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by
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Early and reliable prediction of user’s intention to change locomotion mode or speed

is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation

of explicit environmental feedback can facilitate context aware intelligent prosthe-

sis which allows seamless operation in a variety of gait demands. This dissertation

introduces environmental awareness through computer vision and enables early and

accurate prediction of intention to start, stop or change speeds while walking. Elec-

tromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit

(IMU), and Ground Reaction Force (GRF) sensors were used to predict intention

to start, stop or increase walking speed. Furthermore, it was investigated whether

external emotional music stimuli could enhance the predictive capability of intention

prediction methodologies. Application of advanced machine learning and signal pro-

cessing techniques on pre-movement EEG resulted in an intention prediction system

with low latency, high sensitivity and low false positive detection. Affective analysis

of EEG suggested that happy music stimuli significantly (p<0.05) enhanced move-

ment related neural phenomena and thus could enhance the state-of-the-art brain

computer interface technologies. To enable vision assisted environmental aware-

ness, approximately an hour-long video of five types of terrains, e.g., asphalt, brick,

concrete, grass, gravel was recorded using a wearable camera system placed on a

vi



subject’s ankle. A deep convolutional neural network was trained on the collected

image database using a transfer learning approach and it showed significant accu-

racy and early prediction time in predicting terrain type and an oncoming transition

of terrain before the first heel strike on the new terrain. The outcomes of the disser-

tation suggest that the proposed methodologies can provide highly accurate neural

decoding of movement intention and facilitate environmental context awareness by

recognizing terrain type and incoming transition. Therefore, the combination of

neural decoding and computer vision can enable seamless operation of lower limb

prosthetic systems in the event of changing terrain and speed demands.
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CHAPTER 1

INTRODUCTION

1.1 Background

Locomotion impairments resulting from cerebrovascular accidents, stroke and brain

trauma create a severe handicap for many people, especially the elderlies [1, 2]. Be-

sides, lower limb amputation due to trauma or diabetes results in reduced mobility,

thus severely affecting people’s quality of life. According to the Centers for Disease

Control and Prevention (CDC) 19.4 million American adults are unable or find it

difficult to walk a quarter of a mile [3]. Moreover, there are 2.1 million people living

with limb loss in the USA [4] with an additional 185,000 new cases every year, and

that number is expected to double by 2050 [5]. This highly increasing number of

people with motor disabilities has made it a critical research question to determine

and use proper methods that prove to provide the best rehabilitative outcomes for

the impaired people.

Neurorehabilitation, a complex therapeutic approach, is used traditionally to

facilitate recovery of neuroplasticity to the motor impaired [6, 7]. However, such

therapies only provide passive support to the motor impaired [8, 9, 10]. This issue

coupled with the enhancement of computational power and improvement in design

have resulted in the emergence of various assistive devices as an alternative pathway

to assist people with motor disabilities. Various assistive orthosis and prosthesis de-

vices have been developed in recent years to help people with diminished motor

abilities [11, 12, 13, 14, 15, 16]. For an effective prosthetic system, the human

and the device must work together in an intuitive and synergistic way: the device

must recognize the user’s motion intentions and act to assist with that movement

with minimal cognitive disruption and required compensatory motion. Failure to
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incorporate and adapt to the user’s intent leads to an incomprehensive assistive

experience for the user which might include execution delay, staggered or labored

movement, inefficient expenditure of metabolic energy, and even safety hazards due

to frequent falls. Thus, a well-designed and interactive Prosthetic controller must

begin with understanding and predicting the human locomotion intent. Meanwhile,

environmental properties have a great influence on the stability, balance, and energy

consumption of the device and of the user [17] and thus should be considered in the

overall control scheme. Moreover, knowledge regarding the environment through

which the user would move is useful for strategic control planning because it con-

strains the likelihood of encountering a terrain feature and the degree to which the

environment is structured. Such knowledge is also useful in a shared-control context,

where the device is responsible for execution of the user’s high-level commands.

1.2 Motivation

Despite efforts to enhance the performance of robotic assistive devices, the cur-

rent state of the art methodologies fails to provide context-aware situation specific

prosthetic solutions to users with limited mobility. A major challenge in the de-

sign process of a powered prosthesis for the lower limb is the development of a

robust and versatile adaptive control approach. Most of the traditional mechan-

ical control mechanisms provide passive control of assistive devices and lack the

incorporation of user’s intention and motivation which is essential for proper recov-

ery of neuroplasticity. In a recent review on the control strategies of lower limb

prosthesis systems implemented in 2020 [18], most studies used mechanical sensors,

i.e. load cell, motor current measurement [19, 20, 21, 22, 23, 24, 25, 26, 27], IMU

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28], pressure-sensitive in-soles [28] to measure knee
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ankle angle, angular velocity and other kinematic information to recognize activity

modes. Although, these methods resulted in good outcomes using different machine

learning algorithms, the major setback is that these methods detect the activity

modes or intentions rather than predicting them. The detection latencies appear

since the kinematic changes which are indicative of change in gait mode appear

immediately at the onset or after the change of locomotion mode when the body

is about to move or already on the move. Therefore, there is hardly any time for

the prosthetic system to recognize such changes and adapt the control parameters

accordingly. As a result, these systems very often lead to delayed response. Such

detection latencies can pose serious safety hazards for the users in transitioning be-

tween gait modes with substantially different characteristics. This creates a serious

drawback in providing seamless transitions in the event of changing gait demands.

Presumably, therefore many commercial devices favor the manual mode switching

[29, 30]. This switching mechanism results in safe and accurate outcomes to the

user. However, a human being with unharmed motor ability can change locomotion

modes volitionally with minimal cognitive effort and never requires an interruption

or additional effort to switch on or off their motor function. As a result, the switch-

ing mechanism, although accurate, is prone to delays and does not provide a natural

and volitional movement experience which is a critical setback. Some studies also

utilized surface EMG sensors placed on the residual limb to recognize intentions to

perform different lower limb tasks in different terrains [22, 24, 25, 31, 32]. However,

myoelectric interfaces create the extra step of muscle activation to control prosthetic

functions which can be a tedious task for people with amputation [33]. Furthermore,

the EMG or mechanical sensor-based control is only reactive to the kinematic move-

ment on residual or healthy limbs which still creates the problem of detection latency

and safety hazards. Additionally, there is an electromechanical delay between the
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motor commands and the generation of force in the muscle, which may result in

instability when a device with a fast control loop is coupled to the user to provide

high levels of assistance [34]. On the other hand, the intents to change locomotion

modes originate at the brain and scalp EEG is a very convenient and noninvasive

way to decode neural correlates related to change in locomotion modes for enabling

prediction of the intent before the event. However, the predictions are not quite re-

liable due to the noisy and nonstationary nature of Electroencephalography (EEG).

Therefore, a reliable, early and accurate prediction of human locomotion intention

is still a daunting challenge.

Additionally, current state-of-the-art prosthetic systems lack the integration of

effective environmental feedback for providing context aware assistance to the user.

Traditional approaches include the utilization of mechanical measurements [19, 32]

(e.g., forces and motions), Electromyography (EMG) signals [24], or inertial mea-

surement units (IMUs) [35] for detection of locomotion mode transition. But these

methods are affected by delay, user-dependence, and sensor location sensitiveness.

Recent approaches to detect terrain information and provide an environmental con-

text used computer vision and edge detection by depth sensing. However, the doc-

umented devices are still confined to well-defined and controlled environments as

imposed by hardware and experimental constraints, for example stairs and ramps

[32, 36, 37] and does not properly address real life environmental scenario like dif-

ferent types of surfaces and various decision demanding scenarios that humans face

regularly. Additionally, such systems often utilized several cameras placed at dif-

ferent locations of the body for capturing reliable images of the terrains for classi-

fication. The usage of multiple cameras leads to decreased portability and increase

system complexity, reducing the real-time applicability of such systems. Studying

variations in the real-life environment and adding environmental context to the pros-
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thetic device using a portable, low energy, properly sized computer vision system in

a real-time manner remains a topic of research.

The dissertation will focus on implementing volitional control of a lower limb

prosthetic device equipped with computer vision and multi-sensor technology for

intention recognition and terrain adaptation through environmental feedback. To

achieve the goal of the dissertation, the following specific questions will be investi-

gated.

• Is it possible to enable volitional control of the prosthetic system through early

and accurate prediction of the user’s intention to change locomotion mode or speed

before the occurrence of the change?

• Can a computer vision system predict incoming terrain transition to facilitate

in-time parametric adaptation of the prosthetic system?

For that purpose, the rest of the dissertation has been structured as follows.

Chapter 2 discusses the feasibility of gait intention prediction from pre-movement

EEG only. Chapter 3 explores score threshold regulation and majority voting for

introducing asynchronous movement intention detection. Next, chapter 4 discusses

asynchronous movement intention prediction in offline and pseudo-online scenarios.

In chapter 5, a combination of variational mode decomposition and wavelet syn-

chrosqueezed transfrom was used for detecting movement intention from movement-

related EEG. Chapter 6 includes discussion on real-time acceleration intention pre-

diction from pre-event EEG, IMU and GRF data. The following chapter focuses on

the effect of emotional music stimuli on movement related neural phenomena and

investigates how they affect intention prediction performance. Chapter 8 includes

discussion about a computer vision technology designed to predict terrain types

and oncoming terrain transition to facilitate smooth transition between different

terrains.
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CHAPTER 2

FEASIBILITY OF PREDICTING GAIT INTENTION

2.1 Background

Locomotion impairments resulting from cerebrovascular accidents or stroke and

brain trauma create a severe handicap for many people, especially the elderlies

[1]. Besides, lower limb amputation due to trauma or diabetes results in reduced

mobility, thus severely affecting people’s quality of life. Various assistive orthosis

and prosthesis devices have been developed in recent years to help people with di-

minished motor abilities [11, 12, 13, 14, 15, 16]. Although several Electromyography

(EMG)-based studies have been carried out [38, 39], Brain-Computer Interface (BCI)

or Brain-Machine Interfaces (BMI) have been more extensively investigated in the

recent years in the scope of gait rehabilitation due to their great prospect in un-

derstanding and analyzing gait-related brain rhythms and Event-Related Poten-

tials (ERP)s. As EEG signals can act as a real-time projection of brain’s motor

activity during gait, EEG- based gait studies hold significant potential in achieving

early prediction of future movement plans which researchers can readily utilize for

more effective rehabilitation of motor-impaired persons providing them with neces-

sary motor capabilities.

2.1.1 Neural Phenomenon Related to Movement Intention

Prediction of human movement intention is highly significant for successful gait re-

habilitation. In a BCI-based rehabilitation system, the brain waves are extracted,

processed, and translated to control an assistive device. For an effective assistive

system, it is critical to detect the movement intention as early as possible to provide
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the system with enough time to adapt to the requirement of the individual. There

have been two majorly reported neural features related to movement intention de-

tection. Those are Movement-Related Cortical Potential (MRCP) [40, 41, 42] and

Event-Related Synchronization/ Desynchronization (ERS/ERD) [43, 44]. MRCP

corresponding to self-paced movement is known as Bereitschafts Potential (BP),

and it is characterized by a slow decrease in EEG amplitude over the primary mo-

tor cortex within at least 0.5 seconds preceding the movement initiation. On the

other hand, ERD is defined as a decrease in spectral power 0.5- 2 seconds before

movement onset reported most in the mu (8-12 Hz) and beta (13-30 Hz) frequency

bands of the brain wave [45, 46, 47]. The limits of the frequency bands may differ

across different authors. These features have been used as physiological triggers to

activate and operate various assistive devices [19, 20, 48].

2.1.2 Related Work

Although Event Related Desynchronization (ERD) [49, 50] and MRCP [51, 52, 53]

based studies have been carried out quite extensively in understanding unique as-

pects of motor cortex activation, both of these modalities have some drawbacks.

MRCP provides timing information about different stages of movement planning

and execution. But it is a very subtle change in near DC frequencies and it takes

multiple repetitions of the same trial to extract useful and reliable gait-related infor-

mation from MRCP [54]. On the other hand, ERD has been shown to be detectable

from single trial EEG, but the main disadvantage of using ERD as a control signal for

assistive devices is that it does not provide precise timing information about differ-

ent stages of movement planning, preparation, and execution. Moreover, ERD/ERS

requires a reliable steady state baseline to correctly detect power changes correlated
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to movement intention. Few studies, therefore, have focused on combining these

two frequently used modalities to enhance the performance of movement intention

detection systems to create a useful Brain-Computer Interface for proper neurore-

habilitation [55, 56]. However, all these studies either use EEG signal from both

before and after the movement initiation and termination or use a large portion

of pre-movement EEG data for proper baseline information. Such systems are,

therefore, impractical in online real-time BCI application and may become prone to

erroneous or delayed detection of intention in the presence of sudden intention to

move. To address the shortcoming of the traditional features, in this paper Hjorth

parameters, namely activity, mobility and complexity are proposed as features to ob-

tain instantaneous time-frequency information related to gait intention in a window

by window approach without the necessity of baseline selection.

Besides, very few studies have explored pre-movement state for healthy subjects

in the context of upper or lower limb function [55, 10, 57, 58, 59, 60, 61]. Although

the pre movement neurological changes in the EEG signal has been identified and

studied, whether it is possible to detect those phenomena to predict human volun-

tary gait intention in a real-time BCI scenario is yet to be extensively investigated.

Also, understanding the exclusive pre-movement EEG signal parameters for healthy

subjects as well as amputees is yet to be explored. Moreover, detecting gait inten-

tion before the movement onset or termination would be a very critical feature for

online BCI systems for rehabilitation. Currently, early and accurate detection of

self- paced movement intention for real-time BCI application remains a daunting

challenge. Early and accurate detection of gait intention would give the BCI system

necessary time to validate the authenticity of the predicted intention and adapt the

parameters of corresponding assistive devices thus ensuring safe and natural gait

rehabilitation. That is why a fully predictive BCI would always be preferred over
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a BCI which would only detect gait intention after the gait had already happened.

As such this study would explore the feasibility of predicting gait intention from

pre movement EEG data only. The data analysis and classification were done in

an offline scenario to investigate whether it is possible to separate EEG data corre-

sponding to gait ‘start’ or ‘stop’ intention from EEG data related to steady state

‘walking’ or ‘resting’ respectively. Moreover, a trans-movement EEG data structure

was also evaluated for the same classification task to analyze whether use of only

pre movement EEG data caused any statistical decline in system performance. This

study would work as a good starting point for future online implementation of BCI

for gait rehabilitation.

2.2 Current Work

In this chapter, a Wavelet Transform based intention detection methodology was

proposed to address the challenges discussed in the above paragraphs by utilizing

Hjorth parameters as features. Several time windows before movement initiation

and termination were used for classification, which is more similar to real life situa-

tions where the intention to move or stop can be abrupt. Moreover, a brief duration

of data after the movement initiation or termination were also included with the pre-

movement data windows in a separate classification scheme to examine the change

in detection performance and to validate the feasibility of the proposed fully pre-

dictive system. Wavelet Transform is chosen due to its ability to provide better

time-frequency resolution than conventional signal processing tools like Fast Fourier

Transform (FFT). The Hjorth parameter is a convenient tool to extract useful in-

formation in the time-frequency domain and also has the advantage of minimal com-

putational complexity compared to other time-frequency analysis tools, e.g., Short
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Time Fourier Transform (STFT) [62]. These parameters have been used in sev-

eral EEG– based studies across various applications, such as upper body movement

intention detection [62] Alzheimer’s study [63], seizure lateralization [64], emotion

recognition [65], mental task classification [66]. However, the Hjorth parameters

have not been utilized in the scope of self-paced movement intention detection to

the knowledge of the authors. From that background, the performance of Hjorth

parameters was investigated in detecting self-paced lower limb movement intention.

The hypothesis of this study is: It is possible to predict intention of voluntary gait

initiation and termination by using pre-movement EEG signals only.

2.3 Methods

2.3.1 Experimental Procedure

Seven healthy individuals and two amputees (Seven male and two female, mean

age = 32.6 years and SD = 10.41 years) participated in the experiment. None of

the participants had any known history of neurological disorder. The experimental

protocol was approved by the Institutional Review Board (IRB) of Florida Inter-

national University, and Hunter Holmes McGuire VA Medical Center. Also, signed

consent papers were obtained from subjects. The demographic and physiological

information of the subjects is summarized in Table 2.1.

The experiments on healthy subjects were carried out in the Human Cyber-

Physical Systems (HCPS) Laboratory at Florida International University. While,

the amputee subjects carried out the experiment in Hunter Holmes McGuire VA

Medical Center, Richmond, Virginia. The experimental procedure was designed to

detect the intention of movement starting and stopping. For this purpose, all the
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Table 2.1: Demographic characteristics of the subjects.

Subjects Gender Age Weight (kg) Height (cm) Amputated limb
S1 Male 26 96 171 N/A
S2 Female 23 62 158 N/A
S3 Male 29 71 170 N/A
S4 Male 33 62 152 N/A
S5 Male 30 98 185 N/A
S6 Male 26 61 170 N/A
S7 Female 26 61 165 N/A
A1 Male 47 92 170 Right foot; Trans-Tibial
A2 Male 53 115 167 Right foot; Trans-Tibial

participants were asked to execute several starts and stops of gait while walking on

level grounds in a self-paced manner. There were no audio or visual cues offered

to the participants because the presence of audio or visual cues might corrupt the

gait-related EEG signals.

The subjects were allowed to start and stop walking according to their will.

However, it was made sure that the duration of walking and resting periods were at

least 5 seconds. This duration was set to ensure the extraction of uncorrupted and

distinctive features. To ensure the minimum duration of walking and resting, the

subjects were instructed and trained about the duration in a separate short session

before the beginning of the actual experiment. In this session, the subjects were

asked to complete 5 cycles of gait and then stop walking. While in the rest state,

they were instructed to count from 1 to 10 before starting to walk again. In the

introductory session, when the subjects could walk and rest for the minimal amount

of time according to the instruction they were given, they were then allowed to start

the experimental session.

In the experimental session, each of the subjects carried out approximately 140

repetitions of gait cycles in as many runs as they needed. The number of necessary
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Figure 2.1: The experimental protocol of the study. Data were collected in multiple
sessions with rest period between two consecutive sessions. In each session, multiple
trials were performed by the subjects. Each trial consisted of resting period, self-
paced initiation of walking, stop walking and resting again
.

runs varied across the participants. In each run, the following tasks were repeated

periodically: Rest, Start walking, Stop, and Rest again. The subjects were allowed

to take a rest after every run for as long as they needed. The whole experimental

procedure consisted of 6-7 sessions varying across the subjects. Each session lasted

about 7-8 minutes, with 3-5 minutes break between two consecutive sessions. The

total experimental procedure took about one and a half hours, including the ex-

perimental setup. In total, the participants executed approximately 140 repetitions

of self-paced gait trials without the help of any external stimuli. Moreover, as the

amputated subjects would find it challenging to complete too many starting and

stopping cycles due to probable fatigue, discomfort and more extended inter-session

rest periods, they were asked to continue the experiment for as long as they feel

comfortable to carry on. That is why the number of gait initiation and terminations

trials for the amputated subjects were less than that for the healthy subjects. The

experimental protocol has been briefly presented in figure 2.1.

2.3.2 Data Acquisition

EEG signal was recorded from the central motor cortex to capture information

about gait preparation and execution for reliable gait intention detection. An active
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electrode system (actiCAP developed by Brainproducts GmbH) was used to collect

eight-channel EEG data from all the subjects. A custom made data acquisition

board utilizing ADS1299 (Texas Instruments) amplifier was used to amplify the

EEG data. The electrodes were placed at Cz, C3, C4, CP3, CP4, FCz, CPz, and Pz,

according to the International 10-20 system. The reference and ground electrodes

were placed at FPz and AFz, respectively. Figure 2.2 shows the placement of the

electrodes. Before data acquisition, a proper amount of conductive gel was applied

to ensure that the impedances of all the electrodes were below a manufacturer-

recommended value. The sampling frequency of the EEG data acquisition system

was set at 500 Hz.

2.3.3 Motion Capture System

Both Electromyography (EMG) and Ground Reaction Force (GRF) were recorded

throughout the experiment to monitor the current stage of the gait cycle (Figure

2.1). A two-channel EMG sensor was also used to record muscle activity using an

ADS1292 amplifier at 1000 samples per second. The EMG electrodes was placed at

the mid-belly of right leg Tibialis Anterior (TA) muscle with the reference electrode

placed on the bony surface of the right knee. TA was chosen because it is one of the

muscles which activates the earliest during a gait cycle [67]. The EMG signal was

bandpass pass filtered with cut off frequencies at 20 and 400 Hz using a 4th order

Butterworth filter.

A custom made pair of in-sole pressure sensors which was used in a previous

study reported in [68] were placed inside the shoes of the subjects to capture which

phase of gait they were in at any particular moment. All the boards were also

equipped with built-in nine-axis IMU sensors (MPU-9250, InvenSense) for detecting
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motion artifacts so that adaptive filtering could be used [69]. The sensors included

an accelerometer, a gyroscope, and a magnetometer. The timing information of

starting and stopping of gait was acquired from the in-sole pressure sensors, and

the corresponding EMG of Tibialis Anterior used to verify the time information

acquired from the pressure sensor. The placement of all sensors and electrodes are

shown in figure 2.2.

Figure 2.2: The entire body area sensor network for data collection. The placement
of EEG, EMG and in-sole pressure sensors are shown in the figure.
.

2.3.4 Data Preprocessing

As EEG signal is highly prone to noise and also is non- stationary, proper prepro-

cessing tools are needed to extract valuable event related information. In this work,

a well-known MATLAB-based EEG processing toolbox EEGLAB [70] was utilized
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to preprocess the acquired EEG data. For increasing computational efficiency, the

signal was downsampled to 250 Hz. Then, the data were high pass filtered by a

primary FIR filter with 1 Hz cutoff frequency to get rid of the DC drift in the

data. The signal was cleared off line noise at 60 Hz by using a notch filter. The

cleansing process of the EEG signal was carried out in two steps using the EEGLAB

toolbox: Artifact Subspace Reconstruction (ASR) [71] and Independent Component

Analysis (ICA). The ASR algorithm is a non-stationary method which uses sliding

window PCA to remove unusual large-amplitude noise or artifacts. The usage of

ASR increases data stationarity and makes the data suitable for ICA operation.

In this paper, ASR was used for two purposes: bad channel rejection and removal

of short-time high-amplitude artifacts in continuous data. A channel was rejected

if (1) it had a flat signal for more than 5 seconds or (2) was poorly correlated

with adjacent channels. The threshold of the cross-correlation was set at 0.7 for all

the subjects. To estimate the signal of one channel from contaminating signals of

adjacent channels, the Standard Deviation (SD) value for repair bursts using ASR

was set to 10. The value was chosen in such as a way that it was ‘small enough

to remove activities from artifacts and eye-related components and large enough to

retain signals from brain-related components’ according to the study in [72].

After the ASR operation, the processed EEG signal was re-referenced to a com-

mon average as a part of the preprocessing process. The re-referenced EEG signal

was then ready for ICA operation. A study in [73] reviews some of the most used

Independent Component Analysis method for artifact removal from EEG signals.

In the proposed methodology, a variant of ICA called the Adaptive Mixture ICA

knows as Adaptive Mixture Independent Component Analysis (AMICA) was used

for processing. AMICA is a binary program for performing ICA decomposition on

the input signal with multiple ICA models [74]. AMICA achieves better ICA de-
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Figure 2.3: (a) Shows the performance of ASR in removing eye movement arti-
facts and unnatural high amplitude noise. Moreover, channel Pz was marked as
a flat channel and was rejected by the algorithm. (b) and (c) shows the power
spectrum and scalp distribution of a rejected Independent Component. The IC was
rejected due to its low contribution to the scalp data variance and unusual peaks
at higher frequencies like 60 and 70 Hz. (d) shows the EEG signal obtained after
ASR operation and artifactual IC rejection.
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composition than other ICA approaches as reported in [75]. Moreover, multi-model

AMICA can be used as a data-driven approach to address the non-stationarity and

dynamic changes of continuous EEG data [76]. The resulting independent compo-

nents thus obtained were then inspected, and artefactual IC’s were rejected by visual

inspection. The artifacts might include muscle or heart components, channel noise,

line noise, or others. After the rejection of artifacts, the cleaned data were used

for further processing and classification scheme. Figure 2.3 shows different stages of

cleaning of the artifact-laden EEG data.

2.3.5 Discrete Wavelet Transform

The EEG signal cleaned by ASR and ICA was then analyzed by discrete wavelet

transform to look into the signal properties in the time-frequency domain. A 5-level

decomposition of the EEG data was carried out using the Daubechies 4 or ‘db4’ as

the mother wavelet, and the corresponding frequency ranges are shown in Table 2.2.

The detail coefficients of the third and fourth level of decomposition correspond to

the beta and alpha band of brain waves, respectively. As these two brain waves

are the most informative about human gait stages as reported in multiple studies,

the second and third level detail coefficients were reconstructed to get the beta and

alpha band EEG signals. The resulting alpha and beta band signals were used for

further processing and feature extraction.

2.3.6 Data Segmentation

The overall data segmentation procedure is summarized in Figure 2.4. The red and

black lines line in the figure corresponds of gait starting and stopping respectively.

Equidistant points from two adjacent gait starting and stopping times were recorded
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Table 2.2: Different levels of coefficients and their corresponding brain waves.

Coefficients Frequency Range (approx.) Sub-band
First level detail coefficient (cD1) 62.5-125 Hz -
Second level detail coefficient
(cD2)

31.25-62.5 Hz Gamma

Third level detail coefficient (cD3)15.63-31.25 HZ Beta
Fourth level detail coefficient
(cD4)

7.81-15.63 Hz Alpha

Fourth level approximate
coefficients (cA4)

0-7.81 Hz Delta and theta

Figure 2.4: A 20-second segment of pressure sensor and right TA EMG data from
Subject 1.The red line in the figure corresponds to the time of gait starting, while
the black line corresponds to the time of gait stopping. The resting and walking
times were chosen by taking equidistant points from two adjacent gait starting and
stopping times. After marking all crucial time points, data windows of different
lengths, and relative positions corresponding to those events were taken for further
processing and feature extraction. In the figure, the segmentation procedure of [-
1,0] data interval is shown. The data windows were marked by -1 and 0 where
0 denotes the extracted event times and -1 denotes the time points one second
before the event. The extracted data windows were labeled to the corresponding
events. After that, two two-class classification problems were addressed: ‘Rest vs.
Start’ and ‘Walk vs. Stop.’ This segmentation and windowing approach ensured no
overlapping between data windows corresponding to different classes reducing the
chance of data contamination.
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as walking and resting points. This data segmentation procedure was inspired by

similar approaches reported in [49, 50, 77]. Windows of different time lengths were

chosen to correspond to the starting, stopping, walking and resting times thus ob-

tained. To analyze the feasibility of a fully predictive intention recognition system,

two kinds of data windows were extracted for classifier training and cross-validation.

