
Generating Surface Geometry in Higher Dimensions using
Local Cell Tilers

Dr Steve A. Hill

Computing Laboratory,

University of Kent,
England, UK;

S.A.Hill@ukc.ac.uk

Dr Jonathan C. Roberts

Computing Laboratory,

University of Kent,
England, UK;

J.C.Roberts@ukc.ac.uk

Abstract

In two dimensions contour elements surround two
dimensional objects, in three dimensions surfaces
surround three dimensional objects and in four
dimensions hypersurfaces surround hyperobjects.
These surfaces can be represented by a collection
of connected simplices, hence, continuous n di-
mensional surfaces can be represented by a lat-
tice of connected n� 1 dimensional simplices.

The lattice of connected simplices can be cal-
culated over a set of adjacent n-dimensional
cubes, via for example the Marching Cubes Al-
gorithm. These algorithms are often named local
cell tilers. We propose that the local-cell tiling
method can be usefully-applied to four dimen-
sions and potentially to N-dimensions.

We present an algorithm for the generation of
major cases (cases that are topologically invari-
ant under standard geometrical transformations)
and introduce the notion of a sub-case which sim-
plifies their representations. Each sub-case can
be easily subdivided into simplices for rendering
and we describe a backtracking tetrahedroniza-
tion algorithm for the four dimensional case. An
implementation for surfaces from the fourth di-
mension is presented and we describe and discuss
ambiguities inherent within this and related algo-
rithms.

1 Introduction and Motivation

We live within three dimensional space; see-
ing our world via a two dimensional projection,
which is reconstructed by our brain into a three

dimensional model using motion, edge and depth
cues. However, higher dimensions have been
proposed and considered for many years; with
the fourth dimension representing time, distance,
a fourth spatial coordinate and even a spiritual
realm.

Objects within four and higher dimensions can
be generated from natural extensions to plane or
solid geometry, with each three dimensional ob-
ject (plane, cube, cone) having a four and higher
dimensional equivalent (hyperplane, hypercube,
hypercone). Data sets with higher dimensions
can be generated from simulations, collated from
statistics or sampled from real-life phenomena;
many diverse fields-of-study provide data with
copious variables that can be displayed in a num-
ber of dimensions using various imaging tech-
niques.

Modern computer graphics provide the abil-
ity to view, interrogate and understand objects
and phenomena that exist in higher dimensions.
For example, an image of a Klein bottle, with a
twisted surface, intersects itself within three di-
mensions, whereas within four dimensional space
the bottle can be depicted without the self inter-
section [3].

Geometry in higher dimensions can be (1) pro-
jected down to lower dimensions, using a variety
of projection methods including parallel, perspec-
tive and central or (2) represented in other coordi-
nate systems, including Parallel Coordinates [17]
that depict the relationships and dependencies be-
tween N-Dimensional data (especially geometry)
within a two dimensional parallel axis coordinate
system.

Visualizations of n-dimensional data can be

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


obtained by rendering the ‘surface’ of the data.
The surface created is one dimension less than the
original data: for example, the surfaces from two
dimensional data create contour plots (one dimen-
sional line segments in two dimensions) and three
dimensional (volume) data produces two dimen-
sional faces in three dimensions. Hence, from a
four dimensional data volume a hypersurface is
formed.

A two dimensional contour on a map, repre-
senting a particular height above sea-level, can be
created using a continuous connection of straight
line segments. Similarly, a continuous surface
within three dimensions can be represented by a
lattice of two-dimensional polygons. Therefore, a
continuous hypersurface can be represented by a
lattice of n-dimensional simplices. These simplex
elements can be calculated from how the ‘sur-
face’ intersects a set of adjacent n-dimensional
cubes. A surface at a particular value (isosurface)
through sampled data can be realised at the point
of zero value, interpolated between any edge of an
opposing sign. The signs at the n-cube vertices
are found by thresholding the spatial data at a
discrete data point. Consequently, hypersurfaces
within higher dimensions can be depicted using a
lattice of three-dimensional simplices (volumes),
generated by local evaluation through a sample
set of points.

This paper discusses the problems, require-
ments and some solutions in implementing ann-dimensional isosurface algorithm from spatial
data, using local cell tiling methods. We fo-
cus on the generation of the n-dimensional ge-
ometry rather than the rendering or realistic-
representation (using say higher-dimensional
light) of the n-dimensional image.

Initially we present some background informa-
tion. We then describe the algorithms and tech-
niques: firstly from a theoretical viewpoint and
secondly within a practical framework. Finally,
we discuss other possible implementations and
solutions with their relevant merits and pitfalls,
ending with conclusions and possible future ex-
tensions.

