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Abstract
This paper presents the identification of a miniature coaxial helicopter system. First, the helicopter flying principles are
described and the hardware setup of the developed platform is presented. Further, linear models are developed for the
movements of the helicopter using prediction error identification methods. The results in this case are accurate and can
be used for performant controller design in some operating points. But in order to model the complete dynamics of the
helicopter, nonlinear models are developed using recurrent dynamic neural networks. In this case the models obtained
present a higher accuracy compared with the linear case and also with the results published until now. In the end, the
advantages of nonlinear modeling based on neural networks is emphasized and some conclusions are drawn.
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1. Introduction

Unmanned aerial vehicles (UAVs) have gained interest

from the academic community worldwide in recent years,

due to their numerous applications in civil and military

applications, especially in missions which are not only

impossible or dangerous for humans to accomplish but

even for other types of devices.1–5

The flying devices ranging from 15 cm to 1 m in length

with speeds between 5 and 20 m/s are called micro (or

miniature) aerial vehicles (MAV) and represent a special

class of UAV.6–8 There are various configurations of aerial

platforms, e.g. fixed-wing, quadrotors, helicopters, coaxial

helicopters, and flying blimps, but the coaxial helicopters

proved to be among the best suited for autonomous indoor

flight.9–11 The main reason for this is their ability for

unique flight capabilities such as vertical takeoff/landing,

hovering, slaloming, and pirouetting, properties that place

them as the most complex among the UAVs. Their nature

is multivariable by definition, with strong couplings

between the variables and high nonlinearity.12,13

The autonomous miniature helicopters are especially

adequate for dangerous and demanding activities such as

high accuracy terrain mapping; traffic, volcano, or archeo-

logical site surveillance; power line monitoring; or target

localization. In order to complete such missions, the vehi-

cle should be able to maintain its stability while following

a certain trajectory under the guidance of an embedded

control algorithm. In consequence, the controller design is

one of the major and significant steps that has to be com-

pleted in order to produce an autonomous and stable flying

vehicle. Furthermore, a performant controller needs very

accurate models of the system. Actually, recently, more

and more evolved control algorithms have been used for

controlling the UAVs: high accuracy in the models used

for control design has become indispensable.

Several methods have been applied up to now for

model-based control of UAVs, making system dynamics

modeling a main issue. The first principle approach refers

to physical modeling and involves the equation of motion

using fundamental laws of mechanics and aerodynamics.

For such a complex system as a coaxial helicopter, the

resulting equations are high-order nonlinear coupled dif-

ferential equations. This approach needs substantial

knowledge and experience of both theory and design char-

acteristics of all components of the flying device. For this
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reasons it is difficult to accomplish, implying high cost in

both time and money.14

But even in the work by Schafroth et al.,14,15 linear mod-

els are proposed for control design because in most flying

qualities studies, simple linear models are sufficient.16

Usually in hovering mode, a linear model is able to capture

the essential dynamics of a helicopter.17 The drawback in

this case is that multiple linear models and multiple control-

lers are required in order to cover all flight operating points.

The flight tests realised were made using a commercially

available coaxial helicopter and an inertial measurement

unit (IMU).18 The final purpose of the research that gener-

ated this work is to achieve a low-cost, autonomous, and sta-

ble flying device suitable for surveillance in narrow indoor

spaces. A first part of the research project is presented here,

i.e. the identification and modeling of a UAV system.

Both linear and nonlinear identification and modeling

techniques are aproached. While the linear models were

obtained using a prediction error method (PEM), recurrent

dynamic neural networks were trained to approximate the

behaviour of the coaxial helicopter in hovering. Previous

works have proven that neural networks in modeling pro-

vide similar or better results to those obtained using first

principal modeling;8,19 furthermore, neural networks are

faster and do not require large computing power or com-

plicated calculations.20

The rest of the paper is organized as follows. In the sec-

ond section the coaxial helicopter is presented in detail

together with the equipment used for flight data acquisi-

tion and data processing. Section 3 presents a PEM, used

for the identification of linear models of the three angular

movements of the flying device. Further, in the next sec-

tion, nonlinear recurrent dynamic neural networks are

trained to predict the behaviour of the system. In Section

5, all the results of the identification process are presented

and the performances of the linear models are compared

with those of the nonlinear models. Finally, some conclu-

sions are drawn in Section 6.

