47 research outputs found

    MULTI OBJECTIVE OPTIMIZATION OF VEHICLE ACTIVE SUSPENSION SYSTEM USING DEBBO BASED PID CONTROLLER

    Get PDF
    Abstract—This paper proposes the Multi Objective Optimization (MOO) of Vehicle Active Suspension System (VASS) with a hybrid Differential Evolution (DE) based Biogeography-Based Optimization (BBO) (DEBBO) for the parameter tuning of Proportional Integral Derivative (PID) controller. Initially a conventional PID controller, secondly a BBO, an rising nature enthused global optimization procedure based on the study of the ecological distribution of biological organisms and a hybridized DEBBO algorithm which inherits the behaviours of BBO and DE have been used to find the tuning parameters of the PID controller to improve the performance of VASS by considering a MOO function as the performance index. Simulations of passive system, active system having PID controller with and without optimizations have been performed by considering dual and triple bump kind of road disturbances in MATLAB/Simulink environment. The simulation results show the effectiveness of DEBBO based PID (DEBBOPID) in achieving the goal

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex

    Hybrid biogeography-based evolutionary algorithms

    Get PDF
    Hybrid evolutionary algorithms (EAs) are effective optimization methods that combine multiple EAs. We propose several hybrid EAs by combining some recently-developed EAs with a biogeography-based hybridization strategy. We test our hybrid EAs on the continuous optimization benchmarks from the 2013 Congress on Evolutionary Computation (CEC) and on some real-world traveling salesman problems. The new hybrid EAs include two approaches to hybridization: (1) iteration-level hybridization, in which various EAs and BBO are executed in sequence; and (2) algorithm-level hybridization, which runs various EAs independently and then exchanges information between them using ideas from biogeography. Our empirical study shows that the new hybrid EAs significantly outperforms their constituent algorithms with the selected tuning parameters and generation limits, and algorithm-level hybridization is generally better than iteration-level hybridization. Results also show that the best new hybrid algorithm in this paper is competitive with the algorithms from the 2013 CEC competition. In addition, we show that the new hybrid EAs are generally robust to tuning parameters. In summary, the contribution of this paper is the introduction of biogeography-based hybridization strategies to the EA community

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Hybridization of modified sine cosine algorithm with tabu search for solving quadratic assignment problem

    Get PDF
    Sine Cosine Algorithm (SCA) is a population-based metaheuristic method that widely used to solve various optimization problem due to its ability in stabilizing between exploration and exploitation. However, SCA is rarely used to solve discrete optimization problem such as Quadratic Assignment Problem (QAP) due to the nature of its solution which produce continuous values and makes it challenging in solving discrete optimization problem. The SCA is also found to be trapped in local optima since its lacking in memorizing the moves. Besides, local search strategy is required in attaining superior results and it is usually designed based on the problem under study. Hence, this study aims to develop a hybrid modified SCA with Tabu Search (MSCA-TS) model to solve QAP. In QAP, a set of facilities is assigned to a set of locations to form a one-to-one assignment with minimum assignment cost. Firstly, the modified SCA (MSCA) model with cost-based local search strategy is developed. Then, the MSCA is hybridized with TS to prohibit revisiting the previous solutions. Finally, both designated models (MSCA and MSCA-TS) were tested on 60 QAP instances from QAPLIB. A sensitivity analysis is also performed to identify suitable parameter settings for both models. Comparison of results shows that MSCA-TS performs better than MSCA. The percentage of error and standard deviation for MSCA-TS are lower than the MSCA which are 2.4574 and 0.2968 respectively. The computational results also shows that the MSCA-TS is an effective and superior method in solving QAP when compared to the best-known solutions presented in the literature. The developed models may assist decision makers in searching the most suitable assignment for facilities and locations while minimizing cost

    Linearized biogeography-based optimization with re-initialization and local search

    Get PDF
    Biogeography-based optimization (BBO) is an evolutionary optimization algorithm that uses migration to share information among candidate solutions. One limitation of BBO is that it changes only one independent variable at a time in each candidate solution. In this paper, a linearized version of BBO, called LBBO, is proposed to reduce rotational variance. The proposed method is combined with periodic re-initialization and local search operators to obtain an algorithm for global optimization in a continuous search space. Experiments have been conducted on 45 benchmarks from the 2005 and 2011 Congress on Evolutionary Computation, and LBBO performance is compared with the results published in those conferences. The results show that LBBO provides competitive performance with state-of-the-art evolutionary algorithms. In particular, LBBO performs particularly well for certain types of multimodal problems, including high-dimensional real-world problems. Also, LBBO is insensitive to whether or not the solution lies on the search domain boundary, in a wide or narrow basin, and within or outside the initialization domain
    corecore