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Abstract—In this paper, we present a multi-objective optimization approach for indoor wireless 

network planning subject to constraints for exposure minimization, coverage maximization and 

power consumption minimization. We consider heterogeneous networks consisting of WiFi Access 

Points (APs) and Long Term Evolution (LTE) femtocells.  We propose a design framework based on 

Multi-objective Biogeography-based   Optimization (MOBBO).  We apply the MOBBO algorithm to 

network planning design cases in a real office environment. To validate this approach we compare 

results with other multi-objective algorithms like the Nondominated Sorting Genetic Algorithm-II 

(NSGA-II) and the Generalized Differential Evolution (GDE3) algorithm. The results of the 

proposed method indicate the advantages and applicability of the multi-objective approach.  

 

Keywords— Indoor wireless network planning, heterogeneous networks, exposure minimization, 

biogeography-based optimization, differential evolution, genetic algorithms, generalized differential 

evolution, Pareto optimization, multi-objective Optimization. 

1. Introduction 

Wireless network design problems are in general multi-objective. Common design objectives include 

exposure minimization, coverage maximization, power consumption minimization and cost reduction [1-6].  

Due to the increased popularity of indoor wireless networks, many software tools have been developed for 

the prediction of the received signal quality and the network performance [7-11]. These tools are based on 

either ray models, numerical solver models, heuristic predictions, or statistical (site-specific) models. In 

[12], the authors developed a heuristic indoor propagation prediction tool, which is able to design and 

optimize a WiFi network for a given coverage requirement with a minimal number of access points (APs). 

In the meanwhile, both the trend towards green networking [13, 14] as well as the enormous increase of 

wireless communication due to the increasing need for coverage and high data rates, make it necessary to 

investigate and characterize the exposure of the general public to electromagnetic fields at RF (radio-
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frequency) frequencies used for wireless communications. Measurements and studies have indicated that 

indoor exposure cannot be neglected [15]. International safety guidelines such as [16] and those from 

ICNIRP (International Commission on Non-Ionizing Radiation Protection) [17] have been developed and 

authorities and countries have implemented laws and norms to limit human exposure. This indicates the 

need for an accurate exposure characterization and exposure-aware network planning. Additionally, 

research has recently been started on green network deployments [13, 18] in order  to limit energy 

consumption in wireless (access) networks.  

    The Evolutionary Algorithms (EAs) mimic behaviour of biological entities and they are inspired from 

Darwinian evolution in nature. The EAs have been extensively studied and applied to several real-world 

engineering problems. Among others,  EAs include genetic algorithms (GA), particle swarm optimization 

(PSO) [19], and differential evolution (DE) [20]. Generalized Differential Evolution (GDE3) [21] is a 

multi-objective DE algorithm that has outperformed other multi-objective evolutionary algorithms for a 

given set of numerical problems [22, 23]. GDE3 has been applied to microwave filter design in [24], Yagi 

antenna design in [25], and subarray design in [26]. Nondominated Sorting Genetic Algorithm-II (NSGA-

II) [27] is a popular and efficient multi-objective genetic algorithm for solving real world engineering 

problems [28, 29].  

Biogeography-based optimization (BBO) [30] is a recently introduced  evolutionary algorithm. BBO is 

based on mathematical models that describe how species migrate from one island to another, how new 

species arise, and how species become extinct. The way the problem solution is found is analogous to 

nature’s way of distributing species. In the BBO approach there is a way of sharing information between 

solutions [30], similar to the other evolutionary algorithms such as GAs, DE, and PSO. This feature makes 

BBO suitable for the same types of problems that the other algorithms are used for, namely high-

dimensional data. Additionally, BBO has some unique features, which are different from those found in the 

other evolutionary algorithms. For example, quite different from GAs, DE and PSO, the set of the BBO’s 

solutions is maintained from one generation to the next and is improved using the migration model, where 
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the emigration and immigration rates are determined by the fitness of each solution. These differences can 

make BBO outperform other algorithms [30]. BBO has been applied successfully to several real world 

engineering problems [31-39]. 