2. The UAV system

The most common helicopter configuration is that with

only one main rotor and a tail rotor. For this project a heli-

copter with a coaxial configuration was chosen due to its

advantages over the classical configuration: it is more sta-

ble and more easy to maneuver during flight; it is also

more compact since the tail rotor is not needed and it can

carry a bigger payload using the same motor power. After

choosing the configuration, in order to identify, model,

and control a helicopter, one can choose to design and

build a new one or to use one existing on the market. The

solution chosen here was to acquire a helicopter from the

market and to add extra devices necessary for the identifi-

cation and control design. The entire UAV platform devel-

oped during this project is presented in Figure 1.

Figure 1. UAV platform diagram.
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Coaxial helicopters use two sets of rotors that turn in

opposite directions generating a pair of equal and opposite

torques, where it will greatly reduce the gyroscopic effects

which would otherwise impede obtaining an equilibrium

position. This happens only when both sets of blades rotate

with the same speed, which means the torques developed

are equal, and, due to their opposite direction, the torques

will cancel each other. This makes it possible to control

the yaw by modifying the difference of the speeds of the

two rotors and also the altitude by modifying the sum of

two speeds.

2.1. The Big Lama helicopter

The helicopter chosen for this project was a Big Lama

helicopter, manufactured by E-sky (Figure 2). It is one of

the biggest helicopters found on the market, it is easy to

fly, and it is able to carry the sensors and other hardware

needed. The main characteristics are presented in Table 1.

The main element, that makes it easy to control the

helicopter, is the swashplate, and this can be seen in

Figure 2. This component permits the blades to tilt, and,

as a result, the direction of the helicopter will change. The

upper part of the swashplate rotates in the same time as

the lower rotor, while the lower part is connected to the

servomotors, which will change the tilt angle. This is how,

acting with the servomotor, an x-axis rotation is obtained

(roll rotation), while acting with the second servomor a y-

axis rotation is obtained (pitch rotation). Another compo-

nent that directly influences the aerodynamics of the heli-

copter is the flybar (stabilization bar), which is meant to

keep the helicopter in a stable position by acting as a dam-

per for sudden changes in the rotation speed of the rotor.

Both servomotors and also the two brushless DC motors

that drive the rotors are powered by a lithium polymer bat-

tery. Supplementary, an IMU is needed in order to obtain

the position and orientation of the helicopter. All the heli-

copter components are presented in Figure 2.

For full control the helicopter has to be steered around

four axes: horizontal (x- and y-axis), in altitude (z-axis)

and in heading (ψ). There are four variables that can be

controlled directly with the throttle, rudder, aileron, and

elevator (see Figure 3). Because a sensor to measure the

distance to the ground is not available at this moment, the

identification of altitude (linear velocity on z-axis) was not

possible yet.

Under the canopy of this model there is a receiver with

six channels and an embedded control system. Only four

channels are used, corresponding to the four movements

of the helicopter mentioned above. For controlling pitch

and roll movements two signals are received (elevator for

pitch and aileron for roll). These control signals are trans-

mitted directly to the servomotors, while the other control

signals (rudder for yaw and throttle for the altitude) are

transmitted first to the controller, where they are mixed

with an internal gyroscop signal. Further, the controller

will send pulse width modulation (PWM) signals to the

two motors. The gain and the offset can be set at this con-

troller, but the available information about these para-

meters is very poor.

It can be noticed that a decoupling is made, at the hard-

ware level, on this type of coaxial helicopter. Normally,

yaw and altitude movements are strongly coupled in a

coaxial configuration, because both are driven at the same

time by both DC motors. In our case, yaw is controlled

directly with rudder and the altitude directly by throttle

(see Figure 3). This means that the rudder represents the

difference of the speeds of the two motors, while the

Figure 2. Big Lama coaxial miniature helicopter.

Table 1. Big Lama physical specifications.

Main rotor diameter 460 mm
Weight 410 g
Length 510 mm
Width 110 mm
Height 260 mm
Motors Model 370 (2 installed)
RC transmitter 4 channels
Receiver 2.4 GHz
Servomotors Digital (2 installed)
Battery 11.1V 800mAh Li-polymer
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throttle is the sum of the two speeds. So, the decoupling of

the two movements makes it possible to consider the heli-

copter as a system with four SISO subsystems (Figure 3).