2 Background

There are (broadly) two flavours of surface mesh
algorithms: (1) Planar Contours, that generate
surface over the boundary of adjacent contour

paths [10, 11, 21]; and (2) Local Cell evaluation,
that can be further subdivided into: (a) Advanc-
ing Front, that finds the surface by growing a seed
point on the surface, from where the other surface
segments are found [33, 27]; and (b) Complete
Cell Evaluation, that evaluates each cell’s con-
tribution to the surface: forming a surface made
from tiles [25, 20, 7]. We use and extend the lat-
ter method to four and theoretically higher dimen-
sions. Moreover the advancing front techniques
could be likewise extended to n-dimensions.

2.1 3D Local Cell Surface Generation

The local cell tilers evaluate a single cell for its
contribution to the surface. Two such methods in
three dimensions are by lookup (e.g. Marching
Cubes) [20] and algorithmically [6]. An estimate
of the position of the surface intersection along a
particular edge can be found by linear interpola-
tion. Multiple surfaces at the same threshold can
be produced by the local cell methods, but erro-
neous surfaces due to the locality of the surface
decision (by false positives or false negatives) can
be produced. Hill and Roberts [16] and Ning and
Bloomethal [25] discuss some methods to disam-
biguate a cell and hence remove the erroneous
surfaces. Degenerate triangle pieces, where the
surface-simplices become infinitesimal, can also
be created (as a result of the interpolation pro-
cess), slowing the rendering and increasing the
storage. However, decimation [30] or mesh dis-
placement [23] techniques can be used to reduce
the number of (tiny) polygons.

2.2 Surface Creation – the Use of Sim-
plices

The local cell tilers often use a cube (rectilin-
ear) cell representation, as in the Marching Cubes
Algorithm. Tetrahedral cells have also been
used [34], the advantage being that a finer detailed
surface is created and, that from local sign alter-
nations only one surface can intersect the tetra-
hedron — there is no ambiguous face. However
more polygons are usually generated [34] and as
the tetrahedra can be divided into a local cube
cell, in configurations of five or six tetrahedra,
ambiguities are still present: because the isosur-
face is created by considering only neighbour data
points. The ambiguities can be resolved using a
twelve tetrahedra configuration [5] requiring an

2



additional (tri-linear [15] or tri-cubic [1]) interpo-
lated center point.

Simplices are also used in the representation of
the surface mesh. All two and three dimensional
graphic libraries support their rendering and there
are algorithms that efficiently triangulate two and
three dimensional areas [4].

2.3 The Marching Cubes Surface Algo-
rithm

A surface can intersect a cube in 256 (28) ways:
this can be broken down into 14 cases if mir-
ror and rotational symmetry are considered or 15
cases without the mirror operation. The 256 com-
ponents can be stored in a lookup table containing
appropriate surface topology segments.

The marching cubes algorithm [20] uses a bi-
nary threshold (the isosurface value) on the ver-
tices of a cube to generate an eight bit (one for
each vertex) number that is used as the key into
the lookup table. The algorithm ‘marches’ se-
quentially through the data, thresholding the eight
neighbouring data-samples and looking up the
index to collect the surface intersections at that
position. The vertices of the retrieved surface
triangles are then interpolated into the position
governed by the threshold value, appropriately
shaded and rendered.

2.4 N-dimensional geometry

Perceiving geometry within a higher dimensional
space is not intuitive. Therefore, we present some
simple n-dimensional geometry facts; for more
information see: [3, 12, 31].

In three dimensions the rotations can be ex-
pressed as “rotations about each axis”, but this
does not extend to n-dimensions. There is, in fact,
one rotation per pair of axes, which formulates toN(N � 1)=2 degrees of rotation [12]. Therefore,
in four dimensions there are six rotations.

There are many different projections from
four dimensions to three, including: (1) Ortho-
graphic, where one coordinate can be thrown
away; (2) Pinhole perspective, where the firstN � 1 coordinates are scaled by dividing by(FD � CN )=FL, FD being the Focal distance,FL the Focal Length and CN the nth coordi-
nate; (3) Central, where the nth coordinate is
shrunk into the N � 1 coordinates: (x; y; z; w) =(xFL=(FD�w); yFL=(FD�w); zFL=(FD�w));

creating the popular hypercube depiction, where a
cube is displayed within a cube [12].

3 Definitions

Within this section we (1) present how the major-
cases are generated; (2) describe a secondary par-
tition separating the major-cases into sub-cases;
(3) describe the various transformations that are
available and enumerate their respective major
and sub-cases.

