded, the frequency and power within these spikes in the 48 horns prior to the onset of illness 

could be determined, hi addition, for the development of a HRV monitoring tool it may be wise 

to leave the spikes in the NNi tachogram for time domain and Poincare but remove for frequency 

domain anlaysis. Frequency domain analysis methodology is not able to provide accurate results 

when diese spikes are present. However, time domain analyses methodology will allow the 

presence of these spikes to affect the resulting metrics, such as skewness and SDNNi. For 

example, the presence of bradycardic events prior to the onset of sepsis would cause an increase 

in SDNNi and skewness to move to the left, potentially providing early information that the baby 
was becoming unwell..

Most HRV metrics measured in the “real world” state were not statistically significantly different 

from those when measured in the “experimental state” (Chapter 9). However, caution must be 

taken due to the small sample size with the possibility of a type II error. Further investigation 

with a larger sample size is required to if the results of the experiment in this thesis remain valid.

The description of the continually modulating HRV measures in Chapter 9 and the fluctuating 

HRV measures in the more mature babies in chapters 10,11 and 12 are purely observational and 

require further research to determine the source of tire fluctuations. HRV measures taken over
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longer time periods (2-6 hours) whilst the babies are observed would help determine of the 

fluctuations are physiological or represent disturbances experienced by the babies. The observer 

could record any disturbances witnessed and then correlate these to the fluctuating HRV 

measures. In addition, babies who moving from the “well” to “unwell” state could be recorded to 

determine die effect that moving to die pathological state has on the stability of HRV measures.

The fluctuating HRV measures in die more mature babies and the relatively static nature of the 

HRV measures in more preterm babies (chapters 10,11 and 12) warrant further investigation . 

ANS maturation may be manifested in two ways, either by a change in the absolute value of the 

HRV measure in a 20 minute window, or by an increase in fluctuation of the HRV values over 

longer time periods. This “variability of the variability” requires further investigation to 

determine if it is a useful marker of ANS activity and maturation. Longitudinal analysis of 20 

minute HRV values will demonstrate if the HRV measures fluctuate more as the baby matures or 
they reduce prior to the baby becoming unwell.

For each of die HRV measures, normal reference ranges should be determined as well as 

longitudinal analysis of intra-individual measures undertaken to determine which metrics 

demonstrate changes preceding die onset of illness. Correlation of abnormal HRV measures with 

clinical outcomes is then required. Clinical outcomes should be both short term (presence of 

sepsis, intraventricular haemorrhage, mortality) and long term (neurodevelopmental outcome in 

childhood). Of particular interest would be the HRV measures which would lead to an 

intervention (such as a septic screen and antibiotics) which could potentially improve the long 

term outcome for sick and/or preterm infants. Once this is determined, providing clinicans with 

the HRV measures can be subjected to a randomised controlled trial to determine if the extra 

information provided by HRV measurement improves mortality and long term 

neurodevelopmental outcome in preterm infants. If the HRV measures in this study are 

demonstrated to improve mortality and/or morbidity in preterm infants then a comparison 

randomised control trial between the HRV metrics in this study and the HeRO system would be 
warranted.

Use of HRV monitoring would also be useful as a research tool. Whilst the HeRO system is now 

available as a monitoring tool, the methods used in this thesis remain pertinent. By their own
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admission, the HeRO system uses quite “simple” measures of HRV and detects only changes 

that would likely be visible in routine physiological monitoring to the trained human eye. The 

methods in this thesis may detect more subtle changes in HRV, Of particular interest would be to 

investigate the clinical observation of abnormal HRV patterns in infants with HIE. Cot side 

anecdotal observation of babies with HIE shows that the sickest babies have little or no 

variability, occasionally with sinusoidal heart rate patterns. Determining if these heart rate 

patterns are correlated with neurodevelopmental outcome at 2 years of age would provide 

additional prognostic information. In addition, obtaining HRV measures from the routinely 

monitored ECG signal is now relatively straightforward. HRV measures can be used as a 

biomarker to investigate ANS activity in research studies including therapeutic interventional 
studies.
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Appendix B

Method for determining Frequency Domain measures from the 
NNi tachogram

Detrending by time domain estimation of the spectral HRV components without 

resampling using the Ornstein-Uhlenbeck Gaussian Process (OUGP) Filter

Consider a Gaussian Process with the exponential covariance function:

»(/)= exp(-^ |f. - tj |). (la)

This stationary covaiiance function describes the Ornstein-Uhlenbeck process which was 

originally introduced as the model of the velocity of a particle undergoing Brownian motion. 

The process is mean-square (MS) continuous:

(lb)

but not MS differentiable:

(1c)

The properties above are expressed in terms of expectations.
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In the following, the basic theory of the OUGP filter is outlined, full details being available in 

the section “publications arising from this thesis”277.

Consider the Gram matrix K, obtained by evaluating the covariance function at a (not 

necessarily uniform) sequence of ordered times tx<t2<-"<tn. At first sight, the matrix K

does not seem a good candidate for a low-pass filter, because the discontinuity in the slope on 

the diagonal (due to the property in Equation (1c)) introduces potentially significant high- 

frequency leakage. A fundamental modification, however, is to define 7 as a complex 

number, so the filter can be considered as the real part of the result. It is then possible to show 

that there exists a unique exponential filter with the following properties:

i. the derivative of the impulse response is continuous;

ii. the frequency response is unity at 0 and flat up to the third derivative;

iii. the frequency response falls off at 24 dB per octave when / > /c, 

where /’ is the cut-off frequency at 3 dB (frequencies normalised 

w.r.t Nyquist).

Defining values for 7 as yi and yh, for low-pass and high-pass filters respectively,

y, -^r(^-l)-«(l+0/c (2a)

(2b)

with z ~ v=r 9 scales the respective 3 dB points of the filter to the cut-off frequency fc.
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Defining

y = 1... h -1, where, as previously defined, y stands for yl or yh:

I'. = exp(-Wj)
e/-(o',-orl-

It can then be proved that the inverse of the covariance matrix K is tridiagonal with the 
following entiles:

1 + i\e{
—e.
1 -l- r.e. +

i = j = l
1 < f - y -1 < /i -1
1 < f = y < n 

1 < y - / -1 < m -1 

= n
othenvise.

Note that to evaluate the T matrix it is not necessaiy to store and calculate the entries of the K 

matrix. This is crucial for large data sets, since the space complexity of the algorithm is linear 

in the sample size rather than quadratic or higher ordered.

Hence, filtering a sequence produces an output:

ui='EK'jsJ’ i = Oa)
j
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which can be more efficiently evaluated in terms of the solution of a sparse tridiagonal 

system involving the matrix T as:

X7//"/ (3b)

Tridiagonal systems can be solved in linear time50 requiring only 872 arithmetic operations, so 

the above operation is actually faster than for a regular matrix-vector product.

Given a set of measurements at times ^, / = 1... /z, the above equation specialises as:

^i-T2)/2wiIt<j"j =
j

{yi - yi+l )/2wi + (y. - y.^ ) /

(y,, -^-i)/2vv,

7=1
7 = 2,..., 7Z - 1. 

7 = n

It should be noted that the data have been transformed by a piecewise-linear quadrature 

formula, the rational for and details of which are described elsewhere278.

The high-pass (Hy) or low-pass (Ly) filtered data can finally be obtained by the following in 

which SR(-) denotes the real part:

Hy = 9!(u), Ly = y-!R(u) (4)
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Equations (3a) and (4) describe the operation of a non-causal filter; in particular, the matrix K 

can be seen as its impulse response, though the data are further processed by a piecewise- 

linear quadrature. It can also be shown that the filter has zero phase, since its frequency 

response is a real, even and positive function of frequency in the pass-band.

Applying Equation (4) to a time series in sequence, a third-order bandpass filter is achieved. 

This technique is validated elsewhere277.

Estimation of the spectral power HRV components without resampling using the Lomb 

Scargle Periodogram (LSP)

The distribution of power in the RR tachogram with respect to frequency can be estimated 

from its power spectrum density (PSD). The two most commonly used PSD's are the Welch 

Periodogram based on the Discrete Fourier Transform (DFT) and the autoregressive (AR) 

spectrum which assumes a generative autoregressive process model. Both methods require 

the tachogram to be resampled at regular intervals on the time axis. This limitation is 

obviated in the Lomb Scargle Periodogram (LSP) which can be seen as a generalisation of 
the DFT251. The statistical-sampling approach of the LSP allows for sparse (discontinuous) 

time data which is not feasible with DFT methods. This enables the esthnation of the PSD 

from a sequence concatenated from discrete data segments with the proviso that data remain 

aligned to the original time-stamp. This latter property is exploited in this study.

The principle of the LSP follows: for observations of the HRV tachogram X sampled in time 

t.