In this paper, we use a multi-objective extension of the BBO algorithm (MOBBO) combined with the 

concept of non-dominated ranking found in NSGA-II and GDE3. Amongst others, multi-objective BBO is 

applied in [40] for optimal PMU placement, in [41] for feature selection using gene expression data, and in 

[42] for robot path planning. 

Therefore, we apply both the above-mentioned multi-objective evolutionary algorithms to the 

heterogeneous wireless network planning problem. With heterogeneous, we mean a combination of 

different wireless technologies, namely WiFi APs and Long-Term Evolution (LTE) femtocells. We define 

this problem as one with three objective functions. We consider an objective function for exposure 

minimization, coverage maximization, and power consumption minimization. To the best of the authors’ 

knowledge, this is the first time that the BBO algorithm is applied to the specific design problem. The 

novelty in our work lies also in the fact that we propose a multi-objective framework by defining specific 

objective and constraint functions and using multi-objective evolutionary algorithms for  solving such 

problems. The advantages of our approach are clearly shown for the first time for multi-objective network 

planning problems.  

This paper is organized as follows. We describe the problem formulation in Section 2. The details of the 

BBO and the MOBBO algorithms are given in Section 3. In Section 4 we present the numerical results. 

Finally, the conclusion is given in Section 5.  

2. Problem formulation 

2.1 Configuration 

We consider the ground plan of an office building in Ghent, Belgium to which the network planning 

optimization will be applied (Fig. 1). It is a 90 m (length) by 17 m (width) office environment. The grey 
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walls are concrete walls, the brown walls are layered drywalls. Concrete walls have higher penetration loss 

and attenuate the signal more. The red dots indicate rooms where no wireless coverage is required, since 

they are (e.g., elevators, sheds, kitchens).  For the considered model (IEEE TGn model), the walls will have 

no impact, as this model implicitly accounts for ‘a typical wall presence in an office environment’ with a 

well-chosen path-loss intercept and slope. 

 

Fig. 1 Map of the ground plan 

WiFi (IEEE 802.11n) access points at 2.4 GHz will be installed at a subset of NL possible locations in the 

building. We consider NL to be 425. The assumed receiver antenna gain is 0 dBi and a received power of 

−68 dBm is required to obtain a capacity of 54 Mbps. There are also 425 receiver location for which 

coverage and exposure level will be calculated. For reasons of implementation ease, the total pool of 

possible AP locations is chosen at the locations as determined by the receiver locations grid. The PL will be 

modeled according to two-slope model proposed by the IEEE 802.11 TGn channel models group  [43]: 
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with PLfreespace(d) the free-space path loss, and d the distance (m) between transmitter and receiver. X is the 

lognormal variation of the path loss around the model and has a standard deviation equal to 3 dB for d 

≤10m and 5 dB for d> 10m. This corresponds to 95%-shadowing margins of 4.92 dB (d ≤10m) and 8.20 dB 

(d >10m). The 99%-temporal fading margin is set at 5 dB [44]. 

The path loss model for LTE only (slightly) differs from the WiFi PL model in the free-space loss part of 

eq. (1) in [12], due to the frequency dependence. Wall penetration losses and interaction losses (see eq. (1) 

in [12]) are assumed the same, since the LTE and WiFi frequencies are very similar (2.6 GHz vs. 2.4 GHz).  

Although several frequency bands have been assigned to LTE operation, in this paper we consider the 2.6 
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GHz frequency band. Additionally, we must point out that interfemto interference is not being considered 

in this paper. 

For construction of the exposure model, we use the far-field conversion formula between path loss and 

electric-field strength defined in [45]:   

1 10[ ] 139.3 [ / ] 20 log [ ]ERP kWPL dB E dB V m f MHz                     (2) 

where [ ]PL dB  is the path loss between the transmitter and a receiver at a certain location, 

1 [ / ]ERP kWE dB V m is  the received field strength for an Effective Radiated Power (ERP) of 1 kW, and 

[ ]f MHz is  the frequency. 

