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Abstract

The classification of imbalanced datasets, especially in medicine, is a major problem

in data mining. Such a problem is evident in analyzing normal and abnormal subjects

about knee from data collected during walking. In this work, surface electromyography

(sEMG) data were collected during walking from the lower limb of 22 individuals (11

with and 11 without knee abnormality). Subjects with a knee abnormality take longer

to complete the walking task than healthy subjects. Therefore, the SEMG signal length

of unhealthy subjects is longer than that of healthy subjects, resulting in a problem of

imbalance in the collected sEMG signal data. Thus, the development of a classification

model for such datasets is challenging due to the bias towards the majority class in the

data. The collected sEMG signals are challenging due to the contribution of multiple

motor units at a time and their dependency on neuromuscular activity, physiological

and anatomical properties of the involved muscles. Hence, automated analysis of such

sEMG signals is an arduous task. A multi-step classification scheme is proposed in this

research to overcome this limitation. The Wavelet Denoising (WD) scheme is used to

denoise the collected sEMG signals, followed by the extraction of eleven time-domain

features. The oversampling techniques are then used to balance the data under analysis
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by increasing the training minority class. The competency of the proposed scheme was 

assessed using various computational classifiers with 10 fold cross-validation. It was 

found that the oversampling techniques improve the performance of all studied 

classifiers when applied to the studied imbalanced sEMG data.

Keywords:

Surface Electromyography, Wavelet Denoising, Oversampling Techniques, 

Imbalanced Data, Machine Learning.

1. Introduction

Knee pain is a common complaint that affects the autonomy of individuals of all

ages. As per the survey [1], one in every three people have arthritis or joint symptoms in

the 18-64 age group due to an injury or underlying condition such as knee osteoarthritis.

The knee joint is a synovial joint that acts as a shock absorber and provides stability to

the body. The knees join the femur (thigh bone) and come to the tibia (shin bone). The

patella (knee cap) and fibula are the other bones that form the knee joint. The bones of

the knee are attached to the muscles along with the tendon. The articular cartilage is

a thin cartilage between the femur and tibia and provides a smooth movement to these

bones [2].

Neuromusculoskeletal disorders such as cerebral palsy and osteoarthritis are other

infirmities that reduce the quality of life of people [3, 4]. Clinically, such diseases

are diagnosed using X-Ray [5] or Magnetic Resonance Imaging (MRI) techniques [6].

X-ray technique is primary used for gathering and evaluation of the bone status while

MRI provides the detailed information of knee structure such as cartilage, ligaments

and tendons. MRI is an efficient way for diagnosing but at a higher cost. Knee abnor-

malities can be diagnosed through wearable sensors such as electromyography (EMG),

accelerometer and gyrometer, or by visual sensors such as imaging cameras. A com-

prehensive review of available gait approach and analysis of applications based on gait

data was discussed by chandra prakash and others [7]. EMG sensors allow the recogni-

tion of movements in advance [8] while providing faster detection of signal variations

[9], and are therefore superior in the investigation of neuromusculoskeletal disorders.
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The signal collected by EMG sensors is a biomedical signal that quantifies the 

electrical activity produced by skeletal muscles. Surface electromyography (sEMG) 

and intramuscular EMG (iEMG) techniques are popular approaches used to acquire 

EMG signals [10]. sEMG presents an advantages over iEMG, as the electrodes can be 

applied without pain or medical monitoring, and additionally the possibility of in-

fection is negligible. Long-term control is often simpler with surface electrodes than 

using iEMG needles. The placement of the sEMG sensors has a significant influence 

on the acquired signal and their consequent analysis and recognition by the compu-

tational algorithm as confirmed in [11]. sEMG sensors can collect data during daily 

human activities such as sitting, standing, walking and climbing, which can be used to 

detect anomalies, actions recognition, etc [12].

sEMG signals are being employed in different applications such as automatic con-

trol of lower and upper limb prosthesis or exoskeletons [13], diagnosis of neuromus-

cular disorders [14] and exercise, fitness monitoring [15]. Khimraj et al. classified six 

movements of lower limb and compared the results of the computational classifiers 

[16]. Hudgins et al. proposed a pattern recognition based approach with time-domain 

features and a multilayer perceptron neural network for the classification of four types 

of limb motions [17] using sEMG signals. Huang et. al. estimated from sEMG signals 

the human arm joint torque using a back-propagation neural network (BPNN) and auto 

encoders [18]. Silva et al. studied the spinal cord injury using the sEMG signal col-

lected during activities of the upper limb [19]. Sudarsan et al. designed and developed 

an artificial limb controlled by sEMG signals [20]. Tuncer et. al. proposed the ternary 

pattern and discrete wavelet based feature extraction for hand movement recognition 

from sEMG signal for amputee people [21]. The Support Vector Machine (SVM) 

based classification of different upper limb movements performed by five healthy sub-

jects was investigated by Cai et al. [22]. A linear time series based prediction models 

were proposed by chandra prakash and others. These models can be used for efficient 

control of robotic assistive devices for lower limb for a smooth movement [23].

In the last decade, researchers have focused on the classification of sEMG sig-nals 

from the upper limb. The sEMG signals acquired from the lower limb are more 

challenging as it got influence from overlapping muscles [24, 25]. The classification
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of sEMG data from the lower limb has been studied using different signal processing 

techniques [26, 27]. The human lower limb flexion/extension joint angles were esti-

mated from sEMG signal using a deep belief network by Chen et al. [28]. Bonato et al. 

investigated the fatigue of quadriceps and hamstring muscles based on sEMG signal 

[29]. Swaroop et al. used sEMG signal for myopathy and neuropathy classification 

using a neural network based approach [30]. Kugler et al. used a SVM based solution 

for the recognition of Parkinson’s disease from sEMG data [31]. Morbidoni et al. clas-

sified the gait phase while walking from sEMG data with the help of a deep learning 

based approach [32]. Characterization of walking patterns and using computational 

techniques are classified into normal and gait pathology [33].

