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Resumo

Caminhar é uma função essencial que facilita praticamente todas as atividades do dia a dia, como
ir para o trabalho, ir às compras, fazer o jantar, entre outras. Com a ocorrência de certas doenças,
como por exemplo neurológicas e musculoesqueléticas, esta função fica degradada, diminuindo
a confiança da pessoa ao caminhar. Isto faz com que haja um risco de queda maior, aumentando
também a dependência de outros para realizar as atividades do dia a dia.

A reabilitação da marcha é uma forma de restabelecer esta função. Consiste na repetição
continuada das diversas fases do ciclo da marcha. Feita corretamente, permite que o paciente
restabeleça a sua independência, diminuindo o risco de queda e aumentando, no geral, a sua
mobilidade. No entanto, sendo uma atividade complexa, avaliar a marcha torna-se uma tarefa
complicada e dependente da experiência do terapeuta.

O objetivo deste trabalho centrou-se no desenvolvimento de um algoritmo para reabilitação de
marcha. Este deve permitir aceder a parâmetros de marcha adequados para a avaliação do paciente
e oferecer feedback em tempo real enquanto realiza os exercícios de reabilitação.

Para realização do trabalho foi necessário obte reventos de marcha que permitissem determi-
nar parâmetros temporais. Após compreensão do sinal, foram usados detetores de picos como
peakdetect e algoritmo de Trahanias, para detetar quando o pé é retirado do chão. Para encontrar
o instante em que ocorre o pé é colocado no chão e se dá a absorção de choque foram usadas
wavelets. Para detetar o início e fim de marcha, foi usada a cross-correlation

Com o conjunto dos métodos apresentado foi possível obter uma precisão de 99% e uma
sensibilidade de 100% para deteção do instante em que o pé sai do chão com um erro de cerca de
0,04 segundos. Para deteção do instante em que o pé é colocado no chão obteve-se uma precisão
de 100% e uma sensibilidade de 73,7% com um erro de aproximadamente 0,06 segundos, com
comparação com sistema gold standard. Também foram implementados parâmetros de marcha
b temporais derivados destes dois instantes. Por fim, o sistema foi adaptado para funcionar em
tempo real, e dar informação a cada novo passo.
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Abstract

Walking is an essential function that facilitates practically every day-to-day activity, such as going
to work, going shopping, making dinner, among others. With the occurrence of certain diseases,
such as neurological and musculoskeletal, this function becomes impaired, reducing the person’s
confidence in walking. The person starts to have a higher falling risk, also increasing dependence
on others to carry out the activities of the daily living.

Gait rehabilitation is a way of restoring this function. It consists of the continuous repetition
of the various phases along the gait cycle. When performed in a correct way, it allows the patient
to re-establish his independence, reducing the falling risk and increasing his mobility in general.
However, being a complex activity, evaluating gait becomes a elaborated task and dependent on
the therapist’s experience.

The goal of this work was the development of an algorithm for gait event detection in the
context of rehabilitation rehabilitation. It should allow access to appropriate gait parameters for
patient evaluation and provide feedback in real time to the patient while performing the rehabili-
tation exercises.

In order to carry out the work, it was necessary to obtain gait events to determine temporal
parameters. Peak detectors such as peakdetect and Trahanias algorithm were used to detect when
the foot lifts from the ground. To find the instant when the foot is placed on the floor, the Wavelets
Transform was used. To detect start and end of gait, cross-correlation was used.

With the set of methods presented it was possible to obtain a precision of 99 % and a recall of
100 % for detection of the moment when the foot leaves the ground with an error of about 0.04
seconds. For detection of the instant the foot is placed on the ground, a precision of 100 % and a
recall of 73.7% with an error of approximately 0.06 seconds were obtained, comparing with a gold
standard system. Temporal gait parameters derived from these two events were also implemented.
Finally, the system was adapted to operate in real time, to give information to each new step.
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Chapter 1

Introduction

Walking is one of the most natural, common and essential physical activities of the human life,

which allows the body to move from one location to another [Perry and Burnfield, 1992] [Aminian

et al., 2002]. Cooking, going to work, running, going to see a movie, are activities dependent on

walking. However, sometimes there are certain neurological, muscular or other diseases that cause

changes in gait, causing gait impairments. The injured person begins to have higher dependence

on walking, having difficulties in carrying out the normal activities of the daily living (ADL),

losing the confidence in walking and increasing the risk of falling.

The development of science and technology has led to an increase in the average life ex-

pectancy, resulting in a rise in the aging population. In most developed countries, this is already

a social problem. According to [United Nations and Affairs, 2009], it is expected that by 2050

there will be about 3.5 working-age individuals for every old person. It is estimated that more

people will have fewer children, having less support in old age. On the other hand, with the rela-

tive decrease of younger people compared to older people who need care, there is already a lack

of rooms for people over 65 years old in healthcare centers [Zhang et al., 2012]. Compared to this

fact, rehabilitation centers are becoming crowded with patients, and with fewer human resources

to respond to all needs. One way to increase mobility in the elderly is to promote physical rehabil-

itation. With it, they remain active and dependent until later ages, and recover from neurological

or musculoskeletal diseases that may have occurred.

1.1 Problem and Motivation

In the presence of certain diseases that cause walking problems, rehabilitation comes as a solution

to restore the whole function to walk properly and increase mobility. Most rehabilitation studies

indicate that programs should begin as early as possible, be intense, and prolonged as possible

for effective function recovery, preferably near the patient’s home [Zampolini et al., 2007]. Gait

rehabilitation involves repetitive training. Gait relearning should be done soon after the patient is

ready for rehabilitation, without having to wait weeks.

1
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Not all patients have access to rehabilitation, for several reasons. Some patients live in more

isolated places far from rehabilitation centers, or are in wheelchairs, having higher difficulty in

being transported, or even do not have a vacancy in the rehabilitation center. For them, the cost of

transportation, resources and medical staff becomes high, and they begin to reduce their time in

rehabilitation.

Rehabilitation is traditionally done by human resources and hence associate with low accuracy

and/or precision. Even the most experienced physiotherapists can fail in the joints’ angles estima-

tion [Perry and Burnfield, 1992]. In addition, they do not have access to complete and accurate

information on gait metrics used, such as temporal, spatial, and/or kinematics parameters, which

may cause deviations in the rehabilitation program and thus, impair the patient instead of reha-

bilitating. Patients who make mistakes in rehabilitation, due to their weakened state, can suffer

serious consequences. In this way, the rehabilitation program must be followed completely.

Exercise programs are individually prescribed for each patient to address specific patient’s

therapeutic goals, pathology, and limitations as well as additional impairments. The exercises must

be individually tailored by a clinician who has several patients every day, with different exercise

programs. The written instructions are typically hard to follow, and in most cases, patients do

not receive feedback on the quality of the exercises during its performance [Zhao et al., 2014].

The lack of monitoring and feedback during exercises is a serious problem. Patients become

discouraged due to the loss of interest and knowledge of their performance, and can wrongly

perform exercises and harm themselves [Zhao et al., 2014].

Several technological systems have provided solutions to the problems mentioned above, such

as camera-based motion capture systems, or walkways with force platforms. These systems al-

ready allow a better monitoring of patient movement, and acquisition of more precise parameters.

They also allow the data to be stored and thus observe the evolution of the patient through the

rehabilitation sessions. However, these methods are generally costly, a walking laboratory is re-

quired, the physiotherapist needs to have computer skills, perform time-consuming calibrations,

and most of them do not provide real-time feedback [Tao et al., 2012]. In this way, they are mainly

used for research or clinical diagnosis [Aminian et al., 2002] [Baker, 2006]. With this, the problem

of lack of access remains [Zampolini et al., 2007], as well as the lack of real-time feedback, and

the simplicity and accessible cost for a use in clinics and by patients. Due to these systems that

perform gait analysis at a specific walkway, the evaluation is far from the patient’s normal activity,

being more controlled and with a shorter distance. Several studies prove that the ground surface

and distance traveled greatly affect performance of the gait function [Najafi et al., 2009].

In the last decades, the use of wearable sensors began to emerge, such as Inertial Measure-

ment Units (IMUs), which allow the acquisition of human movement outside a walking laboratory

[Roetenberg et al., 2009]. With the acquired information, it is possible to develop systems that can

accurately measure gait parameters, provide real-time feedback (while the patient does rehabilita-

tion), allow the results storage for an observation of the patient’s evolution over time, and outside

a gait laboratory, such as at the patient’s home.

With a system with these characteristics, it is possible to prescribe specific gait exercises for
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the patient so that he can restore his autonomous life [Najafi et al., 2009] [Zampolini et al., 2007].

Gait function can be fully recovered, the patient can regain his confidence in walking, reducing

the risk of falling, and increasing his independence on his ADLs, in order to need less help in old

age.

1.2 Goals

The main goal of this thesis was the development of an automatic system to evaluate the gait

quality for rehabilitation purposes, with feedback in real time, using IMUs. In order to develop

the mentioned system, it was crucial to do the following topics.

Study the human gait analysis and rehabilitation state-of-the-art. This included anatomical,

physiological and biomechanical information of the gait and pathologies that cause an abnormal

gait; gait cycle with the focus on the human gait phases; analysis methods for human gait (based

on wearable sensors); and study of the spatial and temporal gait parameters.

Analysis of the gait parameters aiming the selection of a set of the most important ones.

Development of an algorithm for the acquisition, and detection, of gait events, using inertial

sensors in real time. Implementation of temporal parameters from the detected gait events to

quantify and evaluate gait quality.

1.3 Research Proposal

It was proposed the development of a Python1 application that allowed gait evaluation under condi-

tions of rehabilitation allowing real-time feedback. In this way, it was proposed the use of inertial

sensors IMUs to acquire the person’s gait pattern. A method capable of obtaining temporal gait

parameters for the gait assessment under rehabilitation conditions was suggested. It was required

a simple setup to be used by patients in need of rehabilitation.

1.4 Contributions

The main contributions of this project were focused on the effective detection of temporal events

with only two sensors, one in each foot.

No innovative methods were used per se, however, methods were implemented that, underway

and in these conditions, no reference was found to its use. Among them, use of the Trahanias al-

gorithm applied to the gait signal for detection of gait events. And also the use of cross-correlation

for gait start and end detection. Another contribution was the acquisition of gait data with events

annotations obtained by golds standard systems.

1Python. https://www.python.org/ (visited on 02/02/2017)

https://www.python.org/
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1.5 Document Structure

This document is structured in seven chapters. In this chapter (Chapter 1) the general problem

regarding the theme of this dissertation is addressed. The goals, work proposal, the contributions

and the present structure of the document are also presented. Chapter 2 addresses the background

of the gait analysis. In Chapter 3 the materials that will be used throughout the practical work of

this dissertation and also the state-of-the-art methods concerning the theme are presented in more

detail. Chapter 4 presents the data collected, the way the problem was addressed, the methods

used and the validation strategy that was implemented. In Chapter 5 the results obtained from the

detection of IC and PS events are discussed. In Chapter 6 the temporal parameters obtained from

the events detected in the previous two chapters, the real-time implementation, and simulation

in pathology are addressed. Finally, the conclusions and suggested future work is presented in

Chapter 7.



Chapter 2

Gait Analysis

Gait function recovery after a disability or injury, or re-learning how to walk, can be assisted by

gait analysis. Some disabilities are the result of the relationship between motor control and brain

function, and result in instabilities in gait function and other activities. Gait analysis is a powerful

tool to understand this relationship and make a connection between them and the patient’s condi-

tion [Kraan et al., 2016]. Gait analysis can determine the timing in gait, rhythm, gait variability

and other parameters, and identify an unstable gait. Can also be applied in a rehabilitation process,

where gait analysis, especially with feedback in real-time, is crucial to present results to the patient

and help him achieve a more correct and safe gait.

Gait and movement analysis has been studied for many years. The first reference to gait and

locomotion was made by Aristotle in the publication (translated to English as) "On the Movement

of Animals” [Young, 2010]. Since then, in 1860 by Giovanni Borelli, and in the 1890s, Braun

and Fischer published a set of papers about the kinematics of human gait, that started an emerging

gait research. In the 1940s the development of several methods to assist gait analysis, started in

response to the lack of human eye perception when continuous gait was performed by the patient.

Technology evolved in a way that allowed its use in gait analysis, for example with the use of

video cameras [Whittle, 1996] [Al-Zahrani et al., 2008] [Baker, 2007]. With them, it was possible

to acquire gait data, during the patient’s exercise, and analyze it in more detail after the session.

This process was done manually, but with a higher precision, especially in the acquisition of the

joint’s angles in the video frames. Soon these processes became automatic and other types of

systems to measure angles, forces, momentum, and muscular activity emerged. However, these

processes were complicated to install, to set up, to perform, to process and analyze the acquired

data [Sutherland, 2002] [Baker, 2007]. They require specialized laboratories and most of them

expensive equipment. As a result, they have been used only for research and diagnostic purposes.

Until recently, most of the gait rehabilitation has been performed without technological assistance,

leading to a lack of patient sessions’ information, and their evolution over time, among others [Tao

et al., 2012].

5
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In the following sections the background of gait from the fundamentals to the application of

gait analysis is presented. Pathologies associated and gait parameters that allow the evaluation of

gait are also shown. Concepts of gait rehabilitation and movement test to access the capacity of

the patients’ movement and also systems currently used for gait data acquisition are presented.

2.1 Lower Limbs Overview

In this section, concepts will be introduced about the lower limbs and their physiology that are cru-

cial to understand the gait, gait events, and the motion sequences while walking, that are discussed

thought the extent of this work.

2.1.1 Lower Limbs Human Skeleton System

We can move due to the presence of bones and joints that give to our body a rigid configuration

suitable for the locomotion. As it will be shown in the following sections, in walking activity, the

most important body parts are the lower limbs and the pelvis, while the superior part (head, trunk,

and arms), act like a whole part. With this, the bone structure of the lower body part is presented

(Figure 2.1).

In Figure 2.1, the pelvis part joins the two lower limbs. The lower limbs are composed by the

femur in the superior part, and by tibia and fibula in the lower part. The hip joint is the structure

that exists between the pelvis and the femur. The femur and the tibia (and fibula) are separated by

the patella (knee cap) and in this location exists the knee joint. The calcaneus is the bone of the

heel and it is adjacent to the ankle joint.

2.1.2 Terms Of Motion

The human movement can be described by anatomical terms that are used by the physiotherapy and

medical community, so that there is an understanding and consensus in the movements performed

at the level of each joint of the human body. This nomenclature of movement is crucial to identify

human motion, especially in each event that occurs while walking.

While walking, the movements that occur are knee and hip flexion and extension and dor-

siflexion and plantar flexion of the ankle. In the presence of some pathologies, hip adductions

and abductions of the hip can be verified. In this way, the terms previously mentioned (flexion,

extension, abduction, and so on) will be introduced.

Flexion and Extension

Flexion and Extension describe the angle of a joint while moving that occurs in the sagittal plane

(Figure 2.2b and 2.2c).
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Figure 2.1: Human skeleton. This figure evidences the lower part of the human body, especially
the pelvis, lower limbs and feet. The locations of the major joints that are involved in gait activity
are highlighted: hip, knee and ankle joints2.

Flexion: Occurs when the angle of the joint decreases. In other words, is the movement

that decreases the angle between two connected body parts. For example, the knee flexion

occurs when the ankle moves closer to the posterior part of the hip joint1.

Extension: Occurs when the angle of the joint increases. For example, the extension of the

knee straightens lower limb1.

Abduction and Adduction

Abduction and Adduction describe movements of the joints that move its structure in relation to

the midline of the body (Figure 2.2e).

2InnerBody. http://www.innerbody.com/image/skelfov.html (visited on 15/12/2016)
1TechMeAnatomy.http://teachmeanatomy.info/the-basics/anatomical-terminology/

terms-of-movement/ (visited on 19/12/2016)

http://www.innerbody.com/image/skelfov.html
http://teachmeanatomy.info/the-basics/anatomical-terminology/terms-of-movement/
http://teachmeanatomy.info/the-basics/anatomical-terminology/terms-of-movement/
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Normal
Lateral

(a) Normal Lateral.

Hip

Extension

Flexion

(b) Hip Flexion and Extension.

Flexion

Extension

Knee

(c) Knee Flexion and
Extension.

Normal
Frontal

(d) Normal Frontal.

Hip

Abduction

Adduction

(e) Hip Abduction and Adduction.

Ankle

Dorsiflexion

Plantar flexion

(f) Ankle Dorsiflexion and Plantar Flexion.

Figure 2.2: Terms of Motion. While walking, there are several joint movements that occur. The
subfigures (a) and (d) are related to the lateral and frontal views, respectively. The movements that
are made by the hip are flexion and extension (b), abduction and adduction (e), by the knee are
flexion and extension (c), and by the ankle are dorsiflexion and plantar flexion (f) (adapted from
1).

Abduction: Occurs when the body structure is moved away from the midline (sagittal plane)

of the body. For example, abduction of the hip is the movement of the lower limb away from

the midline of the body1.

Adduction: Occurs when the body structure is moved toward the midline (sagittal plane) of

the body. For example, the adduction of the hip squeezes the lower limbs together1.
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Dorsiflextion and Plantar Flexion

Dorsiflexion and plantar flexion are motion terms related to the movements performed by the

ankle. The ankle has two surfaces: dorsum (superior) and plantar (sole), giving the origin to

dorsiflexion and plantar flexion to the orientation of each ankle flexion (Figure 2.2f).

Dorsiflexion: Occurs when the toes are brought closer to the tibia so that the foot points up1.

Plantar flexion: Occurs when the angle between the toes and the anterior part of the tibia is

increased, so that the foot points down1.

2.2 Human Gait Fundamentals

Walking involves a set of lower limb sequential movements that allows the body to move forward

while maintaining body stability. These sequential movements involve a set of interaction between

the two lower limbs in tune and the body total mass. In this sense, is crucial to identify gait events,

and it is necessary to observe gait in different points of views.

2.2.1 Basic Functions

While walking, our body behaves as two main units: locomotor unit and passenger unit. Under-

standing this distinction is important to know what to analyze in more detail during a gait analysis.

Passenger Unit: The passenger unit is composed of the head, neck, upper limbs and trunk.

Their main function is to ensure its posture integrity, and because of this, is mainly a passive

unit. Its muscular activity, including that of the upper limbs, it is to maintain a neutral

vertebral alignment, with less variance as possible, during gait.

Locomotor Unit: The locomotor unit is responsible for the locomotion activity. It is com-

posed by the two lower limbs and pelvis and it is a multisegmented unit, as each lower limb

assumes the body weight alternatively, with the goal to move it forward or doing locomotion.

The locomotor unit has four functions that have to be completed to successfully accomplish

gait: it has to generate a propulsive force, in order to do the advancement of the lower limb

swing; the stability of the passenger unit has to be accomplished, even when the body is moving

forward and has a continuous posture change; the shock in the beginning of each stance has to

be minimized, in order to avoid injuries; and the total energy has to be conserved in all these

functions, to minimize the muscular effort in the overall walking activity [Perry and Burnfield,

1992]. This terminology is important for analyzing the human body according to the parts in

which it can be divided while walking. Understanding the two great unitary parts of the human

body and its functions in relation to the gait, will be important when analyzing the existing gait

analysis methods.
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2.2.2 Gait Cycle

When we walk, we move one lower limb forward in relation to the other, and our body is trans-

ferred forward. This causes a sequential body weight transferring from one lower limb to the other.

A single sequence of these events, referring only one limb, is a Gait Cycle (GC), and was firstly

introduced by [Murray et al., 1964] 3. One CG is followed smoothly by the following GC, and

there is not precisely an initial and final point. Conventionally, the contact of the heel with the

ground is defined as the initial point of the GC.

A GC begins when the heel is placed on the ground (with both feet on the ground), then there

is a forward posture advancement of the body that causes the body weight to be transferred to the

foot that has just been placed on the floor. Then, the opposite foot lifts up and makes a push to set it

forward, meanwhile, the foot under analysis stands alone on the ground supporting all the weight

of the body. The body posture is continuously balanced forward until the opposite foot begins its

cycle (with its heel placed on the ground), and at this moment both feet are on the ground. The

weight passes to the opposite foot and the foot under analysis begins to lift (leaving the floor). It

makes an impulse to move forward, passes through the opposite leg (in the coronal plane), and

arrives at the ground, with the heel. An illustration of this description can be seen in the Figure

2.3.

Gait Cycle

Stride

Step (R) Step (L)

Stance (R)

Stance (L)Swing (L)

Swing (R)

Stance (L)

IDLS (R) SLS (R) TDLS (R)

IDLS (L) SLS (L)TDLS (L)

Figure 2.3: Relationship between the step, stance and swing of the right (R) and left (L) leg, during
one GC. Some of the terms will then be introduced in the following subsections: IDLS - initial
double limb support; SLS - single limb support; TDLS - terminal double limb support. (adapted
from [Perry and Burnfield, 1992])

The Figure 2.3 shows a GC with reference to the periods that occur in each lower limb (right

and left). The terms in this figure will be explained in the following subsection. It can be observed

that there is a relationship between swing and stance of the right and left lower limbs in sequence

along the gait. It should be noted that when the stance occurs at the same time in both lower

3This reference was extracted trough the book [Perry and Burnfield, 1992].
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limbs, double limb support occurs, and when swing occurs, the opposite limb is in the single limb

support.

2.2.3 Gait Phases

One GC can be split into two main periods (stance and swing), which are defined according to the

touch of the foot with the ground (Figure 2.4).

In Figure 2.4, a complete GC is defined as a complete cycle of one lower limb (with color),

in this case, related to the right lower limb. GC can be also called stride and is composed of two

steps, right and left.

Gait Cycle
Stride

Step

IDLS SLS

Stance Swing

Initial
Contact

Loading
Response

Mid
Stance

Terminal
Stance

Pré Swing
Initial
Swing

Mid
Swing

Terminal
Swing

Weight Acceptance Single Limb Support Limb AdvancementTasks

Periods

Phases

TDLS

Figure 2.4: Gait Cycle, Periods, Tasks and Phases. Gait Cycle is also called stride and is com-
posed of two steps, right and left. The definitions presented are related to the shaded lower limb
(right). The beginning of the GC starts with the stance period (the limb’s foot is in contact with
the ground). This can be split into three other periods: Initial Double Limb Stance (IDLS), Single
Limb Stance (SLS), and Terminal Double Limb Stance (TDLS). In Initial Double Limb Stance,
the task of Weight Acceptance occurs and the weight is transferred from one limb to the other.
In Single Limb Stance, all the body weight is in one limb (on the right), that is the only limb in
stance period - when the Single Limb Support task occurs. In Terminal Limb Stance, both limbs
are in contact with the ground. After the stance period, the swing occurs - when the foot is in the
air, and doing the Limb Advancement Task. Gait Cycle can also be divided into eight different
phases: and each one has different functions and segment and joint positions (adapted from [Perry
and Burnfield, 1992])

Stance: is the period when the foot is on the ground. It Is about 60% of the GC and starts when

the heel first touches the ground until it leaves the floor. During this period, the opposite lower

limb runs through its stance (end and beginning of the next CG stance), and swing, causing an

occurrence of three main sub-periods (inside the stance of the foot under analysis) The examples

will consider the stance of the right limb:
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1. Initial Double Limb Stance (IDLS): Occurs when the left limb is also on the ground, and

the body is supported by the two limbs. In this period, the left limb will start to swing.

2. Single Limb Stance (SLS): Occurs when the left limb starts to swing and continue, leaving

the body with only one support - the right limb.

3. Terminal Double Limb Stance (TDLS): Occurs when the left limb has finished its swing,

and starts its stance period. The body is again supported by the two limbs (right and left).

At this stage both limbs are in stance: the right is finishing its stance, and the left is starting

its stance and is in its IDLS (left) period.

Swing: is the period when the foot is in the air, to move forward in relation to the other foot. It is

about 40% of the GC and the body advances forward. During this period, the opposite foot is in

its sub-period of single limb support.

The combination of the two periods of double limb stance - IDLS and TDLS, corresponds to the

Double Limb Support (DLS). If there is no DLS present in all GC, it means that the person is

running [Perry and Burnfield, 1992].

While walking three tasks occur, and are crucial to moving the body forward. They are pre-

sented as (Figure 2.4):

1. Weight Acceptance: is the most challenging task in the GC. It is composed by initial contact and

loading response phases. The body weight is transferred from one limb to the one that has just

finished its swing and is still in an unstable alignment. In Figure 2.4, the right limb (shaded),

is starting its stance and has just finished its swing. When the heel touches the ground, a shock

absorption occurs, and the failure of this task can provoke a fall.

2. Single Limb Support: is composed by mid stance and terminal stance phases. Following the

example in the Figure 2.4, in this task, the right limb is in the stance, and the left limb has just

started its swing (it is in the air doing the body forward progression). All the body weight is on

the right limb, and the stance lower limb has to maintain the body stability, while progression.

The SLS duration is the best index of the limb support capability. This task ends when the

opposite limb (in this case, the left limb), ends its swing and starts its stance (beginning of the

TDLS).

3. Limb Advancement: is composed by the pre-swing, initial swing, mid swing and terminal swing

phases. In the beginning of this task, the right limb does an impulse forward and then passes

through three positions while is moving forward (described in the Table 2.1). It is responsible

for the movement of the body forward while walking.

In Figure 2.4, the functional phases in gait are presented. They correspond to different align-

ments and foot positioning. According to the patient’s pathologies, all the eight gait phases may

not occur. Gait analysis by phases directly identifies the functional meaning of the different move-

ments that occur in each joint. In Table 2.1, the specifications for each gait phase are presented .
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The percentage of time in a GC is displayed first, and then, the main functional activities of each

phase. The most significant joint events that occur in each gait phase are also presented.

Table 2.1: Gait Phases Definitions. This table presents the different phases of the gait cycle, and
the goals and main functions of each one. Based on [Perry and Burnfield, 1992].

Phase Duration in GC Main Goals and Function Joints Events
Stance Period

Initial Contact (IC)
(heel strike)

0%−2% GC The limb is positioned to start the stance,
with the heel in the ground direction.
The IC starts when the foot touches
the ground (typically with the heel).
The joint’s posture determines the limb’s
loading response pattern.

Hip flexion, knee exten-
sion, and the ankle is dor-
siflexed to neutral.

Loading Response
(LR)

0%−10% GC When the whole foot is on the ground,
the shock absorption occurs and the
weight of the body shifts from the op-
posite lower limb to the present limb.
Stability is maintained and the weight is
supported by the limb. It also occurs the
preservation of progression, done by the
opposite foot.

Knee and ankle (plantar)
flexion.

Mid Stance
(midfoot strike)

10%−30% GC Progression over the stationary foot
while the trunk and limb are stable.
Starts with the elevation of the opposite
lower limb (mid swing), and ends when
the limb is almost in vertical position.

Ankle dorsiflexion, knee
and hip extension

Terminal Stance
(heel-off)

30%−50% GC Progression of the body beyond the sup-
porting foot. Begins when the heel rises
and ends when the heel of the opposite
foot touches the ground.

Knee extension (increases
till maximum), and then
starts to flex. Increased
hip extension.

Pre-Swing (PS)
(toe-off)

50%−60% GC The limb is positioned to start the swing.
Starts when the IC of the opposite limb
occurs, and ends with the toe-off of the
current foot. There is a weight transfer
from one foot to the opposite one (LR of
the opposite foot).

Increased ankle plantar
flexion, greater knee flex-
ion, and loss of hip exten-
sion (start of the hip flex-
ion).

Swing Period

Initial Swing 60%−73% GC The foot leaves the ground. The limb ad-
vances in relation to the point where it
leaves the ground. Ends when the swing
limb passes through the coronal plane of
the stance limb (medium support).

Hip flexion and increased
knee flexion. Partially an-
kle dorsiflexion.

Mid Swing 73%−87% GC The limb is moving forward by balance.
Begins when the swing limb passes be-
yond the stance limb. Ends when the
swing limb is in the front and the tibia
is in the vertical direction.

Hip flexion. The knee ex-
tends and ankle continues
dorsiflexing to neutral.
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Phase Duration in GC Main Goals and Function Joints Events
Terminal Swing 87%−100% GC Completes the advancement of the

swing limb. Prepares the limb for the
next stance (next GC). This phase be-
gins with the tibia in vertical position
and ends when the foot reaches the floor
(beginning of the new GC).

Knee extension. Hip
maintains its earlier flex-
ion, the ankle remains
dorsiflexed to neutral.

2.2.4 Main Applications

Gait analysis has several applications, the main ones are focused in three areas: Sports, Rehabili-

tation, and Clinical Diagnosis. In the following subsections some interesting applications of gait

analysis are presented that encouraged its development over the last years.

Sports

In high competition sport, athletes are taken to their physical extreme, and sometimes have injuries.

Some sports, especially those related to walking and running, can provoke injuries that can be

associated with the foot positioning on the ground (the heel) at the IC phase. By informing the

athlete that he has to correct this exercise, the injury risk at this location decreases.4 Ground

reaction forces (GRF) can also be analyzed along the gait cycle in order to determine the athlete’s

physical state. Gait analysis in sports is used during the athletes’ train with the goal to prevent

injuries at the same time that the athletes’ performance is pushed to the limit [Tao et al., 2012].

Rehabilitation

Gait analysis is present in two points of gait rehabilitation: in the analysis of the patient and in

the rehabilitation itself. In the analysis of the patient, it is important to understand the state in

which he is and the gait impairment level (the intensity of movements and amplitude of the joint’s

angles). In rehabilitation, the patient performs the prescribed exercises, with the aid of a physician

or a system in order to identify if he is performing them correctly.

Gait analysis in rehabilitation can be used with automatic systems. Gait is a complex and

repetitive movement. For a proper analysis, accurate and complex measures are necessary to

estimate. These would be difficult to extract without resorting to instruments, such as step length,

joints’ angles, among others.

Throughout rehabilitation exercises patients need to have access to relevant information about

the quality of their performance. Without access to the gait parameters, this process can be com-

plex. In addition, many patients today find it difficult to go to rehabilitation centers to perform the

4Labiomep.http://www.labiomep.up.pt/services/clinical-gait-analysis/ (visited on
06/01/2017)

http://www.labiomep.up.pt/services/clinical-gait-analysis/
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exercises, due to lack of access and/or mobility. The use of automatic systems facilitates the acqui-

sition of gait information, indication of patient performance as the patient performs the exercise

and portability so that it is possible to perform the rehabilitation in their home.

As mentioned in Section 1, the intensity of rehabilitation is important for a complete recovery

of the patient. Walking is an activity that requires great coordination between the neurological

and motor systems, and it is also a cyclical and repetitive task. In this way, the intensity of the

gait training is even more necessary for a complete gait recovery. Gait analysis in rehabilitation

becomes an essential point and base of all the gait rehabilitation [Tao et al., 2012].