3.1 The Motivation

A lookup table, to hold a complete enumeration of
the cases within three dimensions, contains 256
elements (2n – where n is the number of ver-
tices). Therefore, there are 65536 (216) config-
urations for the vertex classification on a four di-
mensional cube. If a Marching Cube method was
applied directly to four dimensions the lookup ta-
ble could become unmanageable; with an aver-
age of 20 tetrahedra for each major case. More-
over techniques to subdivide the problem domain
would (a) simplify the algorithm for explanation
and implementation and (b) hopefully provide far
more efficient storage.

3.2 Major-Cases

In n-dimensions each cube has 2n vertices each
of which may be inside or outside the surface,
hence the set of all possible configurations C con-
tains 22n elements. In Lorensen and Cline’s ac-
count [20] of their local cell tiler, they identify 14
major cases. These correspond to sets of vertex
configurations which are closed under rotation,
mirror and vertex complement.

More formally, the major cases
are established by partitioning C into
smaller sets C1; C2; : : : ; Cm such that:Smi=1 Ci = C i.e. the set C is covered, andTmi=1 Ci = fg i.e. the sets are disjoint. Most
importantly, for all e 2 Ci, Ci is a reflexive
transitive closure under the one-to-many relation:R(e) = f(e; T1(e)); (e; T2(e)); : : : ; (e; Tk(e)g
where each Ti represents a major case invariant
transformation, e.g. rotation, mirror or comple-
ment. Problems with surface continuity imply
that complement may not be a desirable operation
to include (see below).

3



Dimension
1 2 3 4

Major Cases 3 6 23 496R
Sub-Cases 2 5 12 272
Major Cases 2 4 15 272R,C
Sub-Cases 2 3 7 99
Major Cases 2 6 22 402R,M
Sub-Cases 2 5 11 209
Major Cases 2 4 14 222R,M,C
Sub-Cases 2 3 7 74

Transformations: Rotation (R),
Complement (C), Mirror (M)

Table 1: Group sizes for the Major cases and Sub-
cases

3.3 Sub-Cases

It is quite remarkable (and fortunate) that of 256
possible configurations in three dimensions, we
need only consider 14 major cases (see [7] for a
discussion). In three dimensions it is not too ex-
pensive to store all 256 cases. In higher dimen-
sions, however, the number of configurations ex-
plodes. Even the number of major cases grows
rapidly. It turns out that in four dimensions there
are nearly as many major cases as their are con-
figurations in three dimensions. In higher dimen-
sions, the geometry associated with a major case
is also more complicated. This prompts us to seek
ways to reduce further the size of the tables re-
quired.

We can reduce the number of cases if we allow
major cases to be constructed from a union of sub-
cases. A sub-case represents a single fragment of
boundary and is defined to be an edge-connected
(both vertices have the same status with respect to
the threshold) fragment of a major case.

The set of sub-cases can be computed by exam-
ining each major case and dividing it into one or
more edge-connected sub-components. The sub-
components can then be identified with their ma-
jor case equivalents along with appropriate trans-
formations.

In Table 1, we summarise the number of ma-
jor and sub-cases in one to four dimensions and
in Figure 1 we give the 74 sub-cases for four di-
mensions.

The definition of a sub-case in this way makes
some assumptions about the underlying surface,
and may lead to inconsistencies in the resulting

geometry (for example holes may appear). How-
ever, many other approaches lead to the same de-
cisions being made. We return to these problems
in Section 4.2.

4 Implementation

The n-dimensional surface is generated by con-
necting individual surface elements (simplices).
The simplex information can be subdivided and
stored in many ways. The amount and orientation
of the simplices, for a given cell, represents the
most significant information – being used in ev-
ery method. The simplex information can be re-
trieved by: (1) calculating each simplex division
dynamically [6]; (2) pre-calculating and storing
each simplex division within one large table; and
(3) pre-calculating the simplex division for just
the major-cases or the sub-cases.

The latter two possibilities are depicted in Fig-
ure 2. Method (3) uses a two-table lookup
scheme, with the primary table holding informa-
tion about either (a) the major-cases (b) the sub-
cases and the secondary table containing the ac-
tual divisions of the major or sub-cases, respec-
tively; as shown in Figure 2 Method (a) and (b)
respectively. The primary table contains a list
of two-tuples: an orientation with a secondary-
index. The secondary-index then provides the key
into a table of either major-case or sub-case sim-
plices. The orientation represents a matrix opera-
tion, transforming the simplices (of the secondary
table) into the correct orientation for the chosen
surface-intersection index of the primary table.

