39 research outputs found

    Architecture distribuée pour la détection d'activité dans un Espace Intelligent

    Get PDF
    La présente étude porte sur la capacité d'améliorer la détection des Activités de la Vie Quotidienne, AVQ (ou ADL :"Activity of Daily Life") par l'utilisation de capteur [i.e. capteurs] de mouvements portés par l'occupant d'un habitat intelligent. Les données provenant de ces capteurs devraient fusionner avec les informations issues de l'appartement pour donner une information plus pertinente par le principe de synergie [21]. La solution choisie pour le dispositif porté par la personne est l'innovation principale du projet : un réseau de capteurs disposés à plusieurs endroits sur le corps, communicant sans fil entre eux et avec le contrôle de l'appartement. Les données extraites sont le mouvement relatif du corps, et plus spécifiquement des mains et du tronc, par rapport à la verticale. De par les propriétés de ces éléments - nécessairement petits, discrets - des MEMS seront utilisés pour satisfaire ces critères. Le projet repose sur la conception des dispositifs embarqués sur l'occupant dans l'optique d'en étendre les fonctionnalités à d'autres analyses tels [i.e. telles] que le son, la position dans l'environnement, le statut médical, etc. Pour prouver la faisabilité, des capteurs externes seront ajoutés pour compléter les informations de base et donc étendre la qualité des inférences sur les activités en cours. Le mouvement est une donnée facilement détectable de par sa relative simplicité de mise en oeuvre et il fournit une bonne base de travail pour étudier de façon systématique les différents points clés de l'étude : la communication, la synergie des informations, l'analyse des activités, etc

    Enabling technologies and cyber-physical systems for mission-critical scenarios

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicacións en Redes Móbiles . 5029P01[Abstract] Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: transportation, defense and public safety, and shipbuilding. Regarding the transport sector, this thesis provides an understanding of the progress of communications technologies used for railways since the implantation of Global System for Mobile communications-Railways (GSM-R). The aim of this work is to envision the potential contribution of Long Term Evolution (LTE) to provide additional features that GSM-R would never support. Furthermore, the ability of Industrial IoT for revolutionizing the railway industry and confront today's challenges is presented. Moreover, a detailed review of the most common flaws found in Radio Frequency IDentification (RFID) based IoT systems is presented, including the latest attacks described in the literature. As a result, a novel methodology for auditing security and reverse engineering RFID communications in transport applications is introduced. The second sector selected is driven by new operational needs and the challenges that arise from modern military deployments. The strategic advantages of 4G broadband technologies massively deployed in civil scenarios are examined. Furthermore, this thesis analyzes the great potential for applying IoT technologies to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where defense and public safety could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. The last part is devoted to the shipbuilding industry. After defining the novel concept of Shipyard 4.0, how a shipyard pipe workshop works and what are the requirements for building a smart pipe system are described in detail. Furthermore, the foundations for enabling an affordable CPS for Shipyards 4.0 are presented. The CPS proposed consists of a network of beacons that continuously collect information about the location of the pipes. Its design allows shipyards to obtain more information on the pipes and to make better use of it. Moreover, it is indicated how to build a positioning system from scratch in an environment as harsh in terms of communications as a shipyard, showing an example of its architecture and implementation.