Xj = X{tj) (Lh = tJ+{ —tj ^ constant) (5)
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The N-point generalised discrete Fourier transform is

F:T ( , =
A(CO) j 2

N')
1
2

J ;=o

N-\

X ^ cos (cotj ) - iB sin (<2?^.) J (6)

where i - V-T with A and B functions of angular frequency co 

The normalised tachogram is given by

X(o (7a)

2

2

£x((,.)cos(^,)
2

(7b)

This is further refined by Scargle such that Plspx^ tends to the solution arrived at by the 

least squares fitting of the familial' function

x(t) = v4cos(<y£)+i?sin(W). (9)

A fuller description of the Lomb Scargle Periodogram is given by Moody204 and Laguna255 
after Press and Rybicki253. In this study, an efficient vectorised implementation of this 

algorithm was developed (fLSPw)277.
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Theoretically, HRV data can be represented interchangeably in the frequency and time 

domains. The total power of the tachogram power spectrum, as determined by integration, 

equals the total power (as variance) of the raw tachogram as a record in time (Parseval’s 

Theorem). However, this is true only in the statistical limit and a case can be made for time 

domain processing being more robust and applicable than any form of power spectral 

analysis . Potentially, frequency-band power estimation by directly reducing the tachogram 

using high-ordered bandpass filters is attractive. However, conventional linear 

implementations of infinite impulse and finite impulse filters require the data to be regularly 

sampled. The high-pass Ornstein-Uhlenbeck Gaussian Process filter, initially developed as a 

detrending process, does not suffer this limitation and can be implemented to give a bandpass 

response in a simple two-pass process which does not compromise fidelity.
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Appendix C

Validation of the new method of frequency domain analysis

Lomb-Scargle periodogram versus Fast Fourier Transform

In parallel with this thesis additional work by Professor Tony Fisher and Katie Sanders within 

the department of medical physics and clinical engineering at the Royal Liverpool University 

Hospital investigated the efficacy of the Lomb-Scargle periodogram when compared to FFT 

with resampling of the cardiac event time series.

The three spectral estimation techniques used were;

i. LSP of the unevenly sampled NNi series

ii. FFT PSD of the resampled NNi series using linear interpolation at a sampling 

rate of 7Hz

iii. FFT PSD of the resampled time series using cubic spline interpolation at a 

sampling rate of 7Hz

To assess the accuracy of each method synthesized a randomly generated NNi time series 

signal with a known LF:HF ratio (0.44) was produced. In order to approximate the error for 

each of the resulting spectra from the three methods, the derived mean LF:HF ratio and the 

variance of its estimate was calculated (using a Monte Carlo method of averaging the results 

of a 1000 randomly generated realizations of the actual NNi series241 for different mean heart 

rates (55,75 and 95 bpm) and ranges of overall variability (5, 10 and 15 bpm).

LF:HF ratio LF:HF ratio LF:HF ratio

(55±5bpm) (75±5bpm) (95±5bpm)

LSP 0.446 (0.092) 0.446 (0.097) 0.445 (0.095)

FFTCUb 0.551 (0.107) 0.456(0.100) 0.448 (0.095)

FFTiin 0.763 (0.161) 0.598 (0.132) 0.535 (0.114)

Table C.l Comparison of three methods for deriving a known LF:HF ratio of 0.44 for 

different mean heart rates.
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LF:HF ratio LF:HF ratio LF:HF ratio

(70±5bpm) (70±10bpm) (70±15bpm)
LSP 0.447 (0.094) 0.444 (0.090) 0.444 (0.087)

FFTCub 0.463 (0.098) 0.458 (0.093) 0.453 (0.090)
FFT]in 0.626 (0.135) 0.630(0.129) 0.064 (0.128)

Table C.2 Comparison of three different methods (Lomb Scargle periodogram, Fast Fourier 

transform (cubic spline) and Fast Fourier transform (linear interpolation)) deriving a known 
LF:HF ratio of 0.44 for different degrees of overall variability

From these simple experiments it can be seen that the LSP estimate is very close to the ideal 

result and performs consistently for a range of heart rates and over a wide range of 
variabilities.

To further investigate the accuracy of each method, an idealised artificial NNi tachogram was 

generated by mixing two sine waves with defined frequencies within a LF (0.04 - 0.15Hz) 

and HF (0.15 to 0.4Hz) band. The baseline heart rate was set at 60 with a HF amplitude of 2.5 

bpm and LF amplitude of 2 bpm, in common with previous work by Clifford G.D et al241. The 
LF:HF ratio is therefore 0.64 (=22/2.52). Comparison of the derived LF:HF ratio varying over 

heart rates from 40bpm to 120bpm, demonstrated that both resampling methods resulted in an 

overestimation of the LF:HF ratio where as the LSP estimate is consistently reliable, provided 

the mean heart rate is below the nyquist criterion (in this example, 48bpm) (Table 5.3).
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PSD -> LSP FFTcUb FFTi™

HRo LF HF LF:HF LF HF LF:HF LF HF LF:HF
(bpm) l

40 0.19 0.59 0.32 0.24 0.25 0.96 0.29 0.20 1.46
50 0.19 0.30 0.64 0.21 0.29 0.72 0.27 0,22 1.24
60 0.19 0.30 0.64 0.20 0.30 0.66 0.25 0.25 1.00
70 0.19 0.30 0.64 0.20 0.30 0.65 0.23 0.26 0.89
80 0.19 0.30 0.64 0.20 0.30 0.64 0.22 0.27 0.82
90 0.19 0.30 0.64 0.19 0.30 0.64 0.22 0.28 0.78
100 0.19 0.30 0.64 0.19 0.30 0.64 0.21 0.28 0.75
no 0.19 0.30 0.64 0.19 0.30 0.64 0.21 0.29 0.73
120 0.19 0.30 0.64 0.19 0.30 0.64 0.21 0.29 0.71

Table C.3 Comparison of three different methods (Lomb Scargle Periodogram (LSP), Fast 

Fourier transform (cubic spline) (FFTcub) and Fast Fourier transfonn (linear interpolation) 

(FFTun)) in producing frequency domain measures of HRV. The input LF/HF ratio is 0.64

The three spectral esthnates when then assessed with both ectopic and missing beats. An 

ectopic beat was inserted into the NNi time series at random. The timing of this ectopic beat 

is the fraction, s, of the previous NNi and varied from 0.9 to 0.5. Note that decreasing values 

of 8 correspond to earlier arrival of the ectopic beat. The overall trend is one of a decreasing 

LF:HF ratio with earlier arrival of the ectopic beat. This is a manifest of the increase in the 

HF component caused by the sharp peak in the time series. In this example the cubic spline 

FFT performs better than the LSP due to the smoothing effect of the cubic spline. This 

example demonstrates the importance of accurate beat detection as the presence of a single 
ectopic beat causes unacceptable distortion of the frequency spectrum, (table 5.4)
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Timing of Ectopic

beat s
LF:HF Ratio error (%)

LSP FFTcub FFTiin

0.90 ~3.0 -1.8 24.8
0.85 -6.5 -4.7 20,8
0.80 -11.4 -8.5 15.6
0.75 -17.3 -12.9 9.5
0.70 -23.8 -17.9 2.9
0.65 -30.5 -23.1 -4.0
0.60 -36.9 -28.5 -10.7
0.55 -42.9 -33.9 -17.0
0.50 -48.3 -39.5 -23.0

Table C.4 Comparison of three different methods (Lomb Scargle periodogram, Fast Fourier 

transform (cubic spline) and Fast Fourier transform (linear* interpolation)) in correctly 
determining the LF:HF ratio for different timings of ectopic beats.

The neonatal ECG has frequent periods of undetected beats or missing sections of 

information as discussed above (section 3.1). In some studies up to 50% of the datasets are 
found unsuitable for analysis280. To determine the accuracy for each method when dealing 

with missing data, the NNi time series was subjected to deleting a randomly selected 

percentage of data points within a 1000 NNi beat time series. For the LF:HF ratio spectral 

estimates the relative deviation from their* theoretical value was determined and is presented 
in table 5.6.
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Percentage beat

removal (%)
LF:HF Ratio error (%)

LSP FFTcub FFT, jn

0 -0.5 3.7 56.4
5 -1.7 (2.6) 10.7 (4.5) 70.5 (8.4)
10 -3.0 (3.6) 21.4 (8.6) 87.9(13.1)
15 -4.4 (4.6) 35.6(13.9) 107.5 (18.8)
20 -5.7 (5.6) 56.1 (20.1) 131.0(24.6)
25 -7.2 (6.2) 80.6 (26.5) 156.5 (31.6)
30 -8.8 (6.6) 112.3 (34.7) 187.2 (38.8)
35 -10.1 (7.2) 153.0 (46.8) 222.8 (46.7)
40 -12.2 (8.0) 198.3 (60.7) 261.5 (59.4)
45 -12.8 (8.5) 263.0 (82.4) 310.1 (69.9)
50 -14.8 (9.0) 345.1 (102.7) 364.0 (86.2)

Table C.5 Comparison of three different methods (Lomb Scargle periodogram, Fast Fourier 

transform (cubic spline) and Fast Fourier transform (linear interpolation)) in correctly 

determining the LF:HF ratio with increasing levels of beat removal.

It can be seen that the even small amounts of missing data cause the FFT methods to grossly 

overestimate the LF:HF ratio; when 10% of data points are missing even cubic spline 

interpolation results in an error greater than 10%. The LSP consistently outperforms the FFT, 

and remains within 15% of the true LF:HF ratio even when 50% of the data points are absent. 

(Table 5.6). Figure 5.3 demonstrates the stability of the LSP derived LF:HF ratio compared 
with the inaccurate FFT methods.
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Percentage of missing data [%]

Figure C.3 Percentage error in the LF:HF ratio estimates with increasing missing beats in a 5 

minute tachogram. using the LSP * and FFT with linear (-□-) and cubic spline (-o-) 

.interpolation. Each point represents an average of 1000 randomly seeded runs with error bars 
representing ± l standard error.

