View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CW!I's Institutional Repository

TN

ic ‘9} Quarterly Volume 7 (2) 1994, pp. 147 - 158
NS

Visualization of Multi-Dimensional Scalar Functions
Using HyperSlice

Robert van Liere
Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: robertl@cwi.nl
Jarke J. van Wijk
Netherlands Energy Research Foundation ECN
P.O. Box 1, 1755 ZG Petten, The Netherlands
e-mail: vanwijk@ecn.nl

HyperSlice is a new method for the visualization of scalar functions of many
variables. With this method the multi-dimensional function is presented in a
simple and easy-to-understand way in which all dimensions are treated identi-
cally. The central concept is the representation of a multi-dimensional func-
tion as a matrix of orthogonal two-dimensional slices. These two-dimensional
slices lend themselves very well to interaction via direct manipulation, due
to a one-to-one relation between screen space and data space. Several in-
teraction techniques, for navigation, the location of maxima, and the use of
user-defined paths, are provided.

In this article we present two extensions to the HyperSlice and show how the
method can be used in practice.

1. INTRODUCTION

1.1. Problem
Scalar functions of several variables are often used in science and engineering.
These functions can be denoted as f(x), where x = (z1,29,...,2x) is a point

in N-dimensional space. Scalar functions can be analytically defined, or can
be the result of a simulation or measurements.

147


https://core.ac.uk/display/301644605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Visualization is an important tool for their analysis. Two types of use can be
discerned. First, the function can be precomputed at a set of discrete points.
The visualization then boils down to a visual inspection of a data set in which
calculation of new function values is limited to interpolation of the values in the
data set. Second, the function can be computed during the visualization. Here
the user specifies what he is interested in, and a separate computation module
generates the data. This approach is an example of computational steering: the
simulation runs continuously, while the user simultaneously views the results
and changes input parameters. This is highly efficient for multi-dimensional
functions, because when the number of dimensions is large, the precomputation
of data on a fine grid is prohibitively expensive in terms of processing power
and memory requirements. However, computational steering obviously assumes
that the function can be evaluated fast enough for interactive use.

The complexity of the visual presentation of multi-dimensional functions
depends heavily on N. For N = 1 a simple graph suffices, for N = 2 two-
dimensional color images or three-dimensional mountain plots are routinely
used. The visualization of scalar functions of three variables is known as volume
rendering, and is an important and active area of research. Many techniques
have been proposed for their visualization [6].

The direct visualization of scalar functions of more than three variables is
more complex, because the human mind is not able to imagine high-dimensional
objects. With some effort, four-dimensional functions can be imagined as time-
varying three-dimensional functions, but if N > 4 hardly anybody can produce
mental images of such functions.

One solution to the presentation of functions with N > 4 is therefore to fix
the value of a number of variables so that the number of free variables is lower
than four, and then to use a standard visualization technique. In other words,
a slice of the data is selected and visualized.

1.2. Previous work
Several researchers have proposed methods for the visual representation of
multi-dimensional data and interaction on these representations. Although
much progress has been made recently, most of the proposed solutions still do
not seem to be satisfactory. All solutions compromise on the dimensionality,
granularity and legibility of the representation. We make a crude classification
of existing multi-dimensional data representations, by distinguishing between
techniques using hierarchy, using iconic representations, and using scatterplot
matrices.

The central idea of representation techniques involving hierarchy is to select
a small number of dimensions and display these within a space of higher dimen-
sion. YOUNG, KENT and KUFELD [10] have developed the HyperSpace method
for visualizing and interacting with multivariate data sets. First, this method
uses interpolation to dynamically calculate and display a smoothly changing
sequence of interpolations between two three-dimensional spaces. In effect, this
is moving a three-dimensional object through a six-dimensional space. Second,

148



this method uses residualization to redefine two three dimensional spaces as a
linear combination of six or more variables. Residualization allows the user to
move the three dimensional space into any N-dimensional space, with N > 6.
Other authors have suggested variants and enhancements to this hierarchical
representation technique [5, 7].

In the Exvis project [8] icons with settable attributes are used to represent
data. The original Exvis icon is a five limbed stick figure with controllable limb-
angle, size, thickness and color. The authors show how this representation can
be used to represent over twenty different data parameters. Presenting multi-
dimensional data as a very large collection of icons produces a texture. Many
other icons can be conceived to represent similar mappings. Other authors
have also used icons and/or textures for representation [3, 1].