4.1 Pre-Processing – Table Generation

We now describe how the major and sub-cases for
the primary and secondary tables, respectively,
are formed. The data is processed sequentially
as each stage uses the results from the previous
level.

The Major-cases. Two lists are created, one to
hold the searched-cases and another to hold the
major-cases.

The next unmarked index is taken from the
search-list added to the major-case list and then
exhaustively transformed into all other configura-
tions which are marked. The process then repeats

4



Figure 1: 74 Sub-cases for four dimensions

for the next major case until all the indices have
been searched.

The Sub-cases. These are formed by dividing
the major cases into their disjoint cases, using
the edge-connected criterion (as defined in Sec-
tion 3.3).

Tetrahedronizing the sub-cases. Tetrahe-
dronization is the four-dimensional analogue of
triangulation. Our aim is to split n-dimensional
geometry into simplices. There is no canonical
decomposition of a hyper-surface into tetrahedra,
so any algorithm must make somewhat arbitrary
choices.

In the context of this work, we are interested
in decomposing only the sub-cases, and a sim-
ple strategy can be made to work. The method
proceeds by repeatedly choosing a vertex and re-
moving the tetrahedron associated with that ver-
tex from the sub-case object until a single tetra-
hedron remains. This process is depicted in Fig-
ure 3, and is similar to the techniques used in three
dimensions. Unfortunately in four dimensions,
the remnant sub-object may have vertices with
four, five or more incident edges making further

subdivision difficult. Therefore, we use a back-
tracking technique to avoid this problem.

A question remains — how do we choose
which vertex to remove? Several strategies might
be tried: for example, choose the first entry in the
vertex list or take the vertex with the least con-
necting edges. Experiment suggests that the latter
approach is most effective in this case.

The method proceeds by:

1. The sub-case object is represented as a list of
vertices, each of which is linked to a list of
its neighbours. Initially, by construction, all
vertices have three connections.

2. Select the next vertex (in order on the list)
with the fewest incident edges, and remove it
from the object thus generating a tetrahedron
or two tetrahedra. It is easy to split a vertex
with three edge connections into one tetra-
hedron or even four edge connections into
two tetrahedra, but ambiguities and difficul-
ties occur when there are five or more edge
connections.

3. Update the connectivity of the remaining ob-
ject. This update is achieved by connecting

5



Method 2

Secondary tablePrimary table

Secondary tablePrimary table

Method 3a

Method 3b

2−tuple (Orientation, Index)

2−tuple list [(Orientation, Index)]

In
de

x:
 0

 ..
 6

55
35

In
de

x:
 0

 ..
 6

55
35

In
de

x:
 0

 ..
 6

55
35

Simplices
for the
Major−Cases

Simplices
for the
Sub−Cases

Complete simplex enumeration

Simplices for
each index

Figure 2: Table lookup schemes

1 2

3 4 5 6

Sub−
case 
from
index
number 
15

Figure 3: Splitting an object into tetrahedra

the vertices of the remaining obejct in the
same configuration as the connectivity of the
base of the split tetrahedron.

4. Determine if at a certain level of vertex split-
ting all the vertices are connected to five or
more edges. If so then the previous level is
reinstated and the different split attempted in
2.

In our results, using the ‘fewest edges method’,
and only taking off the maximum of two tetrahe-
dra at once, backtracking occurs for only three of
the 74 sub-cases.

Creating the Orientation Matrix. The orien-
tation matrix represents the transformation from
the primary table (of major or sub-case indexes)
into individual simplex elements and is stored as
a 32 bit integer, with two bits for every position
in the matrix. As all the rotations are by 90�,
only values of�1; 0; 1 mapped onto 00; 01; 10 re-
spectively, are required. The orientation matrix is
calculated by rotating each sub-case (from each
major case) into the standard sub-case and cal-
culating the inverse transformation matrix, of the
whole operation.

4.2 Inherent Ambiguities and Possible
Solutions

Ambiguities may occur in surfaces evaluated
from local cell intersections. These occur in the
cells when the surface intersects one face of then-cube through each of its four edges. There-
fore, as a result of local decisions spurious holes
or additional surface segments can be generated.
Moreover, this face occurs in two dimensions and
propagates to higher dimensions, so any n-cube
that has an ‘ambiguous face’ is potentially an am-
biguous n-cube.

There are many reported disambiguation strate-
gies for the three dimensional local cell tiling al-
gorithms (see [16, 25]) which can be divided into
two groups: (1) those that provide a solution from
a static analysis of the local vertices and (2) meth-
ods that require an extra sample point to generate
an appropriate connected surface.