[Resumen] En la sociedad moderna, los sistemas de transporte fiables, la defensa, la seguridad pública y el control de la calidad en la Industria 4.0 son esenciales. En un escenario de misión crítica, el fracaso de una misión pone en peligro vidas humanas y en riesgo otros activos cuyo deterioro o pérdida perjudicaría significativamente a la sociedad o a los resultados de una empresa. Incluso pequeñas degradaciones en las comunicaciones que apoyan la misión podrían tener importantes y posiblemente terribles consecuencias. Por un lado, las organizaciones de misión crítica desean utilizar los sistemas y tecnologías de comunicación más modernos, disruptivos e innovadores y, sin embargo, deben cumplir requisitos estrictos que son muy diferentes a los relativos a escenarios no críticos. El objetivo principal de esta tesis es evaluar la viabilidad de aplicar tecnologías emergentes como Internet of Things (IoT), Cyber-Physical Systems (CPS) y comunicaciones de banda ancha 4G en escenarios de misión crítica en tres sectores clave de infraestructura crítica: transporte, defensa y seguridad pública, y construcción naval. Respecto al sector del transporte, esta tesis permite comprender el progreso de las tecnologías de comunicación en el ámbito ferroviario desde la implantación de Global System for Mobile communications-Railway (GSM-R). El objetivo de este trabajo es analizar la contribución potencial de Long Term Evolution (LTE) para proporcionar características adicionales que GSM-R nunca podría soportar. Además, se presenta la capacidad de la IoT industrial para revolucionar la industria ferroviaria y afrontar los retos actuales. Asimismo, se estudian con detalle las vulnerabilidades más comunes de los sistemas IoT basados en Radio Frequency IDentification (RFID), incluyendo los últimos ataques descritos en la literatura. Como resultado, se presenta una metodología innovadora para realizar auditorías de seguridad e ingeniería inversa de las comunicaciones RFID en aplicaciones de transporte. El segundo sector elegido viene impulsado por las nuevas necesidades operacionales y los desafíos que surgen de los despliegues militares modernos. Para afrontarlos, se analizan las ventajas estratégicas de las tecnologías de banda ancha 4G masivamente desplegadas en escenarios civiles. Asimismo, esta tesis analiza el gran potencial de aplicación de las tecnologías IoT para revolucionar la guerra moderna y proporcionar beneficios similares a los alcanzados por la industria. Se identifican escenarios en los que la defensa y la seguridad pública podrían aprovechar mejor las capacidades comerciales de IoT para ofrecer una mayor capacidad de supervivencia al combatiente o a los servicios de emergencias, a la vez que reduce los costes y aumenta la eficiencia y efectividad de las operaciones. La última parte se dedica a la industria de construcción naval. Después de definir el novedoso concepto de Astillero 4.0, se describe en detalle cómo funciona el taller de tubería de astillero y cuáles son los requisitos para construir un sistema de tuberías inteligentes. Además, se presentan los fundamentos para posibilitar un CPS asequible para Astilleros 4.0. El CPS propuesto consiste en una red de balizas que continuamente recogen información sobre la ubicación de las tuberías. Su diseño permite a los astilleros obtener más información sobre las tuberías y hacer un mejor uso de las mismas. Asimismo, se indica cómo construir un sistema de posicionamiento desde cero en un entorno tan hostil en términos de comunicaciones, mostrando un ejemplo de su arquitectura e implementación