Class imbalance is a challenging issue in medical data. Class imbalance occurs in 

the case where a varying quantity, i.e. different number, of total samples is present in 

different data classes. So, if imbalanced data appears in the classification, the result 

will be swayed toward the majority class [23]. Therefore, for improving the diagnosis 

success, it is required to balance the data either by increasing the minority class (over-

sampling) or reducing the majority class (under sampling). Rajesh et al. classified five 

groups of heartbeat with imbalanced ECG beat using the AdaBoost ensemble classifier 

[34]. Past studies show that oversampling techniques can overcome the class 

imbalance problem [35, 36]. Taft et al. applied the Synthetic Minority Oversampling 

Technique (SMOTE) to enhance the performance of a classification model for the 

identification of adverse drug events in women admitted for labor and delivery [36].

During walking, the imbalance problem of the acquired sEMG data may occur 

because of two reasons:

1. The number of abnormal subjects is inferior to the number of healthy subjects;

2. the length of the data collected from abnormal subjects is different from the one 

obtained from normal subjects.

A person with knee abnormality takes longer to complete the movement task result-

ing in larger signal length in contrast to a healthy (or control) subject. Hence, the large 

length of the sEMG signal of the abnormal subject leads to a class imbalance problem. 

In the present study, two classes with the same number of subjects have been taken;
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however, the signal length of each class is different. Figure 1(a) and (b) exhibit the 

sEMG data acquired from one normal subject and one abnormal subject respectively 

while performing the same gait task, respectively. It can be observed that the lengths 

of the acquired sEMG signals have varying lengths.

(a)

(b)

Figure 1: sEMG signals acquired during gait from: a) a healthy subject and b) an abnormal Knee subject.

As per the author’s knowledge, there is no literature/study that resolves the prob-

lem of identifying knee abnormality from imbalanced sEMG gait data. Therefore, this 

paper presents for the first time the problem of identifying a knee abnormality from 

class imbalanced sEMG data and evaluated the performance parameters of various ma-

chine learning classifiers when applied to a balanced and imbalanced sEMG data. The 

data considered here include 1) original imbalanced data and 2) balanced data that have 

been obtained through the application of oversampling techniques on the original data. 

The major contributions of this work are:

1. Identification of knee abnormality from imbalanced sEMG dataset, where sEMG 

signal length differ between normal and abnormal subjects.

2. Evaluation of metrics (MSE, MAE, SNR and PSNR) for selecting optimal mother 

wavelet and decomposition level of DWT wavelet;
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3. Extraction of eleven discrete wavelet transform (DWT) based features by split-

ting the sEMG signal into various frequency bands.

4. Evaluating the impact of oversampling techniques on the performance indices of 

classification models.

This article is organized as follows. A description of the dataset data that has been 

utilized in the presented work is given in Section II. Section III presents the proposed 

methodology. Results and their discussion are presented in Sections IV & V, respec-

tively. Under Section VI, conclusions and perspectives of future work have been elab-

orated.

2. sEMG dataset

The sEMG signal data used in this study has been publicly made available to the

UCI machine learning repository by Sanchez et al [37]. The data consist of sEMG

signals of the lower limbs of 22 subjects over 18 years of age, where 11 subjects are

healthy and 11 subjects have known knee abnormalities. The healthy subjects do not

have previous record of knee injury or pain. One abnormal knee subject suffered from

sciatic nerve injury, six abnormal subjects had anterior cruciate ligament (ACL) injury

and the remaining four suffered from a meniscus injury. The data was collected using

a DataLog MWX8 from Biometrics Ltd. and a goniometer when the subjects were

performing one of three different tasks: walking, flexion of the leg up and leg extension

from sitting position. The sEMG data were recorded for the four muscles: biceps

femoris (BF), vastus medialis (VM), rectus femoris (RF) and semitendinosus(ST), with

the goniometer attached to the external side of the knee joint. The affected limb of the

subject with abnormal knee and the left leg of the healthy subjects were chosen for

acquiring the sEMG signal. The data was acquired according to a sampling frequency

of 1000 Hz and 14-bit of resolution. The sEMG signals have already been filtered

using a band pass filter with a pass band frequency of 20 Hz to 460 Hz. The recorded

data does not contain any signal corresponding to the transition states, i.e., standing to

sitting, sitting to walking, walking to standing, etc. The data was transferred directly

from the MWX8 device to the computer by bluetooth in real-time. Only the sEMG
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signals acquired during the walking task were used the experiments performed for this

study.

3. Proposed Methodology

This section presents the methodology proposed for the identification of knee ab-

normality from imbalanced sEMG signal data collected during walking. Figure 2

presents the general flow of the proposed methodology.

Figure 2: Block diagram of the proposed methodology for abnormality knee detection from sEMG signal 

collected during walking.

Feature extraction from the collected sEMG signals requires signal pre-processing. 

The dataset is already preprocessed with band pass filter with a pass band frequency of 

20 to 460 Hz. To remove the random noise discrete wavelet denoising technique has 

been used. The mother wavelet and level of decomposition of the wavelet denoising 

based on DWT were selected from the mean squared error (MSE), mean absolute er-

ror (MAE), signal to noise ratio (SNR) and peak signal to noise ratio (PSNR) values. 