For fully predictive system, three types of windows were evaluated: [-1, 0], [-1.5, 0]

and [-2, 0] second windows where no data after the movement initiation were used.

Also, [-1, 1] and [-1.5, 0.5] second windows were extracted and validated where a

brief portion of data after the occurrence of movement starting or stopping was used

for feature extraction and classification. The numbers represent the starting time

and ending time of the window corresponding to the event onset time, i.e. [-1,1] sec-

ond window represents a two-second window starting one second before and ending

one second after the ‘starting’ and ‘stopping’ of gait events. For the sake of bal-

anced and unbiased classification, the length of ‘resting’ and ‘walking’ data samples

were set as equal to that of the ‘starting’ and ‘stopping’ classes. It was made sure

that there was no overlap between consecutive data samples belonging to different

classes After that, two two-class classification problems were addressed: ‘Rest vs.

Start’ and ‘Walk vs. Stop.’ This segmentation and windowing approach ensured no

overlapping between data windows corresponding to different classes reducing the

chance of data contamination.

2.3.7 Feature Extraction

For extracting distinguishing features from the non-stationary EEG data; the seg-

mented data windows obtained in the previous subsection were further divided into

0.5-second long data windows with 50 milliseconds overlap. Thus, each one-second
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epoch was divided into 11 windows, 1.5 second windows were divided into 21 sub

windows and 2 second windows yielded 31 sub windows. All three Hjorth parameters

were computed for both alpha and beta band signals for the resulting sub windows.

Thus, for every one-second data window, a total of 11 windows × 2 sub-bands ×

3 parameters = 66 features were calculated per channel. Similarly, a total of 126

and 186 features were generated for 1.5 second and 2 second data windows. All

the features corresponding to all the channels were then concatenated to form the

final feature vector. Equations (2.1)-(2.6) summarizes the feature extraction, and

the subsequent paragraph discusses feature vector formation. Equations (2.1) and

(2.2) shows the activity parameters, equations (2.3) and (2.4) defines the mobility

parameters and equations (2.5) and (2.6) describes the complexity parameters.

Ai
j,k,α = σ2

xi
j,k,α

(2.1)

Ai
j,k,β = σ2

xi
j,k,β

(2.2)

M i
j,k,α =

σ
dxi

j,k,α

dt

σxi
j,k,α

(2.3)

M i
j,k,β =

σ
dxi

j,k,β

dt

σxi
j,k,β

(2.4)

Ci
j,k,α =

σ
d2xi

j,k,α

dt
σ
dxi

j,k,α

dt

M i
j,k,α (2.5)

Ci
j,k,β =

σ
d2xi

j,k,β

dt
σ
dxi

j,k,β

dt

M i
j,k,β (2.6)

Here x denotes the EEG signal. A, M and C denote the activity, mobility and

complexity parameters, and σ denotes standard deviation of x. While i, j and k,

denote the channel number, sample number, and window number respectively. All
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the features corresponding to a single sample from all the channels are concatenated

to form the initial feature vector.

2.3.8 Feature Selection

As the number of features is too high compared to the number of samples, there is a

high chance of having redundant and noisy features in the feature set. That is why

a feature selection method is necessary to get rid of the redundant features. In this

work, the absolute value of the standardized u-statistic of a two-sample unpaired

Wilcoxon test [78], (also known as the Mann-Whitney test) was chosen to be the

criterion to select distinctive and informative features. To further reduce the number

of features, the average of the absolute values of the cross-correlation coefficient

between the candidate feature and all previously selected features were calculated,

and features that were highly correlated with the features already picked were less

likely to be included in the output list. This procedure ensured the formation of a

reduced and more distinctive set of features for successful classification. After feature

selection, the number of selected features was reduced to 20 for all the subjects and

classes.

2.3.9 Offline Classification

The ultimate goal of this study is to come up with a feasible methodology to apply in

real-time BCI systems. For a proper real-time BCI system, the classifiers must have

high sensitivity as well as high specificity to avoid accidents while using a prosthesis

or orthosis system. With that in mind, in this work, we used an Support Vector

Machine (SVM) classifier [79] with RBF kernel to solve two two-class classification

problems. For each subject, one classifier was trained to classify between ‘rest’ and
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‘start’ classes while another classifier was trained to classify between ‘walk’ and

‘stop’ classes. The performance of the classifiers was evaluated by ten-fold cross-

validation. In each step of classification, one fold was used as the test set while all

the other folds were used to train the classifier. Each fold was used only once as the

test set, and finally, the performance metrics were average across all the folds.

2.4 Results

For performance evaluation of the offline classification, the following metrics were

calculated in this study: Accuracy, sensitivity, specificity. Accuracy shows the per-

formance of the classifier in predicting start or stop and walk or rest classes. Sen-

sitivity is the measure of the capability of the classifiers of correctly predicting the

start or stop class, while specificity is the measure of the classifier performance in

successfully predicting the walk or rest classes. The definition of these parameters

are included in the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.7)

Sensitivity =
TP

TP + FN
(2.8)

Specificity =
TN

TN + FP
(2.9)

Here TP, TN, FP, FN denotes true positive, true negative, false positive and false

negative detection where the ‘start’ and ‘stop’ windows belong to ‘positive’ class

and ‘resting’ and ‘walking’ data windows belong to the ‘negative’ class. Another

informative metric is FP/min. FP/ min is the ratio of the number of false detection

of intention to start or stop and the number of rest or walk trials per minute. The

resulting average performance parameters are summarized in this section.
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Figure 2.5: ‘Rest’ vs. ‘Start’ classification performance with standard deviation
using different data windows.

Table 2.3 and Table 2.4 summarizes the accuracy, sensitivity, and specificity for

the ‘Rest’ vs. ‘Start’ and ‘Walk’ vs. ‘Stop’ classification respectively for different

data windows across all the subjects. Table 2.5 and table 2.6 show the average

classification accuracy, sensitivity, and specificity across the subjects along with

the standard deviations. In all of these tables, the first two columns represent the

performance of the trans-event windows, while the latter three show the classification

performance of the pre-event data windows only. The highest performance metrics

obtained in both cases are highlighted in bold fonts. For the sake of understanding

the results better, the results are also presented in Figure 2.5 and Figure 2.6.

From table 2.3, it is evident that the highest accuracy for ‘Rest’ vs. ‘Start’

classification among the healthy subjects was achieved for S3 which was 83.35%

with a sensitivity of 80.14% and a specificity of 86.29% using [-1 1] data window

which consisted of EEG data both before and after event occurrence. However,
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Figure 2.6: ‘Walk’ vs. ‘Stop’ classification performance with standard deviation
using different data windows.

a similar classification accuracy of 82.67% was achieved using a pre-movement [-

1 0] data window with balanced sensitivity and specificity of 83.67% and 81.43%

respectively. Among the amputated subjects, the highest accuracy was reached for

A2, which was 83.21% with a sensitivity of 69.17% and a specificity of 96.67% using

[-1.5 0] data window. The highlighted results in Table 2.3 suggests that for every

subject, there were one or more pre-movement data windows, which were resulting

in almost similar classification results compared to the data window comprising both

pre-movement and post-movement EEG signals. Table 2.5 shows that [-1 1] window

yielded slightly better accuracy than the [-1 0] window with an overall accuracy

of 76.69 ± 4.14%, which was the highest among all the data windows. In terms

of sensitivity, the highest value was obtained from [-1 0] data window, and the

highest specificity was achieved for [-1.5 0.5] window. Figure 2.5 shows the pictorial

representation of the information mentioned above.
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Table 2.3: ‘Rest’ vs. ‘Start’ classification accuracy, sensitivity and specificity for all
the subjects using different data windows.

Subjects Data windows
[-1 1] [-1.5 0.5] [-2 0] [-1.5 0] [-1 0]

Accuracy(%) S1 80.63 75.46 73.07 74.77 80.30
S2 73.76 69.23 70.71 66.18 75.19
S3 83.35 76.45 74.12 76.15 82.67
S4 71.20 71.82 66.66 72.16 69.81
S5 73.52 75.81 74.31 75.41 74.97
S6 75.13 78.25 73.04 75.00 77.63
S7 75.22 73.74 71.65 71.97 73.45
A1 75.88 68.88 73.17 70.98 71.96
A2 81.49 82.80 81.55 83.21 81.73

Sensitivity(%) S1 75.14 63.00 58.71 58.90 73.71
S2 68.30 68.35 49.29 59.56 77.80
S3 80.14 78.90 69.57 80.95 83.67
S4 65.43 58.05 55.00 69.48 66.24
S5 60.05 71.65 81.59 72.20 66.48
S6 70.54 64.46 76.43 53.93 68.21
S7 73.52 66.04 63.85 59.62 72.80
A1 71.61 56.96 73.21 64.11 63.39
A2 77.50 67.50 70.00 69.17 83.33

Specificity(%) S1 86.19 87.48 87.52 90.29 86.95
S2 79.23 70.11 92.14 72.80 72.58
S3 86.29 74.05 78.43 71.29 81.43
S4 76.95 85.57 77.86 74.95 73.57
S5 86.76 79.95 67.14 78.41 83.30
S6 79.46 92.14 68.93 95.89 86.96
S7 76.92 81.26 79.29 84.12 74.07
A1 80.36 80.18 73.21 77.32 79.64
A2 90.00 93.33 91.67 96.67 80.83
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Table 2.4: ‘Walk’ vs. ‘Stop’ classification accuracy, sensitivity and specificity for all
the subjects using different data windows.

Subjects Data windows
[-1 1] [-1.5 0.5] [-2 0] [-1.5 0] [-1 0]

Accuracy(%) S1 74.21 74.15 70.64 73.83 75.24
S2 75.80 70.85 68.46 70.54 75.44
S3 73.43 72.94 69.36 71.18 75.46
S4 69.05 71.26 65.96 71.86 68.41
S5 70.15 70.51 70.30 70.51 70.92
S6 71.88 69.79 72.42 70.42 71.25
S7 72.30 71.94 69.78 70.86 70.54
A1 79.83 83.74 79.79 85.65 79.74
A2 80.89 82.86 80.00 84.52 80.06

Sensitivity(%) S1 60.57 68.52 65.29 67.71 72.05
S2 72.97 65.05 52.42 67.36 74.40
S3 74.81 71.86 66.00 70.33 82.19
S4 72.43 64.57 60.81 65.95 60.71
S5 72.09 54.56 70.82 69.78 64.67
S6 71.79 53.57 67.68 56.25 72.86
S7 61.81 57.36 64.89 51.65 64.01
A1 76.79 72.32 69.82 76.07 69.64
A2 79.17 73.33 77.50 73.33 71.67

Specificity(%) S1 75.67 88.33 80.10 80.05 78.52
S2 84.67 78.68 76.65 73.68 76.37
S3 72.24 72.29 74.24 72.10 68.76
S4 70.86 65.76 77.86 78.05 75.62
S5 70.11 68.02 85.93 70.82 77.25
S7 82.80 86.43 74.89 90.00 77.09
S6 76.96 71.43 85.36 84.46 69.29
A1 88.93 82.32 94.64 94.64 88.75
A2 80.83 82.50 90.83 94.17 88.33
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In case of ‘Walk’ vs. ‘Stop’ classification, the highest accuracy of 75.80% was

obtained for S2 among the healthy subjects using the [-1 1] data window comprising

both trans-event data. The corresponding sensitivity and specificity values were

72.97% and 84.67%, respectively. Almost equal accuracy, sensitivity, and specificity

values of 75.44%, 74.40%, and 76.37% were achieved for the same subject using only

the pre-event [-1 0] data window. Among the amputated subjects, the best results

were obtained for pre-event [-1.5 0] window for subject A1. The classification model

achieved an accuracy of 85.65%, a sensitivity of 76.07% and a specificity of 94.64%.

A slightly decreased classification accuracy was achieved for this subject using trans-

event window [-1.5 0.5]. The resulting accuracy, sensitivity, and specificity values

were 83.74%, 72.32%, and 82.32%. Highlighted results in Table 2.4 suggest that

the best performing trans-event data window had a similar or better performing

pre-event data window for all the subjects. From Table 2.6, it can be seen that the

highest mean accuracy for ‘Walk’ vs. ‘Stop’ classification was achieved using [-1.5 0]

data window, which was 74.38± 6.17%. The highest sensitivity was achieved using

the [-1 1] window, and the highest average specificity was achieved using [-1.5 0]

window.

Table 2.5: Mean classification accuracy, sensitivity and specificity with standard
deviation for ‘Rest’ vs. ‘Start’ classification

Data windows

[-1 1] [-1.5 0.5] [-2 0] [-1.5 0] [-1 0]

Mean accuracy(%) 76.69±4.14 74.72±4.42 73.14±3.92 73.98±4.62 76.41±4.47

Mean sensitivity(%)71.36±6.19 66.10±6.73 66.41±10.54 65.32±8.38 72.85±7.48

Mean specificity(%) 82.46±4.86 82.67±7.77 79.58±9.22 82.41±9.77 79.93±5.50
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Table 2.6: Mean classification accuracy, sensitivity and specificity with standard
deviation for ‘Walk’ vs. ‘Stop’ classification

Data windows

[-1 1] [-1.5 0.5] [-2 0] [-1.5 0] [-1 0]

Mean accuracy(%) 74.17±4.05 74.23±5.31 71.86±4.8874.38±6.17 74.12±4.12

Mean sensitivity(%)71.38±4.14 64.57±7.74 66.14±6.95 66.49±7.84 70.24±6.45

Mean specificity(%) 76.90±7.77 83.56±6.82 77.24±6.4282.00±9.28 77.78±7.01

Table 2.7: Result of t-test with Bonferroni-Holm correction performed on classifica-
tion results.

’Rest’ vs. ’Start’ Data Window [-2 0] [-1.5 0] [-1 0]

[-1 1] H1 H1 H0

p=0.0011 p=0.0080 p=0.3990

[-1.5 0.5] H0 H0 H0

p=0.0744 p=0.2474 p=0.9398

’Walk’ vs. ’Stop’ [-1 1] H1 H0 H0

p=0.0067 p=0.5901 p=0.4762

[-1.5 0.5] H1 H0 H0

p=0.0058 p=0.5658 p=0.4514

A two-sample t-test with Bonferroni-Holm correction [80] was also performed

between the classification results obtained from the trans-event data windows and

those obtained from only the pre-event data windows. The hypotheses of the test

were:

H0: Mean classification performance of trans-event data windows is equal to that

of pre-event data windows.
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H1: Mean classification performance of trans-event data windows is greater than

that of pre-event data windows.

For ‘Rest’ vs. ‘Start’ classification, the t-test result yielded that the mean ac-

curacy obtained by only the [-1 1] data window was significantly better than those

of [-2 0] and [-1.5 0] data windows at p<0.05 significance level. All the other pairs

could not reject the null hypothesis. This result indicates to the idea that the

pre-movement window of [-1 0] seconds can lead to statistically similar gait start in-

tention detection accuracy compared to the trans-event data windows namely [-1 1]

and [-1.5 0.5] data windows. On the other hand, for ‘Walk’ vs. ‘Stop’ classification,

the t-test result showed that the mean detection accuracy obtained by using the

[-1 1] and [-1.5 0.5] windows are only significantly better than that of the pre-event

[-2 0] data window. The other pre-event data windows have statistically similar

detection accuracy compared to the trans-event data windows. The t-test results

are summarized in Table 2.7. The results of the statistical analysis show that it is

possible to obtain similar gait start or stop intention detection by using either the

combination of data windows before and after the event or only the data windows

before the events at p<0.05 significance level and hence support the hypothesis of

the study.

Overall average true positive rate achieved in the study was 72.06 ± 8.27%.

For all the participants, the total number of rest or walk trials was 1564, and the

total recording time was 227.4 minutes. This calculation amounts to 6.88 rest or

walk trials per minute. The resulting False Positive Rate (FPR) was approximately

1.45/min on an average.
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2.5 Discussion

This study aims to analyze the performance of the pre-movement EEG signals in

predicting human intention for gait initiation or termination. Also, this study hy-

pothesized that it is possible to obtain similar intention detection performance,

whether post-event EEG data were used for classification or not. The ability to

predict gait intention is a very significant feature to have to design and implement

a prosthetic or rehabilitation system with potential real-life application. Because

the earlier the intention state of any human subject can be recognized, the earlier

the prosthetic system parameters can be adapted and prepared according to the

subject‘s needs.

In this chapter, ICA was used along with other algorithms to clean the EEG

data. However, the computational complexity involved in EEG source analysis by

combining ICA and blind source localization is quite significant. That is why most

of the ICA based EEG analysis tools offers offline processing. However, recently

there has been an introduction and demonstration of Real-time EEG source map-

ping toolboxes, e.g. REST [81], Online Recursive ICA (ORICA) [82] which use

recursive independent component analysis [83] to estimate a solution to the source

separation problem in near real-time, allowing low latency access to source informa-

tion. Thus, the recent technologies have shown promise to make possible innovations

in experimental designs for a lot of BCI systems. In addition to that, traditional

spatial filtering techniques including Laplacian filtering and common average refer-

encing are also available as alternative [49, 50, 77]. These filters aim to minimize

the contribution of the rest of the EEG electrodes to each channel thus better isolat-

ing the information from each of the electrodes. Such spatial filtering technologies

can be useful alternatives until an enhanced and robust online ICA algorithm is
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developed for real-time application. Moreover, the window equidistant between the

‘start’ and ‘stop’ windows were taken as ‘walking’ and ‘resting’ windows in this

study. The lengths of ‘walk’ and ‘rest’ periods were bigger than those of ‘start’ and

‘stop’ periods by a great margin. Usage of the whole chunk of data corresponding

to ‘walk’ and ‘rest’ period for classification would have led to imbalanced classes

making the classification result highly biased. To ensure the formation of balanced

classes, ‘walk’, ‘rest’, ‘starting’ and ‘stopping’ data windows were selected so that

they were of the same length. Additionally, we wanted to measure the separability

of intention of ‘starting’ and ‘stopping’ data from steady state ‘walking’ and ‘rest-

ing’ data in this study. Due to subjective variability and data non-stationarity, the

initial changes corresponding to gait starting and stopping might cause interference

to the walking and stopping data if those windows were chosen immediately before

the gait windows. Such condition would have significantly affected the outcome of

the study. Therefore, we ensured that the ‘walking’ and ‘resting’ data were not

corrupted by neural waves caused by intention of gait by choosing data windows

far from the ‘start’ and ‘stop’ data windows. In an online scenario the data would

be accessed asynchronously and each data window would be assessed independently

which would be included in the future work related to the study.

The two-sample t-test with Bonferroni-Holm correction suggests that for both

‘Rest’ vs. ‘Start’ and ‘walk’ vs. ‘Stop’ classification, it was possible to yield similar

classification performances using either trans-event or only pre-event EEG signals.

This, in turns, shows that the addition of post-event data windows does not always

add much statistical value to the intention detection methodology. This outcome

is a very significant one because being able to predict human gait intention using

the data before the movement only gives much more preparation time for prosthetic

system preparation and proper operation which is a key to successful prosthesis and
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neuro-rehabilitation. It is to be noted that significance in t-test does not guarantee a

similar performance in real life, rather an online study should be operated to evaluate

the validity of the outcome of this offline study. However, t-test is a widely used in-

ferential statistic used to calculate and evaluate the probability of difference between

two sets of data. In this study, the t-test was used to determine whether, statis-

tically speaking, the distribution of accuracies obtained from the “pre-movement”

data windows and combined “pre-movement” and “post-movement” data windows

are statistically different or not. The use of t-test is significant in the scope of this

study to quantify the statistical significance of difference in performance obtained

using the two types of intention detection models. For instance, even if the accuracy

resulting from either of cases is greater than the other by a very small margin it can

simply arise from modeling bias and thus no conclusion about superiority or similar-

ity of performance can be drawn from mere visual inspection. Therefore, there must

be some statistical measure to evaluate the significance of the obtained results and

t-test serves that purpose in this study. Probabilistically, the results of the t-tests

at 5% significance level implies that there is at least 95% probability that the two

sets of results in contention come from different distributions thus have statistical

difference from each other.

In this study, the instantaneous time-frequency information was used for gait in-

tention detection. Now, neurological studies regarding voluntary human movement

suggest that gait-related changes in human brain waves may start 1.5-2 seconds

before the movement and may sustain till 2 seconds after the movement. The ini-

tial change in neural waves originates from motor preparation in the motor cortex

which is strengthened by sensory feedback immediately after the movement. Due to

the subject dependent variability in motor preparation and execution, the time of

initial changes related to gait preparation may vary. Nevertheless, such physiolog-
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ical changes are very strongly present close to the moment of movement initiation

and termination which diminish with time. Therefore, the intention of gait initi-

ation and termination is expected to be detected more successfully from the data

windows close to the time of event. In our study, the EEG information originating

from data windows closest to the event, namely the [-1,0] and [-1,1] second windows

resulted in the best results. The results comply with the neurological facts estab-

lished by previous neurological studies. The overall statistics show that for both

‘walk’ vs. ‘stop’ and ‘stand’ vs. ‘start’ classification problems, the [-1,1] and [-1,0]

windows achieved a comparatively more balanced performance in terms of sensitiv-

ity and specificity. This is a very significant outcome as this suggests that these two

windows contained comparatively more distinguishable features. This result further

shows the potential of these data windows in real time application. The other data

windows, namely [-2,0], [-1.5,0.5] and [-1.5,0] included more data from before the

event of gait which might be responsible for corrupting the classification models by

introducing randomness and thus skewing the obtained classification hyper-plane.

For all the detection models, the average specificity was higher than the aver-

age sensitivity values. These values mean that the system was able to detect the

‘walking’ and ‘resting’ windows much more successfully than the ‘start’ and ‘stop’

windows. The highest sensitivity was obtained from [-1 0] data window for ‘Rest’

vs. ‘Start’ and the highest sensitivity for ‘Walk’ vs. ‘Stop’ was reported from [-1 1]

window. However, achieving only higher sensitivity does not ensure safe operation

of a prosthetic system. Instead, a low specificity results in higher FPR, which can be

very hazardous to the person using the prosthetic system. That is why while training

the classification models, a higher cost was assigned to the wrong detection of inten-

tion. This precautionary action was taken to prevent a high false positive detection

rate which can lead to high risk for a user of prosthetic system. On top of that, the
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subjective heterogeneity in results might arise from the innate randomness and non-

stationary nature involved in the gait related EEG data. The huge disparity between

sensitivity and specificity in some cases originated from the extra cost put on false

positive detection which made the intention detection criterion much stricter. This

also suggests that in those cases the features corresponding to the ‘start’ and ‘stop’

classes did not hold enough distinguishable information to separate them from the

‘rest’ and ‘walk’ classes and thus could lead to erroneous detection in the daunting

task of online gait intention detection. This resulted in slightly random labels for

the testing samples leading to higher disparities in specificity and sensitivity values.

Therefore, the average sensitivity is slightly lower than the average specificity. This

limitation can be overcome by advanced machine learning techniques like ensemble

learning or majority voting. For both the classification problems, the [-1 0] data

window yielded the most balanced average sensitivity and specificity values, which

shows the potential of this data window in real time application.

The average classification performance obtained for the amputated subjects were

higher than those of the healthy subjects. Although the number of amputated sub-

jects was low, the classification performances were consistently higher than the aver-

age performance for the healthy subjects. This occurrence might be due to the fact

that, as the amputated persons were asked to start and stop their gait cycle on their

prosthetic leg, it required more effort and concentration on their part. That is why

it might result in easier detection of the intention of gait initiation or termination.

Moreover, for the amputees, the best window for intention detection was found to

be the [-1.5 0] window compared to the [-1 0] window for the healthy subjects. That

points to the possibility that those amputated subjects appear to prepare for the

upcoming change in gait state slightly earlier than their non-amputated counter-

parts. These are interesting questions which can be looked further into for insight
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about gait preparation and execution of the amputees for a better experimental de-

sign. On another note, neurological studies regarding voluntary human movement

suggest that gait-related changes in human brain waves may start 1.5-2 seconds

before the movement and may sustain till 2 seconds after the movement. The ini-

tial change in neural waves originates from motor preparation in the motor cortex

which is strengthened by sensory feedback immediately after the movement. Due

to the subject dependent variability in motor preparation, the time of initial gait

related changes may vary. Nevertheless, such physiological changes are very strongly

present close to the moment of movement initiation and termination which diminish

with time. Therefore, the intention of gait initiation and termination is expected to

be detected more successfully from the data windows close to the time of event.

Although there are very few studies with the same experimental design, a similar

offline classification was reported in [49] with a True Positive Rate (TPR) of 54.8%

and 2.66 FP/min. Another study reported in [50] achieved an accuracy of 72.91%

with 71.81±11.48 % true positive rate and 4.56 ± 1.84 FP/ min for start detection

and accuracy, TPR and FP/min of 80.65±11.49 %, 57.38 ± 12.03 % and 2.10 ±

1.20 for stop detection. In a more recent study [77], the accuracy, sensitivity and

FP/min were reported as 78.61±11.20 %, 76.90±11.75 % and 3.52±1.82 for start

detection and 84.36±10.19 %, 68.68±14.69 % and 2.06±1.12 for stop detection.

It is to be noted though that these studies used a very large detection window

of 4- seconds containing data from two seconds before the starting and stopping

event to two seconds after the occurrence of the event. The results suggest that

the proposed method resulted in better or competitive accuracy, sensitivity with an

enhanced specificity for start detection using a smaller pre-movement data window.

For stop detection, the existing studies showed better accuracy, however the true

positive rates were inferior to the ones achieved in this study. Thus the proposed
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study provides a balanced start and stop detection methodology without accessing

the post event data windows. This enhanced accuracy with higher TPR and lower

FP/ min show the prospect of the proposed method in successfully classifying gait

starting or stopping intention vs. steady state walking or stopping trials.

