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A B S T R A C T

Healthy gait is a complex process and requires a balance between various neuro-
physiological systems in the body and is considered an essential indicator of a sub-
ject’s physical and cognitive health status. Consequently, applications in bioinformat-
ics and healthcare would significantly profit from the information of a prolonged
period or constant monitoring of subjects’ gait, habits, and behavior in their natural
living conditions and everyday daily activities using smart devices.

Comparing inertial measurement and fixed sensors systems, the first ones provide
excellent capabilities for gait analysis applications and offer several advantages such
as small size, low price, mobility, and are easily integrated into wearable systems.
The second ones are considered the gold standard, but they are costly and unsuitable
for outdoor measurements.

This thesis focuses on improving the gait rehabilitation time and quality after an
operation using inertial measurement units by providing a novel metric to objectively
assess the gait rehabilitation progress in real-life settings and reducing the number
of applied sensors for practical, real-life scenarios. Therefore, the experimental mea-
surements for such analysis have been performed in a highly controlled setting to
guarantee the data quality. This thesis presents a new gait metric that quantifies and
tracks the rehabilitation progress using kinematic gait data from activities carried out
in indoor and outdoor environments. The thesis investigates how signal processing
and machine learning can be formulated and utilized to develop robust methods to
tackle real-life challenges. It is shown that the proposed approach can be personal-
ized to track the gait rehabilitation progress. Another issue addressed in this thesis
is the successful machine learning methods applied to gait analysis due to the high
amount of data generated by the wearable sensor systems. The thesis introduces the
novel concept of "digital twins", which reduces the applied wearable sensors in a
system or case of sensor failure.

The evaluation of the proposed metric with healthy participants and patients using
statistical signal processing and machine learning methods showed that incorporat-
ing the extracted signal features is robust in real-life scenarios, especially for the sce-
nario involving rehabilitation gait exercises in indoor settings. The methodology was
also evaluated in a clinical study and delivered a good performance in monitoring
the rehabilitation progress of different patients. This thesis presents a prototype mo-
bile application for objective assessment of the gait rehabilitation progress in real-life
settings.
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Z U S A M M E N FA S S U N G

Ein gesunder Gang ist ein komplexer Prozess und erfordert ein Gleichgewicht zwi-
schen verschiedenen neurophysiologischen Systemen im Körper und gilt als wesentli-
cher Indikator für den physischen und kognitiven Gesundheitszustand einer Person.
Folglich würden Anwendungen im Bereich der Bioinformatik und des Gesundheits-
wesens erheblich von den Informationen profitieren, die sich aus einer längeren oder
ständigen Überwachung des Gangs, der Gewohnheiten und des Verhaltens von Perso-
nen unter ihren natürlichen Lebensbedingungen und bei ihren täglichen Aktivitäten
mit Hilfe intelligenter Geräte ergeben.

Vergleicht man Trägheitsmess- und stationäre Sensorsysteme, so bieten erstere her-
vorragende Möglichkeiten für Ganganalyseanwendungen und bieten mehrere Vortei-
le wie geringe Größe, niedriger Preis, Mobilität und sind leicht in tragbare Systeme
zu integrieren. Die zweiten gelten als der Goldstandard, sind aber teuer und für Mes-
sungen im Freien ungeeignet.

Diese Arbeit konzentriert sich auf die Verbesserung der Zeit und Qualität der
Gangrehabilitation nach einer Operation unter Verwendung von Inertialmessgerä-
ten, indem sie eine neuartige Metrik zur objektiven Bewertung des Fortschritts der
Gangrehabilitation in realen Umgebungen liefert und die Anzahl der verwendeten
Sensoren für praktische, reale Szenarien reduziert. Daher wurden die experimen-
tellen Messungen für eine solche Analyse in einer stark kontrollierten Umgebung
durchgeführt, um die Datenqualität zu gewährleisten. In dieser Arbeit wird eine
neue Gangmetrik vorgestellt, die den Rehabilitationsfortschritt anhand kinematischer
Gangdaten von Aktivitäten in Innen- und Außenbereichen quantifiziert und verfolgt.
In dieser Arbeit wird untersucht, wie Signalverarbeitung und maschinelles Lernen
formuliert und genutzt werden können, um robuste Methoden zur Bewältigung von
Herausforderungen im realen Leben zu entwickeln. Es wird gezeigt, dass der vorge-
schlagene Ansatz personalisiert werden kann, um den Fortschritt der Gangrehabilita-
tion zu verfolgen. Ein weiteres Thema dieser Arbeit ist die erfolgreiche Anwendung
von Methoden des maschinellen Lernens auf die Ganganalyse aufgrund der großen
Datenmenge, die von den tragbaren Sensorsystemen erzeugt wird. In dieser Arbeit
wird das neuartige Konzept des “digitalen Zwillings” vorgestellt, das die Anzahl der
verwendeten Wearable-Sensoren in einem System oder im Falle eines Sensorausfalls
reduziert.

Die Evaluierung der vorgeschlagenen Metrik mit gesunden Teilnehmern und Pati-
enten unter Verwendung statistischer Signalverarbeitungs- und maschineller Lernme-
thoden hat gezeigt, dass die Einbeziehung der extrahierten Signalmerkmale in realen
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Szenarien robust ist, insbesondere für das Szenario mit Rehabilitations-Gehübungen
in Innenräumen. Die Methodik wurde auch in einer klinischen Studie evaluiert und
lieferte eine gute Leistung bei der Überwachung des Rehabilitationsfortschritts ver-
schiedener Patienten. In dieser Arbeit wird ein Prototyp einer mobilen Anwendung
zur objektiven Bewertung des Rehabilitationsfortschritts in realen Umgebungen vor-
gestellt.

Schlagwörter: Gangparameterschätzung, nichtlineare Modellierung, IMU, Tracking,
Rehabilitation, Ganganalyse, Neuronales Netzwerk, Maschinelles Lernen, Deep Ler-
nen.
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1
I N T R O D U C T I O N

Due to diseases, signs of aging, accidents, and surgical interventions, the gait charac-
teristics of normal humans can change. Also, the mobility of individual limbs or the
coordination of movement sequences can be restricted. In the long term, this results
in a variety of severe consequential damages to the hip and spine and, accordingly, a
significant reduction in quality of life. Intensive and long-term physiotherapy is nec-
essary to restore the physiological mobility of patients. Concurrent therapy is often
time-consuming and cost-intensive and depends on the findings. In exceptional cases,
methods of objective gait analysis are used to supplement subjective biomechanical
findings, but their application is complex.

For healthy persons, walking is part of daily life. To the question: How do you
walk correctly? There is no answer at first. Walking is controlled by the subconscious
and seems to work by itself. Walking is a highly complex task and has to be learned
during childhood over a relatively long period.

The human gait results from a complex interaction between the central and pe-
ripheral nervous systems as well as the supporting and locomotor systems. The
gait analysis proves to be a more sensitive indicator for disturbances in this complex
interaction. Therefore, the gait evaluation is an excellent diagnostic tool for such
disorders.

After the failure of parts of the locomotor system due to illness or accident, the
patient has to relearn how to walk. He adapts to the changed conditions and changes
its course. For example, if the patient’s walking is painful due to a leg injury, this
will develop a gait modification. The aching leg is relieved and tries to develop other
body parts by increasing activity, to compensate for the failure. It is not uncommon,
especially during more extended periods of injury, that the modified gait is main-
tained after healing. This faulty pattern sequence can cause permanent damage after
a more extended period of time, e.g., to the spinal column lead. This can be avoided
by proper rehabilitation treatment.

Mobile and customizable methods of objective gait analysis and gait training are
only available to a minimal extent. Due to the increasing shortage of time at work and
in daily life, the use of a mobile objective gait analysis system has great potential as
a rehabilitation or therapy aid as well as a means of evaluating the course of rehabili-
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4 introduction

tation. With such a procedure, a more effective, time- and cost-efficient rehabilitation
process can be achieved, which can also be supplemented by independent training
appointments at the patient’s own home. With the novel mobile instruction and
feedback method investigated in this thesis, the rehabilitation period is significantly
shortened, especially in the case of the knee and hip prosthetics, and the follow-up
costs of the rehabilitation are significantly reduced.

After an illness or accident, sometimes permanent damage to the musculoskeletal
system occurs, so walking is not possible or only possible to a minimal extent. The
use of rehabilitation technology enables compensation for this damage. The loss of,
e.g., a leg can be partially compensated by a leg prosthesis as an individual adapta-
tion of the limb for the patient. The quality of the aid only becomes apparent during
use when walking.

1.1 motivation

The previous Section illustrates that gait analysis is essential for orthopedics, surgery,
neurology, occupational, accident, and sports medicine, and many related fields. The
gait analysis is suitable for use as a diagnostic tool and monitoring therapy. Especially,
it can be used as a means of quality control of rehabilitation measures and for the
evaluation of rehabilitation methodology.

The most frequently used method for assessing gait is the visual subjective gait
analysis, whereby the evaluation is based on the observer’s (physician, master or-
thopedic surgeon, etc.) experience and Know-How of gait. However, subjective gait
analysis has its limits. On the one hand, it provides excellent qualitative statements.
On the other hand, it depends strongly on the observer’s wealth of experience. Impor-
tant aspects relevant to gait analysis are entirely removed from the visual assessment,
e.g., the degree of strain on the legs during walking. The instrumental gait analy-
sis enables the limits mentioned above to be overcome. In principle, the objective
measurement of gait parameters is independent of the observer and serves as an
important addition to the subjective gait analysis. Although, as a result of techni-
cal progress, the possibilities of gait analysis have been enormously advanced in the
past years, the current application in practice is still unsatisfactory. Most measuring
stations for gait analysis consider either small training paths, or their use is too time-
consuming for practical and routine operation. Last but not least, the high acquisition
costs are one of the reasons for the low penetration of the measuring systems.

With the fast-growing healthcare and biomedical data, the field of biomedical in-
formatics is emerging and is an excellent scenario for the application of artificial intel-
ligence and machine learning for its exceptional chances, and scenarios [1]. The data
contain different types and ranges of information going from individuals to groups
of people and have connected diverse organisms in healthcare systems. These data
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are becoming an enabling resource to use for scientific knowledge discovery and clin-
ical decision-making. Simultaneously, the vast amount and complex relationships
within the information present significant obstacles to their application into effective
practical clinical actions. In particular, biomedical and healthcare information is fre-
quently characterized by vast amounts of data, high dimensionality, disproportion
across classes, diverse sources, distortion, and incompleteness, which demand the
application of existing machine learning and optimization methods. Therefore, there
is a huge demand for novel algorithms, including machine learning, data mining, and
optimization, that specifically address the unique challenges associated with biomed-
ical and healthcare data allowing better interpretation and exploiting the data.

This thesis aims to help overcome the technical limitations of previous research
work by developing a novel rehabilitation tracking framework using advanced fea-
ture extraction techniques and machine learning methods. By providing additional
information obtained from gait monitoring results, this framework can be used for
both healthy people and patients to understand, monitor the gait performances, and
classify and evaluate the progress during the rehabilitation process.

1.2 open issues

As the background has shown, many open issues remain to be investigated. In par-
ticular, the most relevant issues regard the analysis of the collected data and the
selection of the most appropriate methods for classification, quantification, and mon-
itoring the rehabilitation. The issues investigated in this work include the following:

• Quantitative statement on healthy and patient gait.

• Rehabilitation monitoring.

• Reduce the number of sensors and increase accuracy.

• How to develop and optimize a classification system for rehabilitation?

• How to measure the success of the exercises?

• How to grade the quality of the rehabilitation performance?

• Address the problem of the amount of data generated by the systems.

Additionally, this work provides open issues regarding the feedback:

• Which information from the gait kinematic signals needs to be conveyed to the
user?

• Is acoustic feedback suited for walking rehabilitation?

• Is the feedback clear for the patient?
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• Provided with acoustic feedback, does the patient reduce the rehabilitation du-
ration?

1.3 contributions

In this work, while tackling the objectives mentioned above, the following contribu-
tions were achieved:

• Evaluation of the novel monitoring method: The proposed method is applied
to quantify and evaluate the efficacy of the rehabilitation progress.

• Integration of the algorithm in small and unnoticeable tracking systems to sup-
ply valuable information. This will help to accurately determine the rehabilita-
tion training for individuals with variable responses to the exercises.

• Quantification of the rehabilitation performance

• A novel "digital twins" modeling method for reducing the applied sensors in
the system. The practical use of the sensor system for patients is increased due
to the fewer sensors to be attached to the patient’s lower limbs.

• A new deep convolutional neural network (DCNN) for monitoring the rehabil-
itation progress using the kinematic gait data from only one inertial measure-
ment unit (IMU) placed at the foot.

• The novel algorithm can be integrated with patients’ continuous monitoring
systems. This will help evaluate the progress of individuals going through
physical rehabilitation at home.

• Detection of subtle changes in an individual’s range of motion. The tracking
algorithm can provide valuable information about the performance of patients
working and recovery path.

• A new long short-term memory (LSTM) network for the body lower limbs joints
modeling using the kinematic gait data from only one IMU.

• Analysis, comparison, and development of different gait feature methods and
models based on three-dimensional kinematic gait data captured from the lower
body limbs with different sensors for gait pattern classification in terms of ac-
curacy and robustness. The new models use the nonlinear relationships of the
kinematic signals to increase the accurate estimation of the model

• A novel mobile prototype application for supporting digital healthcare and ther-
apy. The prototype uses the state-of-the-art IMUs to obtain the kinematic data
from the subjects and analyze the signals in real-time.
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• Improvement of the time and progress in the rehabilitation process by applying
signal processing and machine learning.

1.4 thesis outline

The structure of this thesis is organized as follows:

• In Chapter 2 basic terminologies required to describe the gait mechanism and
an overview of the gait signals and measurement systems are provided. The
different gait parameters and gait measurement systems are explained. In ad-
dition, the advantages and disadvantages of each method are also discussed.

• In Chapter 3, the fundamental components of the prototype Android appli-
cation are briefly introduced, and gait data measurements campaigns are de-
scribed, respectively. The application has the fundamental function of capturing
and processing kinematic data. Further, the gait data measurements of healthy
participants and patients will be used to perform different analyses.

• In Chapter 4, the preprocessing steps applied to the kinematic data are pre-
sented. Here, the main focus is made on preparing the kinematic signals for
the feature extraction and the estimation of the lower body joint angles using
sensor fusion techniques.

• In Chapter 5, a framework for the object gait assessment is provided. Here, the
time, frequency, and time-frequency domain information is utilized to evaluate
the performance and monitor the rehabilitation progress. Different features are
extracted from the three-dimensional kinematic signals from seven different
IMUs placed at the body lower limbs of healthy participants and patients. The
novel grading metric and the acoustic feedback are investigated and analyzed
with a clinical study.

• In Chapter 6, the concept “digital twin” is proposed for sensor reduction. The
nonlinear modeling approach is utilized in estimating the lower body joint an-
gles from one IMU. The proposed memory polynomial model (MPM) and deep
neural networks (DNNs) are investigated and evaluated using kinematic data
from healthy participants and patients.

• Chapter 7 provides a summary of the thesis outcomes and an outlook on some
research issues for future work.





2
H U M A N G A I T

This chapter introduces the basic terminologies required to describe the gait mecha-
nism and provides an overview of the gait signals and measurement systems.

Figure 2.1: Illustration of the three principal anatomical planes of the human body.

2.1 the gait process

The intentional and free movement pattern of the lower extremities during the loco-
motion process is defined as human gait. This process is two-footed and includes a
two-phased forward movement, and is the outcome of a complex proceeding includ-
ing muscles, peripheral nerves, and the brain, among others [2]. The field of gait
analysis emerges from various science-based areas such as biomechanics, anatomy,
and physiology. The systematic analysis of the walking process is called gait analy-
sis [3]. Evaluating gait characteristics and patterns to provide better diagnosis and
rehabilitation routines is one of the most relevant purposes of gait analysis. Prior to
analyzing the gait in detail, it is necessary to introduce the basic terminologies of the
human body used to describe the gait. As illustrated in Figure 2.1, three planes are
within the human body:

• The sagittal plane splits the body into two symmetrical right and left halves.

• The frontal plane distinguishes the rear and frontal parts of the body.

9
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Figure 2.2: Gait events and gait phases in one gait cycle. The two phases of stance and swing
define a gait cycle. The IC initiates the stance phase, and the TOE terminates it.
60% of a gait cycle is contained in the stance phase. The swing phase starts when
the toe has no contact with the ground and terminates right before the next IC.
The other 40% of the gait cycle is the swing phase.

• The transverse plane divides the upper body and lower body.

The repetition of a succession of forwarding movement patterns while simultaneously
sustaining the body stability is called walking [4]. During the forward movement, the
task of one extremity is to hold the body weight, and the other extremity serves to
advance itself to a new forward position. There is a weight transfer when booth
extremities contact the ground. The gait cycle is the most basic concept in clinical
gait analysis. As depicted in Figure 2.2, one gait cycle is delimited between two
sequential initial contacts (ICs) from one foot. An IC event is defined at the point
where the foot makes contact with the ground during walking [4]. The terms IC and
heel contact are often used as synonyms in the literature due to the initial contact
striking the ground with the heel in normal gait. A gait cycle contains in its most
elemental description two phases: stance and swing phase. The contact between the
foot and the ground occurs during the stance phase. The swing phase starts as the
foot has no contact with the ground. The stance phase duration is about 60% of the
total gait cycle, and the swing phase is about 40% [4].

The knowledge of the lower body segments implicated in the gait process is funda-
mental to understanding the gait cycle. Four principal segments actuate during the
walking process. These are the ankle, the foot, the knee, and the hip. Figure 2.3 shows
the flexion and extension direction of the lower body joint angles in the sagittal plane.
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Figure 2.3: Flexion and extension direction of the lower body joint angles in the sagittal plane.

The point where one segment is in contact with another is called a joint. The proper
action of the leg muscles is essential for the correctness of the segment movements.
The function of these segments and the connection with the muscles through the gait
process is as follows [5]:

• The ankle is the coupling between the foot and the shank. During the stance
phase, the plantar-flexors are active, and the dorsi-flexors are active during the
swing phase.

• Three sections form the foot: the metatarsophalangeal, the midtarsal, and the
subtalar. These sections and their muscles have the principal function of shock
absorption, stability, and forward movement control. These tasks occur sequen-
tially as floor contact proceeds from IC to total forefoot support.

• The knee is the union of the Tibia and Femur, which constitute the significant
segments of the lower extremities. In the stance phase, the extremity stability
is determined by the knee. In the swing phase, the principal role of the knee is
the free forward movement of the extremity.

• The hip is the junction between the upper body and the lower extremities. Con-
sequently, it is designed to provide three degrees of movement with specific
muscle control for each direction. During the stance phase, the role of the hip
muscles is to stabilize the upper body parts. In the swing phase, the hip muscles
perform the forward movement of the body.

2.2 gait signals

The evaluation of four different types of signals is expected to determine gait per-
formance: temporal-spatial, electrical, kinetic, and kinematic signals. Those signals
provide a natural intuition of the subject’s walking and have been widely used for
gait assessment. This work focuses on the analysis and process of temporal-spatial
and kinematic signals.
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2.2.1 Temporal-spatial

Temporal-spatial measurements examine the global aspects of gait measured in time
and length. They are typically calculated based on time series (TS) signals (gyroscope,
accelerometer, etc.) which vary during walking. These kinds of signals are typically
considered in gait to be a semi-periodic behavior. The gait cycles possess an elevated
similitude during steady walking, and the collected gait data is generally processed
and analyzed by applying the information of several gait cycles. Standard temporal-
spatial parameters are:

• Stride time is the total time to complete a gait cycle.

• Step distance is the length between the two heels contacts from the same foot.