Thereafter, eleven time-domain features were extracted by the use of an overlapping
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windowing technique with a window length of 256 ms and an overlapping of 25% and 

then the samples of the features were normalized in between 0 (zero) to 1 (one) by the 

use of Min-max normalization method. Since the data length of healthy and unhealthy 

subjects are not the same, therefore the number of samples of the extracted features for 

both conditions, i.e., classes, are also not equal. Hence, in order to balance the samples 

of the used features, different over-sampling techniques have been used.

The main sections of the proposed methodology presented in Figure2 have been 

explained in the following subsection:

3.1. Wavelet Denoising

Four types of noises are usually introduced while recording sEMG signals [38]: 1) 

Ambient noise generated by electromagnetic appliances, 2) Inherent noise result-ing 

from electronic devices, 3) Motion artifacts produced due to the movement of the 

sEMG electrodes, and 4) Inherent noise instability due to the firing rate of the involved 

motor units. Therefore, signal denoising is an essential task that should be performed 

before using the signals for classification purposes. Conventional filtering techniques 

like High Pass, Low Pass or Band Pass, can be used to minimize the noise which is not 

within the range of the active sEMG signal spectrum band. The sEMG signals have 

been passed through the band pass filter (20 to 460 Hz). Recently, novel methods such 

as Wavelet Denoising, Independent Component Analysis (ICA) and Empirical Mode 

Decomposition (EMD), have been successfully used in recent studies to minimize 

noise from sEMG signals [39, 40, 41].

Over the past few years, the use of Wavelet Denoising has been proven successful 

on sEMG signals acquired from the upper and lower limbs. Phinyomark et al. pre-

sented the idea to denoised the sEMG signal using the Wavelet Denoising algorithm 

[42]. Random noises like White Gaussian noise in sEMG signals are difficult to mini-

mize by signal filtering; however, it can be effectively removed with the help of 

Wavelet Denoising. The white Gaussian noise Y(n) can be expressed as:

Y (n) = X(n)+H(n), (1)

where X(n) is the original signal and H(n) is the noise signal.
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The steps of the discrete wavelet transform based Wavelet Denoising are:

• Decompose the signal Y(n) by using the DWT;

• Select the threshold for each wavelet transform;

• Use inverse wavelet transform with threshold function to reconstruct the de-

noised signal.

When Wavelet Denoising is applied to signals, different wavelet coefficients are

generated by passing the signal through High-Pass and Low-Pass filters. The approxi-

mation and detail coefficients are obtained after the decomposition of the signal by us-

ing the Wavelet Denoising technique. The number of coefficients depends on the level

of decomposition. In this research, the Wavelet Denoising technique is used with sym4

from the Symlet family to the first level of decomposition. After this, the threshold-

ing can be performed. There are two traditional methods for thresholding the wavelet

coefficient results: Hard and Soft thresholding [43]. Hard thresholding can keep only

partial information of the original signal while soft thresholding has a constant devi-

ation relative to the original signal. In this study, Universal thresholding is applied to

the detailed coefficients. The universal thresholding selection rule [44] is defined as:

λ = σ
√

2ln(N), (2)

where σ = (MAD)/0.6745, with MAD referring to the Median Absolute Deviation of

the wavelet coefficient and N is the signal length.

As an example, Figure 3 shows a raw sEMG signal and the corresponding denoised

signal after applying the Wavelet Denoising technique.

3.2. Segmentation

The nature of a sEMG signal is stochastic, so segmented sEMG signal is more ap-

propriate rather than the full sEMG signal. Different length of sEMG data affects the

accuracy of the classification model. Two types of windowing techniques, called Adja-

cent and Overlapping, are usually used for sEMG signal segmentation [45]. Here, the

overlapping windowing technique with a 256 ms time windowing and 25% of overlap-

ping is used [46].
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Figure 3: A raw sEMG Signal and the corresponding denoised sEMG signal obtained by Wavelet Decompo-

sition.

3.3. Feature Extraction

In a raw sEMG signal, it has been seen that various noises and artifacts are present,

which degrades its analysis accuracy because the required information remains as an

amalgam in the raw sEMG signal. Therefore, to enhance the classification accuracy, the

sEMG signal is denoised first, and then, features are extracted to be used as the input of

a computational classifier. Three types of feature extraction techniques are available in

the literature: time-domain (TD), frequency domain (FD) and time-frequency domain

(TFD) feature. In this study, eleven time-domain features are used for knee abnormality

identification from sEMG signals collected during walking [38].

• Mean Absolute Value (MAV): It is the average of N absolute values of a time

series sample of sEMG signal (xi) within a given time interval:

MAV =
1
N

N

∑
i=1
|xi| . (3)

• Root Mean Square (RMS): It is calculated by taking the square root of the arith-

metic mean of the squared sample amplitude:

RMS =

√
1
N

N

∑
i=1
|xi|2. (4)

• Zero Crossing (ZC): It gives information about how many times the signal crosses

the zero amplitude level:

ZC =
N−1

∑
i=1

f (xi . xi+1) , (5)
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where:

f (x) =

1, i f ,x < 0,

0, otherwise.

• Slope Sign Change (SSC): Similar to the zero crossing, SSC also gives informa-

tion of frequency in terms of time domain features. Thus, it indicates how many

times positive to negative or negative to positive slope transitions have taken

place:

SSC =
N−1

∑
i=2

f (xi) , (6)

where:

f (x) =

1, i f ,(xi > xi−1 and xi > xi+1) or (xi < xi−1 and xi < xi+1),

0, otherwise.