    Vol. 93, no. 4: Full Issue

    Get PDF

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks

    Contribución a las redes de sensores inalámbricas. Estudio e implementación de soluciones hardware para agricultura de precisión.

    Get PDF
    [SPA] En las regiones áridas y semiáridas, como el sureste español, la escasez de los recursos hídricos está causando importantes problemas de abastecimiento que afectan principalmente a la agricultura. Además, las predicciones sobre los efectos de cambio climático en estas regiones auguran un progresivo empeoramiento de la situación actual. Por tanto, uno de los objetivos prioritarios en el manejo y gestión de los recursos hídricos destinados al riego, debe ser el desarrollo e incorporación de nuevas tecnologías, así como de métodos que permitan conseguir una mayor eficiencia del uso del agua. Uno de los métodos más conocidos, y utilizados, para estimar, evaluar y entender las variaciones existentes en los cultivos es la agricultura de precisión. Este método se beneficia de numerosas tecnologías, entre las que se pueden citar los sistemas de posición global, las comunicaciones inalámbricas y los sistemas de instrumentación. Estas tecnologías permiten realizar tareas de monitorización de los cultivos almacenando los datos adquiridos, junto con las coordenadas geográficas del punto en el que se realizó la medida. Las redes de sensores inalámbricas constituyen una tecnología emergente de adquisición de datos que recientemente está atrayendo gran interés gracias a sus posibilidades, siendo aplicadas en numerosos ámbitos científicos e industriales para la realización de estudios y control de procesos. El uso de comunicaciones inalámbricas permite que los dispositivos sensores que la forman sean emplazados, así como reubicados, fácilmente sobre el terreno. Esta tesis se plantea con el objetivo global de estudiar, diseñar e implementar una arquitectura hardware, basada en redes de sensores inalámbricas, que pueda servir de herramienta a los ingenieros agrónomos para monitorizar, y así estimar, evaluar y entender las variaciones existentes en los cultivos, con objeto de determinar con mayor exactitud las necesidades de fertilizantes y riego, las fases de desarrollo y maduración de los productos, así como los puntos óptimos de siembra y recolección, que son los principales objetivos del método de la agricultura de precisión. Teniendo en cuenta las premisas de la arquitectura propuesta, durante el desarrollo de esta Tesis se han diseñado y construido diferentes prototipos de dispositivos inalámbricos (motes), los cuales han sido progresivamente depurados y mejorados a lo largo del transcurso de este trabajo, para poder ser validados en despliegues de redes de sensores, ubicadas en plantaciones agrícolas con diferentes cultivos. El resultado de este proceso ha concluido con el diseño de un dispositivo inalámbrico multi-entorno (MEWiN), con objeto de disminuir el número de elementos necesarios para configurar una red determinada y poder realizar tareas de monitorización mediante un único dispositivo. Los resultados que se derivan del desarrollo de esta tesis pueden ser aprovechados en nuevos trabajos de investigación aplicada, no sólo en el ámbito de la agricultura de precisión, sino también en contextos más diversos, como la monitorización en entornos marinos, o la vigilancia preventiva de partículas nocivas en ambientes industriales. [ENG] Water and food are the main resources that meet the needs of human beings. Agriculture provides most of the food but it also consumes most of the Earth’s available fresh water. In arid and semiarid regions, as Southern Spain, the water supply is an important factor that considerably affects agriculture. Development of innovative irrigation systems that efficiently use water is a high priority. In these regions, farmers must irrigate their crops efficiently; therefore, they must find new solutions and methods that improve the irrigation programming systems, taking into account not only the state of the soil and the plants but also information relating to the climate. All these data must be properly interpreted to decide the most suitable actions to carry out. Precision Agriculture is a set of techniques that provide a suitable solution to these problems because it aims to optimize field-level management with regard to crop science by matching farming practices more closely to crop needs. Economic advantages are also obtained by boosting competitiveness through more efficient practices (e.g. better management of water usage and costs). On the other hand, Information and Communication Technologies (ICT’s) are used to acquire information about the crop needs. Precision Agriculture techniques use this information to achieve the proposed objectives, in particular, intensive monitoring of crops, data analysis, decision making and application of control actions. Sensor Networks is a technology to carry out the intensive monitoring of crops using both wired and wireless nets. Wired solutions have been used since the 90s, whereas Wireless Sensors Networks (WSNs) are more recent (from the year 2000). In Agriculture, WSN‟s are more suitable because costs are reduced and the final solution is more reliable, since wires can be damaged by farming machinery in the crop. The simple redeployment of the devices provides high network versatility, so it is also another advantage to consider. Furthermore, WSN’s are proving to be a promising technology, and many WSN solutions are being successfully designed in several areas. The interest aroused by WSN technology has prompted the appearance on the market of various hardware platforms (sensor nodes or motes) for the development of new applications (hospitals, unfriendly environments and mobile control applications, among others), and research works (e.g. energy-efficient optimization or target tracking). Worth noting among these platforms are MICAz, TelosB, IRIS, Imote2 and others. It should be noted that these motes, and others not mentioned here, are devices that normally include embedded low-cost sensors whose specifications (precision, resolution, drift, etc.) are not the same as those of the instruments that are normally required in Precision Agriculture applications. For instance, the TelosB that includes the temperature sensor Sensirion SHT11 has no protection level. Moreover the temperature accuracy of this sensor is very dependent on environmental conditions compared to the HMP41 Vaisala sensor, widely used in precision agriculture. Moreover, many of these motes have only been used in laboratory or research applications and are not robust enough for use in real agricultural environments. In fact, many theoretical references about WSN based applications in Precision Agriculture can be found in scientific literature, but very few real deployments had been carried out, due to the scarcity of resources and