Clinical Diagnosis and Healthcare Monitoring

Gait analysis in the clinical diagnosis and healthcare monitoring has many applications. Those

include the detection of certain diseases and their severity, pre-operative planning, especially for

patients with cerebral palsy, and surgical decision making. It can also give information about gait

after and before surgical interventions, and reduce the number of medical appointments needed

to correct some aspects that were not found at the beginning. The number of subsequent surgical

interventions (that used to be necessary to correct aspects not fully solved in the first surgical

intervention) are minored, thus reducing the cost of care.

Gait analysis can also be useful to determine if the prescribed treatment is appropriate for

the patient [Tao et al., 2012], or even if a prosthesis is correctly placed. It can also assist in the

determination of gait abnormalities and occurrence of diseases such as Parkinson; an indicator of

neurodegenerative diseases progression or other adverse health problems. It can be employed as a

fall detector, by detecting fall itself, or by determining the most unstable gait phase, by analyzing

qualitatively the GC [Tao et al., 2012].

2.2.5 Pathologies Associated with Gait Impairments

The walking activity involves interaction between the action of bones, muscles, and the nervous

system. The gait pattern depends on the level of integration that exists between these three systems.

When there is a defect in any of these parts, gait impairment occurs [Ren et al., 2016]. Pathologies

that cause changes in the relationship between motor and brain functionalities can be neurological,

cardiovascular, motor, musculoskeletal, sensory and even psychological.

The neurological diseases with high prevalence that cause greater influence in gait are Parkin-

son’ disease (PD) [Ren et al., 2016] [Uchitomi et al., 2016], Stroke [Chen et al., 2016] [Eng and

Tang, 2007], Multiple Sclerosis (MS) [Comber et al., 2016], cerebral dysfunctions, traumas (mild

Traumatic Brain Injury (mTBI)), among others. These require a high care in both the cure of the

disease itself and in the gait relearning process.

Cardiovascular diseases are characterized by arrhythmias, thromboses (especially in the lower

limbs) and heart attack.

In motor and musculoskeletal fields, there are patients who have suffered from injuries in the

ligaments (for example the internal ligaments of the knee), bone fractures, muscle injuries, hip and
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knee replacement, and others. Patients with these conditions have a simpler rehabilitation process

because the cognitive function is in a healthy state.

The loss of some sensations such as vision and hearing cause a reduction of the awareness

around the patient, where they sometimes cause crashes with obstacles leading to a fall (for exam-

ple, falling from the stairs due to lack of sensitivity in seeing the steps) [Salzman, 2010].

Psychological conditions also cause changes in gait, such as fear of falling, sleep disorders

and abuse of toxic substances [Salzman, 2010].

All of these conditions get aggravated with age. Below there is some data about the prevalence

of diseases that are inserted in the groups mentioned above, with the aging.

In the neurological field, according to [Bots et al., 1996], the stroke prevalence increases with

age in men and women. In Portugal, it can achieve 14% in men between 65 to 74 years old.

Portugal is the country with the higher number of stroke death cases in Europe [Sousa-Uva and

Dias, 2014]. According to [Gordon R. Kelley, 2015], the prevalence of Parkinson disease also

increases with age, especially from the age of 50 with the highest incidence from 60 years old

forward. Multiple sclerosis, although it affects younger people (30 to 50 years old [Baum and

Rothschild, 1981]), the movement difficulties associated with the disease also increases with age.

The main problem is the falling risk that can result in serious injuries, such as broken bones,

broken ligaments, head injuries or even death.

In the musculoskeletal field, osteoarthritis’ prevalence, according to [Felson et al., 2000], in-

creases 2 to 10 fold from 30 to 65 years of age and increases further thereafter. Osteoporosis

prevalence, with special attention to the spine, knee and hip cases, increases significantly with age

in men and in women [Cummings and Melton, 2002].

Each of the diseases presented get worse with age, and even in the absence of them, age can

cause loss of senses and agility resulting in changes in gait pattern. In all these cases, rehabilitation

of gait helps to maintain confidence in walking, to keep the patient focused on the repetition of

the steps while walking, and to reduce the risk of falling, which is one of the main factors causing

disability in the elderly.

2.3 Gait Parameters

As presented in Section 2.2, gait can be divided in: periods, tasks, and phases. In order to do

a quantitative gait analysis, it is important to have metrics that allow a comparative evaluation.

Gait can be evaluated regarding spatial, temporal, kinematic and kinetic parameters. Spatial and

temporal parameters consist of the time and space dimensions. They give information about the

distance between each step, or between the two feet, or stride velocity, etc. A kinematic analysis

is focused on the joints’ angles while walking. The intensity and direction of the forces made

by the feet during gait are also analysed: these are kinetic parameters. More details about the

previous mentioned type of parameters are described in the following subsections. The analysis

presented is related to the use of the mentioned parameters and also has an annotation about in
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which pathologies they are evaluated and used. The gait parameters are described in the Tables

2.2, 2.3, 2.4, and 2.6.

2.3.1 Spatio-Temporal Parameters

Spatial and temporal gait parameters are extracted from gait, while walking, and are related to the

time and space dimensions. The spatial parameters are presented and defined in Table 2.2, the

temporal parameters are presented in Table 2.3. In Table 2.4 the parameters that join spatial and

temporal information are summarized.

Table 2.2: Spatial Gait Parameters and their definition.

Parameter Definition Requirements Applications
GC Length
(Stride length)

[Muro-de-la Herran et al.,
2014], [Najafi et al.,
2011], [Aminian et al.,
2002],[Kraan et al., 2016],
[Alfuth, 2017]

Linear distance in anterior-posterior
direction, between two successive
placements on the ground by the
same foot. It is the difference be-
tween the position of the following
IC and the previous IC, of the same
foot (i.e., two steps).

Space or velocity infor-
mation, and IC identifica-
tion.

MS, PD, and gen-
eral evaluations.

Step Length

[Muro-de-la Herran et al.,
2014], [Simoes, 2011],
[Spain et al., 2012],[Kraan
et al., 2016], [Alfuth,
2017]

Linear distance in anterior-posterior
direction, between the placement of
both feet. It is the difference be-
tween the position of the IC of one
foot and the IC of the opposite foot
(i.e.,one step).

Space or velocity infor-
mation, and initial contact
identification.

mTBI, MS, PD,
musculoskele-
tal, and general
evaluations.

Step width

[Muro-de-la Herran et al.,
2014], [Kraan et al., 2016],
[Alfuth, 2017]

Linear distance in medio-lateral di-
rection, between two equivalent
points of both feet (also known as
base of support).

Space or distance infor-
mation, and angles of the
body (lower limbs) seg-
ments.

MS and general
evaluations.

In Table 2.2, the most used spatial parameters in the evaluation of gait are the GC length, step

length, and step width (Figure 2.5). Even in healthcare centers, these three parameters are widely

used by physiotherapists in gait rehabilitation. Even without a sophisticated system, they can be

determined by simply painting the patient’s feet and having him walk on a paper walker.

Gait Cycle Length

Step Length

S
tep

 W
id

th

Figure 2.5: Spatial Parameters: GC length (stride length), step length and step width.
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Temporal parameters also have important information about patient’s gait, helping physio-

therapist on the gait rehabilitation process and patient’s performance evaluation. In Table 2.3 are

presented and defined temporal parameters related to gait rehabilitation.

Table 2.3: Temporal Gait Parameters and their definition.

Parameter Definition Requirements Applications
Swing Time

[Muro-de-la Herran et al.,
2014], [Kraan et al., 2016],
[Alfuth, 2017]

Time interval between the foot leav-
ing the floor and touching it again
(for each foot).

Identification of the PS
and IC times.

MS, PD, mus-
culoskeletal,
and general
evaluations.

Stance Time

[Muro-de-la Herran et al.,
2014], [Najafi et al., 2011],
[Alfuth, 2017]

Amount of time the foot is on the
floor. Is the time difference between
the PS and IC of the same foot.
Also known as Support Time.

IC and PS times identifi-
cation.

MS, PD, and gen-
eral evaluations.

GC Time (Stride Time)

[Najafi et al., 2011], [Kraan
et al., 2016], [Alfuth, 2017]

Duration of each GC. Time interval
between two successive contacts of
the same foot with the ground (i.e.,
two steps).

IC identification. MS, PD, muscu-
loskeletal.

Step Time

[Kraan et al., 2016], [Al-
futh, 2017]

Duration of one step. Time interval
between two successive contacts of
opposite feet with the ground (i.e.,
one step).

IC identification. General evalua-
tions.

Initial Double Support
Time

[Aminian et al., 2002]

Time between the IC of one foot
and the PS of the opposite foot.
Also known as Double Thrust Sup-
port.

Identification of the IC
and PS times.

MS, PD.

Terminal Double Support
Time

[Aminian et al., 2002]

Time between the IC of the opposite
foot and the PS of the foot being an-
alyzed.

Identification of the IC
and PS times.

MS, PD.

Double Support Time

[Spain et al., 2012],
[Aminian et al., 2002],
[Kraan et al., 2016],
[Alfuth, 2017]

Time interval where there is support
of both feet. Is the sum of the ini-
tial double support time and termi-
nal double support time.

Information about IC and
PS of both feet.

MS, PD.

Single Support Time

[Kraan et al., 2016], [Al-
futh, 2017]

Time interval of the stance of one
foot, when it is the only foot on the
ground (in SLS period). Is equiv-
alent to the swing time of the op-
posite foot: is the time interval be-
tween the IC of the opposite foot
and the PS of the opposite foot.

Identification of the IC
and PS times.

MS, PD.

After an evaluation and search through clinical practices, it is possible to ensure that, of the

overall temporal parameters presented and defined in Table 2.3, the most used parameters are

the swing time, stance time, CG time and double support time (Figure 2.6). Although, these
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parameters are the most common, but the remaining parameters can provide other interesting

information about gait. For example, when a subject presents a small single support time, it can

mean that he has pain in the corresponding lower limb, or does not have endurance in that limb,

or other aspects, that may not be noticed by the most used parameters.

Gait Cycle Time

IDLS SLS

Stance Time Swing Time

TDLS

Step Time

Time

Figure 2.6: Temporal Parameters: gait cycle, step, stance, swing, initial double limb support,
single limb support and terminal double limb support times.

In Table 2.4 are described parameters that are the result of joining the dimension of space and

time.

Table 2.4: Spatio-Temporal Gait Parameters and their definition.

Parameter Definition Requirements Applications
Velocity

[Muro-de-la Herran et al.,
2014], [Kraan et al., 2016],
[Alfuth, 2017]

Distance walked per time. Distance walked (or step
length), and time.

MS, PD, Stroke,
musculoskele-
tal and general
evaluation.

Stride Velocity

[Najafi et al., 2011]

Distance walked per stride (of each
foot) per time.

Distance walked and time
information, and IC iden-
tification.

General evalua-
tion.

Cadence or Rhythm

[Murray et al., 1964],
[Simoes, 2011], [Spain
et al., 2012], [Kraan et al.,
2016], [Alfuth, 2017]

Number of steps per time unit (usu-
ally in minute). It is also defined as
stepping frequency.

Step (or IC of each foot)
identification.

mTBI, MS, PD,
musculoskele-
tal, and general
evaluation.

Gait Autonomy
(Walking Distance)

[Muro-de-la Herran et al.,
2014], [Alfuth, 2017],
[Eng and Tang, 2007]

The maximum time a person can
walk, taking into account the num-
ber, duration, and length of the
steps.

Information of time and
distance walked. It can be
used also the number of
steps (IC).

PD, stroke.
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Parameter Definition Requirements Applications
Tremors presence or
Freezing of Gait

[Muro-de-la Herran
et al., 2014], [Horak and
Mancini, 2013]

Presence of tremors in the lower
limbs segments.

Frequency behaviour of
the segments and time.

PD.

Balance

[Horak and Mancini, 2013]

Control of the body center of mass
during daily activities.

Information about the
trunk movements and
time.

PD and general
evaluation.

Postural Transitions

[Horak and Mancini, 2013]

Body center of mass control during
the weight acceptance task.

Balance, IC and PS iden-
tification.

PD, stroke,
musculoskele-
tal, and general
evaluation.

Gait Variability

[Najafi et al., 2011], [Kraan
et al., 2016], [Alfuth, 2017]

It is generally the calculated coeffi-
cient of variation (CoV) or standard
deviation (SD) of one spatiotem-
poral parameters mentioned in Ta-
bles 2.2 and 2.3. It is often de-
termined upon stride length, step
length, stride time, step time, step
width, stance time, stride time and
double support time.

Two spatiotemporal pa-
rameters of the same foot,
and the CoV or SD be-
tween them.

PD, stroke,
musculoskele-
tal and general
evaluation.

Gait Asymmetry

[Kraan et al., 2016], [Yang
et al., 2013], [Casamassima
et al., 2014]

It is the relation (CoV or SD) be-
tween one of the spatialtemporal
parameters mentioned in Tables 2.2
and 2.3, of left and right lower limb,
during gait.

Two spatiotemporal pa-
rameters of both feet, and
the CoV or SD between
them.

PD, stroke,
musculoskele-
tal and general
evaluations.

In Table 2.4 the most used spatial-temporal parameters are the velocity, cadence or rhythm

(Figure 2.7), variability (Figure 2.8a, and asymmetry (Figure 2.8b). But, depending on the pa-

tient’s condition, it can be also crucial to analyze the presence of tremors, among others.

Stride Velocity: distance walked / stride

Distance

Time

Velocity: distance walked / time

Cadence: nº steps / time

Gait Autonomy: max amount of distance a person can walk

Figure 2.7: Spatio-temporal Parameters: velocity, stride velocity, cadence and gait autonomy.

The balance and postural transitions are crucial parameters in walking because while walking,

there is a constantly body-weight change from one leg to the other, constantly having a balance
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Distance
Gait Variability: difference between the parameters of the same foot

Time

(a) Gait Variability.

Time

Gait Asymmetry: difference between the parameters of the right and left foot
Distance

(b) Gait Asymmetry.

Figure 2.8: Spatio-temporal Parameters: gait variability and asymmetry. While the variability
compares parameters of the same lower limb, the asymmetry, compares parameters of the two
lower limbs.

in the forward direction. The result of the posture is different from the one that exists when in

standing position.

2.3.2 Kinematic Parameters

Kinematics aims to evaluate the motion of segments without considering its mass. Thus, a kine-

matic analysis in gait is made upon the angles and Range of Motion (ROM). In Table 2.1, it was

shown a set of different motion events that occur and define each gait phase. As mentioned in the

Subsection 2.1.2, these motion events are flexion, extension, abduction, adduction, dorsiflexion

and plantar flexion. The relation between them can be characteristic of each phase of gait. With a

kinematic analysis, it is possible to determine these events and assist the gait analysis.

Table 2.5: Gait kinematic parameters and their definition.

Parameter Definition Requirements Applications
Steps’ angle

[Muro-de-la Herran et al.,
2014]

Direction of the foot during the step
(in relation to the trunk).

Orientation of the foot. General evalua-
tion.

Direction of the lower
limb segments

[Muro-de-la Herran et al.,
2014]

Direction of each leg while walk-
ing.

Orientation of the foot,
knee and leg segments
during the walk, in rela-
tion to the trunk.

General evalua-
tion.

Joints’ angles

[Muro-de-la Herran et al.,
2014], [Alfuth, 2017],

ROM of the hip, knee and ankle
joints.

Relation between the
orientation of the lower
limb segments (specially
at heel strike and toe-off).

MS, stroke,
musculoskele-
tal, and general
evaluation.
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Parameter Definition Requirements Applications
Torso rate of rotation

[Simoes, 2011]

Rate of the rotation of the torso,
around the vertical axis.

Definition of the vertical
axis, and torso orienta-
tion.

mTBI.

Head rate of rotation

[Simoes, 2011]

Rate of the rotation of the head,
around the vertical axis.

Definition of the vertical
axis, and head orientation.

mTBI.

Step Angle: direction of the foot during the step

Walk Direction

Figure 2.9: Kinematic Parameters: step angle.

Hip Angle

Ankle Angle

(a) Hip and ankle joint’s angles.

Knee Angle

(b) Knee joint’s angle.

Figure 2.10: Kinematic Parameters - joint’s angles (in the sagittal plane).

Most of these parameters (Figure 2.9 and 2.10) require sophisticated instrumental systems, in

order to do the measurements. For example, the joints’ angles (Figure 2.10) are important to know

if the patient is doing a proper gait pattern. Patients with stroke tend to avoid the knee flexion (by

compensating with the lifting of the hip to raise the foot) on the injured side while moving the

lower limb forward [van Meulen et al., 2016]. By identifying this joint’s angle, it is possible to
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determine if the patient is doing a proper gait pattern, and inform him to do the flexion of the knee

in that specific moment.

2.3.3 Kinetic Parameters

Kinetics is the branch of mechanics that deals with forces, their effect on bodies at rest and in

motion (static and dynamic, respectively) [Zatsiorsky, 2002]. Thus, the gait kinetic parameters are

related to the forces and moments made by the body parts while walking.

Table 2.6: Gait kinetic parameter: ground reaction forces.

Parameter Definition Requirements Applications
Ground Reaction Forces
(GRF)

[Alfuth, 2017]

During stance times, is the direction
and intensity of the forces produced
in the ground by a set of different
parts of the foot.

Forces and momentum of
the foot in the ground,
while walking.

MS, muscu-
loskeletal, and
general evalua-
tion.

During the walking activity, we place the feet on the ground, one at a time, and automatically

transfer the body weight from one foot to the other. Analysing in detail (Figure 2.11), the resulting

force changes since the moment when the foot first touches the ground (IC) untill it lifts it. Then,

tends to be higher in the IC (shock absorption), reduces to the equivalent of the body weight in

the mid-stance (in the SLS), and increases again when the foot initializes the impulse to begin

its swing and move the leg forward. The GRF can be interesting to analyze patients with an

orthopedic prosthesis, and estimate the stress between the prosthesis and the patient’s bone.

Distance
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Figure 2.11: Kinetic Parameters: ground reaction forces (in the sagittal plane) (adapted from [Pohl
and Mehrholz, 2006]).
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Concluding this section, the parameters of gait measured are key metrics in gait analysis. If

an automatic data acquisition is made (through a technological system), these parameters can

determine leading to a more accurate and precise analysis. In this way, applied to rehabilitation,

they can allow a higher care and accuracy. The patient is evaluated correctly as well as being

encouraged to make the gait exercises according to their capacity (evaluated previously), according

to the movement that he is doing, and with feedback and movement correction in real time.

2.4 Gait Rehabilitation

Rehabilitation in health refers to specialized treatments and healthcare programs, designed to facil-

itate the recovery process of patients after an injury, illness, disease or surgery. It aims to improve,

maintain or restore physical strength, cognition, and mobility, in a way as close as possible to a

normal condition.5 There are different types of rehabilitation: drug, physical, vision, speech, oc-

cupational, vocational and others. In general, the rehabilitation aims to help people gain a higher

independence after an injury or surgery. After an event that compromises the physical activity,

rehabilitation is prescribed in order to help people to achieve higher functional levels and quality

of life so that they are able to do their ADLs freely. It has to be noted that rehabilitation does

not reverse the patient’s damage, caused by disease or trauma, but helps to restore some features

in order to increase the health quality. Each rehabilitation program is individually prescribed to a

specific patient’s needs, and can include more than one type of exercises.2

Gait rehabilitation is the type of physical rehabilitation that focus on the walking activity. The

main goals of the gait rehabilitation are, in a short-term, lower the falling risk by increasing the

lower limbs’ strength, dynamic balance and posture.6 The long-term goal is to recover a safe

and confident walk in a way that can bring a complete independence to the patient. To achieve

these two goals, the gait rehabilitation is divided into two types of training: strength training and

task-specific training.

Strength Training: Is composed of exercises that have the purpose of increasing the strength of

specific muscles. The exercises are repetitive aiming the patient to remember this repetition,

through the mechanisms of neural plasticity, and thus improving confidence in walking. Some

strength training exercises consist of just moving the body weight from one leg to the other,

standing on one leg, calf raises, and others.7

Task-specific Training: Is composed of exercises involving walking. There are two types of

training: with and without body-weight support. With weight support are exercises that consist

of alternating the body weight from one lower limb to the other (without walking), and without

5TheFreeDictionary. http://medical-dictionary.thefreedictionary.com/rehabilitation (vis-
ited on 21/12/2016)

6HealthLine.http://www.healthline.com/health/gait-training (visited on 22/12/2016)
7 Flint Rehabilitation Devices. https://www.flintrehab.com/2015/what-is-gait-training/ (vis-

ited on 22/12/2016)

http://medical-dictionary.thefreedictionary.com/rehabilitation
 http://www.healthline.com/health/gait-training
https://www.flintrehab.com/2015/what-is-gait-training/
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weight support, are exercises (with the use of body weight supports) in which the patient performs

the movements characteristic of the gait.

Through all the gait rehabilitation exercises, the patient has to be able to develop the following

aspects:6

Muscles and joints with higher strength: With the repetition of the exercises, the patient has

to develop the muscles responsible for each gait phase. With this, he can increase the joints’

and muscles’ strength.

Improve dynamic balance and increase posture stability: Two of the most important aspects

while walking, are the balance and posture. While we walk forward, we are constantly

changing our posture forward. Controlling the posture is a key aspect in order to prevent

falls, and thus improve patient’s confidence in walking.

Build/increase endurance: Endurance while walking is a key area, since we have to support

all of the body weight, and also ensure a considerable distance for walking without feeling

neither pain or fatigue.

Develop muscle memory: After an intervention or disease, muscles can lose the natural

memory in doing some activities. In walking, there are several muscles that are activated in

group with a specific coordination. Repetition of the gait exercise, with real-time guidance,

helps to regain a proper muscle memory.

Increase control during transitional movements: While we walk, one of the tasks made by

the lower body part is ensuring that the body weight passes from one lower limb to the other,

safely. Exercises are prescribed so the patient will train the support of the body in each of

the lower limbs.

Retrain the legs for repetitive motion: The walking activity is composed by the repetition of

several GC, and the lower limbs have to be prepared in strength and endurance for this.

Lower the fall risk, while increasing the mobility: The greatest consequence of an abnormal

gait is the falling event. Thus, gait rehabilitation plays an important role in preventing falls.

Depending on the patient’s condition, the rehabilitation may occur at different levels, and the

patient has also different responses while walking. In a general way, the gait rehabilitation theme

can be divided into the two most important disease areas: neurological diseases and musculoskele-

tal traumas.

When the patient has neurological conditions, their rehabilitation can be planned in two senses:

top down and bottom up. Top down is based on what the patient knows, what he is capable of doing,

and his abilities. Begins with exercises that the patient can do, with the support of a clinician who

corrects him when he can not do the exercise properly. Bottom-up exercises are based on the brain

plasticity of learning. The patient has to do certain exercises with the sense of learning to do them,
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often resorting to a physician or system. Each patient that suffers from neurological diseases is

almost always unique, being necessary to have a well-attended and specialized treatment. For

each patient may be more adequate to have top down or bottom up approaches [Ren et al., 2016],

according to his condition.

When it comes to rehabilitation of musculoskeletal conditions, the patient has complete aware-

ness and cognitive ability only suffered trauma in the most distal parts of the body. In this case,

rehabilitation can insist in force, and as already mentioned, in repetition, so that when tissue

regenerates (or adaptates to the prosthesis, depending on the trauma), it is adapted to its gait func-

tionality.

2.4.1 Clinical Tests Applied to Gait Analysis

Clinical tests applied to gait analysis aims to determine, in a simple way, the falling probability,

especially in the elderly. The main goal of these methods is to evaluate the patient’s balance and

posture while walking and moving. They consist in simple methods that evaluate the patient’s

stability, by measuring the time of the exercise, posture and stability, while the patient is doing a

specific exercise.

These tests do not directly evaluate gait, they are used to collect information about the patients’

mobility status, and in the clinical setting to perform the evaluation of the state of the patient’s

movement.

Timed Up and Go (TUG)

TUG is a gait analysis method that consists in having the patient to sit on a chair, get up, walk 3

meters, then turn around, go back to the chair, turn around again, and sit down. The TUG value is

obtained from several trials, in order to obtain an average of the time that the patient takes to go

through the described route [Simoes, 2011].

In order to evaluate the patients, there are four scales presented in Table 2.7. The table relates

the state of the patient’s movement and also the risk of falling with the time that the patient takes

to do the task.

Table 2.7: Relation between the time the patients have in performing the TUG test and its move-
ment condition (adapted from [Simoes, 2011])

Time required to complete the task Description of the patient’s movement Falling Risk
10 seconds Generally freely mobile Low
10-20 seconds Mostly independent Low
20-29 seconds Variable mobility Moderate
more than 29 seconds Mobility impaired High
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Berg Balance Scale (BBS)

The BBS is a scale whose utility is grading the different patient’s balance ability in order to obtain

a functional balance over time. This scale is commonly used between treatments since it is a good

tool to evaluate the patient’s responses to the respective treatment. The BBS can also be applied

while the patient is performing different tasks. The total range of the scale is from 0 to 56, where

a lower score is related to a lower walking function and balance capacity, that leads to a higher

falling risk [van Meulen et al., 2016].

Walk

Walking is the most common and simple way to obtain a qualitative knowledge about the gait

pattern. There are several ways to assess the patient’s gait: through asymmetry, variability, and

ability to rotate with respect to the lower limbs, upper limbs, and trunk. Depending on the method

used, the arms may or may not be considered, since they belong to the passenger unit that acts as

a whole along the gait (as seen in Subsection 2.2.1).

Postural Sway or Center of Pressure (CoP)

CoP is a method used to measure the balance while the patient is standing. It is often called

the center of pressure, and, by comparison, associated with the center of mass (CoM), being

characterized by the ground reaction force vector.

In many CoP exercises, the patient is instructed to perform changes of posture with the feet

fixed on the ground, both in the sagittal and coronal planes. Thus, a set of parameters such as

angle reached without loss of posture control is evaluated in both planes [Yamamoto et al., 2015].

Clinical Test of Sensory and Balance (CTSIB) and Modified CTSIB (mCTSIB)

CTSIB is a method designed to access the ability of a person to control their balance with the use

of the senses. According to [Wrisley and Whitney, 2004], there are six conditions :

1. Standing on a flat, firm surface with eyes opened,

2. Standing on a flat, firm surface with eyes closed,

3. Standing with a visual obstacle on a firm surface,

4. Standing on a compliant surface with eyes opened,

5. Standing on a compliant surface with eyes closed,

6. Standing with a visual obstacle on a compliant surface.

This process is quite complex, thus a modified version of it is usually used. It is defined as the

modified CTSIB and contains only conditions 1, 2, 4, and 5 [Wrisley and Whitney, 2004].
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Balance Error Scoring System (BESS) and Modified BESS (mBESS)

BESS is a method commonly used by clinicians and researchers to evaluate patient’s balance.

Contains three stances:

1. Double-leg stance (hand on the hips and feet together),

2. Single-leg stance (standing on the non-dominant lower limb with hands on hips),

3. Tandem stance (non-dominant foot behind the dominant foot).

These tasks are performed on a firm surface and on a foam surface, with eyes closed, with

error counts every 20 seconds. An error is defined as: opening the eyes, moving the hands off the

hips, stepping, stumbling or falling out of position, lifting forefoot or heel, doing hip abduction

more than 30 degrees, or falling and taking more than 5 seconds to get back to the test position

[Bell et al., 2011].

360o Turn Test

The turn test is a test used to measure the balance. The patient is required to perform a turn on

360o himself. In this way, the dynamic balance is evaluated according to the number of steps that

the patient needs, and the time taken to complete the task. The patient can also make the turn in

both directions8.

Five times sit-to-stand test (FTSTS)

Sit to stand is a physical exercise that is highly influenced by muscle strength, especially the lower

limbs muscles. Older people or those with gait problems tend to have less strength in the lower

limbs. In this way, the evaluation of this activity is a good metric to predict the physical state of

that person’s lower limbs. Since there is a change in posture from sitting to lifting, this activity is

also a good way to assess the balance. The score associated with this test is the time the patient

takes to do it, and the larger the score, the greater the likelihood of the patient falling [Duncan

et al., 2011].

2.5 Automatic Systems in Gait Analysis

To date, there is a large set of automatic systems and there are researchers studying more pos-

sibilities to better analyze the gait giving more accurate, crucial, and representative data to the

gait specialists. As presented in Subsection 2.2.4, the analysis of gait has several applications.

Depending on the application, different systems can be implemented to respond to each need.

In the following subsections different approaches are presented for an automatic motion anal-

ysis. Those devices can be classified into [Muro-de-la Herran et al., 2014]:

8Rehab Measures. http://www.rehabmeasures.org/Lists/RehabMeasures/DispForm.aspx?ID=
1123 (visited on 11/01/2017) (Author: Janson Raad)

http://www.rehabmeasures.org/Lists/RehabMeasures/DispForm.aspx?ID=1123
http://www.rehabmeasures.org/Lists/RehabMeasures/DispForm.aspx?ID=1123
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Non-wearable sensors (NWS): These systems are mostly non-portable. Adequate rooms or

laboratories are needed to capture gait data while an individual walks on a defined walkway.

Wearable sensors (WS): Allows its use outside the gait laboratory. In this way, it is possible

to analyze the patients’ gait during their ADLs.

Hybrid Systems (HS): are systems with markers placed on the body segments whose location

is captured by cameras.

The following sections serve as a brief overview of these systems, with the main application

in gait analysis.

2.5.1 Non-Wearable Systems

NWS can also be classified into two subgroups [Muro-de-la Herran et al., 2014]:

Image processing: Systems based on this technology consist of image capture. There are

several conformations for data acquisition: a 2D camera, a 3D camera or several cameras

scattered in a room (3D). There are other optical sensors such as laser range scanners, in-

frared sensors and Time-of Flight.

Floor Sensors: Systems based on pressure sensors (force platforms), which capture the force

exerted on its surface. These systems, unlike the previous ones, allow to measure kinetic

parameters (like GRF).

Image Processing

As already mentioned, image processing motion capture systems may consist of 2D, 3D camera

capture or even multiple cameras in one room. A very basic method of image processing usually

used by these systems consists of threshold filtering that removes the background of the image

leaving only the silhouette of the patient’s body, which will then be evaluated to extract the gait

parameters. The evaluation setup usually consists of the patient walk on a specific walkway and

then joints’ angles and the number of steps, given a known-size walkway, can be measured. Tem-

poral and even spatial parameters can also be determined, allowing its use in gait rehabilitation

applications. There are rehabilitation systems based on image analysis, such as NeuroAtHome9

(Figure 2.12), Reflexion Health10, Virtualware11, among others.