• Variance (VAR): It gives information about the deviation of the signal from its

mean value:

VAR =
1

N−1

N

∑
i=1

x2
i . (7)

• Wilison Amplitude (WAMP): It indicates the amount of stages resulting from

amplitude change between two adjoining segments that exceeds a pre-defined

threshold in the sEMG signal:

WAMP =
N−1

∑
i=1

f (|(xi+1− xi)|) , (8)

where:

f (x) =

1, i f ,(x≥ T hreshold),

0, otherwise.

• Myopulse Percentage Rate (MYOP): It is the average value of absolute values of

the sEMG signal exceeding a pre-defined threshold:

MYOP =
1
N

N

∑
i=1

f (xi) , (9)

where:

f (x) =

1, i f ,(x≥ T hreshold),

0, otherwise.
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• Difference Absolute Standard Deviation Value (DASDV): It is the standard devi-

ation value of the wavelength:

DASDV =

√
1

N−1

N−1

∑
i=1

(xi+1− xi)
2. (10)

• Average Amplitude Change (AAC): It is the average cumulative length of the

sEMG signal over the time segment:

AAC =
1
N

N−1

∑
i=1
|xi+1− xi| . (11)

• Skewness (Skew): It is a measure related to the lack of symmetry or the asym-

metry of the signal data:

Skew =
E[(x−µ)3]

σ3 , (12)

where σ is the standard deviation of the data, µ is the mean of the data, and E is

the expected value estimator of the signal.

• Kurtosis (Kurt): It determines if the signal has a peak or is rather flat at its mean

point:

Kurt =
E[(x−µ)4]

σ4 . (13)

Here, eleven time domain features for four different muscles, thus, 44 features were 

extracted. The length of the signal has been observed to be different for the two classes 

under classification; therefore, the number of samples of extracted features are 

different for the abnormal and healthy knee subjects.

3.4. Normalization

Normalization or Min-Max scaling is a re-scaling technique that shifts the range of 

the features to scale the range in between 0 (zero) to 1 (one) according to:

YFnew =
YFold −YFoldmin (14)

where YFnew is the normalized EMG feature, YFold is the actual EMG feature, YFoldmax

is the maximum value of the actual EMG feature, and YFoldmin is the minimum value of

the actual EMG feature.

12
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3.5. Oversampling Techniques

As discussed previously, the length of the recorded sEMG data of abnormal knee

subjects is different from the one of the normal subjects. An oversampling technique

has then be used to balance the imbalanced class, i.e., to increase the number of sam-

ples of the minority class. On the one hand, if imbalanced data is used for training a

classification model, then the data of majority categories would have dominated. On

the other hand, if the data of minority classes are oversampled by duplicity, then an

over fitting problem may occur due to repeated samples. Data level methods, algo-

rithm level methods and hybrid methods are three approaches that have been used for

handling the class imbalance problem.

Chawla et al. [47] proposed SMOTE for increasing the minority class. In the

SMOTE approach, the minority class can be oversampled by creating synthetic cases

in the feature space formed by the instance and its K-nearest neighbors as shown in

Figure 4. The steps of the SMOTE oversampling technique are:

1. Choose K nearest neighbor from the minority samples (Xi ∈ Smin) according to

the requirement of oversampling.

2. Randomly select a neighbor X j (X j ∈ Smin) from the K nearest neighbor.

3. A new synthetic sample is generated according to:

Xnew = Xi + |X j−Xi| ∗δ , where δ ∈ [0,1] is the random variable.

Figure 4: Illustration of the SMOTE oversampling approach.
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(a)

(b)

Figure 5: Pair plots for three extracted features: (a) without oversampling and (b) after the SMOTE over-

sampling.
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Figure 5 shows the pair plots for three extracted features: Mean Absolute value, 

Zero Crossing and Kurtosis of the Rectus Femoris muscle for two cases, without over-

sampling and after the SMOTE oversampling. In these plots, blue circles indicate sam-

ples of healthy subjects and red circles indicate the samples of abnormal knee subjects. 

For all the three features, Figure 5(a) shows that the samples of abnormal knee subjects 

(red circles) are in higher number than those of the normal subjects (blue circles) and 

Figure 5(b) shows that the number of the samples of the minority class (blue circles) 

have increased after the SMOTE oversampling.

Another oversampling approach, Adaptive Synthetic oversampling (ADAYSN) has 

been proposed by Haibo et al. [48]. According to the data distribution, new data points 

of minority class can be generated using ADAYSN. In this technique, one can shift the 

decision boundary to focus on those difficult to learn samples and also reduce the 

learning bias that is introduced by the original imbalanced dataset. SVM SMOTE is 

also a variant of SMOTE oversampling where the borderline is defined based on the 

SVM hyper plane methodology[49].

3.6. Computational Classifiers

Once the features are extracted, and the oversampling is performed, computational 

techniques can be used to classify the data as from healthy subjects or abnormal knee 

subjects. In this study, Iterative Dichotomiser 3 (ID3), Classification and Regression 

Trees (CART), Bagging, Gradient Booster, Random Forest and Extra Tree based clas-

sifiers have been studied.

Iterative Dichotomiser 3 (ID3) is used to generate a decision tree [50]. It is a su-

pervised learning algorithm for data classification that can be used for both categorical 

and numerical variables. It has no guarantee to give the optimal solution since it may 

converge upon local minima. Therefore, for splitting the input data, Greedy techniques 

are used to locally select the best attribute on each iteration. An over fitting problem 

may occur for the high depth of decision tree.

The steps of the Iterative Dichotomiser 3 classifier are:
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• Step 1: Calculate the entropy of every attribute used in the data:

H(S) =−∑
yεY

p(y)log2 p(y), (15)

where S is the data where the entropy is calculated, Y is the set of classes in S,

and p(y) is the proportion of the elements in class y to the number of elements in

S.