2.6 Conclusion

This paper proposes a wavelet transform-based methodology using Hjorth param-

eters as features for predicting human intention for gait starting and stopping. A

combination of ASR and ICA was carried out to clean the data off any non-brain

artifacts or noises. As the results suggest, it was possible to generate statistically

similar intention detection performance using only the pre-movement time windows.

As a result, the obtained results show a promising ability to predict movement in-

tention, even if the intentions are relatively sudden. The proposed methodology

can be a good starting point for future studies to implement a real-time BMI sys-

tem for assistive devices. However, the study simply evaluates how separable the

‘walking’ or ‘resting’ periods’ data windows are from ‘start’ or ‘stop’ walking data

windows using the proposed methodology. Due to the extremely noisy and non-

stationary nature of EEG signals accompanied by the subjective variability of gait

preparation, the uncertainty involved in solving such detection problem is very high.

This causes the classification performance to degrade significantly. For safe and ro-

bust control, asynchronous intention detection schemes need to be carried out and

the performances need to be evaluated in terms of critical parameters necessary

for real-time BCI application. Advanced signal processing techniques in addition

to enhanced machine learning methodologies like threshold regulation, combination

of decisions from multiple consecutive windows, neural networks can be applied to
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further increase the classification accuracy. Future works can be done in the scope

of decreasing the false positive rates, increasing the accuracy, sensitivity, and speci-

ficity of the system, asynchronous prediction of movement intention and application

of an enhanced methodology in real-time studies.
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CHAPTER 3

EXPLORING THRESHOLD RESGULATION AND MAJORITY

VOTING FOR ASYNCHRONOUS INTENTION DETECTION

3.1 Background

This chapter is an edited version of the author’s previous work published in [84]

©2019 IEEE. The significant steps in EEG-based BCI systems for gait rehabilitation

are threefold: extraction of brain waves, signal processing, and translation of the

information to control a prosthesis or orthosis system. For effective operation, early

detection of intention is essential. Although higher sensitivity is expected, a lower

FP/min is critical for safe operation as higher false-positives would lead to frequent

accident compromising the security of the user. Therefore, designing a safe and

reliable BCI system for people with motor disabilities with early and high intention

detection accuracy, sensitivity with low false-positive activation is the most daunting

challenge in the field of BCI for gait rehabilitation research.

3.2 Current Work

This chapter introduces a methodology for asynchronous pseudo-online movement

intention detection, which utilizes discrete wavelet transform for signal processing

and Hjorth parameters as features. The study uses EEG data from 1.5 before to 0.5

seconds after the actual onset of the event for training a Support Vector Machine

classification model with Radial Basis Kernel. The classification problem is designed

as a two-class problem, where the classes are ‘intention’ or ‘active’ class and ‘non-

intention’ or ‘inactive’ class. In this paper, a threshold regulation method has been

implied to reduce the number of false positives per minute. To reduce the false-
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Figure 3.1: Block diagram of the proposed methodology.

positive activation, a majority voting algorithm was applied. The results show that

the combination of threshold regulation and majority voting algorithm results into

a higher sensitivity, and lower false-positive activations per minute with relatively

smaller latency.

3.3 Methods

This section discusses about the proposed methodology and its different steps.

The details of subjects, experimental protocol, data acquisition, segmentation and

preprocessing have already been provided in the previous chapter. The proposed

methodology is presented in Figure 3.1.

3.3.1 Data Segmentation

The goal of this study was to evaluate the performance of the BCI system in an

online environment. However, as the data were collected before the processing they

were accessed and processed as if they were being collected online real-time. For this
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purpose, the EEG data was divided into three segments. The first 40% of data was

used for training, the next 20% for threshold calculation and the remaining 40% for

testing. The training and threshold calculation portion of the data was segmented

using the time points extracted in the previous section. The gait initiation and gait

termination time points were marked as ‘intention’ time points. After that from

1.5 seconds before the ’intention’ time points to 0.5 seconds after the said time

points were marked as intention time windows. The rest of the data were marked as

‘non-intention’ data. No cross validation was performed because in a pseudo-online

scenario, it was simulated that epochs are processed as they are acquired.

3.3.2 Feature Extraction and Selection

In the proposed method, Hjorth parameters- activity, mobility and complexity were

extracted as features to capture the frequency information in time domain signal.

The Hjorth parameters were calculated using Discrete Wavelet Transform (DWT)

as described in the previous section. For training the classification model, the 2-

second data windows were further subdivided into 1-second epochs in steps of 0.2

second. Features were calculated for each 1-second window to create the feature

vector corresponding to one ‘intention’ or ’non-intention’ events. A two-sample

unpaired Wilcoxon test was used to select 20 out of the initial 48 features per

epoch.

3.3.3 Asynchronous Detection

The walking and resting cycles which were less than 5 seconds in duration were

removed from the dataset before asynchronous detection. The procedure was com-
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posed of three major steps: training classification model, threshold selection for

testing, and Evaluating the model on unseen test data.

The classification model was trained for classifying between ‘intention’ and ‘non-

intention’ classes. The feature set was standardized to have values between 0 and 1.

The standardizing parameters were also recorded to be used in the following steps.

An SVM classifier was trained to classify between ‘intention’ and ‘non-intention’

classes with a Gaussian or Radial Basis kernel.

To achieve a proper threshold or working point, the ‘intention’ and ‘non-intention’

epochs in the validation set were segmented and labeled. The corresponding fea-

tures were standardized by using the parameters obtained from the previous step.

After that, the obtained unlabelled data were classified by the classification model.

Different thresholds were calculated for specificity values ranging from 75% to 90%

in a step of 5% to avoid a high number of false-positive detection.

3.3.4 Evaluation of the model and thresholds

The validation on the testing set was conducted using sliding windows, shifted every

200 ms with the window length of 1 s. After obtaining the predicted scores of the test

set data, the thresholds obtained in the preceding step were used to determine the

class label of any particular data window. The output at any time was determined

by only the data window before that particular time. To further reduce the risk

of false-positive detection, a 3-window majority voting technique was applied. If

the detected time was in the [-1.5,0.5] limit corresponding to the actual moment

of event onset, then the decision was marked as correct detection. However, False

Positive was detected only when an active detection was decided more than 1.5

seconds before or more than two seconds after the actual onset of the event.
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Table 3.1: Classification performance for different subjects with threshold regulation

Preset Specificity Subject Threshold TPR(%) FP/min Latency (ms)1

S1 -4.5927 78.95 21.85 −584± 771
S2 -2.2857 72.88 14.58 −602± 669
S3 -1.3638 69.44 27.29 −721± 656

70% S4 -2.1371 71.84 21.91 −660± 649
S5 -2.8344 55.56 8.35 −363± 665
S6 -2.0828 64.81 15.44 −669± 709
S7 -4.0404 67.24 17.24 −285± 803
S1 -3.7573 72.81 17.59 −556± 757
S2 -2.1493 65.25 12.62 −497± 738
S3 -1.3167 62.96 23.68 −703± 667

75% S4 -1.9540 61.17 18.24 −611± 699
S5 -2.6366 50 6.56 −340± 711
S6 -1.9521 57.41 12.05 −510± 749
S7 -3.6459 62.07 12.99 −245± 825
S1 -3.7573 62.28 15.15 −514± 751
S2 -1.9792 50.85 10.20 −483± 766
S3 -1.2732 52.78 20.5 −729± 690

80% S4 -1.7834 53.4 14.91 −534± 716
S5 -2.3622 41.67 4.77 −395± 666
S6 -1.8079 46.3 8.88 −436± 751
S7 -3.2365 53.45 9.15 −322± 815
S1 -3.2946 51.75 10.83 −393± 775
S2 -1.8194 40.68 7.91 −433± 778
S3 -1.2329 49.07 17.77 −617± 706

85% S4 -1.5823 41.75 12.52 −443± 700
S5 -2.1133 37.5 3.87 −475± 612
S6 -1.6792 37.04 6.85 −435± 754
S7 -2.8877 43.10 5.96 −218± 713
S1 -2.6478 34.21 6.32 −447± 725
S2 -1.5588 30.51 5.23 −455± 751
S3 -1.1728 43.52 14.59 −596± 751

90% S4 -1.3361 26.21 9.05 −552± 611
S5 -2.1133 37.5 3.87 −475± 612
S6 -1.4734 27.78 4.98 −465± 702
S7 -2.4331 22.41 2.34 −185± 732

3.4 Results and Discussion

For evaluating the performance of the proposed BCI, the following parameters were

calculated under different conditions: true positive rate, false positive/ minute and

latency. The parameters are defined as follows:

TPR =
TP

TP + FN
(3.1)
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FP/min =
FP

tnon intention

(3.2)

Here TP , TN , FP , FN denote the true and false detection of ‘intention’ and ‘non-

intention’ samples and tnon intention denotes the total duration of ‘non-intention’

windows.

Table 3.1 represents classification performances for different subjects for differ-

ent thresholds. When the preset specificity is at a comparatively conservative value

like 70% or 75%, the True positive rates were quite high, but the FP/min values

were higher as well. When the thresholds were increased by fixing a higher preset

specificity, the True positive rate went down but with much lower false-positive acti-

vations per minute. The mean latencies of detection were constantly very small, and

negative values suggested that movement intention could be detected even before

the gait onset or termination.

Table 3.2 represents the cross-subject average performance metrics with standard

deviation. It is evident from the table that the highest average TPR was achieved

for the preset specificity of 70% and the lowest FP/min was achieved for the 90%

specificity value. The average latency of detection increased consistently with the

increase of preset specificity except for 90% specificity. Therefore, it can be observed

that increasing preset specificity constraint decreased FP/min, but at the same time,

it decreased TPR with increased latency.

Table 3.2: Cross subject average performance metrics with standard deviation.

Preset Specificity Mean TPR(%) Mean FP/min Mean Overall Latency (ms)

70% 68.67± 7.33 18.09± 6.17 −554.85± 703.14

75% 61.67± 5.99 14.82± 5.51 −494.57± 735.14

80% 51.53± 6.45 11.93± 5.23 −487.57± 736.43

85% 42.98± 5.57 9.39± 4.71 −430.57± 719.71

90% 31.73± 7.22 6.62± 4.08 −439.29± 697.71
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In order to find a proper operating point, the tradeoff between TPR, FP/min,

and mean latency should be considered. Having stated that, this paper uses only a

two-second window to detect movement intention, which is a much smaller compared

to that of other similar studies stated in [49, 50]. These studies used a four-second

detection window comprising two seconds of data from both before and after the

movement onset. This could be too large in real life online implementation. Usage

of a two-second window with only a 0.5 s second of the post-event EEG data gives

the proposed study an edge over the state-of-the-art methods.

3.5 Conclusion

This chapter presents the application of a threshold regulation methodology to re-

duce the number of false-positive gait intention detection in an asynchronous pseudo-

online study. The outcome of the study suggests that with adaptive threshold

regulation technique a high True-positive rate is attainable with very low latency.

However, to reach an overall acceptable and operable threshold point, more works

are needed in the future. An adaptive thresholding technique can be investigated

by utilizing other sensor features. Moreover, advanced machine learning and deep

learning technologies can be applied for better results. However, the outcomes of

the study show promising feasibility of the proposed approach in the application of

neurorehabilitation.
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CHAPTER 4

ASYNSCHRONOUS PREDICTION OF GAIT INTENTION

4.1 Background

This chapter contains an edited version of the author’s work in [85] ©2020 IEEE.

The ultimate goal of BCIs for gait rehabilitation is to incorporate the human brain

in the system loop in such a manner that natural movement capabilities are re-

stored. However, this endeavor requires diligent efforts in understanding human

motor cognition, voluntary movement planning, and execution process. The sig-

nificant challenges to be addressed in gait intention detection for effective real-life

control of powered exoskeleton or prosthesis are maintaining high true positive de-

tection rate, achieving low false-positive detections/min and detecting intention as

early as possible. Although successfully detecting as many gait intention events

as possible is worthwhile, maintaining lower FP/min is even more critical because

false-positive detections can lead to missed steps, falling, and other accidents that

are hazardous to the user. So, FP/ min has to be kept to a bare minimum while

maintaining an acceptable true positive detection rate. Meanwhile, lower latency

is required to give the prosthetic system enough preparation time to adapt to the

neural control command for flawless prosthetic control.

An increasingly desirable feature for such BCI systems is the ability to predict the

intention of natural gait execution, not only to identify movement once it has already

occurred. In the BCI context, this is useful to make movement seem more natural.

Neurological evidence stated above suffices that the neural activation corresponding

to voluntary gait operation starts as early as 1.5–2 s before the actual execution

of movement. Recently, Hasan et al. showed that it is feasible to predict human

intention to start or stop walking from pre-movement EEG data only [86]. Therefore,
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there is a possibility to predict movement intention earlier than the actual movement

through reliable extraction and selection of features from EEG signals corresponding

to ERD or MRCP and by applying proper machine learning algorithms.

4.2 Current Work

The goal of this study was to investigate whether it is possible to predict human vol-

untary self-paced gait intention reliably before it takes place from scalp EEG signal

with a low false-positive rate and a reasonable sensitivity. Furthermore, another goal

of the study was to determine when a reliable prediction could be made. Ideally, the

expected detection time should be as early as possible before the movement onset but

not so early that it leads to erroneous detection. In this study, a binary supervised

classification problem was designed to differentiate between steady state resting or

walking and intention to move or stop. The classification problem was approached in

two ways: offline and pseudo online. In offline approach, a ten-fold cross validation

scheme was implemented to evaluate the performance of the proposed methodology.

However, it is necessary to test the proposed methodology in real-time scenario to

properly portray the effectiveness of it. As the data were already collected at the

time of the testing, a pseudo online testing paradigm was also implemented in the

study. This means that the data were collected and preprocessed beforehand, but

the preprocessed data were handled and processed as if they were being collected in

real-time while decision making. Further details on this approach will be presented

in the following sections. When it came to feature extraction, ERD features were

chosen over MRCP because mu and beta ERDs can be observed in single-trial EEG-

signals. In contrast, MRCP has a very low DC amplitude of about 8-10 µV and is

generally only evident after averaging multiple trials of repeated voluntary move-
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ments. This fact makes ERD features more suitable for real-time online prediction

of self-paced gait intention compared to MRCP despite being more prominent on

and after the movement onset. As ERD feature extraction requires time-frequency

analysis of the EEG signals, wavelet transform was used for signal processing as

wavelet transform retains information in both time and frequency domain and pro-

vides better time frequency-resolution compared to traditional methods like Fourier

transform. For prediction in offline scenario, the classification accuracy, sensitivity

and specificity were calculated. Whereas in pseudo online scenario, a threshold regu-

lation method was proposed to decide a working point keeping in mind the trade-off

between sensitivity and specificity. A majority voting algorithm was implemented

later to decrease the number of false-positive detections even more. By reporting a

high true positive rate, low false-positive rate, and early detection time, this study

is expected to extend the capacity of state-of-the-art BCIs.

4.3 Materials and Methods

This section provides detailed information about the experimental protocol, data

acquisition, and signal processing. The details of subjects, experimental protocol,

EEG and EMG data collection and preprocessing of EEG data have been provided in

chapter 2 of this dissertation. However, instead of visual inspection, IClabel [87] was

used for selecting brain components from the extracted independent components.

Moreover, only the data obtained from six healthy subjects are used in this section.
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4.4 Computational Methods for Prediction

4.4.1 Data segmentation and epoching

The neurological changes caused by self-paced gait intention can start up to 1.5 -

2 seconds before the actual onset of movement and can exist up to 2 seconds after

the movement. That is why after getting the times of the starting and stopping

events, windows comprising data from 1.5 seconds before the event to 1.5 seconds

after the event occurrence times were marked as intention windows. The rest of the

data were labeled as non-intention data, which consisted of data from both walking

and resting periods. The intention and non-intention data windows were further

subdivided into 1-second long epochs by sliding the windows every 0.2 seconds to

obtain a finer time-frequency resolution. For pseudo online testing, however, a

different windowing technique was applied. These will be described in detail in the

following sections. The windowing methods for offline training and validation as

well as pseudo online testing are shown in figure 4.1.

4.5 Signal Processing for Time-frequency Analysis

Three different signal processing tools were tested in this study to extract gait-

related information from the cleaned EEG signal. The methods are discrete wavelet

transform, empirical wavelet transform, and wavelet synchrosqueezed transform.

4.5.1 Discrete wavelet transform

DWT acts as a filter bank to investigate the signal in the time-frequency domain

[88]. It provides an excellent temporal resolution because it is discrete in scale

48



Figure 4.1: Data windows used for offline classifier training and validation, and
pseudo-online testing. (a) Data windows used for offline classifier training and val-
idation. Two separate classifiers were trained to distinguish ‘rest’ and ‘start’, and
‘walk’ and ‘stop’. [-1.5,1.5] s data window corresponding to the time of event were
used for this purpose. (b) Data windows used for testing in pseudo online paradigm.
The pseudo online paradigm uses only 2 seconds of data before the event. After ev-
ery event, 2 seconds of data were used to recognize the current state of gait and
select the appropriate classifier between ‘rest’ vs. ‘start’ and ‘walk’ vs. ‘stop’
.

and shift but continuous in time. By choosing a proper mother wavelet and level

of decomposition, it is possible to investigate a specific frequency range over time.

The details of discrete wavelet transform are included in chapter 2.

4.5.2 Empirical Wavelet Transform

Empirical Wavelet Transform (EWT) is an empirical and data-driven approach

for wavelet decomposition [89]. This algorithm aims to decompose a signal where

wavelet frames are built adaptively. This process removes the complexity in choos-
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ing a proper mother wavelet for other wavelet transform approaches like DWT. For

one dimensional signals, EWT tries to detect some modes in the Fourier spectrum

and then uses those Fourier supports to build Littlewood-Paley type wavelets. Re-

portedly, EWT has shown more consistent decomposition than other data-driven

decomposition approaches like Empirical Mode Decomposition (EMD) with a lesser

number of modes. In this study, we used EWT to analyze the epoched EEG signals

from all the channels. The number of intrinsic mode functions returned by the al-

gorithms was limited to 3 because higher-order IMFs contain an increasingly higher

frequency portion of the data, which did not hold any information concerning the

study. The corresponding IMFs were then utilized to compute power features to

use in the later sections. For each data epoch, the number of resulting power values

was 3 per channel.

4.5.3 Wavelet synchrosqueezed transform

TheWavelet Synchrosqueezed Transform (WSST) is a time-frequency analysis method

that is useful for analyzing multicomponent signals with oscillating modes [90]. The

wavelet transform uses a mother wavelet as its time-frequency atom, which is trans-

lated and scaled to represent the signal. This representation is accompanied by some

time-frequency spreading affecting the sharpness of the signal analysis in the pro-

cess. The wavelet synchrosqueezed transform compensates for the spreading effects

caused by the mother wavelet by reassigning the signal energy in frequency. Syn-

chrosqueezing reassigns the energy only in the frequency direction while preserving

the time resolution of the signal. By preserving the time, the inverse synchrosqueez-

ing algorithm can reconstruct an accurate representation of the original signal. The

beta and alpha band brain signals were extracted, and the power of those two bands
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was extracted. Like the DWT, the number of features per epoch was 2 for each of

the channels.

4.6 Feature extraction and prediction

In this study, the intention of self-paced voluntary movement initiation and ter-

mination were predicted using separate classification models. One classifier was

trained to distinguish the intention to move from rest state data, and another one

was modeled to predict the intention to stop from walking state data. The model-

ing of both classifiers was done in similar ways but using data from different states

of the experimental protocol. Hereon after the overall process will be generally

described without stating walking or stopping intention detection model unless oth-

erwise stated for simplicity of description. The classes will be stated as ’active’ and

’inactive’ classes where ’active’ class represents both walking intention and stopping

intention windows, and ’inactive’ classes represent both resting state and walking

state.

The preprocessed dataset was divided into three parts for evaluation in a pseudo-

online manner: training set, validation set, and test set. As the paradigm of the

evaluation was pseudo online, which means the data were accessed as if they were

being acquired real-time, 60% of the data was used for training the classifier, 20%

were used as validation set for model tuning and the last 20% of the data were used

for testing. This approach is inspired by and enhancement of a previous exploratory

study which has been summarized in chapter 3. It is important to note that EEG

data are often shown to have large variations in decoding performance with different

training, validation and test sets. In order to account for this and to test the

robustness and promise of the proposed methods, an offline testing was also carried
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out on the combined training and validation test which consisted of 80% of the

total data for all the subjects. Later, for testing the robustness of the method in

the pseudo online paradigm, the training and validation sets were chosen ten times

randomly from the first 80% data and thus ten different classifiers were trained

and tuned by applying the following techniques. The obtained classifiers were then

tested on the last 20% of the data in an asynchronous fashion.

4.6.1 Feature extraction

From the training and validation dataset, all the epochs were processed using the

signal processing techniques stated in the previous subsection, and features were

extracted accordingly. Each 1-second data epoch was labeled as a sample belonging

to the corresponding active or inactive class. For DWT operation, the number of

power values per epoch was 2 frequency bands × 8 channels = 16. Similarly, the

number of power values for EWT was 24, and in the case of wavelet synchrosqueezing

transform, it was 16. After the calculation of the power of corresponding bands, the

first four data frames of each trial were taken as baseline to calculate ERD features.

The ERD features were calculated for each channel in the following manner:

Pi,j =
1

N

N∑
k=1

x2
i,j,k (4.1)

Pref i
=

1

l

l∑
j=1

Pi,j (4.2)

ERDi,j =
Pi,j − Prefi

Prefi

× 100% (4.3)

Here equation (1) represents the calculation of average power for each 1-second

long epoch. Equation (2) shows the process of calculating baseline power for each
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trial. While, equation (3) shows the calculation of ERD for each 1-second long

epoch each trial. xi,j,k is the kth sample of the jth 1- second epoch of the ith trial of

preprocessed single channel EEG data. Pi,j is the averaged power of the jth 1-second

epoch of the ith trial and N is the number of samples in the corresponding 1-second

epoch. Pref i
is the average power in the reference interval of the ith trial. The

reference interval included the first l number of 1-second epochs of the corresponding

trial[91]. ERDi,j denotes the ERD in percentage corresponding to the jth epoch

of the ith trial.

4.6.2 Modeling

The classification problem was addressed by support vector machine, i.e., SVM

[92, 93] classifiers with Radial Basis Function. Separate classifiers were trained for

offline and pseudo online prediction. The offline modeling was tested by a 10-fold

cross validation scheme. In each fold of the cross-validation, one-fold was used

as test set and all the other folds were used as training set. MATLAB function

‘fitcsvm’ was used for modeling offline classifiers. The input ‘OptimizeHyperparam-

eters’ was set to ‘auto’ which by default performed a five-fold cross validation within

the training dataset of that loop and optimized the hyperparameters by minimizing

the classification loss function. The optimization option was chosen to be Bayesian

Optimization. The hyperparameters obtained by this method were used to train

the model and classify the corresponding testing samples.

On the other hand, for pseudo online paradigm the working point or threshold

of the classifier was determined from the validation set to obtain a minimal false

positive rate while maintaining an acceptable true positive detection rate. This

methodology is inspired by the outcomes of the previous chapter.
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4.6.3 Determining a working threshold

The validation set was used for the threshold setting for asynchronous testing of the

test set data. For this purpose, the epochs in the validation dataset were classified

using the classifier model obtained in the previous section. The threshold was chosen

by setting a limit on the specificity obtained by classifying the validation set samples.

Here, the specificity is defined as:

Specificity =
True Negative

True Negative+ False Positive
(4.4)

The lower limit was set at 50% specificity. A stricter lower limit might lead to

very low true positive detection, which is not a very desirable outcome. That is why

a moderate constraint was selected for proper working point detection. However,

additional measures were taken to ensure very low false positive detection, which is

described in the following subsection.

4.6.4 Majority voting

EEG data is highly noisy and nonstationary. The uncertainty involved in EEG

might still lead to false positive detection. That is why to reduce the number of false-

positive detections even further, a 10- window majority voting scheme was applied

as an extra caution. In the majority voting algorithm, if more than five positive

detections were made in a 10- window interval, then the overall 10-window period

was marked as true positive detection. Otherwise, the detection was discarded. The

same procedure was repeated to produce all detection results. As the samples were

collected by sliding data windows by 200 ms, a decision was made every 2 seconds.

Figure 4.2 shows the pseudo online testing procedure for one testing trial. The

threshold chosen from the validation dataset is marked as a horizontal line, while

the scores assigned to each 1-s data sub epoch are shown in blue. The testing
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Figure 4.2: Pseudo Online testing procedure. The figure shows the execution of the
testing procedure for one testing trial.
.

outcome of the model for each sub epoch and their true labels obtained from the

motion capture system are also shown. Without the application of majority voting,

there are several false outcomes which are marked in red. Finally, by applying a

10-window majority voting algorithm, the false positive detections are removed in

exchange of decision bit rate. The time of detection is marked as the final time

frame of the majority voting window which resulted in true positive outcome. After

that, a 2-second buffer data window was used to recognize the current stage of gait

to select the proper classifier to predict the next intention event.

4.6.5 Neurophysiological Data Analysis

The collected data were examined and analyzed offline to investigate the neuro-

physiology following human voluntary gain intention. The data analysis was done

using the EEGlab processing tool. Epoching was done with windows of -4 to 2
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seconds with respect to the detected event onset times. The epochs were cleaned

off artifacts using the pre-mentioned data preprocessing pipeline beforehand. The

obtained epochs were then used to perform a time-frequency analysis to investi-

gate the ERD. For ERD calculation, -4 to -2 s data were used as the baseline. A

400-sample smoothing window was used to smooth the ERD representation. The

ERD for subject 2 is presented in figure 4.3 and figure 4.4. Figure 4.3 shows ERD

corresponding to ‘stopping’ of gait, while figure 4.4 shows ERD corresponding to

‘start’ of gait. As can be seen from the figure, significant ERD activity was found in

the beta and alpha frequency bands, which is marked in blue. The Event Related

Synchronization (ERS) was observed after the event onset.

