1,059 research outputs found

    The detection of freezing of gait in Parkinson's disease using asymmetric basis function TV-ARMA time-frequency spectral estimation method

    Get PDF
    Freezing of gait (FOG) is an episodic gait disturbance affecting locomotion in Parkinson’s disease. As a biomarker to detect FOG, the Freeze index (FI), which is defined as the ratio of the areas under power spectra in ‘freeze’ band and in ‘locomotion’ band, can negatively be affected by poor time and frequency resolution of time-frequency spectrum estimate when short-time Fourier transform (STFT) or Wavelet transform (WT) is used. In this study, a novel high-resolution parametric time-frequency spectral estimation method is proposed to improve the accuracy of FI. A time-varying autoregressive moving average model (TV-ARMA) is first identified where the time-varying parameters are estimated using an asymmetric basis function expansion method. The TV-ARMA model is then transformed into frequency domain to estimate the time-frequency spectrum and calculate the FI. Results evaluated on the Daphnet Freezing of Gait Dataset show that the new method improves the time and frequency resolutions of the time-frequency spectrum and the associate FI has better performance in the detection of FOG than its counterparts based on STFT and WT methods do. Moreover, FOGs can be predicted in advance of its occurrence in most cases using the new method

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Diagnosis of Neuro-Degenerative Diseases Using Probabilistic Neural Network

    Get PDF
    In recent years researchers have been given attention to present a non-invasive approach to deal with the diseases quickly and all the more unequivocally. The major cause of death of patients is due to the wrong diagnosis. Thus a right method is to be identified which would help the physicians to concentrate on the cause of illness and its diagnosis so as to abstain from squandering valuable time- that may be precious for the patient- on diagnosis. In this particular thesis, we have tried to build up a computerized methodology to deal with patients having problems in walking by analysing their gait signal. We chose four groups of patients, namely patients suffering from neuro-degenerative diseases such as Huntington’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis and a group of healthy control subjects. So we have utilized Probabilistic Neural Network (PNN) as a classifier, to identify or differentiate the different patients and define the type of disease that they are suffering from, with accuracy in the range of 85- 95% so as to diagnose the diseases correctly and as a result, minimize the death rate

    Human knee abnormality detection from imbalanced sEMG data

    Get PDF
    The classification of imbalanced datasets, especially in medicine, is a major problem in data mining. Such a problem is evident in analyzing normal and abnormal subjects about knee from data collected during walking. In this work, surface electromyography (sEMG) data were collected during walking from the lower limb of 22 individuals (11 with and 11 without knee abnormality). Subjects with a knee abnormality take longer to complete the walking task than healthy subjects. Therefore, the SEMG signal length of unhealthy subjects is longer than that of healthy subjects, resulting in a problem of imbalance in the collected sEMG signal data. Thus, the development of a classification model for such datasets is challenging due to the bias towards the majority class in the data. The collected sEMG signals are challenging due to the contribution of multiple motor units at a time and their dependency on neuromuscular activity, physiological and anatomical properties of the involved muscles. Hence, automated analysis of such sEMG signals is an arduous task. A multi-step classification scheme is proposed in this research to overcome this limitation. The wavelet denoising (WD) scheme is used to denoise the collected sEMG signals, followed by the extraction of eleven time-domain features. The oversampling techniques are then used to balance the data under analysis by increasing the training minority class. The competency of the proposed scheme was assessed using various computational classifiers with 10 fold cross-validation. It was found that the oversampling techniques improve the performance of all studied classifiers when applied to the studied imbalanced sEMG data. (c) 2021 Elsevier Lt