Scatterplot matrices [4] have been used extensively by the statistics commu-
nity. Assuming an N-dimensional data set, a scatterplot matrix is an arrange-
ment of (N2 — N)/2 pairs of two-dimensional plots in which rows and columns
of the matrix share common scales. Dependencies between variables can be
obtained by scanning a row (or column) and visualizing how one variable is
plotted against all others. Various interaction techniques have been proposed
on the scatterplot matrix representation. For example, brushing is a simple but
effective techniques that enables users to select groups of data points which are
then highlighted in other projections. CLEVELAND [4] argues that scatterplot
matrix representations augmented with highly interactive techniques provide
more information than a simple sequence of scatterplot matrices themselves.

Both the hierarchical methods and the icon based methods provide sophis-
ticated representations of continuous data. However, most of these representa-
tions are primary intended for a single static display, or a sequence of displays
with limited interaction. The Worlds within Worlds concept of FEINER and
BESHERS [5] is an important exception.

Scatterplot matrices provide simple representations of discrete data. An ad-
vantage is that all dimensions are treated identically, no more or less arbitrary
decision is expected from the user how the data must be structured for pre-
sentation purposes. Furthermore, interaction techniques on this representation
can be added relatively easily.

1.8. Overview

Our basic conjecture is that in scientific visualization, representation and in-
teraction are equally important and that they are closely related. The visual
representation should be such that the user can understand the behavior of the
function, as well as easily interact on this representation.

The first choice to be made is on the dimensionality of the basic visual
representation. The use of sophisticated three-dimensional techniques, possibly
enhanced with animation and color, seems natural, because as many as possible
dimensions are shown simultaneously. This solution is optimal if the function or
data is three-dimensional. However, if more dimensions have to be visualized,
only a selection can be shown, and hence navigation (e.g. modification of the

149



values of variables that are fixed for a single representation) becomes essential.
Here we run into problems. First, although significant progress has been made,
current techniques for volume rendering are too slow for direct manipulation.
Second, such volume renderings are more difficult to interpret than simpler
representation forms, and often tuning of the settings of thresholds, opacity
mappings, etc. is required. Finally, three-dimensional interaction is not trivial.

We therefore use two-dimensional slices as the basic visual representation.
The geometric coordinates denote two variables, a gray or color value denotes
the value of the function. Rendering is fast, visual interpretation is easy, and
interaction is direct, because of the one to one relation between the screen space
and data space.

However, a single slice only shows a very limited subset of the multi-dimen-
sional space. We therefore developed HyperSlice, a new method for the vi-
sualization of multi-dimensional functions. With this method the function is
presented in a simple and easy to understand way, all dimensions are treated
identically, and interaction via direct manipulation of the representation is easy
and effective.

The format of this paper is: first, we review the underlying concepts of
the HyperSlice representation and basic interaction methods with this repre-
sentation. Second, we provide various examples of interactive visualization
techniques that augment the direct interaction with higher level information.
Finally, we present two applications.

A more elaborate description of HyperSlice can be found in [9]. This paper
introduces two extensions. In particular, we present interaction techniques
based on rotation and contouring.

2. HYPERSLICE
The central concept is the representation of a multi-dimensional function as
a matrix of orthogonal two-dimensional slices. These two-dimensional slices
lend themselves very well to interaction via direct manipulation, due to a one
to one relation between screen space and data space. For example: users can
translate and rotate through the data space by simply pointing the mouse
and dragging the two-dimensional slices. Furthermore, higher level interaction
tools are integrated into HyperSlice, resulting in a powerful environment for
the analysis of multi-dimensional scalar functions.

In this section we introduce the definition of the current point and of a slice,
then we use these definitions to discuss the HyperSlice representation. Finally,
we show how interaction is expressed.

2.1. Definitions
We assume that the focus of the user is on a single N-dimensional point of
interest, ¢ = (c1, ¢y, ...,cN ), which is called the current point. The width of
the focus is a set of scalar values w;, with ¢ = 1,..., N. The range of values of
interest for dimension ¢ is the interval R; = [¢; — w; /2, ¢; + w;/2].

A two-dimensional slice Sk, with k # [, is a visual representation of f(x),

150



where z;, € Ry, and x; € R; vary and the other z; are equal to ¢;. The horizontal
axis of the slice is aligned with zj, and the vertical axis with z;.