Using Equation (2) and the identity  

1[ / ] [ / ] [ ]ERP kWE V m E dB V m ERP kW                             (3) 

and knowing that for dipoles [ ] [ ] 2.15ERP dBm EIRP dBm  , we obtain the following formula for the 

electric field strength [ / ]E V m  at a certain location, as a function of the Equivalent Isotropically Radiated 

Power (EIRP) , the path loss, and the frequency: 

10[ ] 43.15 20log [ ] [ ]

20[ / ] 10
EIRP dBm f MHz PL dB

E V m
  

                               (4) 

 

2.2 Mathematical formulation 

The network-planning problem is to find the AP characteristics (position and EIRP) in such a way that 

the power consumption is minimized, the human exposure to electric fields is minimized, and the coverage 

is maximized. All the above objectives are subject to constraints regarding coverage and exposure limits. 

Furthermore, since we consider a heterogeneous network, at least one LTE femtocell should be present.  

The coverage requirement depends on the capacity in Mbps and therefore on the receiver sensitivity that is 

required in each case. We consider that a point is covered according to received power level,  if that is 

above or equal to the dBm limit for that case then the point is considered covered.  The receiver 
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sensitivities of the WiFi and LTE receivers for a 20MHz channel are shown in Table 1 of [46]. It should be 

noted that the provided capacity is calculated from an AP point-of-view. When multiple users are 

connected to a certain base station or AP, the throughput per user might decrease. Additionally, we assume 

that we minimize power consumption by minimizing the number of turned on APs. It was shown in [18] 

that the RF power is responsible for only a  small fraction of the total consumed power. The power 

consumption is determined by the number of APs, since the RF transmit power only has a minimal 

influence on the total power consumption: the RF power is small (at most 0.1W) compared to the power 

consumption of the other hardware in the AP (around 12 W). With respect to power consumption, it is 

therefore advisory to deploy APs at their maximum transmit power, which will correspond to a network 

with a minimal number of APs. However, a drawback of such high transmit power, is an increased human 

exposure. Therefore, the total power can be assumed to be equal to 12W, while the RF power is (for WiFi) 

limited to 20dBm or 100mW. This is valid for both WiFi APs and LTE femtocell base stations (For an LTE 

femtocell, there will be a slight additional difference due to the power amplifier efficiency, but this 

difference is very limited and can be neglected ).   

Such a problem is inherently multi-objective. It can be defined by the minimization of the objective 

functions given below: 

1( ) on
APx Nf     minimize power consumption                                (5) 

2

( )
( )

( )
100   sol

tot

x
x

x

C
f

C
   maximize coverage                               (6) 

3 ( ) ( ) medianx xf E  minimize exposure                                  (7) 

subject to: 

1 2( ) ( ) limitCg x f x  coverage limit                                 (8) 

2 3( ) ( ) limitg x f x E  exposure limit                                  (9) 

3 ( ) 1on
LTEg x N  at least one LTE femtocell is present, 

where x is the vector of decision variables, on
APN  is the total number of base stations (both LTE and WiFi) 
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that is turned on, on
LTEN the number of turned on LTE femtocells, limitC  the coverage percentage required (0-

100), limitE  the desired electric-field maximum median value (V/m),   medianE  the calculated electric field 

median value (V/m), Csol is the number of reception points covered by the current solution in this indoor 

environment, and Ctot is the total number of all reception points in the building floor. 

The decision variables are the first  NL  variables that represent the AP type and the next NL  variables 

that represent possible EIRP values. The first  NL  variables could have a value of 0 (no AP turned on), 1 

(WiFi AP turned on), or 2 (LTE femtocell turned on). The range of the possible EIRP values is from 0 to 

20 dBm (100 mW) for both the WiFi and the LTE APs. Fig. 2 shows an example of unknown variables 

vector. 