This is especially valid in hovering mode.

2.2. Tag4M module and sensors

For data acquisition during flight experiments a Tag4M

module was used. The Tag4M device is a Wi-Fi data

acquisition system, developed for low power consumption

and mobile applications. By attaching sensors to its input–

output terminal blocks in a similar manner as for a wired

data acquisition device, the user can build a wireless proof-

of-concept sensor solutions for a wide range of applica-

tions. The system has the advantage of reduced dimensions

(4.7 cm x 7.0 cm) and of a limited weight of 50 g, and can

run on battery power, making it a portable solution. The

dimensions of the system are reducible to 2.4 x 4.0 cm and

15 g; this is an important feature because the helicopter

has a limited lifting power. It is a complete Wi-Fi network-

ing solution, incorporating a 32-bit CPU, a memory unit,

an eCos real-time operating system and a UDP or TCP/IP

stack. Other included components are the analogic sensor

interface, the power management unit, the hardware cryp-

tographic accelerator, and the real-time clock.

The hardware architecture of the device is presented in

Figure 4. At this version, five analog inputs, four digital

output channels, and two serial ports are available. A cus-

tom interface was implemented to allow the acquisitions

from two sources: 3-axis accelerations and 2-axis

gyroscopes.18

Figure 3. Coaxial helicopter’s system inputs and outputs.

Figure 4. Hardware architecture of the Tag4M data acquisition system.
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The Tag4M device is running in power cycles, each

cycle containing a period of data acquisition, a receiving

period and a transmission time. The tag doesn’t have a

memory buffer, the data acquired being transmitted after

each reading. An important feature is that the power con-

sumption can be drastically reduced by combining the

acquisition, processing, and transmission periods with

sleeping periods.

By attaching a 2-axis gyroscope and 3-axis acceler-

ometer sensors to the Tag4M board, it’s possible to deter-

mine the helicopter’s dynamic behaviour based on the

data received. For this reason a LabVIEW application was

developed and implemented on the ground station in order

to acquire and scale the sensors data. The 3-axis acceler-

ometer (ADXL330, iMEMS type from Analog Devices)

allows the measurement of static or dynamic acceleration

in the range ± 3 g on all three axes of interest. A supple-

mentary low-pass analog filter was implemented using

internal resistors from the acceleration sensor and capaci-

tors with a bandwidth of 10 Hz. The gyroscope chosen to

be used integrates one actuator and one accelerometer in a

single micro machined structure. LPR530AL is based on

the Coriolis principle, and it is able to react when an angu-

lar rate is applied to the sensing element which is kept in

continuous oscillating movement. It has a full scale of

± 300 deg/s. Again for this sensor a low pass filter, with a

cutoff frequency of 10 Hz, was added on the board. The

additional analog filtering is highly recommended for such

an application because the main source of noise (the vibra-

tions of the helicopter during flight) affecting the sensor

data is of a higher frecquency than 20Hz and it may cause

the appearance of the aliasing effect.

One initialization step when the application starts is

necessary for reading the data from the tag. During this

stage, the tag sends a package containing the internet pro-

tocol (IP) received through the dynamic host configuration

protocol (DHCP) from the access point (AP). This IP is

used in the application for sending commands to the

Tag4M device after the initialization step. The data are

read in a loop and are validated if they are received from a

previously known media access control (MAC) address

which is used as a validation mask. The latency deter-

mined after performing a number of experiments lies

between 5 and 20 ms and it depends on the RSSI signals

values. The values of the latency are greater in case of a

poor signal.

The utility of this device is proved by its characteristics:

small dimensions, ultra-low power consumption, Wi-Fi

transmission capabilities, and the number of input–output

channels, both analog and digital. Moreover the 32-bit

CPU permits the implementation of a controller while the

four digital outputs allow direct control of the two DC

motors and the two servomotors using PWM signals.

The Tag4M was mounted on the helicopter and during

the flight experiments the sensor data was sent to the

ground station via an access point (Figure 1). Through the

LabVIEW application the flight data was saved in differ-

ent files and afterwards was processed in Matlab.

