305 research outputs found

    Design and fabrication of coaxial micro helicopter

    Get PDF
    In this thesis the design of a coaxial micro helicopter is presented and based on the design, a model is fabricated. The thesis starts with the introduction on the previous models of micro helicopters like the Coax and the Epson. The different configurations of the micro helicopters in use are discussed and a detailed introduction on the principle of working of the coaxial configuration of helicopters is presented using the principle of conservation of angular momentum. The advantages and disadvantages of the coaxial configuration over other configurations are then given. The design process starts with the identification of the individual mechanical and electrical parts. The working of the mechanical and electrical components is individually discussed and their necessity for the fabrication process is explained. Further, the mechanical parts are designed and assembled using CATIA V5R17. Then, the model of the coaxial helicopter is fabricated and is successfully flown by remote control mechanism. The individual forces acting on the rotor blades of the fabricated model are identified and their directions are defined. By using standard equations, the values of the individual forces are calculated for the rotor blades as well as for the entire helicopter body.Using the values of the forces obtained on the rotor blades, a static analysis is presented using ANSYS. Finally, the conclusions and inferences arising in course of the work are presented and the references used in this work are mentioned

    SwarMAV: A Swarm of Miniature Aerial Vehicles

    Get PDF
    As the MAV (Micro or Miniature Aerial Vehicles) field matures, we expect to see that the platform's degree of autonomy, the information exchange, and the coordination with other manned and unmanned actors, will become at least as crucial as its aerodynamic design. The project described in this paper explores some aspects of a particularly exciting possible avenue of development: an autonomous swarm of MAVs which exploits its inherent reliability (through redundancy), and its ability to exchange information among the members, in order to cope with a dynamically changing environment and achieve its mission. We describe the successful realization of a prototype experimental platform weighing only 75g, and outline a strategy for the automatic design of a suitable controller

    Towards Palm-Size Autonomous Helicopters

    Get PDF
    muFly EU project started in 2006 with the idea to build an autonomous micro helicopter, comparable in size and weight to a small bird. Several scientific and technological objectives were identified. This spanned from system-level integration, high efficiency micro-actuation, highly integrated micro vision sensors and IMUs and also low processing power navigation algorithms. This paper shows how most of these objectives were reached, describing the approach and the role of each partner during the whole project. The paper describes also the technological developments achieved like the 80g, 17 cm micro robotic-helicopter, the 8g omnidirectional and steady-state laser scanner, the uIMU, the highly efficient micro motors, the high power-density fuel-cell and the successful graph-based navigation algorithm

    Comparative of Ziegler Nichols, Fuzzy Logic and Extremum Seeking Based Proportional Integral Derivative Controller for Quadcopter Unmanned Aerial Vehicle Stability Control

    Get PDF
    Unmanned aerial vehicle is potentially recognized in autonomous sectors where intelligence gathering, surveillance, reconnaissance missions, power line inspection, aerial video, search and rescue monitoring devices are required. It is essential in modern era control and monitoring especially a rotary unit where quadcopter performed a crucial task. However, the flight behavior of a quadcopter is determined by the synchronous speed of each of the motors as the speed changes with load torque variations. The dynamics model equation of the system, external disturbances and its parameters variation of the motor makes it difficult for the manual tuning techniques employed into the system to perform its stability operation. The purpose of this work is to employ adaptive controllers to enhance the stability performance so as to prevent the risk of human lives and financial implication that may arise from improper monitoring of the system. Therefore, Ziegler Nichols, fuzzy logic and extremum seeking controllers were employed to auto-tuned the parameters of proportional integral derivative (PID) gains controller to optimize and give a satisfactory performance of motor speed control at different operating condition. The altitude, pitch, roll and yaw parameters of the quadcopter are simulated using the x-plane II flight simulator MATLAB tools. The simulation results presented in this work show better performance for extremum seeking-PID in terms of decrease in rise time, settling time and overshoot relative to Zigler-Nichols-PID and Fuzzy-PID controllers