 

 

Fig.2 Structure of an example vector 

 The above-mentioned problem can be solved using a multi-objective evolutionary algorithm. It is a NP-

hard integer-programming problem, for which several different solutions exist. The main goal is to find 

some points (solutions) that belong to the Pareto front. From this set of non-dominated solutions, optimal 

network configurations that provide a suitable compromise between the objectives for the desired 

constraints can be realized. We therefore apply the MOBBO the above-mentioned problem. In order to 

evaluate its performance, MOBBO is compared with NSGA-II and GDE3. 
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3.  Algorithm Description 

3.1 Biogeography-based optimization (BBO) 

 

The mathematical models of Biogeography are based on the work of Robert MacArthur and Edward 

Wilson in the early 1960s. Using this model, they have been able to predict the number of species in a 

habitat. The habitat is an area that is geographically isolated from other habitats. The geographical areas 

that are well suited as residences for biological species are said to have a high habitat suitability index 

(HSI). Therefore, every habitat is characterized by the HSI which depends on factors like rainfall, diversity 

of vegetation, diversity of topographic features, land area, and temperature. Each of the features that 

characterize habitability is known as suitability index variables (SIV). The SIVs are the independent 

variables while HSI is the dependent variable.   

Therefore, a solution to a D-dimensional problem can be represented as a vector of SIV 

variables 1 2, ,........... DSIV SIV SIV , which is a habitat or island. The value of HSI of a habitat is the value of 

the objective function that corresponds to that solution and it is found by  

  1 2( , ,..... )DHSI F habitat F SIV SIV SIV                                 (10) 

Habitats with a high HSI are good solutions of the objective function, while poor solutions are those 

habitats with a low HSI. The habitats with high HSI are those that have large population and high 

emigration rate  . For these habitats, the immigration rate   is low. The immigration and emigration rates 

are functions of the rank of the given candidate solution. The rank of the given candidate solution 

represents the number of species in a habitat. These are given by 

    
max max

, 1k k

k k
E I

S S
 

   
     

   
                                              (11) 

  

here I is the maximum possible immigration rate, E is the maximum possible emigration rate, k is the 
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rank of the given candidate solution, and maxS  is the maximum number of species (e.g. population size).  

The rank of the given candidate solution or the number of species is obtained by sorting the solutions from 

most fit to least fit, according to the HSI value (e.g. fitness). That is the best candidate solution has a rank 

of maxS  and  the worst candidate solution has a rank of one. BBO uses both mutation and migration 

operators. The application of these operators to each SIV in each solution is decided probabilistically.  In 

each generation, there is a probability modP   [0, 1]  that each candidate solution will be modified by 

migration. modP  is a user-defined parameter that is typically set to a value close to one, and is analogous to 

crossover probability in GAs. That is the migration operator in each generation is applied only if modP is 

greater than a random number generated from a uniform distribution from the interval [0,1). 

The migration for NP habitats can be described as follows: 

Algorithm 1 Habitat migration 

1: for i=1 to NP 

2:     Select iX with probability based on i  

3:     if  (0,1) irnd   then 

4:          for j=1 to NP 

5:               Select jX with probability based on j  

6:              if  (0,1) jrnd   then 

7:                    Randomly select a SIV  from jX  

8:                    Replace a random SIV in iX with   

9:               end if 

10:        end for 

11:   end if   

12: end for 
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The iX  in the above algorithm is habitat i. The information sharing between habitats is accomplished using 

the immigration and emigration rate. The i  is proportional to the probability that SIVs from neighboring 

habitats will migrate into habitat iX . The i  is proportional to the probability that SIVs from habitat iX  

will migrate into neighboring habitats. 