4.7 Results

4.7.1 Evaluation indices

In this study, the offline performance was evaluated by reporting the classification

accuracy, sensitivity and specificity. The classification was carried out in a 10-fold

cross validation scheme and the performance metrics thus obtained were averaged

across all the fold and all the subjects to obtain the average accuracy, sensitivity

and specificity.
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On the other hand, the performance metrics used for evaluation in pseudo online

analysis were: True Positive Rate (TPR), False Positive per Minute (FP/min) and

latency. In a pseudo online scenario, the window of true positive detection was set as

[-2, 0] second corresponding to the movement onset times. That means if any positive

detection was made inside that time window, it was marked as an accurate detection.

Otherwise, it was marked as a false positive detection. After the occurrence of every

gait event, a 2- second buffer time was employed to avoid confusing outcomes due

to Event Related Synchronization following the corresponding event but preceding

the next event. The 2-second window was also used to determine the current stage

of gait. TPR and FP/min was determined as:

TPR = (Number of True Positive Detection)/(Number of True Positive events)

(4.5)

FP/min =
Number of false positive detection

Duration of total inactive windows in minutes
(4.6)

4.7.2 Offline Analysis

Table 4.1 and table 4.2 show the results for obtained in offline classification. The

evaluation of results was done by presenting accuracy, sensitivity and specificity. A

two-sample t-test with Bonferroni correction was also performed to look for statis-

tical significance of the results obtained by different methods.

Table 4.1 shows that in case of start of walking intention detection, DWT re-

sulted in 78.28±3.45% accuracy with 76.08±5.67% sensitivity and 79.78±8.28%

specificity. While EWT resulted in 76.72±2.50% accuracy with 73.67±5.98% sensi-

tivity and 76.54±6.33% specificity. Lastly, WSST provided a detection accuracy of

88.23±1.59% with 85.42±4.03% sensitivity and 90.24±2.78% specificity. The results
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obtained by WSST showed statistical significance over those obtained by DWT and

EWT at 5% significance level.

Table 4.2 presents the results of intention detection in the case of stop of walk-

ing. By using DWT, EWT and WSST, accuracies of 73.64±4.18%, 73.73±2.80%,

and 87.04±1.72%, sensitivities of 72.23±9.23%, 70.67±6.70%, and 82.69±4.13% and

specificities of 74.30±11.40%, 75.27±7.10% and 89.59±3.04% were achieved respec-

tively. The results obtained by using WSST showed statistical significance over the

results of DWT and EWT in the case of stopping intention prediction as well at 5%

significance level. The initial offline evaluation of performances of different methods

hinted that the synchrosqueezing approach might be a more suitable signal process-

ing technique for online prediction of starting and stopping intention detection.

4.7.3 Pseudo-Online Analysis

The real purpose of this study was to investigate the performance of a BCI in an

online environment. In an online scenario, the subject would try to activate an

assistive device with the output of the BCI. As the trials were acquired before the

signal processing techniques were applied, the performances were instead evaluated

in a simulated online environment. In the pseudo online scenario, the data were

accessed, and epochs were processed as they were acquired, which is more realistic

than offline analysis.

Table 4.3 provides the TPR, FP/min, and detection latency for different methods

and subjects for the start of walking detection, where Table 4.4 provides the same

information for the stop of walking intention detection. A two-sample t-test with

Bonferroni correction was also performed to look for statistical significance of the

results obtained by different methods.
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Table 4.3 shows that an average TPR of 78.3% with a standard deviation of 8.6%

was achieved using DWT, whereas using EWT and WSST, the prediction TPR was

80.1 ± 6.1 % and 85.5 ± 5.0 % respectively. The best TPR was achieved for S5,

which was 94.5% using WSST, while the lowest TPR achieved was 71.4% for subject

1 using DWT. The FP/min achieved by the methods were 6.5±0.8, 6.5±0.9, and

6.8± 0.7, respectively. All the methods resulted in these TPR and FP/min while

predicting the intention to start walking almost 1 second before the actual onset in

an average. The two-sample t-test with Bonferroni correction showed that WSST

performed significantly better in True Positive Detection compared to DWT and

EWT at a 5% significance level. The FP/min and latency of detection did not show

any statistical significance at 5% significance level.

Table 4.4 shows that the average TPRs obtained by DWT, EWT, and WSST

were 75.3±7.9%, 81.4±7.2%, and 81.2±3.3%, respectively. These values, however,

did not have any statistical difference at 5% significance level. The average FP/min

achieved by the methods was 9.3±1.9, 9.2±1.8, and 9.4± 1.0. And finally -977±613,

-957±612 and -943±603 ms detection latencies were obtained. Here, again, the

prediction was achieved almost 1 second before the actual termination of movement,

which is a significant outcome for a BCI for real-life control. None of the parameters

obtained for stop prediction yielded any statistical difference at 5% significance level.

4.8 Discussion

In this paper, a purely predictive BCI technology utilizing traditional discrete wavelet

transform, data-driven empirical wavelet transform, and wavelet synchrosqueezed

transform was implemented to predict human voluntary gait initiation and termi-
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nation intention in a pseudo online environment. Six healthy subjects’ data were

collected and tested for this purpose.

As a part of the experimental protocol, the subjects were requested to keep

unnecessary movements, like eye movements, body movements to a minimum level.

They were asked to do so in order to keep the unnecessary artifacts as low as possible.

However, in a real-time scenario this condition would not be applicable because the

duration of application of the corresponding BCI would be much longer. And it

would be impossible to control the unrelated movements throughout the duration

of operation. Despite the instructions, however, the artifactual components were

very strongly present in the data. The preprocessing tools ASR and ICA performed

very well to remove whatever eye artifacts and movement induced artifacts there

were in the data. But, the data and memory requirement of these algorithms make

these a poor choice for real-time application. For real time application, therefore,

a robust, computationally efficient, effective online movement artifact system must

be implemented. Also, the subjects should be allowed to carry out the tasks in a

less controlled and more natural manner. These issues will be addressed in a future

extension of the current study.

It is to be noted here that the preprocessing was done only once offline before

the execution of pseudo online decision making. For all further signal processing,

feature extraction and classification in both offline and pseudo online paradigm,

this preprocessed EEG dataset was utilized. The major preprocessing tools that

were implemented in this study, ASR and AMICA requires a large chunk of data to

work properly. ASR needs a significant amount of data to determine artifact free

clean EEG data for estimating and removing artifact from the artifact laden EEG

data. On the other hand, ICA requires a lot of data as well to properly localize all

the contributing independent sources inside the brain. Because of the requirement
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of a large amount of data, these preprocessing tools are generally used in offline

processing pipelines. Recently, advanced real-time versions of ICA namely Online

Recursive ICA [82], Real-time EEG Source-mapping Toolbox (REST) [81] are com-

ing into being. However, more advanced and computationally efficient algorithmic

developments are necessary to accommodate these tools in online environments.

Because of the shortcomings of these methods, in this study they were only imple-

mented in offline preprocessing. Once the data were preprocessed, the dataset was

used to perform pseudo online signal processing, classifier modeling and testing. In

future real-time study, viable preprocessing technologies and filters, for example,

Laplacian filters[49, 77], will be explored to ensure that all the steps can be carried

out in real-time.

The EEG data were initially recorded at 500 samples per second which was in-

trinsic to the system. However, the data were down sampled to 250 Hz at the first

step of preprocessing for reducing the size and increasing efficiency. For online im-

plementation of BCI, higher sampling rate would result in huge amount of data to

transmitted across wireless signal, processed multiple times and stored for applica-

tion. Therefore, down sampling can help reduce the memory requirement and speed

of operation of the corresponding BCI. However, down sampling is accompanied by

aliasing which could always introduce additional noise to the data if implemented

carelessly. Only the lower frequency ranges, namely the alpha (8-16 Hz) and beta

(16-32 Hz) band brain waves were necessary for the purpose of this study. As the

chosen sampling frequency of 250 Hz was much higher than the Nyquist frequency

to obtain those frequency ranges, the effect of aliasing noise would be minimal. Even

so, an anti-aliasing FIR filter was applied to the data and the delay introduced by

the filter was properly compensated as precaution.
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This study compares the performance of DWT, EWT and WSST produced fea-

tures in predicting human intention to start or stop walking. For DWT, the mother

wavelet was chosen to be ‘db4’. The choice of mother wavelet was based on lit-

erature review and available state of the art methodologies [94, 95]. Daubechies

wavelets are very commonly used in numerous applications which involve the pro-

cessing of EEG signals. Among various orders of Daubechies wavelets, Daubechies

4 or ‘db4’ has been used very extensively. Because db4 mother wavelet is renowned

for its orthogonality property, smoothness and its suitability to detect changes in

EEG activity [94]. Studies have also suggested that db4 mother wavelet has shown

good cross correlation between original and reconstructed signal, thus ensuring low

reconstruction error. This suitability has led to the use of db4 mother wavelet in

various EEG-based applications, for example seizure detection [96, 97], sentiment

recognition [98], movement intention detection [84]. That being said, the choice of

mother wavelet is always an application dependent task and more mother wavelets

like Symlets, Haar wavelets or Morlet wavelets should be examined in future studies.

The offline results show that WSST outperformed both DWT and EWT in terms

of accuracy, sensitivity and specificity for both intention of ‘start’ and ‘stop’ predic-

tion. The statistical test performed to differentiate between the performances of the

three methods showed significance enhancement across all evaluation metrics when

WSST was used. The preliminary offline analysis presented a promising outcome

which inspired the pseudo online testing procedure applied in this study. As the goal

of the study was to evaluate the effectiveness of the BCI in a real-time scenario, the

result of pseudo online analysis held more importance to validate the hypothesis of

the study.

The statistical test performed on the pseudo online start prediction result showed

that the WSST performed better than the traditional DWT and EWT in terms of
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TPR. This result suggests that the data-driven approach of EWT might result in

distinguishing feature extraction in the time-frequency domain, however, to opti-

mize the outcome of this signal processing technique selection of appropriate em-

pirical modes holds utmost importance. Therefore, the choice of proper modes for

gait related neural information extraction should be investigated in future study.

The synchrosqueezing approach provided promising TPR with low FP/ min. This

approach retains the sharpness of time-frequency analysis, which contributes to fea-

tures with better resolution. These results showed the potential of advanced wavelet

transform techniques to successfully predict the start of voluntary human gait.

The methods did not show any statistical difference in the stop of gait detection

although the results obtained by synchrosqueezing approach was better than those of

DWT and EWT. Moreover, the TPR was lower, and FP/min was higher compared

to start prediction. The main reason behind this phenomenon might be the artifact

corrupted baseline EEG of walking windows. Although extensive movement artifact

removal pipeline was employed, the baseline for ERD calculation for ’stop’ prediction

was still not as clear as the baseline for the ’start’ prediction. The low SNR and

noisy nature of EEG accompanied by the movement artifacts resulted in declined

performance compared to the ’start’ of gait prediction. Further work is needed to

predict stopping intention with higher TPR and lower FP/min.

Both starting and stopping events were predicted quite successfully almost 1

second before the events. This outcome is significant because this would allow

the assistive device enough preparation time to adapt to user intention. Such a

transition period will, in turn, result in a more natural and smoother transition in

real- life prosthesis systems.

The results obtained for the various methods look promising and those for stop-

ping of gait are even more intriguing. However, whether there is any way to tell that
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the methods used can differentiate the intention to stop gait from a change in gait

itself for the purpose of stopping is an interesting question. In more strict terms,

how one can know that the neural signatures used to predict stopping of gait, in the

window preceding the actual termination of gait, are indicative of strictly a higher

order mental intention to stop and not a sensorimotor correlate of change in gait it-

self for stopping is worth investigating. The answer to the question can be discussed

in terms of the neurophysiological background involved with walking. Automatic-

ity is a special feature of walking of healthy people which refers to the fact that

the nervous system can successfully control steady state walking with minimal use

of executive control. This in turns means that during steady walking the nervous

system is seldom, if ever, in automatic control. Rather, the sensorimotor cortex

takes over control only in the event of intention to change the current state of gait

[99]. Even though a person is walking steadily, the lack of activity in the sensorimo-

tor cortex, therefore, creates a suitable baseline just like in the standing condition.

Moreover, the investigation of ERD corresponding to both starting and stopping

intention show similar pattern which only originates from intention to change state

of gait (figure 4.3, figure 4.4). These facts confirm that the neural correlates namely

ERD corresponds to the intention to change state of gait itself. Moreover, human

walking is controlled by volition [100]. Before the execution of change in gait state,

changes corresponding to the intention appear in the sensorimotor cortex which fa-

cilitate the volitional control of movement. In fact, studies suggest that “cerebral

initiation of a spontaneous, freely voluntary act can begin unconsciously, that is,

before there is any subjective awareness that a ‘decision’ to act has already been

initiated cerebrally”[101]. So, in summary, the change in gait stages can generate a

responsive neural change, but the intention to start or stop is more likely to appear

first (sometimes unconsciously) which creates neural changes to accommodate the
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change in gait. However, it is indeed a difficult question to answer and supportive

data from a denser grid of EEG or fMRI with a better temporal resolution could

help isolate and distinguish the effect of intention to stop and response to change in

sensorimotor correlates. This question should be addressed in the future extension

of this study.

The comparison of the present task with previous work is quite tricky. This

study presents an entirely predictive BCI system to predict human voluntary gait

intention. Other studies have used information from either before and after the

movement initiation and termination or have used a long baseline period for ex-

tracting neural information. On the other hand, the current study used data from

healthy subjects only while other studies might have collected data from stroke pa-

tients or amputees as well. Moreover, to find studies which had similar experimental

protocol was also quite challenging. So, the comparison of results is quite complex.

Table 4.5 shows the comparison of the current study to the state-of-the-art stud-

ies. Ortiz et al. [77] used a four-second detection window for pseudo-online start

and stop detection, which employed data from two seconds before the movement to

two seconds after the movement. They achieved an average of 80.47±14.63% TPR

with 4.43±3.67 FP/min in ’start’ detection and 84.06±14.63% TPR with 4.73±5.34

FP/min in ’stop’ detection. The current study achieved competitive TPR with a

higher FP/min with a comparatively smaller detection window. Moreover, the pro-

posed BMI is predictive, whereas the study mentioned above employed more of a

detection approach. Lin et. al [102] achieved 75.5±12.0% true positive detection

rate with 2.2±0.8 FP/min for detecting intention of Ballistic dorsiflexion using a

[-2,1] s detection window. Bai et al. [60] used a fully predictive [-1.5,0] s window

for detecting intention of wrist movement but the achieved TPR was lower than the

current study and the detection time was also later than that of the current study.
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Sburlea et al. [55, 56] used a smaller prediction window of [-1.5, 0] s to achieve lower

TPR and later detection time for predicting intention of gait initiation. However,

they reported an impressive FP/min of 0.79 ± 0.17 which was the best FP/min

that was found in literature. In summary, the current study shows promise in early

prediction of gait intention, however, specially the FP/min achieved by this study

needs improvement to be applied in real time study. It is to be noted though that

the lower FP/min resulted from the use a fully predictive window where a detection

made slightly after the event would also be counted as a false positive detection.

Nevertheless, incorporation of other sensors’ data to aid the prediction performance

of the BCI might be an interesting solution approach which will be addressed in the

future study.

4.9 Conclusion

In this study, it has been demonstrated that it is possible to predict ’start’ and

’stop’ of human voluntary gait intention using EEG data from before the event

only. Advanced wavelet transform technologies equipped with threshold regulation

and majority voting algorithm for adaptive prediction of gait intention is a promising

approach for real-life application. More efforts are necessary to improve the TPR

and FP/min, especially for predicting the intention of gait termination. However,

the current promising results show the feasibility of the proposed approach in the

context of real-life lower limb rehabilitation.
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CHAPTER 5

VMD-WSST: A COMBINED BCI FOR MOVEMENT INTENTION

DETECTION

5.1 Background

The work presented in this chpater has been reprinted from the author’s work pub-

lished in [103], ©2021 IEEE. Prediction of movement intention is of paramount

importance to enable volitional control of assistive devices. The performances of

current Brain-Computer Interfaces (BCI) are yet to reach the desired degree of ac-

curacy necessary for real-life assistive technologies. Therefore, the prediction of gait

intention remains a critical topic of research. Over the recent years, various signal

processing and machine learning technologies have been applied to detect human

intention to initiate and terminate movement.Over the recent years, various signal

processing and machine learning technologies have been applied to detect human

intention to initiate and terminate movement.Although the results of these studies

have been encouraging, the accuracies of such models are not sufficient to incor-

porate these methodologies in real-life scenarios yet. Therefore, further works are

necessary to ensure high-quality time-frequency decomposition to acquire the most

discriminative EEG features.

This paper proposes a methodology to detect human gait intention from gait-

related EEG signals leveraging the ERD phenomenon. Extraction of useful ERD-

related features requires time-frequency analysis with very little to no spectral leak-

age, preservation of the sharpness of decomposition, and a good time-frequency

resolution. In this study, the incorporation of two practical, data-driven empirical

time-frequency analysis tools, namely Variational Mode Decomposition (VMD) and

WSST, has been proposed to design a BCI algorithm. Gait-related EEG data from
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six healthy individuals described in the previous chapter were analyzed, and two

binary classification problems were formulated to detect human intention to start

or stop walking. The classification problems were approached with SVM classifiers

with radial basis kernel. The performance of the BCI algorithm was evaluated by

the accuracy, sensitivity, and specificity achieved by the classifiers.

5.2 Materials and Methods

This chapter uses the EEG, GRF, and EMG data used in the previous chapter.

Data acquisition and preprocessing was done using the same procedure. The [-1.5,

1.5] second window was used as the intention window for creating the classification

model while the rest of the epoch was marked as non-intention data. The epoched

data were then further subdivided into 1-second long sliding windows with 80%

overlap. This step resulted in a finer time-frequency resolution.

5.2.1 Variational Mode Decomposition

VMD [104] is a data-driven approach that decomposes a temporal signal into K

number of narrowband amplitude and frequency modulated Intrinsic Mode Function

(IMF)s. The variational mode decomposition method simultaneously calculates

all the mode waveforms, uk(t) and their central frequencies, fk(t), that minimize

the constrained variational problem. The optimization problem is solved using the

Alternating Direction Method of Multipliers (ADMM).

In this study, the EEG data were analyzed by the VMD algorithm, and each

1-second data window yielded 10 IMFs. As the ERD phenomenon is present in the

Mu (8-16 Hz) and Beta (16-35 Hz) frequency bands of the brain signal, the central

frequencies of the obtained IMFs were monitored, and only the IMFS with central
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frequencies in the range of 10-32 Hz were retained. The rest of the IMFs were

removed from the data to reduce redundancy. Thus, the use of VMD enabled us

to remove the irrelevant and redundant portion of the EEG data and thus enhance

the quality of subsequent time-frequency decomposition. Moreover, as the IMFs are

well separable in the time-frequency plane, removal of IMFs outside the range of

interest retains the sharpness of the time-frequency features of the frequency range

of interest, which traditional signal processing techniques cannot achieve. As the

VMD algorithm is entirely data-driven, the number of retained IMFs could vary

from frame to frame. This nonuniformity could make the task of feature extraction

much harder. That is why, instead of taking the IMFs as intermediary features,

they were reconstructed back into 1-second-long data windows. The data were then

ready for time-frequency decomposition using the WSST algorithm. The overall

VMD process has been summarized in figure 5.1. The equations for calculating

ERD can be found in the previous chapter.

5.3 Wavelet Synchrosqueezing Transform

The VMD-reconstructed EEG data were then analyzed using the WSST algorithm.

Using WSST, the Mu and Beta band EEG signals were extracted, then used for

ERD calculation. Figure 5.2 compares the ERD in Mu and Beta bands of ‘start’

related EEG obtained by VMD+WSST and a 4th order Butterworth bandpass fil-

ter. The analysis included all the trials from channel Cz of subject 1. The analysis

was performed on [-4,3] s data window with reference to the onset of the gait event.

The first two seconds of the window were taken as the baseline for ERD calculation.

Figure 5.3 shows the same for ‘stop’ related EEG. The proposed method resulted in

an observably higher negative peak in ERD for both ‘start’ and ‘stop’ of gait. How-
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Figure 5.1: The instantaneous frequencies of the IMFs obtained from a 10-second
window. Only the central frequencies of IMFs 4,5,6,7 were in the range of interest
(10-32 Hz). Therefore, only those IMFs were retained
.

ever, no visible difference could be recognized between the time-frequency analysis

obtained for the ‘stop’ of gait. Future works should include statistical analysis on a

larger scale to validate the enhancement in time-frequency analysis.

5.4 Feature extraction and Classification

The Mu and Beta band EEG signals obtained in the previous step were then used

to compute ERD features for classification. In this study, two binary classification

problems were formulated, and two classifiers were designed to address the problems.

The two classification problems were “Rest” vs. “Start” and “Walk” vs. “Stop”.

Due to the movement artifacts, the baseline EEG activity under resting and walk-

ing states would be significantly different. The two classification problems helped

address the difference in baseline and, in turn, the difference in feature distribu-
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Figure 5.2: Comparison of ERD activity obtained by the proposed method and a
4th order Butterworth bandpass filtering correspoding to start of gait. The EEG
data were acquired from Subject 1 channel Cz. Time 0 indicates the onset of gait.
.

tion. For both classification problems, Mu and Beta ERDs were used as features.

As there were 8 channels, each 1- second data window yielded 16 features. Both

classification problems were approached with an SVM classifier with a radial basis

kernel. The classification was done in a 10-fold cross-validation scheme where one-

fold were used as a test set, and all the other folds constituted the training set at

each step of validation. However, the data were imbalanced (70% vs. 30% in favor

of the non-intention class). That is why it was necessary to balance the classifier

models so that they did not favor the majority class and subsequently result in en-

hanced classification accuracies. It was ensured by maximizing the F1-score in each

step of training. As a result, the threshold or working point of classification was

appropriately regulated.
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Figure 5.3: Comparison of ERD activity obtained by the proposed method and a
4th order Butterworth bandpass filtering correspoding to stop of gait. The EEG
data were acquired from Subject 1 channel Cz. Time 0 indicates the onset of gait.
.

5.5 Results and Discussion

5.5.1 Classification Results

Table 5.1 and table 5.2 show the results of classification. The evaluation of the

performance of the proposed approach is done by reporting accuracy, sensitivity,

specificity. In the case of “Rest” vs. “Start” classification, the proposed approach

resulted in an accuracy of 83.36±1.75% accuracy with 82.83±2.99% sensitivity and

83.45±3.59% specificity. On the other hand, in the case of “walk” vs. “stop” clas-

sification, the classification accuracy, sensitivity, and specificity were 81.57±1.70%,

81.14±3.06%, and 82.06±3.28%, respectively.

Comparison with similar works is tricky because different studies used classi-

fication windows of different lengths and time ranges from the movement onset.
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Table 5.1: ‘Rest’ vs. ‘Start’ Classification Results using VMD+WSST

S.N. Classification Performance

Accuracy Sensitivity Specificity

S1 87.13 ± 1.82 88.47± 2.44 85.98 ± 3.66

S2 85.72 ±1.61 85.85± 1.77 85.63± 2.66

S3 85.49± 1.32 86.2± 1.94 84.5± 2.91

S4 71.99± 3.27 70.2± 4.11 73.02± 6.12

S5 82.15± 1.38 82.04± 4.62 82.22± 4.80

S6 87.67± 1.08 84.27± 3.07 89.38± 1.37

S7 83.36± 1.75 82.83± 2.99 83.45± 3.59

Ortiz et al. [77] achieved 78.61±11.20% accuracy in start intention detection and

84.36±10.19% accuracy in stop intention prediction using a [-2,2] s detection win-

dow. Hortal et al. detected starting and stopping during a gait cycle with 54.8%

and 56.1% true positive rates with 2.66 and 1.90 false positives/min in offline and

real-time scenarios, respectively [49]. Our previous study [85] on the same dataset

yielded an accuracy of 73.64±4.18%, 73.73±2.80% in stop intention prediction using

DWT and EWT. While, in the case of start prediction, accuracies of 78.28±3.45%

and 76.72±2.50% were achieved using DWT and EWT. The current approach re-

sulted in better classification accuracies with balanced sensitivity and specificity

than DWT and EWT. Although Ortiz et al. [77] reported a slightly higher classifi-

cation accuracy in stop detection, their intention detection windows were 1 second

larger than used in this study.

Interestingly, our previous work yielded slightly better classification performance

using WSST only [85]. This result indicates that VMD provides a means to perform

datadriven signal processing and filtering. However, for proper VMD operation,

it is critical to reduce inter IMF spectral leakage while limiting the loss of signal
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Table 5.2: ‘Walk’ vs. ‘Stop’ Classification Results using VMD+WSST

S.N. Classification Performance

Accuracy Sensitivity Specificity

S1 87.52 ± 1.05 87.01± 2.45 87.83 ± 1.25

S2 83.97 ±2.53 84.42± 3.24 83.65± 4.15

S3 84.08± 1.14 84.62± 1.96 83.76± 1.99

S4 71.51± 2.07 72.80± 2.74 70.39± 4.93

S5 76.00± 2.02 74.04± 4.86 77.15± 4.76

S6 86.34± 1.39 83.92± 3.12 87.58± 2.57

S7 81.57± 1.70 81.14± 3.06 82.06± 3.28

information. In this study, we used a stationary number of IMFs, which does not

ensure the above conditions. Therefore, the number of IMFs for each data frame

should also be selected in an empirical manner keeping the above goals in mind.

This critical limitation should be extensively addressed in future extensions of this

study. Overall, the classification results show promising outcomes in predicting

human intention to start or stop walking from movement-related EEG.

5.6 Conclusion

The paper presents a novel algorithm for time-frequency analysis using a combina-

tion of VMD and WSST. VMD was used to extract the desired IMFs in the Mu and

Beta frequency bands, which were then reconstructed to obtain the desired brain

signal—after that WSST based time-frequency analysis yielded Mu and Beta band

ERD, which were used to detect the human intention to start and stop walking.

The classification results show promise; however, some critical challenges need to

be addressed. First, the success of VMD largely depends on estimating the number

of modes in the data, which is a difficult task. Further studies are necessary to ad-

dress this issue. Moreover, advanced machine learning and deep learning algorithms
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should be deployed to enhance the performances even further. Additionally, offline

classification results do not always guarantee similar success in real-time scenarios.

