713 research outputs found

    Lorey's height regression for ICESAT-GLAS waveforms in hyrcanian deciduous forests of Iran

    Get PDF
    IGARSS 2015, Milan, ITA, 26-/07/2015 - 31/07/2015International audienceSince Lidar technology provides the most direct measurements of 3D of phenomena, it plays a critical role in a variety of applications. Forest canopy height as a main factor in forest biomass estimation is costly and time consuming to be measured on the ground. This study aims to estimate Lorey's height “Hlorey” using GLAS data based on regression models. Different metrics like waveform extent “Wext”, trail-edge extent “Htrail” and lead-edge extent “Hlead” were extracted from waveforms and a terrain index “TI” was also calculated using a digital elevation model. Hlorey estimated using multiple regression models were compared to field measurements data. A 5-fold cross validation method was used to validate the results. Best model with lowest AIC (297.440) was resulted using combination of Wext and TI (R_a^2=0.72; RMSE= 5.04m). The results show capability of ICESat-GLAS to estimate Lorey's height in sloped area with a simple regression model. It is prospected to reach better result using other statistical methods and also improvement of processing techniques for LiDAR waveforms in the case of sloped terrai

    Bare soil moisture retrieval from multi-temporal X-band TerraSAR-X SAR images

    Get PDF
    IGARSS 2015, Milan, ITA, 26-/07/2015 - 31/07/2015International audienceThe aim of the present study is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to evaluate the accuracy of change detection approach proposed for soil moisture estimation. Firstly, we presented a brief description of our ground and satellite database. Secondly, we considered the main results of our statistical analysis of the relationships between radar and soil parameters: soil moisture and different roughness parameters (the rms height, Zs parameter, and a new roughness parameter Zg. Finally, we proposed an algorithm combing multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements for the retrieval of surface soil moisture at a high spatial resolution

    On the use of the ISBAS Acronym in InSAR Aapplications. Comment on Vajedian, S.; Motagh, M.; Nilfouroushan, F. StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz. Remote Sens. 2015, 7, 8323–8347

    Get PDF
    Vajedian et al. [1] present an improved method for the derivation of deformation parameters using satellite Interferometric Synthetic Aperture Radar (InSAR) data. The method is a modification of the Small Baseline Subset (SBAS) method as implemented in the StaMPS (Stanford Method for Persistent Scatterers) software. The modification includes many steps including the filtering of the differential interferograms, integration with GPS data and advanced phase unwrapping “to overcome a lot of short- and long-wavelength artifacts that are clearly visible in StaMPS results” (cf. [1], p. 8331). The authors refer to this new approach as the Improved SBAS, or ISBAS, method. [...

    Potentials of TanDEM-X Interferometric Data for Global Forest/Non-Forest Classification

    Get PDF
    This paper presents a method to generate forest/nonforest maps from TanDEM-X interferometric SAR data. Among the several contributions which may affect the quality of interferometric products, the coherence loss caused by volume scattering represents the contribution which is predominantly affected by the presence of vegetation, and is therefore here exploited as main indicator for forest classification. Due to the strong dependency of the considered InSAR quantity on the geometric acquisition configuration, namely the incidence angle and the interferometric baseline, a multi-fuzzy clustering classification approach is used. Some examples are provided which show the potential of the proposed method. Further, additional features such as urban settlements, water, and critical areas affected by geometrical distortions (e.g. shadow and layover) need to be extracted, and possible approaches are presented as well. Very promising results are shown, which demonstrate the potentials of TanDEM-X bistatic data not only for forest identification, but, more in general, for the generation of a global land classification map as a next step

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    A combined Remote Sensing and GIS-based method for Local Climate Zone mapping using PRISMA and Sentinel-2 imagery

    Get PDF
    In the last decade, several methods have been developed for Local Climate Zone (LCZ) mapping, encompassing Remote Sensing and Geographic Information Systems (GIS) −based procedures. Combined approaches have also been proposed to compensate for intrinsic limitations that characterized their separate application. Recent work has disclosed the potential of hyperspectral satellite imagery for improving LCZ identification. However, the use of hyperspectral data for LCZ mapping is yet to be fully unfolded. A combined Remote Sensing and GIS-based method for LCZ mapping is proposed to exploit the integration of hyperspectral PRISMA and multispectral Sentinel-2 images with ancillary urban canopy parameter layers. Random Forest algorithm is applied to the feature sets to obtain the LCZ classification. The method is tested on the Metropolitan City of Milan (Italy), for the period from February to August 2023. A spectral separability analysis is carried out to investigate the improvement in LCZ identification using PRISMA in comparison to Sentinel-2 data, as well as improvements in LCZ spectral separability on PRISMA pan-sharpened images. The resulting maps’ quality is evaluated by extracting accuracy metrics and performing inter-comparisons with maps computed from the LCZ Generator benchmark tool. Inter-comparisons yield promising results with a mean Overall Accuracy increase of 16% using PRISMA for each LCZ class. Furthermore, we find that PRISMA improves the detection of LCZs compared to Sentinel-2, with a mean Overall Accuracy increase of 5%, in line with the higher spectral separability of PRISMA spectral signatures computed on the training samples

    Downscaling landsat land surface temperature over the urban area of Florence

    Get PDF
    A new downscaling algorithm for land surface temperature (LST) images retrieved from Landsat Thematic Mapper (TM) was developed over the city of Florence and the results assessed against a high-resolution aerial image. The Landsat TM thermal band has a spatial resolution of 120 m, resampled at 30 m by the US Geological Survey (USGS) agency, whilst the airborne ground spatial resolution was 1 m. Substantial differences between Landsat USGS and airborne thermal data were observed on a 30 m grid: therefore a new statistical downscaling method at 30 m was developed. The overall root mean square error with respect to aircraft data improved from 3.3 °C (USGS) to 3.0 °C with the new method, that also showed better results with respect to other regressive downscaling techniques frequently used in literature. Such improvements can be ascribed to the selection of independent variables capable of representing the heterogeneous urban landscape

    Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis

    Get PDF
    Persistent Scatterers Interferometry (PSI) represents one of the most powerful techniques for Earth's surface deformation processes' monitoring, especially for long-term evolution phenomena. In this work, a dataset of 34 TerraSAR-X StripMap images (October 2013–October 2014) has been processed by two PSI techniques - Coherent Pixel Technique-Temporal Sublook Coherence (CPT-TSC) and Small Baseline Subset (SBAS) - in order to study the evolution of a slow-moving landslide which occurred on February 23, 2012 in the Papanice hamlet (Crotone municipality, southern Italy) and induced by a significant rainfall event (185 mm in three days). The mass movement caused structural damage (buildings' collapse), and destruction of utility lines (gas, water and electricity) and roads. The results showed analogous displacement rates (30–40 mm/yr along the Line of Sight – LOS-of the satellite) with respect to the pre-failure phase (2008–2010) analyzed in previous works. Both approaches allowed detect the landslide-affected area, however the higher density of targets identified by means of CPT-TSC enabled to analyze in detail the slope behavior in order to design possible mitigation interventions. For this aim, a slope stability analysis has been carried out, considering the comparison between groundwater oscillations and time-series of displacement. Hence, the crucial role of the interaction between rainfall and groundwater level has been inferred for the landslide triggering. In conclusion, we showed that the integration of geotechnical and remote sensing approaches can be seen as the best practice to support stakeholders to design remedial works.Peer ReviewedPostprint (author's final draft
    • 

    corecore