19 research outputs found

    Generating Surface Geometry in Higher Dimensions using Local Cell Tilers

    Get PDF
    In two dimensions contour elements surround two dimensional objects, in three dimensions surfaces surround three dimensional objects and in four dimensions hypersurfaces surround hyperobjects. These surfaces can be represented by a collection of connected simplices, hence, continuous n dimensional surfaces can be represented by a lattice of connected n-1 dimensional simplices. The lattice of connected simplices can be calculated over a set of adjacent n-dimensional cubes, via for example the Marching Cubes Algorithm. These algorithms are often named local cell tilers. We propose that the local-cell tiling method can be usefully-applied to four dimensions and potentially to N-dimensions. We present an algorithm for the generation of major cases (cases that are topologically invariant under standard geometrical transformations) and introduce the notion of a sub-case which simplifies their representations. Each sub-case can be easily subdivided into simplices for rendering and we describe a backtracking tetrahedronization algorithm for the four dimensional case. An implementation for surfaces from the fourth dimension is presented and we describe and discuss ambiguities inherent within this and related algorithms

    Single view vs. multiple views scatterplots

    Get PDF
    Among all the available visualization tools, the scatterplot has been deeply analyzed through the years and many researchers investigated how to improve this tool to face new challenges. The scatterplot visualization diagram is considered one of the most functional among the variety of data visual representations, due to its relative simplicity compared to other multivariable visualization techniques. Even so, one of the most significant and unsolved challenge in data visualization consists in effectively displaying datasets with many attributes or dimensions, such as multidimensional or multivariate ones. The focus of this research is to compare the single view and the multiple views visualization paradigms for displaying multivariable dataset using scatterplots. A multivariable scatterplot has been developed as a web application to provide the single view tool, whereas for the multiple views visualization, the ScatterDice web app has been slightly modified and adopted as a traditional, yet interactive, scatterplot matrix. Finally, a taxonomy of tasks for visualization tools has been chosen to define the use case and the tests to compare the two paradigms

    SPREAD AND DYNAMICS OF COVID-19: A DATA VISUALIZATION STUDY

    Get PDF
    Second Place of OSUN Student Research ForumA pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), named as coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), emerged in Wuhan, China and it is currently underway resulting in worldwide severe morbidity and mortality. Since the beginning of the pandemic, visualizations have assisted us to understand the unpredictable nature of this virus by providing detailed information based on data and variables on the ground. During the pandemic, visualizations can help us to analyze features such as the infection rate within different groups of people, thus we could interpret the reasons behind the high infection rate. The objective of our study is to overview some of the state-of-art visualization techniques to illustrate the dynamics of the COVID-19 spread for Ohio. Although there are some potential variables, such as age, that are known to be associated with COVID-19, it remains unclear if the affection and death rates for COVID-19 differ significantly for some other factors. Therefore, we are going to analyze COVID-19 data from Ohio and the USA to discover such factors statistically.No embargoAcademic Major: Data Analytic

    Scale-Space Splatting: Reforming Spacetime for the Cross-Scale Exploration of Integral Measures in Molecular Dynamics

    Full text link
    Understanding large amounts of spatiotemporal data from particle-based simulations, such as molecular dynamics, often relies on the computation and analysis of aggregate measures. These, however, by virtue of aggregation, hide structural information about the space/time localization of the studied phenomena. This leads to degenerate cases where the measures fail to capture distinct behaviour. In order to drill into these aggregate values, we propose a multi-scale visual exploration technique. Our novel representation, based on partial domain aggregation, enables the construction of a continuous scale-space for discrete datasets and the simultaneous exploration of scales in both space and time. We link these two scale-spaces in a scale-space space-time cube and model linked views as orthogonal slices through this cube, thus enabling the rapid identification of spatio-temporal patterns at multiple scales. To demonstrate the effectiveness of our approach, we showcase an advanced exploration of a protein-ligand simulation.Comment: 11 pages, 9 figures, IEEE SciVis 201

    Paraglide: Interactive Parameter Space Partitioning for Computer Simulations

    Full text link
    In this paper we introduce paraglide, a visualization system designed for interactive exploration of parameter spaces of multi-variate simulation models. To get the right parameter configuration, model developers frequently have to go back and forth between setting parameters and qualitatively judging the outcomes of their model. During this process, they build up a grounded understanding of the parameter effects in order to pick the right setting. Current state-of-the-art tools and practices, however, fail to provide a systematic way of exploring these parameter spaces, making informed decisions about parameter settings a tedious and workload-intensive task. Paraglide endeavors to overcome this shortcoming by assisting the sampling of the parameter space and the discovery of qualitatively different model outcomes. This results in a decomposition of the model parameter space into regions of distinct behaviour. We developed paraglide in close collaboration with experts from three different domains, who all were involved in developing new models for their domain. We first analyzed current practices of six domain experts and derived a set of design requirements, then engaged in a longitudinal user-centered design process, and finally conducted three in-depth case studies underlining the usefulness of our approach

    A Spreadsheet Approach to Facilitate Visualization of Uncertainty in Information

    Full text link

    New insights into the suitability of the third dimension for visualizing multivariate/multidimensional data: a study based on loss of quality quantification

    Get PDF
    Most visualization techniques have traditionally used two-dimensional, instead of three-dimensional representations to visualize multidimensional and multivariate data. In this article, a way to demonstrate the underlying superiority of three-dimensional, with respect to two-dimensional, representation is proposed. Specifically, it is based on the inevitable quality degradation produced when reducing the data dimensionality. The problem is tackled from two different approaches: a visual and an analytical approach. First, a set of statistical tests (point classification, distance perception, and outlier identification) using the two-dimensional and three-dimensional visualization are carried out on a group of 40 users. The results indicate that there is an improvement in the accuracy introduced by the inclusion of a third dimension; however, these results do not allow to obtain definitive conclusions on the superiority of three-dimensional representation. Therefore, in order to draw further conclusions, a deeper study based on an analytical approach is proposed. The aim is to quantify the real loss of quality produced when the data are visualized in two-dimensional and three-dimensional spaces, in relation to the original data dimensionality, to analyze the difference between them. To achieve this, a recently proposed methodology is used. The results obtained by the analytical approach reported that the loss of quality reaches significantly high values only when switching from three-dimensional to two-dimensional representation. The considerable quality degradation suffered in the two-dimensional visualization strongly suggests the suitability of the third dimension to visualize data
    corecore