Therefore, pseudo online and real-time testing should be implemented in the future

to test the efficacy and robustness of the approach.
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CHAPTER 6

REAL-TIME PREDICTION OF GAIT ACCELERATION

INTENTION

6.1 Background

Volitional control of prosthetic devices can potentially provide the user with a more

natural movement experience. Currently, there is no feasible volitional triggering

method to adapt the prosthetic device to user’s intention to accelerate during walk-

ing. Therefore, real-time prediction of human acceleration intention from the pre-

acceleration electroencephalogram (EEG), and subsequent adaptation of the pros-

thetic device’s control parameters for seamless transition remains a daunting re-

search area. In that aspect, this study investigates the neural changes responsive

to human intention to accelerate during walking. Furthermore, this study also ex-

plores whether the acceleration intention can be predicted from real-time EEG to

subsequently enable parametric adaptation for an external prosthetic device.

6.2 Related Work

Most of the current studies have investigated neural changes related to gait initia-

tion and termination [105, 59, 106]. In addition to that, seamless transition between

different gait speeds is a very important and desirable feature of an effective assis-

tive device. It is therefore very critical to reliably and accurately predict human

intention to change gait speed to facilitate the user with a natural rehabilitative

experience. As previous studies have shown promising results in identifying neu-

ral changes related to gait initiation and termination from EEG, scalp EEG can

be a very convenient tool to identify appropriate neural biomarkers of intention to
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change gait speeds and subsequently enable parameter adaptation according to the

desired speed. However, the neural changes corresponding to intention of speed

change while walking has not been addressed extensively and further investigations

are necessary to understand and utilize the neural changes that occur in response

to acceleration intention. Lisi et al reported suppression in mu and beta rhythms

while speed changes in treadmill walking [105]. A more recent study has reported

a reduction in alpha and beta spectral power in sensorimotor cortex in response

to faster speeds in treadmill walking [107]. But no study has investigated neural

changes related to gait acceleration intention during self-paced walking according

to the authors’ knowledge. If the gait acceleration intention can be predicted from

pre-acceleration EEG features, the predicted information can be transformed into

control commands for enabling adaptive control of an external prosthetic device.

Such adaptive control can pave the way to a natural and realistic control of assistive

devices resulting in regaining of motor ability.

In this study, the gap in current studies have been addressed by investigating

the neural changes corresponding to the intention of acceleration during self-paced

walking. The mu and beta band activity were monitored to look for suppression

in power before the acceleration onset. An SVM classifier with radial basis ker-

nel was trained to distinguish between the constant speed and accelerated speed

condition using processed pre-acceleration EEG. The classifier was evaluated offline

using a 10-fold cross validation scheme. Another classifier was designed for the same

classification task in a pseudo-online scenario where the samples were accessed as

if they had just been just acquired. For 10-fold offline classification scheme, per-

formance was evaluated in terms of accuracy, sensitivity and specificity. While, in

pseudo-online paradigm the performance was evaluated in terms of true positive

rate, false positives per minute and intention detection latency. Furthermore, a real
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time experiment was also carried out to test the efficacy of the proposed method-

ology in real-time scenario. In real-time test, an online SVM classifier was trained

to detect intention to speed up while self-paced walking. In addition to EEG, IMU

and GRF signals were used to optimize the system performance by minimizing the

false positive detection rate. The proposed methodology provided promising results

which would encourage future investigative studies regarding prediction of human

gait acceleration intention and subsequent adaptative control of associated assistive

device.

6.3 Current Work

In this study, the gap in current studies have been addressed by investigating the

neural changes corresponding to the intention of acceleration during self-paced walk-

ing. The mu and beta band activity were monitored to look for suppression in power

before the acceleration onset. An SVM classifier with radial basis kernel was trained

to distinguish between the constant speed and accelerated speed condition using pro-

cessed pre-acceleration EEG. The classifier was evaluated offline using a 10-fold cross

validation scheme. Another classifier was designed for the same classification task

in a pseudo online scenario where the samples were accessed as if they had just been

just acquired. For 10-fold offline classification scheme, performance was evaluated

in terms of accuracy, sensitivity and specificity. While, in pseudo online paradigm

the performance was evaluated in terms of true positive rate, false positives/ minute

and intention detection latency. Furthermore, a real time experiment was also car-

ried out to test the efficacy of the proposed methodology in real-time scenario. In

real-time test, an online SVM classifier was trained to detect intention to speed up

while self-paced walking. In addition to EEG, IMU and GRF signals were used to
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optimize the system performance by minimizing the false positive detection rate.

The proposed methodology provided promising results which would encourage fu-

ture investigative studies regarding prediction of human gait acceleration intention

and subsequent adaptative control of associated assistive device.

6.4 Materials and Methods

6.4.1 Subject

One healthy right-handed male subject participated in the study (26 years, 150 lbs,

172 cm). According to the knowledge of the authors, the subject did not have any

preexisting neurological disorder. The experimental protocol was approved by the

institutional review board (IRB) and signed consent was collected from the subject

before the execution of the experiment.

6.4.2 Experimental Procedure

The experimental procedure was carried out in a laboratory setting. The experimen-

tal protocol was designed to detect intention to speed up during self-paced walking.

For the purpose of this study, two different experimental sessions were carried out.

One session of data collection was done for offline and pseudo online testing, while

the other session of data collection was carried out for real-time testing.

In the first session, the subject was asked to speed up during self-paced walking

in multiple trials. Each trial started with a constant speed walking leading to an

acceleration in speed and then continuing to walk with that same accelerated speed

for a few more gait cycles. No audio or visual cues were offered to the participant

because of probable corruptive effect on acceleration related neurophysiological sig-
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nals. The subject sped up according to his own will at any moment he wanted.

However, it was made sure that he was completing at least three full gait cycles be-

fore speeding up. That was done to make sure proper baseline EEG activity could

be registered for successful subsequent intention detection.

For the real-time testing session, data collected in the previous session was used

to train an online classifier to detect intention to speed up in real-time scenario. In

this second session, the subject continued the same task, only this time continuous

detection of his intention to speed up was carried out and the decisions were saved

online. In this session, the subject carried out 12 trials of the same task.

After each trial, the subject could rest for as long as he needed. Each trial lasted

for approximately 10 seconds. And in each trial, the following tasks were repeated

periodically: start, walk in constant speed, accelerate and continue walking in the

same speed. The subject executed 60 repetitions of the task in the first session and

12 repetitions in the real-time testing session. Overall, the experimental procedure

took 50 minutes to complete. Figure 6.1 shows the experimental protocols briefly.

6.4.3 EEG Data Acquisition

An active electrode system (actiCAP, Brainproduct GmbH) was used to collect 16-

channel EEG from Cz, C1, C2, C3, C4, C5, C6, CP3, CP4, CPz, FC3, FC4, FCz,

Fz, Pz and Oz channels according to international 10/20 system. The reference

and ground electrodes were placed at Fpz and AFz consecutively. The EEG data

acquisition board was equipped with two on board ADS1299 amplifiers (Texas In-

struments) for online data amplification and recording. The data was recorded at

250 samples per second.
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Figure 6.1: Left: The offline protocol of the study, right: the real-time protocol of
the study.
.

6.4.4 Event Detection

For acceleration event detection and time locking the events, two custom-made in-

sole pressure sensors were placed inside the shoe of the participant. The specially

designed sole contained three pressure sensors which could detect heel, mid foot and

toe contact. In addition to that two IMU sensors were also placed on the spine of

the subject to monitor the relative transfer in balance to accommodate change of

speed. The IMU sensors could also sense the minute motions using multiple sensors

such as accelerometer, gyroscope and magnetometer [108]. One IMU was placed on

the top part of the spine close to the neck along the vertebra. While the other one

was placed on the bottom part of the vertebra near the waistline. The IMU sensors

had a sampling rate of 1000 samples per second while the in sole pressure sensors

recorded data at 100 samples per second rate.
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6.4.5 Data Preprocessing

In this study, two different kinds of data preprocessing techniques were implemented.

For the data obtained for offline evaluation, an EEGLAB [70] based data cleansing

procedure was implemented which has been discussed in previous sections in details

whereas for online testing dataset, a computationally less complex and more time

efficient procedure was employed to facilitate the feasibility of real-time evaluation.

In pseudo online and real time testing purposes, however, the EEGLAB based

cleansing protocol proved to be computationally too heavy to be implemented online

[85]. Additionally, in real-time scenario a very small window of data was accessed

at a time and all the preprocessing was carried out on that small window of data.

Both ASR and ICA needs a big length of data to work properly. That is why,

an alternative preprocessing technique was employed for pseudo online and online

testing. For these sessions, the data were first high pass filtered using a 6th order

Butterworth filter at 1 Hz cutoff frequency for DC drift removal. A notch filter

was then applied at 60 Hz to remove line noise. To remove the nonstationary and

abrupt large amplitude artifacts, PCA was applied and the principal components

which contributed to 90% of the variance of the data were removed. The application

of PCA was inspired by the definition of ASR which uses sliding window PCA to

remove big artifacts from continuous EEG. The cleaned data were then common

average referenced. Afterward, a Laplacian filter method was applied to remove the

effects of surrounding channels from the EEG data [9]. This was inspired by the

source localization aspect of ICA. The Laplacian Filtering method can be expressed

by the following equations:

sLPi = si −
∑
j ̸=i

cijsj (6.1)
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cij =

1
lij∑
i ̸=j 1

lij

(6.2)

Here i denotes the EEG electrode to be filtered whereas j denotes all the other

electrodes. sLPi denotes the outcome of the Laplacian filter. The algorithm penal-

ized the EEG electrode’s signals by subtracting a weighted sum of all the other

electrode’s data. The weights cij were defined by the distance between the cor-

responding electrodes, where the distances lij were measured following the three-

dimensional Euclidean method [9].

6.4.6 Data Segmentation

As stated earlier, the insole pressure sensors were used to detect acceleration in

walking state. The acceleration action was accompanied by a larger pressure value

detected on the pressure sensors. That was because of the stronger impact on the

foot to facilitate the larger swing of the other foot resulting in increased speed. The

IMU signals on the back were used to verify the correct detection of acceleration as

well. The overall segmentation procedure has been portrayed in figure 6.2. In the

offline session, the data were recorded, segmented and visually inspected to make

sure that the data segmentation was done properly. Moreover, it was also made sure

that all the sensors were synchronized to ensure proper segmentation and epoching.

6.4.7 Neurophysiological Data Analysis

The collected data were then analyzed offline to investigate the neurophysiology

involved with human gait acceleration intention. The data was analyzed using the

EEGLAB toolbox. Epoching was done from -4 to 2 seconds corresponding to the

event of acceleration. The obtained artifact-free epochs were then used to perform
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Figure 6.2: A 15-second segment of pressure sensor, top and bottom spine IMU
sensor data respectively. The red line corresponds to an acceleration event charac-
terized by the large peak on the pressure sensor compared to the previous steps.
The IMU sensors showed increase variance with increased speed.
.

a time-frequency analysis to look for suppression in mu and beta bands (8-32 Hz).

For ERD calculation, -4 to -2 seconds data were used as baseline. A 400-sample

smoothing window and a frequency padding ratio of 4 was used for smoother and

cleaner representation. Moreover, a permutation test was also performed to high-

light the statistically significant ERD activity at p<0.05. The statistical significance

was obtained by calculating all possible values of the test statistic under 200 rear-

rangements of the data points obtained in time-frequency analysis. In addition to

ERD, the presence of MRCP were also investigated. A low-pass filter with a cutoff

frequency at 5 Hz was implemented to capture the slow change in amplitude near

DC level. A significant ERD activity was found in both mu and beta bands cor-

responding to the intention of speeding up while walking between -2 to 1.5 s data

window with the onset of acceleration as reference. Also, a clear increase of negative
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amplitude was observed in both the channels and the trend was consistent across

almost all the trials in the same time frame. Further discussion about the results

will be presented in the results section of the article. In the following sections the

ERD activity will be used for classification between constant speed and accelerated

classes.

6.5 Binary Classification and continuous decoding

After the data segmentation, a binary classification problem was formulated to dis-

tinguish between constant speed and acceleration state. The goal of this study

required continuous monitoring and decoding of neural signals. As a result, a spe-

cialized classification scheme had to be applied. A small window of data from 2

seconds before the acceleration to 1.5 seconds after the acceleration were marked as

acceleration state. While the rest of the trial was marked as constant speed. This

was inspired by the neurophysiological data analysis which showed the presence of

significant ERD activity in both Mu and Beta bands from 2 seconds before the

acceleration to 1.5 seconds after the acceleration.

6.5.1 Feature Extraction and Selection

For ERD calculation, both the accelerated walking state and constant speed state

data were further divided into 1-s long epochs with 80% overlap. A wavelet synchro

squeezed transform (WSST) was performed on the data epochs to extract mu (8-16

Hz) and beta (16-32 Hz) band power. In each trial, the first 10 windows were taken

as baseline and the average baseline mu and beta power was used to calculate the

ERD in the subsequent windows. Here, ERD is computed in the simple manner
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stated below:

ERDi,j =
Pi,j − Pbaseline

Pbaseline

× 100% (6.3)

Here i and j denote the i-th data window of j-th channel where Pbaseline denotes

the baseline power of the corresponding trial and Pi,j denotes the power of the i-th

data window of the j-th channel. For evaluating the offline intention detection, the

mu and beta band ERDs were extracted as features. Thus, for each 1-second long

data epoch, 16 channels × 2 features = 32 features were extracted. To enhance

the distinguishability of the extracted features, a two-sample unpaired Wilcoxon

test was carried out and the absolute value of the resulting u-statistic was used for

feature selection. Moreover, the cross-correlation coefficients between an existing

feature and the next incoming feature was calculated and a threshold of 0.9 was

set to exclude highly correlated features. This procedure reduced the number of

features down to 20 for each 1-second epoch.

6.5.2 Offline Evaluation

In total, the offline dataset contained 3719 1-second long epochs. As the number

of subjects was limited, as many data samples as possible were collected from the

subject in order to ensure reliable and interpretable classification results. These

epochs were labelled according to data segmentation procedure described above. For

offline evaluation, a 10-fold cross validation was performed on the epoched dataset

using an SVM classifier with radial basis kernel. SVM classifier has been used quite

successfully in EEG-related classification tasks in various applications, like emotion

recognition [93], gait intention prediction [84, 85, 86]. That is why SVM was chosen

to classify the neural signals obtained from EEG.
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6.5.3 Pseudo-Online Evaluation

To test the real-time detectability of intention to accelerate during walking, a pseudo

online testing paradigm was also experimented for continuous decoding. In the

pseudo online paradigm, the data were subdivided into three parts. 60% of the data

were used as training dataset, 20% were used for validation or model tuning and

20% were used for testing. For the sake of unbiased testing, the test set were kept

untouched but the rest of the data which amounted to 80% of the whole dataset

were utilized to randomly select 10 different train-validation splits. This testing

protocol is inspired by a previous study carried out by the authors [85].

In each train-validation split, the training procedure was the same as the offline

training procedure. However, in the validation set a specialized classification rule

was applied. The validation set was used to find a suitable working point or threshold

such that the model could reach a maximum of 95% specificity while maintaining a

minimum sensitivity of 75% while classifying the validation dataset. The constraint

on specificity was put so that the working point does not bias the classifier into

predicting only the majority steady state class. The minimum sensitivity was also

set so that the classifier would maintain a decent success in positive prediction.

However, this could result into too many predictions of intention leading to an

increased false-positive detection. In a real-time scenario, false positive activation

might trigger the prosthetic device in an unwanted time, thus leading to accidents or

falling. So, further precaution was necessary to reduce the number of false positive

prediction of acceleration intention in the test set. To further reduce the chance

of false positive detections, a 10-window majority voting algorithm was applied

while classifying the test set which took the decisions of 10 consecutive windows

and returned the decision which was mostly reported in that 10-window period.

This meant that in the pseudo online protocol, decisions were processed every 2
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seconds. If any detection was made between 2 seconds before the acceleration and

the acceleration onset, then it was marked as true positive detection. Otherwise, it

was marked as false positive detection.

6.5.4 Real-time testing

Lastly, a real-time testing procedure was implemented. In this part, an SVM clas-

sifier was trained based on the epoched and labelled offline dataset. The offline

dataset was split into an 80-20 split as train and validation sets. The first 80% of

the data constructed the training set which was used to train the real-time classifier

while the validation set was used to satisfy the same classification rule as described

in the pseudo online evaluation section. The threshold thus obtained was stored and

used for decision making in real-time testing.

To reduce the number of false positive detections, an SVM classifier with Radial

Basis Function (RBF) kernel was trained based on the GRF sensor and IMU sensor

data which would be termed as motion sensor classifier. For training this classi-

fier, the mean and variance of the sensor data were used as features and working

points were determined using the same classification rule described above. All the

sensors were accessed every 500 milliseconds and a 2-second long data window were

extracted. All the preprocessing and feature extraction procedures were done real-

time and decisions were made. Whenever a detection was made by the EEG clas-

sifier, the corresponding pressure sensor and IMU sensor data were accessed and

classified using the motion sensor classifier. If the decision of the EEG-classifier was

supported by the motion sensor classifier, only then the detection was considered.

Otherwise, the decision by EEG classifier was ignored.
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6.6 Results

6.6.1 Result of Neurophysiological Data Analysis

Figure 6.3: Time-frequency analysis of EEG signals obtained from C3. Significant
ERD activity at p<0.05 has been marked by black rectangles. The significant ERD
activities were found between -2 to 1.5 s data window corresponding to the onset of
acceleration.
.

The results of neurophysiological data analysis are shown in figure 6.3, figure 6.5,

figure 6.4 and figure 6.6. Figure 6.3 and figure 6.4 show the time-frequency analysis

plot of C3 and C4 channels situated over the sensorimotor cortex. While, figure 6.5

and figure 6.4 show the low frequency amplitude plots obtained from the EEG signals

of the same channels. Figure 6.3 and figure 6.4 show clear blocks of significant ERD

in both the channels between -2 to 1.5 second data window of the acceleration onset.

The significant ERD activities in Mu and Beta bands are marked in black rectangles

in the figure. Meanwhile, figure 6.5 and figure 6.4 show clearly visible increase in
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Figure 6.4: Time-frequency analysis of EEG signals obtained from C3. Significant
ERD activity at p<0.05 has been marked by black rectangles. The significant ERD
activities were found between -2 to 1.5 s data window corresponding to the onset of
acceleration.
.

negative amplitude between -2 to 1.5 s windows of acceleration. The onset and end

of MRCP has been marked in red in the figure. Additionally, it is visible from the

figure that the negative increase in low frequency EEG amplitude was consistent

among almost all the trials which confirms the robust presence of MRCP in the

sensorimotor cortex corresponding to the intention to speed up during self-paced

walking.

6.6.2 Performance Metrics

The offline classification procedure was evaluated using the following performance

metrics: accuracy, sensitivity, specificity and F1-score. For pseudo online evaluation,

the performance metrics were: True Positive Rate, False Positives/ minute and
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Figure 6.5: MRCP plots obtained from C3. The initiation and termination of MRCP
has been marked by red dots. The increase in negative activity is mostly noticed
between -2 to 1.5 second window with respect to the onset of acceleration.
.

Figure 6.6: MRCP plots obtained from C4. The initiation and termination of MRCP
has been marked by red dots. The increase in negative activity is mostly noticed
between -2 to 1.5 second window with respect to the onset of acceleration.
.
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detection latency. For real time testing, the detection times, true detection and

number of false detections have been reported. In future studies, the decisions of

the classifiers would be passed to a physical prosthetic leg to change its parameters

adaptively.

6.6.3 Offline Classification Results

Table 6.1: Offline Performance Metrics.

Accuracy Sensitivity Specificity F1-score
85.9±2.9% 86.1±5.9% 85.7±4.7% 80.1±3.6%

Table 6.1 shows the classification performance in offline scenario. The classifica-

tion results showed good detection performance well beyond the chance level. The

average specificity was slightly better than the average sensitivity. But the clas-

sification results were balanced despite the classes being imbalanced, i.e. samples

belonging to the negative class or the constant speed class were greater in number

compared to the samples in the positive class or acceleration intention class.

6.6.4 Pseudo-online Classification Results

The pseudo-online performance metrics are represented in table 6.2. In pseudo

online testing, the system showed good classification results with 81.9±7.4% true

positive detection rate with 7.7±0.8 false positive detections per minute.

Table 6.2: Pseudo-online Performance Metrics.

TPR(%) FP/min Latency (ms)
81.9±7.4% 7.7±0.8% -844±572
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6.6.5 Real-time classification results

Table 6.3: Real-time Testing results.

Detected events (total events) False positive detections Latency (ms)
9(12) 3 -741

The results obtained in real-time prediction of acceleration intention has been

reported in table 6.3. Out of 12 real time testing trials, 9 intentions to accelerate

could be detected. The rest were undetected. The average detection latency was

found to be -741 ms.

6.7 Discussion

This goal of this study was to investigate the neural changes corresponding to the

intention to speed up during self-paced walking on level ground. It was also in-

vestigated whether the neural biomarkers corresponding to speeding up gait could

be used to predict intention to speed up so that the information could be used to

adapt the control parameters of a prosthetic device accordingly. To achieve these

goals, EEG signals were collected from one healthy subject with no prior neuro-

logical condition while the subject performed multiple trials of acceleration while

walking. The EEG signals thus obtained were then cleaned and various signal pro-

cessing techniques were applied to identify neural markers that could distinguish

and help predict intention to increase walking speed. Significant presence of ERD

and MRCP were noticed in the sensorimotor cortex in the -2 to 1.5 s window corre-

sponding to the onset of acceleration. According to this information, ERD was used

in this study to predict intention to speed up during walking. The evaluation was

done in offline, pseudo-online and real-time scenario. The results were promising
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and could potentially be applied in real-time assistive systems to facilitate the users

with seamless transition between differing gait speeds using their volition.

The neurophysiological analysis showed significant evidence that neural changes

occur due to the intention to speed up. The obtained time-frequency map was

a result of multiple repetition of statistical testing on permutated dataset which

ensured that only the most significant ERD activities were highlighted in the plot.

This action also enforced that the appearance of ERD was not an outcome of noise

in the EEG data rather was related to the neural changes corresponding to the

intention to speed up. Similarly, the MRCP plots showed consistent presence of

increased negative low frequency amplitude over almost all the trials. This suggests

that the MRCP thus obtained was also a marker of significant neural change related

to acceleration intention. Moreover, the appearance of ERD and MRCP before the

onset of acceleration inspired the authors to inspect the feasibility of predicting

the intention to speed up rather than simply detecting it after the acceleration has

already occurred. That is why, predictions made before the onset of acceleration

was marked as true prediction during pseudo online and real time testing.

In pseudo-online classification, the negative value of latency showed promise be-

cause it suggested that the intentions were predicted before the acceleration onset.

However, it should be noticed that the number of false positive detection was quite

high. This was due to the non-stationarity of EEG data coupled with the added

interference contributed by the acceleration of gait. It suggests that the incorpora-

tion multiple sensors’ data with EEG can prove to be vital for real-life continuous

decoding and decision making to compensate for irregular false positive detections.

In real-time testing, the negative sign of the latency proves that intention of

acceleration could be detected before the actual incidence of acceleration. Another

very important is that the verification classifier added to the real-time system de-
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creased the number of false positive detections to just 3 in approximately 2 minutes.

This suggests that the incorporation of IMU and GRF data greatly improved the

prediction of acceleration intention by removing false positive detections made by

the EEG classifier. This is a very promising outcome which signifies that it could be

possible to detect the intention and adapt the corresponding prosthetic device be-

fore the onset of acceleration using a cascaded EEG-IMU-GRF continuous decoding

system.

Close observation of results also suggests that the offline classification results

were slightly better than pseudo online and real time results. But it is to be no-

ticed that offline classification system used ICA and ASR for preprocessing of EEG

which are computationally heavy and are not usable online or in real-time. The

use of computationally inexpensive and efficient algorithms like PCA and Laplacian

filter resulted in comparable performances which is a promising outcome. In future,

however, advanced signal processing and learning techniques should be investigated

to improve the prediction performance to further improve the performances of the

system in real-time.

Overall, the study shows that there is significant evidence of neural changes

related to speed up during self-paced walking on level ground without any audio

or visual cue. However, data acquisition from a larger population and analysis is

necessary to further validate and strengthen the outcome of the study. Neverthe-

less, a large quantity of data was collected from a single subject and neurological

data analysis was accompanied by a random permutation test to prove that the

neural markers are robust and consistent rather than being noisy. The promising

outcome of the preliminary study would inspire the authors to expand the scope of

the investigation in future studies. In future, data from multiple subjects would be

collected and analyzed. Moreover, sensor fusion or cascaded classification utilizing
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multi sensor data would be implemented for better classification. Another interest-

ing addition would be attempting to tune the parameters of a prosthetic device in

real-time according to the intention of the user to increase the walking speed.

6.8 Conclusions

In this study, the pre-acceleration EEG signals were investigated to find out gait

acceleration related neurophysiological changes. Initial results suggest that, a sig-

nificant mu and beta suppression was detected corresponding to the acceleration

intention. Furthermore, difference classification schemes were carried out to explore

whether such physiological changes could be detected in order to control an external

prosthetic device. Offline, pseudo online and real-time testing results suggest that

it could be possible to detect the intention to accelerate during self-paced walking

to adaptively control an assistive device Moreover, the integration of multisensory

data was found to be useful to minimize the false positive detection and therefore

to improve the overall performance of the real time system. Due to the present

situation involving COVID-19, it was challenging to find human subjects to partic-

ipate in the study. The future studies of this would include a greater number of

subjects including amputees. Additionally, more advanced computational methods

could be applied to enhance the detection performance even further. The results

of the proposed methodology showed promising results which could be investigated

extensively to add more realistic volitional features to the existing assistive BCI

devices.
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CHAPTER 7

ENHANCEMENT OF MOVEMENT INTENTION DETECTION BY

AFFECTIVE STIMULI

7.1 Background

A portion of this current chapter has been reprinted from the author’s previous

work in [109], copyright2020 IEEE. Recent psychological and neurological studies

suggest that human motor preparation and execution are largely affected by the

subjective emotional state. Thus, external emotion stimuli can be a potential tool to

enhance the detectability of movement intention from pre-movement neural signals.

This study investigated whether emotion-evoking music stimulus could improve the

performances of a fully predictive BCI system for movement intention detection.