Further work examined the affect of non-stationarities and frequencies which are outside the 

recording time frame. For example, from examination of a typical 24 hour HRV PSD (figure 

1.5) a significant proportion of the signals exists in the range below 0.04Hz (the LF band). 

These longer term variations are only partially captured in the short term recordings and so 

any components with a cycle longer than the length of the signal may be misinterpreted in the 

PSD. To investigate the lower frequency limit an NNi time series was created with a 

frequency of l/300Hz. (F) (the minimum frequency that can theoretically be resolved from a 

duration of 5 minutes). The LSP was then used on recordings from 1 to 6 minutes to 
determine how accurately (F) could be determined, (table 5.7)
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Length (mins) Peak Location (Hz)

1 0.0043
2 0.0073

3 0.0052

4 0.0036

5 0.0033

6 0.0033

Table C.6 Estimated frequency peak location determined from the LSP for signals of 1 ~ 6 
minutes. The input frequency is 0.0033 Hz

The addition of missing data makes accurately estimating frequencies below those within the 

time frame of the signal even more problematic. To test this, a series of HR signals was 

generated each with a single modulating frequency (F) ranging from 1x10'5Hz and 0.005 Hz). 

For each value of F, 1000 forms of the corresponding NNi time series were created. Sections 

of each time series were then removed at random such that 4 continuous sections, each of 5 

minutes duration remained. The length of the signal was set to 40 minutes, so in essence only 

50% of the original time signal was “visible” for the LSP to analyse at any one time. The LSP 

was calculated from each NNi time series and the ratio between the mean estimated value of 

F, Fe, and its actual value was determined. Figure 5.4 demonstrates the accuracy of the LSP. 

The theoretical low frequency limits for a 5, 20 and 40 minute signal are demonstrated by the 

vertical lines. It can be seen that the LSP can realistically represent frequencies above 

0.0002Hz. This demonstrates that whilst the FFT techniques can only be performed on 

continuous data, the LSP can be calculated over the entire length of the signal, despite 
missing data, and is able to interpret frequencies well below those detected by the FFT. This 

allows a more complete picture of the underlying HR signal.
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2.5
Frequency [Hz]

Figure C.4 Plot of Fe/Fa (mean estimated frequency/actual frequency) for different values of 

F. The vertical lines represent the theoretical low frequency limits for 5 (solid) 20 (dashed) 
and 40 (dotted) minute signals.

V alidation of the method to measure frequency components with synthetic neonatal NNi 
tachograms

To investigate the validity of the methodology with ECGs containing neonatal parameters, 

500 NNi tachograms each of one hour duration were synthesized using the described 

methodod. Each NNi tachogram had input parameters, FV, of heart rate, HRV (standard 

deviation ot the heart rate) and the VLF:LF and LF:HF ratio. Table 5.8 shows the mean and 
range prescribed for each parameter.
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Parameter Prescribed mean (range)

Heart rate 153 (120-205)
HRV 13.9(0.3-28.4)
VLF:LF 7.8(0.49-618)
LF:HF 13.3 (0.02-1802)

Table C.7 Prescribed parameters for investigation of the methodology for obtaining HRV 
parameters from synthesized neonatal ECGs.

Each NNi time series was then subject to investigation with the methodology described. The 

hour long time series was divided into 20 minute time windows, each overlapping by 10 

minutes. Thus five 20 minute epochs were produced for each NNi time series. The mean and 

standard deviation for each parameter within these five epochs was obtained. The parameter 

estimated mean, Pwas compared with the prescribed parameter Pi, producing the ratio; Pj?- 

Pi. Table 13 presents the summary statistics for the 500 NNi time series.

Parameter Ratio PE; Pi.

Mean (standard deviation)
Heart rate 1.00 (0.10)
HRV 1.00 (0.08)
VLF:LF 0.98 (0.14)
LF:HF 1.05 (0.24)

Table C.8 Ratio of the estimated and input parameter for synthesized neonatal RRi time 
series.
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It can be seen that with synthesized neonatal NNi time series data the methodology is highly 

accurate in estimating the HR and HRV and also the VLF:LF ratio. The LF:HF ratio 

estimates are also accurate but have a larger standard deviation. On further examination, the 

inaccurate estimations of the LF:HF ratio occurred at the exhemes as demonstrated in table 

5.10. Therefore, LF:HF ratio values obtained at these extremes must be interpreted with 

caution.

Parameter Ratio PE: Pj.

Mean (standard deviation)

LF:HF <1.0 1.49 (0.56)

LH:HF 1.0-40 1.03 (0.13)

LF:HF >40.1 0.49 (0.26)

Table C.9 Ratio of the estimated and input LF:HF ratio parameter for different LF:HF 

values.

228



AC TA IYEDIATRICA
I r x » » m o r i n c. ■ h »i u ni A j i ii j

Acta Paediatrica ISSN 0803-5253

REGULAR ARTICLE

Clinician observation of physiological trend monitoring to identify 
late-onset sepsis in preterm infants
Christopher J Dewhurst (cdewhurst@nhs.net)1, Richard Wl Cooke12, Mark A Turner12
1. Neonatal Unit, Uverpool Women's Hospital, Liverpool, United Kingdom
2. Division of Perinatal and Reproductive Medicine, University of Liverpool, United Kingdom

Keywords
Heart rate, Neonatal intensive care, Physiobgic 
monitonng, Prematunty, Sepsis

Correspondence
Dr Chris Dewhurst, Neonatal Unit, Liverpool 
Women's Hospital, Crown Street, Liverpool L8 7SS, 
United Kingdom.
Tel: 0151-702-4055 |
Fax:0151-702-4313 |
Email: cdewhurst@nhs.net

Received
8 January 2008; revised 10 March 2008; 
accepted 17 April 2008.

DOLIO. 1111/j. 165I-2227.2008.00865.X

Abstract
Aim: To determine whether trends in routinely collected physiological variables can be used 
retrospectively to classify infants according to the presence or absence of late-onset neonatal sepsis. 
Methods; Case control study. Thirty infants bom <32 weeks of gestation who developed late-onset 

sepsis were matched with 30 controls for gestational and postnatal age but remained sepsis free. For 
each infant 25 clinicians inspected 48 h of routine monitoring of heart rate, respiratory rate and 
oxygen saturation. Clinicians were asked to determine whether the recording was obtained from an 
infant who did or did not develop sepsis and also indicate how confident they were in their 
judgement. Clinicians were stratified into three groups by professional role.
Results: The median correct assignment of infant's recordings was 67% (IQR 62-72). When very 
confident, this improved to 82% (IQR 67-88). Overall sensitivity was 53% (IQR 43-63) and 

specificity 80% (IQR 67-87). Advanced neonatal nurse practitioners consistently assigned babies to 
the correct group more often than other professional groups.

Condusion: The simple observation physiological trend graphs can dassify infants according to the presence or 

absence of late-onset neonatal sepsis. The accuracy of this method is good to strong but varies with experience 

of neonatal intensive care.

INTRODUCTION
Late-onset sepsis is a major cause of mortality and morbid
ity in preterm infants (1) with a 2.5-fold increase in mortal
ity and a more than 30°/o increase in the length of hospital 
stay in culture-proven sepsis (2). Attempts to reduce both 
the incidence and impact of neonatal sepsis are therefore 
of great importance. The early identification of infants who 
are developing sepsis allows prompt therapy with antimicro
bial agents, improving outcome. However, the diagnosis of 
neonatal sepsis is difficult as clinical signs/symptoms can be 
subtle and laboratory tests are of limited value (3). To be of 
practical use, any diagnostic test must fulfil certain criteria: it 
should accurately indicate the presence or absence of infec
tion and be reliable; it should be simple to perform; results 
should be available quickly and it should be cost-effective.

Physiological data could provide an ideal screening tool 
for late-onset sepsis. Physiological data are continuously 
recorded, providing both instantaneous monitoring and the 
ability to observe time-stamped trends in physiological pa
rameters. Longitudinal measurements obtained from contin
uous monitoring can be displayed in trend graphs, allowing 
pathology to be observed in real time as it occurs. Many 
clinicians believe that changes in these parameters can be 
used in the diagnosis of sepsis. Despite its widespread use 
in clinical practice, to our knowledge the accuracy of clas
sification based on the simple observation of physiological 
trend graphs by clinicians caring for infants has not been 
assessed.

On the neonatal unit at Liverpool Women’s Hospital 
(LWH), information obtained from standard monitoring 
equipment is presented in trend graphs at the cotside by 
computers (Fig. 1). The graphs represent the heart rate, res
piratory rate, oxygen saturations and, if available, the intra
arterial blood pressure. These variables are captured at 1 Hz. 
This system has allowed us to perform the first step in a pro
gramme of research designed to evaluate the utility of clini
cian observation in the recognition of sepsis. We designed a 
study to examine the performance of trend analysis by clin
icians under idealized conditions. The primary aim of this 
study was to examine the accuracy of classifying cases ac
cording to the presence or absence of late neonatal onset 
sepsis using retrospective examination of physiological data 
by clinicians. The secondary aim of this study was to gather 
data that would inform further research into this area.