    Intelligent signal processing for digital healthcare monitoring

    Get PDF
    Ein gesunder Gang ist ein komplexer Prozess und erfordert ein Gleichgewicht zwischen verschiedenen neurophysiologischen Systemen im Körper und gilt als wesentlicher Indikator für den physischen und kognitiven Gesundheitszustand einer Person. Folglich würden Anwendungen im Bereich der Bioinformatik und des Gesundheitswesens erheblich von den Informationen profitieren, die sich aus einer längeren oder ständigen Überwachung des Gangs, der Gewohnheiten und des Verhaltens von Personen unter ihren natürlichen Lebensbedingungen und bei ihren täglichen Aktivitäten mit Hilfe intelligenter Geräte ergeben. Vergleicht man Trägheitsmess- und stationäre Sensorsysteme, so bieten erstere hervorragende Möglichkeiten für Ganganalyseanwendungen und bieten mehrere Vorteile wie geringe Größe, niedriger Preis, Mobilität und sind leicht in tragbare Systeme zu integrieren. Die zweiten gelten als der Goldstandard, sind aber teuer und für Messungen im Freien ungeeignet. Diese Arbeit konzentriert sich auf die Verbesserung der Zeit und Qualität der Gangrehabilitation nach einer Operation unter Verwendung von Inertialmessgeräten, indem sie eine neuartige Metrik zur objektiven Bewertung des Fortschritts der Gangrehabilitation in realen Umgebungen liefert und die Anzahl der verwendeten Sensoren für praktische, reale Szenarien reduziert. Daher wurden die experimentellen Messungen für eine solche Analyse in einer stark kontrollierten Umgebung durchgeführt, um die Datenqualität zu gewährleisten. In dieser Arbeit wird eine neue Gangmetrik vorgestellt, die den Rehabilitationsfortschritt anhand kinematischer Gangdaten von Aktivitäten in Innen- und Außenbereichen quantifiziert und verfolgt. In dieser Arbeit wird untersucht, wie Signalverarbeitung und maschinelles Lernen formuliert und genutzt werden können, um robuste Methoden zur Bewältigung von Herausforderungen im realen Leben zu entwickeln. Es wird gezeigt, dass der vorgeschlagene Ansatz personalisiert werden kann, um den Fortschritt der Gangrehabilitation zu verfolgen. Ein weiteres Thema dieser Arbeit ist die erfolgreiche Anwendung von Methoden des maschinellen Lernens auf die Ganganalyse aufgrund der großen Datenmenge, die von den tragbaren Sensorsystemen erzeugt wird. In dieser Arbeit wird das neuartige Konzept des ``digitalen Zwillings'' vorgestellt, das die Anzahl der verwendeten Wearable-Sensoren in einem System oder im Falle eines Sensorausfalls reduziert. Die Evaluierung der vorgeschlagenen Metrik mit gesunden Teilnehmern und Patienten unter Verwendung statistischer Signalverarbeitungs- und maschineller Lernmethoden hat gezeigt, dass die Einbeziehung der extrahierten Signalmerkmale in realen Szenarien robust ist, insbesondere für das Szenario mit Rehabilitations-Gehübungen in Innenräumen. Die Methodik wurde auch in einer klinischen Studie evaluiert und lieferte eine gute Leistung bei der Überwachung des Rehabilitationsfortschritts verschiedener Patienten. In dieser Arbeit wird ein Prototyp einer mobilen Anwendung zur objektiven Bewertung des Rehabilitationsfortschritts in realen Umgebungen vorgestellt

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Volitional Control of Lower-limb Prosthesis with Vision-assisted Environmental Awareness

    Get PDF
    Early and reliable prediction of user’s intention to change locomotion mode or speed is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation of explicit environmental feedback can facilitate context aware intelligent prosthesis which allows seamless operation in a variety of gait demands. This dissertation introduces environmental awareness through computer vision and enables early and accurate prediction of intention to start, stop or change speeds while walking. Electromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit (IMU), and Ground Reaction Force (GRF) sensors were used to predict intention to start, stop or increase walking speed. Furthermore, it was investigated whether external emotional music stimuli could enhance the predictive capability of intention prediction methodologies. Application of advanced machine learning and signal processing techniques on pre-movement EEG resulted in an intention prediction system with low latency, high sensitivity and low false positive detection. Affective analysis of EEG suggested that happy music stimuli significantly (
    corecore