Systems based on motion image analysis are able to capture gait data neither touching the

patient nor placing markers or sensors. However, these systems are not very portable because

they require a room or laboratory with the cameras installed in order to acquire the movement.

The movement captured is restricted to a specific path, not being close to the patients’ ADLs. The

algorithms that compose them are in general complex, because they need to segment the silhouette

9NeuroAtHome. http://www.neuroathome.com/en/ (visited on 30/01/2017)
10Reflexion Health. http://reflexionhealth.com/for-patients/ (visited on 30/01/2017)
11Virtualware. http://virtualwaregroup.com/en/products/virtualrehab (visited on 30/01/2017)

http://www.neuroathome.com/en/
http://reflexionhealth.com/for-patients/
http://virtualwaregroup.com/en/products/virtualrehab
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Figure 2.12: Example of a gait rehabilitation exercise with a image-based system (NeuroAtH-
ome9).

of the patient’s human body, they must be able to distinguish the patient from the background, even

with the presence of other people.

Floor Sensors

Some of the structures with lateral supports, used in clinics for evaluation of gait, contain pressure

sensors. These systems are the most basic and general of all systems used in gait analysis and are

also the most used in rehabilitation facilities. There are two types of pressure sensors associated

with these systems: force platforms and pressure measurement systems.

The force platforms allow the identification of the places where a pressure has been applied

(the footprints). In this way, it is possible to locate the pressure center and, with space and time

references, it is also possible to obtain spatial and temporal parameters.

Pressure measurement systems, in addition to the pressure platforms features, are also capable

of quantifying the pressure (direction and intensity). However, it is only in the vertical direction,

they do not allow to obtain horizontal force components or shear [Muro-de-la Herran et al., 2014].

There are several commercialized systems such as GAITRite12 (Figure 2.13), AMTI force and

motion13, Kistler (force and gait analysis products)14, among others. These systems are among the

few ones to measure the GRF. Its use consists of placing the patient to walk on the treadmill where

the sensors are (an example is demonstrated in Figure 2.13). These systems continue to require

expensive, non-portable equipment and are poorly suited to patients’ home use. In this way, the

path is limited to the space of the treadmill, and also decreases its portability. In addition, as the

information captured is only when the foot is on the ground, little information about the swing

phase is obtained. It is also not possible to estimate the kinematic parameters.

12GAITRite http://www.gaitrite.com/ (visited on 30/01/2017)
13AMTI. http://amti.biz/ (visited on 30/01/2017)
14Kistler. https://www.kistler.com/lv/en/products/products-by-applications/

motion-gait-analysis-products/#large__force__plate_for__research_and__sports_9287_
c (visited on 30/01/2017)

http://www.gaitrite.com/
http://amti.biz/
https://www.kistler.com/lv/en/products/products-by-applications/motion-gait-analysis-products/#large__force__plate_for__research_and__sports_9287_c
https://www.kistler.com/lv/en/products/products-by-applications/motion-gait-analysis-products/#large__force__plate_for__research_and__sports_9287_c
https://www.kistler.com/lv/en/products/products-by-applications/motion-gait-analysis-products/#large__force__plate_for__research_and__sports_9287_c
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Figure 2.13: Example of a gait rehabilitation exercise with a floor sensor system (GAITRite12).

2.5.2 Wearable Systems

WS can be used on various parts of the body such as feet, knees, thighs, shank or waist, to mea-

sure different gait parameters. Sensors that can capture gait data, include accelerometers, gyro-

scopes, magnetometers, force sensors, extensometers, goniometers, active markers, electromyog-

raphy sensors, among others [Muro-de-la Herran et al., 2014]. Not all of these are portable and

easy to use at home.

Force Sensors

Pressure sensors on insoles (under each foot) are similar to force platforms and pressure measure-

ment systems. They allow the measure of the GRF of each foot while walking (Figure 2.14).

Piezoelectric, resistive, capacitive, piezoresistive are different types of sensors that can be

used in insoles and are chosen according to the pressure range to be exposed, and the linearity and

sensitivity in that range [Muro-de-la Herran et al., 2014].

Force sensors placed inside shoes are used in gait analysis systems, such as the Insole X

(Smart Insoles’ product) 15 (Figure 2.14a). There are also some models that are able to observe

the difference in pressure along the foot area (from the heel to the toes), allowing to do a mapping

of the pressure exerted on the sole of the foot [Tao et al., 2012], such as the Moticon’s Insole16

(Figure 2.14b).

These systems, being used in insoles, allow the evaluation of gait analysis anywhere along the

patient’s ADLs, and are easy to use. However, they do not allow the acquisition of data on the

swing phase joint’s angles and balance, containing incomplete information for a gait analysis in

rehabilitation.

15Smart Insoles - Insole X. http://sennostore.com/ (visited on 02/02/2017)
16Moticon - Insole. http://www.moticon.de/products/science-research (visited on 02/02/2017)

http://sennostore.com/
http://www.moticon.de/products/science-research
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(a) Insoles with force sensors that capture gait data (Smart Insoles15).

(b) Insoles with force sensors that mapp the foot area while walking (Moticon16).

Figure 2.14: Example of a gait analysis system with a force sensors in insoles. In (a) are insoles
systems that perform gait analysis. In (b) are insoles that are able to mapp all the foot area.

Inertial Sensors

Inertial sensors are devices that contain accelerometers and gyroscopes and often magnetometers,

allowing to measure the angular velocity of an object, its acceleration, and/or orientation. IMUs

are devices inserted in this type. Depending on its position in the segments of the human body,

temporal parameters and angles of the segments can be acquired. The spatial parameters can be

obtained with trigonometry models with the measurement of the respective body segment [Tao

et al., 2012].

There are wireless IMUs, allowing for greater usability during rehabilitation sessions, such as

LEGSys17 (Figure 2.15a), and G-Walk18 (Figure 2.15b).

Recently, we have witnessed the increase in the accuracy of these systems being now about

2 degrees in marketable inertial sensors, such as (MTw from Xsens[xse, 2015b], InertiaCube 3

from Intersense19, Inertia-Link from Micro-strain20, among others). Those are portable and easy

to attach to the body. In this way, they can be used anywhere, with close proximity to the ADLs of

17Biosensics - LEGSys. http://www.biosensics.com/products/legsys/ (visited on 02/02/2017)
18G-Walk. fhttp://www.btsbioengineering.com/products/kinematics/bts-g-walk/ (visited on

02/02/2017)
19Intersense - InertiaCube3. http://www.intersense.com/pages/67/59/ (visited on 24/01/2017)
20Micro-strain - Inertia-Link. https://www.microstrain.com/content/inertia-link%C2%

AE-product-no-longer-stocked-%E2%80%93-limited-availability (visited on 24/01/2017)

http://www.biosensics.com/products/legsys/
fhttp://www.btsbioengineering.com/products/kinematics/bts-g-walk/
http://www.intersense.com/pages/67/59/
https://www.microstrain.com/content/inertia-link%C2%AE-product-no-longer-stocked-%E2%80%93-limited-availability
https://www.microstrain.com/content/inertia-link%C2%AE-product-no-longer-stocked-%E2%80%93-limited-availability


2.5 Automatic Systems in Gait Analysis 33

(a) IMU system that perform gait analysis
(LEGSys17).

(b) IMU system that perform gait analysis
(G-Walk18).

Figure 2.15: Example of a gait analysis system based on IMUs. In (a) is one approach based in
several IMUs placed at the lower limb. In (b) is another approach based in one IMU placed at the
lower back.

the patient. However, there is still a strong problem associated with magnetic interference and drift

due to continued use of the sensors. These interferences reduce the accuracy of the information

provided by the sensors. In this sense, complex algorithms are needed to solve this problem.

Electromyography (EMG)

EMG measures the electrical activity of muscles. When a muscle contracts, there is an electrical

activity associated, which can be acquired by an electrode. The electrodes may be non-invasive or

invasive (needle type), depending on the specificity of data that is required.

The use of these systems in gait analysis is in a different approach, than the other systems.

These systems allow the detection of muscles spasticity, loss of motor selectivity in antagonistic

muscles, among other properties that can be inferred from muscle activity [Muro-de-la Herran

et al., 2014]. To accomplish this analysis the electrode is placed on muscles specifically related

to these activities. [Tao et al., 2012]. This level of detail is often difficult to acquire with the

previously mentioned systems.

The placement of the electrodes is the first step of this system, being quite meticulous. It

has to be adjacent to certain muscles that go into action along the gait. In addition, it is very

sensitive to interferences that may occur near the sensors (such as other electrical signals from

the body resulting from other activities such as heartbeat), which are also felt on the skin (where

the electrodes are). There are EMG systems that require the electrodes to be placed in the muscle

(invasive), that suffer less noise interference. These systems are highly complicated to be used

both in clinics and at home for rehabilitation practice, being mostly used for medical diagnosis

and sports.

These systems allow access to lower limbs muscle activity, which provides more detailed

information on the patient’s physical state in more anatomical terms [Tao et al., 2012]. However,
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do not allow direct measurement of gait parameters indicated in Section 2.3, being not suitable for

use in gait analysis for rehabilitation.

2.5.3 Hybrid Systems

HS are systems that require the installation of components in a room, such as cameras, and the

placement of markers along the body. These systems are also called vision-based tracking with

markers.

The basic technique of these system consists in the acquisition of movements of the human

body from the capture of the location of markers (which are placed along the body segments being

analyzed) by optical sensors [Zhou and Hu, 2004]. The setup is similar to the one shown in Figure

2.16, where it can be seen by cameras in the upper corners of the room and markers placed along

specific locations at the people’s body segments.

Marketable systems using this type of technology are for example the VICON21 (Figure 2.16),

and Qualisys22.

Figure 2.16: Example of the gait analysis performed by a camara based system with markers (HS)
(VICON gait analysis22).

These are the systems with higher accuracy, being considered the gold standard. They are

used in many researches as the method of comparison to provide the ground truth. These are even

used in cinematography, in the acquisition of movement for animation of films. Of all the systems

previously described, they are the ones that present the best performance and results. However,

they are quite expensive, its installation is time-consuming, it takes a long time in calibration

processes, making it practically impossible to use in clinics with a large amount of patients and at

patients’ home.

In order to summarize all the advantages and disadvantages of the presented systems, the

Table 2.8 was constructed. This table has information already mentioned previously, as well as

other small details taking into account the application in rehabilitation.

21VICON. https://www.vicon.com/ (visited on 30/01/2017)
22Qualisys. http://www.qualisys.com/ (visited on 30/01/2017)

https://www.vicon.com/
http://www.qualisys.com/
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Table 2.8: Overview of the advantages, disadvantages, general accuracy and price of several auto-
matic systems for the human gait capture.

System Advantages Disadvantages
NWS: Image based
and
NWS: Floor Sensors

- It is not restricted to battery consumption,
- It does not require sensor placement,
- It is not invasive,
- Better repeatability.

- Requires complex algorithms,
- Sensitive to image interference similar to
the human body,
- Expensive equipment,
- Impossible to monitor movements out-
side the observation region,
- Impossible to monitor in conditions close
to the ADL of the patient (with obstacles,
distances and floor surfaces he faces daily).

WS: Force Sensors - Easy to setup,
- It allows the evaluation of gait in any envi-
ronment (clinics, home or even in the street),
- Moderately expensive (compared to cam-
era, markers and floor sensors),
- It allows the evaluation of the gait in envi-
ronments closer to the patients’ ADL.

- They do not provide enough data to eval-
uate kinetic parameters,
- They do not provide information about
the swing phase,
- The battery is limited,

WS: Inertial Sensors - Relatively easy to place,
- It allows the evaluation of gait in any en-
vironment (clinics, home or on even in the
street),
- Cheaper systems (compared to camera,
markers and floor sensors),
- It allows the evaluation of the gait in envi-
ronments closer to the patients’ ADL,
- They allow to evaluate a large amount of
gait parameters, except the kinetic parame-
ters.

- The battery life is limited,
- Some patients may have difficulty placing
the sensors properly, requiring the help of
a family member,
- In general, complex algorithms are re-
quired to solve magnetic’s and calibra-
tion’s problems.

WS: Electromyogra-
phy

- Detail more directly the muscular activity,
- Can detect more locally the problems that
cause gait impairments (to detect the mus-
cles or problematic sections).

- Placement of sensors is complex (requires
a specialist),
- Complicated to analyze certain gait pa-
rameters from the EMG data,
- Indicated to an clinical analysis - not for
rehabilitation.

HS: Markers - High precision and accuracy in the deter-
mination of the gait parameters,

- Very expensive system, compared to sys-
tems based on cameras (only) or on inertial
sensors.
- The setup is very complex, both the
placement of the sensors in the segments
of the human body and the strategic place-
ment of the cameras.
- Requires highly specialized technical per-
sonnel.
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Depending on their applicability some systems may be more suitable than others. For exam-

ple, the HS are more suited to the use in cinematography applications and in clinical research due

to its high accuracy and performance. However, for rehabilitation purposes, the most indicated in

terms of setup, portability, and usability, are the inertial sensors and the camara based systems.

These characteristics are crucial for a rehabilitation system, because: portability ensures that mul-

tiple patients can use similar systems at the same time in the same space and also that patients can

do home-based rehabilitation exercises; and usability is crucial in order to ensure that the system

performs its movement acquisition functions in an adequate way to evaluate rehabilitation exer-

cises while being simple for the therapists’ and patients’ use, offering an adequate user experience

with effectiveness, efficiency and satisfaction.

Hereafter, a review of the (generic) gait parameters that can be measured by the different

systems, is presented. In order to organize the gait parameters that can be measured by the different

systems, the Table 2.9 was constructed.

Table 2.9: Overview of the parameters that can be acquired from the automatic systems. Y means
that the gait parameters set can be measured, N means that they can not be measured.

System Spatial Temporal Kinematic Kinetic
NWS: Image based Y (with dimension reference) Y Y N
NWS: Floor Sensors Y Y N Y
WS: Force Sensors Y Y N Y
WS: Inertial Sensors Y (with patient height) Y Y N
WS: Electromyography N N N N
HS: Markers Y Y Y N

As can be seen from Table 2.9, there is no single unique system, capable of measuring all the

parameters mentioned in Section 2.3.

As previously mentioned, of all the systems presented, those that consist of EMGs are the ones

that are less able to measure the presented gait parameters. Of the remaining systems, there are,

in one side, those based on pressure at ground level (which allow to measure the GRFs), and, in

the other side, those based on image and inertial sensors (that, although they can not measure the

GRF, allow the acquisition of kinematic parameters).

Some image-based systems and inertial sensors require spatial references in order to acquire

spatial parameters (such as rugs with specific dimensions in the case of imaging, and measurement

of the dimension of the patient’s lower limbs in the case of inertial sensors). The only parameters

that can not be measured directly by inertial sensors are the kinetic parameters.

Combining all the advantages and disadvantages of the different methods presented, it can

be concluded that, although the inertial sensors have not all the advantages for acquiring move-

ment (for example, are not capable to measure GRFs), they are comparable to the others, taking

advantage of the ease setup, portability, usability and possible parameters to be measured.
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2.6 Summary

Each GC is divided into several phases in which different anatomical movements (flexions and

extensions of the hip, knee and ankle joints) occur. Knowledge of these gait details allows for a

more careful, gait-focused analysis.

There are several pathologies that cause impairments to walking patterns and, in many cases,

increase the falling risk, such as neurological, musculoskeletal, and other diseases. One way to

improve these conditions is to perform controlled rehabilitation so that a correct walking pattern

is performed by the patient and thus restore the walking function properly.

In order to evaluate an exercise, it is necessary to take into account metrics that are easily

interpreted by specialists in the rehabilitation field. These metrics, in gait rehabilitation, are the

gait parameters, such as stride length, step length, step time, joint angles, asymmetry, cadence,

among others. It is also verified that most of the spatial parameters can be obtained after the

detection of IC and PS of the GC. The kinematic parameters require more information about the

orientation of the lower limb segments and are also better suited to help to give feedback to the

patient while performing the exercise (for example, instructing the patient to flex the knee for

the advancement of the leg). Kinetic parameters (such as GRF) are important to realize the load

placed on each lower limb, helping therapists to better understand the load capacity of each lower

limb (especially in the LR phase). This is especially important for the evaluation of patients with

prostheses. However, these metrics are complex to measure without instruments.

One way to access patients’ ability to move in clinics is through testing such as TUG and

CTSIB. They allow an analysis of the patient’s stability of the gait and balance. However, the

assessment is very dependent on specialists’ experience.

In order to evaluate with more accuracy and to obtain more gait parameters, automatic systems

are used, such as cameras, force platforms, and inertial sensors, among others. After a brief

review of these systems, it can be concluded that pressure-based sensors are the only ones able to

measure kinetic parameters, however they lack the estimation of kinematic parameters, important

for rehabilitation. The market-camara-based systems, such as the golf standard VICON, are the

most accurate automated motion capture systems. However they are very expensive, requiring

calibrations and time-consuming installations, a specific gait laboratory is required, where cameras

are installed, making them unfeasible for clinics’ and patients’ use. Cameras based systems are

also used in rehabilitation, however they are limited to a fixed space where the cameras are. Finally,

there are the inertial sensors that, although they do not allow kinetic parameters to be measured,

and contain some problems related to calibrations and magnetic field interferences, can be used

anywhere, adjustable for use in rehabilitation clinics, and patients’ homes. They also contain the

accuracy and battery-life enough to be implemented in rehabilitation exercises.
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Chapter 3

Gait Analysis with Inertial
Measurement Units

The purpose of this thesis is the development of a gait analysis system for rehabilitation with

inertial sensors. IMUs were chosen due to their ease of integration into a portable system, they are

convenient for the usage outside the healthcare center, or even at the patient’s home.

The following sections present details about the materials that will be used throughout the

thesis work, as well as some methods that belong to the state-of-the-art related to these devices

(IMUs) and the analysis of gait.

3.1 Inertial Measurement Units

In general, IMUs are systems composed of three sets of accelerometers and gyroscopes, and some-

times can have a triad of magnetometers. These sensors allows measuring linear and angular move-

ments. The main advantages of systems that use IMUs are their simplicity, they are unobtrusive,

portable, wireless, self-contained, relatively low-cost, have a compact size, are lightweight, ap-

propriate for real-time applications and allow unconstrained motion monitoring [Bergamini et al.,

2014]. Due to these characteristics, they are a very interesting device to use with high repeatability

in rehabilitation environments.

Most common IMUs provide angular velocity information and sensor acceleration. Other

systems already provide integrated signal processing filters, that output other signals, derived from

the integration of the information given by its devices’ sensors.

3.1.1 Introduction to IMUs

As already mentioned, inertial sensors contain gyroscopes, accelerometers, and magnetometers.

The following sub-subsections are intended to introduce these systems. In addition, in order to

take advantage of the data acquired by these three sensors, a combination of their values is made

to obtain the orientation of the tracker in relation to an Earth frame. This is accomplish with fusion

39
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sensor algorithms, and the following sub-subsections will also present a brief introduction to this

topic.

Accelerometers

Accelerometers are devices that measure acceleration. The ones that make up the IMUs are ac-

celerometers with three acceleration axes: X, Y, and Z. In this way they feel the acceleration in

the three directions, allowing to detect the gravitational acceleration [Su et al., 2014], which is

important for understanding the vertical orientation towards the Earth. The base application of

this sensor is to detect static and dynamic motion activities.

The acceleration vector contains information of: dynamic acceleration ( #»a ) (which is the ac-

celeration of any movement (on any acceleration axis)), static acceleration relative to gravitational

acceleration ( #»g ) (acceleration of gravity), accelerometer offset (
#»
OA), and measured noise ( #»n A).

This results in Equation 3.1. The matrix SA provides normalization of the differing scaling factors

[Young, 2010].

#»
A = SA(

#»g + #»a +
#»
OA +

#»n A) (3.1)

Gyroscopes

The gyroscope is a device that measures the rotation rate. The rotation that it senses is along with

the X, Y, and Z device’s axes, respectively. It can be considered that the gyroscope vector
#»
G is

composed of the rotation rate ( #»
ω ) (gyro rotation rate), the gyroscope bias offset (

#»
OG) and the

measured noise ( #»n G). In this case, SG is the scaling factor normalization (Equation 3.2) [Young,

2010].

#»
G = SG(

#»
ω +

#»
OG + #»n G) (3.2)

In motion recognition applications, the gyroscope allows the detection of the orientation of

the tracker, thus having a great application in human movement analysis [Su et al., 2014]. How-

ever, with temperature and motion, over time, the gyroscope accumulates errors that lead to a bias

drift [Madgwick, 2010]. This event is the major cause of error detected when the gyroscope is

operating, causing loss of accuracy [Bergamini et al., 2014]. One way to overcome this prob-

lem is to implement fusion algorithms, especially based on the Kalman filter (discussed later in

Subsubsection 3.1.2).

Magnetometers

The magnetometer is a device that measures the magnetic field, in the X, Y and Z axes. Tradition-

ally it detects the direction in which the magnetic north pole is, but can also be used to detect the

presence of other sources of magnetic fields [Su et al., 2014]. The magnetic vector
#»
M is composed

of the magnetic field ( #»m) (corresponding to the magnetic north of the Earth), the magnetometer
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offset (
#»
OM), and the measured noise ( #»n M) (corresponding to magnetic interferences such as soft

and hard magnetic effects). In this case, the matrix SM also provides the scaling factor normaliza-

tion (Equation 3.3) [Young, 2010].

#»
M = SM( #»m +

#»
OM + #»n M) (3.3)

It is the property of detecting any magnetic field that causes sources of errors in the mag-

netometer. Ferromagnetic elements are able to distort the Earth magnetic field where they are

located. But there are other sources that cause changes in the magnetic field, such as electrical

components and cables, furniture with metal components (for example, chairs), and metal struc-

tures that exist in the buildings construction [Madgwick, 2010]. Even the device associated with

the system can cause deviations to the magnetic north of the sensor. By distorting the surrounding

magnetic field, the presence of ferromagnetic materials in the vicinity of the device can cause a

severe loss of accuracy.

Interference sources that are attached to the sensor’s coordinate axis can be removed by cali-

bration. However, variable interference sources (on the Earth’s coordinate frame) cause errors in

measuring the direction of the Earth’s magnetic field (which is the case of soft iron effects). Devi-

ations from the horizontal plane relative to Earth’s surface can not be corrected without additional

references and heading orientation. If the deviation is due to inclinations with vertical components

relative to the Earth’s surface, they can be corrected or compensated with additional information

of the accelerometer (sensor’s attitude) [Madgwick, 2010].

3.1.2 Sensor Fusion Algorithm

To evaluate movement during gait, trackers (sensors) are used to acquire information. To measure

these movements it will be necessary to place a set of trackers along the lower limbs of the body so

that the orientation of these can be correlated to the orientation of the body segments where they are

located. In relation to the trackers, it is necessary to understand their orientation in order to achieve

the orientation of the body segment. In this sense, an accurate and precise system is required

to determine the three-dimensional (3D) orientation of each body segment. This orientation is

relative to a Earth-fixed reference frame [Bergamini et al., 2014], and can be extracted from the

sensor data, previously mentioned (Subsubsections 3.1.1, 3.1.1, and 3.1.1).

The accelerometer, gyroscope and magnetometer values, when used separately, present drift

errors (in particular, from the gyroscope data), reducing the precision in movement detection.

Using fusion algorithms, which integrate the values of the three sensors, it is possible to limit these

errors and thus increase the accuracy, robustness, and consistency of the data acquired [Bergamini

et al., 2014] (see Figure 3.1).

There are several fusion sensor algorithms. One of the most used algorithm is the Kalman

Filter [Kalman, 1960], which is also the basis for the implementation of many other sensor fusion

algorithms. According to [Madgwick, 2010], the Kalman Filter is the basic data fusion algorithm
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Accelerometer

Gyroscope

Magnetometer

Fusion
Algorithm Quaternion

Figure 3.1: Diagram representing the inputs and outputs of a generic sensor fusion algorithm. It
takes the individual values of the sensors (accelerometer, gyroscope and magnetometer) as inputs
and returns a quaternion (explained later).

used in xsens1, micro-strain2, VectorNav3, Intersense4 and PNI5 sensors. Since the Kalman Filter

is very important in the inertial sensors field, a brief description of this algorithm is presented

below.

Kalman Filter

The Kalman filter is a statistical mathematical method used to filter signals containing amounts of

statistical and systematic noise. In a generic and simple way, the Kalman filter fuses measured data

in successive discrete time intervals, forming an estimated maximum likelihood of the measured

parameters. It removes noise from the sensor signals to produce fused data to estimate smoothed

values of position, velocity, and acceleration of a series of points in a path [Elmenreich, 2002].

According to [Elmenreich, 2002], the Kalman filter is divided into two linear components:

the first is related to the dynamic conditions of the system and the second describes the noisy

observations of the system. It takes into account past values to compute a likelihood. With the

introduction of new noisy data, and joining the previously determined likelihood, the resulting

signal is more in accordance with the one that really happened. In this way, nonsense or noisy

values, concerning the continuous human movement, are discarded.

This algorithm (generically presented) works only for linear conditions. However, there are

several applications that have non-feasible behaviors, and before that, algorithms have been cre-

ated in order to meet the new requirements of non-linearity. Among them are the algorithms

Extended Kalman Filter (EKF) [Elmenreich, 2002].

3.1.3 Commercial Sensors: Brief Overview

There are several commercially available inertial sensors (some already mentioned in Subsection

3.1.2). A brief analysis of them is presented below. The Vectornav3 products are not wireless and

1Xsens. https://www.xsens.com/ (visited on 19/01/2017)
2Micro-stain. https://www.microstrain.com/ (visited on 19/01/2017)
3Vectornav. http://www.vectornav.com/ (visited on 19/01/2017)
4Intersense. http://www.intersense.com/ (visited on 19/01/2017)
5PNI. https://www.pnicorp.com/ (visited on 19/01/2017)

https://www.xsens.com/
https://www.microstrain.com/
http://www.vectornav.com/
http://www.intersense.com/
https://www.pnicorp.com/
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thus are not suitable for use as wearables in rehabilitation. For the remaining products, a short

survey was carried out with the public available information and shown in Table 3.1.

Table 3.1: Brief review of marketable inertial sensor specifications with bluetooth connection,
according to information publicly available. In this table the root mean square is defined as RMS.

Property MTw (Xsens)
[xse, 2015b]

InertiaCube 3
(Intersense)6

InertiaCube BT
(Intersense)7

Inertia-Link
Micro-strain 8

SENtral
(PNI)9 [PNI, ]

Wireless Yes Yes Yes Yes Yes

Update
Rate (Hz)

50 (internal 240) 180 (2 devices)
120 (4 devices)

180 1000 200

Static Accuracy
Heading
(deg RMS)

1 1 1 0,5 2

Roll & Pitch
(deg RMS)

0,5 0,25 0,5 0,5 -

Dynamic Accuracy
Heading
(deg RMS)

1,5 - - 2 -

Roll & Pitch
(deg RMS)

0,75 - - - -

Physical Specifications
Weight
(grams)

16 20 67 39 -

Dimensions
(mm)

47 x 30 x 13 31,1 x 43,2 x 14,8 60 x 54 x 32 41 x 63 x 24 1,6 x 1,6 x 0,5

The Intersense4 product InertiaCube BT has large dimensions (60 x 54 x 32 mm) and is con-

siderably heavy (67 grams). Thus, is not very comfortable to be used in the foot or ankle, and

by patients with lower physical capacities. One of the smallest and suitable wearable products

for human movement monitoring of the PNI 5 company is the SENtral, with a 2 degree heading

accuracy. The remaining sensors have similar characteristics and have simillar accuracy.

Many of Xsens1 sensors are not wireless, however, as will be described later, a version similar

to MTw was built to meet the requirements of the SWORD Health company: with roll, pitch and

yaw accuracy less than 1,5 degree (in dynamic conditions), wireless communication via Bluetooth,

small dimensions (47 x 30 x 13 mm), and lighter (16 grams weight) [xse, 2015b]. In addition, it is

a product designed specifically for monitoring human movement.

In spite of the relatively close characteristics between the different sensors, the ones that will

be used throughout the thesis work will be the MTw (Xsens), which, despite being the ones with

better characteristics (presented in the Table 3.1), are also provided by SWORD Health. A brief

description about the MTw (Xsens) will be made in the following Subsection 3.1.4.

6Intersense - InertiaCube3. http://www.intersense.com/pages/67/59/ (visited on 24/01/2017)
7Intersense - InertiaCube BT. http://www.intersense.com/pages/69/60 (visited on 19/01/2017)
8Micro-strain - Inertia-Link. https://www.microstrain.com/content/inertia-link%C2%

AE-product-no-longer-stocked-%E2%80%93-limited-availability (visited on 24/01/2017)
9PNI: SENtral. https://www.pnicorp.com/sentral/ (visited on 19/01/2017)

http://www.intersense.com/pages/67/59/
http://www.intersense.com/pages/69/60
https://www.microstrain.com/content/inertia-link%C2%AE-product-no-longer-stocked-%E2%80%93-limited-availability
https://www.microstrain.com/content/inertia-link%C2%AE-product-no-longer-stocked-%E2%80%93-limited-availability
https://www.pnicorp.com/sentral/
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3.1.4 Sensors Specifications

The MTw (Figure 3.2) is a wireless tracker, therefore requiring an internal battery that allows free

use in the segments of the human body [xse, 2015a]. It is an accurate, small and lightweight 3D

human wireless motion tracker [xse, 2015b].

Figure 3.2: IMU MTw, Xsens’s product.

MTw is a very convenient tracker to be used to measure the orientation of segments of the

human body by its ease of placement (with straps with Velcro R© that are in the back of the tracker).

In this way, the angles of human joints can be determined. The MTw tracker also has a battery life

that lasts long enough for therapy sessions [xse, 2015a].

Table 3.2: MTw Sensor Specifications, adapted from [xse, 2015b]

Description Specification
Tracker placement Easy fastening with Velcro straps
Internal update rate 240 Hz
Update rate 50 Hz
Batery life 8 Hours
Charging USB 2.0 Micro
Dimensions Tracker 47×30×13 mm (1.85×1.18×0.51 in)
Weight 16 g (0.56 oz.)
Operating temperature range 00C−500C

Communication
Range open space Up to 20 m (65 f.)
Range office space Up to 10 m (33 f.)
Wireless protocol Bluetooth 4.0

Orientation
Static Accuracy (Roll/Pitch) 0.5 deg RMS
Static Accuracy (Heading) 1 deg RMS
Dynamic Accuracy (Roll/Pitch) 0.75 deg RMS
Dynamic Accuracy (Heading) 1.5 deg RMS

Tracker Components
3 axes Angular velocity (Full scale) ±2000 deg/s
3 axes Acceleration (Full scale) ±160 m/s2

3 axes Magnetic field (Full scale) ±1.9 Gauss

As already mentioned, these trackers are small and light. In addition, they present a high dy-

namic accuracy (comparing to experienced physiotherapists that perform errors close to 5 degrees

[Perry and Burnfield, 1992]), (1.5 deg root mean square (RMS)), being suitable for use in health

applications.