• Cadence is the ratio between steps and time.

• Stride distance is the length traveled between two successive foot strikes of the
same foot.

• Speed is the distance covered in a given time; speed is measured in meters per
second [6].

2.2.2 Electrical

Electrical signals primarily determine the muscle activation between two points uti-
lizing electrodes to measure the electric potential differences [5]. Typically, surface
skin electrodes are applied to measure the electrical activities of muscles. For invasive
cases, intramuscular wire electrodes are used for the measurements. It is possible to
use this kind of signal to recognize the gait period by analyzing the muscle activation
during the walking phases.

2.2.3 Kinetic

Kinetic measures refer to the joint torques or joint moments, which are the efforts
to change the velocity of the segments [5]. The summation of different components
at the joint such as the external, gravitational, inter-segment, and angular torques,
result in the total torque [2, 3].

2.2.4 Kinematic

Kinematics is the study of body motion without considering the force that caused it
[7]. The kinematic analysis components are the characterization and determination
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Figure 2.4: Typical hip, knee and ankle joint angle trajectories in a complete normal gait cycle.

of the body movement patterns regarding how fast the change or how much distance
travel. The kinematic measures of the body’s lower extremities mainly refer to the
hip, knee, and ankle joints and accelerations and angular velocity. Knowledge of the
lower extremity angles implicated in the gait process is necessary to apply the signal
processing methods in gait analysis correctly. The hip angle is the junction between
the thigh and the trunk. During the flexion movement, the hip angle is positive and
negative in extension movement. The junction between the foot and the Tibia defines
the ankle angle. The range of motion varies for the different joints. For the ankle, the
range for normal gait is around −15◦ to +15◦. In typical cases, the knee possesses
a broader range of motion from 0◦ to +70◦ in typical cases. The average hip range
of motion reaches from −30◦ to +30◦. A detailed description of the complete angle
trajectories and phases can be found in [4]. The hip, knee, and ankle joint angle
trajectories for a normal gait cycle are illustrated in Figure 2.4.

2.3 measurement systems

The assessment of the movement patterns of the human body during walking is of-
ten performed utilizing multiple sensors and recorded in a supervised environment.
These sensors include electromyography (EMG), force pressure sensors, electrome-
chanical switches, camera-based systems, micro-electro-mechanical system (MEMS)
and IMUs. Each of these systems is introduced in this section.

2.3.1 Electromyography

EMG is an electrical manifestation of the contracting muscle, which can be either
a voluntary or involuntary muscle contraction. The EMG signal is obtained from
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(a) Shimmer EMG sensor (b) EMG signal

Figure 2.5: Example of muscle activity measurement using electrodes that measures the po-
tential differences between two points.

Figure 2.6: Example of a force plate and pressure insoles from AMTI Force and Motion [9].

the subject either by non-invasive measuring with surface electrodes (see Figure 2.5),
or by invasive with wire or needle electrodes. For further analysis, the raw electri-
cal signals have to be preprocessed. The preprocessing steps usually are amplifica-
tion and conditioning, resulting in a better form and range which is more suitable
for research and analytical purposes. The electromyography signals’ non-stationary
characteristics and minimal amplitude often cause difficulties when measuring these
complex type analog signals. The practical use of surface electromyography (SEMG)
for non-invasive measurements of pathophysiological and locomotor disorders has
been demonstrated [8].

2.3.2 Force pressure sensors and switches

Footswitches are used to determine the timing of gait phase events precisely. They
are located normally under the toe and the heel in order to detect the foot’s contact
with the ground. The principal application of pressure sensors is the distribution
assessment of the foot pressure during walking [5]. The gait stability during walk-
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Figure 2.7: Illustration of a OptiTrack camera system [10].

ing can be estimated by applying the information collected from these sensors. An
example of the above mentioned sensors is depicted in Figure 2.6.

2.3.3 Camera systems

Camera-based systems offer a means for recording and reviewing the entire body’s
motion. This kind of system (see Figure 2.7) usually applies a high number of cam-
eras in a limited indoor environment and detects the position of reflective markers
fixed on predetermined positions on the body or lower extremities [10]. Camera sys-
tems are usually quite precise but are comparably more expensive and require more
extensive space and longer setup time. The participant typically wears dark clothes
with reflective markers attached to the Pelvis, thigh, shank, and foot for gait applica-
tions. The kinematic data related to the segments can be estimated and tracked using
the markers. The images acquired during the measurement are used to look for the
joints based on the locations of the reflective markers and later processed to estimate
the angle. These systems are considered to be state-of-the-art. However, they are
costly.

2.3.4 Micro-electro-mechanical system

Despite the fact that the detailed and accurate information provided by camera and
pressure sensor systems, their use in outdoor environments, continuous daily activity
monitoring, and long-time measurement is not appropriate [11]. For such objectives,
inertial sensors developed using MEMS technology have excellent characteristics and
a variety of factors such as cost, practical use, comfort, weight, mobility, and low
power consumption. Thus, they are not limited to indoor spaces as seen in cameras
(e.g., illumination effects) or pressure sensors. The MEMS features above mentioned
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Figure 2.8: Illustration of a 3D IMU.

are used in the inertial/magnetic sensor units. By applying sensor fusion techniques,
it is possible to estimate the orientation of each segment relative to an earth-fixed ref-
erence frame independently in real-time by placing these sensor modules in each of
the significant extremities of the human body. It is also possible to generate a human
body model from the information transferred independently from the extremities
without knowing their relative orientation. There are several studies in the area of
gait analysis and tracking based on MEMS [12–16]. Nevertheless, the major problem
related to MEMS-based inertial sensors is the noise, which causes errors in calibration,
bias, thermo-mechanical distortion, and other non-desired effects, etc. [17].

2.3.4.1 Inertial measurement unit

IMUs generally consist of three different MEMS sensors: accelerometers, gyroscopes
and magnetometers. Depending on the application, the sensors have one, two, or
three axes.

2.3.4.2 Accelerometer

The forces applied to an object are directly proportional to the object’s acceleration.
The acceleration is defined as the variation of velocity with respect to time [18]. It is
measured in units of m/s2. An accelerometer is a device capable of measuring all
accelerations applied to it. The two principal components of acceleration are inertial
and gravitational acceleration. The resulting acceleration, aT , measured by the device
is [18]:

aT = aI +g , (2.1)

where aI is the inertial component and g is the gravitational component [18]. Iner-
tial acceleration manifests itself when forces other than gravity are applied. There
are inertial forces actuating on a body, except if the body is not moving or possesses
constant speed. When an accelerometer is completely stationary (i.e., there is no in-
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Figure 2.9: Example of a three-dimensional acceleration signal.

Figure 2.10: Example of a three-dimensional gyroscope signal.

ertial acceleration acting on the device), it measures a constant acceleration equal in
magnitude to the acceleration due to gravity (9.81 m/s2 approx). This is often re-
ferred to in units labeled "g", where 1g≈ 9.81 m/s2. A 3D accelerometer is formed of
three mutually orthogonal mono-axial accelerometers. Each axis measures a certain
proportion of both gravitational acceleration and inertial acceleration [19].

2.3.4.3 Gyroscope

The angular change of one object concerning the time around an axis is defined as
angular velocity [18]. A device capable of measuring angular velocity is called a
gyroscope. The angular velocity measured by the gyroscope is given by [18]:

ω=wcos(α) , (2.2)
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Figure 2.11: Example of a three-dimensional magnetometer signal.

where ω is the resulting angular velocity vector along the measuring axis, α is the
angle between ω and the angular velocity vector w [18]. If ω is aligned with w, the
measured angular velocity is equal to w. On the other hand, if ω is perpendicular
to w, the angular velocity is zero. A 3D gyroscope is formed of three mutually
orthogonal mono-axial gyroscopes [19].

2.3.4.4 Magnetometer

Magnetic materials and electric circulation create a local magnetic field affecting the
objects and devices around them [18]. The Earth generates a constant magnetic field
that flows from the South pole to the North pole, which affects all magnetic devices.
Large metal objects and electromagnetic sources can interfere with the Earth’s local
magnetic field, creating heading errors. The measurement of a device’s heading or
the strength of the surrounding magnetic field is performed by a magnetometer. The
magnetic field measured by the magnetometer, whose measurement axis m makes
an angle, β, with the magnetic field vector b is given by

m= bcos(β) , (2.3)

where m is the magnitude of the magnetic field vector component along the measur-
ing axis of the magnetometer, β is the angle between the magnetometer measuring
axis and the magnetic field vector, and b is the magnitude of the magnetic field acting
on the sensor [18]. If m is aligned parallel with b, the measured magnetic field com-
ponent is equal to b. On the other hand, if m is perpendicular to b, the measurement
of the magnetic field is zero. 3D Magnetometers have three orthogonal mono-axis
[19].
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2.4 wearable imu system

Figure 2.12: Illustration of the Wearable Sensor System [19].

The wearable IMU system of Shimmer shown in Figure 2.12 is a small wireless sen-
sor platform well suited for wearable applications [19]. Emerging research fields in
motion capture, continuous monitoring, and data acquisition for long periods are pos-
sible due to the characteristics of the integrated sensors, such as low-power consump-
tion, and low-energy communication standards, among others. Figure 2.13 presents
a block diagram of the Shimmer mainboard with core components and interconnec-
tions between integrated device components illustrated. The central element of the
platform is the low-power microprocessor, which controls the operation of the device.
The CPU configures and controls various integrated peripherals through I/O pins,
some of which are available on the internal/external-expansion connectors.

Figure 2.13: Shimmer component diagram [18].

Table 2.1: Sensor configuration for kinematic data acquisition

Sensor type Range Resolution

3DoF Accelerometer ±20 g (m/s2) 16 bit
3DoF Gyroscope ±2000 dps (◦/s) 16 bit
3DoF Magnetometer ±1.3 Gs (100 µT) 16 bit
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The CPU has an integrated 16 channels 16 bits analogue-to-digital converter (ADC)
to capture sensor kinematic data [18]. Table 2.1 provides information on the range
and resolution of the IMUs used in this work. The external communication with
other devices occurs through the docking station and the expansion slot. A built-in
microSD slot offers additional storage capacity. The devices are equipped with a
low-energy Bluetooth chip to transfer the kinematic data wirelessly.

2.5 concluding remarks

This chapter explicitly introduces and explains the basic concepts of human gait. This
knowledge is essential for applying signal processing methods and machine learning
architectures correctly. It is then followed by introducing several measurement sys-
tems for gait analysis and the different types of signals typically used for gait analy-
sis. In the following chapters, the signal processing methods and machine learning
approaches applied in this work for gait analysis and rehabilitation monitoring are
detailed, as well as validation work and experimental and practical outcomes from
real scenarios.
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D ATA A C Q U I S I T I O N

This chapter introduces the Android framework, the developed application for receiv-
ing and processing the kinematic gait data from the IMUs and the data acquisition
measurements performed in different scenarios with healthy and patient participants
in the rehabilitation clinic. The gathered data was employed to develop robust meth-
ods for gait rehabilitation monitoring and gait analysis. The goal is to develop a
reliable, transparent, and validated solution for gait analysis and rehabilitation mon-
itoring that is easy to use in real scenarios.

3.1 android application

This section provides an overview of the Android operating system and the basic
understanding of building an application. Android is a multifunctional and open
software and offers many tools to create an application. Some valuable characteristics
of Android are: open code operating system (OS), open development platform, a vast
amount of devices using the same OS and a big programmer community [20].

Figure 3.1: Illustration of Android’s structure

21
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3.1.1 Android structure

The different layers in which Android is built are shown in Figure 3.1. The most
important layers are given below [21]:

• The Linux kernel contains the low-level drivers for all the Android hardware
components. This layer also has security services, processor management, and
a protocol stack.

• The libraries include all code that contains the main functionalities of the An-
droid OS. Some main libraries are: SQLite, Webkit, FreeType, secure socket
layer (SSL), etc.

• The Runtime contains the core libraries that allow developers to create their
own applications using Java. The Dalvik Virtual Machine is also in this layer
and allows running each application in a separate process using a virtual ma-
chine instance. This virtual machine was specially designed for Android, and
it is optimized to work on mobile devices with battery, low memory, and pro-
cessor capacity, and it can execute multiple machine instances.

• The application framework includes the different application managers, e.g.,
activity manager, notification manager, Resources manager [22].

• The applications are on the top of the stack, and they can be the native and also
the non-native applications.

3.1.2 Application components

The first step to understanding how to program a signal processing application is
to know its components and how they communicate themselves to obtain the goal
functionality. Android has a set of basic components [20] as follows:

• Activities extend the Activity class, use the screen, and have a visual represen-
tation.

• Views are components of the user interface (UI). Views are defined by design
layouts that are eXtensible Markup language (XML) files where the visual con-
tent is defined.

• Services are processed in the background, without the user’s control and UI.
There are local services, which are used from our device, and there are also
remote services, which can be used from remote devices. Services update data
and activities, send notifications and create intents.

For a list with all components refer to [22].
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3.1.3 Activities

An Activity is an application component that provides a screen with which users can
interact in order to do something, such as receive the kinematic data from the IMUs,
perform preprocessing, extract features from the signals [20]. Each activity has a
window to draw its UI. An application usually consists of several activities that work
together to perform the desired action [20]. In order to perform different actions,
activities can start other activities.

3.1.4 Priority

Android is a system that maximizes users’ attention. The system manages the re-
sources looking for the best user experience [20]. Android will stop other applications
from prioritizing the current application if more resources are necessary. Active ap-
plications run and use memory until the user stops them, or the system needs more
resources for other applications. At this point, any application could be stopped by
the system. Low-priority applications are the first to be stopped. Priority is an es-
sential factor because it is the property that Android analyzes when more resources
are needed. Priority analysis of an application is not a straightforward process con-
sidering that it needs to know the dependencies of the application [22]. Therefore,
an application’s finalization order is determined by its own priority level. So, our
application must be well structured with an adequate priority due to its realized
function, and if it is not like this, there is a risk of a forced stop of the application.
To understand this mechanism is helpful to know the application’s states described
in [20]. Real-time applications for gait analysis have higher priorities than other non-
real-time applications.

3.1.5 Life cycle

The Android operating system controls all resources to provide a good response time
for the application and to offer a good experience for the user. Android decides to
stop or not a process. To make this decision, Android calculates the priority level
of the application using the activity states. For this reason, it is helpful to know
the states of the activities and their life cycle [20]. Therefore, an application and
its activities have to coexist inside Android’s system, where other applications and
services are running. In this scenario, the knowledge about the application’s life
cycle and every state and every change that occurred during the process while the
user uses the device are very important.
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Figure 3.2: Illustration of activity life cycle

3.1.6 Services

An application’s subprocess must often run in the background without interaction
with the user. In these cases, it is common to use a service [22]. A service can
perform extended operations, have an indefinite time to work, be called at the start of
the application, and be switched off or controlled by activity. In general, applications
are connected with other applications and interact with the user through the user
interface [20]. If it is necessary to perform a long-time action without a UI, it is
helpful to use a service. For example, a background function preprocesses the data
while the signal processing application is running. In this case, the preprocessing
step can be a service.

3.1.6.1 Service life cycle

Services are designed to stay active more time than an application and to perform
computing actions (processor or memory). Services are initialized, stopped, and
controlled by other components, for instance: activities, other services, broadcast
receivers, etc. [22]. A service should be created if the application offers functionality
without the user’s supervision or is a large task. Like an activity, a service has life
cycle callback methods that can be implemented to monitor changes in the service’s
state and perform work at the appropriate times. From the point of view priority
of the resources, an active service has higher priority than other inactive or invisible
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Figure 3.3: Illustration of separate thread and handler

activities. For this reason, it is less probable that Android finishes a service when a
low resource state occurs. The easiest way to create a service is to call startService().
These services are in the background and are active for a long period. Services created
with startService() can be stopped with stopService() or stopSelf() [20].

3.1.7 Threads

For the execution of an application, the system starts the main thread or also called
UI thread [22, 23]. The main thread controls all the important events within the ap-
plication, such as widgets, drawing, or dispatching other application-related events.
It is also the thread in which the application communicates with components from
the Android UI. The system does not create other threads for each instance of a
component. Thus, performing intense processing tasks such as network access, data
processing, or database queries in the main thread of the application will probably
block the whole UI and can be the source of application not responding (ANR) di-
alogs [22]. Additionally, the Android UI is not threadsafe. There are two rules [22] to
avoid the above mentioned possible problems:

• Do not block the UI thread.

• Perform intense tasks with a worker thread.

3.1.7.1 Worker threads

Because of the single thread model described above, it is important not to block the
UI thread. If the calculations to perform are not instantaneous, then the optimal ap-
proach is to make them in separate threads [24] as shown in Figure 3.3 (“background“
or “worker“ threads). In the gait application prototype developed in this work, the
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worker threads are used for gathering the kinematic gait data from the IMUs, the
preprocessing and processing steps.

3.1.8 Bluetooth

Android provides a Bluetooth application programming interface (API) to allow the
connectivity of the application with other devices such as IMUs. The API [22] can
manage and control the device Bluetooth setup to adjust the discovery parameters
and to use a Bluetooth link to transfer data. These links are created through ra-
diofrequency in industrial, scientific and medical (ISM) band at 2,4GHz to make
communications between fixed and mobile devices easier. Bluetooth devices can cre-
ate connections within range, depending on the transmission power. The typical
range for smartphones is up to 10 meters. The Bluetooth API in Android allows us
to discover new Bluetooth devices, consult our local adapter to detect pair devices,
create radio frequency communication (RFCOMM) channels, and connect with other
devices, data transfer, and manage multiple connections. In general, there are main
classes to control and manage Bluetooth. Some of them are listed below [22]:

• BluetoothAdapter: Represents the Bluetooth adapter of our local device. The
adapter allows us to do basic Bluetooth tasks: start Bluetooth scan, consult pair
devices, and create sockets to listen to incoming connections from other devices.

• BluetoothDevice: Represents a remote Bluetooth device that lets us create a
connection with the device or see related information (name, address, class,
and state). This class is a wrapper of Bluetooth hardware.

• BluetoothSocket: is a Bluetooth connector, and RFCOMM is the most common
connector.

• BluetoothServerSocket: Bluetooth server connector that is listening to incoming
requests.

• BluetoothClass: This class describes, in general, a Bluetooth device.

The connection between the application and the IMU is based on the client-server
implementation process [24]. Typically, the application opens a server Bluetooth
socket, and the IMU starts the connection. This connection takes place on the same
RFCOMM channel connected to the Bluetooth socket [22]. Once the connection is
established, the input and output stream can be obtained, and the data transmission
can start. The detailed description can be found in [22]
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Figure 3.4: Illustration of Shimmer class for communications management.

3.1.9 Application implementation

The prototype application uses the concepts explained in previous sections to per-
form the desired actions:

• Graphical representation of processed and raw data.

• Sensor specification and selection.

• Feature specification.

• Save data in CSV format.

• Real-time kinematic data processing

The application uses the class “Shimmer“ [24] to manage the Bluetooth communi-
cations with the IMUs as shown in Figure 3.4. This class uses threads to manage
the connections. In addition, the application needs to perform long time processing
operations with the data that comes from the IMUs. For that reason, it is helpful
to create a service to manage the data [24]. The service will process, save and plot
the processed and raw data. Until the buffer or window is not full, the service will
add samples to the buffer. Once the buffer is complete, the service starts to process
it (see Figure 3.6). The sensor data is encapsulated in a structure called ObjectCluster
[24], and it is the way to manage the sensor data in the application. An overview
of the structure can be observed in Figure 3.5. This structure uses Multimap [25] to
organize the data from each axis. The way to dispatch the data is using Handlers [24]
as shown in Figure 3.3. The shimmer class and the service use threads, and with
the handler, they pass ObjectClustesr to the main thread. In the shimmer class, the
data is processed to transform the incoming bits from the sensor to raw/calibrated
data to use in the application. After that, this data is sent to the service through the
handler. Once the data is in the service, the service will process it as described above
and send the data to the graph, and the Logger [24], as shown in Figure 3.6. In case
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Figure 3.5: Illustration of ObjectCluster

Figure 3.6: Illustration of application overview

of multiple wearable sensorss (WSs), the UI thread manage the data from different
threads as depicted in Figure 3.7. For real-time acoustic feedback scenarios, an extra
thread is implemented to manage the sound parameters, as shown in Figure 3.8.