For this purpose, EEG signals were recorded from twelve healthy subjects under

three emotional conditions: happy, sad, and neutral. The emotions were elicited

using external music stimuli while they performed a wrist extension action.

State-of-the-art endeavors to understand the neurophysiological changes related

to both upper and lower limb movement intention, preparation and execution have

utilized both ERD and MRCP. Pfurtscheller et al utilized ERD/ERS during upper

limb movement for BCI application [44]. Blankertz et al used the Bereitschaftspo-

tential (BP) to predict finger movement in a study reported in [110]. Liao et al

combined spatial features to classify single trial EEG signals in a finger movement

task in [111]. Lu et al proposed an adaptive spatio temporal filtering method to de-

tect movement related potentials in [112]. Zeid et al. proposed a pipeline of spatio-

temporal filtering to predict the laterality of self-initiated movements using readiness

potentials [113]. Wang et al. used ERD and MRCP to decode pre-movement EEG

patterns for BCI application [114]. Jeong et al proposed a subject dependent and
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section wise spectral filtering to decode movement related cortical potentials [115].

Ortiz et al applied Stockwell transform to EEG signal obtained during active gait

to detect intention to start or stop walking using ERD [77, 50]. Sburlea et al used

gait related EEG signals to decode EEG phase patterns for intention detection [55].

Similarly, several studies have focused on understanding EEG patterns correspond-

ing to various upper body [116, 117, 118, 119] and lower body [120, 121, 122, 86, 85]

movements and implementing them in BCI application. Additionally, efforts have

also been put in to realize the underlying neural phenomena related to both move-

ment imagery [123, 124] and execution [125, 126]. In addition to that various signal

processing, advanced filtering and modified classification technologies have also been

investigated in order to improve volitional self-paced movement intention detection

performance.

Despite the efforts discussed above, the current state of the art BCIs are still

far from being applicable and reliable in real-time situation. Early and accurate

movement intention detection is the most significant feature of assistive BCI sys-

tems. The most critical properties of a viable assistive BCI are low false positive

detection, high true positive detection and early detection time [84]. Most of the

studies use movement-related neural corelates to detect the intention to move after

it has already happened rather than being able to predict the intention before the

occurrence [77, 50, 49]. On one hand, non-stationarity and randomness of EEG

signals makes it difficult to make a reliable and early decision about movement in-

tention. In addition to that interference of movement-related potentials from other

limbs of the body as well as possible imagined movements hinder the detection of

movement intention from pre-movement EEG signal. Additionally, various psycho-

logical, behavioral, environmental or even emotional factors continuously affect the

performance of movement intention detection. Being unable to incorporate the emo-

104



tional attachment to human motor intention, preparation and execution is one of

the shortcomings of current state of the art BCIs.

Psychological and neurological studies suggest that human movement intention

and preparation are greatly affected by the subject’s emotional state [127, 128]. A

variety of studies have investigated the effect of individual emotional states on motor

preparation and execution [127, 128, 129]. It is reported in a study carried out by

Naugle et al [127] that highly arousing unpleasant emotional states accelerate the

initial motor response. While, pleasant emotional states generally facilitate the ini-

tiation of forward movement due to the approach-oriented directional salience of the

movement. Moreover, it is reported in several studies that under pleasant emotional

stimuli flexion movements are facilitated while under unpleasant stimuli extension

movements are enforced [130, 131, 132, 133]. Although there are conflicting doc-

trines about the specific effect of an affective state on movement intention, these

studies unanimously conclude that upper and lower body motor intention and exe-

cution are highly affected by the emotional state of the subject as well as emotional

impact of the environment on the subject. As a result, there is no denying the fact

that “human emotion and motor actions are largely intertwined and reciprocally

interrelated” [132, 134]. Understanding the complex relationship between emotion

and movement intention is therefore very crucial in order to develop an accurate

and reliable BCI for movement intention detection.

To enhance movement intention detection accuracy, all the internal and external

factors affecting movement-related neural signals are to be studied and addressed.

One way of doing this could be to enhance the motor control circuitry of human

brain during the movement preparation stage by including external stimulus, so that

the movement-related neural correlates become easily detectable despite the non-

stationary nature of brain waves. Emotion is one of the most prominent factors that
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may affect motor intention. Neurological studies suggest that information from the

limbic pathways can reach the motor pathways via the midbrain dopamine neurons,

where a high degree of integration exists between emotion and motor control circuits

[135]. Moreover, successful initiation of movement relies on nigrostriatal dopamine

in the basal ganglia circuits [136]. Therefore, activating dopamine in emotion circuits

may be a complimentary method to facilitate the basal ganglia motor circuits, in

effect facilitating enhanced motor control. Therefore, an external emotional stimulus

can enhance the detectability of neural changes during motor preparation. The

external emotion stimulus can be provided through images, videos or music. As

music is one of the most powerful emotion conveyors [137], a music stimulus can be

used to affect a person’s affective state.

In this study, we investigate whether it is possible to enhance prediction of

movement intention significantly from EEG during a wrist extension by associating

proper emotion-evoking musical stimulus. To investigate this question, we use sad,

happy and neutral music stimuli in order to evoke various emotions in the subject

while performing a wrist extension action. A 16-channel EEG system along with

2-channel EMG system were used to collect data from twelve healthy subjects. The

EMG data were used to time lock the wrist extension events while EEG data were

used to capture the mu and beta band ERD and MRCP. An SVM classifier with

threshold regulation was utilized to use the obtained MRCP and ERD information

to predict motor intention under the influence of three different emotional stimuli.

The corresponding intention prediction performances were analyzed in terms of false

positives/min, true positive rate and latency. To closely replicate an online scenario,

the data were handled, processed and classified in a pseudo online arrangement.

Moreover, a statistical analysis was also performed to exhibit the difference between

the MRCP and ERD activities in the sensorimotor cortex under different stimuli.
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7.2 Materials and Methods

7.2.1 Subjects

Twelve healthy individuals (eight male and four female, age 28.4±4.3) participated

in the study. All the subjects were right-handed except for one. None of the sub-

jects had any history of neurological disorder. The study was approved by the

institutional review board of Florida International University. Before participating

in the study, all the participants were properly trained about the task and they were

required to sign a consent form before proceeding.

7.2.2 Emotion Stimulus Database

The database used in this article was established in a music and emotion study

by Eerola et al [137]. The study produced a well-defined set of stimuli for music

mediated emotions. The database consists of a set of 360 film music excerpts. Film

music were chosen for the purpose of mediating powerful emotional cues and at the

same time maintaining neutrality in terms of preferences and familiarity. All the

excerpts were between 10 and 30 seconds in length. Half of the excerpts were mod-

erately and highly representative examples of five discrete emotions namely anger,

fear, sadness, happiness and tenderness while the other half were moderate and high

examples of the six extremes of three bipolar dimensions (valence, energy arousal

and tension arousal). In this study, the sad and happy labelled music excerpts were

used for eliciting targeted emotion in the subjects. There were 30 music excerpts in

each of these two categories. The music samples were rated by a group of 12 expert

musicologists in a scale of 1 to 10 according to the perceived emotion in each audio

clip.
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Figure 7.1: Experimental protocol of the study in summary. Each session contained
sad, happy or neutral emotional states at random. Four sessions of each affective
state were recorded. Each session consisted of three minutes of non-cued self-paced
wrist extension action.

7.2.3 Experimental Protocol

The experiments were carried out in the Human Cyber-Physical Systems lab at

Florida International University. During the experiment, the subjects were seated

in a comfortable chair in front of a monitor. They put their hands flat on a desk in

front of them and were asked to keep their hands, forearms and elbows as relaxed

as possible to minimize any contaminating muscle activity. The height and position

of the chair was adjusted properly so that the participants could be comfortable to

begin the experimental process.

Before the beginning of the study, the subjects listened to all the 60 music

clips and selected one happy and one sad audio clip which elicited the targeted

emotions most successfully in them. This was done to correctly address the subject

dependent variability in perceived affective state from the audio clip. After the

selection of proper emotional stimuli, the participants moved into the wrist extension

task. Figure 7.1 shows the experimental protocol in summary. At the beginning

of each trial a countdown of 10 seconds appeared in the monitor in front of the

participants. All the subjects were required to perform a simple wrist extension as

soon as the countdown timer showed zero. That made sure that all the participants

extended their wrists approximately every 10 seconds.
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The experiment consisted of a total of 12 sessions. Out of those 12 sessions,

four sessions were termed as neutral sessions because those sessions were free of any

musical stimulus. The rest of the sessions involved the inclusion of either sad or

happy emotional stimuli which were preselected by the subjects. In these sessions,

the affective audio clips were played in a loop while the subjects carried out the

wrist extension task. Each of the sessions were 3 minutes long with a break of

2-5 minutes between two consecutive sessions. Moreover, consecutive sessions were

randomized in order to remove any additional affective bias resulting from the order

of the sessions. In each session, the subjects completed approximately 18 repetitions

of wrist extension which aggregated to 65 to 75 wrist extension events under each

affective state namely happy, sad and neutral.

7.2.4 Analysis of Subjective Emotional Stimuli

Although the emotion evoking music stimuli were rated beforehand, emotion itself is

a subjective experience. That is why the task of selecting proper music stimulus was

given to the individual participant. Table 7.1 shows each participant’s chosen music

stimulus for happy and sad emotion and their corresponding sad and happy rating

provided in the database. It is to be noted that the participants chose different

music stimuli, however the overall average rating for happy and sad stimuli were

quite distinguishable and abided by the range of original ratings in the database.

This suggested the selection of proper emotion stimuli for evoking targeted emotions

according to the database standards.
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Table 7.1: Subjective Emotion Stimuli.

Subject Happy music stimulus Sad music stimulus
Happy rating Sad Rating Happy Rating Sad Rating

S1 7.17 1.17 1.00 7.00
S2 7.33 1.00 1.00 7.00
S3 6.20 1.00 1.00 7.17
S4 6.17 1.00 1.00 7.17
S5 6.20 1.00 1.00 7.00
S6 5.67 2.50 1.00 5.67
S7 7.17 1.00 1.00 5.83
S8 6.20 1.00 1.00 5.67
S9 6.20 1.00 1.00 4.60
S10 7.17 1.00 1.00 7.67
S11 7.00 1.00 1.17 7.50
S12 6.20 1.00 1.17 7.50

Overall 6.56±0.56 1.14±0.43 1.03±0.07 6.65±0.96

7.2.5 Data Collection and Event Detection

For the purpose of this study EEG signal was recorded from the subjects’ brain

while performing the task. An active electrode system (actiCAP, Brainproducts

GmbH) was used for collecting EEG data from 16 channels. The board contains

two on board ADS1299 (Texas Instruments) amplifiers. The EEG electrodes were

placed at Cz, C1, C2, C3, C4, C5, C6, CP3, CP4, CPz, FC3, FC4, FCz, Fz, Pz,

Oz. The placement of the electrodes has been shown in figure 7.2. The ground

and reference electrodes were placed at AFz and FPz respectively. The EEG data

were recorded at a sampling rate of 500 samples per second. For event detection

and time locking, two electromyography sensors were placed on the forearm of the

subjects. The electrodes were placed at Extensor Digitorum and Extensor Carpi

Ulnaris muscles with the ground electrode on the bony surface of the wrist (Figure

7.2).

The EMG data were recorded at 1000 samples per second which was then band

pass filtered with a FIR filter with cutoff frequencies at 20 Hz and 400 Hz. The

initiation of spikes in EMG data provided the time instances of the wrist extension

action and that time information were used later for EEG feature extraction and
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Figure 7.2: EEG and EMG sensor locations. EEG sensors were placed ac-cording
to the international 10/20 system. EMG sensors were placed according to a bipolar
montage with ground placed at the bony surface of the wrist.
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Figure 7.3: Wrist extension event detection. EMG data from Extensor Digitorium
and Extensor Carpi Ulnaris muscles were used for event detection. Spikes in the
EMG corresponded to onset of wrist extension.

formulation of a binary classification problem. The event detection procedure has

been shown in figure 7.3.

7.2.6 Data Preprocessing

Information retrieval from EEG signal is accompanied with some critical challenges.

Few of those challenges are the non-stationarity and randomness of the EEG signals,

low signal to noise ratio and susceptibility to external artifacts. Therefore, proper

filtering and cleansing of the collected EEG data is necessary for extracting valu-

able movement related information. The details of EEG preprocessing have been

provided in previous chapters.
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However, ASR and ICA are not suitable methods to be used in real-time ap-

plication because these are computationally heavy and need a lot of data to work

properly. That is why, an alternative and computationally more efficient methodol-

ogy was applied for pseudo online testing. To comply with the offline sessions, data

of one second long were accessed every 200 ms. A 4th order Butterworth high pass

filter at 1 Hz cutoff frequency was used to remove DC drift. A notch filter at 60

Hz removed the line noise. After that a common average reference filter was used

to reference the data to the grand mean of all the channels. Lastly, a Laplacian

filter method was implemented to remove the effects of neighboring channels from

any individual channel [77]. The Laplacian filtering method penalized each channel

subtracting a weighted sum of the contributions coming from all the neighboring

channels, where the weights are derived from channel to channel Euclidean distance.

The Laplacian filtering method can be expressed as:

xLP
i = xi −

∑
j ̸=i

wijxj (7.1)

wij =

1
lij∑
i ̸=j 1

lij

(7.2)

Here, i represents the index of the channel being filtered and j represents the in-

dices of all other channels. xLP
i is the output of the Laplacian filter. The weights wij

were calculated from the distances between neighboring channels lij. The distances

were calculated using the three-dimensional Euclidean method [77].

7.2.7 Data Segmentation

As stated in one of the previous subsections, two EMG sensors were used for wrist

extension detection. A spike in the EMG sensor data represented the occurrence

of a wrist extension event. After the data were collected, the data were visually
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examined, and the times of events were extracted manually by visual inspection. It

was also made sure that all the sensors in the network were synchronized so that

there was no delay between the data of any pair of sensors. The extracted time

points were saved for use in further processing.

7.2.8 Binary Classification Problem

After the data segmentation was completed, a binary classification problem was

formulated to test the hypothesis of the study. The two classes in the problem were

steady state and active intention state. The steady state corresponded to the period

of each trial when the subjects were seated at a relaxed state without any intention

to move their wrist. On the other hand, a small window of data close to the initiation

of wrist extension were taken as active intention class. The classification problem

was addressed in two different settings: offline and pseudo online. For the purpose

of this, the first 80% of the data were used for offline testing as well as training

and tuning the pseudo online classifiers. The last 20% of the data were excluded

from this operation and were kept aside as unseen data for asynchronous testing to

replicate the real time performance of the proposed methodology in a pseudo online

environment.

For training the offline and pseudo online classifiers, data from 2 seconds before

the movement to 2 seconds after the movement were marked as active intention state.

This window selection was inspired by neurological background which suggests that

mu and alpha (mu) band ERD can originate 1.5-2 seconds before the movement

starts and can elongate till 2 seconds after the event [60].

However, this 4 second window was used as active intention state only for offline

cross validation and for modeling and tuning the pseudo online classifiers. While

114



testing any unseen sample using the trained classifiers, the intention to move was

required to be detected before the occurrence of the movement. This was to ensure

that the BCI is allowed enough time to trigger the associated assistive device before

the initiation of the movement. For pseudo online testing, therefore the detection

window was set to 2 seconds before the movement up to the onset of movement. If

any intention was detected outside this intention detection window, it was marked

false positive detection. The overall windowing methods, window lengths, and nec-

essary details have been summarized in figure 7.4.

The goal of the study was to investigate the effect of external emotion stimuli on

the movement intention detection performance of the BCI. To evaluate the difference

in detection performance, three different classifiers were trained for the three emotion

stimulus conditions in both offline and pseudo online paradigms. The metrics for

performance evaluation however remained the same. At the end, the results of the

classification process were compared and analyzed. The binary classification process

consisted of signal processing for feature extraction, feature selection and pseudo

online classification. These steps have been discussed in the next few paragraphs.

7.2.9 Signal Processing for Feature Extraction

In the study, the event related desynchronization phenomenon was used for move-

ment intention detection. ERD was chosen because of its ease of detection from

single trial EEG. To calculate ERD, the first two seconds of each trial were ex-

tracted as the baseline. Afterwards, the ERD features were calculated according to

the equations stated in the previous chapters.

In order to obtain ERD features with high resolution, both the steady state and

active intention state EEG data were further subdivided into 1 second long epochs
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Figure 7.4: Windowing and segmentation method for offline and pseudo-online
paradigm.(a) shows the windowing and segmentation method for offline cross vali-
dation, and training and tuning pseudo online classifier. (b) shows the windowing
method for pseudo online testing procedure.
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with 200 millisecond overlap. Each epoch was then processed for ERD extraction.

Because of its ability to retain the sharpness of decomposition to a great extent,

wavelet synchro squeezed transform was utilized for calculating alpha (mu) (8-16

Hz) and beta (16-32 Hz) band power in this study. After the calculation of the band

powers, ERD features were calculated for each 1-second epoch. The number of ERD

features were therefore 2 per channel for each epoch. Although data were collected

from 16 channels, the EEG data from Oz was discarded from ERD calculation as

the occipital region does not hold useful information about movement preparation

and execution. More emphasis is put on the channel in the central area of the brain

where the sensorimotor cortex is located. As a result, for each 1-second epoch 30

ERD features were extracted for further processing.

7.2.10 Offline and Pseudo-online Training

The set of features were ready to train classifiers for solving the binary classification

problem between steady state and active intention state. As stated before, both

offline and pseudo online classification schemes were employed to test the current

hypothesis. Pseudo online approach is defined as an approach where the data in the

test set are accessed as if they are acquired real-time.

For this purpose, the whole dataset was divided into three parts. The last 20%

of the data were accessed in a pseudo online arrangement to test the efficacy of the

model in a simulated real-life scenario. Among the rest of the data, 60% were used

for training the classifier for pseudo online testing, and 20% of the data were used

for validating and tuning the classifier. To test the robustness of the pseudo online

results, the training and validation sets were chosen at random and this process was

repeated ten times to obtain average performances along with standard deviation.
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This randomization was done to account for any bias in the trained model. The

offline classification was carried out using the combined training and validation

dataset which comprised of 80% of the whole dataset. The testing was carried out

in a 10-fold cross validation scheme to obtain average classification performance with

standard deviation.

All the classification problems were addressed by training support vector ma-

chines with radial basis kernel [93]. While training the models, [-2,2] second window

corresponding to the onset of wrist extension was used as active intention state and

the rest of the trial was used as steady state. The hyperparameters of the classi-

fiers were optimized using a grid search method at each step. Further details of the

testing processes have been added in the following paragraphs.

7.2.11 Parameter Tuning

After training the classifier using 60% of the data, the next 20% were used for

tuning the parameter so that the classifier maintains a reasonable true positive

detection rate while ensuring a minimal false positive detection. The 1-s epochs in

the validation set were classified using the trained classifier. The working point or

the threshold was tuned so that the validation set could be classified with no more

than 95% specificity while maintaining at least a sensitivity of 75%. Here sensitivity

and specificity are defined as:

Specificity =
True Negative

True Negative+ False Positive
(7.3)

Sensitivity =
True Positive

True Positive+ False Negative
(7.4)

Here positive and negative classes represent the active intention and steady state

class respectively. It is to be noted that the working point could be selected to
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achieve a higher specificity to ensure low false positive detections in the testing

section. But that would lead to lower true positive detection rate which would result

the intention to move to be totally ignored at times. That is why a comparatively less

strict condition was imposed on the preset specificity value. However, for proper

operation a real-time BCI for an assistive device the false positive detection per

minute must be well controlled and be kept to as low as possible. To ensure that

further protective measure was taken in the pseudo online testing paradigm.

7.2.12 Pseudo-online Testing

The testing process was carried out in a pseudo online arrangement in an asyn-

chronous fashion. For the purpose of testing, the data was accessed one 1-second

epoch at a time. It is to be noted that all the data preprocessing was done offline

and the preprocessed data were used for pseudo online testing. After the classifier

returned a decision about an epoch, the decision was stored, and the next 1-second

epoch was passed to the classifier after 0.2 second. Thus, the pseudo online asyn-

chronous testing was performed.

To further reduce the chance of false positive detections due to the nonstationary

nature of EEG signal, a protective scheme was applied. The protective algorithm

took in the decisions of 10 consecutive epochs and returned one uniform label for

all of them. If all 10 consecutive epochs were labeled as intention class, a detection

was reported. If even one of the epochs were labelled as steady state class, any

detected intention was discarded. Once a decision was made, the next 10 epochs

were taken, and their labels were processed in the same way. As the windows were

moved 0.2 second at each step, the final decision was made every 2 second about

the previous 10 windows. The overall pseudo online testing procedure has been
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Figure 7.5: Pseudo online testing procedure. Data were classified one 1-s epoch at a
time. The blue dots represent the classifier assigned score to the 1-s epoch and the
red horizontal line indicates the threshold deter-mined by the validation set. The
intermediate decisions made about each 1-s epoch contained a lot of false positive
detections which are marked in red. A multi-window combination approach was
employed to minimize the false positive rate in exchange for lower decision bit rate.
A decision was made after every 10 windows which amounted to 2 seconds.

pictorially explained in figure 7.5.

7.2.13 Performance Metrics

To quantify the performance of the proposed pseudo online methodology, the TPR,

FP/min and latency were calculated similar to the previous chapter. It is to be

noted that a detection was termed as true positive only if the decision was made in

a [-2,0] second interval corresponding to the onset of the wrist extension event. If

the decision was made outside that window, then the detection was marked as false

positive detection. Moreover, after every movement a 2-second buffer time was in-

troduced, when all the decisions were disregarded. This was done to avoid the false
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positive detections that might arise from the Event Related Synchronization phe-

nomenon following a movement occurrence. This period was also used to calculate

baseline for the next trial.

To evaluate the performance of the offline 10-fold cross validation scheme, the

average and standard deviation of accuracy, sensitivity and specificity were reported

for all the emotional stimuli conditions.

Additionally, the neurophysiological data corresponding to the three different

affective conditions were also analyzed. The timing information related to the onset

of ERD phenomena was compared and studied. The results have been presented in

the results section of the article.

7.3 Results

7.3.1 Neurophysiological Data Analysis

The collected EEG data corresponding to three different emotional condition namely

happy, sad and neutral were analyzed offline to study the fundamental difference in

ERD phenomenon under different affective states. For this purpose, epoching was

done from 10 seconds before the event to 3 seconds after the event. The epochs were

preprocessed and freed from artifacts and time-frequency analysis was performed to

obtain ERD. -10 seconds to -8 seconds of EEG data were selected as baseline. The

obtained alpha (mu) and beta band ERD from all the channels were average to

obtain an overall representation of ERD under three conditions for each subject.

Figure 7.6 shows the comparison of ERD under three different emotion conditions.

The first occurrence -1 dB ERD points were selected as the point of initiation

of ERD because that point referred to about 20% decrease in alpha (mu) and beta
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Figure 7.6: Comparison of ERD corresponding to the intention of wrist extension
in three different affective states, namely neutral, happy and sad. The alpha (mu)
ERDs have been marked in red boxes while the beta ERDs have been marked in
black boxes. The figures suggest early occur-rence of ERD in mu band under happy
music stimuli and late occurrence of ERD in sad emotion state.

band power compared to the baseline power. For neutral, happy and sad emotion

states, the time of first occurrence of -1 dB alpha (mu) ERD were found to be -508.7

ms, -1045.2 ms and -419.3 ms respectively. While the first occurrence of -1 dB beta

ERD were found to be at -300.2 ms for all emotion conditions in the beta band.

The peak beta ERD of -1.989 dB occurred at 623.1 ms for neutral state, while for

happy and sad emotions the values were -2.041 dB at 533.8 ms and -2.098 dB at

444.4 ms. Similarly, the peak alpha (mu) ERD values of neutral, happy and sad

emotional states were found to be -3.781 dB at 831.6 ms, -3.996 dB at 772.1 ms and

-3.993 dB at 742.3 ms.

Additionally, a permutation test was also performed to compute pairwise statisti-

cal significance of difference in ERD under three different conditions. Permutations

tests were computed at a significance level of 99% and the results are presented

in figure 7.7. The figure shows the result of permutation test in the range of -2

to 2 seconds corresponding to onset of movement, because this is the range where
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Figure 7.7: Results of a pairwise permutation test performed on ERD in the range of
[-2,2] seconds in three different emotional states at 0.01 confidence level. The major
significant blocks are marked in black rectangles. Happy music stimuli showed early
significant differences in ERD in both mu and beta bands even before the movement
onset. However, sad and neutral emotional states did not show any major significant
differ-ence in ERD before the movement onset.

the appearance of desynchronization is most expected in mu and beta frequency

bands. Moreover, The EEG data collected from each subject under the three affec-

tive states were analyzed in EEGlab to study the difference in MRCP. The effect

of movement intention, preparation, and execution is found close to the onset of

movement. Therefore, epoching was done from 4 seconds before the movement to

2 seconds after the movement. The data in the [-4, -3] second window were used as

the baseline. Additionally, a permutation test was performed to compute the pair-

wise statistical significance of the difference in MRCP corresponding to the three

different affective states. The significance level was set at 95%. A smoothing filter

was used to smoothen the MRCP data to show the difference under the emotional

states clearly.

The MRCP phenomena were analyzed in three-electrode groups: medial (FCz,

Cz, CPz, Pz, Oz), contralateral (FC3, C1, C3, C5, CP3), and ipsilateral (FC4, C2,

C4, C6, CP4). Figure 7.8 shows the three affective states’ movement-related cortical

potential in the brain areas. The contralateral side of the brain (left), according to

the side of movement (right hand), showed the highest peak negativity under happy
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Figure 7.8: Comparison of MRCP in contralateral, medial, and ipsilateral electrodes
(from left to right) under three difference affective states.

music stimulus of -1.43µV at 1011 ms after the wrist extension. Moreover, happy

music stimulus resulted in the earliest appearance of negativity approximately 1105

ms before the movement. Meanwhile, sad and neutral affective states resulted in a

peak negative amplitude of -1.05µV (1245 ms) and 0.98 µV (1253 ms). Negative

amplitude appeared at 105 ms and 876 ms, respectively, under neutral and sad

affective states. In medial EEG electrodes, negativity appeared at -2304 ms, -162

ms, and -161 ms under happy, neutral, and sad affective states. The peak negative

amplitude was highest under happy state (-1.79 µV at 1572 ms) followed by sad

affective state (-1.39 µV at 1561 ms) and neutral affective state (-0.83 µV at 423

ms). Happy music stimulus resulted in the highest peak negative amplitude of -1.78

µV at approximately 1571 ms on the ipsilateral side. In comparison, sad and neutral

affective states caused the negative peak amplitudes of -0.68 µV (1550ms) and -0.96

µV (425ms). The first appearance of negative amplitude was located at -12 ms, 98

ms, and 1003 ms relative to the onset of wrist extension, respectively, under neutral,

happy, and sad affective states.