• Step 2: Split set S into subsets using the attribute where the information gain is

maximum:

IG(S,A) = H(S)−H(S|A). (16)

• Step 3: If the entropy is 0 (zero), then it is a leaf node and no further splitting is

performed; however, if entropy is higher than 0 (zero), further splitting is needed

and it should be performed as listed in step 2.

Classification and Regression Tree (CART) [51] is also a type of decision tree algo-

rithm that can be used for classification and regression. It is similar to ID3 but the

only difference is that ID3 uses information gain while CART uses the Gini index for

splitting the data. Accordingly, the feature with a lower Gini index value is selected for

splitting:

Gini = 1−
n

∑
i=1

(pi)
2, (17)

where pi is the probability of a feature in a particular class.

Bagging Classifier [52] is an ensemble method that is used to build an accurate

prediction model by combining the results of multiple machine learning algorithms.

This classifier selects bootstrap (random) samples from the input data. It constructs n

classification trees and calculates the prediction of individual classification trees, and

then accumulates them to form the final prediction based on averaging or voting of the

obtained individual outcomes. It is also called Bootstrap Algorithm as it can be used to

reduce the high variance of a black-box estimator (e.g., a decision tree), by integrating

randomization into its construction process and then making an ensemble out of it.

Gradient Boosting Classifier [53] is based on the idea of applying a weak learning

algorithm repeatedly while improving the results from the previous ones sequentially
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and finally build the classification as in a robust classifier. The Decision Tree is usu-

ally used as a weak learner. The performance is commonly measured by using the loss 

function at each iteration and optimized with the help of the Gradient Descent 

algorithm.

Random Forest Classifier [54] is an extension of the Decision Tree algorithm 

where bootstrap techniques are integrated. This classifier develops many classification 

trees rather than a single tree. It creates several bootstrap samples from the sample data 

and then develops a decision tree for each of the bootstrap samples. Random features 

are selected, and the features which give the best split are considered for splitting the 

node. The average number of votes from different trees are calculated, which provides 

the output of the overall prediction.

Extra Trees Classifier [55] is also called Extremely Randomized Decision Tree. It 

is also based on the Decision Tree algorithm and involves an ensemble decision tree 

like in the Random Forest algorithm. It differs from the Random Forest algorithm in 

two ways: (i) the training of each tree uses the entire training set instead of a random 

subset and (ii) the random splits are chosen instead of computing the locally best splits 

for each feature which makes this algorithm highly efficient.

Support Vector Machine Classifier [56] is a supervised machine learning algorithm 

where each data sample is plotted in a n-dimensional space and a hyper plane is con-

structed to separate the different classes optimally. This optimal decision surface can 

be constructed by maximizing the margin width between the nearest members of the 

classes.

Multilayer Perceptron Neural Network [57] is also a supervised learning algorithm. 

It is an artificial neural network that consists of three or more layers in a feed forward 

architecture with two layers dedicated to input and output while others are hidden lay-

ers. MLP uses a nonlinear activation function in the neurons and each layer is fully 

connected to the next layer.

3.7. Performance Measures

In this work, the problem under study is a binary classification problem which means 

either the subjects have knee abnormalities or not. In binary classification, the
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classifier gives four possible outcomes, which are: True Positive (TP), i.e., correct

positive prediction, True Negative (TN), i.e., correct negative prediction, False Positive

(FP), i.e., incorrect positive prediction, and False Negative (FN), i.e., incorrect negative

prediction. A confusion matrix may be built from these four outcomes, as illustrated in

Table 1, and different performance measures may be calculated:

Table 1: Confusion Matrix.

Predictive Class

Actual

Class

Positive Class Negative Class

Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

Accuracy =
T P+T N

T P+T N +FP+FN
, (18)

Precision =
T P

T P+FP
, (19)

Recall(Sensitivity) =
T P

T P+FN
, (20)

Speci f icity =
T N

T N +FP
, (21)

F1−Score =
2∗Recall ∗Precision

Recall +Precision
. (22)

For balanced data, accuracy can be considered as one of the evaluation metrics.

In the case of imbalanced data, there is a need for other evaluation metrics such as

sensitivity, specificity and F1-score, which have also been considered in this study

[58].
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4. Results

This section presents the results obtained using classifiers without and with over-

sampling techniques for the problem of knee abnormality detection from imbalance 

sEMG walking data. The obtained results seem to support the hypothesis that over-

sampling techniques improve the performance of the used classification model. The 

performance of the studied classifiers applied on original data (imbalanced data), and 

balanced data, obtained using oversampling techniques on the original data, was as-

sessed using:

1. Selection of the optimal mother wavelet and decomposition level of the DWT 

denoising technique;

2. Performance analysis using the k-fold cross-validation technique;

3. Performance analysis according to a 95% confidence interval.

4.1. Selection of the optimal DWT denoising mother wavelet and level of decompo-

sition

The selection of the mother wavelet and decomposition level in wavelet transform 

denoising plays an important role. In this study, haar (db1), Daubechies (db4, db7, 

db9), symlet (sym2, sym4, sym5, sym7) and biorthogonal (bior1.1) have been used 

from the wavelet transform family with 1 to 10 levels of decomposition. here, the 

mother wavelet and decomposition level have been selected based on mean squared 

error (MSE), mean absolute error (MAE), signal to noise ratio (SNR), and peak signal 

to noise ratio (PSNR). These four metrics are commonly used to assess the performance 

of denoising methods. The MSE, MAE, SNR, and PSNR values were calculated from 

the sEMG signals of all 22 subjects using different levels of wavelet decomposition 

and then the mean value of these metrics was considered. A lower value of MSE 

and MAE and a higher value of SNR and PSNR indicate that the signal is accurately 

denoised. These four parameters were calculated for 9 mother wavelet functions with 

the fourth level of decomposition as shown in Table 2. It was also computed the same 

four metrics for the 1 to 10 levels of the wavelet decomposition with symlet4 mother 

wavelet as indicated in Table 3.
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Table 2: Mean values of MSE, MAE, SNR and PSNR calculated from the sEMG signals of all 22 subjects 

using different mother wavelets (best values found are in bold).