Any correct disambiguation strategy needs to
be consistent, to generate a continuous connected
surface. The original Marching Cubes algorithm
generates an inconsistent surface when adjacent

6



False negative

Complementary
Case

a

b

Topologically Correct Surface

Figure 4: False negative appearing, from adjacent
complementary cases

cubes of alternative (complementary) configura-
tion are connected [8], Figure 4a. This can be
improved by individually triangulating the com-
plementary cases [29], Figure 4b. This configura-
tion can be provided by an extended lookup table,
with different triangle configurations for the com-
plementary cases. In general the amount of tri-
angle combinations required for each ambiguous
face f for a given n-cube is 2#f [24], where #f
is the number of ambiguous faces; but, in prac-
tice only a sub-set of these configurations is re-
quired [29], being similar under rotation and gen-
erating a topologically correct surface.

Similarly, this method can be extended to n-
dimensions, where the complementary cases are
treated differently. Separate complementary con-
figurations also help to maintain the vertex-order
of the simplex elements: as they can be described
in a clockwise order, relative to the surface-object,
aiding the renderer.

The sub-cases are generated by separating the
major cases into disjoint surface elements, the
same way as in the Marching Cubes [20] and
similar problems of surface continuity may re-
sult. Consequently, these sub-cases can be said,
depending on the separation technique, to be am-
biguous in form. Like the surface configurations
in three dimensions: 2#f possible sub-case con-
figurations can be formed. One simple solution is
provided by using separate complementary sub-
case configurations for each major case.

It can be argued that at high data-resolutions
the anomalies become unobservable, although
at high magnifications the anomalies could still
be seen. Alternatively, a subdivision technique
could be implemented: dividing the data until
pixel sized cubes are formed, such as the Divid-
ing Cubes algorithm [7], although magnification,
again, can reveal a discontinuous surface.

Other disambiguation strategies could be used
and extended to higher dimensions, including us-
ing tetrahedral cells, that provide unique surface
intersections (see: Section 2.2), instead of cubical
cells. A dilemma occurs between the ‘added ad-
vantage of the complex-disambiguation strategy’
and the ‘costs involved in calculating and pro-
cessing the strategy’. In practice, the added com-
putation cost is insignificant and although more
simplices are generated they represent a ‘small
increase’ on the complexity of the overall sur-
face. Conversely, the ambiguous cases within
three dimensions infrequently occur: as Neilson
and Hamann [24] discovered.

5 Results

Our n-dimensional surface algorithm is useful for
data visualization, where the data is sampled over
a rectilinear grid. Phantom data generated from
analytic functions is quite easy to generate and
four dimensional fractal data or the four dimen-
sional counter-parts of the three dimensional vari-
ants can be formed – hyper-cube, cone or sphere,
for example.

5.1 Examples of Application

Iris Explorer on a Silicon Graphics Indy has been
used as the harness for our implementation. We
have tested the algorithm on a number of sampled
data sets and generated appropriate results.

Each of the methods produce the same visual
results, with the same tetrahedra configurations,
a simple parallel (orthographic) and perspective
projection is used to generate the result. A voxel
version of a four dimensional cube is displayed
using the system, Figure 5. The surface inter-
sections are generated by linear interpolation of
the threshold across the edges of the cell; the up-
per images were generated using a low threshold,
whereas the lower pair were generated using a
middle threshold value.

7



Figure 5: Examples of Application

5.2 Table Sizes

Here we describe the memory usage of each of
the four methods described in section 4.

A tetrahedra contains four vertices, and each
vertex can be represented by an integer label, so,
each tetrahedra can be stored in 4 bytes (one byte
for each vertex). Moreover, the vertices of the
tetrahedra are recovered from intersections along
the edges of the local cell, therefore, an alterna-
tive representation consists of a two-tuple label
for each tetrahedra-vertex: relating to the edges
of the hyper-cube. The former 4-byte representa-
tion will be used below.

Method 1 The dynamic method uses the least
memory, but takes the longest to calculate.

Method 2 The complete simplex table consists
of a 65536 array with n tetrahedrons per in-
dex. Therefore, as each tetrahedron can be
stored in 4 bytes, the number of tetrahedra in
1 byte, the array pointer in 4 bytes and there
are 356817 tetrahedra for the whole (222
major-case) table: the table can be stored in
1.75M bytes (4�356817+5�65536).

Method 3a The primary table for the major-
cases consists of an array of 65536 (ori-
entation, major-index) tuples: stored in
(4 byte, 1 byte) portions. Therefore, the
table can be stored in approximately 328K

bytes (65536�5). However, many architec-
tures may pad the structure to at least 6 or
8 bytes. The secondary table for the (222)
major-cases consists of an array of pointers
to an array of n tetrahedra, there are 2332
tetrahedrons so the table can be stored in
10.2K bytes (4�2332+222�4).