The mutation rate m of a solution S is defined to be inversely proportional to the solution probability and 

it is given by 

max
max

1 s
S

P
m m

P

 
  

 
                                          (12) 

where  sP  is the probability that a habitat contains S species (e.g. the rank of the solution is S), maxP  is the 

maximum sP  value over all s  [1, Smax],  and maxm  is a user-defined parameter.  Simon in [30] described 

how sP  changes from time t to time t t  as  

  1 1 1 1( ) ( ) 1 ( ) ( )s s s s s s s sP t t P t t t P t t P t t                               (13) 

According to [30] the above equation holds because in order to have s species at time t t  , one of the 

following conditions must hold: 

a) There were s species at time t and no immigration or emigration occurred between t and t t  ; or b) 

there were s-1 species at time t, and one species immigrated; or c) there were s+1 species at time t , and 

one species emigrated. Assuming that t is small enough , the probability of more than one immigration or 

emigration can be ignored. Therefore, by setting 0t  the species count probability equation becomes 

   

 
 

1 1 1 1 max

1 1 max

s s s s s s s

s

s s s s s

P P P S S
P

P P S S

   

  
   

 

     
   

                   (14) 

where  sP  is the species count probability matrix.  

Mutation can be described as follows: 

Algorithm 2 Habitat mutation 
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1: for i=1 to NP 

2:     Compute the probability iP   

3:     Select  SIV ( )iX j with probability based on iP  

4:     if  (0,1) irnd m  then 

5:          Replace ( )iX j  with a randomly generated SIV 

6:     end if   

7: end for 

 

The im  in the above algorithm is the mutation rate of solution i.  

As with other evolutionary algorithms, BBO also incorporates elitism. This is implemented with a user-

selected elitism parameter p.  This means that the p best solutions remain from one generation to the other. 

More details about the BBO algorithm can be found in [30]. 

 

  

3.2 Multi-objective Biogeography-based Optimization (MOBBO) 

 

The general constrained multi-objective optimization problem (MOOP) definition is [47]: 

 

Minimize  1 2( ) [ ( ), ( ),.., ( )]nf x f x f x f x      (15)  

Subject to ( ) 0 1, 2,..,ig x i k            (16) 

 

( )f x   is the vector of the objective functions,  x  is the vector of design or decision variables, if , ig  are 

the objective and the constraint functions respectively, n   is the number of objective functions and  k   is 

the number of constraint functions.  If X is the search space and Z is the objective space, then the vector of 

the objective functions :f X Z assigns to each vector x X a corresponding objective vector 
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( )z f x Z  . An ideal point (also called utopia point) *z is called a vector of the objective space 

composed of the best objective function values: 

 * min | 1,..,j jz z z Z j n                                     (17)

 In principle, multi-objective optimization is different from single-objective optimization. In single-

objective optimization, one attempts to obtain the best solution, which is usually the global minimum or the 

global maximum depending on the optimization problem. In case of multiple objectives, there may not be 

only one solution, which is the best (global minimum or maximum) with respect to all objectives. Pareto-

optimal solutions are those solutions (from the set of feasible solutions) that cannot be improved in any 

objective without causing degradation in at least one other objective. If an obtained solution is improved so 

that at least one objective improves and the other objectives do not decline, then the newly found solution 

dominates the original solution. The goal of Pareto-optimization is to find the set of solutions that are not 

dominated by any other solution, which are called non-dominated solutions. The set of these solutions is 

called the Pareto Front.  

EAs use vectors to model the possible solutions. In order to distinguish the members of the non-

dominated set from the population members we refer to the first ones as solutions and to the second ones as 

vectors.  The definitions of dominance relations between two vectors (or individuals of the population) are 

provided below. The weak dominance   relation between two vectors 1 2,x x  in the search space is defined 

as [21]: 

 1 2

1 2 1 2

 weakly dominates   

      iff : ( ) ( )i i

x x

x x i F x F x 
                               (18) 

while the dominance   relation is defined as: 

 1 2

1 2 1 2 1 2

 dominates   

      iff   : ( ) ( )i i

x x

x x x x i F x F x  
                            (19)  

The above relations can be extended to include constraint dominance c [21]: 

 1 2 1 2 constraint-dominates   ,          cx x x x  
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when any of the following conditions are true: 

1) 1x  belongs to the feasible design space and 2x  is infeasible.   