Wavelet
Function MSE MAE SNR PSNR

db1 0.00057 0.01081 7.94073 27.61071
db4 0.00042 0.00971 8.55542 28.22540
db7 0.00046 0.00994 8.30930 27.97928
db9 0.00048 0.01005 8.16712 27.83709

sym2 0.00045 0.00998 8.43299 28.10296
sym4 0.00039 0.00941 8.82642 28.49640
sym 5 0.00040 0.00947 8.77723 28.44721
sym7 0.00040 0.00953 8.71923 28.38921

bior1.1 0.00057 0.01081 7.94073 27.61071

4.2. Performance analysis using k-fold cross validation

K-fold cross-validation is a method of re-sampling using constrained data to val-

idate the performance of machine learning models. In this approach, the input data is 

randomly split into k groups of equal size. Then, the model is trained using k − 1 

groups of data and validated with the kth group. Here, the performance of the studied 

classification models was assessed using 10-fold cross-validation [59] in four sEMG 

walking knee datasets:

1. The original data (imbalanced data);

2. The balanced data obtained by SMOTE oversampling;

3. The balanced data obtained by ADASYN oversampling;

4. The balanced data obtained by SVM SMOTE 
oversampling.

The obtained results are presented in Table 4.

4.3. Performance analysis according to a 95% confidence interval

For testing the statistical significance, an experiment was conducted for 100 ran-

domized tests for measurement of accuracy, sensitivity, specificity and F1-score 

perfor-mance metrics were calculated according to a 95% confidence interval. The 

obtained results are summarized in Table 5.
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Table 3: Mean values of MSE, MAE, SNR and PSNR calculated from the sEMG signals of all 22 subjects 

using different levels of wavelet decomposition (best values found are in bold).

Decomposition 
Level MSE MAE SNR PSNR

D1 0.00001 0.00142 24.31335 43.98333
D2 0.00005 0.00318 17.68627 37.35625
D3 0.00015 0.00592 12.42797 32.09795
D4 0.00039 0.00941 8.82642 28.49640
D5 0.00100 0.01368 6.65022 26.32019
D6 0.00157 0.01650 5.63505 25.30503
D7 0.00170 0.01703 5.42477 25.09475
D8 0.00171 0.01707 5.40338 25.07336
D9 0.00171 0.01706 5.40112 25.07110

D10 0.00172 0.01709 5.39753 25.06750

5. Discussion

Figure 6: Number of samples used in training and testing the classifiers with and without data oversampling.

Figure 6 shows the number of samples used in training and testing the classifiers 

with and without oversampling. In the case of Without oversampling, the classification 

models were trained with 342 and 1533 samples of the extracted features from healthy 

and abnormal knee subjects, respectively, and tested with 38 and 170 samples. On the 

other hand, with oversampling, the number of the training samples of normal subjects
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Table 4: Performance obtained by each classifier when applied on the original data and on the oversampled 

data (best values found in bold.)