the high cost of technology in the agricultural sector. Therefore, cost reduction is necessary to guarantee the success of WSN based applications in Precision Agriculture. Another important aspect of the motes is their capacity for connection to external instruments. There is a large group of external outdoor sensors used in the field of Precision Agriculture. Consequently, if motes are to be used in real agricultural applications, they first of all need to incorporate the necessary electronic interface to connect with external quality instruments. This feature together with robustness, autonomy and the possibility of connecting different types of instruments must be prioritized, as Geographic Information Systems (GIS), have been frequently used in Precision Agriculture. However WSN’s are not yet popular. Therefore, the development of new low cost hardware devices (motes) is necessary because they can measure the state of the crops in real time and provide the essential support to Precision Agriculture. Furthermore, these devices must be reliable in both indoor and outdoor conditions. They must be designed using an open architecture to facilitate the connection between different sensors and actuators required by the farming application. The main objective of this Thesis is the study and implementation of a hardware architecture based on WSN’s and their application in Precision Agriculture, particularly in real-time crops monitoring. Specifically, using Precision Agriculture to get an optimal crops production involves carrying out the following stages: Monitoring crops by acquiring data from sensors, analyzing obtained data, making decisions, applying control actions.[ENG] Water and food are the main resources that meet the needs of human beings. Agriculture provides most of the food but it also consumes most of the Earth’s available fresh water. In arid and semiarid regions, as Southern Spain, the water supply is an important factor that considerably affects agriculture. Development of innovative irrigation systems that efficiently use water is a high priority. In these regions, farmers must irrigate their crops efficiently; therefore, they must find new solutions and methods that improve the irrigation programming systems, taking into account not only the state of the soil and the plants but also information relating to the climate. All these data must be properly interpreted to decide the most suitable actions to carry out. Precision Agriculture is a set of techniques that provide a suitable solution to these problems because it aims to optimize field-level management with regard to crop science by matching farming practices more closely to crop needs. Economic advantages are also obtained by boosting competitiveness through more efficient practices (e.g. better management of water usage and costs). On the other hand, Information and Communication Technologies (ICT’s) are used to acquire information about the crop needs. Precision Agriculture techniques use this information to achieve the proposed objectives, in particular, intensive monitoring of crops, data analysis, decision making and application of control actions. Sensor Networks is a technology to carry out the intensive monitoring of crops using both wired and wireless nets. Wired solutions have been used since the 90s, whereas Wireless Sensors Networks (WSNs) are more recent (from the year 2000). In Agriculture, WSN‟s are more suitable because costs are reduced and the final solution is more reliable, since wires can be damaged by farming machinery in the crop. The simple redeployment of the devices provides high network versatility, so it is also another advantage to consider. Furthermore, WSN’s are proving to be a promising technology, and many WSN solutions are being successfully designed in several areas. The interest aroused by WSN technology has prompted the appearance on the market of various hardware platforms (sensor nodes or motes) for the development of new applications (hospitals, unfriendly environments and mobile control applications, among others), and research works (e.g. energy-efficient optimization or target tracking). Worth noting among these platforms are MICAz, TelosB, IRIS, Imote2 and others. It should be noted that these motes, and others not mentioned here, are devices that normally include embedded low-cost sensors whose specifications (precision, resolution, drift, etc.) are not the same as those of the instruments that are normally required in Precision Agriculture applications. For instance, the TelosB that includes the temperature sensor Sensirion SHT11 has no protection level. Moreover the temperature accuracy of this sensor is very dependent on environmental conditions compared to the HMP41 Vaisala sensor, widely used in precision agriculture. Moreover, many of these motes have only been used in laboratory or research applications and are not robust enough for use in real agricultural environments. In fact, many theoretical references about WSN based applications in Precision Agriculture can be found in scientific literature, but very few real deployments had been carried out, due to the scarcity of resources and the high cost of technology in the agricultural sector. Therefore, cost reduction is necessary to guarantee the success of WSN based applications in Precision Agriculture. Another important aspect of the motes is their capacity for connection to external instruments. There is a large group of external outdoor sensors used in the field of Precision Agriculture. Consequently, if motes are to be used in real agricultural applications, they first of all need to incorporate the necessary electronic interface to connect with external quality instruments. This feature together with robustness, autonomy and the possibility of connecting different types of instruments must be prioritized, as Geographic Information Systems (GIS), have been frequently used in Precision Agriculture. However WSN’s are not yet popular. Therefore, the development of new low cost hardware devices (motes) is necessary because they can measure the state of the crops in real time and provide the essential support to Precision Agriculture. Furthermore, these devices must be reliable in both indoor and outdoor conditions. They must be designed using an open architecture to facilitate the connection between different sensors and actuators required by the farming application. The main objective of this Thesis is the study and implementation of a hardware architecture based on WSN’s and their application in Precision Agriculture, particularly in real-time crops monitoring. Specifically, using Precision Agriculture to get an optimal crops production involves carrying out the following stages: Monitoring crops by acquiring data from sensors, analyzing obtained data, making decisions, applying control actions.Universidad Politécnica de Cartagen
    corecore