Figure 3.7: Illustration of the data flow between threads.

3.2 data measurements

This section describes the process of acquiring the kinematic data for the gait analysis.
The kinematic data used in this work correspond to two different gait measurements:
the free walking measurements and the measurements in the rehabilitation clinic
with patients that underwent a hip endoprosthetic operation. The first one was used
to extract essential cues from the kinematic data and develop the grading system for
tracking the rehabilitation process. The second one was used to verify the results.
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Main threadIMU threads
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Extracted features

CSound thread

Sonification features

Figure 3.8: Data flow between the UI thread and the CSound thread

Figure 3.9: Walking route for the measurements.

3.2.1 Healthy participant measurements

The gait kinematic data from 20 healthy participants were acquired to analyze and
extract essential cues for developing the grading system. For biomechanical and ther-
apeutic reasons, the participants performed the walking route at their preferred gait
speed so that participants could not think about their individual body movements.
The purpose is that the body movements on the walking route are more natural and
less forced. The participants started the measurements at the "‘Start"’ point (see Fig-
ure 3.9), performed one round, and finished at the same point as they started. All
gait measurements consisted of two tests:

• Normal (without simulated walking impediment)

• Stressed (simulated walking impediment depicted in Figure 3.10)

The walking length of 90 m is mandatory for all measurements. Figure 3.9 depicted
the walking route for the measurements. Directly after the first measurement, the
second measurement was started started. During the second measurement, a stone
was placed under the heel and the participants had to perform the same walking
route again. In general, the foot has three support points which form the shape of
a triangle as shown in Figure 3.10. These three points are the Tuber calcanei (C),
the Caput des Os metatarse I (A) and the Caput des Os metatarse V (B). The body
weight is distributed among these three points. Modifying the support point of the
foot allows the gait tempo, step cadence, gait symmetry and length to be changed.
The measurement data of the test persons with simulated walking disabilities allow
on the one hand a preselection of the characteristic gait features and on the other
hand a reliability improvement of the quality metrics to be developed. Based on the
measured data, the movement parameters, such as the joint angle estimates of the
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Figure 3.10: Knee brace and modification of the support point of the foot. Support points: (A)
Caput des Os metatarse I, (B) Caput des Os metatarse V and (C) Tuber calcanei

Pre-test Mid-test Post-test

Week 1: Training 1-5 Week 2: Training 6-10

Control group: 10 trainings of 20 min walking
Experimental group: 10 trainings of 20 min walking + Sonification

Sonification: 4 x 5 min ( 3 min real-time acoustic feedback + 2 min 
acoustic model)

Figure 3.11: Sequence of measurements and intervention in the intervention study on patients
for system assessment.

ankle, knee and hip joints, were determined from angular velocity and acceleration.
The calculation of the joint angles is based on the method of sensor data fusion in
signal level for signal error estimation reduction is explained in Chapter 4.

3.2.2 Rehabilitation clinic

In order to systematically investigate the effectiveness of the developed grading
method (see Chapter 5), a study design was developed as shown in Figure 3.11. It
provided a two-week intervention for a control group and an experimental group,
each consisting of 10 patients after a hip endoprosthetic operation. The study partic-
ipants of both groups received a 20 minute gait training five days per week, during
which the kinematic gait data were recorded using the wearable sensor system (WSS)
explained in Section 2.4. Only the experimental group received a real-time acous-
tic feedback (RTAF) during each training session, which consisted of four units of
five minutes each, which included a 3-minute real-time sonification and a 2 minutes
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acoustic gait model sequence. Both the control and experimental groups received
feedback after each gait training session regarding the steps taken, the distance cov-
ered, and the average gait speed. Prior to the intervention, a pretest was performed,
consisting of a timed-up-and-go test, a functional strength test (repeated standing
up of chair within 30 seconds), and a gait analysis. This test sequence was repeated
during the mid-test, after the fifth training session, during the post-test, after the
tenth training session, and during the retest, on the second day after the end of the
intervention.

3.3 concluding remarks

Mobile data acquisition is an essential part of the development of reliable and robust
algorithms for gait analysis and rehabilitation monitoring. Therefore, in the first part
of this chapter, the basic concepts for the creation of a gait processing application for
Android devices have been described, and a brief introduction to the multi-thread
implementation for kinematic signal processing have been discussed. The designed
prototype application provides the facility of flexible and real-time measurement of
the locomotion function in individuals, specifically those with gait disorders. For test-
ing and specifying, visual feedback, experiments with healthy participants, emulated
stressed walks and patients were performed. Seven IMUs were attached to the lower
limbs of the body to obtain gait kinematic data. The prototype application delivers
the representative features to distinguish gait abnormalities. Using the statistical sig-
nal analysis methods and machine learning (ML) model from Chapters 5 and 6, the
significant feature set and the related range were obtained for detection of the normal
and stressed walk. It is possible to reconfigure the visual feedback for different cases
of gait disorders caused by injuries or endoprosthetic surgeries. The proposed mobile
solution has a great potential to be deployed as a commercial product in support of
digital healthcare and therapy. The last section of the chapter describes the two differ-
ent campaign measurements performed for the acquisition of kinematic data for the
development of the grading system. The first measurements were important in order
to extract essential cues from the kinematic data and develop the grading system for
tracking the rehabilitation process. The second measurement campaign took place at
a rehabilitation clinic with the purpose of verifying the results with patients.





4
S I G N A L P R E P R O C E S S I N G

The preprocessing methods are applied to signals to prepare them in a suitable form
for processing. Formatting, cleaning, sampling, and normalization are common
methods performed on raw data to display the data in a useable format, generate
smoothed and noise-removed data, resample data at regular or adaptive intervals
without losing essential information, and normalize the data from different dimen-
sions into the same scale [26]. In this Chapter, the three-dimensional gait kinematic
signals obtained from the WSS are preprocessed. Prior to the feature extraction, the
raw kinematic signals have to be preprocessed using sensor fusion methods such as
the Kalman filter (KF), segmentation algorithms, and filtering.

Raw signals Pre-processing Algorithms

Figure 4.1: Gait analysis process.

4.1 sensor fusion

A KF is an algorithm for optimal estimation of the system error from noisy measure-
ments [27]. This algorithm is sequential and recursive and provides an optimal least
mean variance estimation of the error states. The KF provides real-time statistical
data associated with the estimation accuracy of the error states. The KF applies all
of the measurement information to estimate the current state value of the system
through appropriate weighting of these measurements. To achieve this, the KF uses
the following information [28]:

• Information about the model of the system and its measurements.

• Knowledge about the statistical characteristics of the system errors, noise, and
uncertainty.

33



34 signal preprocessing
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Figure 4.2: PDR diagram applying KF.

• The apriori information related to the initial conditions of the system states.

For gait applications, the KF is applied in a complementary configuration in which
redundant measurements of the same signal with different noise characteristics are
combined to minimize the error [27, 29]. Thus, the algorithm provides information
at high rates, but its errors grow progressively over time because of the implicit
mathematical integration in the algorithm, which causes the bias errors of both ac-
celerometers and gyroscopes to increase at the output. The bias errors of the IMU
usually appear at the low frequencies and are known as long-term errors. Thus, the
KF limits the long-term errors of an inertial navigation system (INS) utilizing accurate
low-frequency data from an external source. For the purpose of the thesis, the zero
velocity update (ZUPT) is considered the external support source due to its accuracy,
practical use, and low cost. Figure 4.2 depicts a typical use of KF for pedestrian dead
recognition (PDR), where data from external ZUPT with good long term accuracy is
combined with INS data with good short term accuracy in order to provide the best
overall estimate of position and velocity.

4.1.1 Discrete-time system representation

A discrete-time linear system can be described as [27]

xk =Φk,k−1xk−1 +Gk−1wk−1, (4.1)

where xk is the state vector, Φk,k−1 is the state transition matrix (STM), Gk−1 is the
noise distribution matrix, wk−1 is the process noise vector and k is the measurement
iteration. Since the noise can affect more than one component of the state vector of a
dynamic system, the introduction of a noise distribution vector G takes into account
the coupling of common noise disturbances into various components of the state
dynamics [27]. The discrete-time linear measurement equation of the system is [27]

zk =Hkxk +ηk, (4.2)

where zk is the measurement vector of the system, Hk is the observation matrix
and ηk is the noise in the measurement. Figure 4.3 shows the discrete-time system
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Figure 4.3: Processing and measurement models.

corresponding to Eq. 4.1 and 4.2. The STM represents the known dynamic behavior
of the system which relates the state vector from iteration k− 1 to k.

4.1.2 Assumptions in Kalman filtering

Kalman filtering relies on the following assumptions [28, 30]. With this assumptions,
the KF estimations are optimal [27].

• The system (both process and measurements) has to be described by linear
models.

• The system noise wk and the measurement noise ηk are uncorrelated zero-
mean white noise processes with known autocovariance functions, hence

E[wk] = 0,E[ηk] = 0 ∀k, (4.3)

E[wkη
T
j ] = 0 ∀k, j, (4.4)

E[wkw
T
j ] =

Qk fork= j

0 k 6= j
, (4.5)

E[ηkη
T
j ] =

Rk fork= j

0 k 6= j
, (4.6)

where Qk and Rk are known positive definitive matrices. In INS integration,
Φk represents the covariance matrix of the system noise associated with the
INS errors, and Rk represents the covariance matrix of the measurement noise
associated with the position and velocity updates.

• The initial system state vector x0 is a random vector uncorrelated to both the
process and measurement noises, thus

E[x0w
T
j ] = 0, E[x0η

T
j ] = 0 ∀k. (4.7)
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Prediction Correction

Start

Figure 4.4: KF recursive processes.

• The mean value of the initial x̄0 and its covariance matrix P0 are known, and
can be expressed as

x̄0 = E[x0], (4.8)

P0 = E[(x0 − x̄0)(x0 − x̄0)
T ]. (4.9)

4.1.3 Estimation procedure

The states of a system are recursively estimated based on the KF algorithm with
a feedback loop [27]. Using the a priori information of the system, the algorithm
estimates the system’s state at an iteration, and then it is compared with the feedback
measurements, which are contaminated by noise [31]. As shown in Fig. 4.4 the
operation of a KF has two phases: prediction and correction [27].

In the prediction phase, the system model is applied to propagate both the system’s
current state and its covariance estimates from iteration k− 1 to k [27]. After that, in
the correction phase, the measurements are used to update the previous estimations.

4.1.3.1 Prediction

The estimate of the system state x at time k given only the information up to time
k − 1, is called prediction x̂k(−). It is also the a priori estimate because it applies
‘prior’ to a measurement. Since the system noise is zero-mean, the best prediction of
the state at time k is [27]

x̂k(−) =Φk|k−1xk−1(+), (4.10)

where xk−1(+) is the best estimate of state during the last iteration and is called the
a posteriori estimate [27]. This is solely based on the process model, which is repre-
sented by the STM Φk|k−1. KF also propagates the uncertainty about its estimate
from epoch k− 1 to k. This is called error covariance and is the expected value of the
variance of the error in the states at time k given all the information up to time k− 1
[27]. It is represented by the covariance matrix Pk(−), also known as the a priori
covariance matrix [27]

Pk(−) =Φk|k−1Pk−1(+)ΦTk|k−1 +Gk−1Qk−1G
T
k−1, (4.11)
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where Pk−1(+) represents the best estimate of the covariance in the last epoch and is
based upon the measurement at epoch k− 1 [27]. This is the a posteriori estimate of
covariance. It should be noted that the a priori covariance matrix Pk(−) depends on
both the process noise and the a posteriori covariance Pk−1(+).

4.1.3.2 Correction

Whenever a measurement from an external source becomes available, the KF corrects
the predicted state [27]. Utilizing the information of the measurement covariance Rk,
the Kalman gain K is computed to minimize the mean squared error of the estimate
[27]

Kk = Pk(−)HTk [HkPk(−)HTk +Rk]
−1. (4.12)

The Kalman gain K depends upon both the a priori covariance Pk(−) and the mea-
surement noise covariance Rk. If the measurements are noisy (when Rk increases) or
the process noise is lower (when Pk(−) reduces), then K becomes relatively smaller
[27]. When there is more noise in the process (when Pk(−) increases), or the mea-
surements are less noisy (when R reduces), then K becomes relatively larger. When
K is large, it assigns more weight to the measurements, and when it is small, it shows
greater faith in the prediction [27]. In the context of PDR integration, K takes rela-
tively larger values when the ZUPT is more accurate and less noisy. In such a case,
the measurement covariance matrix becomes relatively small. If eq. (4.12) is care-
fully examined, it is evident that small values of R lead to relatively larger values
of K. When a new measurement zk is obtained at time tk, it is compared with the
predicted measurementHkx̂k(−) based upon the a priori state estimate [27]. Their dif-
ference is weighted by K and the prediction of the state vector is updated to generate
the best estimate [27]. The estimate of the state at time tk is therefore [27]

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)], (4.13)

where Hkx̂k(−) is the predicted observation called ẑk, and zk−Hkx̂k(−) is the inno-
vation sequence, a vector of the difference between the actual observation zk and the
predicted observation ẑk. The innovation sequence is [27]

vk = zk − ẑk = zk −Hkx̂k(−) (4.14)

and represents the amount of useful information gathered from new measurements,
whereas K weights the useful information for the next update [27]. It can be seen that
when K is large due to the low noise in the measurements or high process noise is
greater, the new information based on the measurements is given more weight. When
K is small due to the noisy measurements or the noise in the process, the innovation
is small, and the new information is given less weight. Based on the value of K, the
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Figure 4.5: Prediction and update processes.

KF also updates the uncertainty of its new prediction x̂k(+), which is called the a
posteriori covariance given by [27]

Pk(+) = [I−KkHk]Pk(−). (4.15)

Equation 4.15 is a bad simplification [32]. Small errors in the computation of K in Eq.
4.12 could result in huge errors when using Eq. 4.15. This was a real problem in the
1960s and caused unstable behavior of the KF [27]. A numerically stable solution that
uses an expanded form of the equation, known as the Joseph form [27]

Pk(+) = [I−KkHk]Pk(−)[I−KkHk]
T +KkRkK

T
k (4.16)

yields correct answers even when the computation of K has an error (e.g., owing to
rounding off). It is noteworthy that this form of the a posteriori error covariance Pk(+)

helps to avoid divergence by virtue of the assurance of positive semi-definiteness of
Pk(+). In most PDR applications the KF update procedure is implemented at a lower
rate than the predictions [27]. For example, in a typical application of integrating
ZUPT and PDR through KF the prediction can be carried out at 50 Hz, whereas the
update may occur at 1 Hz. Figure 4.5 shows the process for typical prediction and
update rates.

4.1.3.3 Algorithm steps

The KF algorithm consists of five sequential steps [27]:

• Filter initialization. This step provides the filter with the initial estimate for
its states x̂0 and the uncertainty in the initial estimate P0. The estimate of
P0 is based upon knowledge of the approximate accuracy of the initial state
estimates and is usually set to a relatively high value. The initial estimations
of the system noise covariance matrix Q and measurement noise covariance
matrix R also need to be provided to the filter. These are estimated on available
data and optimized to obtain the best states.

• STM prediction. The matrix Φ is computed and used to propagate the initial
state to the next iteration, which is denoted by x̂k(−).
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• In the second part of the prediction step, the covariance of the predicted state
Pk is calculated. This is based on the STM, the previous value of the state
covariance Pk−1, the last value of the process noise covariance Qk−1, and the
noise distribution matrix Gk−1.

• In the first step of the update stage, the Kalman gain Kk is computed. This
depends upon the a priori error covariance Pk(−), the process noise covariance
Rk, and the design matrix Hk. When Pk(−) is higher, the gain is higher, and
when Rk is higher, the gain is lower.

• In the second part of the prediction stage, the estimated (or the a priori) state
x̂k(−) is corrected whenever a measurement is received. This is based on the
difference of the predicted measurement Hkx̂k(+) and the actual measurement
zk. This difference contains the new information that forms the basis for the
correction. When K is higher, this difference is weighted more heavily and
added to the a priori estimate in order to update this to the a posteriori estimate
x̂k(+). Nevertheless, when K is lower, the new information obtained from the
measurement is given less weight, and the a priori estimate is considered to be
relatively accurate.

• After correcting the state estimate, the KF goes a step further and also updates
the a priori error covariance Pk(−) to the a posteriori error covariance Pk(+) to
indicate the level of trust in the corrected estimate x̂k(+), which is proportional
to gain Kk and Pk(−).

• At this point, the KF has performed one iteration, and the information esti-
mated in this loop will be used as a priori information in the following loop.

4.1.4 Zero velocity update

Frequently in gait applications, there are no continuous update measurements
available, and thus the estimation accuracy can suffer from velocity errors and their
direct contributions to position errors. ZUPTs provide a relevant enhancement in the
accuracy of the estimations compared to systems without ZUPT [27]. The procedure
to carry out the ZUPT in gait applications is as follows

• Detecting the stand and swing phases from the kinematic gait signals

• Applying corrections during the stand phase.

The ZUPT method does not need any additional equipment, it applies to real and
practical scenarios, and the cost is low. However, its major limitation is that the gait
phases must be correctly detected. During the standing phase, the foot remains on
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the ground, and the velocity during this period is set to 0, which corresponds to
the correction process of the KF. In the swing phase, the KF performs the prediction
process. Mathematically, this detection problem can be formulated as a binary hy-
pothesis testing problem [33], where the detector chooses the hypothesis that IMU is
stationary if [34]

T(zan,zωn )< γ, (4.17)

where zan = yak and zωn = yωk for k= n, . . . ,n+W − 1 denote the measured 3D acceler-
ation signal and 3D angular rate signal at time instant n ∈N, respectively. T(zan,zωn )

is the test statistics of the detector and γ is the detector threshold. There are several
methods to detect the different phases in a gait cycle. Methods such as, angular rate
energy detector (ARED), stance optimal detector (SOD), acceleration moving vari-
ance detector (AMVD) and acceleration magnitude detection (AMD) are based on
the energy of the kinematic signals [34].

angular rate energy detector (ARED)

T(zωn ) =
1

σ2ωW

n+W−1∑
k=n

‖yωk ‖
2 . (4.18)

stance optimal detector (SOD)

T(zan,zωn ) =
1

W

n+W−1∑
k=n

1

σ2a

∥∥∥∥∥yak − g ȳan∥∥ȳak∥∥
2
∥∥∥∥∥+ 1

σ2ω
‖yωk ‖

2 . (4.19)

acceleration magnitude detection (AMD)

T(zan) =
1

σ2aW

n+W−1∑
k=n

(yak − g)
2. (4.20)

acceleration moving variance detector (AMVD)

T(zan) =
1

σ2aW

n+W−1∑
k=n

‖yak − ȳan‖
2 , (4.21)

where σ2a and σ2ω are the variances of the acceleration and angular velocity rate sig-
nals. ȳan describes the sample mean of the acceleration signal. The above mentioned
detectors have been tested in [34] and the outcomes of the analysis reveals that the



4.1 sensor fusion 41

Figure 4.6: Illustration of the angular velocity in the sagittal plane from different locations.
The IC and TOE events are obtained from the foot angular velocity. The red
triangle, green circle and black square markers represent the MS, IC and TOE,
respectively.