Oversampling Classifier
Accuracy Sensitivity Specificity F-Score

Original

ID3 83.2 1.5 0.935 0.016 0.379 0.059 0.536 0.059

CART 82.8 1.5 0.951 0.03 0.276 0.137 0.405 0.194

Bagging 89.5 1.5 0.979 0.011 0.518 0.067 0.675 0.058

Gradient Boosting 89.4 2.2 0.972 0.017 0.545 0.086 0.694 0.071

Random Forest 90.9 1.1 0.981 0.01 0.587 0.047 0.733 0.037

SVM 86.5 1.5 989 0.012 0.308 0.053 0.467 0.06

MLP 84.9 2.2 0.965 0.021 0.329 0.141 0.471 0.181

Extra Tree 91.9 1.1 0.984 0.008 0.629 0.065 0.765 0.048

SMOTE

ID3 76.2 3.8 0.787 0.56 0.647 0.123 0.700 0.07

CART 75.6 4.3 0.771 0.061 0.687 0.109 0.718 0.052

Bagging 89.2 1.8 0.937 0.016 0.689 0.067 0.793 0.045

Gradient Boosting 87.5 1.9 0.893 0.022 0.792 0.066 0.838 0.036

Random Forest 90.7 2 0.937 0.02 0.776 0.063 0.848 0.038

SVM 81.4 2 0.812 0.024 0.824 0.065 0.816 0.03

MLP 85.5 2.8 0.878 0.035 0.75 0.063 0.807 0.036

Extra Tree 93.1 1.1 0.969 0.01 0.763 0.054 0.853 0.033

ADASYN

ID3 63.5 6.2 0.604 0.089 0.774 0.088 0.668 0.047

CART 62.8 6.4 0.596 0.094 0.771 0.109 0.659 0.046

Bagging 87.8 2.4 919 0.018 0.695 0.09 0.788 0.06

Gradient Boosting 86.4 1.5 0.878 0.019 0.8 0.054 0.836 0.027

Random Forest 90.3 2.4 0.93 0.023 0.782 0.063 0.847 0.03

SVM 78.1 2.7 0.758 0.034 0.887 0.054 0.816 0.027

MLP 83.2 3.1 0.835 0.033 0.821 0.085 0.825 0.047

Extra Tree 92.2 1.8 0.96 0.017 0.753 0.067 0.842 0.043

SVM SMOTE

ID3 71.7 4.6 0.713 0.063 0.734 0.08 0.718 0.04

CART 73 5.3 0.726 73 0.75 0.102 0.73 0.049

Bagging 90.2 2.4 0.937 0.024 0.745 0.084 0.827 0.053

Gradient Boosting 88.1 2.2 0.897 0.022 0.808 0.086 0.847 0.048

Random Forest 91 2.4 0.941 0.021 0.774 0.083 0.847 0.053

SVM 81.8 2.3 0.824 0.03 0.789 0.078 0.803 0.04

MLP 85.3 2.2 0.873 0.027 0.766 0.078 0.813 0.044

Extra Tree 93.2 1.8 0.97 0.014 0.761 0.07 0.851 0.044
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Table 5: Performance obtained by each classifier when applied on the original data and on the balanced data 

obtained by oversampling according to a 95% confidence Interval (best values found in bold).

Oversampling Classifier
Accuracy Sensitivity Specificity F-Score

Lower Upper Lower Upper Lower Upper Lower Upper

Original

ID3 82.93 83.04 0.9319 0.933 0.366 0.3732 0.5198 0.5276

CART 82.78 82.92 0.9499 0.9522 0.2718 0.2855 0.3955 0.4141

Bagging 89.54 89.68 0.9762 0.9773 0.5317 0.5379 0.6843 0.6896

Gradient Boosting 89.48 89.6 0.9751 0.976 0.5339 0.5391 0.6863 0.6907

Random Forest 90.87 91 0.9807 0.9816 0.5845 0.5903 0.7293 0.734

SVM 86.46 86.52 0.9891 0.9894 0.3053 0.3081 0.4623 0.4658

MLP 85.41 85.65 0.9647 0.9668 0.3516 0.369 0.4968 0.5177

Extra Tree 91.63 91.75 0.9833 0.9841 0.615 0.6207 0.7539 0.7583

SMOTE

ID3 73.36 73.82 0.7461 0.7525 0.6721 0.6795 0.7029 0.7071

CART 72.44 72.99 0.7348 0.7426 0.6715 0.6796 0.6964 0.7002

Bagging 88.89 89.06 0.9358 0.9374 0.6768 0.6826 0.7829 0.7869

Gradient Boosting 87.12 87.27 0.8944 0.8958 0.7662 0.7705 0.8237 0.8263

Random Forest 90.78 90.91 0.9392 0.9406 0.765 0.7696 0.8416 0.8445

SVM 81.46 81.59 0.8147 0.8161 0.8128 0.8159 0.8123 0.8141

MLP 82.05 82.35 0.8289 0.8328 0.7789 0.7853 0.8013 0.8049

Extra Tree 92.5 92.64 0.9661 0.9671 0.7399 0.7454 0.836 0.8397

ADASYN

ID3 63.64 64.28 0.6033 0.6121 0.7788 0.787 0.6747 0.6794

CART 63.94 64.6 0.609 0.6183 0.7684 0.7777 0.6742 0.6788

Bagging 88.26 88.44 0.9269 0.9286 0.6823 0.6867 0.7834 0.7879

Gradient Boosting 85.7 86.89 0.8744 0.8763 0.7773 0.7825 0.8215 0.8247

Random Forest 90.3 90.45 0.9307 0.9323 0.777 0.7818 0.8456 0.8486

SVM 77.4 77.52 0.7506 0.752 0.8782 0.8807 0.8085 0.8098

MLP 78.28 78.8 0.7747 0.7802 0.8206 0.8268 0.7947 0.7992

Extra Tree 92.43 92.56 0.9614 0.9627 0.7562 0.761 0.845 0.8479

SVM SMOTE

ID3 73.53 73.91 0.7412 0.7469 0.7025 0.7106 0.7162 0.7197

CART 72.95 73.43 0.7306 0.738 0.7165 0.726 0.7176 0.7215

Bagging 89.41 89.56 0.935 0.9365 0.7086 0.7147 0.8038 0.8078

Gradient Boosting 87.36 87.5 0.8939 0.8954 0.7809 0.7856 0.8321 0.8349

Random Forest 91 91.14 0.9384 0.9398 0.7812 0.7864 0.8513 0.8543

SVM 82.07 82.28 0.8253 0.8284 0.7969 0.8016 0.8095 0.8113

MLP 82.88 83.19 0.8419 0.846 0.7657 0.7728 0.8001 0.8038

Extra Tree 92.5 92.62 0.9653 0.9663 0.7425 0.748 0.8375 0.8411
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was increased from 342 to 1533, and then the classification models were trained with 

1533 samples of the extracted features from both healthy and knee abnormal subjects, 

and the testing was performed using the same number of samples of the without over-

sampling case.

Table 2 presents a comparative analysis in terms of MSE, MAE, SNR and PSNR 

values that were obtained using different mother wavelet functions for denoising the 

input signal. The results show that symlet4 led to the lowest MAE and MSE values 

along with the highest SNR and PSNR values. Therefore, symlet4 was employed as the 

mother wavelet function. Table 3 presents the results as to MSE, MAE, SNR and 

PSNR metrics obtained using different wavelet decomposition levels to denoising the 

input signal. The results show that the first level of decomposition led to the lowest 

MAE and MSE values along with the highest SNR and PSNR values. Therefore, the 

decomposition level 1 (D1) was considered.

Table 4 allows the performance comparison of the different classifiers when used in 

combination with different oversampling methods. The results support the hypothesis 

that the oversampling improves all performance metrics. The Extra Tree classifier 

obtained the highest accuracy and F1-score, and was followed by SVM, MLP, random 

forest, gradient boosting, bagging, CART and ID3.