METHODS
Patient population
Premature infants <32 weeks gestation and >7 postnatal 
days old who were monitored on the neonatal unit were 
eligible for entry. Cases were identified from our computer- 
based patient data information system if they developed a 
C-reactive protein (CRP) rise from <4 mg/L to >10 mg/L 
and were subsequently treated with 5 or more days IV an
tibiotics. Results of blood cultures were also obtained for 
each case. Controls were matched by gestational and post
natal age but had a CRP that remained <4 mg/L. Infants
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Figure 1 Physiological trend graphs showing heart rate (top), oxygen saturations and respiratory rate from two 25-week-old infants over a 24-h penod. Figure 1A is 
from an infant who remained sepsis free. Figure 1B demonstrates an initial change in the pattern of the trend graphs approximately 16 h before a nse in CRP was 
noted and a clinical diagnosis of sepsis was made (asterisk), with an intensification in the changes about 8 h before (arrow).

were excluded if they had a diagnosis of grade 111/1V 
intra-ventricular haemorrhage, periventricular leucomala- 
cia, seizures, hypoxic ischaemic encephalopathy or were 
receiving midazolam or phenobarbitone therapy. Ethical ap
proval was obtained from the Liverpool Paediatric Research 
Ethics Committee.

Study design
Study participants were presented with a print out of the 
physiological trend graph containing heart rate, respiratory 
rate, oxygen saturations and, when available, blood pres
sure measurements that had been prepared for each in
fant. We were not able to include temperature measure
ments because they are not recorded continuously on the 
database. The print out was produced using the electronic 
patient data management system (Badger 3.0, Clevermed, 
Edinburgh, UK). The time period chosen for the cases was 
48 h prior to the postnatal age when the CRP initially rose to 
>10 mg/L. For each control the time period presented was 
48 h prior to the postnatal age when the CRP was noted 
to be >4 mg/L in the corresponding case. The group mem
bership of each infant was concealed. Printouts containing 
each infant’s physiological trend graph along with its ges
tational and postnatal age were distributed to 25 clinicians 
who were from a single regional neonatal unit and were in
volved in the routine day-to-day care of neonates in intensive

care (the unit had 36 doctors/ANNPs in post at the time of 
the study). Instructions for completion of the task were pro
vided, which included example recordings from a baby who 
developed sepsis and one who remained sepsis free. Each 
clinician was then asked to make a global judgement about 
whether each printout came from a baby who developed a 
CRP > 10 mg/L or not. (‘Yes’ or ‘No’) and record that judge
ment on a standardized form. This was similar to methods 
used to test computer algorithms that determine whether or 
not sepsis is present. They were also asked how confident 
they were in their judgement; very confident, medium con
fident or not confident. The clinicians were stratified into 
three groups for sub-group analysis; (i) Junior medical staff 
with less than 10 years of experience of neonatal intensive 
care (i.e. senior house officers and registrars), n = 10 (19 in 
post) (ii) Senior medical staff with >10 years experience (i.e. 
consultants), n = 6 (7 in post) and (iii) Advanced neonatal 
nurse practitioners (ANNP) with > 10-years experience, n = 
9 (10 in post). Clinicians reviewed the traces independently 
of one another. All clinicians approached about the study 
had completed the task.

Statistical analysis
The extent to which clinicians correctly assigned the traces 
was assessed by overall score, sensitivity and specificity, pos
itive and negative predictive value. The median values and
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inter-quartile ranges were calculated for the three stratified 
groups of clinicians. These values were compared between 
the groups using the Kruskal-Wallis test. Agreement be
tween each group was assessed using the Fleiss Kappa test 
(4) SPSS v 14.0 (SPSS Inc., Chicago IL, USA) was used for 
all analyses except the Fleiss Kappa test that was calculated 
using Microsoft Excel 2003.

RESULTS
Patient population
Table 1 shows the baseline characteristics for both cases/ 
controls.

Test statistics
For all assessors the median correct response was 67% 
(Inter-quartile range 62-72) of printouts. The assessors were 
very confident in their decision median 20% (IQR 8-40) of 
the time. When very confident, the correct response rate 
improved to 82% (IQR 67-88). The number of correct re
sponses by an individual did not correlate with the num
ber of very confident responses by that individual. Overall 
sensitivity and specificity was 53% (IQR 43-63) and 80% 
(IQR 67-87).). Positive predictive value was 75% (IQR 66- 
82) with negative predictive value being 63% (IQR 60-69). 
(Table 2).

The three professional sub-groups were analyzed sepa
rately, with the ANNPs consistently showing better accu
racy at correctly assigning the recordings as coming from

TaMc l Baseline characteristics of cases and controls

Sepsis No sepsis

Number of infants 30 30
Gestational age weeks at birth 27 (25.3-29.8) 27.5 (25.3-29)
Corrected gestational age at time of 29.8 (28.8-31.2) 30.5 (27.6-31.9)
determination of case or control status 

CRP at time of determination of case 22(14.5-41) <4
or control status (mg/L)

Positive blood culture at time of 17 n/a
recording

Median (inter-quartile range), 
n/a = not applicable.

Clinician observation to identify late-onset sepsis in preterm infants

Junior Drs Senior Drs
Status

ANNPs

Figure 2 Percentage of responses that correctly identified sepsis status by pro
fessional group. ANNPs = Advanced Neonatal Nurse Practitioners.

infants who developed a CRP rise or not (Table 2 and Fig. 2). 
Inter-observer agreement was assessed by measurement of 
the Fleiss Kappa. Overall, Fleiss Kappa was 0.29 reflecting 
fair agreement. Senior doctors showed the least agreement 
(Kappa = 0.20, slight agreement), junior doctors were in
termediate (Kappa = 0.23) while ANNPs showed the most 
agreement (Kappa = 0.47, moderate agreement).

The cases with CRP > 10 mg/L had 17 positive blood cul
tures: 13 coagulase negative staphylococci (CONS), 4 other 
species (one each of staph aureus, pseudomonas, klebsiella 
and enterobacter). As expected for a test with relatively low 
sensitivity, the rate of correct response was lower for sep
sis cases than non-sepsis cases. For sepsis cases, the rate 
of correct response did not vary with the blood culture re
sults: for blood culture negative cases median (IQR) correct 
response was 56%(48-72); for CONS 58%(48-72) and for 
other 48%(44-55).

The diagnostic category was more often correctly identi
fied from some infants’ recordings than for others. Thirty- 
one (51.7%) infant recordings were correctly assigned by 
over 75% of the clinicians, 15 (25%) recordings were cor
rectly identified by 50% to 74.9% of clinicians, 10 (16.7%) 
recordings were correctly assigned by 20-49% and 4 (6.7%)

TaMc 2 Overall results

Overall Senior doctors Junior doctors
Advanced nurse 
practitioners

p-value between 
groups-

Correct 67 (62-72) 65(56-67) 63(59-70) 71(68-74) 0.011
Correct when very confident 82 (67-88) 71 (56-85) 83 (62 -88) 82(73-96) 0.430
Sensitivity1 53 (43-63) 50 (42-56) 52(43-58) 60 (50-65) 0.206
Specificity* 80 (67-87) 77 (63-88) 75 (63-87) 87(80-90) 0.249
PPV 75 (66-82) 72 (58-79) 70 (60-76) 81 (74-85) 0.086
NPV 63 (60-69) 60 (55-64) 60 (56-68) 69 (64-70) 0.025

Values are median (Inter-quartile range).
•Kruskal-Wallis test 
♦For all responses.

PPV = positive predictive value; NPV = negative predictive value.
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recordings were correctly assigned by less than 20% of 
clinicians. Two recordings were correctly assigned by all as
sessors; two of the printouts were correctly assigned by only 
one assessor.

Post hoc interpretation of the recordings that were shown 
to be easy to categorize showed that infants with sepsis had 
frequent desaturations/bradycardias, and a steady increase 
in heart rate. Infants who were easy to recognize as not 
having sepsis had no specific heart rate patterns and no 
desaturations or bradycardias. In recordings that were in
correctly assigned by the majority of assessors, non-septic 
infants had desaturations with bradycardias (perhaps related 
to other conditions such as chronic lung disease of prematu
rity) whereas infants with sepsis that was difficult to recog
nize had no specific patterns in heart rate and desaturations 
without bradycardias.

DISCUSSION
The main findings of this study are that the simple obser
vation of physiological trend graphs displaying heart rate, 
respiratory rate and oxygen saturations can classify infants 
according to the presence or absence of late-onset neonatal 
sepsis. In two-thirds of cases, clinicians were able to identify 
correctly which infants developed sepsis or remained sep
sis free. Patterns within the trend graphs associated with the 
absence of late-onset sepsis can be detected and correctly in
terpreted by clinicians as represented by the relatively high 
degree of specificity. However, the sensitivity of the assess
ment was low being 53% across all assessors. This pattern 
of high specificity/low sensitivity is seen with other tests for 
neonatal sepsis such as high/low white cell count and CRP 
(3).

Several studies have reported sophisticated signal pro
cessing techniques that have used changes in heart rate to 
provide an early alert of the onset of sepsis (5-12). In partic
ular Griffin et al. have developed a methodology of continu
ally measuring ‘heart rate characteristics’ (HRC) (reduced 
variability and transient decelerations) (6-12). Our work 
provides an estimate of the accuracy provided by clinical 
observation. To be useful, more sophisticated techniques 
must outperform clinical observation. Clinical observation 
appears to have low sensitivity to sepsis (in common with 
other techniques) but similar specificity to other, more so
phisticated approaches. Overcoming low sensitivity should 
be an important target for new techniques to diagnose or 
exclude sepsis and could be an important criterion during 
method development.