Method 3b The primary table using the sub-
cases, consists of an array of 65536 point-
ers pointing to an array of (orientation, sub-
index) tuples, stored with the size of the
array – representing the number of sub-
cases per major index. Each orientation and
pointer can be stored in 4 byte portions.
Therefore, as the whole table contains ap-
proximately 130800 sub-case indices, the ta-
ble can be stored in approximately 916K
bytes (65536�4+130800�5). The sec-
ondary table for the (74) sub-cases consists
of 869 tetrahedra that can be stored in 3.8K
bytes (4�869+74�4).

5.3 Conclusions

The complete simplex table (method 2) provides
the advantage that all of the data is correctly ori-
entated, so it can be directly applied to the data,
and although the table is larger than the other
methods its size is not too great (within four di-
mensions) to be stored on a local machine.

The primary table for the major cases is about
half the size of the sub-case primary table: due
mainly to the use of pointers for the 2-tuple array.
The reverse is true for the size of the secondary ta-
ble: where the sub-case secondary table is much
smaller; we postulate that this comparison would
be even more distinct in higher dimensions. How-
ever, the combined size of the primary and sec-
ondary tables falls in favour of the major-cases:
due to the way the data needs to be stored.

The sub-cases, although using a fixed orienta-
tion disambiguation strategy, provide a concise
representation: allowing the simplices to be cal-
culated by a simple tetrahedronizing algorithm.

6 Related Approaches

An n-dimensional surface can be generated by
many other methods. The following three parts
describe: (1) other methods comparable with the

8



A B C

Figure 6: Cube surfaces: (A) hypervolumes, (B)
hypersurfaces, (C) hyperlines

hypercube approach presented herein; (2) related
work; and (3) some comments on our possible fu-
ture work.

6.1 Similar Techniques

A hypercube can be imagined as multiple cubes:
the hypercube surface can therefore be evaluated
with a series of three dimensional cubes (one for
each face of the hypercube). In four dimensions
a lattice of connected surfaces (rather than vol-
umes) would be created. This lattice could then be
displayed or triangulated before displaying, Fig-
ure 6B.

In the same manner, a two dimensional ‘cube’
can be evaluated through each hypercube face to
create a lattice of connected hyperlines, Figure
6C. Wyvill et al [33] use the faces of a three di-
mensional cube (two dimensional square) to gen-
erate one dimensional lines that are joined to
make surfaces in two dimensions.

An n-simplex [12, 22] can be used to segment
the cells unambiguously. Therefore, the n-data
can be segmented directly into n-simplices. To
create a uniform continuous surface the adjacentn-simplices need to be mirror images of each
other, so an alternating patchwork of simplices
are used.

An advancing front technique could be adapted
into four dimensions to create a lattice of tetra-
hedra [18]. Hanson and Heng [14] use a similar
method: they divide the whole volume into tetra-
hedra and then project each tetrahedron into the
view volume. We use a comparable method that
first selects the hypersurface part using a thresh-
old and local cell technique, and then dissects the
hypersurface into tetrahedra which are projected
and rendered.

6.2 Related Work

For many years, computers have been used to
generate pictures and manipulate higher dimen-
sional objects. Noll [26], as early as 1967, cre-
ated a program to plot projected images of n-
dimensional objects. He used these plots to pro-
duce a “stereo-graphic movie of the three dimen-
sional parallel and perspective projections of four
dimensional hyperobjects, rotating in four dimen-
sional space”.

Polygonising methods are also used. Bajaj [2]
implicitly defines quadratic and cubic hypersur-
faces in n >= 3 dimensional space with a con-
stant or adaptive stepping procedure that creates a
grid of points, forming polygons when connected.

Ray tracing can also be extended to higher di-
mensions: Ke and Panderanga [19] display pro-
jections of a four dimensional Mandelbrot set use
a ray tracing technique.

Hanson and Cross [13] describe a hybrid
method of ray-tracing and scan-converting to
transform the four dimensional image to an equiv-
alent three dimensional image. The problem is
then reduced to a texture-mapping problem.

However, visualizations produce abstract im-
ages projected from higher dimensional data.
Hanson states that “adding more visual detail
may give even more clues” [35]. The visual
detail can be generated by: perspective projec-
tions, n-dimensional lighting, shading, object-
silhouettes and colour cues within a highly ma-
nipulative environment. Therefore, greater under-
standing could be grasped if the data was pre-
sented by many abstract forms, within multiple
directly manipulated and coupled displays, such
as provided by the Waltz abstract visualization en-
vironment [28].