Figure 7.9 shows the result of pairwise statistical significance testing performed

to find significant differences in MRCP under different affective states. Only the

[-2,2] second window relative to the moment of wrist movement was analyzed be-

cause this window was later used for classification and therefore was the window of

interest. Statistical permutation testing did not show any statistical significance at
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Figure 7.9: Result of statistical significance testing at p<0.05. Pairwise significance
testing with multiple permutations was performed in ipsilateral and contralateral
electrodes relative to the side of movement (right). Medial electrodes showed no
statistical significance at any point of time.

any moment in the medical EEG electrodes. The comparison between the Event-

Related Potential (ERP) obtained under happy and neutral emotion states suggests

a statistically significant difference (p<0.05) mainly before the onset of the move-

ment in the contralateral EEG electrodes. However, the statistically significant time

frames are comparatively lower in number on the ipsilateral side. Therefore, it can

be stated that ERP waveforms in these two conditions showed a statistically mean-

ingful difference in the contralateral side between -1900 ms and -300 ms relative

to the moment of movement onset. While comparing MRCP calculated from EEG

signals corresponding to happy and sad emotional states, a substantial statistically

significant difference was found before and after the movement onset. However,

comparison between ERPs obtained under neutral and sad emotional states only

revealed the transient presence of significance in contralateral and ipsilateral sides.

In summary, happy and neutral emotion states showed significantly different MR-

CPs in the contralateral side and slightly weaker significance in the ipsilateral side

before the movement. Happy and sad emotion states showed statistical differences

over a long time before and after the movement in both ipsilateral and contralateral

sides.

125



Moreover, to investigate how the baseline EEG was affected by the type of stimuli

presented to the participant, the mu and beta band EEG powers were calculated

for all the channels and users. After that, the mu and beta powers were averaged

across all the channels to obtain a grand average representation for each subject.

The average baseline EEG powers are summarized in table 7.2. The average alpha

baseline power was much higher than beta baseline power. However, no significant

difference was found between the baseline powers at a significance level of 95%. The

results of t-test with Bonferroni Holm correction suggested that the baseline mu and

beta powers were not affected by the type of emotional stimuli.

Table 7.2: Comparison of Baseline EEG Powers (10−9V 2) across Subjects

Subject Mu (Alpha) Beta
Happy Neutral Sad Happy Neutral Sad

S1 15.90±9.40 14.60±7.20 15.90±8.20 7.90±2.10 6.80±2.00 7.10±1.80
S2 3.30±1.80 5.30±7.20 2.60±1.60 1.90±0.80 3.10±3.70 1.40±0.40
S3 8.90±4.40 6.00±2.90 8.80±5.60 2.30±0.60 2.00±0.30 2.00±0.50
S4 2.00±0.90 3.20±1.30 3.40±1.80 1.10±0.20 1.60±0.40 1.60±0.40
S5 56.40±40.10 46.80±27.40 60.60±55.70 9.70±3.30 9.50±2.30 10.50±3.80
S6 6.70±3.70 6.50±2.80 6.10±2.90 3.60±0.90 4.20±1.10 3.40±0.70
S7 6.00±2.20 4.10±1.90 5.10±1.90 6.80±7.90 2.60±1.70 6.00±3.60
S8 6.10±2.00 9.40±3.00 11.20±5.60 3.70±1.20 4.10±0.90 3.80±1.10
S9 4.20±1.60 4.30±1.60 5.30±2.20 3.10±0.70 3.10±0.70 4.90±4.50
S10 2.70±0.70 2.30±0.50 2.10±0.70 2.50±1.40 1.20±0.60 2.00±0.90
S11 6.70±3.40 8.00±5.20 7.60±4.30 2.40±0.60 2.90±0.80 2.40±0.60
S12 16.80±11.50 18.20±14.10 18.30±11.20 8.30±2.20 7.30±2.10 6.70±1.30

Overall 11.31±6.81 10.73±6.26 12.25±8.48 4.44±1.83 4.03±1.38 4.32±1.63

To get further insight into the underlying factors connecting emotional stim-

uli and motor activity, a comparison of muscle activation under the three different

emotional stimuli were also performed. The EMG powers were calculated for each

trial for the subjects and finally they were averaged across trials to capture a global

statistical representation of the average muscle activation energy per trial. Table

7.3 summarizes the EMG energy per trial for each subject under three different
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Figure 7.10: Comparison of EMG activity per trial in three different emotional
states. Boxplot and t-test suggests EMG activity was not affected by emotional
state.

emotional state. Initial inspection suggest that injection of emotional music stim-

uli resulted in a slightly higher EMG activity among the subjects on an average.

However, a t-test with Bonferroni Holm correction at 95% significance level did not

reject the null hypothesis. This suggests that there was no statistically significant

difference in the EMG activity under difference emotional condition. Moreover, sub-

jects 5 and 11 showed very high magnitude of EMG which could be caused by skin

conductance, electrode placement, individual physiology, anatomy or biochemical

properties [138]. However, the higher energy existed throughout all the emotional

stimuli and did not affect any specific condition. Figure 7.10 shows a boxplot of

the EMG activity across subjects which confirms that no statistical significance was

found.
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Table 7.3: Comparison of Average EMG Powers (V 2) across Subjects

Subject Happy Neutral Sad
S1 0.0373 0.0279 0.0389
S2 0.0247 0.0074 0.0090
S3 0.0210 0.0197 0.0282
S4 0.0292 0.0179 0.0292
S5 0.5178 0.3881 0.4194
S6 0.0250 0.0357 0.0235
S7 0.0274 0.0069 0.0556
S8 0.0250 0.0083 0.0292
S9 0.0050 0.0040 0.0047
S10 0.0265 0.0319 0.0219
S11 0.2774 0.2129 0.1686
S12 0.0219 0.0065 0.0036

Average 0.08±0.15 0.06±0.12 0.07±0.12

7.3.2 Offline Classification Results

Table 7.4 shows the subject wise offline classification results under three different

emotional states using mu and beta ERD. The accuracy achieved in neutral, happy

and sad emotional states were 86.1 ± 2.7%, 91.3 ± 1.8%, 89.2 ± 2.1% respectively.

Similarly, sensitivity and specificity achieved under neutral, happy and sad emo-

tional conditions were 85.3 ± 9.5%, 89.0 ± 3.7%, 89.5 ± 3.5% and 86.4 ± 9.1%,

91.4 ± 3.2%, 88.5 ± 3.6% respectively.

The achieved results were also tested by a paired two tailed t-test with Bonferroni-

Holm correction to investigate whether the difference in results obtained under dif-

ferent emotional states were statistically significant or not. The results of the t-test

suggest that the accuracies obtained under happy emotional stimulus was signifi-

cantly better than those obtained in neutral (p = 0.00001) and sad (p = 0.0024)

emotional conditions at 95% significance level. However, no statistically significant

difference was found between the results obtained in sad and neutral emotion states.

These results suggested that the happy emotional music stimuli enhanced the detec-

tion accuracy and the enhancement was statistically significant at 95% significance

level.
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Table 7.5 shows the classification results obtained under the three emotional

states obtained while classifying the intention and steady-state classes. Happy music

stimulus obtained the highest overall classification accuracy of 90.8±1.8%, followed

by sad (86.6±2.2%) and neutral (84.2±3.5%), respectively. The highest sensitivity

and specificity were achieved under happy music stimulus, which was 90.1±9.2%

and 91.1±5.2%, respectively. Sad music stimuli resulted in 86.6±4.7% sensitivity

and 86.8±5.6% specificity. Meanwhile, neutral emotion state yielded the lowest

sensitivity and specificity of 84.4±14.8% and 84.1±14.3%, respectively. A two-tailed

paired t-test with Bonferroni correction was performed to validate the classification

performance difference further. The result of the t-test yielded that happy music

stimulus performed significantly better than neutral and sad affective states in terms

of accuracy (p=0.000009 and p=0.0017 respectively) and specificity (p=0.000008

and p=0.0025 respectively) at p<0.05 confidence level. Meanwhile, in terms of

sensitivity, only the difference in performance between happy and neutral affective

states was significantly different at p<0.05 confidence level (p=0.0003). However,

no statistical significance was found between the classification accuracy, sensitivity,

and specificity obtained under sad and neutral affective states (p=0.0445, p=0.0901,

p=0.0277), respectively.

Table 7.6 shows the comparison of classification performance obtained using dif-

ferent feature combinations. Beta ERD resulted in the highest accuracy, sensitivity,

and specificity across all the emotional states as a single feature modality, followed

by Mu ERD and MRCP. MRCP yielded the lowest classification performance among

single feature classification models. In the case of two feature combinations, the best

performance was achieved using Beta ERD and MRCP, followed by Mu and Beta

ERD and Mu ERD and MRCP. Combining all three kinds of features resulted in sim-

ilar performances to the two feature combinations. However, the proposed feature
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selection method utilizing the MRMR algorithm enhanced up to 2% in classification

performance. Overall, the proposed method performed better than a single feature,

double feature, and multiple feature combinations by a margin of 2-5% in terms of

accuracy, sensitivity, and specificity.

7.3.3 Pseudo Online Classification Results

Although the offline classification results suggested that happy music stimulus could

enhance the detection performance compared to sad and neutral emotion states, the

results of pseudo online asynchronous classification held more importance to estab-

lish the fact. Because, the pseudo online scheme closely resembled the decision-

making scheme in real-time scenario. Table 7.7 summarizes the pseudo online clas-

sification results under different emotional stimuli.

The true positive detection rates achieved under neutral, happy and sad emotion

states were 76.9 ± 4.5%, 82.9 ±4.1%, and 74.1 ± 6.7% respectively. The proposed

methodology reached the aforementioned true positive rates with 5.8 ± 0.7, 5.4 ±

0.6, 6.4 ± 0.6 false positive detections per minute respectively in neutral, happy

and sad elicited emotions. Lastly, the detection latencies achieved under different

emotional stimuli were respectively -1163 ± 387 ms, -1187 ± 414 ms, -1115 ± 504

ms. The negative signs of the latencies suggested that the intention to extend the

wrist could be detected well before the onset of movement.

Like offline classification results, a two-tailed paired t-test with Bonferroni-Holm

correction was also employed on the achieved results. The results of the t-test

suggested that the average TPR achieved by the happy emotional stimuli were

better than those achieved by neutral (p = 0.0163) and sad (p = 0.0009) emotional

conditions at 95% significance level. The results of sad and neutral conditions did not
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show any statistically significant difference at 95% significance level. The FP/min

and detection latencies did not show any significant difference at 95% significance

level.

7.4 Discussion

This article investigated into the effect of emotion evoking music stimuli on the per-

formance of movement intention detection from pre-movement EEG signals. Results

suggest that happy emotion stimuli could enhance the detection performance quite

significantly compared to sad and neutral emotion states.

The study presented an offline as well as asynchronous pseudo online testing to

test the hypothesis of the study. However, the preprocessing tools used for offline

preprocessing, namely ASR and ICA was not properly applicable in online prepro-

cessing pipeline. Because ASR and ICA need significant amount of data to work

properly. ASR needs a good amount of data for estimating the clean portion of data

while ICA needs the data for reliable blind source determination. For proper online

application, preprocessing tools which require lesser amount of data and memory

are advised to be used. That is why a computationally less expensive preprocessing

methodology was also implemented for pseudo online testing which utilized com-

mon average referencing and Laplacian filtering. Recently Online Recursive ICA

(ORICA) [82] has been implemented as an effort towards online ICA, but it stills

needs a lot of efforts to be applicable online. For proper pseudo online or online

testing, therefore proper online preprocessing tools must be used. This issue will be

addressed more extensively in a future study.

The trials in this study were carried out by the subjects without any audio or

visual cue. However, the presence of the timer, which motivated the participants
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to initiate wrist extension in a timely manner, prevents the tasks from being called

completely voluntary. The purpose of the timer was to maintain a uniform epoch

size while processing the data. However, totally voluntary movement intention and

the effect of emotional stimuli on that phenomenon creates a promising research

area and should be carried out in an extension of this study. In future, self-paced

voluntary movements and the impact of emotional stimuli on completely self-paced

movement intention will be carried out to address this issue properly. However, in

that case it must be made sure that a minimal length of steady state EEG activity

is recorded from the participants to capture reliable and meaningful ERD. Because,

if the pre movement steady state duration is too short that would hamper the

extraction of proper baseline activity which is pivotal in ERD calculation.

Feasibility of external happy music stimulus in real-life situations is quite chal-

lenging. Moreover, emotion evoking musical stimuli significantly differ from person

to person which makes personalization of stimuli sets a very important task. There

might also be a safety hazard because listening to music while moving can be poten-

tially dangerous. Despite all these issues, the outcome of the current study suggests

that a personalized set of happy emotional music stimuli would at least help in

real-life neurorehabilitation, where an injection of happy music stimulus would po-

tentially help a person with impaired motor ability to recover the lost motor ability

to some extent with lesser effort and in a shorter time. Moreover, to reduce the

possibility of danger due to listening to music while movement, proper safety pro-

tocol should be designed and implemented so that the user can be alerted in the

appearance of any attention demanding task while moving. This poses another very

interesting research question which should be investigated in future studies.

The results of physiological data analysis revealed several interesting outcomes.

As the results of the analysis was averaged across all the subjects and all the elec-
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trodes of interest, the representation can be deemed as global and unbiased repre-

sentation of the overall time-frequency analysis. It was found that the inclusion of

happy emotional stimuli forced an early occurrence of at least -1 dB ERD compared

to the neutral affective state. Moreover, it was also noticed that the introduction

of sad emotional stimuli resulted in a late appearance of -1 dB ERD in alpha (mu)

band. Here, first occurrence of -1 dB ERD was taken as a point of reference to

compare the minimum distinguishable ERD corresponding to the intention of wrist

extension.

Moreover, it was also found that the peak beta ERD was achieved before the

peak alpha (mu) ERD across all the emotional conditions. However, the peak beta

ERD was always smaller in magnitude compared to the peak alpha (mu) ERD.

This suggested that although peak beta ERD could be an essential tool to detect

movement intention, the peak alpha (mu) ERD was easier to detect.

Another interesting observation that could be made from the neurological anal-

ysis (figure 7.6) is that the initial beta ERD appeared at the same time across all

emotion states. The magnitude of peak beta ERD was higher whenever any emotion

stimuli were applied whether it was happy or sad. But there was no distinguishable

difference in magnitude between beta ERDs of sad and happy emotion conditions.

The appearance of peak beta ERD was observed slightly earlier in the sad stimuli

condition followed by the happy and neutral emotional states.

In case of alpha (mu) ERD it was found out that the amplitudes of ERD became

significantly different at the application of happy or sad emotional music stimuli.

But the peak alpha (mu) ERDs were almost same in both happy and sad emotion

states. The occurrence of peak alpha (mu) ERD was earlier in the case of sad emo-

tion stimuli followed by happy and neutral emotional states just like beta ERD.

But more interestingly, the initiation of alpha ERD was observed significantly ear-
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lier under happy emotional stimuli than the other two emotional states. Happy vs.

neutral ERD comparison suggested moderate to strongly significant difference from

-1700 ms to -1150 ms in both mu and beta band. Approximately, -1000 ms to -250

ms showed moderately significant difference in mu ERD (figure 7.7). Immediately

after the movement, from 0 ms to 700 ms approximately, a strong significance was

observed in mu and lower beta bands. Happy vs. sad comparisons showed strong

significant difference from -1700 ms to -980 ms across mu and beta frequency bands.

But no significantly different blocks were observed after the movement onset. Com-

paratively, neutral vs. sad comparison showed very little significant difference prior

to movement onset, however a moderate significance could be observed from 0 ms

to 700 ms in mu and lower beta frequencies. Another interesting observation was

that, both happy and sad music stimuli resulted in significantly different ERD after

the movement onset which suggested that the degree of desynchronization was much

greater in the presence of musical stimuli.

Overall analysis suggested that introduction of happy music stimuli forced sig-

nificantly early detectable alpha ERD. However, sad stimuli might force early peak

in alpha (mu) and beta ERD. As the peak ERDs were always found after the move-

ment had already happened, the early occurrence of detectable ERD under happy

emotion stimuli might result in better detectability and in turns better prediction

of movement intention. Moreover, as there was no difference in initial appearance

time of beta ERD across different emotional conditions, results suggest that the

early occurrence of alpha ERD was the major contributor to the enhanced inten-

tion detection performance under happy emotional state. A recent study reported

a decrease in power in the alpha and lower beta band in posterior and anterior sen-

sor clusters responsive to arousal emotion [139]. The outcome of the current study

is supported by the mentioned study, because happy emotional music stimuli also
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contain high arousal rating, i.e. in the valence-arousal emotional plane, which could

potentially explain the early appearance of ERD. However, further extensive studies

are necessary to understand the effects of emotion on motor behavior.

The results of neurophysiological data analysis revealed that the happy music

stimulus enforced statistically significant and more substantial movement-related

potential before and after the movement. Compared to both sad and neutral emo-

tional stimuli, the difference was readily evident on both ipsilateral and contralateral

sides. However, the MRCP obtained under neutral and sad emotional music stimuli

did not significantly differ in MRCP activities on any electrode zones. The me-

dial electrode group did not show any statistically significant difference between the

MRCP obtained under different affective states. This finding indicates that happy

music stimulus can enhance the peak negativity of MRCP in specific brain areas

and thus has the potential to improve the detectability of intention-related cortical

potentials. As a result, this would enable accurate prediction of movement intention

leading to more feasible BCI operation.

Additionally, happy music stimulus also enforced early negativity in the low-

frequency brain signals in both contralateral and medial electrodes. The negative

amplitude appeared almost simultaneously for all the emotional states on the ip-

silateral side. The early occurrence of MRCP under happy music stimulus also

suggests that the inclusion of happy emotional stimulus can enable early detectabil-

ity of human movement intention. The ability to detect intention early and before

the movement onset could be critical for the state-of-the-art assistive BCI systems

to provide safe, reliable, on-time, and on-demand assistance. The user could benefit

from using such an assistive device because it would provide an experience closer to

natural human movement.
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Table 7.6 shows the comparison between the classification performances obtained

using different feature combinations. The lowest classification accuracy was obtained

using MRCP. This event is because MRCP is a very low-frequency change in EEG

amplitude, and it takes multiple trials of the same task to obtain a reliable represen-

tation of MRCP features. That is why it is challenging to classify movement-related

single-trial EEG data using MRCP features only. However, the classification perfor-

mance using MRCP was enhanced by applying happy music stimulus by about 4%

compared to neutral and sad emotional states. This finding is consistent with the

neurophysiological evidence found during the neurophysiological data analysis. An-

other interesting observation that can be made from the table is that combining the

MRCP features with Mu and Beta ERD improved the accuracy of the classification

models trained using only Mu or Beta ERDs. This finding suggests that combining

MRCP to ERD features can enhance the classification performance of BCI systems

which is in agreement with the findings of similar studies in the past. Additionally,

the MRMR feature selection method enhanced classification performance compared

to that of the three-feature combination without any feature selection. This out-

come suggests that the feature selection algorithm removed some redundant features,

resulting in higher classification accuracy using fewer features.

Happy music stimulus also yielded better classification performance than sad

and neutral emotional states(p<0.05). The current study reached slightly enhanced

classification performance despite combining ERD and MRCP features. The MRCP

features differed significantly in different emotional states, and therefore their in-

clusion in the classification model can improve accuracy, sensitivity, and specificity

significantly. Future works should explore advanced computational methods to ef-

fectively combine the ERD and MRCP features to further enhance the proposed

BCI’s performance.
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The t-test with Bonferroni Holm correction performed on the baseline EEG pow-

ers suggested that the baseline mu and beta powers were not affected by the type of

emotional stimuli. ERD is the measure of relative change in spectral power in the

basis of the baseline power. This suggests that despite having statistically similar

baseline beta and mu powers, happy emotional stimuli resulted in a significantly ear-

lier appearance of mu ERD which appeared during the movement related epochs and

thus resulted in potentially easier and more accurate movement intention detection.

The classifiers were trained using the 1-second epochs and the pseudo online

testing were done in the same way followed by the combination of results obtained

from 10 consecutive epochs to reach a final intention prediction decision. The data

before and after movement were involved in the training procedure because the

suppression of mu and beta power responding to human motor intention, namely

ERD starts from 1.5-2 seconds before the onset to 1.5-2 seconds after the onset of

the event which has been reported by multiple studies. To capture the overall neural

information, the 1-second data epochs from before and after the event were therefore

used to train the classifier. Extraction of data epochs from before the movement only

would rather result in partial or missed information retrieval which could affect the

performance of the classifier rather adversely. That is why data from before and after

the movement were used for training the classifier. Moreover, the goal of the study

was to evaluate the predictive performance of the BCI, and prediction of movement

intention was more important than mere detection of intention after the movement

had already happened. That is why while testing in a pseudo online paradigm,

any intention detected within 2 seconds before the movement were only marked as

true prediction. Any detection made after the event onset were disregarded from

performance evaluation.
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The results suggested that the average offline accuracy obtained by the happy

emotion stimuli were significantly greater (p<0.05) than those obtained by sad and

neutral emotion conditions. However, this relationship did not hold true for subjects

7 and 8, where sad stimuli resulted in better classification accuracy. The highest

classification accuracy was achieved for subject 1 under happy emotion stimuli which

was 97.4±1.1% and the lowest classification accuracy was achieved for subject 10

under neutral emotional state which was 82.3±2.1%. The overall classification sensi-

tivity and specificity for all the emotion states showed no sign of biased classification

as the sensitivity and specificity valuers were quite balanced as well.

In the case of pseudo online asynchronous testing, the results suggested the

superiority of happy emotion stimuli over other emotion states at 95% significance

level. But here too, there were some exceptions. Subjects 8, 10 achieved a greater

true positive detection rate under neutral emotional state and subject 11 achieved

a greater true positive detection rate under sad emotion stimuli with comparable

FP/min and detection latency. The highest TPR was achieved for subject 2 which

was 99.3 ± 0.4% under happy emotion stimulus. And the lowest TPR was achieved

for subject 9 under sad emotion stimulus which was 64.0±7.2%.

The FP/min and detection latencies achieved under different emotional states

did not show any statistically significance difference at 5% significance level. This

outcome was significant because it suggested that happy emotion stimuli could en-

hance the true positive detection rate significantly without any deterioration in

false positive detection and detection time. The detection times reported at differ-

ent emotion states also suggested that the movement intentions could be detected

on an average more than 1 second before the movement onset. This is promising as

early detection could grant the associated assistive device much needed preparation

time to adapt to the detected intention. This also would allow smooth transition
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from one mode of movement to another thus resulting in natural movement and in

turns successful neurorehabilitation.

Although the results suggested that happy emotion stimuli achieved overall bet-

ter performances in both offline and online testing procedure, no correlation could

be found between the scores assigned to the music stimuli and the corresponding

classification performance. However, this is expected because emotion is a subjec-

tive phenomenon. Despite the preset scores given to the stimuli the affective effect

on the individual is inherent to the participant himself. Therefore, a better way

to quantify the relationship between the affective content of the stimulus and the

resulting enhancement in movement intention detection performance should be in-

vestigated. One way to achieve that would be to quantify the effect of the stimuli on

the neural correlates and find the correlation between the enhancement in detection

accuracy and the quantified neural measurement of affective content in the stimuli.

This issue will be addressed properly in future related studies.

The FP/min achieved by the study suggested that under all affective states, on

an average approximately 5 to 6 false positive detections were made every minute.

As decisions were made every two seconds, a total of 30 decisions were made every

minute. This was a reasonable outcome in terms of FP/min. However, a better

FP/min could be achieved but for that the TPR would go down dramatically. Also,

it is to be noted that the detection window was [-2,0] s window corresponding to the

onset of movement which included data from before the movement only. Inclusion

of data from after the event onset might result in slightly better TPR and FP/min.

Addition of data from after the event would remove the predictive nature of the

proposed study which offered much needed preparation time for the assistive device.

However, more advanced machine learning and decision-making techniques could be

employed to further improve the performance of the study.
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Comparison of the present study with existing studies is quite tricky. This is

because there is no study which investigated into the effect of music stimuli on

movement intention detection performance to the best of the authors’ knowledge.

Bai et al. [60] reported 40 ± 7% TPR with -620 ± 250 ms average detection latency

using a [-1.5, 0] s detection window. Ibanez et al. [106] achieved a TPR of 60

± 11% with 1.5 ± 0.1 FP/min and mean prediction period of more than 700 ms.

Comparison with similar works suggested that the current method resulted in better

TPR and detection times with a slightly higher FP/min. But it must be noted

that the proposed study was totally predictive and decision-making criteria were

different from the existing studies as well. However, extensive efforts are necessary

for improving the results as well. This issue would be addressed in future extension

of the study.