In the case of the original data without oversampling, i.e., the imbalanced data, the 

Extra Tree classifier obtained an accuracy of 91.9% while for the MLP, SVM, Ran-

dom Forest, Gradient Boosting, Bagging, CART and ID3 classifiers, it was of 84.9%, 

86.5%, 90.9%, 89.4% , 89.5%, 82.8%, and 83.2%, respectively, as indicated in Table 4. 

Similarly, F1-score was of 76.5%, 47.1%, 46.7%, 73.3%, 69.4%, 67.5%, 40.5% and 

53.6% for the Extra Tree, MLP, SVM, Random Forest, Gradient Boosting, Bagging, 

CART and ID3 classifiers, respectively. In this case, the accuracy and sensitivity 

values were observed to be good, but the values obtained for the other performance 

metrics, mainly for F1-score and specificity, were not so interesting.

After the use of the different oversampling techniques, it was found out that the 

classification accuracy could not be improved, but the other performance measures, 

mainly F1-Score and sensitivity, had better values than the ones obtained from the 

original data. In the case of oversampling by SMOTE, the accuracies were of 93.1%,
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85.5%, 81.4%, 90.7%, 87.5%, 89.2%, 75.6% and 76.2%, and as to F-score were of 

85.3%, 80.7%, 81.6%, 84.3%, 83.8%, 79.3%, 71.8% and70.0% for the extra tree, 

SVM, MLP, random forest, gradient boosting, bagging, CART and ID3 classifiers, 

respectively, as indicated in Table 4.

(a) ID3 (b) CART (c) Bagging

(d) Gradient Boosting (e) Random Forest (f) Extra Trees

(g) SVM (h) MLP

Figure 7: ROC curve of classifier with and without oversampling techniques

A receiver operating characteristic (ROC) curve is a tool commonly used to 

analyze the performance of classification models, mainly in two class classification 

problems. It is a graphical representation between the true positive rate (sensitivity) 

and false positive rate (1-specificity) [60]. Figure 7 shows the ROC curve obtained for 

the studied classifiers when applied to the original data and oversampled data. For all 

classifiers,
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the ROC curve built as to the oversampled data is far better than the one built from the 

as to the original data.

(a) Original (b) SMOTE

(c) ADASYN (d) SVM SMOTE

Figure 8: Confusion Matrix of the ID3 classifier with and without oversampling.

Figures 8 shows the confusion matrices obtained for the ID3 and Extra Tree clas-

sifiers without data oversampling. The confusion matrix allows conceptualizing the 

performance of a classification algorithm in a tabular form. It contains information 

about the true and predicted labels evaluated by a model. In Figure 8(a), it can be seen 

that 62.1% of the samples of normal subjects were wrongly predicted as of abnormal 

subjects and 93.4% of the samples of abnormal subjects were correctly predicted as of 

abnormal subjects. Figures 8 (b-d) show the confusion matrix of ID3 classifier 

obtained with different oversampling methods. From these confusion matrices, it is 

concluded that the used classification models were biased towards the majority class 

(abnormal subjects) with the original dataset but when minority class data is increased 

by using oversampling techniques then the classification models were not found as 

biased on a
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single class.

Data distribution can be analyzed with the help of box plots. Figure 9 shows the 

box plot distributions for f-score with oversampling techniques of all studied classifiers 

according to the 10-fold cross-validation technique. For all the classifiers, the f-score 

obtained with oversampling was found to be far better than the one obtained without 

oversampling.

(a) ID3 (b) CART (c) Bagging

(d) Gradient Boosting (e) Random Forest (f) Extra Trees

(g) SVM (h) MLP

Figure 9: Box plot for each classifier with applied oversampling techniques according to 10-fold cross vali-

dation.

Table 5 shows the performance metrics obtained for each studied classifier accord-
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ing to a 95% confidence interval for 100 randomized tests. From the presented results, 

it may be observed that the range of values for all the metrics obtained for the dif-

ferent classifiers are narrow, for without and with oversampling. This allows for the 

conclusion that their respective distributions are not heterogeneous.

Furthermore, no significant difference was found between the performance metrics 

of the different oversampling techniques that have been implemented. However, if the 

results are compared in terms of with and without oversampling, then one can conclude 

that the oversampling can lead to promising knee abnormality detection even from 

imbalanced sEMG data, independent of the classification model that is used.

6. Conclusion

Imbalanced data is a major problem in the classification of medical data, which 

may arise either due to the high differences in the number of healthy and unhealthy 

subjects or due to the length of the collected data be different for normal and abnor-mal 

subjects. In this work, the input raw sEMG signal was denoised by the Wavelet 

Denoising technique. After removing the noise, the sEMG signal was segmented and 

eleven-time domain features were extracted. After obtaining the features, the number 

of minority class samples was increased by using oversampling techniques, and then 

the performance of different classifiers on the imbalanced data and the oversampled, 

i.e., balanced, data was assessed. The obtained results suggest that oversampling tech-

niques improve the performance of the classifiers in cases of imbalanced data. For that, 

four performance metrics (Accuracy, Sensitivity, Selectivity, and F1-Score) were used 

to assess the classification accuracy of the sEMG data acquired from abnormal knee 

and healthy subjects during walking in terms of knee abnormality detection during 

walking.

In this study, one offline sEMG dataset was used to test the proposed approach. In 

the future, the approach can be validated using a large dataset acquired in real-time in a 

clinical scenario, which can validate its clinical use. Further, the classification can be 

performed without handcrafted feature extraction, and one may also try to reduce the 

extracted features space by using feature reduction techniques, which may decrease the
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computational time and improve the classification accuracy.
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