SOD detector performs similarly to the ARED [35, 36], which outperforms both the
AMVD [37, 38] and the AMD [39, 40]. This indicates that the gyroscope signals hold
the most reliable information for zero-velocity detection [41]. In this work, a gyro-
scope based method for gait segmentation is applied. It is possible to combine the
physical knowledge of the human mechanics, and the information of the gyroscope
signals [42, 43]. Human walking can be explained and described in the context of
a gait cycle (GC). A stride is the distance between the IC of the first foot and the
next IC of the same foot. In other words, a gait cycle is made up of two steps. Each
stride contains a stance and a swing phase. The IC and toe off (TOE) events can be
extracted from the gyroscope signal on the sagittal plane exploiting the feature in
which, within each gait cycle, the foot alternatively rotates clockwise and counter-
clockwise about the ankle joint [44]. The local maxima of the foot angular velocity
are detected, and they are associated with the mid-swing (MS) phase [45]. As shown
in Figure 4.6, within each pair of MS peaks, the first negative peak of the foot angu-
lar velocity is associated with the IC and the second one with the TOE. The optimal
values for which the peaks comply with the actual/true IC and TOE are specified
as follows: For the MS, the values of minimal peak distance and height were set
to 50 samples and 100◦/s, respectively. For the IC/TOE, the minimal peak distance
and height were set to 30 samples and 30◦/s, respectively. The value of the minimal
peak distance for MS events was determined using the auto-correlation function of
the foot angular velocity, due to the periodicity of the gait kinematic signals [46], and
calculating the mean and variance of the distance (in samples) between MS peaks of
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Figure 4.7: Block diagram of the indirect Kalman Filter.

the autocorrelation. From the knowledge of the ICs and TOEs, it is possible to define
the duration of the stride, stance, and swing phases and, accordingly, other temporal
parameters (cadence, step length, gait speed, etc.). The defined IC events were used
to segment the kinematic gait data into gait cycles. Each gait cycle s(t) was resampled
to the length of 100 samples so that all segments have the same length [47, 48].

4.1.5 Lower body joint angle estimation

Joint angle estimation is known to be an important biomechanical parameter in learn-
ing the walking pattern of a person. For this, the sagittal plane information can be
accomplished using the difference between the gyroscope and acceleration angles
(Fig. 4.7). Even with very well-calibrated sensors, the joint angle obtained from the
integration of angular velocity will drift after a short period. This drift is normally
due to the temperature bias of the gyroscopes. To compensate the drift error, an indi-
rect KF is applied. The state vector xn of the KF is defined as xn = [θ̂ β]T , where θ̂
and β denote the error of the joint angle and the bias of the gyroscope measurement,
respectively. The KF uses the angle of acceleration measurements θa as a correction
to the already estimated joint angle based on the integration of the gyroscope mea-
surement θg [49]. The KF estimates the joint angle error and subtracts it from the
integrated angle to get the corrected estimation. The related state transition matrix F
and the measurement matrix H of the KF are given by [49]

F=

1 Ts

0 1

 and H=
[
1 0

]
, (4.22)

where Ts is the sampling period of the IMU. Figure 4.8 presents the estimation of the
lower body angles when a participant is walking in a straight line for a distance of
10 m. Figure 4.9 shows the sensor location for the measurements. Furthermore, the
results from gait kinematic data collected from another sensor platform, denoted as
a reference, are compared. It is clearly shown that both results have a good matching,
which means that the proposed angle estimation algorithm is independent of the
hardware platform used for data collection.
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Figure 4.8: Lower body joint angles in the sagittal plane compared to the reference system.

Figure 4.9: Shimmer (white) and reference (orange) sensor system platform.

Figure 4.10: IMU Block diagram of the orientation filter.

4.1.6 Quaternions and reference system

Quaternions are a concept related to the foundations of algebra and number theory
[50, 51]. Quaternions are a mathematical representation consisting of four individ-
ual numeric, complex number components that can be used to represent the orien-
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tation of a rigid body in a three-dimensional space [52]. The data measurements
are essential for the accurate estimation of the IMU’s orientation. Different types
of sensors build in a IMU such as accelerometers and gyroscopes are susceptible to
different factors. Accelerometers are susceptible to altitude and impact forces, while
gyroscopes are susceptible to temperature changes and suffer from drift [53]. Conse-
quently, accelerometers have poor dynamic characteristics, and gyroscopes have poor
static characteristics. There are two coordinate systems in this work, the sensor frame
(S) describing the sensor rotation and the global or earth frame (E). The approach ro-
tates the sensor frame to the global frame and removes the gravitational component.
The high gravitational force of the global frame is downwards toward earth. There
are different methods to estimate the orientation of an IMU from IMU kinematic data
such as rotation matrices, Euler angles, etc. [50]. In this work, the Madgwick method
[54] which fuses accelerometer, gyroscope, and magnetometer data for quaternion
estimation, is used.

S
Eq̂= [q1,q2,q3,q4] =

[
cos(

θ

2
),−Sxsin(

θ

2
),−Sysin(

θ

2
),−Szsin(

θ

2
)

]
. (4.23)

To denote the relative frame orientation between S and E, SEq̂ in equation 5.32 rep-
resents the orientation of frame E relative to frame S is a vector described in [54].

(a) Acceleration (b) Quaternion

Figure 4.11: (a) Comparison between the acceleration in the sensor frame (S) and the earth
frame E. (b) Quaternion used to rotate the signal from the sensor frame (S).

Figure 4.10 illustrates the above-mentioned method. With this method, the kine-
matic gait data is collected from the IMUs and transformed to the earth frame with
a sampling frequency of 60 Hz, β gain of 0.1, and σ of 0.5. The compensated gyro-
scope measurement Swc is used in place of the gyroscope measurements Sw, where
the magnitude of the angular error in each axis Sw is equal to a quaternion derivative
of unit length, and then the integral gain σ directly defines the rate of convergence of
the estimated gyroscope bias Swb expressed as the magnitude of a quaternion deriva-
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tive [51]. Figure 4.10 shows the block diagram for the quaternion estimation S
Eq̂est,t

[54]. The gravity components are removed. Figure 4.11 shows the acceleration in the
sensor frame S and global frame E. To provide a robust absolute orientation vector
in the form of quaternion, the android prototype application combines the measure-
ments from the 3-Axis accelerometer and 3-axis gyroscope and intelligently fuses the
raw data to improve the output of each sensor, including offset calibration of each
sensor.

4.2 concluding remarks

In this chapter, the kinematic gait data of different sensors placed at the lower limbs
of the body were collected and processed with the Android prototype application
explained in Chapter 3. The quaternion method is first applied to raw data for esti-
mating actual sensor orientation. The sensor fusion method estimates the lower body
joint angles in the sagittal plane from the kinematic data applying a KF designed for
this purpose. Our method was validated with the Xsens motion capture system. The
presented signal preprocessing methods were applied to ten young and ten older
subjects. The results show that it is possible to precisely estimate the lower body
joint angles in the sagittal plane in a clinical setting outside of a gait laboratory. Thus,
there is a great potential to extend the practice of rehabilitation monitoring to open
spaces rather than limited gait laboratories.





5
O B J E C T I V E G A I T A S S E S S M E N T

This chapter introduces how signal processing methods and domain knowledge
about gait are formulated and used to extract essential features from gait kinematic
data to develop a robust metric that can monitor changes in the subject’s movement
patterns. Automatic recognition and assessment of human movement patterns are
key features for an autonomous evaluation of motor activity in sports and rehabilita-
tion. Feature extraction is a valuable method to derive the most representative charac-
teristics of original data. Thus, the features exhibit important cues of original data to
distinguish different activities and can be applied as a measure for the performance
evaluation and classification purposes [55, 56]. Many different methods are available
for extracting features specified for various applications. In [57–59] time-domain fea-
tures such as mean, variance, and root mean square (RMS), being in direct relation to
data and including the fundamental properties of the data waveform, were presented.
Frequency-domain features such as spectral energy and spectral entropy, which are
based mainly on the periodic structure of the data and obtained from Fourier trans-
form (FT) of the original data [60, 61]. In order to obtain both time and frequency
cues of the data, time-frequency features using wavelet transformation (WT) are pro-
posed in [62, 63]. The WT enables simultaneous localization of the data signal in
both time and frequency domains and thus is a popular technique for activity detec-
tion applications. Heuristic features and domain-specific features are other widely
used features and investigated in [64] and [65]. Accordingly, time, frequency, and
time-frequency features are extracted from gait kinematic signals. The last section of
this chapter shows why traditionally used metrics such as cadence, step period, and
stride period are not sufficient and shows how the metric evaluation can be used to
complement the traditional methods by providing an overview of the accuracy and
progress of the rehabilitation. A comprehensive diagram of the signal processing
methods applied to the feature extraction in this chapter is depicted in Figure 5.1.

47
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Figure 5.1: Overview of the objective gait assessment process

5.1 feature extraction

Feature extraction is an essential procedure for classification and estimation in gait
applications. For gait signals, such as IMU signals collected for human motion, it
is necessary to analyze the properties of the signals with statistical methods to in-
vestigate peaks or correlations in the time domain or transform the signals into the
frequency domain to evaluate the spectral characteristics. Several signal processing
methods extract essential information from human motion-related signals, e.g., kine-
matic signals, and can be divided into two categories: statistical and transforming
methods. The statistical methods measure the statistical distribution or aspects that
could be evidence of the temporal characteristic of the signal. These methods are
typically applied for feature extraction approaches for classifications tasks [66–69].
Transforming methods, such as fast Fourier transform (FFT) and WT, convert the
information of the signal into other domains, and analyze the characteristics of the
signals over the frequency and time [70, 71].

This section explains the signal processing methods to extract essential features
from three-dimensional kinematic gait data in time, frequency, and time-frequency
domains. The information on gate features allows to process and obtain values that
can be useful to detect disorders in a person’s gait.

5.1.1 Time domain

Gait kinematic signals are a type of time series, and their time-analysis is performed
generally at first due to that they are easier to interpret, and the related information
can be directly understood from the signals. In gait analysis, time-series features are
usually used to detect the amplitudes and timings of key events during the gait cycle.
Multiple statistical parameters are applied as features, such as the mean, standard
deviation, local maxima and minima, and zero crossings.

5.1.1.1 Motion intensity

The RMS value indicates the motion intensity (MI) [72]. It is a statistical measure
of the magnitude of a varying quantity and especially useful when the values are
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Figure 5.2: Illustration of peak asymmetric factor

positive and negative, e.g., gait kinematic signals. It can be calculated for a series of
discrete values or for a continuously varying function. In the case of a signal with N
samples {x1,x2,x3, . . . ,xN}, the RMS value is

RMS=

√√√√ 1

N

N∑
i=1

x2i . (5.1)

The RMS overall time of a periodic function is equal to the RMS of one period of
the function. The RMS values of the three-dimensional kinematic gait data were
extracted respectively using the equation above, and xi is the acceleration in either
vertical, Anterior-Posterior, or Medio-Lateral axis.

5.1.1.2 Asymmetry factor

The measure of the peak tails within a signal is related to symmetry. In real-life
scenarios, the peaks in gait data are not symmetric. It would be useful to add a
feature to measure this characteristic. In this work, each peak in the data window
will be processed to find a difference between normal and abnormal gait [73]. Figure
5.2 illustrates the calculation of the asymmetry factor.

AsF=
b

a
(5.2)

5.1.2 Regularity and symmetric features

Gait-related kinematic signals are semi-periodic due to the semi-periodic behavior
of human walking. These signals may change from one period to another. The
regularity and symmetric features quantify these changes.
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Figure 5.3: Autocorrelation function of acceleration data during normal walking.

5.1.2.1 Unbiased correlation and autocorrelation coefficients

A mathematical operation that closely resembles convolution is correlation [74]. Two
signal sequences are involved in correlation. Our objective in computing the correla-
tion between two signals is to measure the degree to which the two signals are similar
and thus extract some information. An autocorrelation coefficient (A) is the sum of
the products of the same signal xi(i = 1,2,3, . . . ,N) multiplied by shifted version of
itself (xi+m) and it is defined as [75]:

A(m) =

N−|m|∑
i=1

xixi+m, (5.3)

where m represents the phase shift in the number of samples. A cyclic signal will
produce autocorrelation coefficients with peak values at m samples equivalent to
the periodicity of the signal. Observing the autocorrelation function can be used to
analyze the periodic characteristics within a signal. The autocorrelation function is
usually plotted symmetrically, with the zeroth shift in the middle. For a kinematic
gait signal such as accelerations during walking, the autocorrelation function can
be computed to quantify the peak values at the first and second dominant period,
representing phase shifts equal to one step and one stride, respectively [76]. Either
biased or unbiased estimates of the autocorrelation coefficient can be computed [74].

Figure 5.3 illustrates two major peaks of the autocorrelation function of acceleration
data during normal walking. Considering that the first shifted peak Ad1 is related to
one step at d1, then it is possible to express the regularity of the acceleration signal
between neighboring steps using the autocorrelation function. Thus, the values of
the first and second peaks of the autocorrelation function Ad1 and Ad2 reflect step
and stride regularity, respectively. The similarity of Ad1 = Ad2 reflects symmetry
[77]. The peak value Ad1 = Acoeff(d1) , is the step period found at the lag time d1,
indicated the step regularity [77]. The peak value Ad2 = Acoeff(d2), is the stride
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period found at the d2 lag time, indicated the stride regularity (see Figure 5.3). The
feature D in Eq. 5.4 can be used as an indicator to measure gait symmetry as [77].

D= |Ad1 −Ad2|. (5.4)

Low values of D indicate a more symmetric gait. A higher value of D indicates a
more asymmetric gait.

5.1.3 Frequency domain

Frequency domain features are extracted from gait kinematic signals by transforming
them from the time to the frequency domain using statistical and signal processing
algorithms such as the Fourier transform and the Wavelet transform. In this section,
three frequency domain features are considered for analysis.

5.1.3.1 Fourier transform

Frequency analysis of time-discrete signals is usually and most conveniently per-
formed on a digital signal processor, which may be a general-purpose digital com-
puter or specially designed digital hardware. It is known that this type of representa-
tion is calculated through the Fourier transform X(ω) of the sequence x(n) [78]. How-
ever, X(ω) is a continuous function of frequency, and thus, it is not a computationally
convenient representation of the sequence x(n). The discrete Fourier transform (DFT)
is a powerful computational tool for performing frequency analysis of time-discrete
signals. FFT is an efficient algorithm to calculate the DFT and the inverse discrete
Fourier transform (IDFT). FFT used in many applications, such as signal processing
and digital filtering. In general, a finite-duration sequence x(n) of length L has a
Fourier Transform [74]

X(ω) =

L−1∑
n=0

x(n)e−jωn 06ω6 2π , (5.5)

where x(n) is 0 outside the range 0 6 n 6 L− 1. If X(ω) is sampled equally at fre-
quencies ω= 2π k

N ,k= 0,1,2, . . . ,N− 1, where N> L [74] then,

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N k=0,1,2,. . . ,N-1 , (5.6)

where x(n) = 0 for n 6 L . The equation 5.6 is a formula to transform a L 6 N

sequence into a sequence of samples X(k) of length N. The new sequence is obtained
evaluating X(ω) with N equally spaced discrete frequencies. Thus, Eq. 5.6 is called
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DFT of x(n). Also exists a relation to calculate the sequence x(n) from frequency
domain [74]

x(n) =
1

N

N−1∑
k=0

X(k)e−j2πkn/N n=0,1,2,. . . ,N-1 , (5.7)

and is called IDFT. There are some alternatives to calculate DFT using less processor
time. They are explained in detail in [74, 79, 80].

5.1.3.2 Power spectral density

Many phenomena in nature are best characterized statistically in terms of average.
Due to the random fluctuations in these signals, a statistical viewpoint must be
adopted, which deals with the average characteristics of random signals. In par-
ticular, the autocorrelation function of a random process is the appropriate statistical
average that will be used for characterizing random signals in the time domain. The
Fourier transform of the autocorrelation function, which yields the power density
spectrum, provides the transformation from the time domain to the frequency do-
main [74]. The problem to deal with in this section is the estimation of the power
spectral density (PSD) of a signal from the observation of the signal over a finite time
interval. The finite record length of the data sequences is a significant problem for the
quality of the power spectrum estimate. When treating with statistically stationary
signals, more extended data is better to obtain an estimation from [74].

5.1.3.3 The periodogram

The finite-energy signals possess a Fourier transform and are characterized in the
spectral domain by their energy spectral density [81]. On the other hand, there are
some signals which do not have finite energy and therefore do not possess a Fourier
transform. This type of signal has a finite average power and hence is characterized
by a power density spectrum. If x(t) is a stationary random process, its correlation is
[74]

γxx(τ) = E[x
∗(t)x(t+ τ)]. (5.8)

The power spectrum density of the stationary random process, via the Wiener-Khintchine
theorem, is the Fourier transform of the autocorrelation function

Γxx(f) =

∫∞
−∞γxx(τ)e−j2πfτdτ. (5.9)

Normally there is only one realization of the random process and only one estimata-
tion the power spectrum, but the true autocorrelation function is not known and also
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the calculation of the fourier transform is not possible. On the other hand, from a
single realization of the process it is possible to calculate [74]

Rxx(τ) =
1

2T0

∫T0
−T0

x∗(t)x(t+ τ)dt, (5.10)

where 2T0 is the observation interval. If the stationary random process is ergodic in
the first and second moments (mean and autocorrelation), then [74]

γxx(τ) = lim
T0→∞Rxx(τ) = lim

T0→∞ 1

2T0

∫T0
−T0

x∗(t)x(t+ τ)dt . (5.11)

This relation explains the use of the time average autocorrelation Rxx(τ) as an esti-
mate of the autocorrelation function γxx(τ). The Fourier transform of Rxx(τ) supplies
an estimate Pxx(f) of the power density spectrum [74]

Pxx(f) =

∫T0
−T0

Rxx(τ)e
−j2πfτdτ

=
1

2T0

∫T0
−T0

[∫T0
−T0

x∗(t)x(t+ τ)dt

]
e−j2πfτdτ

=
1

2T0

∣∣∣∣∣
∫T0
−T0

x(t)e−j2πftdt

∣∣∣∣∣
2

.

(5.12)

for discrete signals, this relation can be expressed as

Pxx(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πfn

∣∣∣∣∣
2

=
1

N
|X(f)|2, (5.13)

where X(F) is the Fourier transform of the sample sequence x(n). This well known
form of the power spectrum density estimate is called periodogram [74].

5.1.3.4 Spectral entropy

The concept of entropy in information theory is related to the uncertainty that exists
in every random signal [81]. It is a magnitude of “noise“ and “disorder“ within a
system. Two characteristics of entropy are as follows:

• The measurement of the information should be proportional. A little change
in the probabilities of one element of the signal should make a little change in
entropy.

• If all elements of the signal have the same probability, then entropy is maxi-
mized.
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Figure 5.4: Example of the entropy function for an event with two equiprobable states

Suppose there is an event (random variable) with k - possible states, and these states
have the same probability. Then the probability of one state will be ρ= 1

k , and it can
be expressed as

c= log2(k) = log2

(
1/
1

k

)
= log2

(
1

ρ

)
= log2(1) − log2(ρ) = 0− log2(ρ) = − log2(ρ).