3.1 Inertial Measurement Units 45

The specifications of the tracker that will be used in the thesis work are presented in Table 3.2.

This table is based on the specification’s sheet for the defined sensors: MTw [xse, 2015b].

It is crucial to mention the orientation specifications. In Table 3.2 the orientation accuracy

under optimum conditions of the MTw trackers can be seen. Optimal conditions can be defined as

conditions without magnetic field variations (for example, the presence of heavy magnetic distor-

tions or hard and soft iron effects). The accuracy of these sensors is in the order of one degree in

almost all the components (roll, pitch, and yaw). Roll, Pitch and Heading are introduced in the

following subsections.

Orientation Integration System

The MTw, Xsens’s product, already comes with a 3D drift-free orientation integration software

system, which combines information from the three sensors, and returns the orientation of the

sensor’s frame relative to a local Earth’s frame. The algorithm used by Xsens, in the MTw trackers,

is called XKF3, according to the technical report [Fai, 2015]. The XKF3 is an algorithm that

processes 3D inertial information with 3D magnetometer data to estimate 3D orientation and is

based on the Kalman filter, as mentioned in Subsection 3.1.2.

In a simple way, the data obtained by the accelerometer and the magnetometer is used to

collect information on the static position of the tracker. In Figure 3.3, it can be seen that the z axis

of the tracker is determined symmetrically in relation to the orientation of the gravitational force,

and the y axis of the tracker is defined using the direction of the Earth’s magnetic field (magnetic

North).

g
mz

y x
Figure 3.3: Coordinates of the tracker frame in relation to the Earth frame. The z axis is in relation
to the opposite direction of the gravity (g) and the y axis is in relation to the Earth’s magnetic field
(North) (m). The tracker is represented by the object, and the frame is positioned in the center of
the object (note in the LED in the left corner of the tracker), (adapted from [Fai, 2015]).

All signals provided by the tracker sensors are complementary to each other. Following these

concepts, the accelerometer and the magnetometer provide important information to define the
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static orientation of the sensor. Gravitational and magnetic sensing provide stabilization informa-

tion over a long period of time. The gyroscope is introduced to, along with the previous ones,

be able to capture the rotation (dynamic) of the tracker during its use. According to [Fai, 2015],

continuous integration of sensors signals allows the detection of the short-term accurate, high-

bandwidth, and high-resolution tracker movements. However, after a prolonged use of the gyro-

scope, an inherent integration drift of the object’s frame in relation to its real axis, grows.

This algorithm is also able to do a continuous auto calibration, allowing the use of the trackers

for longer periods of time without deviations. The main causes of these deviations are diverse,

for example, temperature differences, mechanical stress, soft iron effects, vibrations, trackers’

aging, the magnetization of the device itself, the environment around the trackers and so on. This

algorithm allows an automatic calibration without the interruption of the user’s tasks. Since it is

being commercialized with the sensors, more detailed information about it is confidential.

The XKF3 algorithm returns a normalized unit quaternion that expresses the orientation of the

sensor in relation to local (Earth) coordinates. The form of this quaternion can be expressed by

the Equation 3.4, where W is the real component and X, Y, and Z are the imaginary components

[Fai, 2015].

q = [WXY Z]; (3.4)

The following subsection is presented to understand the concepts related to quaternions.

3.1.5 Theoretical Background

An object can be considered as an axis itself. In this way, any rotation that occurs in the object

in relation to an external frame can be represented by a combination of the Roll, Pitch and Yaw

rotations (shown in the Figure 3.4). In this sense, the roll (or bank) is defined as a rotation of the

object around the X axis, the pitch is defined as the rotation of the object around its Y axis, and the

yaw (or heading), is defined as the rotation of the object around its Z axis.

x

z

y

Bank/Roll
Pitch

Heading/Yaw

Figure 3.4: The inertial frame. Rotations roll, pitch and yaw in a frame, (adapted from 10).

10CHRobotics. http://www.chrobotics.com/library/understanding-euler-angles (visited on
10/01/2017)

http://www.chrobotics.com/library/understanding-euler-angles
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These rotations refer to orientations using the Euler angles. Those are simple and intuitive with

respect to the interpretation of the physical movement that occurs, based on the combination of

the three previously defined rotations. However, they are limited to rotations less than 90 degrees,

so that the Gimbal Lock phenomenon can be avoided [Dam et al., 1998]. This phenomenon occurs

when two of the three axes are superimposed after a sequence of rotations. After two or more

axes are superimposed, their separation is very complex, being almost impossible to differentiate

the axes involved. One way to avoid this phenomenon is to use quaternions, instead of the Euler

angles, to acquire object rotation.

Quaternions

Based on the previous subsections, it is possible to conclude that the extraction of information

that the MTw trackers provide are related to sensor orientation information with respect to a local

(Earth) coordinate frame (in the form of a quaternion). With this, it can be understood that, if the

IMU device is placed in an object, each quaternion value acquired through the tracker provides

information about the orientation of the object, relative to a fixed coordinate axis on Earth.

Along the practical work of this dissertation, sensors will be used in body segments in or-

der to find the orientations while walking and to determine parameters that are determinant for

gait analysis and rehabilitation. In this way, it is necessary to understand concepts related to the

quaternions, in order to find gait patterns. Thus, in this subsection, a brief explanation about the

theoretical background concepts related to quaternions, and rotation is presented.

Rotation in 3D can be defined in different ways. According to [Dam et al., 1998], the definition

given by Euler’s theorem is described as:

"Let O, O′ in R3 be two orientations. There exists an axis l ∈ R3 and an angle of

rotation θ ∈ [−π,π] such that O yields O′ when rotated θ about l.”

In other perspective, the orientation of a frame B relative to a frame A can be obtained by rotating

a θ angle around an axis Ar̂ defined in frame A. An illustration of this example is shown in Figure

3.5 [Madgwick, 2010].

It is important to mention that an orientation of an object in R3 can be defined by a normal

vector, while a rotation can be defined by an axis and an angle of rotation. Using Euler’s theorem,

the rotation can be represented by two forms: transformation matrices or quaternions. According

to the information provided by the sensors (quaternions), some aspects related to them will be

introduced.

A unit quaternion is defined according to i2 = j2 = k2 = ijk = −1. Being thus a four-

dimensional complex number, that represents the orientation of a rigid object in a three-dimensional

space.

In accordance with this, a quaternion is usually written as [s,v], where s∈R and v∈R3. In this

notation, s is defined as a scalar part of the quaternion, and the v the vector part, and is defined as

v = (x,y,z)
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Figure 3.5: Orientation of a frame B relative to a frame A. The axes x̂A, ŷA and ẑA represent frame
A and axes x̂B, ŷB and ẑB represent frame B. the vector Ar̂ has components rx, ry and rz relative
to frame A. The angle of rotation is made on the vector Ar̂ and is presented by θ (adapted from
[Madgwick, 2010]).

In this sense, and according to [Dam et al., 1998], quaternions can be defined as is Equation

3.5:

q = [s,v] ,s ∈ R,v ∈ R3

= [s,(x,y,z)] ,s,x,y,z ∈ R

= s+ ix+ jy+kz ,s,x,y,z ∈ R

(3.5)

Taking into account the example in Figure 3.5, the quaternion describing the orientation of the

frame B in relation to a frame A is defined by the Equation 3.6 and considers the components of

the axis of rotation (unit vector Ar̂), and the rotation angle θ [Madgwick, 2010].

A
Bq̂ = [q1 q2 q3 q4]

= [cos
θ

2
− rxsin

θ

2
− rysin

θ

2
− rzsin

θ

2
]

(3.6)

A 3D rotation of an object can be achieved by a unit quaternion. Having a vector p, a unitary

quaternion q, treating p as a quaternion p=(0, p), the rotation of p by q is (Equation 3.7) [Williams

et al., 2015]:

p′ = qpq−1 (3.7)

Considering this equation, it will be necessary to process the multiplication between quater-

nions, and the inverse of the quaternion.
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The multiplication between quaternions is defined in Equation 3.8:

qq’ = [s,v][s′,v′]

= [s,(x,y,z)][s′,(x′,y′,z′)]

= (s+ ix+ jy+kz)(s′+ ix′+ jy′+kz′)

= [ss′−v ·v′,v×v′+ sv′+ s′v]

(3.8)

where · and × define the scalar and vector product in R3, respectively [Dam et al., 1998].

The product of quaternions is useful for defining compound orientations, which result, for

example, from two successive orientations [Madgwick, 2010]. And also to specify the combined

rotation (multiplication between two quaternions) [Young, 2010]. It has to be noted that if ij = k,

and ji =−k, the multiplication between quaternions cannot be commutative (qq′ 6= q′q).

The conjugate becomes useful for changing the frames that describe the orientation. The

conjugate of a quaternion (q∗) (Equation 3.9):

q∗= [s,v]∗

= [s,−v]

= [q1 −q2 −q3 −q4]

= A
Bq̂∗= B

Aq̂

= q−1 (i f q is unit quaternion)

(3.9)

For example, in the previous Equation (3.9), B
Aq̂ is the A

Bq̂ conjugate and describes the orientation

of frame A relative to the frame B (unlike what was assumed in Equation 3.6 [Madgwick, 2010]).

The inverse rotation is given by the quaternion conjugate [Young, 2010].

Normalization is important to ensure that the quaternions used are unitary. The norm of a

quaternion is defined as (Equation 3.10):

||q||=
√

s2 +v ·v

=
√

s2 + x2 + y2 + z2
(3.10)

The norm of the conjugated quaternion is equal to the norm of the quaternion itself (Equation

3.11):

||q∗ ||= ||q|| (3.11)

The norm of the the multiplication of two quaternions is defined as (Equation 3.12):

||qq′||= ||q||||q′|| (3.12)
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It is possible to normalize according to the following Equation 3.13 [Young, 2010].

norm(q) =
q
|q|

(3.13)

3.2 Gait and Balance Training and Analysis

As already mentioned in previous sections, the technological solutions of movement capture are

able to acquire parameters from complex movements with high accuracy. With the emergence of

these technologies that are lighter, smaller, wearable and wireless, and more autonomous, portable

and accurate; there is the possibility of making software systems with the aim of assisting reha-

bilitation. It is important that these systems are able to provide objective metrics and clinically

validated reports to physiotherapists and also inform the patient how well he is performing the

exercise in a way that he is able to improve it (in real-time) [Horak et al., 2015].

In gait and balance, there are several metrics capable of giving this information objectively

either to the physiotherapist or physician or to the patient when performing the exercise. These

metrics must be able to characterize the gait and balance impairments. They must also be able

to answer questions such as "how" is occurring and "why" is occurring specific impairments

throughout the functional performance. In the concept of physical therapy, it is important that

these systems have high quality, efficiency and efficacy in obtaining gait and balance metrics, high

applicability, usability, accessibility, replicability, portability, safety, among others. These features

are the major advantages of having an automatic, portable, lightweight, motion monitoring system

in rehabilitation, which can be done at a distance [Horak et al., 2015].

Human gait is a complex movement, due to the set of unit movements that are controlled

by distinct neuronal structures (both in the balance and in gait itself), and also certain adaptive

mechanisms to maintain mobility and balance in gait, which occur with the incidence of certain

diseases. It becomes easier to evaluate these complexities with a portable monitoring system that

is capable to detect small characteristics of the movement that are unnoticed to the human eye.

In addition, many methods used in clinics (such as some mentioned in the Subsection 2.4.1) are

evaluated subjectively, being necessary a specialist with high experience and also, results often

vary from expert to expert.

In order to be used clinically and also at home, these systems should be easy to use, quick to

install and calibrate, provide relevant information (for example, in addition to the parameters, the

risk of fall and/or severity of a condition or illness), and reports the sessions with information easy

and quick to interpret [Horak et al., 2015].

Regarding gait and balance, it is important to evaluate the risk of falling in each patient and,

in order to reduce this risk, practically all specialists recommend gait training. However, not all

patients have access to physiotherapy and gait training centers in order to do it correctly. In the

case of an incorrect gait training, more serious injuries can occur, causing an opposite effect.
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There are already companies with gait analysis products, such as McRoberts11, SwayStar12,

Kinematix13 and Xsens14, where the application is focused more on sport, but are neither focused

for people with gait impairments nor rehabilitation applications.

3.3 Related State-of-the-art Methods

There are two main areas of motion acquisition from inertial sensors: activity monitoring and

motion monitoring.

Activity monitoring is concerned with the acquisition of movement information to classify it

in daily activities, such as detecting whether the person is walking, sitting, standing still, sleeping,

running, or other activities. Many of them even estimate the amount of calories they expend during

these activities. Others contain features that allow counting the number of steps, hours of sleep,

and amount of time spent in certain postures, as a way of measuring the sedentary lifestyle. In

these cases, only one tracker is typically worn on the wrist or waist. They usually have long-lasting

batteries and are not very expensive. However, they do not provide information about gait quality

and balance. Information on gait movement patterns, kinematic quality or motor impairment are

also not shown to the therapists. These systems are not adequate nor provide relevant information

on running quality (nor running damage). These products were not designed to be used in clinical

practice, have not been tested or validated in patients with lower motor and cognitive abilities.

These devices use mostly accelerometers (either uniaxial or triaxial) and detect the number of

acceleration peaks associated with body movement.

On the other hand, motion monitoring trackers generally contain 3 motion axes of 3 or more

types of inertial sensors. Generally consist of more than 1 tracker, being necessary a care in

the synchronization of data and interpretation of the human model in movement. This is to be

able to accurately measure parameters that provide more qualitative movement monitoring to be

implemented in clinics. These include kinematics of joints, spatial and temporal gait parameters,

and other gait balance aspects.

3.3.1 Commercial Solutions

Systems marketed in the area of gait analysis and rehabilitation are already available. These sys-

tems can be divided into those using one tracker, two trackers, and more than three trackers.

Using only one tracker, there are products that allow the measurement of posture, and some

gait characteristics such as cadence, trunk stability and a number of steps. This is the case with

McRoberts15, SwayStar16 and BTS17.

11McRoberts. http://www.mcroberts.nl/ (visited on 26/01/2017)
12SwayStar. http://www.b2i.info/web/index.htm (visited on 26/01/2017)
13Kinematix. https://www.kinematix.pt/ (visited on 26/01/2017)
14Xsens. https://www.xsens.com/ (visited on 26/01/2017)
15McRoberts. http://www.mcroberts.nl/ (visited on 27/01/2017)
16SwayStar. http://www.b2i.info/web/index.htm (visited on 27/01/2017)
17BTS Bioengineering. http://www.btsbioengineering.com/ (visited on 27/01/2017)

http://www.mcroberts.nl/
http://www.b2i.info/web/index.htm
https://www.kinematix.pt/
https://www.xsens.com/
http://www.mcroberts.nl/
http://www.b2i.info/web/index.htm
http://www.btsbioengineering.com/
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There are other companies that have products that use two sensors, especially one in each

shank or foot, they can measure a higher number of gait parameters, and, like this, they are more

suitable for clinics than the previous ones. It is the case of Hasomed Gmbh18, and one of BioSen-

sics (LEGSys)19. However, these products are not able to offer parameters that assess the patient’s

posture and balance. This is due to the fact that they do not have the tracker in the lumbar part.

There are other products that include more modules, such as YouRehab (YouKicker)20, Bio

Sensics (LEGSys +)21, APDM22, XSens (MVN Biomech)23 and (Gait Up24). These contain three

or more sensors, with one in the lumbar part indicated to get balance metrics. They allow a higher

characterization of spatial and temporal parameters of movement during the gait.

3.3.2 Methods

The methods currently in use, related to gait analysis and detection, are very diverse, using sensors

with different specifications, different sensor settings, access to different signals (angular velocity,

linear acceleration or quaternions), and parameters.

In an overview of several methods analyzed, it is observed that there are two groups: those

that analyze values of linear acceleration and angular velocity, and those that analyze orientations

obtained by sensor fusion algorithms (quaternion-based systems).

In addition to this division, it is also observed that within angular velocity and linear acceler-

ation articles, there are some methods that start detecting peaks at angular acceleration values (in

a general way) to determine the IC and the PS (described in Table 2.1), and others started deter-

mining the joints’ angles involved in gait to determine gait phases (based on information similar

to that of Table 2.1). These two approaches generally also present a number of different trackers.

For the first one, it is observed that normally two to three trackers are used, whereas in the second

more trackers are needed, between four to seven. However, even within these groups there are

variability which will be more detailed.

The quaternion-based systems focus on obtaining the angles of the joints and, in a similar way

as previously described, reach the gait cycle’s phase in which the patient is at that moment. In

these types of systems also generally more than three sensors are used to acquire the angles of the

knee, hip and ankle joints. However, there are also studies that use the quaternions to get peaks

at the angular velocity and thus determine the IC and the PS (for example, [Aminian et al., 2002],

[Aminian et al., 2004], [Sabatini, 2005], [Najafi et al., 2011], [Chen, 2011], [Jasiewicz et al.,

2006], [Najafi et al., 2009], among others).

In this chapter, a separate analysis is made for these two groups of methods, as well as the

number and placement of the sensors addressed by each one.

18Hasomed Gmbh - RehabGait. https://www.hasomed.de/de/rehagait/startseite.html (visited on
27/01/2017)

19BioSensics - LEGSys. http://www.biosensics.com/products/legsys/(visited on 27/01/2017)
20YouRehab - YouKicker. http://yourehab.com/our-products/youkicker/ (visited on 27/01/2017)
21Bio Sensics - LEGSys + . http://www.biosensics.com/products/legsys/(visited on 27/01/2017)
22APDM - Gait & Balance. http://www.apdm.com/mobility/ (visited on 27/01/2017)
23Xsens - MVN Biomech. https://www.xsens.com/products/mvn-biomech/ (visited on 27/01/2017)
24Gait Up. https://www.gaitup.com/ (visited on 27/01/2017)

https://www.hasomed.de/de/rehagait/startseite.html
http://www.biosensics.com/products/legsys/
http://yourehab.com/our-products/youkicker/
http://www.biosensics.com/products/legsys/
http://www.apdm.com/mobility/
https://www.xsens.com/products/mvn-biomech/
https://www.gaitup.com/
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The method presented by [Aminian et al., 2002], was used by many other authors, such as

[Aminian et al., 2004], [Sabatini, 2005], [Najafi et al., 2011], and [Chen, 2011]). The method

consists of detecting the IC and PS phases in the gyroscope signal. Aminian uses Wavelet Trans-

form to detect the negative peaks of medium and high frequencies of the sensors located in the

shank, which are characteristics of the moments when the foot is placed on the floor and lifted

off the ground. After detecting the moments in which IC and PS occur, it is possible to deter-

mine temporal parameters, such as CG time, stance time, swing time, SLS time, DLS time, and

so on. To determine spatial parameters, Aminian measured the patient’s size (for example, thighs

and shanks). He used double pendulum and inverse double pendulum models, to, along with the

dimensions of the patient and using trigonometry, determine the spatial parameters, like stride

length, and stride velocity. In this method, an accuracy of about 99% was obtained for the detec-

tion of the PS instant and 95% for the IC. These results were compared with the time of placing

foot on the floor (pressure sensor at the heel), and the foot leaves the floor (pressure sensor on the

big toe of both feet). This method served as inspiration for many other investigations.

Najafi’s method [Najafi et al., 2009] (inspired by the [Aminian et al., 2002] method), consists

in determining the moment at which IC and PS occur from the location of the local minimum

peak of gyroscopes located in each shank. Using biomechanical models (such as the dimension

of segments of the lower limb of the patient), spatial parameters are estimated (similarly to the

Aminian’s method). This method was tested at different gait speeds. The parameters evaluated

were stride velocity, gait cycle, and inter-stride variability. The inter-stride variability had worse

results, with an agreement (with results obtained with a GAITRite system) being about 4.6% for

normal speed, 1.5% for low speed, and 9.1% for high speed. For the GC time and for the stride

velocity, better results were obtained, with a random difference < 6.8% for the stride velocity and

< 4.4% for the gait cycle time in the set of all velocities.

The gait analysis system presented by [Chen, 2011] consists in the use of five inertial sensors

to obtain gait parameters (one in the back, one in each thigh and one in each shank). This paper

is the basis of the LEGSys12 product. The parameters collected by this method are divided into

three sections: temporal, spatial and center of body mass parameters. The temporal parameters

are obtained by the method described by [Aminian et al., 2002], and [Aminian et al., 2004], and

consists of obtaining the times in which the IC and PS occur. From these instants, parameters

are derived for each stride, such as GC time, stance time and swing time. In order to obtain the

spatial parameters, it is necessary to know the height of the patient, using the method described

by [Aminian et al., 2002] (two-link inverse pendulum model), and integrating the angular rate of

thigh and shank rotation, it is possible to obtain the stride length and the stride velocity. Lastly,

the center of mass is obtained during the gait by analyzing the sensor that is in the lower back.

These works consisted of detecting moments in which the IC and the PS occurred. Throughout

the research on the current literature of this theme, it is possible to conclude that there are many

similar works. They usually start from the detection of peaks in angular acceleration or zero

crossing, to detect the moments when the heel is placed on the ground and when the foot leaves

the ground to swing. More methods related to those presented above are shown in Table 3.3, and
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are the majority of related articles found. However, these methods lack information about the

swing phase, in which the foot is advancing in the air.

The method presented by [Yuwono et al., 2014], focuses on a different approach because

uses unsupervised nonparametric methods and takes into account the sequence of the gait phases

detected. Although centered in the determination of IC and PS, it uses unsupervised nonparametric

methods. Yowono initiates the method by determining the cadence of each episode using Hidden

Markov Models (HMM), then uses the discrete wavelet transform to detect peak characteristics of

the data of the accelerometers and the gyroscope. It reduces the dimensionality of these features

using a principal component analysis (PCA) and uses Rapid Centroid Estimation to classify the

peaks into three classes: right IC, left IC and artifacts. Finally, it applies a Bayes filter that takes

into account the prior detections and models the following predictions. This work was presented

using two accelerometers and gyroscopes in both feet and obtained accuracies on the order of

90%.

On the other hand, there are methods which rely first on the detection of angles to form a

determination of gait phases, according to the state of flexion or extension (among others) of the

joints. Some examples of work related to this point of view are presented in Table 3.4. The method

presented by [Liu et al., 2009] is based exactly on the determination of the angles of each joint and,

therefore, the movement performed at each moment by each joint determines the phase state in

which the subject is. Liu determines the angles of each joint from the data of the gyroscope (feet,

shanks and thighs). From the interpretation of sequences of anatomical movements, estimates the

gait phase. The Root Mean Square Error (RMSE) was less than 10o, in most joint angles, being

larger for the ankle joint.

A different perspective was presented by [Evans and Arvind, 2014], which starts with the

values of the gyroscope as input to a feed-forward neural network (FNN). This network allows

the classification of five different gait phases. Then, Evans adds a HMM that aims to assess the

sequentially of these phases (see if they make sense in the concept of human gait behavior). This

method uses accelerometers and gyroscopes placed in the trunk, both thighs, both shanks and

both feet. It presents an error lower than 23 milliseconds for determination of each phase, being

evaluated against a gait analysis VICON system.

Most of the presented methods contain drift correction steps, mainly caused by the use of the

gyroscope, as well as several calibration sequences. Other set of methods, that are presented in

Table 3.5, use quaternions as the tracker’s output signal. The quaternions are output of a sensor

fusion algorithm that has calibration methods and reduces the drift effects (mentioned in Subsec-

tion 3.1.2). Thus, the use of quaternions as output of a tracker, has lower sensor drift, improving

signal quality, accuracy, and robustness. However, few studies have been found linking gait anal-

ysis with the use of quaternions as the main signal. It is estimated that it is due to the fact that

there are commercial interests related to this kind of sensors and rehabilitation products already

commertialized, with little public information about its genesis method. In the following para-

graphs some works that were found that use quaternions acquisition to determine gait parameters

are presented. In Table 3.5 a small overview about studies that involved quaternion processing to
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obtain gait parameters is shown.

Within the methods that use quaternions, it is also observed that they are similar among them.

All of them start from the estimation of the angles of the joints and from there they extract gait

parameters. However, the major focus of these works is more on obtaining the joints’ angles than

analyzing the gait patterns.

[Cloete and Scheffer, 2008] presents a model that is based on obtaining the angles of each

joint, calculating the relationship between the orientation of the distal segment and the proximal

segment. However, it did not achieve good results for the ankle joint. In the following work

[Cloete and Scheffer, 2010], attempts to study the repeatability of the method, achieving results

with RMS greater than 90%. In these two studies, Cloete used the MOVEN system of Xsens

containing 16 IMUs, but only analysed the trackers placed in the lower limb.

The method proposed by [Ahmadi et al., 2015] is a real-time method that starts from the

processing of the quaternions and applies a descending gradient algorithm to obtain the 3D orien-

tations of each segment. Using the foot sensor, it determines the stance phases of the gait cycle

that allow the detection of the times in which IC occurs. He sets the foot sensor as the root node

and determines the 3D orientation and position of the other 2 segments and the angles of the knee

and ankle joints. Finally, Ahmadi applies a biomechanical model to verify that the movements

acquired are consistent with a natural human behavior during gait. The Ahmadi model uses IMUs

on the thighs, skanks, and feet.
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Table 3.3: Methods related to analysis of movement with angular velocity and linear acceleration to determine IC and PS instants.

Year & Author Sensor Method Parameters Dataset Results
[Aminian et al.,
2002]

Gyroscopes
(both shanks).

IC PS instants detection, using wavelet transform (for
temporal parameters). Dimensions of the patient’s legs
were measured (to estimate spatial parameters).

Swing, stance, SLS and
DLS times, and stride
length and velocity.

9 Young and
11 elderly.

95% confidence interval for IC
was [7 ms, 13 ms], for PS was
[-5 ms, 4 ms] .

[Jasiewicz et al.,
2006] Algorithm 1

Gyroscope and
accelerometer
(both feet and
mid-shank).

PS detection by searching for peak in x-directed foot
acceleration, and IC detection by searching for peak in
z-directed foot acceleration. Spatial parameters: double
integration of the horizontal accelerations between PS
and IC.

Stride and Step length, gait
velocity, single and double
support time.

26 Healthy
and 15 in-
jured.

Mean error (std): IC: -11 (23)
ms; EC: 19 (34) ms.

[Jasiewicz et al.,
2006] Algorithm 2

Gyroscope and
accelerometer
(both feet and
mid-shank).

PS detection by searching for the first maximum in the
angular velocity, and IC detection by searching for the
velocity zero crossing point (peak foot dorsiflexion).
Spatial parameters: double integration of the horizon-
tal accelerations between PS and IC.

Stride and Step length, gait
velocity, single and double
support time.

26 Healthy
and 15 in-
jured.

Mean error (std): IC: -12 (22)
ms; EC: 15 (26) ms.

[Jasiewicz et al.,
2006] Algorithm 3

Gyroscope and
accelerometer
(both feet and
mid-shank).

Decomposition of the shank sagittal angular velocity
with wavelet transform, searching for rapid changes in
timing characteristics and selecting the two minimum
on either side of a peak in velocity (1st minimum asso-
ciated with PS and the 2nd minimum with IC). Spatial
parameters: double integration of the horizontal accel-
erations between pS and IC.

Stride and Step length, gait
velocity, single and double
support time.

26 Healthy
and 15 injured
people.

Mean error (std): IC: -14 (23)
ms; EC: 23 (28) ms.

[Najafi et al., 2009] Gyroscopes, at-
tached to each
thigh shank.

Local minimal peak detection (IC and PS moments de-
tection). Biomechanical model, with patients’ lower
limbs height, for integrate the angular rate of rotation
of the thigh and shank: spatial parameters.

Stride Velocity, GC time
and inter-stride variability

22 Elderly. Inter-stride variability (4.6%;
1.5%; 9,1% for normal, low
and fast speed) of agreement.
Stride velocity and CG time (<
6,8%; < 4,4%) (all velocities)
of random difference.
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Year & Author Sensor Method Parameters Dataset Results
[González et al.,
2010]

Accelerometers
(foot and knee).

Zero Crossing (ZC) occurrence from positive to nega-
tive of an 11th order FIR filter output (applied to in-
coming antero-posterior acceleration (ZC point)). In
each ZC found, the area enclosed by positive values of
the filtered signal, preceding the detected ZC is deter-
mined. If the area is below a defined threshold, the ZC
is discarded, if not, is associated with the occurrence of
an initial contact event.

Walking velocities. 11 Healthy. Initial contact timing error
(mean:13± 35 ms) and Final
contact timing error (mean:9±
54 ms).

[Kotiadis et al.,
2010] Single
accelerometer
algorithm)

Accelerometers
(shank)

Translation of state conditions. Evaluation of the Ax ac-
celeration: in heel off - Ax negative; in PS - Ax positive;
IC negative until heel strike that causes a negative spike.

Temporal parameters. 1 Stroke sur-
vivor.

68/69 true and 1/2 false stride
detections (in flat surface).

[Kotiadis et al.,
2010] Two ac-
celerometer algo-
rithm

Accelerometers
(shank)

Evaluation of the Ax and Ayacceleration: in heel off -
Ax negatively increase and Ay maintains; in PS - Ax is
positive and Ay negative; in IC - Ax negative and Ay

becomes positive.

Temporal parameters. 1 Stroke sur-
vivor.

68/69 true and 1/2 false stride
detections (in flat surface).

[Kotiadis et al.,
2010] Single gyro-
scope algorithm

Gyroscope
(shank)

Evaluation angular velocity around the Gz axis: in heel
off - angular velocity negatively increase; in PS - angu-
lar velocity positively increase; in IC - angular velocity
is negative.

Temporal parameters. 1 Stroke sur-
vivor.

68/69 true and 0/2 false stride
detections (in flat surface).

[Kotiadis et al.,
2010] Two ac-
celerometers and
one gyroscope
algorithm

Accelerometers
and gyro-
scope(shank)

Combination of the 3 previous algorithms. Temporal parameters. 1 Stroke sur-
vivor.

68/69 true and 1/2 false stride
detections (in flat surface).

[Mariani et al.,
2012]

Inertial sensor
(feet)

The foot, heel and toe orientation and trajectory are es-
timated, and the heel and toe times are determined.

Foot clearance parameters. 12 Healthy. Max error was 47,6±25.6mm
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Year & Author Sensor Method Parameters Dataset Results
[Yang et al., 2012] Accelerometer

(along the back)
Manual input (Sample rate, distance and a threshold).
Detect heel contacts by peaks preceding the sign change
of acceleration. After a low pass and a 4th order zero
lag Butterworth, a threshold is performed with a input
value.