Hanson and Heng [14, 13] describe methods
to display and shade four dimensional images us-
ing a four dimensional light model. A thickening
strategy, is used, that exchanges each point on the
line with a small sphere, allowing shading to be
applied to the ‘pseudo’ line and increasing the 3D
nature of the line [14, 13].

Direct manipulation techniques can also be
used. Van Wijk and van Liere [32] display multi-
dimensional scalar functions as two dimensional
slices of data. The user can control any view
in the matrix of windows to control the slice of
each of the other views. An overall impression of
the multidimensional function is obtained. Feiner

9



and Beshers [9] have designed a model of “worlds
within worlds”, where three dimensional graphics
are positioned within a three dimensional graph.
The internal three dimensional graph changes val-
ues as it is moved inside the secondary graph by
direct manipulation.

6.3 Possible Future Work

Further research should be carried out into the re-
alism of the n-dimensional images and the un-
derstanding of four (or higher) dimensional im-
ages using visual cues gained from animation, n-
dimensional shading and shadow effects.

Direct manipulation techniques could be in-
corporated with a dynamic version of the algo-
rithm, to achieve rotation through the fourth and
higher dimensions. Keeping a cache of the lastn-dimensional indices, tetrahedronized sub-cases
and major case elements might be appropriate.

7 Discussion

We have explorered the possibility of extending
an isosurface technique to n-dimensions and im-
plemented some algorithms for four dimensions.
The research has produced: (1) methods to enu-
merate major and sub-cases; (2) a simple and
effective tetrahedronizing algorithm for the sub-
cases; and (3) a method for major cases using sub-
cases and a compact orientation method.

Local cell evaluation is ambiguous in n-
dimensions: generating incorrectly placed surface
simplices. The ambiguities arise in two dimen-
sions and propagate to higher dimensions; they
can be disambiguated using algorithms equivalent
to the three dimensional strategies.

Other n-dimensional surface methods were
proposed, including, generating hypersurfaces or
hyperlines from the higher dimensional data and
marching hypertetrahedra directly through the
higher dimensional space. A connected surface
is generated when adjacent simplices are placed
in an alternating configuration.

The table lookup is extensible to n-dimensions.
However, as the dimensions increase, so the size
of the table increases; even with the sub-cases
the size of the table at (say) five dimensions
(232) would become impracticable and the time
to calculate the major and sub-cases would be
lengthy. Within four dimensions the advantage

in using the lookup table over and algorithmic
method is slight: our experiments suggest that
there is no significant speed difference between
each method. Algorithmic surface evaluation
methods are probably most appropriate for higher
dimensions.

Finally, the sub-cases, albeit using a fixed
disambiguation strategy, allow the hyper-surface
segments to be tetrahedronized by a simple algo-
rithm.

References

[1] Louis Arata. Tri-cubic interpolation. In A. W. Paeth,
editor, Graphics Gems V, pages 107–110. Academic
Press, 1995.

[2] Chanderjit L. Bajaj. Rational hypersurface display.
Computer Graphics, ACM SIGGRAPH, 24(2):117–
127, March 1990.

[3] T. F. Banchoff. Beyond the third Dimension: Geome-
try, computer graphics and higher dimensions. Scien-
tific American Library, 1990.

[4] Marshall Bern and David Eppstein. Mesh generation
and optimal triangulation. In Ding-Zhu Du and Frank
Hwang, editors, Computing In Euclidean Geometry,
pages 23–90. World Scientific, 1992.

[5] Jules Bloomenthal. Polygonization of implicit sur-
faces. Computer Aided Geometric Design, 5:341–355,
1988.

[6] Jules Bloomenthal. An implicit surface polygonizer.
In Paul S. Heckbert, editor, Graphics Gems IV, pages
324–349. Academic Press, 1994.

[7] H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Craw-
ford, and B. C. Teeter. Two algorithms for the three-
dimensional reconstruction of tomograms. Medical
Physics, 15(3):320–327, May/June 1988.

[8] M. J. Duurst. Additional reference to marching cubes.
Computer Graphics, 22(2):72–73, April 1988.

[9] Steven Feiner and Clifford Beshers. Visualizing n-
Dimensional virtual worlds with n-vision. Computer
Graphics, ACM SIGGRAPH, 24(2):37–38, March
1990.

[10] H. Fuchs, Z. M. Kedmen, and S. P. Uselton. Optimal
surface reconstruction for planar contours. Communi-
cations of the ACM, 20(10):693–702, 1977.