(5.14)

Now, if each k state has ρi probability, then the entropy will be written as a weighted
sum of the information amount

H=−ρ1 log2(ρ1) − ρ2 log2(ρ2) − · · ·− ρk log2(ρk)

= −

k∑
i=1

ρi log2(ρi).
(5.15)

If X is a message, the entropy for this message is H(X), and is the weight value of the
amount of information

H(X) = −
∑
i=1

ρ(xi) log2(ρ(xi)), (5.16)

which represents a measurement of the mean of the uncertainty of one random vari-
able and, therefore, the amount of information [81]. Eq. 5.16 defines the Entropy
[79]. As an example, if an event is taken with two equiprobable states, the entropy
will be maximal, as shown in Figure 5.4. Supposing an input signal x(n) and its DFT
X(f). After computing PSD of the signal, it can be normalized and seen like a proba-
bility density function (PDF). After that, apply the entropy equation and the spectral
entropy (SE) is obtained [79].

5.1.3.5 Signal to modulation noise ratio

The randomly modulated periodicity (RMP) of the gait kinematic signals and lower
body joint angles can also be used for the feature extraction. The kinematic signals
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Figure 5.5: Example of the periodic and stochastic parts for the knee joint angle.

are generated by a non-linear physical mechanism and have inherent periodicity. In
other words, the kinematic gait data is a deterministic signal with some unpredictable
variations and thus belongs to a special class of signals called randomly modulated
periodic signals. This RMP property provides valuable cues about the behavior of
signals. A randomly modulated periodic signal x(t) of period T and K harmonic
frequencies fk = k

T is mathematically defined by [82, 83]

x(t) = s0 +
1

K

K∑
k=1

[(s1k + u1k(t))cos(2πfkt) + (s2k + u2k(t))sin(2πfkt)], (5.17)

where s0 is the direct current (DC) part, s1k and s2k are constant. The modulation
vector u(t) = u1k(t),u2k(t);k= 1, . . . ,K is a zero mean random process with periodic
block stationary and finite dependence. In other words, x(t) includes a deterministic
part s(t) and a zero mean non-stationary stochastic part u(t) as

x(t) = s(t) + u(t). (5.18)

Figure. 5.5 illustrates the periodic and stochastic parts of the lower body knee joint
angle of a healthy participant. In connection with RMP signals, the sum signal-to-
noise-modulation-ratio (SMNR) has been provided to quantify the amount of random
variation relative to the underlying pure periodicity. In order to obtain the SMNR,
the observed gait kinematic signal is segmented in to M frames, each frame being of
length T . If the sampling interval Ts= 1

2fk
, T =NTs has N discrete samples x(tn), the
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observed signal at time tn in the m-th frame is x((m− 1)T + tn),n= 0, . . . ,N− 1 and
the DFT of this signal is given in [82, 83] as

Xm(k) = sk +Um(k), (5.19)

with

s(tn) =
1

M

M∑
m=1

x((m− 1)T + tn), (5.20)

sk =

N−1∑
n=0

s(tn)exp(−j2πfktn), (5.21)

and

Um(k) =

N−1∑
n=0

u((m− 1)T + tn)exp(−j2πfktn). (5.22)

By assuming the weakly stationary stochastic part of the observed signal the variance
of Um(k) can be obtained as [82]

σ2(k) =
1

M

M∑
m=1

|Um(k)|2. (5.23)

The estimation of sum SMNR given by

S=

K∑
k=1

M

N
ρx(k) (5.24)

with

ρx(k) =
|sk|

2

σ2u(k)
(5.25)

Eq. 5.25 defines the SMNR. The sum SMNR quantifies the amount of random varia-
tion in the signal [83].

5.1.4 Time-frequency domain

In order to exploit the spectral relationships present in gait and capture local varia-
tions in the temporal gait kinematic signal, a representation is needed that allows to
analyze these frequencies localized in time.

5.1.4.1 Wavelet entropy

SE is a complexity measurement of gait signals introduced by applying the concept of
Shannon entropy to power spectrum [84, 85]. The value of SE represents the relative
presence of peaks or flatness of the spectral distribution in the power spectrum of a
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gait signal. When a SE calculated by using the WT, it is called wavelet entropy (WE)
[86]. Because WT is able to localize the non-stationary signal both in the time domain
and in the frequency domain simultaneously [87], the time evolution of WE can be
obtained to reveal the dynamic complexities of gait signals. This work applies the WE
algorithm three to dimensional kinematic gait data to explore the complexity changes
during the rehabilitation process. The wavelet transform decomposes a signal into
a set of basis functions that are formed from a single prototype wavelet, called the
mother wavelet function, by expansions and contractions in scales as well as shifts in
the time domain. The discrete wavelet transform can be calculated by a fast algorithm
of multiresolution signal decomposition [87]. This algorithm repeatedly filters the
sampled time sequence x(n) by a set of paired high-pass and low-pass filters to yield
a detailed component and an approximate component on every scale level. Each of
the two components occupies half of the total frequency band on the corresponding
scale level, with the detail one in the higher half and the approximate one in the lower
half [88]. Since an orthonormal wavelet family is used, for a given time window, the
total power Powertotal of the signal is equal to the sum of each component power
Powerj. The normalized power is pj =

Powerj
Powertotla

and
∑
pj = 1. The wavelet entropy

in a time windows is defined as WE = −
∑
pjln(pj) [86]. Time evolution of WE

values can be obtained by shifting the time window along with the gait signal.

5.1.4.2 Hilbert-Huang transform

The outcomes from previous studies in the field of biomechanics have concluded that
the human gait is nonlinear and non-stationary [89]. In [90–92], nonlinear and non-
stationary methods are proposed to analyze the gait signals due to their potential
to extract complex relationships in the gait signals, which cannot be found with
linear methods. Therefore, the Hilbert-Huang transformation (HHT) is proposed in
this work to decompose the kinematic signals and to take advantage of nonlinear
relationships between the foot signals and the lower limb joint angles [93]. The HHT
applies the empirical mode decomposition (EMD) and the Hilbert transform (HT)
[91]. The most important part of the HHT is the EMD method, which allows the
decomposition of any data into a finite small number of intrinsic mode functions
(IMFs). The IMF fulfills two conditions: First, the number of maxima and zero-
crossing values must be equal or differ at least by one; Second, the average value of
the envelopes corresponding to those created by the local maxima and minima must
be zero. The EMD offers a possibility to exploit the information hidden in the gait
signals and can be calculated from each gait cycle s(t) using the following steps:

• Detection of all extrema (minima and maxima) of s(t).

• Interpolation and Cubic Spline curve fitting of the maxima and minima to ob-
tain the upper envelope u(t) and the lower envelope l(t), respectively.
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• Calculation of the mean m1(t) =
u(t)+l(t)

2 and the mode g1(t) =
u(t)−l(t)

2 func-
tion of the envelopes.

• Calculation of the first component by subtracting the mean envelope function
from the segment c1(t) = s(t) −m1(t).

• If c1(t) satisfies the IMF conditions, imf1(t) = c1(t) and continuing with the next
step, otherwise replacing s(t) with c1(t) and iteration of the first four steps.

• Calculation of the residual r1(t) = s(t)−c1(t) and iteration of the previous steps
until becoming a monotonic function as final residual (The final residual is the
trend of the segment).

Once the algorithm ends, the gait cycle s(t) can be expressed as a linear superposition
of IMFs by

s(t) =

n∑
i=1

imfi(t) + rn(t) , (5.26)

where i = 1, . . . ,n is the number of IMFs. Figure 5.6 shows the first two IMFs of
the foot angular velocity in the sagittal plane. Once the gait cycle representation is
obtained as a superposition of zero mean oscillatory modes, the HT can be applied
to each IMF as follows:

H[imfi(t)] =
1

π
PV

∫∞
−∞

imfi(τ)

t− τ
dτ. (5.27)

PV denotes the Cauchy Principal Value of the integral. The residue rn(t) should be
left out of the Hilbert spectral analysis, since it is a monotonic function or a constant.
The analytic signal zi(t) is defined by

zi(t) = imfi(t) + jH[imfi(t)] = ai(t)e
jθi(t) , (5.28)

where ai(t) =
√

imfi(t)
2 + H[imfi(t)]2 is the instantaneous amplitude (IA). To extract

the instantaneous frequency (IF) and the instantaneous energy (IE) of each IMF, the
derivative of the phase θi(t) and the squared magnitude of ai(t) are computed as
below:

fi(t) =
1

π

dθi(t)
dt

, (5.29)

ei(t) = |ai(t)|
2. (5.30)

5.2 feature selection and dimension reduction

Both feature selection and dimension reduction methods are used to minimize the
number of features in the dataset. In contrast to dimension reduction methods, which
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Figure 5.6: IMF signal decomposition for the foot angular velocity in the sagittal plane which,
is used as input for the networks.

reduce the number of features by creating new combinations, feature selection meth-
ods include and exclude significant features present in the dataset without changing
them. The feature selection methods automatically select the features in the dataset
that are the most significant for generating a grading system. Feature selection meth-
ods usually filter out unneeded, irrelevant, and redundant features. Dimensionality
reduction, or dimension reduction, reduces the number of random variables by elimi-
nating the dimensions that are more likely to be noise. Dimension reduction methods
normally transform the high dimensional space information to a lower space dimen-
sion. The main advantages of applying dimension reduction are as follows; First, the
information needs less storage capacity and, therefore, the cost. Second, the informa-
tion redundancy is removed; Third, the information visualization for low dimensions
is easier to understand and analyze.

In order to develop a reliable grading system and an accurate classification, differ-
ent feature extraction methods are considered in this thesis. The features are com-
puted for each IMU, direction and joint angle, this procedure results in [7(sensors) ∗
3(directions) + 6(jointangles)] ∗ 9(features per each signal) = 243 total features, where
’directions’ refer to the (x,y,z) Cartesian coordinates of the global frame. Table 5.1
summarizes the extracted features from the kinematic data. The feature set can con-
tain redundant information, which is not useful for the classification and modeling
tasks. The next sections introduce the dimension reduction methods principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA). After reducing the
dimension, the features mentioned can be treated as significant if they allow for a
differentiation between normal and abnormal gait. The method paired t-test in de-
scribed, and it allows to distinguish the relevance of the features [95]
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5.2.1 Principal component analysis

This is one of the most popular techniques to reduce the dimension of the data and
generate features in pattern recognition [96]. The vector x contains the input informa-
tion. In order to simplify the calculation presentation, the data samples are assumed
to have zero mean E[x] = 0. If not, the subtraction of the mean value from the can be
performed. The original samples x can be transformed into a new space using the
following equation

y=ATx. (5.31)

Since the input samples are expected to be zero mean, the output samples also have
zero mean (E[y] = 0). Applying the definition of the correlation matrix to Eq. 5.31 it
is obtained

Ry = E[yyT ] = E[ATxxTA] =ATRxA. (5.32)

Typically, the estimation of the correlation matrix Rx is the average over the training
data. For example, if there are n data signals xk, k= 1,2, ...,n then

Rx ≈
1

n

n∑
k=1

xkx
T
k . (5.33)

Due to the symmetry characteristic of Rx its eigenvectors are mutually orthogonal
[96]. Thus, if matrix A is chosen so that its columns are the orthonormal eigenvectors
ai, i= 0,1, . . . ,N− 1, of Rx, then Ry is also diagonal

Ry =ATRxA=Λ, (5.34)

where Λ is the diagonal matrix with the respective eigenvalues λi, i= 0,1,2, . . . ,N− 1

of Rx. The resulting transform is known as the Karhunen–Loève (KL) transform, and
it achieves the original goal of generating mutually uncorrelated features [96, 97].

Table 5.1: Signal Features
Name Type Description

MI Time analysis Characterization of the movement intensity.
AsF Time analysis Measure of the signal symmetry.
Step period Time analysis Time between steps.
Stride period Time analysis Time between two steps of the same side.
Regularity Time analysis Characterizes the signal rhythmic and periodicity.
PSD Frequency analysis Mechanical power of the signal.
SE Frequency analysis Derived from information theory, a measure of the uncertainty of a signal [79].
SMNR Frequency analysis Characterizes the random variation relative to the periodicity [94].
WE Time-Frequency analysis Measure of the signal distortion and provide knowledge on the dynamic process.
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5.2.2 Linear discriminant analysis

The method is based on the work of Fisher [98] on linear discrimination, and it is
also known as LDA. Let the data samples, x, be m-dimensional and from two classes.
The objective is to create a linear combination of feature y related to the components
of x [98]. In such a way, the idea is to condense the information in x in a smaller
number of features. This is achieved by looking for the direction w ∈Rm which the
two classes are best separated. Given x ∈<m the scalar

y=
wTx

‖w‖
(5.35)

is the projection of x along w. Since scaling all our feature vectors by the same factor
does not add any classification-related information, the scaling factor ‖w‖ is ignored
[98]. Applying the Fisher’s discriminant ratio (FDR)

FDR=
(µ1 − µ2)

2

σ21 + σ
2
2

, (5.36)

where µ1,µ2 are the mean values and σ21,σ22 the variances of y in the two classes w1
and w2, respectively, after the projection along w. Using Eq. 5.35 and omitting ‖w‖,
it can be observed that

µi =w
Tµi, i= 1,2 (5.37)

where µi, i = 1,2, is the mean value of the data in wi in the m-dimensional space.
Assuming the classes to be equiprobable, it is easily shown that

(µ1 − µ2)
2 =wT (µ1 − µ2)(µ1 − µ2)

Tw∝wTSbw (5.38)

with the between-class scatter matrix, Sb, defined as

Sb =

M∑
i=1

Pi(µi − µ0)(µi − µ0)
T , (5.39)

µ0 =

M∑
i

Piµi, (5.40)

where Pi is the a priori probability of class wi and µ0 the global mean vector. That is
Pi ≈ ni

N , where ni is the number of samples in class wi, out of a total N samples. The
trace of Sb is a measure of the average (over all classes) distance of the mean of each
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individual class from the respective global value [96]. Analyzing the denominator of
5.36

σ2t = E[(y− µi)
2] = E[wT (x− µi)(x− µi)

Tw] =wTSww, (5.41)

Sw =

M∑
i=1

PiE[(x− µi)(x− µi)
T ], (5.42)

where
∑
i is the covariance matrix corresponding to the data of class wi in the m-

dimensional space and Sw is the within-class scatter matrix, which trace measure the
average, overall classes, variance of the features [96]. Combining 5.41, 5.38 and 5.36

the optimal direction is obtained by maximizing Fisher’s criterion

FDR(w) =
wTSbw

wTSww
(5.43)

with respect tow. This is the celebrated generalized Rayleigh quotient [99], which, is
maximized if w is chosen such that

Sbw= λSww, (5.44)

where λ is the largest eigenvalue of S−1w Sb. By the definition of Sb

λSww= (µ1 − µ2)(µ1 − µ2)
Tw= α(µ1 − µ2), (5.45)

where α is a scalar. The solution with respect to w is

w= S−1w (µ1 − µ2) (5.46)

assuming that Sw is invertible. Sw and Sb are approximated by averaging using the
data samples. As a consequence, the number of features has been reduced from m
to 1 in an optimal way. Classification can now be performed based on y. Optimality
assures that the class separability, with respect to y, is as high as possible, as this is
measured by the FDR criterion.

5.2.3 Student’s t-test

In this statistical hypothesis test, the data follow a Student’s t-distribution [7, 100].
This test is commonly applied to data sets with a normal distribution to determine
if the data sets are significantly different. The two-sample t-test is one of the most
frequently used t-tests, which hypotheses that the means of the two populations
are equal. Different from the one-sample t-test, by which the statistical difference
between a sample mean and a known or hypothesized value of the mean in the
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population, the two-sample t-test tries to compare the means of two different samples
[7]. The kinematic data in this work were obtained from two different groups of
participants, normal and patients. Thus, the two-sample t-test is more suitable for
the analysis and investigations in this work. The statistic of the two-sample t-test is
defined as follows:

t=
µ̄x − µ̄y√
σx
n +

σy
m

, (5.47)

where µ̄x and µ̄y are the means of the two classes, σx and σy are their standard
deviations, and n and m are their size. The two main test outputs are the hypothesis
test results h and the ρ-value. The h is a logical value: if h = 1, this indicates the
rejection of the null hypothesis at the alpha significance level; if h = 0, this indicates
a failure to reject the null hypothesis at the alpha significance level. The ρ-value
generated by the test is returned as a scalar value between 0 and 1. The table of values
from the Student’s t-distribution can be used to find this value. If the obtained ρ-value
is smaller the threshold chosen for statistical significance, then the null hypothesis is
rejected in favor of the alternative hypothesis. The significance level is usually chosen
as 0.10, 0.05, 0.01, or 0.001.

Figure 5.7: Grading system block diagramm.

5.2.4 SNR ranking

The signal to noise ratio (SNR) ranking for each feature can be obtained from [77]:

SNR=
µ1 − µ2
σ1 + σ2

, (5.48)
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Figure 5.8: Efficiency of the grading system based on SNR

where µ1 and µ2 are the means of features for subjects with the normal and abnormal
walk, respectively. σ1 and σ2 are the corresponding standard deviations. Intuitively,
a more efficient classification is expected to be achieved using features of higher
SNR values. The higher the SNR, the bigger the distance between the two groups.
Subsequently, after several trails, a total of 26 features with high SNRs were selected.

5.3 grading system

In this section, a novel grading system is proposed to quantify the gait characteristics
of a subject (healthy or patient). Figure 5.7 shows the block diagram of the system.
The novel grading system can be used to track the rehabilitation progress of patients.
The concept of the grading system is based on maximum ratio combining (MRC),
performed by

G=

N∑
i

FiWi , (5.49)

where N is the number of the selected features, Fi is the feature value, and Wi is the
weight of the contribution of each feature [101]. The grading system is trained using
the information of healthy participants to set the boundaries of the healthy region.
This region is based on the maximal, average and minimum values of the training
data as shown in Figure 5.8.
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Figure 5.9: Efficiency of the grading system based on LDA
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Figure 5.10: Efficiency of the grading system based on PCA

5.3.1 Results

In this section, the performance validation of the proposed grading systems is ana-
lyzed two-fold: First is the rehabilitation tracking; Second is the classification. The
features mentioned in Section 5.1 can be treated as significant if they allow for a dif-
ferentiation between normal and abnormal gait. In this part of the study, two groups,
each consisting of eight subjects, are involved. The first group includes subjects with
normal gait patterns, while the second group includes subjects with knee and hip op-
erations. The above-mentioned features are calculated for all the subjects, and those
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features with ρ-values less than 0.05 are considered significant [95]. Subsequently, the
optimal feature set is obtained using SNR ranking bigger than 1. The first grading
system utilizes the SNR values as the weight vector.

GSNR =

N∑
i

FiWSNR,i , (5.50)

The two other grading systems are based on the separation principle used by LDA
and PCA.

GLDA =

N∑
i

FiWLDA,i, (5.51)

GPCA =

N∑
i

FiWPCA,i. (5.52)

Here, the grading value G is calculated using the Eigenvectors of the LDA/PCA as
the weight values instead of the SNR values. LDA and PCA mainly differ in the
related orthogonal basis used for. LDA looks for a feature space on which to project
all data, such that the samples are maximally separated. PCA finds a feature space
based on the features deviation from the global mean in the primary directions of
variation in feature space [96]. The grading system has a training phase in which the
grading boundaries are defined in terms of maximum, minimum and average values,
i.e., Gmax, Gmin, and Gavg as shown in Fig. 5.8 to 5.10. Next, a test phase takes place
in which the evaluation of performance of the classification and the grading systems.
Based on the final feature set, a classification approach is also applied such that the
goal is to classify each participant as either a normal or an abnormal gait pattern.
In this context, supervised and unsupervised classification schemes are considered.
As a result of the theorem of “No Free Lunch” [97], there is no optimal classifier.
Alternatively, three different classifiers are evaluated in this study: LDA, PCA and
naive Bayes (NB). The final feature set is used for the classification of eight patients
and eight control subjects in the training phase to define the decision boundaries
for the group separation. Once the decision boundaries are specified, the test data
from eight patients and eight control subjects are used to verify the classification
efficiency. Table 5.2 compares the three considered classifiers in terms of accuracy,
sensitivity, and specificity. These results are also reflected in Fig. 5.8 to 5.10, where
the participants with grades between Gmax and Gmin are considered as healthy
(control) ones. Finally, Fig. 5.11 depicts the time correlation between the grades
and the days after the operation. It is clearly seen that the grades increase with
the days after the operation with all considered grading systems. This means that
the proposed grading systems are able to objectively quantify the gait performance
and the rehabilitation progress based on the final features set derived from the gait
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Table 5.2: Classification results

Classifier Accuracy Sensitivity Specificity

PCA 85.7% 85.7% 85.7%
LDA 90% 90% 90%
NB 88% 88% 88%

Figure 5.11: Assessment of the rehabilitation training.

analysis. Moreover, it is possible to provide a numerical performance comparison
of patients. From Fig. 5.8 to 5.11, it can be concluded that the LDA-based grading
system is preferred for two reasons: First, it has a high classification accuracy, and
second, it has the highest grading-time correlation, and hence it has a better tracking
capability. Additionally, it is possible to obtain an individual profile by calculating
the grade of each feature separately.