2) 1 2,x x  are both infeasible but 1x  dominates 2x  in constraint function space. 

3) 1 2,x x  both belong the feasible design space but 1x  dominates 2x  in objective function space. 

Multi-objective BBO algorithms extend the original BBO algorithm for solving MOOP. The results 

found by an evolutionary algorithm are also called Pareto set approximation or approximation set. MOBBO 

is the hybridization between BBO and uses concepts common in other MO algorithms like NSGA-II and 

GDE3.  To the best of the authors’ knowledge this is the first time that a multi-objective algorithm is 

applied to the network design problem. The MOBBO flowchart is given in Fig. 3. 

The MOBBO algorithm is outlined below: 

1) Initialize the BBO control parameters. Map the problem solutions to SIVs and habitats. Set the habitat 

modification probability modP , the maximum immigration rate I,  the maximum emigration rate E, the 

maximum migration rate maxm and the elitism parameter p (if elitism is desired).  

2) Initialize a random population of NP  habitats (solutions) from a uniform distribution. Set the number 

of generations G to one.   

3) Evaluate objective function and constraint function values.  

4)  Apply non-dominated ranking to NP habitats. Compute (HSI) for each habitat of the population based 

on non-dominated ranking. The non-dominated ranking refers to sorting of the vectors regarding non-

domination.  This sorting approach is called Fast Non-dominated Sorting Approach and is described in 

detail in [27]. A brief description of this approach follows. First, for each habitat (solution) i two values are 

calculated: a) the domination count in , (i.e the number of solutions which dominate the solution i) , and b)  

iS , a set of solutions that the solution i dominates. This requires comparisons. All solutions in the first 

nondominated front will have their domination count as zero. Now, for each solution i with  0in  ,  we 

visit each member (j) of its set and reduce its domination count by one. In doing so, if for any member m 
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the domination count becomes zero, we put this member in a separate list M. These members belong to the 

second nondominated front. Now, the above procedure is continued with each member of M and the third 

front is identified. This process continues until all fronts are identified.  An important operator for sorting 

habitats (e.g. computing HSI value) is the Crowded-Comparison operator ( n ) defined in [27].We assume 

that every habitat k in the population has two attributes: a) nondomination rank ( rankk  ); and b) crowding 

distance ( distancek  ).  The Crowded-Comparison operator is defined as: 

 distance distancen rank rank rank rankk q if k q or k q and k q    

Therefore, between two habitats with differing nondomination ranks, we prefer the habitat with the lower 

(better) rank. Otherwise, if both habitats have the same rank, we select the habitat that is located in a lesser 

crowded region.  

5) Map the HSI value to the number of species S. That is sort the population from most fit to least fit and 

then assign a rank or number of species from 1 (best) to NP(worst).  Calculate the immigration rate k , the 

emigration rate k   for each solution of the population.  
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Fig. 3 MOBBO flowchart 

6) Generate a new child population of NP  habitats, which is originally the same as the parent population. 

7) Apply the migration operator for each member of the child population based on immigration and 

emigration rates using (11). 

8) Update the species count probability according to  (14).                       

9) Apply the mutation operator to each member of the child population according to (12). 

10) Evaluate objective function and constraint function values. 11) Merge original parent population with 

new child population to form a population 2NP habitats.  

12) Apply non-dominated ranking to 2NP habitats. That is according to the level of non-domination, each 

solution must be compared with every other solution in the population to find if it is dominated. Select 

the first NP  ranked habitats, which are the new parent population. That is we sort the solutions using the 

crowded-comparison operator  in descending order and choose the best NP solutions.  
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13) Repeat step 5 until the maximum number of generations maxG  is reached.  