    Modeling the Human Visuo-Motor System for Remote-Control Operation

    Get PDF
    University of Minnesota Ph.D. dissertation. 2018. Major: Computer Science. Advisors: Nikolaos Papanikolopoulos, Berenice Mettler. 1 computer file (PDF); 172 pages.Successful operation of a teleoperated miniature rotorcraft relies on capabilities including guidance, trajectory following, feedback control, and environmental perception. For many operating scenarios fragile automation systems are unable to provide adequate performance. In contrast, human-in-the-loop systems demonstrate an ability to adapt to changing and complex environments, stability in control response, high level goal selection and planning, and the ability to perceive and process large amounts of information. Modeling the perceptual processes of the human operator provides the foundation necessary for a systems based approach to the design of control and display systems used by remotely operated vehicles. In this work we consider flight tasks for remotely controlled miniature rotorcraft operating in indoor environments. Operation of agile robotic systems in three dimensional spaces requires a detailed understanding of the perceptual aspects of the problem as well as knowledge of the task and models of the operator response. When modeling the human-in-the-loop the dynamics of the vehicle, environment, and human perception-action are tightly coupled in space and time. The dynamic response of the overall system emerges from the interplay of perception and action. The main questions to be answered in this work are: i) what approach does the human operator implement when generating a control and guidance response? ii) how is information about the vehicle and environment extracted by the human? iii) can the gaze patterns of the pilot be decoded to provide information for estimation and control? In relation to existing research this work differs by focusing on fast acting dynamic systems in multiple dimensions and investigating how the gaze can be exploited to provide action-relevant information. To study human-in-the-loop systems the development and integration of the experimental infrastructure is described. Utilizing the infrastructure, a theoretical framework for computational modeling of the human pilot’s perception-action is proposed and verified experimentally. The benefits of the human visuo-motor model are demonstrated through application examples where the perceptual and control functions of a teleoperation system are augmented to reduce workload and provide a more natural human-machine interface

    Towards MAV Autonomous Flight: A Modeling and Control Approach

    Full text link
    This thesis is about modeling and control of miniature rotary-wing flying vehicles, with a special emphasis on quadrotor and coaxial systems. Mathematical models for simulation and nonlinear control approaches are introduced and subsequently applied to commercial aircrafts: the DraganFlyer and the Hummingbird quadrotors, which have been hardware-modified in order to perform experimental autonomous flying. Furthermore, a first-ever approach for modeling commercial micro coaxial mechanism is presented using a flying-toy called the Micro-mosquito

    Unmanned Aerial Vehicles for Post Disaster Surveys

    Get PDF
    In the current built environment, structures require regular observation and maintenance. Many of these structures can be quite challenging to evaluate. The required scaffolding, lifts, or similar access facilities can become quite costly to rent and construct, and can be a long term disturbance to those who use and manage the particular structure. Furthermore, there are situations where examination for the purpose of detailed analysis can be quite hazardous, if not entirely unsafe for humans. In a post-disaster environment traditional methods may not be safe or adequate for gaining access to parts of a structure that require observation or analysis. The use of a remotely controlled unmanned vehicle is a reliable, safe and cost effective substitute for assessing structures before and after seismic, terrorist, or other destructive events

    Bio-Inspired Hovering Control for an Aerial Robot Equipped with a Decoupled Eye and a Rate Gyro

    No full text
    International audienceThis work provides an hovering control strategy for a sighted robot, the eye of which being decoupled from the body and controlled by means of a tiny rotative piezo motor. The main purpose of this paper is to show the effectiveness and the efficiency of this fundamental bio-inspired mechanical decoupling. Indeed, it exhibits several benefits: * it enables to stabilize the robot's gaze on the basis of three bio-inspired oculomotor reflexes (ORs) : a visual fixation reflex (VFR), a translational and rotational vestibulo- ocular reflexes (tVOR and rVOR), * the eye can better, quickly and accurately compensate for sudden, untoward disturbances caused by the vagaries of the supporting head or body, * it yields a reference visual signal that can be used to unbias the rate gyro used to implement the VORs and to stabilize the hovering robot, * it increases the tracking accuracy with moving targets compared to without OR, This paper shows also that lateral disturbances are rejected 2 times faster with the decoupled eye robot, and roll perturbations induce a retinal error 20 times smaller. The occulomotor reflexes enables to cancel retinal error 6 times faster with 5 times lower retinal error picks. The conclusion of the paper is that decoupled eye must be considered as an efficient autonomous flight solution
    corecore