Number of steps, walking
time, and walking velocity.

15 Healthy. For step regularity: control
(0.86±0.07) proposed system:
(0.55±0.21)

[Rueterbories
et al., 2014]

Accelerometer
(fore-foot)

Based on a state machine, with transitions determined
by 5 reference signals: composite acceleration (CA),
1st derivative of CA, 2nd derivative of CA, CA low pass
filtered (w. 200 samples), and CA low pass filtered (w.
50 samples).

Swing, LR, mid-stance, PS. 10 Healthy
and 10 hemi-
paretic.

For healty: sensitivity [0.96
- 1.00] and specificity [0.91 -
1.00].

[Seel et al., 2013] IMU (foot and
shank)

Determine the ankle joint angle from the angular rates
measured from the foot. A strap-down is restarted at
the end of each foot-flat phase. With the shank angular
velocity, is determined the dorsiflexion angle.

IC and PS estimation. Healthy
subjects

Achieves "small tracking er-
rors”.

[Casamassima
et al., 2014]

IMU (feet) Estimate IC and PS events by processing the angular
velocity signals along the foot medio-lateral axis. All
positive peaks - mid-swing events, and the first negative
peak is the IC and the second is the PS.

Cadence, step length, gait
speed, gait asymmetry,
trunk flexion, clearance.

5 PD patients. Mean error close to zero with
SD for stride duration and
stride length of 3% and 2%.

[Tereso et al., 2014] Accelerometers
(ankle and
trunk)

Detection of the time peak on IC and PS events. The
data of each axis was transformed to produce a signal
vector machine, that was filtered and was reconstructed
a third least-square polynomial derivative approxima-
tion filter. For each gait cycle two peaks in the poly-
nomium exist and are related to the IC and PS.

7 Elderly with knee os-
teoarthritis and with knee
anthroplasty.

Gait events
and fall risk
evaluation.

Comparative results between
the patients with crutches, stan-
dard walkers and forearms sup-
ports.
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Year & Author Sensor Method Parameters Dataset Results
[Yuwono et al.,
2014]

Accelerometer
and gyroscope
(feet)

Cadence episode is detected by HMM. Discrete wavelet
transforms are applied to extract peak features from ac-
celerometers and gyroscopes. The feature dimensional-
ity is reduced using PCA. Rapid centroid estimation is
used to cluster the peaks in three classes: left IC, right
IC and artifacts. Bayes filter is used to mode predictors,
with prior detections.

15 Healthy. IC. Accuracy (86.1 ± 9.9% and
93.4 ± 2.4%) with gyroscope
features.

Table 3.4: Methods related to analysis of movement with angular velocity and linear acceleration to determine joint angles.

Year & Author Sensor Method Parameters Dataset Results
[Liu et al., 2009] Gyroscopes and

accelerometer
(foot, shank and
thigh)

The angles of each joint are determined, and according
to the state of each join, the 8 gait phases are estimated.

8 gait phases. 10 Healthy. The RMSE was less than 10o.

[Hamdi et al.,
2014]

IMU (feet,
shank, thigh and
trunk)

Lower limb joints and segments inclination are esti-
mated in the sagittal plane (integrating the difference of
the connected segments angular velocities around the
joint axis).

knee, ankle and hip joint
angles.

6 Healthy RMS between 0.00 and 0.83
(p-value).

[Tadano et al.,
2016]

Inertial sensors
(pelvis, thighs,
shanks and feet)

3D kinematic parameters of patients during walk were
estimated based on acceleration and angular velocity
data.

Hip, knee and ankle joint
angles.

Healthy and
osteoarthritis
patients.

Comparative analysis between
Healthy and osteoarthritis pa-
tients.

[Evans and
Arvind, 2014]

3-axis ac-
celerometer,
gyroscope and
magnetometer
sensors.

FNN to estimate gait phases embedded in a HMM that
ensures the phases sequence.

5 gait phases 5 Healhty Methods accurate within 23
milliseconds
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Table 3.5: Methods related to analysis of movement with quaternions to determine gait parameters.

Year & Author Sensor Method Parameters Dataset Results
[Cloete and Schef-
fer, 2008]

16 IMUs
(MOVEN in-
ertial motion
capture system)

Lower body joint angles were found by calculating the
joint orientation of the distal segment with respect to
the proximal segment (thought a quaternion multiplica-
tion).

Hip, Knee and ankle angles 8 Healthy. Correlation averages: hip
(0.94), knee (0.89) and ankle
(0.08)

[Cloete and Schef-
fer, 2010]

16 IMU
(MOVEN
inertial motion
capture system)

Lower limb joint angles were found by calculating the
joint orientation of the distal segment with respect to the
proximal segment. Without the Lycra suit to avoid rela-
tive movements (between trackers and body segments).

Hip, knee and ankle angles
- repeatability study.

30 Healthy. Mean and SD for all joints
higher than 0.90 for right and
left.

[Meng et al.,
2013a]

4 IMU (shank
and thight)

Adaptative threshold and searching intervals. Uses the
[Meng et al., 2013b] method: from the orientation of
each segment and the displacement of each foot - given
the length of the bone segments, the human model
while walking is constructed.

LR, mid-stance, terminal
stance, PS, initial swing,
mid-swing and terminal-
swing.

5 Healthy, 2
elderly and 2
severe demen-
tia.

Comparative analysis between
each group of subjects.

[Qiu et al., 2014] IMU (shank) Converts the body frame to the ground frame by filter-
ing (with Kalman filter) the acceleration and angular
velocity extracted from the quaternions.

Walking distance and knee
angle

Healthy. Average percentage error
4.96%.

[Martori et al.,
2013]

6 Opal IMU
(chest, shank
and thigh)

In each gait cycle, the local maximum and minimum
peaks were identified.

Knee and hip joint angles. 10 Healthy. Average error - overall - 4.17
and 5.15 degrees (right and
left).

[Ahmadi et al.,
2015]

IMU (foot, tibia
and thigh)

Gradient Descent algorithm to obtain 3D orientation of
the 3 segments. With foot sensor, detect the stance
phase, then the 3D orientation of the 2 segments and
joint angles were determined. Customised kinematic
model to adjust the output as a coherent behaviour.

Segments orientation, foot
position, 3D reconstruc-
tion.

(without
dataset)

(without results)

[Williams et al.,
2015]

IMU (foot,
shank and thigh)

Consists in determine the joint angles with a similar
method described by [Cloete and Scheffer, 2008]. The
subject’s leg is measured to determine spatial parame-
ters with trigonometric equations.

Knee and ankle angles. 1 Healthy. RMSE of 3.03o.
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3.4 Final Considerations

IMUs are devices capable of monitoring movement of the human body, being easy to use, with

sufficient autonomy for rehabilitation exercises, and (with adequate signal fusion algorithms) ac-

curate, precise and robust enough to be used in rehabilitation environments.

The rehabilitation of the gait should be prescribed individually for each patient. The system

should be able to report crucial and relevant information for the patient and for the therapist. In

this sense, metrics are needed, which are obtained by the calculation of gait parameters.

Few published methods are related to the development of a gait analysis system concerning

a rehabilitation application. Even within these, there are few that use sensors with specifications

close to those that will be used in the practical work of this thesis. However, it is observed that

many authors begin by determining the IC and PS moments, and from them, estimate all other

gait parameters. In general, the results of the methods have different formats and many of them

reported only information of gait patterns between two populations of different subjects (healthy

and unhealthy), not providing information against a gold standard of movement acquisition. Those

that provided show accuracies between 80% and 95%.
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Chapter 4

Temporal Events

After collecting all the information as described in the previous chapters, the assessment part of the

work used a simple setup, with two trackers. The process started with the extraction of the Initial

Contact (IC) and Pre Swing (PS). With these two events, it was possible to determine a large set

of the temporal parameters used for gait analysis, evaluation and rehabilitation, as mentioned in

Section 2.3.

The work begun by acquiring the data from the sensors that were placed on each foot. The

orientation of each sensor was obtained and then IC and PS events are extracted. Information

concerning the detection of the IC and PS events and their instants was used to calculate the

temporal parameters, such as stance time, swing time, gait cycle time and step time. The work

flow is shown in Figure 4.1.

Data Acquisition

(Left & Right)

Orientation 

Extraction
Pre Processing Autocorrelation Event Detection

Temporal 

Parameters

Figure 4.1: Block diagram for the first development phase.

In this chapter are presented: the data acquisition protocol and the definition of the dataset; the

interpretation of the extracted signal; the detection methods of peaks and valleys (to be explained

hereinafter); and the and detection of disturbances (higher frequency components). The chapter

also includes information concerning the used validation approach.
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4.1 Overview and Parameter Selection

After collecting all the information presented in Chapters 2 and 3, the following summarization

can be made:

• Temporal parameters are important for gait analysis, evaluation, and rehabilitation (Subec-

tion 2.3.1).

• Temporal parameters also allow finding differences between groups of people with different

diseases, namely people with Parkinson’s and stroke from healthy people (Subsection 2.3.1).

• Most temporal parameters are determined from the instant the foot touches the floor (IC)

and the instant when the foot leaves the floor (PS) (Section 2.3).

Throughout this chapter, it is shown that it was possible to determine the IC and PS events

with only two trackers (one in each foot) and calculate temporal parameters with these two events.

Using information presented in Subsection 2.3.1, the temporal parameters that only depend on IC

and PS are:

• Gait Cycle Time (stride time),

• Stance Time,

• Swing Time,

• Step Time,

4.2 Data Acquisition

The data was initially collected to undestand the problem and then to elaborate of the algorithm

outlined in Figure 4.1. The following considerations had to be made regarding data acquisition,

due to different types of shoes. People, namely the volunteers, wear different types of shoes.

They had different conformations, and in order to reduce the variability of the obtained signals, a

protocol that describes the placement of the sensors, was elaborated for the data acquisition.

With the goal of comparing and interpreting data, this acquisition was performed in parallel

with video recording. After the synchronization of both signals (quaternions and video), it was

possible to perceive the signals characteristics to which the different events belong, in other words,

the signal behavior while in the IC and PS events occur.

4.2.1 First Dataset

The volunteers who participated in the first data acquisition were healthy people, aged between 22

and 23 years, and with a healthy gait. The goal of this phase was to find signal characteristics that

correspond to healthy gait events, in order to build an algorithm capable of detecting these events

in healthy people. Table 4.1 presents basic features of these volunteers.
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Table 4.1: General information about the volunteers of the first data set. In this table is information
about the gender, age, height, weight, health condition and type of walk.

Subject Gender Age (years) Height (cm) Weight (Kg) Type of walk Condition
no. 1 Female 22 160 56 Free normal style Healthy
no. 2 Female 23 168 72 Free normal style Healthy
no. 3 Female 22 170 58 Free normal style Healthy
no. 4 Male 22 180 75 Free normal style Healthy

The data collected using these subjects was used to elaborate and perform the first evaluation

of the algorithm. This development phase was not yet in real time, so it was decided to collect

data from fewer people to be more proficient in evaluating all the videos recorded during the

acquisition. The protocol used for sensor placement and signal acquisition is described bellow.

First Protocol Setup

In order to reduce the variability of the placement of the sensors (IMU MTw, Xsen’s product),

in particular due to different shoes, as mentioned before, it was decided to use a barefoot setup,

containing only socks. Two straps of feet were placed, one on each foot, with the thinnest part of

the strap immediately posterior to the bone known as a bunion, and with the Velcro R© rectangle

positioned in line with the big toe and the heel, in a way to be located in a flat area of the foot

. The sensor was placed with the led and the power input facing the back, as shown in Figure

4.2. Following the order of sensor colors chosen by the company, the setup chosen was the green

sensor placed on the right foot and the blue sensor on the left foot.

ZZ

x
x

Z�xed

X�xed

Figure 4.2: Sensor Placement - First Setup.

After placing the sensors a GoPro HERO5 Session1 video camera, whose characteristics are

presented in Table 4.2, was positioned with visibility to cover the whole area of the room where the

volunteers made the march. The synchronization was done with a quick touch on the two sensors

so as to be visible from the video camera and detected in the signal. This moment could be seen

1GoPro HERO5 Session. https://www.cnet.com/products/gopro-hero5-session/specs/ (visited
on 28.03.2017)

https://www.cnet.com/products/gopro-hero5-session/specs/
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in the video (Figure 4.3a) with Kinovea 2 platform, and in the signal (Figure 4.3b) as exemplified

in Figure 4.3.

Table 4.2: Technical Specifications of the GoPro video Camera1 .

General Information
Max Video Resolution 3840 x 2160
Widescreen Video Capture Yes
Sampling Frequency 50 Hz to 100 Hz

Lens System Information
Focus Adjustment focus free

Memory / Storage Information
Memory Card Slot microSD card

(a) Synchronization - in the video side
(using Kinovea2 software).
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(b) Synchronization - in the signal side.

Figure 4.3: Procedure for synchronizing the video with the signal.

The synchronization was done within the visibility of the camera, giving a strong and fast

touch in the tracker, as shown in Figure 4.3a. On the signal side, it was possible to see about three

to five points that were destabilized beyond the resting line for a short period of time ( example

in Figure 4.3b). This corresponds to the moment when a strong, quick touch struck the sensor.

By relating the moments of touch on the video side (Figure 4.3a) and the rapid destabilization of

points (Figure 4.3b) in the sensor, it was possible to synchronize the two systems.

The volunteers were asked to walk freely back and forth so that the signal could be collected

by the sensors and visible through the video camera, as shown in Figure 4.4.

From the Kinovea2 platform, it was possible to view the videos collected frame by frame

(which is equivalent to 20 milliseconds intervals in a video acquired at 50 Hz). However, some

problems were found in viewing the video, namely this frame-to-frame visualization and transi-

tion. According to the sampling frequency specified in the camera (100Hz), it was not possible to

observe all video frames even with several video editors, including Adobe Premiere, VLC, Movie

2Kinovea. https://www.kinovea.org/ (Used in February and March 2017)

https://www.kinovea.org/
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C

Figure 4.4: Setup of the room where the fist data set was acquired. In this sketch, the gray rectan-
gles are doors and windows, the video camera is represented by a rectangle with the letter C. The
volunteer walks around the region inside region of visibility of the video camera.

Maker (Windows), among others. This may be because of the format in which the video was

recorded (MP4) which automatically reduces the quality of the video. This causes loss of frames

resulting in frequency decrease. This problem will be addressed latter on.

The working setup of this project consists of the sensors tablet and computer. The connection

between the sensors and the tablet is Bluetooth. This tablet is connected by USB to the computer

where the program under study is located. The output of the sensors are quaternions, which are

emitted every 20 ms. Quaternions are the inputs of the program.

4.3 Orientation Extraction

After obtaining the signals from the sensors, the information was extracted. In Figure 4.5 it is

possible to observe the imaginary part of the signals resulting from the quaternion multiplication

with the X and Z fixed frames ([1,0,0] and [0,0,1], respectively). It can be observed that the

Z components of each resulting vector had higher periodicity. For the vectors obtained by the

multiplication of the fixed Y frame ([0,1,0]), it is also possible to see some periodicity. However

it has became highly sensitive to the gait orientation that the person was taking. This means, it

depends on the direction the volunteer’ walking. Since, for this analysis, the values of the sensors

multiplied by the Y fixed frame ([0,1,0]) were not necessary, they were not considered as input for

the algorithm.

Following the visualization of the data, it is also possible to observe that there was a good

relation between the Z components (XZ and ZZ) of the quaternions after multiplication by [1,0,0]

and by [0,0,1]3. In some cases, a small saturation occurs in these signals, due to a large slope

value of the foot when walking. However, it did not occur at the same time in both XZ and ZZ .

3from now designated by XZ and ZZ , respectively
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Figure 4.5: Orientation of the quaternions when multiplied by a fixed frame. Only the signals
obtained from the left foot are presented. On the top is the multiplication of each quaternion of the
signal acquired by the vector [1,0,0]. The different colors represent the corresponding part of the
resulting vector (green is the component x of the result of the multiplication of each quaternion by
the fixed vector [1,0,0]. The same procedure was repeated for the remaining examples.

Figure 4.6 shows the result of the sum of the z components (XZ + ZZ). It can be seen that there

was a good periodicity of the signal and there was a similarity between the values of the signal and

the annotations made in the video. It can be observed that there was a good agreement between

the peaks and the valleys of the signal with the events of placing the foot on the ground (IC) and

taking the foot off the ground (PS) on the video.

Figure 4.6 contains a portion of the signal in which five Gait Cycles (GC) of the left foot can

be observed. The vertical lines represent the video annotations (after synchronization) in which

the solid blue lines represent the events of PS and the dashed red lines represent the IC events.

According to the video annotations, all the PS events were closer to the signal valleys and all the

IC events were closer to the positive peaks of the signal. These events were visualized for all

data from all volunteers and the conclusion was the same: signal negative peaks correspond to PS

events and signal positive peaks correspond to IC events. This conclusion can also be supported

with information already presented in Subection 2.2.3 in Figure 2.4 and in the Table 2.1. With this

information, it was possible to begin to interpret, in a more detailed way, the macro phases of the
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Figure 4.6: Part of the signal acquired from the sensor placed on the left foot with video annota-
tions obtained at the same time as the acquisition. The vertical red dashed lines corresponds to IC
events (in the video) and the vertical blue continuous lines corresponds to the PS events (in the
video), after synchronization between the video and the signal. The label X +Y refers to the sum
of the resulting Z components of the multiplication of the signal with the X and Z fixed frame:
XZ +ZZ .

signal as the stance and the swing, which will be described in the following sections.

4.3.1 Direct Interpretation

As already mentioned, in Figure 4.6 the continuous blue vertical lines represent events of lift

the foot from the ground (PS) and the red dashed lines represent events of putting the foot on

the ground (IC), annotated by the observation of the videos collected at the same time of the

acquisition of the signal.

Video Annotations

However, before analyzing these points in more detail, it was necessary to mention the conditions

for collecting the video annotations. As already mentioned, the videos were analyzed frame by

frame (with a frequency of acquisition of 100Hz) by a tool of visualization of videos - Kinovea.

After adjusting the display settings, for example, to see the time in milliseconds to be possible to

compare with the signals, it was observed that not always the video frame advanced for each 10

millisecond (1000 milliseconds in each second/ 100Hz). The reason may have been related to how

the video file was saved by the camera GOPRO, i.e. in MP4 format. There was a reduction in

video quality, also related to the loss of frames.

During the analysis of the video, it was possible to see the problem mentioned before. There

were frame advance every 20 or 30 milliseconds, which represents a loss of between 50 and 67

Hz of acquisition frequency (determined with Equation 4.1 and Equation 4.2). In this way, the

frequency obtained became to be around 50 to 33Hz, smaller than the frequency of the sensors

(Equation 4.1). This way, there was an associated error, due to the impossibility of viewing frames

in about 30 milliseconds. As the time displacement between each sample acquired by the tracker
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had a distance of 20 milliseconds, the error of the video became slightly above and may not be fea-

sible. This problem had to be considered when validating the results of the algorithm considering

the video annotations.

Time_between_ f rames =
1000 (ms)
Frequency

(4.1)

Desired_ f requency− 1000 (ms)
Time_between_ f rames

= Loss_o f _ f requency (4.2)

Another problem associated with video annotation was the occlusions. Occlusions, in this

context, are defined as events of PS and IC in the video that are not clearly visualized, such as the

examples shown in Figure 4.7. These cases occurred due to the overlapping of the two feet in the

video, the foot of interest (the one that was doing IC or PS), behind the foot in stance, making it

impossible to know the exact moment when the event occurred.

(a) Occlusion of the PS event of the right foot. (b) Occlusion of IS event of the left foot.

Figure 4.7: Examples of occlusions that occur along the videos. This turned unfeasible the precise
determination of moment in which the events of CI and PS occurred. In this case, occlusion
occurerd by one foot standing in front of the other.

During the video analysis, there were several cases similar to those shown in Figure 4.7. To

avoid having a higher error associated with the difficulty of knowing the exact moment when the

foot left the ground (Figure 4.7b), and the placement of the foot on the floor (Figure 4.7a), these

cases were ignored. An example of this is shown in Figure 4.6, where the third peak presented

would correspond to an IC event, however, there were no annotations in the video, because at that

moment an occlusion occurred.

Leave the Ground - Pre Swing

Despite these problems described above, it was possible to directly realize that the lift of the foot

from the ground was related to the maximum negative slope of the foot (i.e. - the signal valley).
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This was concluded due to information presented in Subsection 2.2.3, the high correspondence

between these events in different subjects, and the different displacements (about 30 ms) between

the annotation and the signal (forward and backwards in time for the same synchronization). In all

observed signals, the events noted as PS correspond to the negative peaks. In this sense, one way

to find PS moments would be to find these negative peaks.

The placement of the tracker on the foot was with the VELCRO part facing down and the LED

facing the tibia. This had to be in a relatively flat area of the foot, as explained in Subsection 4.2.1.

According to this configuration, by analyzing the ZZ vectors (nominated in Subsection 4.3), when

plantar flexion is performed (or tip toe down), the value of this component decreases, approaching

0 (Figure 4.8e). Now, considering the XZ vectors, when the same motion is performed, its values

approaches −1 (Figure 4.8e).

When the foot is in the rest position on the ground, the ZZ value becomes close to 1, since the

Z axis of the tracker is very close to the Z reference’s axis (Figure 4.8c). Considering the XZ value,

when the foot is at rest on the ground, the value of this vector is close to −0.5. This is because

the component Z of the result of the multiplication between the quaternion by [1,0,0] is relatively

below the perpendicular of the Z axis. This took a slightly negative value (Figure 4.8c).

By increasing the foot inclination with the fingers toward the ground, the sensor Z component

approaches the perpendicularity to the Z axis of the reference axis: the value is close to 0, as shown

in the third chart presented in Figure 4.5.

Considering events of PS, where the foot is tilted with the fingers toward the ground, the

tracker also tilts the same way, with the LED facing upwards (Figure 4.2). In this case, the value

of XZ becomes even more negative, almost to the point of being aligned inversely with the Z of the

global axis, as can be seen in the first graph shown in Figure 4.5.

According to this interpretation of the video and the signals, it can be concluded that identify-

ing the PS event involves identifying the signal valleys.

Contact With the Ground - Initial Contact

From the analysis of Figure 4.6, it can be noted that events of placing the foot on the ground were

near the positive peak of the signal. By analyzing the signal more carefully, it can be seen that

XZ increases with dorsiflexion of the ankle, or the movement of the foot with the fingers pointing

upwards. In this case the value of XZ approaches 0, and ZZ approaches 1 (Figure 4.8a). With this

information, it can be concluded that the positive peak can be close to the IC event. In Figure

4.6, it can be observed that, in most cases, IC events were slightly after the positive peaks of the

signal. Observing in more detail, it is observed that there was a high relation between a small

signal disturbance with higher frequency and the video IC annotation. The disturbance makes

sense to occur, being related to the contact with the ground, i.e. the shock absorption of the foot

(Figure 4.9). Before contact with the ground, the foot is advancing in the air having no disturbance

of greater frequency, until the moment the foot is placed on the ground.

In this way, a healthy person in constant movement (not being at the end of the march), the

detection of the IC moment is to detect the disturbance soon after the positive peak of the signal.
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Figure 4.8: Sensors orientation along the three main gait phases. The arrow in (b), (d) and (f)
represent the signal moments before the event illustrated in (a), (c) and (e), respectively.

Swing Event

After interpreting the previous events (IC and PS), it can be determined which segments of the

signal correspond to the swing. By the definition described in Subsection 2.2.3, the swing is the

advancement of the foot in the air, which corresponds to the moment when the foot leaves the floor

(PS) and the foot again comes into contact with the floor (IC). In the image 4.6, it can be seen that

the signal between the continuous blue vertical lines and the dashed red vertical lines corresponds

to swing moments.

After the foot leaves the ground, it rotates in axis approximately centered on the knee till the
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Figure 4.9: Detail of the signal with emphasis of the IC moment with video annotations, charac-
terized by shock absorption, which causes a higher variation in the signal. The vertical red dashed
lines is the IC event noted in the video. The red circle is presented just to enhance the region in
analysis. The label X +Y refers to the sum of the resulting Z components of the multiplication of
the signal with the X and Z fixed frame: XZ +ZZ .

calcaneous by rotating the sensor from the position shown in Figure 4.8e to the position shown in

Figure 4.8a. In this way, it goes from the negative (minimum) value to a positive value that almost

reaches the maximum. Thus, it can be concluded that the swing phase is related to the instants

between the PS and IC, being a drastic increase in the signal value.

Stance Event

In the stance event, the foot is much of that time perched on the floor in an almost stable form,

supporting the total weight of the body. This phase occurs between the IC and PS instant. Observ-

ing the sign of Figure 4.6, it is noticed that there is a small platform in which the foot is practically

at rest. At this time, the value of ZZ is close to 1 and the value of XZ is slightly negative (Figure

4.8c). This results in a value a little above 0 and quite stable. This can be seen in Figure 4.6, where

the stance is between the dashed red vertical lines and the continuous blue vertical lines.

Concluding this section, the information in the signal can be interpreted as presented in Figure

4.10.
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Figure 4.10: Gait Cycle signal with IC and PS events and Swing and Stance phases noted.
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4.4 Detection of the Peaks and Valleys

As mentioned in Section 4.3.1, the detection of the IC and PS moments may pass through the

detection of peaks and valleys in the signal (Figure 4.6). The detection of these events can start

using peak detection algorithms. But, before any processing, it was necessary to verify if was

necessary to remove noise from the signal.

4.4.1 Pre Processing

After analyzing the literature, it was verified that there are very few papers that refer to pre pro-

cessing after obtaining quaternions. It was found that, the processing step was mainly before the

Kalman Filter (or similar algorithm) on the signals of each of the sensors: accelerometer, gyro-

scope and magnetometer, before the fusion algorithm. Since the sensors used in this work already

provide the quaternions, and the fusion algorithm includes a pre processing, there was no need

to process the signal once again. The signals have almost no noise. On the other hand, by visu-

alizing the walking signal (Figure 4.6), it is observed that the samples are relatively close and in

agreement with each other, with little or no observation of outliers.

4.4.2 Peak Detection

This peak detection algorithm was extracted from Github - Peakdetect4, that is a Python imple-

mentation of an algorithm that detects positive and negative peaks in 1D signals5.

This algorithm takes three input parameters: the number of samples from which to retrieve the

maximum or minimum local search, a delta that corresponds to the amplitude in relation to the

previous peak, from which it can be considered that the point is a local maximum or minimum,

and the signal. From the first two parameters, only local maxima and minima are found throughout

the signal, selected according to the defined parameters (Figure 4.11).
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Figure 4.11: Peakdetect algorithm. Detection of peaks and valleys. The result is presented in
black, where the circles are the peaks detected and the triangles are the valleys detected. The label
original refers to the sum of the resulting Z components of the multiplication of the signal with
the X and Z fixed frame: XZ +ZZ .

4Peakdetect - GitHub https://gist.github.com/sixtenbe/1178136 (06/03/2017)
5Peakdetect http://billauer.co.il/peakdet.html (02/05/2017)

https://gist.github.com/sixtenbe/1178136
http://billauer.co.il/peakdet.html
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After running this algorithm, it was noted that there are some maximum and minimum loca-

tions selected by the algorithm that did not respond to the IC and PS events annotated through

the videos. It is also observed that they are mostly on the signal platform which corresponds to

the stance phase, characterized by having an amplitude closer to zero. Since the events IC and

PS (separately) have approximately the same amplitudes, an adaptive threshold was applied so as

to select only the peaks that correspond to the IC and PS separately. After this repair, the peaks

detected by the algorithm were closer to the events noted by the video.

4.4.3 Trahanias Algorithm

Due to the limited information on peak detection found in the literature in gait analysis with inertial

sensors with quaternions as output, a search was made for peak detection algorithms used in other

physiological signals. By visual comparison, the gait signal already presented in some figures in

this document, has a certain similarity with the electrocardiogram (ECG) signal. This is because,

despite being signals with different frequency ranges, both are periodic and contain peaks and

valleys of interest. These two properties are almost enough to bring to the gait analysis algorithms

used in ECG analysis in terms of peak detection methods. In this way, the algorithm chosen to

be compared with the peakdetect (mentioned in subsection 4.4.2), was the Trahanias Algorithm

[Trahanias, 1993]. The Trahanias algorithm was the first ECG method to be implemented in this

project. Since the Trahanias algorithm was able to give good results, no further algorithm was

implemented.

The Trahanias algorithm begins with a set of morphological operations that allow removing

regions of the signal that are not peaks and not valleys, that is, leaving only peaks and valleys of

the original signal, while the remaining signal is equalized to zero.

Basic Concepts - Morphological Operations

For the application of the Trahanias Algorithm, as already mentioned, it was necessary to collect

the morphological operations: erosion and dilation, open and close. All the operations include a

structuring element B, that is a symmetric interval around zero.

Erosion is a morphological operation in which the signal f is morphologically subtracted by

the structuring element B (Equation 4.3).

( f 	B)(x) = min{ f (x+ x′)|x′ ∈ B} (4.3)

Dilate is a morphological operation in which the signal f is morphologically added by the

structuring element B (Equation 4.4).

( f ⊕B)(x) = max{ f (x+ x′)|x′ ∈ B} (4.4)
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In Figure 4.12c and 4.12d the result of erosion and dilation in a 1D signal with a structuring

element B can be observed.

Open is the morphological operation that consists in a erosion operation followed by a dila-

tion operation, obtained with the same structuring element B (Equation 4.5).

f ◦B = ( f 	B)⊕B (4.5)

Close is the morphological operation that is the opposite of the open operation. It begins

with the dilate operation and then erosion operation, with the same structuring element B

(Equation 4.6).

f •B = ( f ⊕B)	B (4.6)

In Figure 4.12e and 4.12f the result of opening and closing in a 1D signal with a structuring

element B can be observed.

Figure 4.12: Presentation of an example of a signal and structuring element and the result of
the described morphological operations [Moragos, 1999]. (a) is the original signal f. (b) is the
structuring element g (in this case a parabolic pulse). (c) the dashed line is the result of the
erosion, the solid line the result of the flat erosion, and the dotted line is the original signal f. (d)
the dashed line is the result of the dilation, the solid line is the result of the flat dilation. (e) the
dashed line is open and the solid line is the flat opening. (f) the dashed line is the closing, and the
solid line is the flat closing.