A digital filter was used for supplementary software fil-

tering of the sensor signals. Since the noise affecting the

signals, caused especially by the vibrations, has a high fre-

quency, a lowpass filter is needed. The filter chosen is a

Butterworth of 2nd order with a cutoff frequency of 5 Hz

and the filtering of the data was made in both the forward

and reverse directions in order to avoid a phase shift in the

useful signal. The spectral analysis of a gyroscope signal is

presented in Figure 5. It can be noticed that the noise fre-

quency is higher than 15 Hz, which is the reason for choos-

ing the cutoff frequency of 5 Hz.

In the upper part of Figure 6 a raw signal acquired from

a gyroscope is presented, while in the lower part the result

obtained after applying the digital filtering appears.

3. Time-domain linear identification

The structure of an identified model should be as simple as

possible in order to represent as accurately as possible the

real system. A very complex model can increase the com-

putational load and does not necessarily bring the desired
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accuracy. Therefore, when choosing a model a compro-

mise has to be made between accuracy and complexity.

Only a few examples of system identification tech-

niques applied to small-scale helicopters exist in the litera-

ture, and the results are not as good as in the case of full-

scale helicopters.16,21–23 Under the assumption that, in

hovering, a multivariable helicopter system can be consid-

ered as four independent SISO systems, time-domain sys-

tem identification theory can be used.

In this section linear models are obtained for the heli-

copter angular movements (yaw, pitch, and roll) from

experimental flight data. The method chosen is a linear

PEM, also applied in studies by Park et al., Gerig, and

Schafroth et al.14,17,24 It is a widely used method for sys-

tem identification, the main idea being to compare the

measurement output vector with the predicted output

vector.25,26

Our goal here is to find a linear time-invariant model

and for that reason we construct the parametrized model in

the form of y(t)=Gθ(q)u(t)+Hθ(q)e(t), where y(t), u(t),

and e(t) are the real output, input, and noise signals,

respectively, and Gθ and Hθ are models of the system and

noise transfer functions. These transfer functions are para-

metrized by a real vector θ.

The input–output data in the time domain, used with

this method, are obtained after some real test flights. The

one-step ahead predictor can be defined as:

by(tjθ)=Hθ(q)�1Gθ(q)u(t)+ (I � Hθ(q)�1)y(t), while the

prediction error can be defined as ε(t, θ)= y(t)�
by(tjt � 1, θ)=Hθ(q)�1(y(t)� Gθ(q)u(t)).

The PEM finds the model parameter θ by minimizing

the sample variance of the prediction errors:

V TD
N (θ)= PN

k = 1

jε(t, θ)j2 = 1
N

PN
k = 1

jHθ(q)�1(y(t)� Gθ(q)u(t))j2

bθN = arg min
θ

V TD
N (θ) ð1Þ

bλN =V TD
N (θN )

where bλN is the estimate of the variance of e(t). The pre-

diction errors are the deterministic system errors

y(t)� Gθ(q)u(t) filtered through the inverse of the noise

model.

The angular rotation around z-axis (yaw) is a particular

case for the Big Lama coaxial helicopter. Because of the

hardware configuration (see Figure 1), an open loop iden-

tification experiment is not possible, since it’s almost

impossible to keep the helicopter stable for more than a

few seconds. Actually, most of the flight tests realized

until now by other researchers, were made using a control-

ler to help stabilize the helicopter (especially the yaw rota-

tion) during the experiments, as for example in the study

by Schafroth et al.14 The internal controller uses the feed-

back signal of an internal gyroscope to control the yaw

rotation (see Figure 7). Figure 7 presents the inner loop of

the model described in equation (2).

Therefore, based on the input–output signals presented

in Figure 8 and using the PEM method, the following

transfer function was obtained for yaw rate:

Gyaw = 241
s2 + 614s+ 125300 ð2Þ

This transfer function is the result of a closed loop

identification, so it incorporates also the onboard control-

ler. It can be noticed that the results are satisfactory. In

Figure 8, the output of the process is compared with the

output of the linear model, while the validation results of

the yaw rate linear model are presented in Figure 9. Even

for a different pair of input–output signals the model out-

put behaves very closely to the real system.