5.3.2 Acoustic feedback for rehabilitation

The direct mapping of sound based on data and interactions is defined as sonifica-
tion [102]. In this work, gait sonification means the direct rendering of biomechanical
parameters to electronic sound to make it audible for subjects via headphones. Us-
ing the lower body joint angles calculated in Chapter 4 and the Csound interface
for Android, it is possible to map an increasing pitch change utilizing the knee joint
speed during the stretching phase and the IC events. The IC and the TOE walking
events from gait were emphasized with low frequencies for easy detection of the
stance phase. During the first four minutes of all rehabilitation sessions, the sub-
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Figure 5.12: Wearable system setup consisting of seven IMUs, an Android tablet and head-
phones.

jects receive RTAF based on their own gait parameters followed by acoustic model
sequences (AMS). This RTAF sequence structure was followed until the completion
of the rehabilitation session. The acoustic models were created and developed based
on the extracted features and the speed, weight, height, and step cadence using the
software MATLAB. The acoustic model sequences were exported to the Android ap-
plication to perform real-time feedback. Prior to the first rehabilitation session of
each experimental subject, a gait test was performed to determine the gait cadence
and initial settings to be used in the acoustic model sequence.

Figure 5.13: Gait speed comparison between the experimental and the control patient group
with and without RTAF during the rehabilitation sessions. Striped bars represent
the experimental patient group with real-time acoustic feedback.

5.3.2.1 Results

Evaluation and verification of the RTAF rehabilitation approach are performed using
the grading system based on LDA. Figure 5.17 shows the comparison of the grades
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Figure 5.14: Gait cadence comparison between the experimental and the control patient group
with and without RTAF during the rehabilitation sessions. Striped bars represent
the experimental patient group with real-time acoustic feedback.

Figure 5.15: Gait length comparison between the experimental and the control patient group
with and without RTAF during the rehabilitation sessions. Striped bars represent
the experimental patient group with real-time acoustic feedback.

Figure 5.16: Individual performance comparison between an experimental and a control pa-
tient during the two weeks study

between the experimental and the control patient group using the proposed RTAF.
In both cases, there is a positive correlation with the rehabilitation sessions, but the
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Figure 5.17: Individual performance comparison between an experimental and a control pa-
tient during the two weeks study

grade of the experimental subjects increases faster, very likely due to the positive ef-
fect of the acoustic feedback. It is possible to observe an improvement in the grade in
the experimental group. In Figures 5.13 to 5.15, a notable improvement in the gait pa-
rameters is observed in the experimental group using the real-time acoustic feedback
for the gait speed, the gait cadence, and the gait length. The acoustic feedback makes
it easier for the experimental subjects to identify the cadence tempos and movement
patterns and adapt themselves more precisely [103].

The grading system is not only able to objectively quantify the gait performance
and the rehabilitation progress but also can provide a numerical performance, moni-
toring, and tracking. Figure 5.16 shows the individual performance of one experimen-
tal subject and one control subject. Hereby, it is also possible to create an individual
profile and use the grading system to adjust the RTAF corresponding to the individ-
ual performance and specific impairment. The outcomes from this study evidence
positive effects of the real-time acoustic feedback. The results regarding the first reha-
bilitation training sessions are similar for both groups due to the adaptation phase to
the feedback. After the adaptation phase, it is possible to see that the variance in the
experimental group is lower than in the control group. These results agree with pre-
vious studies pointing to strong associations between the auditory and motor areas
of the brain [104, 105].

5.4 concluding remarks

The main goals investigated in this work are twofold: First, the use of signal pro-
cessing methods for individualization and quantification of rehabilitation or therapy
methods. Second, reduction of the rehabilitation duration. Hereby, the most sig-
nificant features are extracted in real-time from gait signals belonging to healthy
participants without any pathological background and patients who underwent hip
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surgery. Based on these features, the RTAF is created utilizing the individual gait
patterns of each subject. According to the results, the grading system is able to
track and objectively quantify the rehabilitation course for each subject. The RTAF
supports the subjects when they are performing the tasks during the rehabilitation
session so that they are able to adjust their motion pattern to the acoustic feedback.
Therefore, the proposed application for wearable IMU platforms which is able to
precisely quantify the rehabilitation progress associated with hip surgery, create and
sonify the most important gait cues, and classify the experimental and control group
objectively. Our proposed approach allows mobile and comfortable therapy. Further
signal processing schemes and an extension of the sonification will be the subject
of future investigations. The final goal is to develop a medically approved system
with an individualized and adjustable solution that can be applied to daily clinical
practice.





6
D I G I TA L T W I N S O F G A I T K I N E M AT I C S

The main goal of new wearable sensor systems (WSSs) is to provide a variety of
practical applications for gait assessment to anybody, anywhere, any time. Therefore,
the next generation of WSSs exhibit reduce number of physical sensors, easily inter-
pretable and reliable data. To achieve this, WSS have to overcome different types
of impairments in the gait signals and sensors. This chapter focuses on the concept
of “digital twin (DT)”, which allows reducing of number of physical sensors by in-
cluding a “virtual” sensors. The DT investigated in this thesis is based on memory
polynomial model (MPM) and deep learning (DL) methods.

Figure 6.1: Overall system concept: The gait kinematic data x(n) are collected and processed
with ML methods in the Android application for digital and biomedical healthcare
systems. On the left side, the traditional sensor fusion algorithm based on KF
estimates the lower limb joint signals using the information from several IMUs. On
the right side, the novel ML approach estimates the lower limb joint angles based
on the information of only one IMU placed on the foot. The dashed line represents
the reference data y(n) for the training and test phases of the ML approaches.

73
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6.1 related work

WSSs allow extensive data acquisition in a simple and convenient way regarding
their portability and flexible attachment to any part of the body (e.g., lower limbs,
upper limbs, torso, Etc.) [106–109]. Among them, IMUs are of particular interest to
scientists and engineers in diverse application fields due to their small size, low cost,
lightweight, good precision, and non-invasive characteristics [47, 54, 110, 111]. An
inertial sensor performs multi-parameter sensing, such as 3D linear acceleration, 3D
angular velocity, and 3D magnetic field, and thus allows to capture of a wide range
of locomotor activities and patterns [51, 112]. The main challenge here is to analyze,
extract and translate the relevant information on normal and pathological gait behav-
ior into practical and affordable interventions. The high dimensionality poses this
and great diversity of the gait data, as well as the time and effort involved in the
sensor placing and configuration [44, 48, 113–115]. The issue concerning the high
dimensionality of the gait data has been solved by applying conventional dimension
reduction techniques such as PCA and LDA [116]. In [117], PCA is applied to get a
smaller set of features for the classification of gait data recorded by a multi-sensor
wearable system. A similar approach was used in [118] to classify subjects using one
IMU placed at different body locations.

To keep the system complexity as low as possible, one solution approach is to re-
duce the number of sensors in the WSS via sensor virtualization or “digital twins”
[46, 119]. The digital equivalent can replace the physical counterpart (see Figure 6.1)
and requires no special knowledge of the physical structure of the human biomechan-
ics, which in the case of the human movement is complex [120]. In other words, by
applying signal and statistical processing methods to data from a smaller number of
sensors, the remaining sensor signals can be estimated rather than being directly mea-
sured. The authors in [119] proposed a novel MPM for the estimation of the lower
limb joint angles based only on the magnitude of the acceleration signal of one IMU
located at the ankle. In [46], an extended Kalman filter (EKF) was used to estimate
the vertical hip acceleration and sagittal trunk posture by applying a heuristically
modified Fourier series model based on the vertical acceleration and sagittal angular
velocity from one IMU placed at the ankle. A novel double-pendulum model was
proposed in [121], in which a small number of sensors attached on both sides of the
shank were used to estimate the movements of the thighs. The feasibility of the esti-
mation of gait kinematics with a reduced number of sensors has been demonstrated
in previous studies. This serves as the basis for the realization of high-precision, ro-
bust, and customizable digital twins capable of replacing hardware sensors, which is
an excellent advantage for diverse digital healthcare and bioinformatics applications.
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Nevertheless, the most promising way to utilize the vast amount of gait data gen-
erated by modern wearable sensors is the use of ML [122] due to its capability of
integrating both stochastic and computer science for identifying patterns in large
data sets [123]. In the field of gait analysis, healthcare, and bioinformatics, ML is ap-
plied in general to either the task of classification or estimation. Regarding the first,
multiple studies have been conducted in the field of gait analysis, such as activity or
gait phases recognition [124–127]. In [128], the authors trained a convolutional neu-
ral network (CNN) based on linear acceleration and angular velocities from inertial
sensors to automatically classify human activities. A similar approach was proposed
in [92], where the data from five different sensors placed on the body were collected,
and a CNN was trained for subject identification.

Regarding estimation, many studies apply ML and deep learning to simulated gait
data obtained from the markers of camera systems to assess lower limb kinemat-
ics [129–131]. In [132, 133], a generalized regression neural network (GRNN) was
trained to estimate foot, lower leg, and thigh kinematics in the sagittal plane from
emulated 2D foot acceleration signals from a complex camera system and four IMUs
during walking. In [130], a multilayer perceptron (MLP) was used to simulate the
complexities of lower limb motions together with a camera system as input data for
the neural network (NN). Few studies have applied deep learning techniques for es-
timation tasks with real kinematic data. A deep CNN was proposed in [134] for gait
parameter extraction based on one IMU attached to the shoe. The authors in [135]
obtained a value of 7◦ root mean square error (RMSE) in the estimation of the knee
joint angle with mechanomyography signals and a CNN.

The potential of NNs and deep learning for modeling the nonlinear relationship
of lower body joint angles from foot movement and its applicability as a “digital
twin" for gait kinematic analysis has not yet been explored. Therefore, unlike the
aforementioned studies, this work evaluates the performance of different approaches
in modeling lower body joint angles using nonlinear methods and the gait kinematics
records of a single IMU attached to the foot. The capability to monitor the subject’s
rehabilitation is also evaluated.

6.2 modeling aproaches

The representation of real objects or events applying mathematical statements is de-
fined as modeling. Modeling is divided into two classes, physical and behavioral
modeling [136].
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6.2.1 Physical models

For this class of models, the theoretical rules describing the interactions between
elements in the system, their constitutive relations, and the knowledge about the real
system are required. This modeling class is appropriate for muscle level simulation
and can be very accurate, and complex [136, 137].

6.2.2 Behavioral models

A black box or behavioral model does not require prior knowledge of the physical
systems. Its structure consists of the relation between input and out measurements
[136]. The model parameters are identified from the input and output measurement
data. As a result, the characteristics of data obtained from the measurement, such as
the method applied, the execution of the measurement, and the quality of data, affect
the model accuracy [138]. This model is appropriate for gait data analysis due to the
vast amount of available data. Therefore, all the models investigated in this thesis are
behavioral.

6.3 polynomial models for joint estimation

The human gait is a complex process that includes acting and synchronizing many
different muscles. In reality, the lower body joint angle estimation depends on previ-
ous gait kinematic data and the current gait kinematic data of the sensor. This phe-
nomenon is called the memory effect, or simply temporal dynamics. These memory
effects are due to continuous activations of the muscles and the transitions from one
gait phase to the next one. It can be observed as asymmetries in the lower body joint
angles y(n) from the left and right sides and dependent variations in the magnitude
of the gait kinematic signals x(n). For higher accuracy applications, e.g., rehabilita-
tion, the memory effects become severe and cannot be ignored. Hence, memory-less
models are not accurate enough [136]. Therefore, a model which considers memory
effects should be used for such applications. Different nonlinear models with mem-
ory are presented and compared to the memory polynomial model in the following
sections.

6.3.1 Volterra model and special cases

The Volterra model can be used to describe any nonlinear stable signal with fading
memory, with an arbitrary small error [139]. However, its main disadvantages are the
huge increase in the number of parameters with respect to nonlinear and memory
length, which causes a large increase of complexity in the identification of model
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parameters [136]. This is the reason why it is highly unpractical to use the Volterra
model for signals with high nonlinear orders and memory lengths. This Volterra
model can be expressed mathematically as follows [140]

y(n) =
∑
k

∑
l1

. . .
∑

l2k+1h2k+1(l1,l2,...,l2k+1)

k+1∏
i=1

(x(n− li))

2k+1∏
i=k+2

x∗(n− li) . (6.1)

From the equation above it is clear that the number of coefficients of the Volterra
model increases exponentially as the memory length and the nonlinear order in-
crease [140]. As mentioned above, the Volterra model is unpractical for modeling
lower body joint angles in real-time applications. This reason motivated researchers
to look for simplifications of the Volterra model. The Wiener, the Hammerstein, and
the Wiener-Hammerstein models and their parallel versions are included in the cate-
gory of special cases of the Volterra model for modeling nonlinear signals [136]. The
Wiener model consists of a linear time invariant (LTI) system followed by a memory-
less nonlinearity. The Hammerstein model is a memory-less nonlinearity followed
by an LTI. The Wiener-Hammerstein model consists of an LTI system followed by a
memory-less nonlinearity, which is in turn followed by another LTI system. The par-
allel Hammerstein model is an extension of the standard Hammerstein model. The
main difference between the parallel Hammerstein and the standard Hammerstein
models is that in the parallel Hammerstein model, different static nonlinear orders
are filtered with different LTI systems [136, 140].

6.3.2 Comparison to MPM

Comparing the MPM with the Hammerstein model, it can be observed that the Ham-
merstein model is a particular case of the MPM when only the odd polynomial terms
are considered for the nonlinearity of the Hammerstein model [136]. When compar-
ing the MPM with the parallel Hammerstein, it is observed that the MPM is equiv-
alent to the parallel Hammerstein model. It can also be shown that the MPM is a
special case of the parallel Wiener model [140]. In summary, when considering poly-
nomial types of nonlinearities, both the Wiener and the Hammerstein models are
special cases of the Volterra model [136]. In fact, it can be shown that the MPM is
equivalent to the parallel Hammerstein model [136]. In [140], the author shows that a
MPM is a special case of the parallel Wiener model. The parallel Hammerstein model
includes the Hammerstein model as a special case, and the parallel Wiener model in-
cludes the Wiener model as a particular case. Hammerstein and Wiener models are
the most specialized with the least number of coefficients but are by no means the
easiest to identify. The MPM however, offers a good compromise between generality
and ease of parameter estimation and implementation [136, 140, 141]. In this work,
the MPM is investigated and applied to model the lower body joint angles.
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Figure 6.2: The memory polynomial model.

6.3.3 The memory-polinomial model for joint estimation

The memory polynomial model (MPM) consists of several delay taps and nonlinear
static functions [141]. In this model, the amount of parameters is considerable low
due to the truncation of the general Volterra model. The truncation consist only in the
diagonal terms of the kernels [136]. The model is shown in Fig. 6.2 and 6.3. A MPM
considering memory effects and nonlinearity is given by the following equation [136]

y(n) =

Q∑
q=0

K∑
k=1

ak−1,q|x(n− q)|(k−1)x(n− q), (6.2)

where x(n) is the gait kinematic signal, y(n) is the joint angle, ak,q are the model
parameters, Q is the memory depth and K is the order of the polynomial. Equation
6.2 can be rewritten as follows

y(n) =

Q∑
q=0

Fq(n− q) (6.3)

= F0(n) + F1(n− 1) + . . .+ FQ(n−Q), (6.4)

where

Fq(n) =

K∑
k=1

ak,q|x(n)|
(k−1)x(n) (6.5)

= a1,q|x(n)|+ a2,q|x(n)|
2 + a3,q|x(n)|

3 + . . .+ aK,q|x(n)|
K. (6.6)
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Figure 6.3: MPM implementation

6.3.4 Memory polynomial model identification

The parameter identification of the MPM is very easy compared to other models
[136]. The coefficients are calculated from the training data using least squares (LS).
The process can be explained as follows: The matrices Y and H are defined as [136]

Y = [y(n) y(n+ 1) . . . y(n+N− 1)]T (6.7)

H = [H0 Hq HQ] (6.8)

Hq =


h1,0(n) h2,1(0) h3,1(n) · · · hK,q(n)

...
...

. . .
...

h1,0(n+N− 1) h2,1(n+N− 1) h3,1(n+N− 1) · · · hK,q(n+N− 1)


(6.9)

with
hk−1,q(n) = |x(n− q)|k−1x(n− q) , (6.10)

where y(n) are the lower body joint angles andN is the length of the data. The model
parameters are defined by

a = [a0 . . .aq . . .aQ]T , (6.11)

with
aq = [a1,q a2,q a3,q . . . aK,q] . (6.12)

The following equation describes the relation of the model parameters and the gait
kinematic signals

Y = Ha . (6.13)

To achieve the minimum RMSE between the reference and the estimated joint angles,
the estimated parameter matrix â can be calculated from the following equations

(HH∗)(H∗H)−1 = 1 , (6.14)
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where H∗ is the conjugate transpose of H, also known as the Hermitian transpose of
the matrix. The equation 6.13 can be rewritten as

(HH∗)(H∗H)−1Y = Ha . (6.15)

The parameter matrix a can be approximated according to the LS criterion by â as
follows

â = H∗(H∗H)−1Y , (6.16)

where
â = [â0 . . . âq . . . âQ]T (6.17)

and
H+ = H∗(H∗H)−1 , (6.18)

where H+ is the pseudo inverse matrix of H defined above. With 6.18 it is possible
to rewrite 6.16 as

â = H+Y . (6.19)

The joint angles can be estimated from the gait kinematic input signals and the esti-
mated parameters as follows:

Ŷ = [ŷ(n) ŷ(n+ 1) . . . ŷ(n+N− 1)]T (6.20)

= Hâ =

Q∑
q=0

Hqâq , (6.21)

The the error between the reference and estimated joint angles can be defined as

E = Y − Ŷ = [e(n) e(n+ 1) . . . e(n+N+ 1)]T . (6.22)

The least square estimate is defined to minimize the ||E||2.