A one-dimensional graph Gy, is a graph of f(x) where z € Ry, and all other
x; are equal to ¢;. In this case the horizontal axis is aligned with xj, and the
vertical axis is aligned with f(x).

2.2. HyperSlice Representation

A HyperSlice representation is an Nx/N matrix of panels < 7,7 >, with 1 <
1,7 < N. Panels on the diagonal of the matrix contain graphs G;, panels at
off-diagonal positions contain slices S; ;. The ranges R; are enumerated along
the horizontal and vertical axes of each of the panels. As a result, the current
point will always be centered in the middle of the panel.

For slices S; ;, the function values are shown as a rectangular grid of cells. A
linear transfer function is used to map the function values to grey values. For
graphs G;, the area under the graph is similarly colored according to the local
value of the graph.

As an example consider Figure 1, which shows the concept for N = 3. Dis-
played on the left is the current point as a small sphere, whereas the matrix on
the right displays the corresponding HyperSlice. The three principle axes are
labeled with (X, Y, Z). Pseudo coloring is used to annotate the three principle
axes (red, yellow, blue) and slice (cyan, orange, green). The generalization to
higher N is straightforward.

2.3. Translation and scaling
The HyperSlice representation displays the multi-dimensional function at a
user-defined focus. Probably the most important aspect of user interaction is
therefore the manipulation of the current point c, allowing the user to navigate
the multi-dimensional space in search for interesting features of the function.
The user can point at a panel, press a mouse-button, and drag the visual
representation. Mouse buttons are bound to the basic navigation operations;
the left mouse button will translate ¢, the middle button will rotate ¢, and the
right button will scale.

When the user drags a slice Sy ; over a displacement [dy, d;], then the current
point c is changed as follows:

ck — ck—dg,

C; < Cl—dl.

The visual effect is shown in Figure 2. Here the slice Sy 2 is dragged. As a
result, slices in the same column move horizontally over a displacement dy,
whereas the slices in the same row move vertically over a displacement d;.

If the graph G; is dragged, the single variable z; is changed. The effect is
similar to that as described for slices. Thus, each panel serves not only as a
visual representation, but also as one- or two-dimensional sliders for the current
value of variables z;.

151



Scaling is realized by changing the widths w; of each range R;. The user can
change an individual w; in the corresponding graph G;, or can simultaneously
change w; and w; in a slice S; ;. In the current implementation all w; can
also be scaled simultaneously with the same factor with zoom-in and zoom-out
buttons in a control panel.

2.4. Rotation
Rotation is a new feature added to HyperSlice. As with translation and scaling
the user has direct control over the rotation by simply using the mouse.

A rotation is defined as a rotation around the current point, c. Rotation of
an angle « in the slice S; ; is denoted by the rotation matrix R; j(a) whose
elements are:

rer = 1, except r;; = r;; = cos a,
rgg = 0, k#I, except ry; = —r;; = —sin a.

For example: the rotation matrix for a rotation over an angle « in the slice
S9,4 in five-dimensional space is:

1 0 0 0 0
0 cosa 0 —sina 0
0 0 1 0 0
0 sina O cosaa 0
0 0 . 0 1

Every multi-dimensional rotation can be written as the product of N (N —
1) / 2 two-dimensional plane rotation matrices. Hence, by rotating the slices,
any orientation may be obtained. For example, in four-dimensional space

R = Ry (a1)Ri3(a2)Ria(a3)Re 3(cs)Ro a(as)Rs 4(g)

The current rotation is stored in a global rotation matrix. Rotations are ac-
cumulated: individual rotation matrices are multiplied with the global rotation
matrix, resulting in the new, updated, matrix. The multi-dimensional point x
is transformed into screen space by multiplying it with the rotation matrix.

When rotation is applied the simple one-to-one relation between the axes in
data space and the axes in screen space is lost. We, therefore, provide additional
annotation by projecting all data space axes in every slice. During rotation
these axes provide orientation feedback to the user. Since translations are
defined along the screen axes, the user still can drag the visual representation
after a rotation has occurred.

Rotation is typically used to sweep through the region around the current
point. This can be realized by placing the mouse in one panel and rotating
over an angle of 360 degrees.