4. Nonlinear modeling

What recommends the use of neural networks for identifi-

cation and modeling for nonlinear processes is their capac-

ity to approximate the behaviour of almost any nonlinear

process.27 This can be achieved by finding the optimal

weights and biases, in order to fit the response of the pro-

cess, by taking into account also the input. The procedure

is accomplished by training the neural network based on a

training algorithm, in order to minimize the error:

e(k)= y * (k)� y(k), where y * (k) is the desired output

and y(k) the neural network output.

In this paper nonlinear autoregressive networks with

exogenous inputs (NARX) are used to approximate the

dynamics of the UAV system. NARX models are based on

the linear ARX models, commonly used for time-series

modeling. A NARX model is a recurrent dynamic network

with feedback connections and can be described by the

general equation:

y(k)= f (y(k � 1), y(k � 2), . . . , y(k � ny), u(k � d � 1),

u(k � d � 2), . . . , u(k � d � nu))

ð3Þ

where f is a nonlinear function, d is the estimated time

delay, ny and nu are the orders of the system. Figure 10

presents a simple schematic of a NARX model.

Figure 7. Closed loop yaw rate.
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In order to model a nonlinear dynamic system two pos-

sible configurations can be used,28 the parallel architecture

and the series-parallel architecture.

Normally a neural network with a single hidden layer is

sufficient to model almost all nonlinear processes. For such

a network the output is given by the relation:
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y(k + 1)=
Xnh

j= 1

wjσj(w
u
j u(k � d � 1)T +w

y
j y(k � 1)T + bj)+ b

ð4Þ

u(k � d)= ½u(k � d), u(k � d � 1), . . . , u(k � d � nu + 1)�
y(k)= ½y(k), u(k � 1), . . . , u(k � ny + 1)�

ð5Þ

where nh is the number of neurons in the hidden layer, wj

is the the weight for the output layer corresponding to the

jth neuron from the hidden layer, σj is the activation func-

tion of the jth neuron in the hidden layer, wu
j is the weight

vector of the jth neuron with respect to the corresponding

input vector u(k � d � 1), w
y
j is the weight vector of the

jth neuron with respect to the corresponding output vector

y(k � 1), bj is the bias of the jth neuron from the hidden

layer, and b is the bias of the neuron in the output layer.

The next step of the training process is choosing the

parameters nu, ny, and d corresponding to the regressed

inputs of the neural network. In this phase, accurate infor-

mation about the process is very important. This informa-

tion can be obtained from a previous linear identification

around an operating point. Furthermore the structure (num-

ber of neurons in the hidden layer, number of delays) of

the network will be established. The model obtained has to

be validated using different input–ouput signals from the

ones used for training. If there will be big differences

between the process real output and the model output, the

steps mentioned above must be repeated (until the desired

accuracy is obtained) by choosing different training sig-

nals, model structures, training algorithms, and so on.

The steps described previously in this section were

applied repeatedly in order to obtain a NARX model for

the yaw rate. In Figures 11 and 12 the results obtained

after simulating the model are presented. The neural net-

work has 20 neurons in the hidden layer and 4 delays. In

the training stage, the Levenberg–Marquard training algo-

rithm was used. Figure 11 presents the training signals and

the comparison between the model output and the real

ouput, while the results of model validation in Figure 12

appear. It’s obvious that the model is very accurate, being

able to respond exactly as the physical system. Comparing

Figure 10. The NARX neural model.

0 5 10 15 20
−1

0

1

R
ud

de
r (

−)

Time (s)

0 5 10 15 20
−400

−200

0

200

Y
aw

 ra
te

 (d
eg

/s
ec

)

Time (s)

0 5 10 15 20

−0.01

0

0.01

0.02

E
rr

or
 (d

eg
/s

ec
)

Time (s)

Measured Output
NARX Model Output

Figure 11. Nonlinear modeling result for yaw rate.

8 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)



the linear model error with the nonlinear model error it

can be noticed that the difference in magnitude is hun-

dreds of times bigger in the first case.