6.3.5 Results

The first attempt of realizing digital twins for gait rehabilitation is to determine kine-
matics (joint angles) of the lower limbs using only the accelerometer data of the IMUs
placed at the feet. This includes also the following signal processing steps. The raw
accelerometer data (S∈RN×3) of relevance for gait analysis is contaminated with var-
ious noise factors such as motion artifacts, step impacts, sensor orientation and loca-
tion related noises. In order to overcome this problem, the norm of the accelerometer
signal is calculated and used as input for the MPM. This step is calculated by

x(n) = ||S(n)||2 =
√
|Sn,1|2 + |Sn,2|2 + |Sn,3|2 , ∀n ∈N (6.23)
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Figure 6.4: Performance comparison of MPM for different nonlinearity orders K. Triangle
markers represent the all-order terms. Circle markers represent the even-order
terms. Square markers represent the odd-order terms. The optimal values can be
found, where the NMSE is minimized.

where S(n) is a row vector of the matrix S. The signal x(n) is then filtered using
a Butterworth low-pass filter with a cutoff frequency of 7 Hz to reduce the high-
frequency components. Due to the dynamic gait pattern, the length of each gait cycle
differs from one cycle to another and from one participant to another. To remove the
person-related features of walking speed and step period, we need to normalize the
gait cycles. Therefore, the gait cycle is detected using the ZUPT detection algorithm
from Section 4 to find the ICs [142–144]. Afterward, gait cycle normalization can be
performed by resampling the data to a cyclic length of 100 samples [145]. The data
recorded in this study were used to define the left and right gait cycle independently
for each side. The total amount of cycles for each participant was set to 50. The
biomechanical signals used as references for this study are the lower body joint angles
(hip, knee, and ankle). To estimate above-mentioned joint angles, the sensor fusion
technique based on a KF from Section 4 is applied [146]. To assess the efficiency
of the MPM in simulating the lower body joint angles, the MPM is implemented
in MATLAB, followed by the estimation of the model parameters K and Q. The
performance of the MPM is evaluated twofold: First, the system concept is evaluated
with the data from the 18 participants to prove the possibility of modeling the desired
signals using the data from the accelerometer at the foot. Second, the generation of
a model and its cross-validation using the normalized mean square error (NMSE)
is carried out to evaluate the MPM performance. Hereto the data from different
participants are used to estimate the desired lower limb joint angle signals. The
nonlinearity order K and the memory depth Q have to be determined, respectively.
The nonlinearity order delivering the minimum value of NMSE is used to determine
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Figure 6.5: Performance comparison of MPM for different values of the memory depth pa-
rameter Q using the optimal values of K. Triangle markers represent the all-order
terms. Circle markers represent the even-order terms. Square markers represent
the odd-order terms.

the memory depth. Fig. 6.4 shows the MPM performance in terms of mean NMSE
for all participants as a function of the nonlinearity order for hip, knee, and ankle
angles for all the participants according to

NMSEavg(dB) = 10 log10

 1P
P∑
p=1

N−1∑
n=0

|yp(n) − ŷp(n)|
2

N−1∑
n=0

|yp(n)|2

 . (6.24)

Here, yp(n) is the joint angle signal of the p-th participant and ŷp(n) represents the
modeled joint angle signal using the participant specific model. P is the number of
investigated participants. This is achieved taking into account either all, even or odd-
order terms. An optimal solution is given, where the NMSE is minimized. Having the
nonlinearity order estimation, the memory depth of the MPM model is determined.
Fig. 6.5 shows the results of mean NMSE vs. memory depth for hip, knee and ankle
angles. The NMSE results for the evaluation of the required memory depth Q show
no minimum as for the estimation of the nonlinearity order K. Therefore, we select
Q such that an NMSE of at least -20 dB is reached, which for the investigated signals
relates to an absolute error of approximately 5° (4°, 6° and 4° for the joint hip, knee
and ankle angles, respectively).

Fig. 6.6 shows the estimation of the joint angles using the MPM and the optimal
values for K and Q. It is seen that an NMSE of about -20 dB can be achieved for each
joint angle at different values of order and memory depth. For ankle and hip angle
modeling an order K = 6 and memory depth Q = 75 samples is sufficient to achieve



6.3 polynomial models for joint estimation 83

40 42 44 46 48 50

-20

0

20

40 42 44 46 48 50

0

20

40

60

40 42 44 46 48 50

-20

0

20

Figure 6.6: Estimation of the joint angles using the MPM and the optimal values for K and Q.
The blue solid line represents the reference signal. The red dashed line represents
the estimation.

the given accuracy, whereas this is achievable for the knee angle at K= 6 and Q= 200

as shown in Tab. 6.1. These results show the polynomial’s capacity to model lower
body joint signals.

To evaluate the MPM for the estimation of lower body joint angles, the cross-
validation technique is applied. Cross-validation is normally used in machine learn-
ing to estimate the capability of a model on new data sets. For the cross-validation
analysis the data is separated in subsets, namely, training and test. The procedure is
often called ξ-fold cross-validation. In this part of the analysis, the value of ξ is set
to 10 for the evaluation of the MPM. The training set is formed using the 70% of the
data and the remaining 30% is allocated for the test set. The training and test sets
contain data from different participants. Therefore, the test set is unseen data for the
MPM. The results of the capability of MPM are depicted in Fig. 6.7. It can be seen,
that the test set estimated and reference signals differ more significantly compared to
the training set. The related estimation performance in terms of mean NMSE using
the estimated coefficients a from the training set amounts about -12 dB, -15 dB and

Table 6.1: Optimal parameters for the MPM of different joint angles based on an IMU located
at one foot.

K Q

All Even Odd All Even Odd

Hip 6 4 3 75 100 >300

Knee 6 4 3 200 100 >300

Ankle 6 4 4 75 100 150
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Figure 6.7: Cross-validation estimation results of the joint angles using the proposed MPM
and the optimal values for K and Q. The blue solid line represents the reference
signal. The red dashed line represents the estimation.

-7 dB for the hip, knee and ankle, respectively. The reason for the inferior NMSE
results is the high dynamic nature of gait patterns on the one hand, and on the other,
the limitations involved in data recording. On this basis, significant analysis on large
data sets as well as different placements of IMU sensor to record accelerometer data
is the subject of investigations in our future work.

6.4 neuronal networks for joint estimation

A NN is a model whose layered structure is comparable to the networked structure
of neurons in the brain, with layers of connected nodes [147]. NNs can be trained to
recognize patterns, classify data, and estimate future events. A NN breaks down the
input into different layers of abstraction. Its behavior is defined by the way in which
individual neurons are connected and by the weights of those connections. These
weights are automatically adapted during training following a specified optimization
rule before the neural network achieves a desired level of performance. Regarding the
sequential and nonlinear characteristics of the kinematic gait signals, in this work we
considered GRNN, nonlinear autoregressive network with exogenous inputs (NARX)
and LSTM networks for black box modeling between the kinematic gait data and the
lower body joint angles in the sagittal plane. A brief introduction of the network
architectures is provided in the following sections.
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6.4.1 Generalized regression neural networks

Generalized regression neural networks (GRNNs) are used in different applications
related to modeling, system identification, prediction, and control of dynamic sys-
tems [148]. It has been shown that GRNNs can also be applied for joint angle estima-
tion using kinematic data, and it will be used in this work as a reference to compare
the performance of the different networks [132]. The GRNN is a single-pass neu-
ral network that uses a Gaussian activation function in the hidden layer [149]. The
model process is based on kernel density estimation from a set of inputs x (kinematic
data) and outputs y (joint angles). The GRNN estimation applies the conditional
expectation of output ŷ(n) given the input x [132]:

ŷ(x) = E[y|x] =

∫
yp(y,x)dy∫
p(y,x)dy

, (6.25)

where p(y|x) is the conditional probability density function [149]. It is possible to
estimate the joint probability density p̂(y,x) given by [132, 148]:

p̂(y,x) =
1

K

K∑
i=1

1

(2π)(D+1/2)ε(D+1)
e
−

(
(y−yi)

2+‖x−xi‖2
2ε2

)
, (6.26)

where D is the dimension of the input data. After simplifying the integrals in the
numerator and denominator, the final expression of the estimator is given by [132,
148]

ŷ(x) =

∑K
i=1yie

(−‖x−xi‖2/2ε2)∑K
i=1 e

(−‖x−xi‖2/2ε2)
, (6.27)

where the parameter ε is the bandwidth of the Gaussian kernel.

6.4.2 Recurrent neural networks

A feedforward neural network (FNN) or multilayer perceptron (MLP), is a network
model in which the information is processed through interconnection of different
nodes (units or neurons) and different activation functions φ. The neurons are
grouped into different layers l. The layers are interconnected using weighted con-
nections Wl

ij, where Wl
ij is the weights matrix connecting the neurons in layer l

with the neurons in layer l + 1. The activation functions project the input infor-
mation to a space in which it becomes separable. The relation between the input
xlt = (xl1, . . . ,xlT ,) ∈ IRDixT and output ylt = (yl1, . . . ,ylT ,) ∈ IR3xT sequences of a
neuron is define as follows:

yl+1t = φ(Wl
ijx
l
t +b

l) , (6.28)
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Input layer Output layerHidden layer

Figure 6.8: Architecture of a RNN with an input, a hidden and an output layer. The network
maps the input sequence xDi,t to a hidden sequence hn,t and to a sequence of
outputs ym,t. The parameters Di, n and m are the number of signals, the number
of hidden units and the number of outputs, respectively. Wxh, Whh and Why are
the input to hidden, hidden to hidden and hidden to output matrices, respectively.
The bias vectors of the network are represented by bh for the hidden layer and by
by for the output layer.

where bl is the bias associated to the neurons in layer l. The last layer of a MLP
is defined as the output. Typically, MLPs use fully-connected layers, in which each
neuron of layer l is connected to the all neurons of the layer l + 1. The principal
limitation of MLP, is the assumption that the inputs and outputs are independent
from each other. In the case of gait kinematic data, it is important to include tempo-
ral information in the network. Recurrent neural networks (RNNs) can model time
series, audio, video, anything that is presented by means of data sequences. In the
sequence data, the present values depend on their past values, as it is the case for
the joint angles. RNNs are able to learn arbitrary nonlinear dynamical mappings,
such as those commonly found in nonlinear time series prediction [150]. They are
not only of interest for the prediction of time series but also generally for the control
of the dynamical systems. In [151, 152], the authors explored the possibilities of knee
and ankle angle prediction using the surface electromyography signal by applying
NARX and LSTM networks. They proved the efficient applicability of recurrent neu-
ral network based nonlinear models for predicting human lower limb joint angles.
Compared with FNN, where the data flow occurs only in one direction, RNNs apply
a back-coupling which results in an asynchronous data flow between nodes. The
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Figure 6.9: A NARX network with series to parallel architecture. The TDL blocks introduce
past values (memory effect) of the input and output signals to the network

architecture of a simple RNN is similar to that of a MLP, except that the output of
the neuron in hidden layer is fed back to itself with a weight and a time delay as de-
picted in Figure 6.8. The feedback of previous hidden values (memory effect) allows
the network to learn the temporal dynamics of sequential data. A RNN maps a input
sequence xlt to a sequence of hidden values hlt = (hl1, . . . ,hlT ) and outputs a sequence
ylt iteratively using the following equations:

hlt = φ(W
l
xhxt +W

l
hhh

l
t−1 +b

l
h) , (6.29)

ŷl+1t =Wl
hyh

l
t +b

l
y , t= 1,2, . . . ,T (6.30)

where φ(.) is the hidden layer activation function, W the weight matrices (Wl
xh is the

input to hidden weight matrix, Wl
hh is the hidden to hidden weight matrix and Wl

hy

is the hidden to output weight matrix), blh is the hidden bias vector and bly is the
bias vector of the output.

6.4.2.1 Nonlinear autoregressive network with exogenous inputs

Nonlinear autoregressive network with exogenous inputss (NARXs) have been con-
sidered as a good predictor for time series problems and used to model various
nonlinear dynamic systems [153]. They provide the ability to incorporate past val-
ues of estimated output y(t) and exogenous inputs x(t). This property of the NARX
network makes it more suitable for the modeling problem as the time history infor-
mation of inputs (kinematic gait data) and past values of the output (estimated lower
body joint angles) carries a significant amount of information. The general mathe-
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matical relationship between inputs and outputs for a NARX neural network model
is represented as

ŷ(n) = φ(x(n), . . . ,x(n− p),y(n− 1), . . . ,y(n− q)) , (6.31)

where the value of the estimated output signal ŷ(n) depends on q previous output
values and p previous input values. φ(.) is the nonlinear mapping function and is
approximated by the FNN. The taped delay line (TDL) blocks introduce past values
(q and p) of the input and output signals to the network. Due to the advantages
over the parallel architecture, such as higher accuracy of the feedforward network
input, pure feedforward architecture and use of static backpropagation for training,
the serial to parallel architecture shown in Figure 6.9 is considered in this work. The
hyperparameters used for the training are explained in Section 6.5.1.2.

6.5 deep neuronal networks for joint estimation and rehabilita-
tion monitoring

Deep structured learning or hierarchical learning is inspired by the biological neural
networks’ structure and function [154]. It is based initially on the concept of multi-
layer artificial neural network (ANN) with the aim to learn data representations auto-
matically; thus, deep learning becomes the method of choice where the classification
features, if known at all, are complex, with no straight forward quantitative relation
to the raw data [154]. Typically, the term “deep” refers to the number of layers in
the variety of possible networks structures such as: FNN, GRNN, CNN, RNN and
LSTM a special kind of RNN. This thesis focus on models for gait applications such
as CNN and LSTM.

6.5.1 Long short-term memory network for joint estimation

Long short-term memory (LSTM) networks are a special type of RNN. The LSTM cell
reads the input time series sequentially and transforms the input data into a hidden
state at each time step, whereby the current hidden state is a nonlinear function of the
current input and the previous hidden state. The advantage of LSTM networks over
other types of RNN is that the dependency of the current on the previous hidden
state is designed in such a way that the LSTM obtains the ability to keep parts of
its hidden state over a larger number of time steps in comparison with other RNN
architectures, such as NARX. In [131], this type of network was used to estimate the
lower body joint angles with simulated kinematic data obtained from the markers of
a camera system. The main cell of a LSTM shown in Figure 6.10 is made of input,
output and forget gates. The concept of gate was introduced to avoid the problems



6.5 deep neuronal networks for joint estimation and rehabilitation monitoring 89

tanh

tanhsigmoid sigmoid sigmoid

Forget gate

Input gate

Output gate

Cell

Figure 6.10: LSTM cell. The cell can process data sequentially and keeps its hidden state h
over the time.

with vanishing or exploding gradients [155]. The LSTM cell remembers the values
over an arbitrary interval of time and the other gates can be seen as neurons with
an activation function based on the current data xt, a hidden state ht−1 from the
previous iteration, the weight matrices Wij and bias bi associated to the gates i and
j. The activation functions are sigmoid (σ) or tanh. The gates can be seen as the flow
regulator of values through the LSTM connections, and control which operation is
performed by the cell at each iteration. For the sake of clarity, the super index l has
been omitted. For a LSTM cell (see Figure 6.10), the evolution of its parameters are
determined at each iteration by

it = φi(Wxixt +Whiht−1 +bi) (6.32)

ft = φ(Wxfxt +Whfht−1 +bf) (6.33)

ot = φ(Wxoxt +Whoht−1 +bo) (6.34)

gt = φ(Wxgxt +Whght−1 +bg) (6.35)

ct = ftct−1 + itg̃t (6.36)

yt = ht = otφ(ct) , (6.37)

where it, ft, ot and ct are the input, forget, output and cell activation gates, respec-
tively. The weights Wij and biases bi of the gate connections are learned or updated
during the network training.
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Table 6.2: Input sets of the neural networks.

Signals 3D Acc A 3D Gyr G IMFs IF IE Total signals (D)

Set 1 x x 6

Set 2 x x x x 8

Set 3 x x x x x 24

Set 4 x x x x x x 40

Set 5 x x x x x x x 56

Number of signals 3 1 3 1 16 16 16

6.5.1.1 Dataset

For this work, 20 healthy subjects (mean age: 28±4 years, height: 181±3.5 cm) were
considered. The medical history of all participants showed no pathological findings
or surgical intervention in the lower limbs. The data recording was performed via
wearable wireless IMUs as described in Chapter 3. Only the three-dimensional lin-
ear acceleration and three-dimensional angular velocity signals were recorded for the
investigations using the WSS and an Android tablet. The lower limb joint angles
in the sagittal plane were calculated using the information from four IMUs and a
KF. The IMUs were placed on the right side at the foot, lower leg, upper leg and
the pelvis of the participants as shown in Figure 6.1. They were secured with tight
tape to reduce motion artifacts. Each participant performed a walk test in forward
direction of around 20 m at a preferred velocity, and subsequently five walking trials.
The kinematic gait data of the subjects were recorded and segmented in gait cycles.
In order to extend the information of the kinematic gait signals, for each gait cycle,
the norm of the acceleration and the gyroscope and the HHT were calculated. The
number of IMFs used in this work is two. Table 6.2 shows the different input sets
used to train the different networks. The input sets have the dimensions Di x 124400,
where Di is the total number of signals of each input set (i = 1, ...,5) and the length
of the kinematic signals is 124400 samples. The first input set comprised 3D linear
acceleration and angular velocity signals from the IMU on the foot. The second set
extends the information of the kinematic signals using the norm of the acceleration
and angular velocity. The third set includes the IMFs of the kinematic signals. The
fourth and the fifth sets additionally include the IFs and the IEs information, respec-
tively. The output of the networks are the lower body joint angles in the sagittal plane
with dimensions 3 x 124400.
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6.5.1.2 Network Training

The networks analyzed in this study were implemented in Matlab. They were trained
to model the relation between the kinematic gait data from one IMU placed on the
foot and the lower body joint angles in the sagittal plane. Five different sets of
kinematic signals (see Table 6.2) were used as input and reference lower body joint
angles in the sagittal plane as output. The input sets were divided in 80%/20% for
the training and test phases, respectively. The performance metric used to compared
the different networks is the RMSE, which is calculated according to

RMSE =

√√√√1

L

L∑
n=1

(y(n) − ŷ(n))2 , (6.38)

where L is the length of the signals. y(n) and ŷ(n) are the reference and estimation
signals respectively. The evaluation of the different networks is based on a 10-fold
cross-validation scheme to reflect random influences of the data. Due to the different
ranges of motion of the lower limbs and the amplitudes of input signals, a normal-
ization of the signals (training and test) is carried out separately. For that reason, the
signals are normalize to the range [-1,1] using the following equation

y ′ = 2
y−min(y)

max(y) −min(y)
− 1 (6.39)

where y ′ is the normalized reference signal. After the training phase, the signals
were scaled back to the original amplitudes.
Since ε is the only free parameter in GRNN the newtork was trained using a grid
search to find the optimal value for the ε parameter. The optimal value for ε was
determined experimentally and amounts to 1.3.

The NARX network includes three layers (an input layer, a hidden layer and an
output layer) and a feedback connection enclosing the input layer. In the input layer,
a TDL of two samples was experimentally found to achieve the best performance for
different number of neurons. A hyperbolic tangent function and a linear function
were selected as the transfer functions of the hidden and output layers. After an
iterative process to choose the number of neurons of the hidden layer, the optimal
number of neurons were set to 100. The optimization function applied was the scaled
conjugate gradient [156].

The structure of the LSTM network was built with three LSTM layers, a fully con-
nected layer and a linear layer. To prevent overfitting, dropout layers were used after
each LSTM layer. These type of layers drop nodes randomly on the hidden layers
during the training phase. The dropout rate was fix to 0.3. The LSTM network was
trained using the state-of-the-art Adam optimization method [157], which solves an
optimization problem viewed as an error function depending on the network param-
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Table 6.3: Average RMSE performance comparison of the different neural networks and in-
puts sets.