This is the first study to examine the strengths and weak
nesses of clinician observation. This study was designed to 
capture issues that are important early in the developmental 
pipeline of a novel diagnostic test rather than be a defini
tive test of the effectiveness of this technique. As such, there 
were several limitations to this study, i.e. the subjects were 
only offered two diagnoses: ‘sepsis’ or ‘not sepsis’. This was 
done to allow us to compare the findings of our work with 
that of computerized algorithms. Before assessing the traces, 
each subject was shown what we considered to be a clear ex
ample of ‘sepsis’ and a clear example of ‘not sepsis’. In this

exploratory study, this was necessary in order to give the 
subjects a consistent focus on the task in hand. It is possi
ble that this could have privileged certain features of sepsis 
and future work will need to explore the accuracy of this 
technique when physiological data are presented in a less 
structured manner. This study was underpowered to detect 
differences in response rate according to the nature of the 
blood culture results. This study was done in a single cen
tre and further work will need to examine this technique in 
other settings. Our definition of sepsis of a CRP rise from 
less than 4 mg/L to greater than 10 mg/L and where a clini
cal decision was made to continue antibiotics for 5 days is a 
pragmatic one as individual clinicians have different thresh
olds for continuing antibiotic therapy and may have resulted 
in a heterogeneous study group. Despite these issues, we be
lieve this study has clearly demonstrated ‘proof-of-principle’ 
and suggests the importance of further work on this topic.

Further research about clinician observation of physio
logical trends will need to take account of several sources of 
variation in the accuracy of classification that we have iden
tified. Firstly, professional group was associated with accu
racy of classification: ANNPs performed consistently better 
than the two groups of medical doctors. We suspect that the 
explanation for this difference relates to the fact that each of 
the ANNPs on our unit has at least 15 years of experience 
with infants in the neonatal intensive care unit and continue 
to do so on a day-to-day basis. Secondly, there was marked 
variation within groups of professionals. At the same level 
of experience, some individuals were clearly better than oth
ers at recognizing patterns associated with sepsis. Thirdly, a 
person’s self-rated confidence was not generally associated 
with the accuracy of their judgements. Fourthly, informal ob
servation as the clinicians evaluated the printouts suggested 
that the clinicians used a range of strategies to make their 
judgements. These included a quick, global observation of all 
three signals to a more detailed interpretation of the heart 
rate parameter. Fifthly, some recordings appeared to be rel
atively easy to categorize as ‘sepsis’ or ‘no sepsis’ with half 
of the recordings being correctly assigned by over 75% of 
the clinicians. Forty percent of the recordings proved more 
difficult and the assessors were split in their judgement on 
whether the baby developed sepsis or not. A small number 
of readouts were assigned to the incorrect category by the 
vast majority of clinicians. Further research could define and 
evaluate which strategies are most useful, using formal ap
proaches such as ‘thinking in action’ (13) and other qualita
tive methods informed by our observations (e.g. with respect 
to purposive sampling to achieve theoretical saturation effi
ciently). Standardized recordings could be used to identify 
where observers are on the continuum between novice, com
petent and expert. This would allow detailed exploration of 
how clinicians gain expertise in interpreting physiological 
trends. It is possible that printouts of physiological informa
tion also have educational value.

The early diagnosis of sepsis is difficult and previous 
work has shown that laboratory tests are neither specific 
nor sensitive (3). Clinicians using physiological measure
ments to diagnose sepsis should be aware that observation of
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physiological trends has similar limitations. Some cases of 
sepsis were consistently classified incorrectly by these ob
servers. In clinical practice, this suggests that some cases of 
sepsis may have minimal clinical features and would not be 
diagnosed until another screening test for sepsis is done.

The mechanism by which sepsis results in the observed 
changes in physiological parameters is not fully understood. 
In sepsis, the initiation and maintenance of the inflammatory 
response is under the control of circulating cytokines and cy
tokine levels have been demonstrated to correlate with the 
severity of illness (14-16). Cytokines have widespread ef
fects on signal transduction and they may interfere with nor
mal physiological parameter control by the sympathetic and 
parasympathetic nervous system (9). In particular, heart rate 
is known to be affected by several different cytokines (17,18). 
Sepsis has also been demonstrated to alter the number and 
distribution of p-adrenergic receptors on cardiac myocytes 
(19,20). Furthermore, elevated levels of circulating cytokines 
have been found up to 2 days before the clinical diagnosis of 
neonatal sepsis (21), which may explain why the observed 
changes in physiological monitoring are apparent before the 
diagnosis is made.

Finally, it is important to acknowledge that in the clini
cal setting, clinicians do not assess the likelihood of sepsis 
from a single observation of a single test. The clinical state 
of the infant, haematological and biochemical test results 
and routine monitoring such as temperature control are all 
taken into account when assessing whether an infant re
quires further investigations to determine the presence of 
sepsis and the commencement of antibiotics. Nevertheless, 
this study provides the first data to support, and quantify the 
value of the simple observation of physiological trend graphs 
during the assessment of an infant who may be developing 
sepsis.
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Abstract The heart rate variability signal derived from 
the ECG is a beat-to-beat record of RR-intervals and is, as 
a time series, irregularly sampled. It is common engineer
ing practice to resample this record, typically at 4 Hz, onto 
a regular time axis for conventional analysis using HR and 
FIR filters, and power spectral estimators, in the time and 
frequency domain, respectively. However, such interpola- 
tive resampling introduces noise into the signal and the 
information quality is compromised. Here, the Omstein- 
Uhlenbeck third-order band-pass filter is presented which 
operates on data sampled at arbitrary time and preserves 
fidelity. The algorithm is available as open source code for 
MATLAB® (MathWorks™ Inc.) and supported by an inter
active website at http://clinengnhs.liv.ac.uk/OUGP.htm.
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1 Introduction

The heart rate variability signal (HRV tachogram) derived 
from the ECG is a beat-to-beat record of RR-intervals and 
is, as a time series, irregularly sampled. It is common 
engineering practice to resample this record, typically at 
4 Hz, onto a regular time axis for conventional analysis 
using HR and FIR filters, and power spectral estimators 
(PSD’s), in the time and frequency domain, respectively. 
However, such interpolative resampling introduces noise 
into the signal and the information quality is compromised 
[2, 9].

The information content of the HRV tachogram is lim
ited at high frequencies by Shannon-Nyquist criterion. For 
both regularly and irregularly sampled data, the upper 
limiting frequency is simply half the mean sampling rate 
(the Nyquist frequency). In real life HRV tachograms, 
which are irregularly sampled and subject to noise (e.g. 
ectopic beats and recording artefacts), a robust estimate, 
such as the reciprocal of the median sampling interval, is 
appropriate. The low frequency information limit is 
determined by the assumed stationarity. Formal definitions 
of stationarity can be found elsewhere. The assumption of 
stationarity is an axiomatic requirement in the estimation of 
the power spectrum. The Task Force [II] recommendation 
is that stationarity beyond 20 min should not be assumed, 
although this limit is quite arbitrary. Hence, the common 
practice is to detrend the HRV tachogram, either by iden
tifying and removing by subtraction a low frequency con
tent trend component or by high-pass filtering. Trend 
component identification methods using fixed low-order 
polynomials [10, 13] and adaptive high-order polynomials 
[16] are readily applied to the raw irregularly sampled data 
but with poorly described cut-off frequencies. Reported 
methods using high-pass filtering, necessarily resampled
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onto a regular time axis, include Butterworth-response 
HR’s [7], locally applied FIR’s [1] and more recently, a 
Gaussian process-based smoothing priors (GPSP) approach 
[14, 15, 18]. The latter method was extended in [3] (ext- 
GPSP), to handle non-uniformly sampled data, resulting in 
a time-varying HR filter with a second order amplitude 
response.

2 Methods

2.1 The Ornstein-Uhlenbeck third-order Gaussian 
process (OUGP) filter

Consider a Gaussian process x(() with the exponential 
covariance function:

£((,■,(,) =exp(-y|/,-(,D. (1)

Defining values for y as yj and y^, for low-pass and high- 
pass filters, respectively, with / = sqrt(— 1),

7, = V2n(V2- 1)"I/4(1 +/)/c (2)

yh~V2n(V2-l)l/4(l+i)fc

scales the respective 3 dB points of the filter to the cut-off 
frequency /c.

Let us define for
j = 1..ji — 1, where, as previously defined, y stands for 

V\ or yh:

WJ = yfa+i ~ tj)
ty =exp(-Wj) 

ej

It can then be proved that the inverse of the covariance 
matrix K is tridiagonal with the following entries:

This stationary covariance function describes the 
Ornstein-Uhlenbeck process which was originally 
introduced as the model of the velocity of a particle 
undergoing Brownian motion. The process is mean-square 
(MS) continuous:

lime[(a-(( + e) - a-(/))2] = 0 (la)

but not MS differentiable:

lim E
r.-*0

x(t -f- k) — A‘(/)
-X(t) 0 (lb)

The properties above are expressed in terms of 
expectations.