Investigating intelligent stimuli with targeted emotion content should have a

stimulating effect on the proposed method’s applicability. Although the outcomes

of the current study are promising, it can be challenging to include music stimuli

in clinical applications. Therefore, it would be interesting to investigate alternative

methods to elicit targeted affective states in the user to enhance the chance to pre-

dict their movement intention. Moreover, the effect of emotion on more complicated

movements, like gait, ankle dorsiflexion, should also be studied to find out whether

the outcomes of this study are transferable and robust or not. Real-time studies are

also necessary to validate the outcomes in a real-time setting. Advanced machine

learning and numerical methods could also help enhance feature fusion and classifi-

cation performance. The limitations of the proposed methods should be addressed

extensively in future versions of the study.
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7.5 Conclusion

The hypothesis of the study was to examine whether the inclusion of emotion evok-

ing musical stimulus could result in enhanced movement intention detection per-

formance. Analysis of EEG signals and corresponding online and offline testing

suggested that happy music stimuli could work as a tool to enhance the distin-

guishability if movement intention from pre-movement EEG. However, further work

is necessary to quantify the effect of music stimuli on neural signals. Whether there

is a strict relationship between the affective content of the stimulus and the resulting

detection performance is another question to look at. In general, advanced signal

processing and learning techniques could be employed to enhance the current results

even more. However, the current results show promising insights about the inclusion

of music stimuli and its effect on movement intention, preparation and execution.
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CHAPTER 8

VISION-ASSISTED TERRAIN TRANSITION PREDICTION

8.1 Background

The purpose of a powered assistive device is to reconnect the support, control, and

actuation loops by interfacing with residual neuromusculoskeletal structures. This

provides the immediate benefit of repairing and retraining physiological gait pat-

terns, as well as the potential long-term benefit of recovering and retraining motor

networks. The prosthesis and exoskeleton control systems involve some distinct

agents which are: the environment, the user, the wearable device, and the hierar-

chical controller, according to Tucker et al.’s generalized control architecture [21].

There are also physical and sensory interactions between these elements. A hier-

archical controller holding knowledge about the user status, the user intention, the

wearable device state, as well as the state of the environment is required for move-

ment control coordination amongst these contributing components. In response,

the controller can supply the user with simulated sensory feedback and the required

commands for the wearable device. Humans, by nature, have significant and voli-

tional control over their limbs. Lower limb prosthesis must be able to respond to

diverse terrains and movement modes or speeds, exactly like humans with intact

motor abilities, in order to provide the user a natural mobility experience [140].

That is why it is vital to build a control system that enables for seamless operation

of the connected prosthetic device while being responsive to changing environmental

or topographical conditions.
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8.2 Related Work

For smooth lower limb prostheses control, environmental context information can

be employed to forecast human locomotor mode transition in advance. Mechanical

measures [141, 142], electromyography (EMG) signals [143, 144], or inertial mea-

surement units (IMUs) [145]— all of which are often delayed, user-dependent, and

sensor position sensitive—were used to identify the locomotion mode changes. Some

research has also been done on lower limb prosthesis, such as [146], who used com-

puter vision to construct a depth sensing approach. They were able to distinguish

different types of stairs using a depth camera and estimate their height, depth, and

number of steps. Support vector machines (SVM) with a cubic kernel have also been

used to identify different types of behaviors such as standing, walking, running, and

going up or down stairs using depth sensing [147]. The terrain in front of the human

was identified using a laser distance meter and an IMU-based system, which was

then merged with the human’s neuromuscular signals to forecast the user’s locomo-

tor task transitions. However, the laser distance meter’s single-point information is

insufficient to collect enough information on environmental elements [148]. Because

of its informative, non-interruptive, and user-independent nature, computer vision

has gotten a lot of attention in this area. Depth images were utilized to identify

user movement or distinguish terrains (e.g., stairs and ramps) [149] using edge de-

tection [146, 150], or 3-D point cloud classification [151]. Terrain recognition has

also been attempted using RGB photos that are informative of terrain types [152].

Previous research has shown that scenarios with controlled modifications in the en-

vironment and human behavior can provide positive results. However, variations

in the real-world environment and human behaviors must be studied for wearable

robotics applications, and this remains a difficult task. Another difficulty in in-
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corporating computer vision into wearable robots is the need for portability, which

limits the sizes and positions of sensors and processors. Eyeglasses [148], chest [152],

knee or shin [150, 151, 153], and waist have all been employed as sensor positions

in current wearable robot designs to record environmental data (side [154] or front

[149]).

Prediction of terrain transition on time is very critical for smooth transition

between different terrains. Failure to enable timely prediction of terrain transitions

can lead to increased safety hazard for the user. There can be two types of transitions

that the user can go through. Type 1 occurs when the subject steps at the boundary

of the two terrains and performed the next step onto the new terrain. In this

case, the upcoming terrain can be clearly visible before the first step on it and

predicting the transition becomes easier. The second type of transition occurs when

the subject steps further away from the boundary. In this case, however, the camera

captures images of the new terrain during mid swing phase of the gait and clear

images appears very late and very close to the stepping moment on the new terrain.

Conventional methods that rely on clean images obtained from cameras placed on

higher parts of the body or through key frame selection might suffer or might be

too late in predicting this type of transition. A demonstration of the two types of

transitions obtained in this study are shown in fig. 8.1.

Recently, researchers used uncertainty prediction to try to forecast the environ-

mental context for lower limb prostheses and achieved remarkable performances in

predicting oncoming terrains [148, 155]. The study’s findings are encouraging, how-

ever, the authors used multiple sensors to approach the problem. They used IMU

sensors for gait stage recognition and to capture high quality or sharp images for

inferring their model outputs. Also, their IMU based key frame selection method

yielded the flat foot and early swing phase to be the most convenient period to
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Figure 8.1: Example of two types of transitions.(a) shows a transition from grass to
brick where the last step on grass is at the border of the two terrains. Here, the new
terrain is very clearly visible and therefore prediction is easier. (b) and (c) show a
transition from brick to grass where the last step on brick is far from the boundary
between the two terrains and the mid-swing phase of the transitioning step occurs
over the boundary. This results in blurry image over the new terrain and therefore
makes the prediction difficult.

capture key images. This key frame selection algorithm, however, would fail in pre-

dicting transitions specially when the transition takes place at mid swing, i.e. the

foot crosses the border of the two terrains while in mid or late swing stage. As a

result a delayed transition prediction would take place. Moreover, the lower limb

camera was placed on the knee which stays comparatively stationary than the an-

kle joint during gait and provides better quality images and a broader view of the

upcoming terrain, thus making it comparatively easy to make accurate prediction.

This also limits the usability of the system to people with amputations at or above

the knee level because it seems somewhat unwanted to have an additional wearable

camera system on the healthy portion of the amputated limb. As the wearable

camera system cannot be concealed for continuous monitoring, placing the camera

as low as possible is therefore desirable for the comfort of the user as well.

Moreover, current studies used cameras in multiple locations of the body, e.g.,

knee, glass and stand-alone, to create reliable labels and train their classifiers for

terrain recognition and prediction. First of all, usage of multiple sensors requires

additional effort in data handling, synchronization and adds to the computational
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complexity of the system. The usage of multiple cameras may lead to improved

classification accuracy but has the possibility of hindering the portability of the

system by increasing the power and computational requirements [156]. In other

studies involving autonomous driving systems, cameras and LiDARs (light detection

and ranging) have been used to improve the reliability and accuracy of dynamic

object perception [157]. Compared to existing studies, this study, investigated the

incorporation of computer vision into a low latency asynchronous terrain transition

prediction and control system for prosthetic devices in the face of varied terrains

outside of the lab using a single camera placed in front of the user’s ankle.

8.3 Current Study

In this study, we proposed an environmental context recognition framework for lower

limb prostheses, which can detect the type of terrain and also predict any oncoming

terrain transitions before the completion of the first step on the new terrain. The

task is extremely challenging due to the need to utilize images severely affected by

motion blur obtained under extremely dynamic conditions at the ankle joint. In

contrast to previous work on clear or good quality images by placing the camera on

a high body position and/or key frame selection, our task needs to handle blurred

images or low quality images. We cannot ascertain whether the previous related

work will still have good performance due to the worsened images. In this study we

want to investigate performance of conventional approach and potentially develop an

efficient method that can deal with low quality images in highly dynamic situations.

For that purpose, we used a multi-frame decision fusion approach to enable early and

accurate terrain transition prediction despite extreme motion blur. We considered

five different types of terrains: asphalt, brick, concrete, grass and gravel for this
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study. The usage of chip-on-board, portable, light weight, low-power raspberry pi

device with wearable fish-eye camera mounted on the ankle of a healthy user enabled

the continuous capture of surrounding environment. The camera was placed on

the ankle to closely monitor the terrain type. Convolutional neural networks were

designed using transfer learning [158] with shufflenet to recognize the terrain type

at each frame of the video. Additionally, different frame rates were considered to

monitor how the performance of the system changed in response to lowered frame

rates. Moreover, the system performance was evaluated on five different terrain

transition pairs, namely: grass-gravel, brick-grass, grass-asphalt, asphalt-gravel, and

brick-concrete. The performance of the transition recognition system was evaluated

using percentage of true positive detection, average detection time, and false positive

detection rate.

8.4 Materials and Methods

8.4.1 Experimental Protocol

One healthy subject participated in the study. The participant provided informed,

written consent to participate in our research approved by the Institution Review

Board (IRB) of florida International University During the experiment, a lower limb

device. The lower limb device was attached in front of the ankle of the participant.

The device contained a Raspberry Pi 3 Model B, and a fisheye pi camera for wider

view. The PiCamera recorded video at 25 FPS with a resolution of 1280×720. Data

recorded by the camera was stored to an SD card in the Raspberry Pi. Figure 8.2

shows the construction of the used computer vision system and its placement on the

user’s body.
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Figure 8.2: The portable camera system used in this study and its potential place-
ment on a lower limb prosthesis. The system included a raspberry pi model 3
equipped with a portable battery system and a fish eye camera.

The participant walked freely in the Engineering campus of Florida International

University in three difference sessions. Figure 8.3 show the examples of outdoor sites.

The data set totals around 50 minutes of recording. The collection includes around

70000 RGB images— 13000 for brick, 17000 for grass, 14000 for asphalt, 14000 for

concrete, and 11000 for gravel— from approximately 50-minute long video.
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Figure 8.3: Example of outdoor sites for data collection. The first image shows grass
and brick terrains, the second one shows asphalt, gravel and grass while the third
portion shows the intersection of brick and concrete.

8.4.2 Image Preprocessing

The impact of foot contact during the stance phase and movement induced blur

during the swing phase of gait would substantially degrade the image quality as

the camera was placed at such a low elevation from the ground as the ankle. The

image clarity could be considerably diminished, which had the potential of lowering

the performance of the terrain recognition system based on computer vision and

deep learning. Previous research has demonstrated that the foot accelerates at a

virtually constant rate during the rest state of gait and as a result, the risk of image

sharpness degradation is at an all-time low at this moment [148]. The flat foot of a

gait cycle is defined as the time between when the foot initially strikes the ground
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Figure 8.4: Image Preprocessing Pipeline.

and when the toes leave the floor. As the ankle moves periodically with the gait

states, it is quite easy to detect the moment of flatfoot or rest state from an image

sequence collected from the ankle camera. As stated before, the image quality at or

close to the rest state, i.e. the double pivot, flat foot and early swing, is significantly

better compared to the images collected at mid swing. Moreover, the camera showed

the background and horizon at mid swing because the ankle is curled upwards at

those points of time. Unlike previous studies, we use all the images which contain

even partial information about the terrain. Therefore, for training our deep learning

model, it was vital to ignore the images where held no information about the terrain.

For this reason, we followed the following pipeline to preprocess the obtained images

before training:

• Extract image frame.

• Perform blind deconvolution to remove motion blur. We used an array of one’s

as an initial estimate of the point-spread function in this step.

• Crop the image to obtain the lower quadrant of the image in front of the ankle

camera.

• Normalize the pixel values of the cropped image between 0 and 255.

• If the processed image contained the terrain, it was used for training the terrain

recognition model. otherwise, it was ignored and termed as background image.
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Figure 8.4 shows the image processing pipeline used in this study. After the end

of these steps, the images were labelled as one the corresponding terrain classes:

asphalt, brick, concrete, grass or gravel.

8.5 Offline Training and testing

The whole dataset were divided in training, validation and testing sets. The goal of

this study was to recognize the current terrain type and predict any oncoming terrain

transition before the execution of the first step on the new terrain. The dataset in

this study included images collected while the person walked on steady terrains

and also contained images where the subject performed transitions from one terrain

to another. For the purpose of the study, we used all the images corresponding to

walking on single terrain and a portion (around 70%) of the images where the person

performed terrain transition for training and validation. While, the remaining image

sequences were kept aside for pseudo-online testing.

We used a popular deep learning model which is compact, computation efficient

and optimized for operation in mobile environments: Shufflenet. This is a con-

volutional neural network that is trained on more than a million images from the

ImageNet database [159]. The network can classify photos into 1000 different object

categories and as a result has learned a variety of rich feature representations for a

variety of images.

Shufflenet is [160] an incredibly computation-efficient convolutional neural net-

work design. It is designed for low-processing-power mobile devices (e.g., 10-150

MFLOPs). The new architecture uses two novel operations: pointwise group con-

volution and channel shuffle, which reduce computation costs while maintaining
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accuracy. It has reported better classification accuracy in multiple tasks in mobile

environents compared to mobilenets [161].

In this study, we employed transfer learning to modify the pretrained shufflenet.

To enable transfer learning, the following steps were followed:

• Recognize the last learnable layer of the base model. We kept the initial

network unchanged till the last fully connected layer and replaced it with a

fully connected layer of 5 components in the output layer and replaced the

following softmax layers to match the size of our output which is 5.

• Data augmentation was used to prevent the classifier from learning specific

details of the training dataset and make the trained model more robust and

generalizable. We used scaling, translation and rotation for data augmenta-

tion.

• We used adam solver [162] with a fixed learning rate of 0.0001 with a mini

batch size of 128 and validation frequency of 10.

• Regularization parameter of 0.0001 and the gradient threshold method of l2-

norm [163] was used to prevent overfitting.

• The value of gradient decay factor, epsilon and Squared Gradient Decay Factor

were set to 0.9, 1× 10−8 and 0.999 respectively.

8.5.1 Pseudo Online Testing

Fig. 8.5 shows the pseudo online testing framework used in the study. After the

preprocessing steps discussed before, we resized the image, Ii to 224 × 224 × 3 before

feeding them into the base model. Then the processed image, Ji were passed to the

learned classifier, H. The classifier output, T (i) held the terrain type information
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Figure 8.5: Flowchart of Pseudo-online terrain transition prediction pipeline using
modified Shufflenet.

at time i. Now, because of the noisy nature of the images at midswing stage of

gait, the classifier outputs at that portion were highly noisy and would result in

misclassification of terrain type and would hinder the goal of the study. That is

why, we introduced a simple state space based multi window decision fusion model

in the inference stage to remove output noise. For this purpose, the terrain type

outputs, T (i) were stored and buffered for the first m number of images and after

m images were classified, the output at mth image were updated as the mode of

the last m classifier outputs. From the next frame onwards, the last m number of

image class labels were monitored and if all of them returned the same label, only

then the terrain type was updated. Otherwise, the terrain type was kept unchanged.

Once the last m images were labelled as the same class, the output terrain type was

updated. This process was repeated after every frame until the last frame of the

video stream. This moving window decision fusion took care of the transitory noise
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in classifier output resulting from movement artifacts, motion blur and rhythmic

movement effect on the images specially during the midswing stage of gait.

The pseudo-online classification method was evaluated using multiple video fram-

erates which included 25 FPS, 12.5 FPS, and 5 FPS. Clearly, recognizing the terrain

transition and type of transition form lower FPS videos would be much difficult.

However, the ability to recognize terrain types and terrain transitions using lower

frame rates is crucial for such mobile operation. That is why, the model was evalu-

ated using different Frame rates and the classifier performance was analyzed.

Moreover, the number of frames between two consecutive flat foots of a single leg

was approximately 30-35 which amounts to nearly 1.2-1.5 seconds at 25 FPS. The

choice of m is critical because too high a value would cause a faulty initiation of the

system. On the other hand, a low value of m would make the system vulnerable to

output noises caused by image quality. In this study, the value of m was kept at 5

for 25 FPS, 3 for 12.5 FPS, and 2 for 5 FPS.

8.6 Results and Discussion

The offline classification of terrain type was evaluated using cross validation accu-

racy and average validation loss. Figure8.6 shows the progression of training and

validation accuracies and losses for modified Shufflenet. For both modified shufflenet

and MobileNetV2, validation frequency was set to 10, which meant after every 10

iterations, the model was validated and the classification accuracy was reported.The

final validation accuracy was found to be 97.66% and the final validation loss was

0.1768 for shufflenet. The training and validation accuracies were also very close,

which mean the model was not overfitting the training data.
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Figure 8.6: Offline Classification Results using modified Shufflenet. The final vali-
dation accuracy after 208 iterations was 97.66% and the validation loss was 0.1768.

Table 8.2: Comaprison of Pseudo-online Terrain Recognition Performance using
Different Frame Rates.

Transition terrains
(number of
transitions)

Frame
Rates

True prediction
rate(%)

False
prediction /min

Asphalt and
Gravel (10)

25 90 1
12.5 90 2
5 90 1.5

Asphalt and
Grass (10)

25 90 1
12.5 80 1
5 80 1

Brick and
Concrete (10)

25 100 0
12.5 100 0
5 100 0

Grass and
Gravel (10)

25 90 2
12.5 80 2
5 80 2

Brick and
Grass (17)

25 94 1
12.5 88 1.5
5 82 3

160



The pseudo-online classification results are shown in table 8.2. The performance

of pseudo-online classification was evaluated by number of true transition detection

out of total number of transitions, number of late detection, number of missed

transitions, number of false detection and the average detection time. The evaluation

was done using multiple frame rates.

Table 8.2 shows some key outcomes of the study. First of all, it was found

that shufflenet outperformed MobileNetV2 in terms of all the performance metrics

across different frame rates. The finding was consistent with the offline classification

accuracy and validation loss achieved by the two models. This outcome suggests

that shufflenet was better suited for the proposed transition prediction pipeline.

Moreover, it was observed that transition between brick and concrete was the easiest

to predict while the most difficult task was to predict the transition between grass

and gravel. This suggests that the definition of the boundary between the two

terrains plays a very important role in the prediction performance. If the two terrains

were very definitely separated, the system found it easier to predict the transition.

Moreover, there were two types of transitions that the subject went through.

Type 1 was when the subject stepped at the boundary of the two terrains and

performed the next step onto the new terrain. In this case, the upcoming terrain was

clearly visible way earlier and predicting the transition was easier. The second type

of transition occurred when the subject stepped further away from the boundary. In

this case, however, the camera captured images of the new terrain during mid swing

phase of the gait and clear images appeared very late and very close to the stepping

moment on the new terrain. As a result, this type of transition was more difficult

to predict. The transition between brick and grass contained a lot of examples of

the second type and therefore the number of delayed and false predictions were a

bit higher in that transition prediction task.
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Figure 8.7: Pseudo-online terrain transition prediction example between asphalt and
gravel. The figure shows that all the transitions were predicted before the actual
transition step. Moreover, the output filtering method also removed some noisy
classifier outputs and thus reduced false transition detection.

Figure 8.7 shows a detailed representation of a pseudo online terrain transition

recognition between asphalt and gravel. The figure shows the performance of the

proposed system in a one-minute segment of asphalt-gravel transition imagery. The

red dots represent the classifier label of single image input. As can be seen from

the figure, the classifier performed quite well on unseen test data, however, there

were noisy outputs at times due to movement related noises and artifacts specially

during the midswing phase of gait cycle where the images held partial information

about the terrain. Our proposed pipeline of pseudo online testing removed the

noisy and erroneous outputs and significantly reduced the classification errors by

utilizing sliding window decision fusion. This also led to reduced false positive or

false negative detection. It can also be noticed that all the transitions could be

predicted on or before the completion of the step on the new terrain which is a very

desirable outcome for terrain adaptive prosthesis.
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Table 8.1 shows the comparison of pseudo-online classification performance us-

ing our proposed method and a conventional method. The conventional model was

trained on the cleanest images obtained during the rest stage of the gait cycle only.

Moreover, no multi-window decision fusion was applied to the classification results.

Moreover, the comparison was performed under two different conditions. At first

the minimum required prediction latency was set to -500 ms and later performances

were compared at -100 ms latency as well. Hypothetically, it would be more difficult

to correctly predict upcoming transitions further away from the transition boundary.

Results suggest that our proposed model resulted in higher true prediction rate and

lower false positive/ min in both comparison conditions. Interestingly, the number

of false positive detections was much higher using the conventional method. Un-

derstandably, this model struggled to correctly recognize terrain type in the event

of noisy input image appearing at swing phase of gait. Our proposed pipeline of

pseudo online testing removed the noisy and erroneous outputs and significantly re-

duced the classification errors by utilizing sliding window decision fusion. This also

led to reduced false positive or false negative detection. This improvement shows

the efficacy of the multi-window decision fusion algorithm. Another interesting ob-

servation that could be made was the conventional model performed comparatively

better closer to the transitioning step. It is expected because as we moved closer

to the completion of the transitioning step, much clearer images appeared which

helped the conventional model make more correct decisions. However, the number

of false positives remained high due to the errors made during the swing phase of

non-transitioning steps.

Table 8.2 shows some other key outcomes of the study. It was observed that

transition between brick and concrete was the easiest to predict while the most

difficult task was to predict the transition between grass and gravel. This suggests
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that the definition of the boundary between the two terrains plays a very important

role in the prediction performance. If the two terrains were very definitely separated,

the system found it easier to predict the transition.

Table 8.2 suggests that with lower frame rate of the input video, it got difficult to

predict oncoming transitions. The best performance was achieved with 25 FPS in-

put video. However, with lowered frame rates as well, the system worked reasonably

well with very little declination is performance specially at 12.5, and 5 FPS. The

transition between brick and grass occurred more frequently as the brick pavement

between two grass fields was very narrow. As a result it was more challenging to pre-

dict this transition at lower frame rates. The prediction times had negative average

values throughout all frame rates and transition types. This outcome suggests that

the modified shufflenet based terrain prediction system could predict terrain tran-

sitions 500ms to 1300ms before the transition on average. Moreover, unlike other

studies, the current study only utilizes a single optimized deep learning network

assisted by a simple state space based inference model which utilizes multi window

decision fusion. Therefore, the size and computation requirement of the model is

lesser. The outcome is very promising from a real-time monitoring and transition

prediction point of view.

The proposed study was carried out in a personal computer with a NVIDIA

GeForce RTX 2080 TI Graphics Card and on this system, every image was classi-

fied in approximately 10 ms. At 25, 12.5, and 5 FPS framerates, frame to frame

time difference, δ is approximately 40ms, 80ms, and 200 ms. This suggests that the

execution time suggests that the proposed algorithms could run without causing

any frame to frame overlap or execution delay. Moreover, the system showed robust

performance in the event of diminishing frame rates which suggested its efficacy in

performing at lower frame rates and therefore in reducing power and computational
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requirements. Recently few studies have employed deep learning models on embed-

ded platforms [148, 155] with similar processing times. Our proposed systems also

shows promise to be implemented in real time using embedded platforms. This task

should be carried out in future versions of this study.

An approach of dynamic frame selection based on the gait stage information

obtained from the IMU sensors was used in [155]. Moreover, a combination of

Bayesian neural network and Bayesian gated recurrent units (BGRU) was used

to detect terrain types. However, our study suggested that the images obtained

during the mid swing phase of gait were mostly affected by motion blur and noise.

And that part of gait only constitute around 20% of the whole gait cycle. The

rest of the cycle produced comparatively less noisy and usable image. That is

why, we hypothesized that instead of spending computational power and adding

sensor networks for recognizing noise free images, desirable system performance

could be achieved by simply filtering out noisy outputs of the model due to blurred

and low-quality inputs. For that purpose, we introduced a simple multi-window

decision fusion algorithm which smoothed out noisy prediction of the model based

on previous output states. The results suggested that the proposed methodology

performed remarkably well even in low frame rates.

Comparsion with current studies is quite tricky. Because, no other studies re-

ported transition prediction accuracies and detection latencies in online or pseudo-

online scenarios to the knowledge of the authors. Moreover, previous studies either

used multiple sensor networks like IMU, LiDar, lasers, multiple cameras to cap-

ture environmental information. However, as discussed earlier, usage of multiple

sensors and cameras pose the problem of synchronicity and increase computational

load. Moreover, previous studies used cameras places on or above the knee level

[148, 155]. It is desired to place the camera system as low as possible from a user’s
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point of view so that the system does not create inconvenience and discomfort in

long term usage. Moreover, the knee joint is comparatively more stable during gait

phases. Increased motion artifacts makes terrain transition prediction from ankle

camera system more challenging. Despite these challenges, the proposed method

showed very good classification accuracy of 97.66% in a 5-class classification prob-

lem which is comparable to previous studies. However, unlike previous works, this

study only utilized a single camera system and the used model was also compara-

tively simpler. The proposed model utilized the fact that the midswing phase of gait

was responsible for most of the blurred images, however, midswing constituted only

20% of the whole gait cycle [164]. Inspired by this fact, we hypothesized that instead

of allocating computational resources behind finding key frames, a desired level of

output could be achieved by filtering out noisy classifier outputs at midswing by

using a simple multi window decision fusion. The results of the study validated the

hypothesis by portraying robust transition prediction performance even at low frame

rates. This is a promising outcome in terms of applicability in real-time assistive

systems.

8.7 Conclusion

In this study, we suggested an environmental context identification framework for

lower limb prosthesis, which can recognize terrain type and predict any upcoming

terrain transitions before the completion of the first step on the new terrain. Unlike

previous studies, the work utilized information from blurred images and removed

the noise in model outputs using a sliding-window decision fusion approach. For this

study, we looked at five distinct types of terrain: asphalt, brick, concrete, grass, and

gravel. The continuous capture of the surrounding environment was made possible
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by using a chip-on-board, portable, light-weight, low-power Raspberry Pi system

with a wearable fish-eye camera mounted on the ankle of a healthy user. To distin-

guish the terrain type at each frame of the video, a convolutional neural network

was created using a modified shufflenet. Different frame rates were also investigated

in order to see how the system’s performance altered as the frame rate was reduced.

The technology was also tested on five various terrain transition pairs, including

grass-gravel, brick-grass, grass-gravel, asphalt-gravel, and brick-concrete. The true

positive detection metrics, average detection time, and false positive detection rate

were used to assess the performance of the transition recognition system. Com-

parison with a convention model trained using high quality images obtained at the

rest state of gait revealed that the proposed method resulted in higher true posi-

tive rate and lower false positive detection/ min. The outcomes of this study is a

highly accurate terrain recognition and transition prediction framework which can

predict the oncoming terrain transition from 500 ms to 1300 ms before the first step

on the new terrain despite using highly blurred images obtained in extremely dy-

namic conditions, and thus shows promise to be used in real-time adaptive assistive

technologies.
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