Algorithm

With Figure 4.13 it is possible to see the general scheme of the Trahanias algorithm. It begins with

a filtering section that consists of the successive application of Open and Close operations on the

signal with a struturing element with small size(similar to the noise size) (Figure 4.13b), followed
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by the application of the peak-value extractor (PVE) transformation (with a larger structuring

element size, close to the peaks and valleys size) (Figure 4.13c) (Equation 4.7),

PV E( f ) = f − [( f ◦B)•B] (4.7)

where f is the input signal and B is the structured element.

The filtering module of the algorithm aims to filter high-frequency peaks and valleys. It elim-

inates noise without any degradation of the QRS signal (described by the article). In this way, the

article suggests that the B is the size equivalent to 3 sample points. As the signal provided by the

trackers is already filtered and without apparent noise, this step was ignored.

Morphological Transformation

Filtering PVE Decision Rulex(n) y(n) z(n) t1, t2...

(a) Scheme for the Peaks detection (QRS in the ECG signal).

Opening Closing

Closing Opening

Average

Input

(b) Detailed information of the filtering module.

Opening

Closing

Input

(c) Detailed information of the PVE module.

Figure 4.13: Trahanias Scheme [Trahanias, 1993].

The PVE module allows acquisition of only mountain elements and valleys, making the rest of

the signal equal to zero. The successive application of the open and close operations generate peak

and valley extraction operations. By subtracting the open of a signal with a structuring element B

to the input signal, it generates an output that contains the mountains that do not have the support

of B, that is a top-hat operation (Equation 4.8).

PE( f ) = f − ( f ◦B) (4.8)
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Similarly, by subtracting a close of the signal with the structuring element B to the input signal,

it generates an output containing the signal valleys, which is a bottom-hat operation (Equation 4.9).

V E( f ) = f − ( f •B) (4.9)

An example of the result after applying PE and VE functions is presented in Figure 4.14.
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Figure 4.14: Trahanias algorithm: the result of the PE and VE functions. The dashed gray line
represents the original signal. The dark gray line is the result of the PE functions, that gives the
mountains of the signal and the remaining information is changed to zero. The black line repre-
sents the result of the VE function, that gives the valleys of the signal, the remaining information
is transformed to zero. The label original refers to the sum of the resulting Z components of the
multiplication of the signal with the X and Z fixed frame: XZ +ZZ .

As can be seen from Figure 4.15, the size of the structuring element is determinant to find the

peaks and valleys. By analyzing the gait signals, the valleys, associated with the events in which

the foot leaves the ground, correspond to generally sharper valleys, whereas, not always, the events

of putting the foot on the ground (the positive peaks of the signal) have the same sharpness. For

this reason, the L value of the structuring element must be analyzed for the walking signal.

After finding the peaks and valleys of the walking signal, the next step follows to find the

maxima and minima of the peaks and valleys, respectively. In order to avoid the noise that still

exists, the article suggests the application of an adaptive threshold (Equation 4.10). As they intend

to acquire positive and negative peaks, the threshold is applied to the absolute values of the signal.

Resulting in positive peaks and negative peaks (Figure 4.16).

new_threshold = (wa× previous_threshold)+(wb× previous_peak_detected) (4.10)

Where the wa is the weight applied to the previous threshold and wb is the weight applied to the

previous peak detected amplitude.
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L

input

output

(a) Top-hat with structuring element with size L
and a flat peak signal.

L

input

output

(b) Top-hat with structuring element with size L
and a sharp peak signal.

Figure 4.15: An example of the structure element size influence in the peaks extraction (Trahanias
Algorithm) [Trahanias, 1993]. Applied in two different peaks, the result of the operation (top-
hat), is shown below each signal. This illustration has the same representation when applied the
bottom-hat.
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Figure 4.16: Trahanias algorithm. Positive and negative peaks detection.The result is presented
in black, where the circles are the positive peaks detected and the triangles are the negative peaks
detected. The label original refers to the sum of the resulting Z components of the multiplication
of the signal with the X and Z fixed frame: XZ +ZZ .

4.4.4 Detection of the Initial Contact

At the instant of shock absorption, which corresponds to the IC event, the signal acquires a higher

frequency component, as shown in Figure 4.9. In this way, a frequency analysis can be performed

to identify these moments. The Fourier transform would be an approach for this case, however it

lacks information on the location of the components of the various frequencies, and is not enough

for the intended application.

The Wavelet Transform parts with the Fourier Transform idea, in which the signal is approxi-

mated by the sum of several sine and cosine series. The highest difference in Wavelet Transforms

is that it approaches the signal using short lift waves (as shown in Figure 4.17). Each wavelet

is characterized by the compact support which is the total wavelet wavelength. It represents the

ephemerality of the signal (the signal is not finite), and there are different wavelengths, applied at
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different frequencies (as will be explained later). Another characteristic of the wavelets is that the

area underneath the curve must be zero so that the energy of the wave is equally distributed by the

positive and negative component of the wave. This is to control the values of the wavelet result,

helping a better understanding without a positive or negative biased value.

“Compact 
Support”

Figure 4.17: An example of a short lift wave used in Wavelet Transform - wavelet, with compact
support.

In the Wavelet Transform, there is a convolution between the signal and a wavelet analysis

function (Equation 4.11).

x(a,b) =
∫

∞

−∞

x(t)Ψ∗a,b(t)dt (4.11)

Where Ψ∗a,b(t) is the wavelet analyzing function. Wavelet Transform results in a two-by-two

matrix of coefficients that are identified by their scale and translation.

Translation is about moving the wavelet forward in time while analyzing the entire signal

(Figure 4.18a). The scale has an idea close to the scales principles in music, the higher is the pitch

of the note, the higher is its frequency and the smaller is its wavelength. The opposite happens

with a lower pitch of the notes, the lower the frequency, and the longer the wavelength. For waves

with higher frequency, the wavelength is lower, creating a higher resolution in time, because the

waves are smaller leading to a better location in time.

t

t

t
(a) Translation

high-frequency scale
(low scale)

low-frequency scale
(high scale)

(b) Scale

Figure 4.18: Translation and Scale in Wavelet Transform.

Having a random signal, in time, it takes up the wavelet analyzing the function and multiplies

itself by each point in the region of the signal where the translation occurs. After that, the wavelet
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analyzing function is scaled and the multiplication process is repeated with this new wavelet by

each point of the signal.

Discrete Wavelet Transform (DWT)

The big difference lies in the discretization of the input signal. In this way, high and low pass

filters are applied sequentially to the signal and form a filter bank, as shown in Figure 4.19.

The signal is first filtered with a high pass filter and then low pass filtered, obtaining two

signals: D1 and A1, respectively.

f1

f1

f2

f1

f3

f2

x(t)

f2

f3

W(3, t)

W(2, t)

W(1, t)

D1

A1 D2

A2 D3

A3 

Figure 4.19: Wavelet filter bank [Devasahayam, 2012]
.

These filters have the ability to rebuild the sub-bands as they cancel any aliasing that occurs

due to down-sampling. For each new level of decomposition, the low-pass result is down-sampled

and this is again applied high and low pass filters, and so on. The number of coefficients in each

new level is half the number of coefficients of the previous level, as a result of the dawn sampling.

In this way, it is possible to analyze in a more detailed way the signal, particularly the frequency

component of the signal at different resolutions, also allowing the signal denoising and signal

compression. After this process, Wavelet Transform (translation and multiplication) occurs as

mentioned in the previous subsection.

Wavelets Types

Another aspect to take into account regarding the application of Wavelet Transform is the choice

of wavelet type. As already mentioned, the wavelet is a wave of short duration that is convoluted

with the signal. There are several types and families of wavelets, including those shown in Figure

4.20. The importance of the wavelet format is focused on the correlation with the signal, in order

to find the best matching point.
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Haar Shannon or Sinc Daubechies 4 Daubchies 20

Gaussian or Spline Biorthogonal Mexican Hat  Coi�et

Figure 4.20: Different wavelet types [Al-geelani et al., 2015].

Comparing the different wavelets it is possible to verify that the Haar wavelet is very different

from the others and there is a wide variety of formats between wavelets (Figure 4.20). In Figure

4.20, not all types of wavelets are represented, it is only used to show the variety of wavelets. Due

to the large variety of wavelet families, it is necessary to carry out a study on which is best applied

to the gait signals. In this sense, it is necessary to find out the best wavelet to apply to solve the

problem.

Concluding this subsection, the choice of the use of the Wavelet Transform applies only to

find the contact location of the foot with the ground. This event is related to shock absorption and

leads to a higher frequency region in the signal, as shown in Figure 4.9.

4.4.5 Cross-correlation

Throughout the development of the project, many positive and negative peaks that clearly corre-

sponded to noise were detected as IC and PS events by the previously mentioned methods. There

is also a need to detect gait, to know at what moments the person was walking. This has a crucial

function, for example, to determine when the person stoped walking.

As shown in the figures of the gait signal already displayed in this document (for example

Figure 4.16), the gait has a characteristic pattern, which is repeated with each new gait cycle.

According to data collected from all individuals, this pattern appears to be fairly similar for all

individuals, but the patterns are not exactly the same. This is important for defining gait regions,

the time intervals in which the person was walking. Thus, it was decided to define regions where

the person was walking with the goal to remove the wrong detection of IC and PS events outside

the gait patterns and to detect when the person started and stopped walking.

The first approach implemented was to perform cross-correlation with a model that corre-

sponded to a complete gait cycle, starting with the beginning of the stance and ending at the end
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of the stance, as shown in Figure 4.21a. In a second approach, an implementation of two cross-

correlations was adopted, in which they differed in the cross-correlation model. The first model

corresponds to the start of the gait with the stance (Figure 4.21b) and the second model consisted

of starting the swing (Figure 4.21c). But before proceeding with the details of the implementation

of cross-correlation, a brief introduction to the theoretical concept follows.

Model 0

(a) Model Stance Swing

Model 2

(b) Model begin with Stance

Model 1

(c) Model begin with Swing

Figure 4.21: Cross-correlation Models. The model (a) is used in a cross-correlation alone, it
includes a large model with stance and swing events. The model (b) is used in cross-correlation
parallel with the cross-correlation performed with the model (c).

Cross-correlation Basics

Cross-correlation, in general, allows finding patterns in a 1D signal, which are similar to the chosen

model. The model is a segment of a signal that contains a sequence or pattern that it is intended to

find. In this way, it is a method that allows finding similarities between the signal and the model,

regardless of the location of the pattern in the signal (in the x axis). The mathematical equation

that represents the cross-correlation is presented in Equation 4.12.

( f ∗g)[n]def
=

∞

∑
m=−∞

f ∗[m]g[m+n] (4.12)

Where the f is the signal and g is the model with the pattern.

In visual terms, the cross-correlation can be understood as exemplified in Figure 4.22. In the

case of the two different signals, a higher value is observed when there is some similarity in the

two signs f and g.

As already mentioned, the idea behind cross-correlation, applied in this project, was the de-

tection of patterns related to walking. In this way, with a model with a gait cycle pattern, it was

intended to find the moments in which the person was walking. Hypothetically, if the gait signal

is the signal presented by the two signals exemplified at the top of Figure 4.23, and considering

6Adapted from: Cross-correlation. https://commons.wikimedia.org/wiki/File:Comparison_
convolution_correlation.svg (19/05/2017)

https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg
https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg
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Cross - correlation

f

g

g * f f * g

Figure 4.22: Cross-correlation visual application 6.

that each person has a relatively different gait pattern (in this case triangular and quadrangular),

the signal obtained after cross-correlation presents peaks in the zones of higher similarity between

the signals and is constant and near the null value in areas where there is no similarity. In this

case, it is intended to detect moments of gait, ignoring moments in which there is noise (noise

with different a pattern than gait), this method seems to have the necessary criteria to segment the

region in the time in which the person is walking.

Signal:

Result:

Di�erent Gait Patterns:

Pattern used in cross-correlation:

Regions of Interest:

time

time

time

and

Figure 4.23: Cross-correlation visual application and hypothetical example to gait signal.

At the end of the application of the cross-correlation, it was performed an identification of the

places where there was higher correlation, that corresponds to the peaks of the obtained result. To

find the most similar points, after finding the local maxima and minima, an adaptive threshold was

performed to select the maxima and minima that correspond to the higher correlation between the

gait pattern and the signal acquired. The peaks resulting of the adaptive threshold are collected

and, at the instant of time to which they belong, is added and subtracted half the value of the gait

pattern used as a model in the cross-correlation. The reason is the peak will only occur when the

similarity between the model and the signal is reached. Considering a model of gait starting in the

stance and ending in the swing, the peak occurs at the end of the stance (in the middle of a gait

cycle). At this point, the person already performed the initial contact. If it is not considered the

instants previously to the higher similarity, the initial IC is lost.

As it is not intended to lose information, at the moment the maximum similarity occurs, half

the duration of the model is subtracted do the point, in order to find what started the cycle. During

this process, it is also important to find sequential walking patterns, which correspond when the

person is taking several steps in a row. In this sense, it is important to group them by zones of gait,
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as can be observed in Figure 4.23 in the bottom of the image, and not gait (region without the gray

rectangle).

Cross-correlation With One Model

Two cross-correlation approaches were applied: first consisting of only one gait cycle model (with

a full swing and stance phases (Figure 4.21a)) and a second one consisting of the application of

two cross-correlations with two different models (one to start with the stance phase and another

with the swing phase).

However, there was a disadvantage in applying a fixed model to a variable gait. This is because,

when start walking with the right foot, it goes into stance, and the left foot starts to swing. This

causes the signals of the two feet to begin at different times of the gait cycle.

When determining the weights of the adaptive threshold, if its value is low, it is possible to

detect the start values of a foot that begins with the final phase of the cross-correlation model.

However, it is more conducive to recognizing noise as a walking pattern, such as just tilting the

foot towards the ground. In the case of increase the threshold weights values, the first event of the

foot that begins in the final phase of the model is considered as out of the gait pattern, causing loss

of information.

In this sense, it was necessary to find a new strategy that would allow to recover information

for beginnings and ends of gait in different phases: beginning in the stance and ending in swing

(majority of the right foot of right-handed people) and beginning in swing and ending in the stance

(majority for left foot of right-handed people). This strategy would also have to have high noise

rejection.

Cross-correlation With Two Models

In order to increase sensitivity for stance gait and swing start, a new cross-correlation approach

was implemented. This involved the application of two cross-correlations, with two different gait

patterns: one starting in the stance and ending in swing and another beginning in swing and ending

in the stance (Figure 4.24).

The result after the application of the cross-correlation with the two models, in separated ways,

is presented in Figure 4.25.
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Figure 4.24: Models applied in cross-correlation.
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Figure 4.25: Result of the two cross-correlations, with the two models presented in Figure 4.24.
The result with model 1 (triangles), that begins with the swing, it was verified that the maximum of
the cross-correlation occurred when the cycle was after the beginning of the swing (about a third
of the duration of the gait cycle). The result with the model 2 (circles), that starts with stance, had
a maximum at the beginning of the march, in which the person had the foot on the ground and
started into swing. This allows to find walking instants for when the foot starts on both stance and
swing. The label original refers to the sum of the resulting Z components of the multiplication of
the signal with the X and Z fixed frame: XZ +Zz.

After locating the gait regions for these two cross-correlations, the peaks and valleys were

found for the two lines of processing and were merged. Thus, the relationship between noise

and incomplete gait cycles (different from the model for approach one that was verified for coss-

correlation with one model), is higher, This enable the separability of regions of the walk, starting

with swing or stance, without loss of information.

In conclusion, it is possible to segment the time intervals in which the person walks through

cross-correlation, reducing the detection of positive and negative peaks that correspond to noise

(outside the moments in which the person is walking).
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4.4.6 Project Structure

Combining all the algorithms described above, the project structure can be found in Figure 4.26.

This implementation was in static form, which means that it had information of the whole process,

and it did not take into consideration the real-time signal acquisition and processing.

Read data file
(one side: eg. R)

Read gait pattern 
models

Find peak in DWT

Find peak cross-correlation
2 models,
Define regions of walk

Read annotations for 
validation

Find positive and negative peaks:
peakdetect and Trahanias Alg. 
separately 

Find if they 
are in walk 
region,

Find the DWT 
peak right after 
the positive 
peaks in both 
Alg.

IC and PS (R)

Validation:
  - MSE & RMSE
  - Precision & Recall

Temporal Parameters

Process for the other 
side (eg. L)

IC and PC detection Process

IC and PS (L)

Figure 4.26: Overview of the applied algorithm, related to one side. As an example, supposing
that the work-flow presented is related to left side, it is necessary to process, with the same steps,
for the right side, in order to have all the information for the temporal parameters calculation. This
work-flow is not considering the real-time implementation.

The process started by reading the recorded data file, acquired while a subject walked. The

data was manipulated in order to obtain the components XZ and ZZ as explained in Subsection 4.3.

Then, two gait models were read to be used in cross-correlation step, as indicated in Subsection

4.4.5, and were processed in the same way as the gait signal (sum of component XZ and ZZ). The

cross-correlation, with the two models, was applied to the gait signal, and the time intervals in

which the subject walked were defined, named as gait regions. Peaks and valleys of the gait signal

were detected by two separated algorithms, the peakdetect and the Trahanias algorithm. Only the

peaks that were within the gait region were taken into account for the next stages of the process,

the remaining peaks were discarded as noise. At this stage, the PS events were determined, since

they correspond to the negative peaks (for the two algorithms separately). The time instants where

there was a higher frequency peak of the signal was determined from the wavelet analysis. The

instant (of the high frequenct peak) in the signal that was immediately after the positive peaks

determined by peak detection algorithms, was classified as shock absorption. At this point, IC

events were determined.
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With information on the IC and PS events, the temporal parameters described in Chapter 6

can be implemented. After the events were detected, the validation was performed, which will be

described in the following section.

4.5 Validation

The validation of the detection of IC and PS events was performed with three types of annota-

tions: by video (mentioned in Subsection 4.2.1), by manual annotation and by the gold standard

annotations (Qualisys7 system in combination with force platforms).

For each annotation type two validations steps were performed. The first was the error in

seconds of the IC and PS event detection (Figure 4.27a). The second was the detection of the

event itself on the considered region of interest (Figure 4.27b).

To consider the time error between the annotations and the detection, the Mean Squared Error

(MSE) was applied. In this error, only the points (in the notes and the detected ones) that were at

a distance smaller than the size of a running cycle were considered, as shown in Figure 4.27a. All

the others were compared with the precision and recall metrics, not counting for validation error in

seconds. This means, only True Positive (TP) events were used in the MSE calculation. To found

events that the algorithm was unable to detect and the ones erroneously considered as of interest,

the Precision and Recall metrics were applied, which will be explained below.

time

t1 t2

True - f
Detected - gf(1) f(2) f(3)

g(1) g(2) g(3) g(4)
Gait cycle lengthL

L L L L

(a) Validation considering the time of each sample of the annotation and the detection
through the algorithm.

TP TPFP FN
time

True 
Detected 

Gait cycle lengthL

L L L

(b) Validation considering each sample of the annotation and the detection through the
algorithm.

Figure 4.27: Two algorithm validation approach, considering the error in time (a) and considering
the detection or failure of events (b).

7Qualisys system: http://www.qualisys.com/ (20/05/2017)

http://www.qualisys.com/
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MSE: It measures the mean square of the deviations or errors between the estimator and

what is truly estimated (Equation 4.13).

MSE =
1
n

n

∑
i=1

(Ŷi−Yi)
2 (4.13)

Where Ŷi is the labeled value (annotations) and the Yi is the predicted value (by the algorithm).

On the other hand, it had to be verified if the algorithm was finding all the events of interest

and if noise was being detected as events of interest. In this way, the Precision and Recall metrics

were applied.

Precision: It verifies if all the events detected are relevant (or true) (Equantion 4.14).

Precision =
T P

T P+FP
(4.14)

Recall: It verifies if all the relevant (or true) events are detected (Equation 4.15)

Recall =
T P

T P+FN
(4.15)

TP are events correctly identified by the algorithm as events of interest (that are present in the

annotations). False Positives (FP) are events, detected by the algorithm, that are not in the annota-

tions. False Negatives (FN) are events in the annotations that were not detected by the algorithm.

It is important to note that the precision value indicates whether all IC and PS events detected by

the algorithm are relevant, i.e. if the precision value decreases, the algorithm is detecting noise as

events. On the other hand, the recall indicates whether all actual IC and PS events are detected, i.e.

if the recall value decreses, it means that the algorithm fails to detect all (true) events annotated.

4.5.1 Validation With Video Annotations and Manual Annotations

The video annotations have already been explained in Subsection 4.2.1. Two problems emerged

in the video annotation process: occlusions due to the overlap of the feet in the line of vision

of the camera and temporal errors between 20 and 40 milliseconds, even with a video sampling

frequency at 100Hz. For this reason, annotations were performed using visual inspection. This

annotation, which will be called manual annotation, aims to understand the influence of video

annotation problems: occlusions and the error of 20 to 40 milliseconds. And try to find the time

instants where the occlusions occurred.

Manual annotations were made on the quaternion signal by visually identifying for IC and PS

events following the interpretation described in Section 4.2.1. In this way, manual annotations

were made on all signals. All negative peaks were marked as PS events, and, to the disturbance

detected immediately after the positive peaks was marked as IC events (shock absorption). An

example of IC manual annotation event is presented in Figure 4.28, for the remaining events, the

process was the same. The points were exactly searched with a cursor that allowed to see the value
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of the point sampled by the trackers. However, this annotation may be biased, as it is done directly

in the signal manually and visually.
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Figure 4.28: Manual annotations process. The label X +Y refers to the sum of the resulting Z
components of the multiplication of the signal with the X and Z fixed frame: XZ + Zz. On the
example, the cursor is placed above an IC event.

Validation Process

In order to validate the results of the algorithm with either manual annotations and video anno-

tations, it was necessary consider the following details: when determining the MSE metric, and

second when determining the precision and recall. They are described below.

Firstly, it was necessary to consider the points detected as IC and PS that are within a near limit

of one walking cycle, as shown in Figure 4.27a by the letter L in that figure. Considering that there

was an IC event detected with a time difference margin with less than a gait cycle duration (L) from

a IC annotation, the MSE error between these two points was calculated. This allowed a lower

biased comparison because it was compared with peaks of IC (and PS) that were with maximum

distance of a walking cycle (L). In this way, for each new point detected by each algorithm, it

was checked if there was some point in the annotations that was within a limit close to the length

of one gait cycle. This is, if there was a point in the annotations within the lower limit (detected

point minus half the duration of a gait cycle), and within the upper limit (detected point plus half

the duration of a gait cycle). If there was no annotated value corresponding to the detected, it was

considered as a FP. So, what happened was, if the error was equal to or higher than the duration

of a gait cycle, there was no longer an error and it becomes an FP (considered for the precision

and recall metrics). If the there was an annotation for the detected value with a time margin less

than half and more than half of a gait cycle time duration, in relation to the instant of the detected

point, is a TP. It should be noted that the upper limit value of the MSE will be the time interval

corresponding to the duration of a half gait cycle.

Secondly, the detection of FP and FN was done in a similar way, as can be seen in Figure

4.27b. On one hand, to every detected point was verified if there was a point in the notes that have

not be considered until that point and was within a margin of less than half the duration of a gait

cycle and more than half the duration of a gait cycle. On the other hand, it was verified whether all

points of the annotations were used, i.e. check if there was a detection pair for all points scored.
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In this way, the first result allows to discover the TP and the FPs and the second result allows not

only to validate the TPs but also to discover the FNs. In this way, it was possible to determine

Precision and Recall.

4.5.2 Validation With Gold Standard System

The use of this system was aimed at more precise validation and eliminate the problems founded

in the validation with video and manual annotations. The systems used to acquire this range

of signals were a Qualisys7 system and a ground forces platforms system (Bertec, USA). The

Qualisys system (Qualisys AB, Sweden) composed by twelve retroreflective infrared chambers

distributed along the upper perimeter of the laboratory and operates at a sampling frequency of

200 Hz. In Figure 4.29 is presented the LaBioMEP’s Qualysis System.

(a) LaBioMEP’s room. (b) LaBioMEP’s room, entrance.

(c) Location of the markers in the lower limbs in
Qualisys System signal acquisition.

(d) Markers placed at the lower limb. View from the
anterior part. Without the femur and tibia markers.

With SWORD Health’s sensors system.

Figure 4.29: LABIOMEP camera system Qualysis. It was composed with twelve retroreflective
infrared chambers. In (c) the description of the placement of the sensors is presented.

The system was used to track the displacement of maker placed over the joints of the lower

limbs according to the Figure 4.29c, in proximal anatomical locations of the segments required for
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analysis in their own software. The placement of the SWORD Health’s sensors system with the

markers of the Qualysis system is shown in Figure 4.29d.

The force platform had five extensiometric platforms (Bertec, USA) and one piezoelectric

platform (Kistler, USA), operating at a sampling frequency of 2000 Hz. The platforms setup is

presented in Figure 4.30a.

G
ai

t D
ire

ct
io

n

Start

Come back

(a) Identification of the five platforms
in the force platform system. (b) LaBioMEP’s room, with the force platform system.

Figure 4.30: Force platform system.

The force platform system was in the center of the room where the accuracy of the Qualisys

system was higher. This is because in the center there is higher visibility of all the chambers and it

is where the calibration of the system is carried out. These two systems were used simultaneously

and in synchrony to improve the accuracy of the instants detection of the IC and PS events. As

there were no ambiguities in the acquisition of the events instants with the platforms, the data

acquired by Qualisys was not necessary for validation.

In the following subsubsection, the data acquisition protocol with this system is presented.

Acquisition protocol

Firstly, it was necessary to synchronize the platform system and Qualisys together with the system

under study. This synchronization was done in a very similar way to the one made with the video

(Subsection 4.2.1), in which the right tracker was hit with a Qualisys system marker. Thus, the

point at which the marker goes back in the trajectory was synchronized with the time when there

was a high-frequency movement in the sensor (similar to that shown in Figure 4.3b in Subsection

4.2.1).
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The acquired sequence of movements is represented in Figure 4.31.

Figure 4.31: Gait trajectory performed in the LaBioMep, in relation to the force platforms and the
pins (red cicle) presented in Figure 4.30b.

Ten acquisitions of signals were made, and all of them consisted of the following sequence:

1. Move forward, starting between the red pins,

2. On the force platform, place the feet precisely as indicated in Figure 4.31 in the platforms

(black footprints),

3. Rotate at the end of the platform, without stopping,

4. Back, placing the feet on the same platforms as before, according to Figure 4.31 (gray

footprints),

5. Stop next to the red pins.

The data acquired was only from one person, who is person no.1 described in Table 4.1, in the

beginning of this section.

The annotations were obtained in instants where the pressure stopped being zero to positive,

indicating the presence of pressure, in the platforms of force. Since they have a sampling frequency

of 2000Hz, the error associated with this measurement is 0.5 ms. In addition, the processing was

not very extensive and, from the information provided by LaBioMEP, there is no article associated

with the software that processed this data.

Validation Process

The validation with these data was similar to the validation that was made with the annotations of

the videos (Subsection 4.5.1). Calculation of the MSE between all the TPs and their respective an-

notations, and calculation of precision and recall with the remaining points, as well as the detected

points that were not true (FP) and the undetected points that were true (FN).

The region of higher precision for the Qualysis system was in the center of the laboratory,

where the force platforms are located. In this way, the data annotated was from only these locations

- on top of the force platforms.

It was necessary to clean the signal, that is, to remove information of gait in the sensors signal

that had no notes, as the case of the trajectory from pins to the platforms, the rotation in the back
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return, and from the platform to the pins. After the synchronization, the signal was cleaned as

described above, so as to obtain only data related to the time the feet were on the force platforms.

4.6 Summary

Initially, data from five people was acquired in which the signal obtained by the sensors was

synchronized and compared with video obtained by a camera. After the interpretation of the signal,

it was concluded that the signal negative peaks correspond to the PS events and the disturbance

soon after the positive peak corresponds to the events of IC. Between an IC and PS events is the

stance phase and between a PS and IC events is the swing phase.

Detection of these two events involves the detection of signal negative peaks and disturbances

after the positive peak. Thus, two methods of peak detection (peakdetect and Trahanias algorithm)

were implemented, and the Discrete Wavelet Transform was applied to locate the moments of

shock absorption (disturbance soon after the positive peak). In relation to these methods, it is still

necessary to study some parameters, such as the structuring element of the Trahanias algorithm

and the wavelet type in the DWT. To detect gait moments, cross-correlation was also implemented

with a gait pattern model, which gives information on whether or not the person is walking.

The validation of the detection of the events IC and PS was made in relation to the error in ms

in the detection of the peaks and in relation to the hit or failure detection of the peak and valley.

The validation was done with annotations obtained by videos, by manual annotations and by a

system combined by Qualisys system and LaBioMEP Forces Platforms.



Chapter 5

Temporal Events Results

In this chapter, the results for the detection of IC and PS events are discussed. It was implemented

and used two detection algorithms: peakdetect and Trahanias, it was also used three types of

annotations based on video, manual and gold standard. In the case of video annotations, a small

study was done on the influence of occlusions on the results.

Within these topics (manual, video and gold standard) the following studies were done, among

them: study on the best wavelet type to be applied to the acquired data set and the structuring

element of the Trahanias algorithm.

5.1 Event Detection With Video and Manual Annotations

As mentioned in Subsection 4.3.1, at the same time the first database was collected a video was

recorded for each acquisition to obtain notes on the instants in which the gait IC and PS events

occurred. In these videos, occlusions were observed (as mentioned in Subsection 4.3.1), and the

notes did not contain information about the location of the occlusions.

After understanding the signal, a manual annotation was also made on it, where the instants

relative to each event were recorded directly in the signal, according to Subsection 4.5.1. In this

way, a manual analysis was performed, in order to compare the results of the videos and the results

of the manual annotations: the number of steps and, in the signals, the number of events found.

Thus, in this first validation phase, the influence that occlusions brought to the results is presented.

5.1.1 With and Without Video Occlusions

This study aimed to understand the influence that the occlusions presented in the video annotations

brought to the results when comparing the algorithm results with this annotations. Thus, it was a

manual comparison between the video and its notes and also the results obtained by the program.

It was performed in two of the five signals of the first data set. Since all subjects did a similar gait

trajectory in the same place, under similar conditions, this study was not performed for any further

signals.

95
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The occlusions, in this study, were obtained from the visualization of the video along with the

annotations previously made, in order to verify how many occlusions there were and in which time

intervals they occurred. After this verification, all new TP, FP, and FS were selected, taking into

account that the occlusions are inserted with the label IC or PS event in a time location closer to

the occlusion in the video. The comparison of the precision and recall between both results (with

and without occlusions) is shown in Figure 5.1.
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(a) Precision comparison between results obtained with annotations that included notes about the
occlusions and notes without occlusions.
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(b) Recall comparison between results obtained with annotations that included notes about the
occlusions and notes without occlusions.