In the following, the basic theory of the OUGP filter is 
outlined: for details, the Reader is referred to [17].

Let us consider the Gram matrix K, obtained by evalu
ating the covariance function at a (not necessarily uniform) 
sequence of ordered times ti < t2 < ••• < t„. At first sight, 
the matrix K does not seem a good candidate for a low-pass 
filter, because the discontinuity in the slope on the diagonal 
[due to property in Eq. (lb)] introduces potentially sig
nificant high-frequency leakage. A fundamental modifica
tion, however, is to define y as a complex number, so we 
can consider the filter as the real part of the result. It is then 
possible to show [17] that there exists a unique exponential 
filter with the following properties:

• The derivative of the impulse response is continuous;
• The frequency response is unity at 0 and flat up to the 

third derivative;
• The frequency response falls off at 24 dB per octave 

when/ >fc, where fc is the cut-off frequency at —3 dB 
(frequencies normalised w.r.t. Nyquist).

i=j=\
1 </=./- 1 < u - 1 
1<? = j<n
I</=/-1<«-1
i=j = n 
otherwise.

Note that to evaluate and store the T matrix, it is not 
necessary to store and calculate the entries of the K matrix. 
This is crucial for large data sets, since the space 
complexity of the algorithm is linear in the sample size 
rather than quadratic or higher ordered.

Hence, filtering a sequence sj produces an output:

^ K-tjSj, (3)
j

which can be more efficiently evaluated in terms of the 
solution of a sparse tridiagonal system involving the matrix 
T as:

J2 Tim = si. 
j

It is known [8] that tridiagonal systems can be solved in 
linear time, requiring only 8n arithmetic operations, so the 
above operation is actually faster than for a regular matrix- 
vector product.

Given a set of measurements yj at the times tj,j — 1.../?, 
the above equation specialises as:

f Oi - )’2)/2>t’i i = 1
z2 T0UJ = ) - )’i+\ + ()7 - V;-i )/2u',_i / = 2,...,a - 1 .
j { (>’» - J’h-i )/2it’„_[ i = n

1 + /‘| <?i 
-Ci
1 + I'jCj + r,'_i <?,_ | 
-ej 
1 +

1°

It should be noted that the data have been transformed 
by a piecewise-linear quadrature formula. For a rationale of 
the choice of this transform, see [17].
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The high-pass (H) or low-pass (L) filtered data can finally 
be obtained by the following denotes the real part]:
Hy = &(u), Ly = y - »(u) (4)

Equations (3) and (4) describe the operation of a non-causal 
filter; in particular, the matrix K can be seen as its impulse 
response, though the data are further processed by a 
piecewise-linear quadrature. It can also be shown that the 
filter has zero phase, since its frequency response is a real, 
even and positive function of frequency in the pass band [14],

It is useful to compare this method with the ext-GPSP as 
proposed in [3], Whereas the former directly specifies a 
covariance function, the latter specifies an inverse covariance 
function, which is somewhat less intuitive and the associated 
Gaussian process prior is also improper [14]. Table 1 
explicitly compares the theoretical characteristics of previous 
ext-GPSP with the present OUGP filter. The comparative stop 
band roll-off performance is illustrated in Fig. 1.

3 Results and discussion

3.1 Frequency response

A frequency-of-interest (Fol) vector was defined as:

Fol = [0.0005 ... 0.003, 0.003 ... 0.01,
0.04...0.15, 0.15...0.40] Hz,

corresponding to the standard frequency ranges [II] ultra- 
low (ULF), very-low (VLF), low-frequency (LF) and high- 
frequency (HF). and additionally the range ultra-low-star 
(ULF*):

Fol* = [0.002...0.01] Hz.

In 5 series of 1,000 realisations, the mean amplitude 
responses to white Gaussian noise (amplitudes), projected

Table 1 Comparison of previous extended Gaussian process 
smoothing priors filter (ext-GPSP) [3] and the present Omstein-Uh- 
lenbeck Gaussian process filter (OUGP)

Feature Filter model

ext-GPSP OUGP

Filter order Second Third
Definition terms Inverse covariance function Explicit

Gaussian Non-stationary

covariance
function

Stationary
process
dynamics

Definition of Improper, i.e., it cannot be Proper
Gaussian integrated (but the posterior probability
process prior expectation is well-defined density

nonetheless) function

onto an irregular time axis formed as the running 
cumulative sum of amplitudes (as in an HRV tachogram) 
[2, 9], were determined using the OUGP filter in band-pass 
configuration (see website resources [6[). The performance 
is illustrated in Fig. 2 and the agreement between theory 
and its practical realization were shown in Table 2.

3.2 Detrending and low-pass filtering

A 30 min synthetic HRV tachogram with a median fre
quency of 1 Hz was realised from the sum of four sinusoids

•x^PSP

OUGP

Frequency [normalised w.z.Mvlyquist]

Fig. 1 Comparison of ext-GPSP and OUGP stop-band roll off in 
high-pass configuration with a normalised Fc of 0.25 in the octave 
[0.075 ... 0.15] (average of 1,000 Monte Carlo realisations)

log« Frequency [Hz]

Fig. 2 Power band-pass characteristics achievable using the OUGP 
band-pass filter as estimated from Monte Carlo analysis of Gaussian 
random noise tachogram (pass-band gain set to 1)
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of Gaussian-distributed centre frequency and zero phase, 
viz:

HRV(r) = ^ G> sin(2nfi<aj) (4)
i'€{ulf,vlf,lf,hf}

where G is the amplitude gain,/and o are centre frequency 
and standard deviation (Hz).

The sinusoidal components were defined as in Table 3. 
A non-stationary feature was added as a 4 dB (w.r.t. 

total sinusoidal power) Brownian component constructed 
as the cumulative sum of a random Gaussian series.

Table 2 Comparison of theoretical and simulated —3 dB bandwidths

Frequency band Design (Hz) Realisation (Hz)

ULF {0.00050 ... 0.00300] [0.00054 .,.. 0.00300]
VLF [0.00200 ... 0.01000] [0.00205 .,.. 0.00990]
LF [0.00300 ... 0.04000] [0.00305 .... 0.03990]
HF [0.15000 ... 0.40000] [0.14000 . .. 0.40660]

Table 3 Components of synthetic HRV tachogram

Frequency
band

Amplitude 
gain, G

Centre frequency, 
/(Hz)

STD frequency, 
a (Hz)

ULF 2 0.002 0.15
VLF 1 0.025 0.15
LF 1 0.01 0.5
HF 1 0.25 0.5

This tachogram was band-pass filtered with OUGP to 
achieve detrending (high-pass response) and low-pass 
band-limiting at 0.003 and 0.4 Hz —3 dB points, respec
tively. The time domain and frequency domain (as the 
Lomb Scargle PSD |2, 9]) performance is shown in Fig. 3. 
The decomposition in the time domain by a series band
pass operations corresponding to the VLF, LF and HF 
frequency bands is shown in Fig. 4.

3.3 GPOU interactive web pages

The internet-accessible GPOU website provides an inter
active GUI in which the User can apply the GPOU band
pass filter to any one of six HRV data sets:

Synthetic 3 peak ~ [0.045, 0.12, 0.25] Hz
Above with addition of 4 dB Brownian noise (see
Performance)
Gaussian white noise
Normal subject at heart rate ~0.85 Hz
Premature baby at heart rate ~ 2.5 Hz
Textbook [12]: LF at -0.1 (SD 0.010) Hz and HF at
-0.25 (SD 0.015) Hz

Bandwidths are user-selectable (at -3 dB points):

High-pass (detrending): {0.001, 0.002, 0.005, |0.001 ... 
0.1]} Hz
Low-pass: {0.0125, 0.025, {0.3...1.0]} Hz.

Results are displayed both as the time series decompo
sition or as the Lomb Scargle PSD. The MATLAB

Fig. 3 Artificial HRV 
tachogram as a time series (top 
pane) with its Lomb Scargle 
PSD (middle pane). The PSD 
after OUGP band-pass filtering 
(0.003 ... 0.35] Hz for 
detrending and low-pass 
filtering (bottom pane). Note: 
the 0.35 Hz low-pass effect 
reduces the amplitude of the 
local peak around 0.29 Hz: this 
is consistent with the implicit 
third-order response

HRV tachogram

o>ni 1
Q.
E<

0.5
200 400 600 800 1000 

Time [s]
1200 1400 1600 1800

Lomb PSD: HRV tachogram

Lomb PSD: HRV tachogram: bandpassed

Freq. [Hz]
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(version > 2006b) code fully commented in HTML for the 
GPOU filter (gpsmooth_2.m) and the supporting code for 
the optimized Lomb Scargle (fLSPw.m) are downloadable.

A guide is given to the rationale for setting the bandwidth 
for the exemplar datasets. An example session is given as 
Fig. 5.