[11] S. Ganapathy and T. G. Dennehy. A new general trian-
gulation method for planar contours. Computer Graph-
ics SIGGRAPH Proceedings, 16:69–75, 1982.

[12] Andrew J. Hanson. Geometry of n-dimensional graph-
ics. In Paul S. Heckbert, editor, Graphics Gems IV,
pages 149–170. Academic Press, 1994.

[13] Andrew J. Hanson and Robert A. Cross. Interactive vi-
sualization methods for four dimensions. In Proceed-
ings Visualization ’93 – sponsored by the IEEE Com-
puter Society, pages 196–203, 1993.

[14] Andrew J. Hanson and Pheng A. Heng. Illuminating
the fourth dimension. IEEE Computer Graphics and
Applications, 12(4):54–62, July 1992.

10



[15] Steve Hill. Tri-linear interpolation. In Paul Heckbert,
editor, Graphics Gems IV, pages 521–525. Academic
Press, 1994.

[16] Steve Hill and Jonathan C. Roberts. Surface models
and the resolution of N-Dimensional cell ambiguity. In
A. W. Paeth, editor, Graphics Gems V, pages 98–106.
Academic Press, 1995.

[17] Alfred Inselberg and Bernard Dimsdale. Parallel co-
ordinates: a tool for visualizing multi-dimensional ge-
ometry. In Proceedings Visualization ’90 – sponsored
by the IEEE Computer Society, pages 361–378, 1990.

[18] H. Jin and R. I. Tanner. Generation of unstructured
tetrahedral meshes by advancing front technique. In-
ternational Journal for Numerical Methods in Engi-
neering, 36:1805–1823, 1993.

[19] Yan Ke and E. S. Panduranga. A journey into the fourth
dimension. In Proceedings Visualization ’90 – spon-
sored by the IEEE Computer Society, pages 219–229,
1990.

[20] William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface construction algo-
rithm. ACM Computer Graphics, 21(4):163–169, July
1987.

[21] David Meyers, Shelly Skinner, and Kenneth Sloan.
Surfaces from contours. ACM transactions on Graph-
ics, 11(3):228–258, 1992.

[22] Doug Moore. Understanding simploids. In David Kirk,
editor, Graphics Gems III, pages 250–255. Academic
Press, 1992.

[23] Doug Moore and Joe Warren. Mesh displace-
ment: An improved contouring method for trivari-
ate data. Technical Report 91-166, Rice University,
Department of Computer Science, December 1991.
(dougm@kuhn.caam.rice.edu, jwarren@cs.rice.edu).

[24] Gregory M. Neilson and Bernd Hamann. The asymp-
totic decider: Resolving the ambiguity in the marching
cubes. In Proceedings Visualization ’91 – sponsored
by the IEEE Computer Society, pages 83–91, 1991.

[25] Paul Ning and Jules Bloomenthal. An evaluation of
implicit surface tilers. IEEE Computer Graphics and
Applications, 13(6):33–41, November 1993.

[26] Michael A. Noll. A computer technique for displaying
n-Dimensional hyperobjects. Communications of the
ACM, 10(8):469–473, August 1967.

[27] Alan Norton. Generation and display of geometric
fractals in 3-D. ACM Computer Graphics, 16(2):163–
169, July 1982.

[28] Jonathan C. Roberts. Aspects of Abstraction in Scien-
tific Visualization. Ph.D thesis, Kent University, Com-
puting Laboratory, Canterbury, Kent, England, UK,
CT2 7NF, October 1995.

[29] Will Schroeder, Ken Martin, and Bill Lorensen. The
Visualization Toolkit: An Object-Oriented Approach to
3-D Graphics. Prentice-Hall, 1996.

[30] William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle
meshes. Computer Graphics SIGGRAPH Proceedings,
26(2):65–70, July 1992.

[31] Duncan M’Laren Young Sommerville. An introduction
to the geometry of n dimensions. New York, Dover
Publications, 1879.

[32] Jarke J. van Wijk and Robert van Liere. HyperSlice –
visualization of scalar functions of many variables. In
Proceedings Visualization ’93 – sponsored by the IEEE
Computer Society, pages 119–125, 1993.

[33] Geoff Wyvill, Craig McPheeters, and Brian Wyvill.
Data structure for soft objects. The Visual Computer,
2(4):227–234, 1986.

[34] Cornelia Zahlten. Piecewise linear approximation of
isovalued surfaces. In F H Post and A J S Hin, editors,
Advances in Scientific Visualization, pages 105–118.
Springer-Verlag, 1992.

[35] Glenn Zorpette. Graphics — a romance with many
dimensions. IEEE Spectrum, 30(1):18 and 86, January
1993.

11