3. NAVIGATION IN HYPERSLICE
In the previous section the emphasis was on direct, but simple, user interac-
tion on the current point. In addition to this very direct type of interaction,

152



the value of ¢ can also be adjusted automatically, according to some specific
criterion. In this section we provide various examples of interactive visual-
ization techniques that augment the direct interaction with some higher level
information.

We show how edit paths, gradient paths and contouring can be used to guide
the user during traversal through data space.

3.1. Paths

It is easy to get lost during the exploration of hyperspace. To prevent this,
the user can define paths by setting out a number of interesting points and
using these paths to quickly traverse through space. A path P is a sequence of
marks m;, where a mark is a point in N-dimensional space. The projections of
the marks are shown as crosses, the path is shown as a sequence of projected
line segments m;m; ;. A set of standard editing operations is available to the
user. A new path can be created, marks can deleted, moved or inserted into
the path, etc. Using edit paths in this way allows HyperSlice to be used as a
multi-dimensional drawing tool.

In addition to the path specification, the user has a control panel available to
animate c using this path. The user can request to move c along the path, step-
wise or continuously, in forward or backward direction. Whenever ¢ changes,
all panels are recomputed and redisplayed.

Path specification and animation has proven to be very powerful in practice.
For example, the possibility to mark interesting points and to jump back and
forth allows fast comparisons. The use of the path to animate c enables the
viewer to observe trends in directions oblique to the principal axes. Another in-
terpretation of the path is as a constraint on ¢ to a user defined, one-dimensional
subspace of the multi-dimensional space.

3.2. Gradient paths

When navigating through the multi-dimensional space, a visualization system
can guide the user towards interesting regions, which may or may not be easy
to find with only direct interaction. We discuss one such option: a tool to
simplify the location of maxima. When enabled, a gradient path from c to
the nearest maximum is computed. Each step in this gradient path is in the
direction of the steepest ascent. Projections of this gradient path are shown
on all slices. The gradient path is recomputed each time the current point c is
changed, allowing the user to detect for instance saddle areas: regions in which
the gradient path will jump wildly from one local maximum to another. In
addition to the display of the gradient path, the user can request to animate c
along the gradient path to the maximum.

3.3. Contouring

An iso-surface is the locus of all points x for which f(x) = C with C a
chosen value. Cross sections of these surfaces with the slices are displayed as
closed curves, i.e. contours. The user can select and change the value C' in a

153



control panel. Contours will be recomputed each time the current point c is
changed. This allows the user to determine interesting areas: regions which
are segmented by the contour value.

In addition to a fixed contour value, we provide an option called dynamic
contouring. Dynamic contouring sets C to f(c). The effect is that all points
in the image that have the same function value as the current point are high-

lighted.
4. APPLICATIONS

4.1. Potential function

As a first example, we consider a synthetic application: a potential function
that results from a set of multi-dimensional point objects. Each object has a
position p;. The potential function f;(x) of a single object is defined by:

filx) =1/(L+ x = pif*)

The total potential f(x) is their sum:
fx) =3 fix) -

This function can be used for any number of dimensions.

Figure 3 shows an image of the four-dimensional potential function as it
appears on the screen. For all data related information (graphs and slices)
a Gouraud shaded, grey-scale coloring scheme is used. The current point is
depicted as a small red box in the center of a panels. A gradient path (drawn
in green) and a user defined path (yellow) are shown, as well as some simple
annotation of the axes. Three point objects were defined in this data set. Their
positions were located with the gradient path and marked. The user defined
path connects the three objects.

4.2. Eccentricity

As a second example, we consider the shape of the orbit of a point mass in a
gravity field of a stationary body. For example: the orbit of a satellite around
the earth. The orbit of the point mass can be described by the following
expression [2] :

2k? 2
62—1:m2 <v2——c>

C mr

in which e is the eccentricity, v(t) and r(t) is the tangential velocity and distance
(in polar coordinates) of the point mass to the stationary body; m is mass of
the stationary body and k and c are two constants, k is an integration constant,
and cis related to the gravitation constant of the gravity field. The eccentricity
is a mathematical constant that determines the shape of the orbit of the point
mass. When e < 1 the orbit will be an ellipse (for € = 0 it will be a circle);

154



for € = 1 the orbit is a parabola; for € > 1 the orbit is a hyperbola. The orbit
of the point mass is completely determined by the initial conditions; i.e. given
the velocity and position at time ¢ = 0 the orbit will be either an ellipse, a
parabola or a hyperbola.