Figure 5.1: Precision and recall comparison between results obtained with annotations with notes
about occlusions and notes without occlusions. The events are the IC and PS, for both sides (L
and R). The algorithms considered in two different branches are the peakdetect and Trahanias
algorithm.

The parameters were empirically chosen for both algorithms acording to visually inspection

during the execution of the project. However, a more in-depth study of these parameters will be

presented later.

According to Figure 5.1a, it can be observed that precision increased when it took into account

notes with occlusions. That is, they indicate which locations where there were events that were

not noted due to video occlusions, but which occurred. Thus, it means that the FP component of

precision decreased when some occlusions were revealed. In this sense, it can be said that the

algorithm designed, either with peakdetect or with Trahanias algorithm, detected more true events
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than those obtained after the validation with video annotations. This helps to ensure that there was

no relationship between occlusions in the video and FP and NF in the algorithm results.

In Figure 5.1b, it is observed that the recall remained relatively constant between the analysis

that took into account notes of occlusions and notes without occlusions. In this way, it was possible

to perceive whether or not the algorithm failed to detect the events that were hidden. The FN

component of the recall remained almost unchanged. This means that whenever the location of an

occlusion was revealed, the algorithm was able to detect this occlusion.

In summary, by the increasing precision and recall when the occlusion location were discov-

ered and taken into account, the algorithm (in this case both Trahanias and peakdetect) detected

events correctly. In this way, when comparing the results with video annotations, the occlusions

should be taken into account. If they did not exist, the results would be better for the precision.
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29,77
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peakdetect trahanias peakdetect trahanias

Mean Differences of the Precision  and Recall 
Recall mean difference Precision mean difference

L
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Side
Algorithm

(%) (%)

Figure 5.2: Mean difference of the precision and recall obtained by the analysis of two data files. It
is divided by events (IC and PC), sides (L and R), and algorithms used (Trahanias and peakdetect).
This bar chart is related to the data presented in Figure 5.1.

In Figure 5.2 the mean difference of the precision and recall, presented in Figure 5.1, for

both data files, is addressed. Considering the Figure 5.2 it can be observed that the prevalence of

occlusions in IC and PS events, was similar for both events (IC and PS). This was also true for both

sides, i.e. it did not occurred more on one side more than the other. This means that the occlusions

were generally homogeneous for the IC and PS events and for the right and left feet, due to the

trajectory made by the subjects. In the analysis of the results with videos, the occlusions should

be taken into account, and they were, in general, equally distributed by all events described. It

can be said that it was equally distributed because, given that only two data files were used, the

observed difference for precision between both sides and between events, is reduced. It is also

observed that the recall presents small difference values, as expected from the justification already

presented together with Figure 5.1b.

Concluding this first study, considering situation A as annotations that took into account hidden

events, and situation B as annotations that did not take into account the hidden events, in the situa-

tion A the precision increased and the recall remained substantially constant in relation to situation

B. That is, in A, with more events, these were detected by the algorithm and, thus, the FP detected

were less. It also means that in B there were events that were not considered, being detected by

the algorithm, and then classified as FP, but which were not real negatives. On the other hand,
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as the recall remained constant, it means that the algorithm continued to detect the occluded true

events (case of situation A). Even with the revelation of more events, the algorithm was capable

of detect these events. Hence, when the video annotations are used in validation, it must be taken

into account that they are annotations with occlusions and, therefore, the precision values may

be higher than those presented in the validation results in the following studies. However, even

with the problems encountered with video annotations, these annotations were important for the

validation of the temporal error of the TPs (in the MSE metric). In addition, they were annotations

without any influence on the signals of the sensors, and were not biased.

5.1.2 Study of the Wavelet Type

As already explained in Section 4.4.4, the wavelets were applied in this project in order to find

the moments in which the shock absorption occurs. The shock absorption was a high frequency

component of the gait signal, already addressed. In this same section it was mentioned that, for

the application of wavelets, it was necessary to apply a type or family of wavelets. Considering

that there were several moments of foot placement in the ground, for this data set, it was chosen to

investigate which type of wavelet gives the best results (for the presented data). In this way, DWT

was applied with all wavelet families and the results were compared to both algorithms (peakdetect

and Trahanias).

The protocol consisted in, for each type of wavelet, run the whole process (Figure 4.26), to

compare the results obtained for events of IC and PS with different wavelets. The families of the

wavelets used are all available in pywavelets1 Given the role of the DWT in this project, a higher

influence on the IC events was expected. This is because, as already explained, the DWT was

implemented to locate in the gait signal the moments in which shock absorption occurred, which

was during the IC event.

In the following paragraphs, an analysis of the results with different wavelets is carried out,

taking into account validation of events detected (precision and recall) and validation in millisec-

onds (MSE).

It is necessary to perceive the behavior of the precision and recall according to the type of

wavelet used. In this way, this study focused on the observation of the precision and recall of

the detection of PS events for all types of wavelets. The ten best precision results with video

annotations are shown in Figure 5.3. The remaining results can be found in the Appendix A with

video and manual annotations. It should be noted that the maximum precision value was higher for

the Trahanias algorithm than for the peakdetect algorithm, for approximately the same standard

deviation. This means that the Trahanias algorithm was able to find less noise as IC events than

peakdetect, reducing the FP component of precision. However, considering that this analysis was

done with video annotations, it may have failed detection of occlusions that it should have actually

detected. In order to verify this, the precision was also observed with manual annotations. The top

ten results are shown in Figure 5.4.

1PyWavelet. http://wavelets.pybytes.com/ (06/03/2017)

http://wavelets.pybytes.com/
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Figure 5.3: Ten best precision results of the application of DWT with different wavelets fami-
lies on the detection of IC events by peakdetect and Trahanias algorithms, compared with video
annotations. The gray bar represents the standard deviation.
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Figure 5.4: Ten best precision results of the application of DWT with different wavelets families
on the detection of IC events by peakdetect and Trahanias algorithms, compared with manual
annotations. The gray bar represents the standard deviation.
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In Figure 5.4, which considered manual annotations for the validation, it is observed that the

precision continued to be higher for the Trahanias algorithm. However, it can be verified that the

precision continues to have very similar values throughout the different families of wavelets (see

Apendix A). The standard deviation for the Trahanias algorithm was practically zero, which means

that this precision occurred for all data used in this study.
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Figure 5.5: Ten best recall results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect and Trahanias algorithms, compared with video annotations.
The gray bar represents the standard deviation.

In Figure 5.5 the recall results obtained with video annotations for the processes with algorithm

Trahanias and peakdetect are shown. It can be observed that in the recall, the peakdetect algorithm

behaved better than the Trahanias. This means that the peakdetect algorithm was more sensitive

in detecting the positive points, reducing the FN in relation to the Trahanias.

Comparing with manual annotations (Figure 5.6), the recall values decreased by about 1%

for the peakdetect algorithm, but for the Trahanias algorithm, it dropped by almost 6%. These

values mean that the algorithm was detecting correctly the true events, but failing some of them,

i.e. increasing the FN, especially those hidden by the annotations of the videos.
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Figure 5.6: Ten best recall results of the application of DWT with different wavelets families
on the detection of IC events by peakdetect and Trahanias algorithms, compared with manual
annotations. The gray bar represents the standard deviation.

For peakdetect algorithm, the precision and recall were similar. However for the Trahanias

algorithm, with manual annotations, the precision reached 100 % for a large set of wavelets types.

That is, it detected only relevant (true) events, not detecting noise as events. However, it presented

low recall values, about 20 % less than precision. With this, it can be concluded that the Trahanias

algorithm was highly specific for event detection, but it was not able to detect all true events,

falling some of them. One way improve this is to increase the number of true events detected by

the algorithm. Maintaining precision in order to increase the recall. Additional data information

can be found in Appendix A.

Then, for all TPs, the event detection error (in milliseconds) was discussed. The events ob-

tained by the algorithm and the events annotated by the video visualization, acquired at the same

time as the signals, are compared. In Figure 5.7a are the MSE results of the IC detection by the

peakdetect algorithm for the different wavelet families.

It can be observed that the detection of the IC event was not the same for all wavelet types.

For Daubechies (db) 10 (corresponds to db11 in the bar chart) reaches 138 ms (maximum value)

and for Reverse biorthogonal (rbio) 3.1 (corresponds to rbio7 in the bar chart) was close to 11 ms

(minimum value). The numbering of the wavelets in the graphs is in the order of these in each

family and not by the name (and number) that identify them, in order to be simpler. Thus, when

db11 appears it means that it is 12th wavelet of the Daubechies family (the enumeration starts with

number zero), which corresponds to Doubechie 10. The standard deviation was slightly the same

for all families of approximately 20 to 30 ms.
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(a) MSE Results of the application of DWT with different wavelets families on the detection of IC events
with the peakdetect algorithm.

(b) MSE Results of the application of DWT with different wavelets families on the detection of IC events
with rthe Trahanias algorithm.

Figure 5.7: MSE Results of the application of DWT with different wavelets families on the detec-
tion of IC events with both algorithms applied, compared with video annotations. The gray bar
represents the standard deviation.
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The determination of the IC events between the wavelet families was heterogeneous, with a

standard deviation similar to all of them. Where in some cases, the standard deviation reached

the mean value. The best result was achieved with an MSE of approximately 11 ms (Reverse

biorthogonal (rbio) 3.1 that is rbio7 in the bar chart), and the worst with approximately 140 ms

(with the Daubechies (db) 10 that is db11 in the bar chart).

In Figure 5.8 the ten best results for each of the algorithms are presented, in this case, the video

annotation were also considered for the validation.

Figure 5.8: Ten best MSE results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect and Trahanias algorithms, compared with video annotations.
The gray bar represents the standard deviation.

It can be observed that the best result for both algorithms was using the Reverse biorthogonal

wavelet (rbio) 3.1 (rbio7) and the result was slightly better for the Trahanias algorithm than for the

peakdetect. The wavelet are specific according to the shape of the signal component to be found,

as explained in Subsection 4.4.4. In addition, it was also possible to observe that the ten best

values were very similar among them, there were even several with the same value. However, it

must be taken into account that it was a study done with only five subjects. Therefore, the sample

is not representative of the entire population.

The annotations used in this study were the annotations of the videos and, as presented in

Subsection 4.3.1, there was difficulty in the accuracy of the annotation of the exact moment when

the events occurred due to the quality reduction in saving the video (in about 20 to 30 ms). Due

to that, this study was also performed on manual annotations (as described in Subsection 4.5.1).

In Figure 5.9 the ten best results obtained for both algorithms, now with manual annotations are

presented.
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Figure 5.9: Ten best MSE results of the application of DWT with different wavelets families
on the detection of IC events by peakdetect and Trahanias algorithms, compared with manual
annotations. The gray bar represents the standard deviation.

With the results of manual annotations, it can be observed that lower MSE values were reached,

and the best result was not achieved with the best-performing wavelet family for video annotations.

However, the differences between the top ten results for both algorithms are close, there were

several of them with the same result, and the wavelet that gave better results with video annotations

was also one of the top ten for manual annotations in both algorithms. It is recalled that the

MSE study only considers TPs, where occlusions of video annotations only reduce the number of

samples compared.

The combination of results with precision and recall values is as follows. Despite not being

present in the top ten results, the wavelet that presented the best results for MSE validation also pre-

sented good results for precision: 75.1676 % for peakdetect with video annotations and 90.5310

% for Trahanias with video annotations. For manual annotations: 86.7763 % for peakdetect and

100.0000 % for Trahanias algorithm. The recall of the wavelet that offers the best MSE result had

a recall of 88.7792 % with peakdetect and 85.0979% for Trahanias, with video annotations, and

86.5382% with peakdetect and 79.6846% with Trahanias, with manual annotations.

The next phase of study is focused on increasing the number of true IC events detected by

Trahanias algorithm, while continuing to avoid detecting noise as events.

To conclude this section, the wavelet that best results offered, taking into account the balance

of temporal error and precision in detecting events, was the Reverse biorthogonal wavelet (rbio)

3.1 (rbio7 in bar charts). And it was with this wavelet that the following studies were developed.

It is recalled that this parameter is probably not optimal, due to the non-representativeness of the
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data.

5.1.3 Study of the Structuring Element (Trahanias Algorithm)

The study that follows focuses on increasing the recall of the Trahanias algorithm, trying to main-

tain its precision. Recalling the description of this algorithm in Subsection 4.4.3, what may in-

fluence the sensitivity of the Trahanias algorithm is the size of the structuring element used in

morphological operations. Therefore, in this study, different structural elements with lengths rang-

ing from 2 to 23 (focusing essentially on the odd ones) were applied. The wavelet used was the

one with the best result in the previous study (Reverse biorthogonal wavelet (rbio) 3.1 (rbio7 in

bar charts)), and the results were compared with manual annotations due to the absence of event

occlusions. The analysis is divided in the same way as the previous study, focusing initially on pre-

cision and recall and then on MSE analysis. It is noted that, at this stage, only the behavior of the

Trahanias algorithm was evaluated. The peakdetect algorithm does not depend on the structuring

element, so it was not included in this study.

In Figure 5.10 the precision results for detection of IC events and in Figure 5.11 for detection

of PS events are presented.

2 3 5 7 9 11 13 15 17 19 21 23

structElement (samples)

0

10

20

30

40

50

60

70

80

90

100

110

P
re

ci
si

o
n
 (

%
)

9
1
.3

6
9
5

8
1
.7

3
0
4

9
3
.2

1
4
7

9
5
.1

2
7
9

9
4
.5

5
9
6

9
7
.1

5
9
1

9
8
.5

1
6
1

9
8
.5

1
6
1

9
7
.4

3
1
9

9
5
.9

6
1
5

9
5
.1

1
3
5

9
5
.1

1
3
5

Precision by structElement (Trahanias algorithm for IC event detection)

Figure 5.10: Precision results of the application of several structuring elements on the Trahanias
algorithm, for the detection of IC events, compared with manual annotations. The gray bar repre-
sents the standard deviation.

It can be seen that the precision value tended to increase with increasing the size of the struc-

turing element. However, for the detection of IC events, there was an optimal value for the size of

the structuring element, which was about in the central part of the graph shown in Figure 5.10. It
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should be noted that these values are different from those shown in Subsection 5.1.2. In this data,

the results were with optimized weights of the adaptive threshold. This optimization caused a de-

crease in precision, aiming to increase the recall. It was a study done with few results in concrete.

However, the goal was to optimize the weight of the Thrahanias algorithm’s adaptive threshold in

order to reduce the precision as minimum as possible, increasing the recall as much as possible.

In this case, the precision values were smaller than the 100% presented previously, in about 4%.

But the recall increased more than 10 %.
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Figure 5.11: Precision results of the application of several structuring elements on the Trahanias
algorithm, for the detection of PS events, compared with manual annotations. The gray bar repre-
sents the standard deviation.

It can be observed that for small structural elements were where there was a large amount of

noise detected as true events, causing the increase of FP (note that this result was with manual

annotations). This behavior is in accordance with the algorithm characteristics, that is for both IC

and PS event detection. Its justification, based on the description of the algorithm, also has logic,

that is, with the application of small structuring elements, more noise was detected as mountains

and valleys, causing identification of noisy peaks.

In Figure 5.12 the recall results for detection of IC events and in Figure 5.13 for detection

of PS events are presented. The recall values were lower for the detection of both events, and

with higher standard deviation for IC event detection. Comparing these results with the recall of

about 79% obtained in Subsection 5.1.2, having a structuring element greater than 9 samples was

possible to achieve a recall of 88%, being about 10% higher than that presented in the wavelets

study.
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Figure 5.12: Recall results of the application of several structuring elements on the Trahanias algo-
rithm, for the detection of IC events, compared with manual annotations. The gray bar represents
the standard deviation.
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Figure 5.13: Recall results of the application of several structuring elements on the Trahanias algo-
rithm, for the detection of PS events, compared with manual annotations. The gray bar represents
the standard deviation.
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Combining the results of recall and precision, it can be noted that the best obtained results

were for structuring elements with 9 till 23 samples size. However, for structuring elements with

more than 15 samples, the precision value for the detection of IC events started to decrease.

In the case of the recall, the smaller the size of the structuring element, the more difficult it

was to find mountains in the signal and to find positive events, which causes a decrease in the

recall due to the increase in FN. For larger values of structuring element size, there were more

mountains to be considered to be potencial events. Another note to take into account in this study

was the maximum size of the structuring element to be used, which is 23 samples. Using 23

samples corresponds, in this project, to 23×20 (ms) which results in 460 (ms), that was close to

half a second. This was the maximum value used because, from this value, it started to be half-

way down the gait cycle. Since, only the components of IC and PS were necessary to be selected,

which were a small portion of the time of the walking cycle, a larger structuring element did not

have any interest in this study.

In Figure 5.14 the MSE result with manual annotations for the IC events and in Figure 5.15

for the PS events is presented. The idea of using only manual annotations to study the structuring

element was related to the presence of occlusions in the video annotations and to understand which

was the best structuring element that was able to better detect the higher amount of events.

Figure 5.14: MSE results of the application of several structuring elements on the Trahanias algo-
rithm, for the detection of IC events, compared with manual annotations. The gray bar represents
the standard deviation.

The structuring element of odd dimension was to allow each sample of the signal to have

the same number of points of the structuring element for each side of the sample. Size 2 only

serves as the minimum structuring element size, and it is observed in both figures that it was the
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one that returned a higher error. Another observation that can be made in both figures (i.e., both

for detection of IC and PS events) is that the MSE result would tend to a fixed value while the

structuring element was increasing. This means that the increased in the size of the structuring

element, from a certain value, no longer influences the temporal detection of the events, always

being detected in the same place. This happens for both IC and PS events.

Figure 5.15: MSE results of the application of several structuring elements on the Trahanias algo-
rithm, for the detection of PS events, compared with manual annotations. The gray bar represents
the standard deviation.

Concluding this section, based on MSE, precision and recall values, the 9-sample size structur-

ing element was chosen to proceed with the project studies. This structuring element size improves

the recall of the Trahanias without greatly impairing the detection of noise as events. It should be

noted that these parameters are the most indicated for the data used, not being representative of

the population. Much less optimal to be applied to people with gait impairments, without specific

studies in these patients. This is because this type of results is always limited with the amount and

variability of data used. As already explained, the sample collected is not representative of the

healthy population. This data is also not representative of the population with gait abnormalities,

which is the population that is intended to be reached as the ultimate goal in rehabilitation.
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5.2 IC and PS Events Results With Gold Standard Annotations

In this section, the results of the algorithm developed in relation to the gold standard are presented.

The gold standard is described in Subsection 4.5.2. Here a study of the best wavelet family and

also the best structuring element of the Trahanias algorithm are discussed.

Using the parameters found in the previous section the results with data and gold standard

annotations are found in Table 5.1.

Table 5.1: Result of the performance of the algorithms with the parameters selected in the previous
section, in the data with gold standard annotations.

Algorithm Metric Event Value
Trahanias Precision IC 93.7500±12.9312 (%)
Trahanias Precision PS 99.0000±4.4721 (%)
Trahanias Recall IC 64.1667±14.5849 (%)
Trahanias Recall PS 100.0000±0.0000 (%)
Trahanias MSE IC 35.6150±29.7250 (ms)
Trahanias MSE PS 39.6979±30.2979 (ms)
Peakdetect Precision IC 95.4157±11.3023 (%)
Peakdetect Precision PS 99.0000±4.4721 (%)
Peakdetect Recall IC 66.2500±11.3023 (%)
Peakdetect Recall PS 100.0000±0.0000 (%)
Peakdetect MSE IC 42.9650±53.1813 (ms)
Peakdetect MSE PS 39.6979±30.2979 (ms)

With these results, it was possible to conclude that the recall of the detection of IC events

considerably dropped (about 20 %) comparing with the previous data. The precision decreased

about 3 %. In addition, it can be observed that the temporal error of the IC events highly increased.

For example, for the peakdetect algorithm IC detection, the MSE standard deviation was higher

than its mean value.

On the other hand, the detection values of the PS event improved compared to previous studies.

Thus, it was decided to proceed with a wavelet analysis on the detection of IC events, in order to

reduce the MSE error and increase the precision and recall. Also, to study the structuring element

of the Trahanias algorithm, in order to improve the results for detection of IC events without

impairing the detection of PS events. And with that, understand what might have happened with

this decreased IC event detection.

5.2.1 Study of the Wavelet Type

This study started with study of wavelets, as previously presented, for the reason that the data are

not representative of the population. In the study of the best wavelet, the process was similar to

that presented in Subsection 5.1.2. For all the data collected in the LaBioMEP all the wavelets

were applied. The results regarding MSE, precision, and recall are presented and discussed. It is

worth to note that, for the study of wavelets, only the comparison of the results of the IC events

was important, considering the two algorithms (peakdetect and Trahanias). The data used in the
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studies presented in this section was from only one person, 10 round-trip sequences as described

in Subsection 4.5.2.

Taking into account the precision and recall values (Figure 5.16 and Figure 5.17 respectively),

it can be seen that the precision value was slightly better for the Trahanias algorithm than for the

peakdetect. However, the recall was relatively similar. That is, the Trahanias algorithm was able

to detect the relevant events correctly while not detecting noise as relevant events, maintaining the

same positive detection as the peakdetect algorithm.

Observing now the families of wavelets, it is verified that the values of precision and recall

were not similar throughout all the families. In Figures 5.16 and Figure 5.17 are only the ten best

results. The remaining results, where the different values of precision and recall by the different

wavelet families are, can be found in Apendix A.
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Figure 5.16: Ten best precision results of the application of DWT with different wavelets families
on the detection of IC events by peakdetect and Trahanias algorithms, compared with gold standard
annotations. The gray bar represents the standard deviation.
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Figure 5.17: Ten best recall results of the application of DWT with different wavelets families on
the detection of IC events by peakdetect and Trahanias algorithms, compared with gold standard
annotations. The gray bar represents the standard deviation.

On the contrary to the first data set with video and manual annotations, in this study, there

was no great similarity between the families regarding precision and recall. It is observed that,

for some families, the precision was high, reaching 100 % with small standard deviation for both

the Trahanias and peakdetect algorithms, but the recall was lower by about 30 %. This means that

under these conditions, the algorithm tended to better detect the positive data by failing some of

them.

For the precision results for the peakdetect algorithm, the maximum value obtained was 100 %

with the wavelets db17, db19, bior13, and coei f 4, with a minimum value of about 91.6667 % with

the wavelets bior3, bior4, bior5, bior6, and coei f 0. For these values, the standard deviation was

similar, having a value close to 30 %. The precision of the Trahanias algorithm had a maximum

value of 100 % with the wavelets sym10, sym12, sym14, bior12, bior13, bior14, rbio5, rbio6, and

rbio14, and the minimum value of 91.6667 % with the wavelets bior3, bior4, bior5, and bior6.

With a standard deviation between 20 and 40 %, being higher for lower precision probabilities.

For the recall results for the peakdetect algorithm, the maximum value obtained was 73,7500 %,

with the wavelets sym10, sym12, sym14, bior13, bior14, rbio6, rbio14, and rbio14, while the

minimum achieved was about 56,2500 % with the db5 wavelet. In the case of the recall, the

standard deviation was around 40 % and was similar for all wavelets. The recall of the Trahanias

algorithm had a maximum value of 71.2500 % achieved with the families sym10, sym12, sym14,

bior13, bior14, and rbio14, while the minimum value was 52.5000 % with the db13 family. In

this case, the standard deviation was about 40 %. For more information, supplementary results are
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shown in the Appendix A.

After this result, it was tried to perceive the reason for behind this value, analyzing the signals.

What was found was that, after turning around to go back to the starting point (towards the red

pins), the first IC event was almost always failed by the algorithms. That lowered the recall on

detecting IC events. In the return, even before the beginning of the trajectory, it begins with a

small step. Thus, it turns out to be a start of march in which the heel attacks slightly ahead to the

ground, different from the other steps. This causes that the attack to the ground is less intense,

having smaller positive peak in the signal. This kind of behavior had already occurred before,

using video annotations. That is, the start and end of the march are situations with most difficult

events to be detected because the gait cycle is incomplete. And it also because, it is close to the

non-gait region.

In Figure 5.18 the MSE results of the event detection IC with the peakdetect algorithm, com-

paring with golf standard annotations are presented. In Figure 5.19 the same results are presented

but with the Trahanias algorithm. The structuring element used in the Trahanias algorithm was

what best results offered in the previous study with video annotations (size of 9 samples).

Figure 5.18: MSE Results of the application of DWT with different wavelets families on the
detection of IC events with peakdetect algorithm, compared with gold standard annotations. The
gray bar represents the standard deviation.
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Figure 5.19: MSE Results of the application of DWT with different wavelets families on the
detection of IC events with Trahanias algorithm compared with gold standard annotations. The
gray bar represents the standard deviation.

It can be noticed that, although the error had increased in value, the behavior of the MSE

along the different wavelets was similar to that obtained for video and manual annotations, even

though the data was acquired under different conditions. However, the best-performing wavelets

for this study were Biorthogonal (bior) 2.2, 2.4, 2.6 and 2.8 (corresponding to bior3, 4, 5 and 6

in bar graphs). A very important aspect to note in these data is the standard deviation. Regarding

the data presented for video and manual annotations, the standard deviation with standard gold

annotations increased considerably, going from 30 ms to more than 130 ms. To understand the

reason for this, the signal in parallel with the annotations were analyzed in more detail. which is

described below.

By carefully analyzing a figure collected during this acquisition, it can be noted that the events

described in Subsection 4.3.1 were not always found in the places identified above. As for exam-

ple, in Figure 5.20, the events were often detected earlier than expected. Comparing the events

marked with a gold standard in a signal, Table 5.2 was obtained, in which it compares places

where there was a delay in the annotations. The numbers of the platforms are as shown in Figure

4.30a. It can be observed that the delay was constant between the samples, being only different

for the platform 3. It would make sense to conclude that the problem would be of synchronization.

However, the right and left sensors were synchronized at the same time. If this were the problem,

it would have to happen on both sides. Another aspect to take into account was the behavior of the

signal that is within the circles indicated in Figure 5.20. Note that there was a quick change of the

signal. This type of behavior is normally associated with signal compensation. One aspect to take
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into account was that, during the LaBioMEP acquisition, the tablet and the computer that were

connected to the sensors were at a distance of about 8 meters. What may have happened was,

using BLE connection this distance is too large. Thus, there was a loss of sensor packets upon

reaching the tablet, that caused a delay in the signal. The compensation behaviour is common

in this type of systems, however, the algorithm responsible for this event is confidential, it is not

possible to analyze in detail or recover the lost data.

Figure 5.20: Detail of signal where a delay of the signal in relation to the annotations can be
observed, and the rapid change of the signal surrounded by the red circle.

Table 5.2: Manual counting of the delay time and the platforms that contained this delay for each
side (R and L) of a data file.

Platform Side Status Error (sec.)
2 L Correct -
2 R Before 0.12
3 L Before 0.18
3 R Before 0.12
4 L Correct -
4 R Before 0.12
5 L Correct -
5 R Before 0.12

This phenomenon occurred for all data acquired in the laboratory, therefore there was a high

error in milliseconds, increasing the mean and standard deviation of the MSE. However, it was

verified in most of the data that the events described in Subsection 4.3.1 go according to the one

obtained by the gold standard. That is, the negative peaks correspond to the events of PS and the

higher variation in frequency after the positive peak corresponds to the shock absorption of the

event IC.

The choice of wavelet had to be balanced between precision and recall values. In this study,

it was observed that the wavelet with better performance for both recall and precision in the Tra-

hanias algorithm was the sym10. In the MSE of this wavelet, it can be verified that its value was

not the best, being about 59.1712 ms, however, it was decided to proceed with it for the following
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studies of structuring element. It should be noted that the result of the chosen wavelet is not the

best result obtained with MSE metric, but according with precision and recall results. This is be-

cause the data is compromised due to packet loss. Therefore, it was assumed that the data detected

as TP were not compromised by the loss of packets, because the deviation was smaller than the

size of a gait cycle.

For the peakdetect algorithm, the sym10 wavelet also offered minimally concordant results

between precision and recall, compared with the remaining wavelets.

Concluding this analysis, the Symlet wavelet (sym) 12 (sym10 in bar graphs) was chosen to

proceed with the following studies.

5.2.2 Study of the Structuring Element (Trahanias Algorithm)

In order to find a balance between the precision and the recall of the results obtained with the

Trahanias algorithm, in a similar way to that presented in Subsection 5.1.3, the study of the size of

the structuring element was implemented. Thus, the goal was to find the most suitable structuring

element in order to maintain precision by increasing the recall.

In this study, the wavelet symlet wavelet (sym) 12 (sym10 in bar graphs) was used which, as

explained in the previous section, seemed to be the wavelet that better results in balancing MSE,

precision, and recall. In this study only Trahanias algorithm data is presented, focusing on IC and

PS events.

In the precision results shown in Figures 5.21 and Figure 5.22 for detecting IC and PS events,

respectively, it can be seen that the standard deviation also decreased with increasing structuring

element size, and the mean value increased with increasing of the structuring element. This means

that by increasing of the structuring element size, fewer peaks were detected as wrong events,

decreasing FPs.

The precision values for IC event detection reach 100 % from the structuring element size 7

samples, and 99 % for PS event detection from the structuring element size 13 samples. Thus, it is

now necessary to find a structural element that allows to maintain the precision while increasing

the recall.

Recall results are present in Figure 5.23 for IC event detection and in Figure 5.24 for PS event

detection. With a precision of about 99 % and a recall of about 100 %, it can be concluded that the

algorithm was able to correctly identify the IC and PS events while discarding not relevant events

as noise.
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Figure 5.21: Precision results of the application of several structuring elements on the Trahanias
algorithm, for the detection of IC events, compared with gold standard annotations. The gray bar
represents the standard deviation.
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Figure 5.22: Precision results of the application of several structuring elements on the Trahanias
algorithm, for the detection of PS events, compared with gold standard annotations. The gray bar
represents the standard deviation.
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Figure 5.23: Recall results of the application of several structuring elements on the Trahanias
algorithm, for the detection of IC events, compared with gold standard annotations. The gray bar
represents the standard deviation.
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Figure 5.24: Recall results of the application of several structuring elements on the Trahanias
algorithm, for the detection of PS events, compared with gold standard annotations. The gray bar
represents the standard deviation.
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Observing the recall results for detecting IC events, it turns out that the same was no longer

the case. The recall was greatly reduced, which leads to the conclusion that the algorithm was

failing to detect many positive events, should be more specific in the detection. The reason this

has happened is the same as presented in the previous section. That is, the first IC on the return

of the trajectory is shorter and closer to the region where the gait inversion occurred. In this sense

it resulted in a smaller event (in the signal) than the other events. In addition it was also close to

a region that was not walking pattern (region to go around with both feet together). In this way,

the algorithm often did not detect this event. It should be noted that this did not happened at the

beginning of the trajectory because the annotations start midway through the way of the march. In

this way, there was no ambiguity in determining the remaining events.