5. Results

In this section the results for the identified models, both

linear and nonlinear, for pitch and roll are presented. The

time-domain identification for pitch and roll are shown in

Figures 13 and 14, and 15 and 16, respectively. Using the

PEM method in order to identify the roll rate, the transfer

function below was obtained:

Groll = �1277:8s� 379:87

s2 + 5:87s+ 76:9
ð6Þ

In Figure 13 the true output is compared with the model

output, resulted for the same input signal, while in Figure

14 the two responses are compared for a different input

signal in order to validate the linear model.

Using the same PEM method for pitch, the following

transfer function resulted:

Gpitch = 1108s+ 664:9

s2 + 5:43s+ 66:2
ð7Þ

Figures 15 and 16 present the responses of both the

model and the real process, in the case of pitch rate, for

two different input signals.

In general the models outputs present a good estimation

of the responses of the real system. There are only small

deviations in amplitude especially, but this is not critically

for control design because it can be fixed by the control-

ler’s gain. The accuracy of the models is comparable with

the ones obtained by Schafroth et al.14 It has to be noticed

that it’s a great challenge to perform flight tests for longer

than 20 s because the helicopter is unstable and difficult to

maneuver in very long open-loop tests. But despite this

drawback the models obtained are accurate enough to

make possible the design of a proper controller.

Figures 17 and 18, and 19 and 20, respectively, show

the results of nonlinear modeling using neural networks.

From the beginning it can be seen that the accuracy of the

NARX models is much higher than the ones in the linear

case. Actually, hardly any difference can be seen between

the model’s outputs and the real system’s outputs. Even in

the validation process, for different pairs of input–output

signals, the estimation is very good.

A NARX network was trained using again the

Levenberg–Marquardt algorithm in order to approximate

the behaviour of the roll rate. The structure of the neural

network based models (number of neurons per layer, num-

ber of delays) was chosen by experiment because there is

no proved technique that allows for an accurate calcula-

tion. Therefore, the chosen neural model has 1 hidden

layer with 15 neurons and 4 unit delays. The response of
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Figure 13. Time-domain roll rate identification result.
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Figure 14. Time-domain roll rate model validation.
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Figure 15. Time-domain pitch rate identification result.
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Figure 16. Time-domain pitch model validation.
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the model is compared below with the response of the real

process to the same input signal.

The neural model chosen for pitch has one hidden layer

with twelve neurons and four unit delays. The results are

presented in Figures 19 and 20.

6. Discussion and conclusions

In this paper both linear and nonlinear models are devel-

oped for the three rotation movements of a miniature coax-

ial helicopter.
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Figure 17. Nonlinear modeling result for roll rate.
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Figure 18. Validation of nonlinear roll rate model.
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A low cost UAV platform was developed using an

already available coaxial helicopter and a Tag4M module.

Besides the financial issue, the configuration obtained pre-

sents several other advantages like the wireless

communication and analog and digital input–output avail-

able which makes the platform flexible, i.e. sensors can be

added on the board, data can be acquired in real-time dur-

ing flight tests and controllers can be implemented using
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Figure 19. Nonlinear modeling result for pitch rate.
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Figure 20. Validation of nonlinear pitch rate model.
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the digital outputs to send the PWM signals to the actua-

tors. Using software applications developed in LabVIEW

and Matlab, the study of the helicopter dynamics was

possible.

Based on the flight data, linear models were obtained

using a PEM and the accuracy is high enough to design

performant controllers. The results are better than the ones

presented in the study by Schafroth et al.14 Even so, they

include only the dynamics of the helicopter around an

operation point (in this case hovering).

Further on, nonlinear models were developed based on

neural networks. The neural networks-based modeling can

be applied successfuly as an alternative to the linear mod-

eling or the first principle modeling because their ability

to approximate the dynamics of a nonlinear system on all

the operating range. For this reason NARX networks were

trained using the real sensor data. Their performances are

superior compared not only to the linear ones, but also

compared to the performances obtained in studies by

Suresh et al. and San Martin et al.20,29 The drawback in

the case of this kind of model is that no model-based con-

trol algorithms can be implemented. But, since one of the

purposes of the research project is to design a predictive

controller based on neural models, the results obtained at

this point are promising.

In the next stage of the project, the authors’ plan is to

design, develop, and validate flight embedded controllers

based first on the linear models and then on nonlinear

models (neural models).
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