The previous expression was reformulated as € (z, y, vz, 7), in which z,y
is the initial position of the point mass (in cartesian coordinates), v, is the
z component of its velocity (v, = 0) and 7 is a constant which relates to
the gravitation constant. Figure 4 shows the HyperSlice representation. The
panels are labeled from left to right as x, y, v and ~ respectively. The contour
€ = 1 (drawn in cyan) shows all those points in which the orbit of the point
mass is a parabola. A grey scale transfer function associates values to colors,
with white being associated to e = 0 and black to e = 1.3.

Gradient paths can be switched on to determine those regions in which e
is at its local minimum. In these regions the orbit of the point mass will be
a circle. Contouring can be used to segment the various images: the lighter
regions in the images the orbit will be an ellipse, and in the darker regions the
point mass will be a hyperbola.

All these operations can be done in interactive time on a modern workstation.
Frame rates of over ten frames a second can easily be realized. The resolution
of the image in Figure 4 is 32 cells for each axis, resulting in 6272 function
calculations per frame.

5. CONCLUSION AND FUTURE WORK

We have presented two applications of HyperSlice. This visualization method
represents an multi-dimensional space as a matrix of orthogonal two-dimensional
slices. This representation is simple and easy to understand, symmetric for all
variables, and allows for easy interaction via direct manipulation. Other inter-
action techniques, such as edit paths, gradient paths and contours, are provided
for a more automated traversal of the data space.

The HyperSlice technique has been developed within the CWI Scientific Vi-
sualization Project “Computational Steering”. The goal of this project is to
study methods and develop tools that aid end users in steering of large ongoing
numerical simulations. Central themes of the steering project are navigation,
monitoring, and tracking. From the development of HyperSlice we have learned
that a close relation between visual presentation and interaction is very effec-
tive in computational steering. With this insight we are currently developing
a more general environment which offers end users a very flexible set of tools
to steer simulations and navigate through parameter spaces.

REFERENCES

1. J. BEDDOW (1990). Shape coding of multidimensional data on a micro-
computer display. In Proceedings Visualization ’90, pp. 238-246. IEEE
Computer Society Press, Los Alamitos, CA.

2. A.N. BORGHOUTS (1978). Inleiding in de Mechanica. Delftsche Uitgevers
Maatschappij, B.V., 3e druk edition.

155



10.

H. CHERNOFF (1973). The use of faces to represent points in k-dimensional
space graphically. Jour. Amer. Stat. Assoc., pp. 361-368.

W.S. CLEVELAND (1985). The Elements of Graphing Data. Wadsworth
Inc.

S. FEINER and C. BESHERS (1992). World within worlds. In Proceedings
Visualization ’92, pp. 283-290. IEEE Computer Society Press, Los Alami-
tos, CA.

P. HANRAHAN, J. KaJivyA, W. KREUGER, P. SCHROEDER and J. WIL-
HELMS (1991). State of the art in volume visualization. In SIGGRAPH 91
Tutorial Course Notes, volume 8.

T. MIHALISIN, J. SCHWEGLER and J. TIMLIN (1992). Hierarchical multi-
variate visualization. In Proceedings Interface '92.

S. SmITH, G. GRINSTEIN and R.D. BERGERON (1991). Interactive data
exploration with a supercomputer. In Proceedings Visualization 91, pp.
248-254. IEEE Computer Society Press, Los Alamitos, CA.

J.J. vaAN WK and R. vaN LIERE (1993). Hyperslice : Visualization of
scalar functions of many variables. In G.M. NIELSON and D. BERGERON,
editors, Proceedings Visualization ’93, pp. 119-125, San Jose.
F.W.Young, D.P. KENT and W.F. KUHFELD (1988). Dynamic Graphics
for Exploring Multvariate Data, pp. 391-424. Wadsworth Inc.

156



FIGURES

FI1GURE 1. The concept of HyperSlice for N = 3

AR e

X1 — —

X1 X2 X3 X4 X5

FI1GURE 2. Effect of dragging a slice

157



SinaTE e
| == 048

—I28—1‘7 win U WIE

Ok

—|27—IE —qS D‘E 1‘7

-18-07 04 15 286

FIGURE 4. The HyperSlice of €(z,y,v,7) .

158