Fig. 4 Decomposition of the 
artificial tachogram by a series 
of OUGP band-pass filters

HRV tachogram

1 *»*S***h+t#»*,**«*»?\s*^^
0.5 --------------1--------------1-------------- 1--------------1--------------1-------------- 1_________ I_________ I____

detrended with anti-aliasing
o.i r .. i. , ....... . .

bandpassed(LF)

-0.1 --------------- 1--------------- 1----------------1--------------- 1---- -----------1------ ---------1__________ l__________ l__________ l

m
400

bandpassed (HF)

—i-----------------1------------------------ 1--------------------- 1---------------------1_____________ i_____________ i
600 800 1000 1200 1400 1600 1800

Time [s]

Fig. 5 Internet-accessible interactive demonstration of the OUGP band-pass filter. The User has selected the ‘Normal subject’ data set, 
detrended at 0.09 Hz, low-pass filtered at 0.3 Hz and enabled the Lomb Scargle PSD display
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The web pages require JavaScript to be enabled and are 
optimized for the Microsoft Internet Explorer® but run 
adequately in Firefox® and Safari® under Microsoft Win
dows® and Linux operating systems. The GPOU and its 
associated applications execute on a MatSOAP® server 
which provides access to automation instances of MAT- 
LAB over the internet using the Simple Object Access 
Protocol (SOAP) [5], Details of MatSOAP can be obtained 
from the authors [4],

A comparison of GPOU with the extended Gaussian- 
process smoothing model (ext-GPSP) [3] can be made 
interactively by referring to http://clinengnhs.liv.ac.uk/ 
Iinks.htm.

4 Conclusion

The OUGP filter is efficiently implemented in MATLAB. 
As a time domain band-pass filter, it exhibits a predictable 
and stable third-order zero-phase frequency response with 
explicit —3 dB points. It can be applied to both regularly 
and irregularly spaced data without the requirement for 
resampling. The latter property is suitable to analysis of the 
HRV tachogram, either as a pre-processing operation prior 
to PSD estimation by, for example, the Lomb Scargle 
method (with detrending and low-pass filtering), or directly 
in the time domain as a series of band-pass filters. The open 
source code and an interactive demonstration webpage 
with five exemplar HRV tachograms are maintained at 
http://clinengnhs.hv.ac.uk/hnksLhtni [6],
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The heart rate variability (HRV) signal derived from the ECG is a beat-to-beat record of RR intervals and is, as a time series, 
irregularly sampled. It is common engineering practice to resample this record, typically at 4 Hz, onto a regular time axis for 
analysis in advance of time domain filtering and spectral analysis based on the DFT. However, it is recognised that resampling 
introduces noise and frequency bias. The present work describes the implementation of a time-varying filter using a smoothing 
priors approach based on a Gaussian process model, which does not require data to be regular in time. Its output is directly 
compatible with the Lomb-Scargle algorithm for power density estimation. A web-based demonstration is available over the 
Internet for exemplar data. The MATLAB (MathWorks Inc.) code can be downloaded as open source.

1. Introduction

A time record consisting of beat-to-beat RR intervals is 
referred to as the heart rate tachogram. This forms the basis 
for a number of metrics of heart rate variability (HRV). The 
simplest measures of HRV are based on variance deter
mined over a range of time periods. More complex mea
sures can be derived from power spectrum density (PSD) 
estimations. The two most commonly used PSDs are the 
Welch Periodogram, based on the DFT, and the AR Spec
trum, based on an autoregressive process model [1]. Both 
approaches require the data to be sampled regularly. Resam
pling the raw HRV data onto a regular time axis introduces 
noise into the signal and the information quality is compro
mised [ 1 ]. Conventionally, the HRV power is reported over 3 
bandwidths: [0.01 • • • 0.04] Hz. (Very Low Frequency, VLF) 
[0.04 • • • 0.15] Hz (Low Frequency, LF), and [0.15 • • • 0.4] 
Hz (High Frequency, HF) [1,2].

Prior to transformation into the frequency domain, nor
mal practice requires that the time series data are “det
rended” or “high-pass filtered” at a very low frequency, say 
~0.005 Hz. There is no universally formal justification for 
such detrending other than it minimises the effects of me
dium-term nonstationarity within the immediate time epoch 
(window) of interest [2]. Stationarity is an axiomatic 
assumption in conventional time-to-frequency transforma
tion of the PSD (see Appendix B).

A number of methods have been described to identify the 
trend component in the tachogram such that it can be simply 
removed by subtraction. These methods include fixed low- 
order polynomials [3,4], adaptive higher-order polynomials 
[5,6], and, more recently, the smoothing by priors approach 
(SPA) proposed by [7] which they describe as a time-varying 
finite impulse high-pass filter. The SPA uses a technique well- 
established in modern time series analysis and it addresses 
directly the phenomenon of nonstationarity.
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However, the Tarvainen approach suffers two limitations. 
The first is conceptual: the algorithm requires resampling by 
interpolation onto a regular time axis. The second is prac
tical: the MATLAB implementation is computationally inef
ficient and expensive and consequently very slow. In practice, 
its application is limited to relatively short tachograms [7].

In the present work, a novel algorithm is introduced 
which obviates these limitations by extending the SPA. The 
Smoothing by Gaussian process Priors (SGP) method de
scribed here explicitly does not require resampling and 
executes in MATLAB at least an order of magnitude faster 
than the SPA. By employing the SGP twice in sequence, the 
bandpass effect achieves detrending (high-pass) and low- 
pass filtering which is directly compatible with the Lomb 
Scargle Periodogram (LSP) [8|.

2. The Smoothing Priors Approach

The SPA method considers the problem of modelling the 
trend component in a time series with a linear observation 
model:

Ztrend = Hy + V, (1)

where H is the observation matrix, v is observation error, and 
y are parameters to be determined. The solution to estimat
ing the trend is then expressed in terms of minimisation of a 
regularised least squares problem:

9a = argmin||Hy- z||: +(T2||D,/(Hy)||2, (2)
y

where is a regularisation parameter and is the discrete 
approximation to the dth derivative operator.

By choosing H as the identity matrix, and d = 2, the 
solution can Ik written as

ya = (l + (72D]D2)_Iz. (3)

where h is now the maximum local grid spacing.
The rows of the operator now explicitly depend on the x 

values as desired:

(x,+ i -X,-! )(*,+ ] -X,)'

(X|+i -Xj)(x,--x,-,)’ (x,+ 1 — X,_| )(x; — Xj_i) J

The operator is denoted by the symbol EK 
An efficient implementation of the above algorithm 

(MATLAB) is the following:

T = lcngth(x); 
id = 2:(T- 1);
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Tarvainen et al. argue that selection of the observation 
matrix is done to simplify things, in the context of estimating 
parameters in a finite-dimensional space. A Bayesian inter
pretation of (2) is given, but always in the context of finite
dimensional parameter spaces. It is interesting and useful 
to give a different interpretation in the context of Gaussian 
Process (GP) priors, which implies a function-space view, 
rather than a parametric view, of the regression problem. In 
passing it is noted that the SPA, as published, is markedly 
inefficient and potentially unstable in using matrix inversion. 
A more efficient approach is presented as Appendix C.

3. An Alternative Smoothing Prior Operator
Use of the D2 operator implies uniform sampling of the data 
and in the case of the HRV tachogram requires that the raw 
data be projected onto a regular time axis using some means 
of interpolation. Such a projection is frequently referred 
to as resampling which is undesirable in that it corrupts, 
preferentially, the higher frequency components [2]. In the 
present development, it is proposed that resampling can be 
avoided by using a different approximation for the second- 
order derivative operator. The usual approximation is based 
on a centred formula:

/"(*,) = + + 0{h2h (4)
nz

which implies that each row of the D2 matrix is the constant 
vector [1,-2,1 ].

A different approximation formula to the derivative, 
which does not imply uniform sampling, can also be ob
tained by Taylor expansion with nonuniform increments. 
After some algebra.

(5)

idpl = id + 1; 

idml = id - 1;

VI = 2./((x(idml) - x(idpl)). *(x(id) - x(idpl)));

V2 = -2./((x(idml) - x(id)). *(x(id) - x(idpl)));

V3 = 2./((x(idml) - x(id)). *(x(idml) - x(idpl)));

D2hat = spdiags ([VI, V2, V3] \ Vl(l), [0 : 2],T- 
2,T);

L = chol(speye(T) + sigma A2 *D2hat' ’'D2hat, ‘low
er’);

z_stat = z - L' \ (L \ z);

r,,, X _ -,/(*,+!)(x,_i - X,) -/(x,)(x,-i -x^)) + y(X[_|)(X[
J ^ (v _ v Vv _v Vv ^ +U\n))

V*i-1 X|AX|-1 •Ki+l/VX| *1+1/
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Note that to reduce the possibility of numerical instabilities 
in the solution of the linear systems, the D2hat matrix is 
normalised by the first element of vector VI.

4. Equivalent Kernel and Smoothing
The operation of the smoothing priors can be understood by 
looking at the following simplified form:

y = Hz, (7)

where z is the vector of data and H is the matrix coefficient 
of (3). The smoother acts as a linear filter.

Since each element of z and y can be thought of as 
placed at a distinct time point, it is seen that each row of 
the H matrix acts over all the elements of z to produce a 
single element of y. Consequently, the filter is noncausal. 
In fact, each row of H defines a weighting function. Each 
weighting function is localised around a specific time, and 
its bandwidth determines how many samples from the past 
and from the future contribute to the estimate. The wider 
the weighting function, the smoother the resulting estimates.

In the case of uniformly sampled data, the weighting 
functions have the same shape (except at the boundaries), 
which can be imagined as a sliding window translating in 
time: this is a consequence of the definition of the D2 
operator, which is time independent. Figure 1 shows some 
weight functions implied by the D2 operator.