In Figure 5.25 the MSE result for the IC and in Figure 5.26 PS events, are presented.
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Figure 5.25: MSE results of the application of several structuring elements on the Trahanias al-
gorithm, for the detection of IC events, compared with gold standard annotations. The gray bar
represents the standard deviation.
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Figure 5.26: MSE results of the application of several structuring elements on the Trahanias al-
gorithm, for the detection of PS events, compared with gold standard annotations. The gray bar
represents the standard deviation.

With these two graphs, it is observed that there was a very high standard deviation for both

events. The standard deviation reaches the same value as the mean, which gives little confidence

about the results. But comparing with the structuring element, it seems that from the size of 13

samples both the mean error and the standard deviation begin to stabilize the MSE error of the IC

and PS events.

In conclusion, there is some dependence of the results regarding the size of the structuring

element of the Trahanias, however, that from the size of 13 samples this dependence decreased,

although in the recall of the detection of the IC event was relatively important. However, the

difference was reduced considering the size of the data used.

5.2.3 Event IC and PS Detection Comparison

In this Subsection, the results comparison obtained for detection of the IC and PS event with gold

standard annotations are presented.

In Table 5.3 the results for detection of the PS event are presented, for the peakdetect and

Trahanias algorithm using the structuring element that gave the best result in the study carried

out in Subsection 5.2.2. It has been observed that they present exactly the same values for both

algorithms, where the recall was about 100 %. This means that both algorithms behaved well to

detect all the true events. On the other hand, it is observed that the MSE was about 40 ms, with a

considerable standard deviation for both algorithms, of about 60 ms. The reason why this occurs

was already justified in subsection 5.2.1. Recalling, given the distance of the tablet and computer
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from the sensors used to acquire the signal, there was loss of information by the BLE connection.

What happened was a compensation for loss of information. This compensation was performed

by a confidential algorithm, and it was impossible to recover the lost information. On the other

hand, the determination of the walking time was made taking into account the number of samples

that arrives at the system. As there were packet loss, the frequency was no longer 50Hz, or there

was loss of some of the points, not 50Hz continuously. The determination of the walking time

was implemented as each sample represents a 20 ms time advancement. With loss of information,

the obtained time was a delay of the signal in relation to what was measured. This is the reason

why, in many cases, the gold standard annotations were before the event occurred in the sensors.

The standard deviation for the value of the MSE metric is almost equal to the mean of this value.

This brings little credibility to the value but the error will not be more than 70 ms. However the

standard deviation for precision and recall is reduced.

Table 5.3: MSE, precision and recall results comparison obtained for detection of PS event with
peakdetect algorithm and Trahanias. The Trahanias algorithm was applied with a structuring ele-
ment of 13 samples of length, chosen based on the results presented in Subsection 5.2.2.

Metric Value Peakdetect Value Trahanias
MSE 39.6979±30.2979 (ms) 39.6979±30.2979 (ms)
Precision 99.0000±4.4721 (%) 99.0000±4.4721 (%)
Recall 100.0000±0.0000 (%) 100.0000±0.0000 (%)

Considering the detection of the IC event, taking into account both algorithms the results

are compared in Table 5.4. Also for detection of the IC event, the algorithms behave similarly.

Comparing the MSE, with the Trahanias algorithm it was possible to obtain 0.0819 (ms) better

than the peakdetect, however, considering that the data dimension was reduced and the standard

deviation for both results was large, these values can be considered roughly equal. By comparing

accuracy, the Trachanias algorithm had a better precision than the peakdetect at just over 2 %.

Already considering the recall, both had the same result. These results lead to the conclusion that

both algorithms played almost the same way on the detection of IC events, and Trahanias were

better when selecting only the positive events, and were more likely to detect noise, in relation to

peakdetect. The standard deviation values were also high for the MSE metric, but remained lower

for precision and recall.

Table 5.4: MSE, precision and recall results comparison obtained for detection of IC event with
peakdetect algorithm and Trahanias. The Trahanias algorithm was applied with a structuring el-
ement of 13 samples of length, chosen based on the results presented in Subsection 5.2.2. The
wavelet used in this comparison was the wavelet sym10, chosen in Subsection 5.2.1.

Metric Value Peakdetect Value Trahanias
MSE 56.5698±49.4977 (ms) 56.4879±52.3057 (ms)
Precision 97.7500±6.7041 (%) 100.0000±0.0000 (%)
Recall 73.7500±17.1583 (%) 73.7500±9.8509 (%)
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5.3 Summary

Studies were done on data collected with video and manual annotations, as well as with gold

standard annotations. Based on the results obtained, the best family wavelets were chosen for the

detection of shock absorption in the IC event and also the structuring element of the Trahanias

algorithm was analyzed. Finally, the results of both algorithms were compared.

As the final goal was to compare both algorithms, the extensive study was done for the data

obtained with video camera and with gold standard data. Although the data set used was not

representative, it was concluded that the algorithms behave similarly for healthy walking people.

A lower recall than precision has been found, where for every 4 steps 1 IC was failed. However,

it corresponded always to the same step, that was the start of gait after returning back in the

trajectory. This has been found in other results, in which the start and end of the march are of

greater difficulty in detecting the events, because the cycle is not complete in those zones. And

because it is close to non-gait regions.

When choosing an algorithm it is necessary to take into account the precision and recall bal-

ance. These metrics are important to understand if what is failing is the low detection of the

relevant events or the high detection of noise as events. In this case, precision was high in almost

all conditions (IC and PS, peakdetect and Trahanias), which leaded to a good detection of only

those events that are true. But some failed as shown by the low recall. During development of an

application, it is necessary to study whether it is worth more just to lose true event detection and

detect less noise, or to detect more events by finding also more noise.

According to this case study, these metrics were balanced so as not to detect noise and only

detect true events. This is because, upon detecting noise, it will influence the time parameters

that are calculated with the IC and PS events. Upon detecting fewer true events, the parameter is

ignored (because does not make sense in the relation of ICs and PSs), and the next step parameter

is calculated. For questions of variability and asymmetry (explained in the following Chapter), it

turns out to be more interesting to find only temporal parameters that correspond to reality, even

if some fail, such as the beginning and end of the march. If a parameter corresponding to a poor

detection is taken into account for the time parameters, the variability and asymmetry are changed,

which can cause alarm to the physiotherapist, not corresponding to a problem of the patient, but

of the system.



Chapter 6

Temporal Parameters, Real Time
Implementation and Pathology
Simulation

The gait parameters are the metrics that will give physiotherapists information about the gait of

the patient. In this sense, it was important to obtain the metrics that are directly derived from the

events of IC and PS.

The real-time implementation plays an important rule when addressing rehabilitation environ-

ments. This is crucial in order to guide the patient to perform the exercises correctly. In this

project, it was implemented the signal processing in real-time, described at the end of this chapter.

6.1 Temporal Parameters

The temporal parameters can be divided into two classes: those that refer only one foot at a time

and those that refer the two feet together. In this sense, those who refer one foot at a time, exist

for the left side and the right side. While those that refer both feet there is only one set of results.

6.1.1 With one foot

The temporal parameters obtained through IC and PS event relationships are Stance, Swing and

Gait Cycle. More information about these temporal parameters is presented in Subsection 2.3.1.

The achievement of each of them was as follows:

Stance Time: time between the PS event and the previous IC event (Equation 6.1). It is the

amount of time that the foot is on the ground while walking. It begins with the contact of

the calcaneus with the ground and ends with the toes rising from the ground.

Stance(ms) = PS(t)− IC(t−1) (6.1)

123



124 Temporal Parameters, Real Time Implementation and Pathology Simulation

Swing Time: time between the IC and the previous PS event (Equation 6.2). It is the amount

of time that the foot is on the air, moving forward while walking. It begins with the toes

rising from the ground and ends when the calcaneus contacts with the ground.

Swing(ms) = IC(t)−PS(t−1) (6.2)

Gait Cycle Time: time between two successive IC events (Equation 6.3). It is the amount of

time that the foot needs to complete a gait cycle: between two successive contacts with the

ground.

Gait_Cycle(ms) = IC(t)− IC(t−1) (6.3)

In equations presented above, the t is referred to the sequence of time instants in which IC and PS

events occur. This means that, for each event, it was necessary to search for the previous event of

interest that occurred.

The challenges in the implementation of these temporal parameters were to find events IC and

PS that belong to the same segment of gait. As for example, in the sequence to begin to walk,

to stop and to resume the walking, there was a portion of time in which the person was stopped,

not having a moment of gait. This period must delimiter the parameters calculation. That is, the

detection restarts when the person starts walking, and ends when the person also ends walking.

This was to avoid obtaining very long gait parameters, which correspond to moments in which the

person was stopped, easily confused with moments of stance.

One way to avoid this was to use the walking regions defined in Subsection 4.4.5. Thus,

whenever the person finishes walking, the walking region ends, and the temporal parameters stop

at the same time. This way the temporal parameters can be forced to stop for the instants that the

person did not walk.

6.1.2 With both feet

The gait parameter that requires information from both feet is the step time. This parameter can

be calculated from both sides (L and R), and the results are merged at the end. It is described as:

Stem Time (L): time between the IC event of the right side and the IC event of the left side

(Equation 6.4). It is the amount of time between two successive IC events (in this case

starting with the left side), of both feet.

Step(ms) = ICR(t)− ICL(t−1) (6.4)

Stem Time (R): time between the IC event of the left side and the IC event of the right side

(Equation 6.5). It is the amount of time between two successive IC events (in this case

starting with the right side), of both feet.

Step(ms) = ICL(t)− ICR(t−1) (6.5)
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In the equations above, the t element had the same meaning as described in Subsection 6.1.1. That

was the reference to the time instants sequence in which IC and PS events occur.

With this information, it is also possible to count steps. The count of steps has a similar

implementation of the determination of the step time, however, it is not necessary to take into

account the time factor.

Step Count: it is the number of times that the feet were placed at the ground (Equation 6.6).

Steps =
end walking

∑
beginwalking

number o f IC eventsthat occurred (6.6)

Also it was considered to use the PS events to count the number of steps, taking into account

that they obtained better results to detect these events. However, according to the literature pre-

sented in Table 2.3 and Table 2.2, the step is the difference between placing one foot on the floor

and then placing the other foot on the floor. This is true for both the step length and time param-

eters. In order to maintain the same logic of step counting, the same implementation of ICs was

performed.

6.1.3 Generic Parameters Applied to Temporal Parameters

There are also two parameters that can be implemented at any gait parameter. In this case they

were implemented in temporal parameters. These are variability and asymmetry and are described

in Subsection 2.3.1.

Variability: it is the coefficient of variation or standard deviation of any parameter, along

the walking period, considering one foot (Equation 6.7). Variability refers to the variation

of the temporal parameter, along the gait exercise.

Variability = standard_deviation(Temporal Parameter withone f oot) (6.7)

Asymmetry: it is the coefficient of variation or standard deviation of any set of right and left

parameter along the walking period (Equation 6.8). Asymmetry refers to the variation of

the temporal parameter determined for right and left side.

Asymmetry = standard_deviation(Temporal Parameter withboth f eet) (6.8)

These parameters were applied to each set of gait parameters. For example, considering the

stance time, the variability of the stance time was determined by the standard deviation of the

stance time values for one side (right, left) separately. The asymmetry was the standard deviation

of the stance time values of both the right and left side merged. This type of evaluation allows

a more processed feedback of the gait to the physiotherapist, containing information about the

regularity and stability of the person’s gait.



126 Temporal Parameters, Real Time Implementation and Pathology Simulation

6.1.4 Conclusions - Temporal Parameters

After implementation, the results were the time intervals of each parameter for each gait cycle. For

the parameters that are parts of the gait cycle, such as stance and swing time, it had been verified

that its values were less than the running cycle.

However, it should be noted that no validation implementation was done for these parameters

because it would be two processes to be evaluated with the same errors made while the detection

of IC and PS events (presented in Chapter 5). Since the time parameters already depend on the

events IC and PS that were previously validated, it was assumed that the error was propagated to

these parameters.

To proceed with the validation of these parameters, it would be necessary to do the same

processing on the gold standard annotated data. That is, implement the parameters for the IC and

PS events of the annotations. For example, in the case of data obtained with a gold standard, in

which there was a loss of packets by the sensors. It would be interesting to evaluate the relevance

of packet loss in obtaining temporal parameters. However, it seems not to be very logical if better

values were obtained for time intervals of the temporal parameters when the IC and PS event

detection error was high. In addition, the process of packet loss is unknown, it is not known what

the conditions that cause this event. For a better understanding, it would be necessary more tests

that evaluate parameters like, for example, the presence of obstacles in the line between the tablet

and sensors, and the distance between the tablet and the sensors.

A conclusion found visually, without a very extensive analysis of the data, was the time interval

values of the temporal parameters related to each other. That is, the stance and swing times added

gave the correspondent gait cycle time. Stance times were generally 60 % of the gait cycle and the

swing times were generally 40 % of the gait cycle time, and are values that agreed with the ones

indicated in the literature (in Subsection 2.2.3).
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6.2 Real Time Implementation

The real-time implementation of this project is important to verify the viability of the algorithms

when acquiring signals in real time, that is, without future information. This is important because

in a rehabilitation setting, feedback needs to be provided in real time so that the patient can improve

the exercises while doing them, and prevent injuries occurred due to the lack of this type of support.

In a first approach, it was thought of a parallel implementation of the system, in which there

were several processes running in sequence and in parallel, as described in Figure 6.1.

T1

T2 T3

T4

SM1

SM2

L R

ICL and PSL ICR and PSR

Figure 6.1: Setup of the first approach, considering a parallel implementation to read and process
the data in real time. T1, T2, T3 and T4 are threads and SM1 and SM2 are shared memories.
The T1 has the function of acquiring the data and place it, separately the right and left side, in the
SM1. The T2 and T3 process the signals (left and right respectively and separately) in order to
obtain the ICs and PSs on each side. T4 process the ICs and the PSs in order to obtain the temporal
parameters.

With this setup, the goal was as follows:

1. Thread 1 (T1): would acquire real-time data and place it in the SM1. This T1 would always

collect the data every 20 ms (corresponding to a sampling frequency of 50 Hz). In this sense,

this thread would take only this function.

2. Shared Memory 1 (SM1): would stored the acquired data from the sensors, to be picked up

by the threads of the next process.

3. Thread 2 (T2) and Thread 3 (T3): each of these two threads would process the data from the

sensors on one side: that is, T2 for one side and T3 for the other side. The function would

be to obtain the time instants of the IC and PS events occurrence. It would be important

to be on different threads because both sides have asynchronous IC and PS events and on
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different signals (right side sensor signal and left side sensor signal). This is so that a signal

could begin to be processed even though the previous one was not finished, eliminating the

processing dependency between the two feet.

4. Shared Memory 2 (SM2): would stored the processed IC and PS values calculated by the

two previous threads, to be used by the last thread of the process.

5. Thread 4 (T4): this final thread would aim to join the IC and PS values to obtain the gait

parameters. It would be important to be just one and after the previous two threads have

finished, so that there were enough data to get the parameters, according to their definitions

presented in Section 6.1.

A second approach is the assemble the system only in series, from the real-time acquisition

of the signal to the processing of the running parameters. This approach was implemented in

order to test the computational capabilities and verify if it was possible without influence the real-

time acquisition and processing. This approach consists of: with each new acquisition of data the

process runs all from start to finish, i.e., at each 20ms the following sequence occurs:

1. Acquire one sample from each sensor,

2. Run the process of IC and PS calculation for one of the sides,

3. Run the the same process of IC and PC calculation for the other side,

4. With IC and PS information of both sides, process the temporal parameters.

However, this process was not optimized because with each new sample, there were no new

ICs and PCs to be determined and the process runs all the same. On the other hand, it only makes

sense to run the 2 and 3 steps for the following two cases: after the person starts walking and after

a walking cycle has occurred. In this way, cross-correlation was again used, but in the case, to

determine the beginning of the 2 and 3 points (and consequently the 4 point).

6.2.1 Cross-Correlation

Following the concept of cross-correlation, presented in Subsection 4.4.5, its goal in this part was

to determine when the person starts walking and determine each new walking cycle that occurs.

The importance of finding the instant of the beginning of the gait is crucial for the sencond and

third steps of the second approach sequence, previously mentioned. This means that it only makes

sense to detect IC and PS events when the person is actually walking. As there are adaptive

methods throughout the algorithm, since before the start of the gait there has not yet been any true

event, the limit of the adaptive threshold is still low. Thus, the algorithm is likely to consider small

variations of noise as events of interest.

The application of cross-correlation in this phase was one of the first things to be processed.

It determines if the process advances to steps 2 and 3 if it was at least one right and left side
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gait patterns (the processing of the two sides may not occur at the same time). However, since

information about a one gait cycle is few for determining temporal parameters (see Subsection

6.1), it was decided to start the second and third steps if the number of gait pattern was equal to two.

In this way, when the person starts walking, after four steps (two gait cycles for each foot), begins

to have information about temporal parameters. The structure of the real-time implementation is

represented by Figure 6.2.

Data Acquisition

Signal Processing IC and PS events
Left side

Signal Processing IC and PS events
Right side

Temporal Parameters

Have 2 gait patterns 
in Left side

AND 
There is a new L gait 

pattern

Have 2 gait patterns 
in Right side

AND 
There is a new R gait 

pattern

each 20 ms

until the program stops

Start

Yes No

No

No

Yes

Yes There is a 
new IC or 
PS event

Figure 6.2: Setup of the second approach, considering a series of implementation to read and pro-
cess the data in real time. Starts with the acquisition of samples and, when there are 2 gait patterns,
starts the processing phase, for each side separately. After the first 2 patterns, the processing is
done for each new pattern found. The temporal parameters are processed since there are ICs and
PSs values and for each new pair of ICs and PSs for both sides.
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Following Figure 6.2, the acquisition of signals is done every 20 ms (50 Hz), and for each

acquisition, three checks are made:

• If, up to the moment, there are at least two walking patterns for the right and left sensor

signals then the IC and PS events are detected,

• If the previous point is verified, it is also checked if there is new gait pattern in relation to

the previous iteration (for right and left, it is not necessary to start with the left signal),

• Finally, it is checked if there are IC and PS events already determined sufficient to do the

temporal parameters calculation and, for each iteration, if there are new ICs and PSs deter-

mined.

To check for new gait patterns, cross-correlation was used as described in Subsection 4.4.5,

with only one model, which was close to the model of a complete gait cycle, similar to what is

presented in Figure 4.25. Thus, after application of cross-correlation, it was checked whether there

was a maximum in the zone of highest correlation of the model with the signal. The number of

maxima in the cross-correlation was related to the number of walking patterns in the signal. In

this way, before processing the signal information to obtain the ICs and the PCs, it was known if

another cycle of the operation has occurred.

With this last approach, it was not necessary to run all of the processing blocks (rectangles

in Figure 6.2) every 20 ms. They ran only when the person takes a new step, not stopping the

analysis with each new step - the real-time analysis. The first approach, with the shared memories

and thread, despite being a more efficient approach considering the problem (with a processot

with two or more cores), was not necessary for the sampling frequency used and for the computer

capabilities. This means that the system performs well in a series approach, without delay of the

feedback provided.

6.2.2 Results - Real Time

The performance of this implementation was not compared to another system, neither video nor

force platforms. In this way the results were only comparative between the system and the steps

done while testing.

Comparing the output of the system while it was done, it was verified that it identified well all

the IC events. This was noted by the correct count of steps that was performed. That is, the system

was able to correctly count the steps.

However, it was not the only task implemented. All time parameters implemented in the static

component were implemented for real time. However they were not validated.
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6.3 Simulation of gait of people with stroke and Parkinson’s diseases

After collecting the signal in a natural healthy gait format, some signals of simulation of certain

pathologies such as Parkinson’s disease and Stroke were also collected. The simulations were

based on explanatory videos published by Stanford University1. In addition, the videos recorded

at the same time as the acquisition of these signs were validated by a physiotherapist and a neu-

rologist MD, clinical director of the company. From the validation of both results they affirm that

there is a good similarity between the simulation made and the typical behavior of patients with

these two pathologies.

These data were collected in order to understand the similarity of gait signal between Parkinson

disease patiensts’, stroke survivors and healthy subjects. The abnormal gait of Parkinson’s disease

is characterized by slightly forward posture, leaning to the ground, with the arms also forward,

slightly shaking. The steps are usually small, the patient rarely starts with the heel but with the

foot in one whole. The feet are slightly apart to help maintain stability. These were the main

aspects taken into account in the simulation of the abnormal gait of Parkinson’s disease.

The signal obtained with a simulation of Parkinson’s symptoms is shown in Figure 6.3, where

it can be seen that the frequency is much higher and the signal amplitude is lower. However, it

can be observed that there is a gait pattern similar to that described in Figure 4.10, with peaks

indicative of IC, valleys indicative of PS, horizontal platforms indicative of stance phase and also

the sharp rise indicative of the swing phase.

1Stanford Medicine 25 - Gait Abnormalities https://stanfordmedicine25.stanford.edu/the25/
gait.html (visited on 28.03.2017)

https://stanfordmedicine25.stanford.edu/the25/gait.html
https://stanfordmedicine25.stanford.edu/the25/gait.html
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Figure 6.3: Signal resulting from Parkinson disease gait simulation.

Taking into account the differences it is expected that the algorithm would have to be adjusted

to detect the events of IC and PS in Parkinson’s disease patients. This conclusion is important

insofar as this project is incumbent on the rehabilitation goal. People with Parkinson’s disease

need gait rehabilitation, requiring a system capable of measuring their gait parameters.

Abnormal gait of stroke survivors on the affected side undergoes a circular gait, practically

without knee flexion or ankle dorsiflexion. It is a slightly slow gait in which the patient seeks not

to lose his balance.

Analyzing now the simulation of a person with stroke with the most affected right side (Figure

6.4), it can be observed that in the resulting signals it is possible to find gait patterns with IC peaks

and PS valleys, stance platforms and accentuated rises of the swing. The simulated side with the

greatest injury (after stroke) was the right side and in Figure 6.4 and is the less regular side.
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Figure 6.4: Signal resulting from stroke survivor gait simulation.

The left side was maintained at a gait close to normal, and it can be seen from Figure 6.3 that

the signal corresponding to the left side was with a regular pattern close to the signal of Figure

4.10.

In this way, can be concluded that there is an approximation between simulated signs of peo-

ple with Parkinson’s and stroke survivors, and it is possible to obtain an algorithm close to that

developed for normal people to determine temporal parameters.

6.3.1 Simulation Results and Conclusion

A test was performed in which the algorithm was run on both simulated signals. For the simula-

tion of parkinson’s disease the result of Figure 6.5 was obtained and for the simulation of stroke

survivor the result of Figure 6.6 was obtained.



134 Temporal Parameters, Real Time Implementation and Pathology Simulation

700 800 900 1000 1100

Milliseconds

0.0

0.2

0.4

0.6

0.8

A
m

p
lit

u
d
e

Parkinson simulation - peakdetect algorithm

original
positive peaks
negative peaks
positive peaks in gait region
negative peaks in gait region

700 800 900 1000 1100

Milliseconds

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
m

p
lit

u
d
e

Parkinson simulation - Trahanias algorithm

original
positive peaks
negative peaks
positive peaks in gait region
negative peaks in gait region

Figure 6.5: Behavior of algorithm on typical gait simulation data of person with Parkinson’s dis-
ease. Triangular and round green dots are the result of detection of algorithm points. The trian-
gular and round points in red are the points that result from selection in gait regions, obtained by
selection after cross-correlation with healthy gait pattern. With both algorithms implemented.

Figure 6.6: Behavior of algorithm on typical gait simulation data of a stroke survivor, in the
impaired foot. Triangular and round green dots are the result of detection of algorithm points. The
triangular and round points in red are the points that result from selection in gait regions, obtained
by selection after cross-correlation with healthy gait pattern. The triangular and round orange dots
are the result after cross-correlation with one of the two healthy gait models (see Figure 4.24).
With both algorithms implemented.

Analyzing the case of simulation of gait typical of a Parkinson disease patient, it is verified

that the Trahanias algorithm detected better the negative points (PS) than the peakdetect. However,

in none of them was detected peaks as part of the normal walking pattern. This is because, in the

cross-correlation method, two healthy gait models were used. As the walking pattern of a person

with Parkinson’s disease is shorter, with less amplitude and higher frequency, the correlation with

a normal gait pattern is lower. In this way, although the peaks were detected, it was not considered

gait.
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One solution to this case would be to use a more typical gait pattern of a person with Parkin-

son’s disease to detect when he is walking. Using the Trahanias algorithm as the method for the

events detection. However, it will be necessary to acquire gait data from people with Parkinson’s

disease, in order to validate these assumptions.

Analyzing the behavior of the algorithm on the affected foot signal after stroke, it is verified

that there were more peaks detected in red, that is, they were considered as gait region. However,

there were some failures in the detection of all points, and especially in the detection of IC events.

In this result, it seems that both algorithms could detect the PS events, although in some cases it

was considered outside the gait region. But IC events have a larger error. However, it seems that

the peakdetect algorithm had a better behavior to detect than the Trachanias algorithm. To better

analyze these results it would be important to use actual stroke survivors data.

6.4 Summary

Throughout this chapter the implementation of the temporal parameters with information of the

IC and PS events was approached. Although the results were not compared with ground truth

information, the relationship between the phases follows the one found in the literature. Then,

the real-time implementation approaches were explained. The results obtained were not compared

with ground truth, but at least the function of counting steps was correct, as counted and tested in

real time.

Finally, the possibility that the algorithm works in pathological marches such as Parkinson and

Stroke was discussed. It turns out that, as it was not working well, some suggestions for change

are proposed, in particular the gait model used in cross-correlation step, and the detection of peaks.
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Chapter 7

Conclusion

7.1 Conclusion

The gait rehabilitation is still a task that highly depends on the continuous evaluation by physio-

therapeutic specialists. It is based on subjective criteria and there are few metrics for assessing

patients’ progress. Although, there are already some video-based solutions and force platforms

that offer precise parameters, they are expensive and complex to transport to the patients’ home.

An alternative and promising solution is the use of inertial sensors to collect gait parameters.

Thus, in this dissertation the implementation of gait analysis with inertial sensors was proposed.

A starting point for the gait analysis is to obtain the IC and PS events, which mark the moment

when the foot is placed on the ground and when it leaves the ground, respectively. From these

two events, a series of temporal parameters can be calculated, such as stance, swing and gait cycle

times.

We have reached the conclusion that it was possible to obtain the IC and PS events from the

orientation of the foot while walking. The values obtained were for the PS event detection a

precision of about 99% and a recall of 100%, with a MSE error about 0.0397 seconds (compared

with a gold standard system), with both algorithms used. For the IC event detection a precision

of 100 % (with Trahanias algorithm), and a recall of 73.75 % (with both algorithms), with a MSE

error about 0.0565 seconds (compared with a gold standard system).

It was also possible to determine temporal gait parameters that can be used to understand

the gait of patients, such as stance, swing, gait cycle and step times. Although the values of the

temporal parameters have not been extensibly tested, through the analysis of the results it was

possible to observe similarity with the literature in terms of the percentage of time used in each

gait phase in the gait cycle.

One problem that was not yet addressed concerns the choice of the parameter values used

in the algorithms. They were tuned for the data set but if other data set is used the parameters

have, probably to be tuned again. Since in this study only five healthy people were considered,

these parameters are most likely to need to be adjusted. This is because the sample used is not

representative of the population, nor is it representative of the patients that need gait rehabilitation.
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Regarding the implementation in real time, although it was not tested in terms of temporal

parameters, it was verified in a real-time step count that it corresponded to the steps made. That

is, it counted the steps correctly as subject walked.

7.2 Future Work

As future work, it would be interesting to repeat the validation with a gold standard, with the tablet

closer to the sensors. This would remove the packet loss influence from the results.

It is also suggested to do data set with more people from a healthy and pathological gait. This

would be crucial to increase the variability of the sample, in order to increase its representativeness

in the population. It would also be interesting to test and adapt the algorithm to people with

pathology, who will be the focus of gait rehabilitation.

It is suggested the search for the parameter values limits so as to separate between the healthy

and the unhealthy. This step can help to complete the feedback given to the patient, helping to

understand if the patient is walking in a way that is close to normal or not. Thus, it would be

important to yield real-time feedback to the patient.

After validating the algorithm with gait impaired patients such as with Parkinson’s Diseases

and Stroke survivors, it would be interesting to study their evolution over time, noting if the system

helps them to improve gait.

It is also suggested that other types of gait parameters, such as spatial and kinematic, be im-

plemented. These parameters can help find other walking problems such as balance, knee flexions

hip rotations and position of the ankle when placed on the ground. These are usually compen-

satory attitudes of the patient with difficulty in walking. In this way, more gait parameters would

be important to offer a better analysis and greater amount of feedback to the patient.



Appendix A

Supplementary Results

Figure A.1: Precision results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect algorithms, compared with video annotations. The gray bar
represents the standard deviation.
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Figure A.2: Recall results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect algorithms, compared with video annotations. The gray bar
represents the standard deviation.
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Figure A.3: Precision results of the application of DWT with different wavelets families on the
detection of IC events by Trahanias algorithms, compared with video annotations. The gray bar
represents the standard deviation.
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Figure A.4: Recall results of the application of DWT with different wavelets families on the
detection of IC events by Trahanias algorithms, compared with video annotations. The gray bar
represents the standard deviation.
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Figure A.5: Precision results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect algorithms, compared with manual annotations. The gray bar
represents the standard deviation.
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Figure A.6: Recall results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect algorithms, compared with manual annotations. The gray bar
represents the standard deviation.
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Figure A.7: Precision results of the application of DWT with different wavelets families on the
detection of IC events by Trahanias algorithms, compared with manual annotations. The gray bar
represents the standard deviation.
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Figure A.8: Recall results of the application of DWT with different wavelets families on the
detection of IC events by Trahanias algorithms, compared with manual annotations. The gray bar
represents the standard deviation.
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Figure A.9: Precision results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect algorithms, compared with gold standard annotations.
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Figure A.10: Recall results of the application of DWT with different wavelets families on the
detection of IC events by peakdetect algorithms, compared with gold standard annotations.
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Figure A.11: Precision results of the application of DWT with different wavelets families on the
detection of IC events by Trahanias algorithms, compared with gold standard annotations.
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Figure A.12: Recall results of the application of DWT with different wavelets families on the
detection of IC events by Trahanias algorithms, compared with gold standard annotations.
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