Set 1 Set 2 Set 3 Set 4 Set 5

GRNN
Hip (◦) 3.64 3.38 3.74 3.17 3.64

Knee (◦) 5.36 5.14 5.31 4.88 5.35

Ankle (◦) 5.21 4.67 4.88 4.53 4.69

NARX
Hip (◦) 2.64 2.53 2.71 2.52 2.86

Knee (◦) 3.25 2.92 3.28 2.31 3.62

Ankle (◦) 4.65 3.49 4.73 3.28 3.92

LSTM
Hip (◦) 2.37 2.11 2.32 1.91 2.68

Knee (◦) 2.87 2.64 2.95 2.12 2.82

Ankle (◦) 3.54 2.76 2.86 2.57 3.21

eters. The error measures the difference between the reference and the estimation
on the training input set. The backpropagation algorithm changes the weights and
biased of all layers with the goal of minimizing the error. In practice only random
subsets of the training data called mini-batches are given to the optimization algo-
rithm in one iteration of the training phase to improve the speed of the learning
phase [158]. Different mini-batch sizes were analyzed and the best tradeoff between
speed and performance was found to be 100. The weight initialization was performed
using Xavier [155]. The aim of weight initialization is to prevent layer activation out-
puts from exploding or vanishing during the course of a forward pass through the
deep neural network. The learning rate were set to 0.01. The training epochs were
set to 50, which was found to achieve a good trade-off between generalization and
classification accuracy, and at the same time avoids overfitting. A stop loss criterion
was applied to the training progress by evaluating the validation loss over the valida-
tion steps. The training was stopped if there was no improvement in the validation
loss during the last 3 validation checks. The configuration of the computer used for
training the networks consisted of an Intel® Core 10980XE™, 128 GB RAM and an
two NVIDIA GeForce RTX 2070 Super.

6.5.2 Results

In this section, the results achieved with the neural networks are presented. Table
6.3 shows the performance of different input sets in the nonlinear estimation of the
lower body joint angles in the sagittal plane using the proposed networks. Figure 6.11

shows the joint angle estimation using the GRNN. Figure 6.12 presents the joint an-
gle estimation using the proposed NARX network. Figure 6.13 shows the joint angle
estimation using the proposed LSTM network. The blue lines represent the reference
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Figure 6.11: Estimated lower limb joint angles in the sagittal plane using the GRNN with the
input set 4 and the reference lower limb joint angles from the wearable system.
Blue solid lines and red dashed lines are the reference and the estimated joints
angles, respectively.

joint angles and the red dashed lines represents the estimated joint angles. As seen
in Table 6.3, the LSTM outperforms the other NNs and achieves up to 1.85◦ and 0.63◦

better results for the estimation of the lower limb joint angles compared to GRNN
and NARX, respectively. According to previous studies [159, 160], the extension of
the information from kinematic signals through transformations and using signals
from accelerometer and gyroscopes improves the performance of the networks. In
this study, the best results in terms of RMSE, were found with the input set 4 and
an average RMSE of 1.91◦, 2.12◦ and 2.57◦ for the hip, knee and ankle joints angles
was achieved. The aim of this study was to evaluate the efficiency of nonlinear tech-
niques in predicting lower limb joint angles from one IMU placed on the foot and
provide an easy-to-use wearable system. Therefore, different neural network struc-
tures were investigated and the analysis framework was introduced. The first part
of the analysis was the segmentation of the gait signals using the gyroscope informa-
tion to find the IC and TOE events. Afterward, the gait information of each gait cycle
was extended by including the norm and the HHT. Five different input sets were fed
successively to train the NNs. The lower limb joint angles prediction improved using
the input sets 2 and 4 and the best results were achieved with input set 4. Due to
extension of information, the NNs were capable to learn the nonlinear relationship
between the foot movement and the joint angles and to reduce the estimation error.
The LSTM performed better than NARX and GRNN in terms of RMSE, respectively.
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Figure 6.12: Estimated lower limb joint angles in the sagittal plane using the NARX with the
input set 4 and the reference lower limb joint angles from the wearable system.
Blue solid lines and red dashed lines are the reference and the estimated joints
angles, respectively.

Figure 6.13: Estimated lower limb joint angles in the sagittal plane using the LSTM with the
input set 4 and the reference lower limb joint angles from the wearable system.
Blue solid lines and red dashed lines are the reference and the estimated joints
angles, respectively.



6.5 deep neuronal networks for joint estimation and rehabilitation monitoring 95

One possible reason for the better performance of RNN compared to GRNN is that
GRNNs are single-pass neural networks with no back propagation. Another reason
is that the GRNN do not incorporate the previous values for the estimation of the
joint angles. The performance difference between LSTM and NARX can be explain
due to the LSTM cell structure (see Figure 6.10). The cell has the ability to forget
parts of its previously stored memory, as well as to add parts of the new information
over a larger number of time steps.

Previous studies on the estimation of lower limb joint angles have been conducted
in the recent years. Nevertheless, in our work in the NN structure, the type of applied
sensors, the number of datasets and location of IMUs and the type of data (simulat-
ed/virtual kinematic) are different. In [130], an artificial NN is applied to simulate
the progression of angle values in the lower limbs, where the angles extracted from a
camera system are the inputs for the network, and the correlation coefficient between
the input and output signals serves as the performance measure. In [129], the lower
limb joint angles were estimated using a CNN with a camera system, 23 markers and
9 strain sensors. The RMSE results obtained in the sagittal plane for inter-participant
were 5.39◦, 6.38◦ and 3.92◦ for hip, knee and ankle, respectively. The authors in
[135] obtained a value of 7◦ RMSE in the estimation of the knee joint angle with
mechanomyography signals and a CNN. The outcomes reported in [131], 1.74◦, 1.92◦

and 1.80◦ for the hip, knee and ankle joint angles in the sagittal plane are comparable
with those in this work. However, the larger data set applied in their study and the
simulated kinematic data obtained from the markers of the camera system, which
do not include the soft tissue movements measured by IMUs, could explain the rela-
tively better performance in the estimation of the lower limb joint angles. According
to our studies, the pattern and range of motion of the lower limb joint angles varies
from one subject to another, and in particular those for the ankle and knee are less
consistent compared to those of the hip. A larger data set could further improve the
estimation results. In addition, the anthropometric differences and various walking
styles of the subjects can lead to individual biomechanical gait parameters, and thus
estimation errors, which can be tolerated to a certain degree.

6.5.3 Convolutional neuronal networks for rehabilitation monitoring

It has been shown that CNNs are suitable for processing multidimensional data [158].
They have the ability to learn a high level of abstraction and features by applying a
convolution operation to the raw input data. The CNN architecture used here is
based on the following building layers: Convolutional (Conv), batch normalization
(BN), rectified linear unit (ReLU), dropout (D), anterior posterior (AP), fully con-
nected (FC) and Softmax (see Fig. 6.1). A convolutional connection between layers
is defined by a set of Kl kernels h1, . . . ,hKl of length Ll and biases b1, . . . ,bNl . The
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Figure 6.14: Wearable System Concept: the gait kinematic data are collected and processed
with ML methods in an Android application for digital and biomedical health-
care systems. First step, data collection from patients with hip unilateral arthro-
plasty surgery. Second step, segmentation of kinematic signals in GC. Third step,
use of different IMUs and kinematic signals to train the proposed DCNN for re-
habilitation progress monitoring.

index l hereby represents a label for the layer. Given a multidimensional input vector
xd with d = 1, . . . ,Kl−1, the output of the convolutional connection is computed as
[138]

on = φ

(∑
d

hn,d ∗ xd + bn

)
, (6.40)

with n = 1, . . . ,Kl. To increase the stability of the CNN, BN normalizes the output
of the previous activation layer by subtracting the batch mean and dividing by the
batch standard deviation. The activation function φ used for this type of connection
is ReLU. Dropout layers work by probabilistically removing inputs from a previous
layer to the next one. The dropout parameter is defined as r. It has the effect of mak-
ing nodes in the network generally more robust to the inputs. The AP layers increase
robustness of the extracted features. The feature maps obtained by the convolutional
connection are downsampled by taking the average in temporal windows of length
p. The fully connected layer connects all outputs from the previous layer to all the
inputs on the next layer. This type of connection is defined by a set of weight vectors
W1, . . . ,WKl and biases b1, . . . ,bNl . Given a single-channel input vector x, the acti-
vation of the densely connected layer is computed by matrix multiplication as [138]

ak = ReLu

(∑
l

Wl,k ∗ xl + bk

)
, (6.41)

with k= 1, . . . ,Kl. Following the dense layer, a Softmax layer is applied. The Softmax
layer turns numeric output of the last linear layer of a multi-class classification net-
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Figure 6.15: Classification accuracy of one IMU applying the proposed DCNN for Pelvis (P),
Left Upper Leg (LUL), Left Lower Leg (LLL) and Left Foot (LF).

work into probabilities by taking the exponents of each output and then normalizing
each number with the sum of the exponents. The Softmax output vector adds up to
one. The last layer of the network is the classification layer. This layer uses the cross
entropy loss function for multi-class classification. The cross entropy loss function is
given by

c(y,m) = −ωmlog

(
eym∑M−1
u=0 e

yu

)
, (6.42)

where ωm is the loss weight of each class. ym and yu are the outputs to the different
classes. The index m = 0, . . . ,M − 1 refers to the number of classes, which in this
study is 10. Altough there are numerous advantages regarding the depth structure
of a DCNN, a drawback from a structure with several layers are the complicated
hyper-parameters as well as the choice of architectures, which increases the difficulty
to build an appropriate and efficient model. Despite there are several studies [161,
162] in the area of the parameter automatic optimization for deep architectures, this
procedure is extremely time-consuming and the optimal solution easily tends to con-
verge to a local minimum because of the considerable amount of parameters. Thus,
the DCNN model was build initially based on a few general design principles [163].
Then, different network configurations are tested using the kinematic data to look for
the best performance. The best architecture is set as final model.
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Table 6.4: Proposed DCNN architecture and hyperparameters.

Layer Parameters and functions

Input R x C x 1 x 98116

Convolutional
5x5, 256, ’same’, BN, ReLu, D (r= 0.5)
AP (2x2,Stride=1)

Convolutional
4x4, 128, ’same’, BN, ReLu, D (r= 0.2)
AP (2x2,Stride=2)

Convolutional 3x3, 96, ’same’, BN, ReLu

Convolutional 2x2, 48, ’same’, BN, ReLu

Fully connected 10 classes

SoftMax

Classification Cross Entropy

6.5.4 Results

The lower body gait kinematic data from twelve patients with hip unilateral arthro-
plasty were used for this study. The study lasted for two weeks excluding weekends
and the patients had to perform one rehabilitation session of 20 min per day after the
operation. The gait kinematic data were separated in different rehabilitation days (1
to 10). The 3D linear acceleration and 3D angular velocity were segmented into GCs
using the method described in Chapter 4. The kinematic data from each patient and
day were mixed together using different signals (linear acceleration and/or angular
velocity) and IMUs (pelvis, thigh, shank and foot) to build a larger dataset for train-
ing, validating and testing the DCNN network. The 4D input matrix dimensions (R x
C x d x S) of the each dataset fed into the DCNN depended on the number of IMUs
and gait kinematic signals. The total number of available input matrices S, after the
segmentation of the gait kinematic data of all twelve patients, is 98116. The num-
ber of channels d is 1. The columns C of the input data matrix is set to 1 GC (100

samples). The rows R of the input data matrix depends on the number of IMUs (1
to 4) and kinematic signals (3 to 24). In case of applying only one type of kinematic
signal (acceleration or angular velocity), the number of signals per IMU is 3. In case
of applying both kinematic signals (acceleration and angular velocity), the number of
signals per IMU is 6 (see Table 6.4).

To analyze the optimal placement of the IMUs and the impact of different kinematic
signals on the rehabilitation progress monitoring, the CNN was implemented in Mat-
lab and trained several times with different IMU combinations and signals. For all
cases, the training, validation and test data were randomly split into 70% | 15% | 15%,
respectively. For optimization, we used the adaptive moment estimation (ADAM)
method [157]. The mini-batch size and learning rate were set to 32 and 0.01, re-
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Figure 6.16: Classification accuracy of multiple IMUs applying the proposed DCNN.

spectively. The training epochs were set to 15, which was found to achieve a good
trade-off between generalization and classification accuracy, and at the same time
avoids overfitting. A stop loss criterion was applied to the training progress by eval-
uating the validation loss over the validation steps. The training was stopped if there
was no improvement in the validation loss during the last 3 validation checks.

Fig. 6.15 shows the classification accuracy for different locations of the IMUs and
the effect of combining different kinematic signals for the progress monitoring. It can
be seen that the classification accuracy for different sensors decreases as in the follow-
ing order: thigh (LUL), pelvis (P), shank (LLL) and foot (LF). The best results for one
IMU are achieved at the thigh with 3D acceleration and 3D angular velocity, since the
related sensor is directly located below the hip joint and therefore, the kinematic sig-
nals reflect the changes of the limb motion range during the rehabilitation progress.
The shank and the foot locations are not directly affected after the operation and thus
exhibit low classification accuracy. Figure 6.16 shows the classification accuracy for
more than one sensor and the effect of different kinematic signals. It is seen that us-
ing more sensors for the rehabilitation monitoring progress leads to an improvement
of the accuracy. For two IMUs, the thigh and the pelvis achieved the best results. For
three IMUs, the thigh, pelvis and shank led to the highest classification accuracy. The
effect of different kinematic signals (3D accelerometer and 3D angular velocity) of
the IMUs regarding the classification accuracy are not consistent for gyroscopes and
accelerometers. In the case of one IMU, the 3D angular velocity signals achieve better
results than the 3D acceleration for the pelvis and thigh. However, the 3D acceler-
ation signals achieve better results than the 3D angular velocity for the shank and
foot. This effect may suggest that upper limb locations are convenient for gyroscopes
and lower limb locations are more suitable for acceleration sensors. Therefore, the
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combination of the complementary information from different sensors, signals and
locations increases the classification accuracy.

6.6 concluding remarks

The main focus of this chapter is to investigate the efficiency of MPM, ML and deep
neural networks applied in joint angle modeling of the lower limbs using the kine-
matic records of a single IMU placed on the foot and application of CNN for the
rehabilitation monitoring using the kinematic data.

In the first part of this Chapter, the idea of memory polynomial modeling to sim-
ulate the physical mechanism of gait kinematics was presented. Therefore, the IMU
sensors used recorded kinematic data at the feet in order to model the hip, ankle
and knee joint angles in the sagittal plane. Using gait cycle normalization and the
LS estimation approach the MPM is identified and the optimal solution is obtained
using the normalized mean square error (NMSE). The performance of the MPM in
modeling the desired signals is verified and an absolute error of approximately 5°
(4°, 6° and 4° for the joint hip, knee and ankle angles, respectively) is achieved. The
MPM capability to estimate the desired signal using data from other participants was
examined. The NMSE differs from one joint angle estimation to another and the per-
formance is lower than the given NMSE in modeling. The initial work shows that the
MPM has potential in building digital twins for gait rehabilitation; however further
investigations need to be performed to improve the model accuracy. Thus, the fo-
cus of our future work is the improvement of the model performance using different
sensor placements, pre-processing and estimation approaches followed by significant
analysis on a larger data set.

The second part of the chapter compared three different neural networks approaches
with different input combinations was performed and the RMSE was used to assess
the estimation accuracy of the lower limb joint angles in the sagittal plane. The LSTM
outperforms the GRNN and NARX networks and achieves up to 1.85◦ and 0.63◦ bet-
ter results for the estimation of the lower limb joint angles, respectively. The best
results in terms of RMSE, were obtained with the input set 4 and an average RMSE
of 1.91◦, 2.12◦ and 2.57◦ for the hip, knee and ankle joints angles was achieved. Ac-
cording to the evaluation results, LSTM networks are very accurate in the estimation
of lower limb joint angles, and of great potential in building digital twins for gait
rehabilitation. Future research activities could focus on the lower limb joint estima-
tion using CNNs to reduce the estimation error, perform estimation more precisely
and simplify the preprocessing steps on the kinematic data. The application of the
proposed framework to bigger data set to achieve and establish a general applicable
system could be the subject of future studies as well. Looking ahead, this work sup-
ports the use of wearable sensors in combination with machine learning techniques
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for the estimation of lower limb joint angles in digital health and rehabilitation ap-
plications. Ultimately, the straightforward and easy use of the proposed wearable
system in the form of digital twins has considerable practical implications, and opens
new possibilities for in-field diagnosis and better prevention strategies.

The last part of this chapter investigated the application of the proposed DCNN
for the rehabilitation monitoring using the kinematic data of patients with unilateral
hip arthroplasty operation. The results show that the proposed DCNN is capable to
monitor the progress of the rehabilitation in response to a physiotherapeutic train-
ing. Therefore, the integration of machine learning and wearable sensor technology
provide an objective way to understand the changes on the human movement dur-
ing the rehabilitation process. A comprehensive analysis of multiple locations of the
wearable sensors for rehabilitation monitoring was performed with the gait kinematic
data from four IMUs located at different positions on the body: pelvis, thigh, shank
and foot, respectively. The effect of different type of signals (acceleration and angular
velocity) was also analyzed. The gait kinematic signals were segmented into GCs
and used as input for the proposed DCNN for rehabilitation progress classification.
For one IMU, the best results were obtained from the sensor placed on the thigh due
to the direct relation to the motion range of the hip. Future work will include the
analysis of the number of GCs and kernel size used for the DCNN input data.





7
C O N C L U S I O N S A N D F U T U R E W O R K

This research project has investigated different signal processing methods and ma-
chine learning architectures for digital healthcare systems based on smartphones.
This reliable and validated solution can be used in clinical and outdoor settings in su-
pervised and unsupervised scenarios. Smartphone-based solutions, combined with
wearable sensing units, can genuinely become a generalized and low-cost solution
for providing appropriate resources for quantitative movement analysis with an ex-
cellent clinical value, providing enhanced practical and mobility support to an aging
population.

While this thesis addresses many open issues described in the first chapter, such as
the quantitative statement on healthy and patient gait, the rehabilitation evaluation,
reduction of the number of sensors, increasing accuracy, development and optimiza-
tion of the classification for rehabilitation monitoring, assessment of the quality of the
rehabilitation and the problem of the amount of data generated by the systems among
others, there are other use cases and application-based conditions which may come
to light during the implementation the proposed framework in real-world scenarios.
Moreover, some limitations may restrict its direct application in various scenarios
and thus require future work. One such requirement may be that the framework
should be fast enough to be executed in near real-time. Currently, the prototype
application implementation is near real-time as it requires temporal windowing for
the feature extraction values in order to extract relevant information from every win-
dow. One approach to improve the performance would be to parse the kinematic
signal in small batches and run the algorithm over each such batch of data. The data
batches or windowing is necessary to adjust the algorithm to different gait speeds.
Also, currently, the machine and deep learning methods are implemented in MAT-
LAB® R2019b (MathWorks, USA) with in-built functions and routines. The process-
ing performance could be increased by moving the high-level language to the native
language, such as C/C++, and using faster scripts and functions for high calculation
operations. Another problem when monitoring a patient over long periods would
generate sensor data containing activities other than just walking, such as other daily
living activities. Integrating an activity recognition process could be a workable ap-
proach to select walking periods from the unprocessed kinematic data and use them
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for the proposed method. Thus for other tasks other than walking, the data could
be saved or neglected to save energy and increase battery life or even applied for
walking detection tasks to obtain better detection accuracies. The presented algo-
rithms have been tested and verified with a few patients with hip unilateral arthro-
plasty surgery. Therefore the number of participants is a current limitation. This was
because of the absence of pathological gait databases. Extremely challenging gait
patterns with undefined gait events would be the goal for further investigation and
analysis. For further development of gait analysis, it is necessary to conduct measure-
ments and studies in laboratory environments with fixed settings and perform more
studies and measurement campaigns to collect the patients’ daily activities and re-
habilitation sessions. The comprehension of patients’ actions and habits would yield
functional specifications such as system requirements, adjust the battery consump-
tion, data storage, feedback to patients, and develop reliable and robust algorithms.
Furthermore, homes, offices, and public transport will soon be equipped with several
sensors. Thus fusing the information from different sensing modalities would gen-
erate much deeper and contextual information about the patient’s movements and
activities and thus leading to newer solutions and improved support systems.
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