However, for the case of arbitrarily (irregularly) sampled 
data of the HRV tachogram, the b2 operator actually 
depends on time; therefore the weighting functions will take 
on a different shape. This makes the resulting filter effectively 
a time-variant filter. It is possible to calculate the transfer 
function of the filter H in the limit as the number of data 
points tends to infinity. It can be shown [2] that the (non
stationary) spectral density of the Gaussian process prior is

S</> - 4^' (8)
From the above, the power spectral density of the equiv

alent kernel filter is derived as

h(f) =
1

o24n2f4 + 1 (9)

In Figure 2 it is shown an example of the transfer 
function of the equivalent kernel filter (with a2 = 1): the 
phase is constant zero.

0 10 20 30 40 50 60 70 80
Index of sample in the time series

Figure 1: Weight functions (viz. D2 operator). 

Table 1: approximation of-3 dB point [Hz],

True -3 dB cut-off frequency Approximate frequency
0.05
0.1
0.2
0.3

0.049
0.102
0.208
0.34

only the qualitative behaviour of the filter, the following 
approximation provides a quantitative tool.

Inverting (9) and applying the bilinear transformation of 
the continuous frequencies, we get

<r2 = (v! — l)^2tan^^y^ , (10)

where a>f is the normalised cut-off frequency (namely, the 
Nyquist frequency = 1).

Since the number of data points mostly impacts the 
estimation of low frequencies, the expectation is that the 
approximation is good in the low-frequency range.

In a Monte Carlo simulation, 1000 replications of the 
Welch periodogram estimates were made of white Gaussian 
noise coloured through the equivalent filter H. Each noise 
sequence was composed of 5000 regularly spaced samples. 
In Table 1, it is seen that this approximation is good and, 
predictably, deteriorates as the cut-off frequency increases.

Figure 3 shows the transfer function of the digital 
equivalent kernel filter.

There is very little phase distortion, except at very high 
frequencies close to the Nyquist frequency.

5. Estimation of the Filter Bandwidth
Although the approximation in (9) is only valid in the limit 
as the number of data points goes to infinity, it is still 
useful for calculating the approximate -3dB bandwidth of 
the finite-sample approximation of the filter in terms of 
the smoothing parameter a2. Whereas the SPA as presented 
[7] does not provide an effective bandwidth estimate but

6. Illustrative Performance with Synthetic 
and Real Data Sets

A synthetic data set of was generated (MATLAB) as series 
of normallydistributed random numbers of mean 0.85(1) s 
(equivalent to a heart rate of ~75bpm) and std 0.025 s: 
this was low-pass filtered at 1 Hz (3rd-order phase-less HR).
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Figure 2: Bode plot of theoretical transfer function of equivalent kernel filter.

Transfer function of the discrete version of 
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Figure 3: Bode plot of discrete transfer function of equivalent kernel filter.

These data were projected by interpolation, onto an irregular 
time axis of mean interval 0.86(1) s and variance 0.01s2. 
The resulting synthetic HRV record, as a time record of 
band-limited Gaussian noise, was of 30 s duration, average 
sampling frequency of 1.15(6) Hz and had no significant 
power above 1 Hz.

Clinical ECG data from a Lead II configuration were 
recorded from a healthy adult seated for a period of 60 
minutes using a Spacelabs Medical Pathfinder Holter system. 
RR intervals were available with 1 ms resolution.

The time domain and frequency domain (as the Lomb 
Scargle periodogram) representations of the synthetic data 
set and the clinical data set are shown in Figure 4 to illustrate 
the band-pass filtering eftect achieved using sequential SGP. 
The synthetic HRV data and the clinical HRV data are filtered 
in the band-pass [0.025 • • • 0.5] Hz and [0.025 • • • 0.35] 
Hz, respectively.

7. Internet Resources and Open-Source Code
Resources relevant to this work arc located at http:// 
clinengnhs.liv.ac.uk/links.htm and include the following.

(1) A website demonstration of SGP running on an au
tomation instance of MATLAB 2008a. Developed for 
JavaScript-enabled MS IE6+ and FireFox browsers.

(2) MATLAB open-source code:

(i) Smoothing by Gaussian process Priors (SGP): 
gpsmooth_3.m,

(ii) Optimized Lomb Scargle Periodogram (fLSPw: 
fastest Lomb Scargle Periodogram in the West): 
fLSPw.m.

8. Conclusion
The SGP (Smoothing by Gaussian process Priors) algorithm 
is a second-order response time-varying filter which operates 
on irregularly sampled data without compromising low- 
frequency fidelity. In the context of Heart Rate Variability 
analysis, it provides detrending (high-pass) and low-pass 
filtering with explicitly specified -3dB cut-off points. A 
small limitation is the implicit requirement to assume a 
representative sampling frequency to establish the frequency 
interval: here this is taken as the reciprocal of the median 
sampling interval. The SGP MATLAB code is available as 
open source via a comprehensive website and is directly 
compatible with an optimised implementation of the Lomb 
Scargle Periodogram (fLSPw) estimator.

Appendices

A. Gaussian Process Interpretation of 
Smoothing Priors

Consider the posterior expectation of a GP regressor (2) at a 
set of training data points z:

ya = K(K + (T2I)~'z, (A.l)
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Figure 4: Synthetic and clinical HRV records band-pass filtered by sequential application of SGP: raw data W0 “smoothed” to give 
Wj = Wo - Wt (not shown); vt2 “smoothed” to give vfj. Lomb Scargle Periodograms (LSPs) are for Wo, vt2, and W3.

where K is the covariance matrix of the GP y and a is the 
standard deviation of the white (Gaussian) noise corrupting 
the data z. By algebraic manipulation of (A.l), it follows:

ya = [(K + <r2I)K-l]-lz = (KK 1 +a2K-1)~,z

Comparing the above with (3),

DjDrf = K'. (A.3)
The above derivations show some important facts about the 
solution of the problem.

(1) The parameter tr describes the amount of (Gaussian) 
white noise, which affects the data. As a gets smaller, 
the filtering process gets smoother.

(2) The smoothness properties of the resulting estimator 
depend not only on <r, but also on the choice of the 
covariance matrix K. Note that polynomials up to 
(and including) 1st degree are in the null space of the 
regularization operator (i.c., they are both mapped to 
constants), which means that they are not penalized 
at all. This implies that the Gaussian Process prior is 
not stationary (see Appendix B for a definition).

B. Stationarity
A Gaussian process is completely described by its mean 
function and covariance function. Given a real process /(f), 
these functions are specified as the following expectations:

m(f) = £[/(/)],

= E[(f(t) - ,n(t))(f(t') - md'))}.

For a fixed t, f{t) is a Gaussian random variable with mean 
m(f) and variance kit, t), so that a Gaussian process can 
be defined as a collection of random variables, any finite 
number of which have a joint Gaussian distribution.

A stationary covariance function is a function of f - f', 
that is, it is invariant to translations. The above definitions 
can be used to define stationarity for Gaussian processes. 
A process which has constant mean and whose covariance 
function is stationary is called weakly stationary (or widc- 
sense stationary, WSS). A process whose joint distributions 
are invariant to translations, that is, the statistics of /(f) and 
/(f + c) are the same for any c, is called strictly stationary 
(or strict-sense stationary, SSS). It can be shown that as SSS 
process is also WSS, and if the process is Gaussian, then the 
converse is also true.
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logS = 2.1*logN-5
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♦ Speed-up data 
---- Linear

Figure 5: Speed-up of SGP over SPA with increasing data set size.

If any of the above conditions are violated, then the 
process is non-stationary; an example is the Gaussian process 
whose inverse covariance matrix is given hy (4) and (5).

C. Improving the Speed and Stability of 
the SPA Smoothing Process

In general, matrix inversion is very computationally expen
sive and should be avoided whenever possible A more 
efficient solution uses the backslash operator \, which in 
MATLAB implements the solution of a linear system by 
Gaussian elimination. However, the matrix (I Di) can
be nearly singular and ill conditioned, depending on values 
of the parameter o2. To circumvent this risk, the lower 
Cholesky factor L (the square root) of this matrix is derived, 
so that

LL'1'= (l + <T2D]D2). (C.1)

With this decomposition, matrix inversion can then 
simply be written as the solution, in sequence, of two tri
angular systems of linear equations, which is a very fast and 
numerically stable operation:

% = LT \ (L \ z). (C.2)

Although the theoretical computational complexity of 
straight matrix inversion and the above (seemingly more 
complex) steps is the same, the hidden factors of the actual 
numerical computations make a very significant difference 
[9). The speed-up is illustrated by performing the above 
computations on a sequence of varying length (from 1000 
to 3000 samples), repeating the execution of both algorithms 
100 times. Figure 5 shows the speed-up as a function of the 
data set size.

It is clear that, as the dimension of the data set in
creases, the speed-up increases quadratically, showing the
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inefficiency of the matrix inversion-based smoothing. The
following code (MATLAB R006b) was used:

T = length(z);
D2 = spdiags(ones(T - 2,1) *[1 - 2 1, 0 : 2],T -
2,T);
L = chol(speye(T) + sigma A2 *D2'*D2, ‘lower’);
% warning: potential bottleneck!
z^stat = z - L' \ (L\ z);

It should be noted that in MATLAB R2006a, and possibly
previous versions, multiplication of the a2 coefficient by the
sparse matrix is anomalously a very slow operation.
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