To decrease the population back to the original size a sorting technique is applied. This uses the concept 

of Crowding Distance (CD), which approximates the crowdedness of a vector in its non-dominated set like 

NSGA-II [27].  The vectors are sorted based on non-dominance and crowdedness. The worst population 

members are removed and the population size is set to the original size. The basic idea is to prune a non-

dominated set to have a desired number of solutions in such a way that the remaining solutions have as 

good diversity as possible, meaning that the spread of extreme solutions is as high as possible, and the 

relative distance between solutions is as equal as possible. The pruning method of NSGA-II provides good 

diversity in the case of two objectives, but when the number of objectives is more than two, the obtained 

diversity declines drastically [48].  MOBBO uses the same method used in GDE3, which is based on a 

crowding estimation technique using nearest neighbors of solutions in Euclidean sense, and a technique for 

finding these nearest neighbors quickly. More details about this pruning method can be found in [49]. 

Therefore, the selection based on Crowding Distance is improved over the original method of the NSGA-II 

to provide a better-distributed set of vectors. 

  

4. Numerical Results.  

We consider 425 different possible AP positions placed at a height 200 cm above ground level and the 

receiver is assumed at a height 100 cm above ground level (Fig. 1). WiFi Aps and LTE femtocells have 

different EIRP values. Therefore, the total number of the optimization variables is 850. We will compare 

the results from three different network planning design cases. The cases will be for High Definition (HD) 

video coverage, HD video coverage with low exposure, and Standard Definition (SD) video coverage. To 

test the algorithms ' performance we have selected cases that are quite demanding regarding low exposure 

limits and high coverage.  

We compare  MOBBO with NSGA-II and GDE3.  The algorithms are executed 20 times. The best results 
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are compared. It must be pointed out that the control parameters selected for both NSGA-II and GDE3 

algorithms are those that commonly perform well regardless of the characteristics of the problem to be 

solved. All algorithms are initialized with a population size of 200 and run for 1000 iterations. The control 

parameters chosen for GDE3 are according to [22, 50] 0.5, 0.1F CR  . The authors of GDE3 in [22, 50] 

claim that these are considered to be good parameter choices.   For MOBBO, we set the habitat 

modification probability, modP , to 1 and the maximum mutation rate, maxm , equal to 0.001. The maximum 

immigration rate I, and the maximum emigration rate E are both set to one. For NSGA-II [27] we have set 

the crossover and mutation probabilities equal to 0.9 and 0.1, respectively.  The crossover probability is 

chosen to be 0.9 in the original  NSGA-II paper [27]. We must also point out that the mutation probability 

is selected to be 1/D in [27] but the problems have a maximum of 30 dimensions. We have instead after a 

trial-and-error procedure selected the value 0.1 for NSGA-II for this problem. Therefore, the control 

parameters for both NSGA-II and GDE3 are considered to be good choices.   All algorithms are compiled 

using the same compiler (Microsoft Visual C++ 2010) in a PC with Intel Core i5-2410M, at 2.30GHz with 

4GB RAM running Windows 7. 

 

4.1 Performance Indicators for Multi-Objective Algorithms 

 

In order to compare the Pareto fronts found by various different algorithms suitable performance 

indicators for multi-objective evolutionary will be used [51, 52].  A (unary) quality indicator is a function 

that assigns to each Pareto set approximation a real number. Therefore, a unary quality indicator I can be 

defined as a mapping from the set of all approximations sets  to the set of real numbers :I  R . 

In the following results we will use the performance indicators [52]: 
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1) The Hypervolume difference to a reference set HI .The hypervolume indicator HI  measures the 

hypervolume of the portion of objective space that is weakly dominated by an approximation set A. The 

hypervolume indicator HI is to be maximized. The ( )HI A  for a given approximation set A is defined by  

( ) ( ) ( )H HHI A I R I A                                       (20) 

where R is a reference set obtained by the union of the non-dominated approximation sets found by all 

algorithms. Therefore, the reference set R is an approximation of the Pareto front.   

2) The Unary epsilon indicator 1I . This indicator is based on the binary epsilon-indicator. The binary 

epsilon-indicator ( , )I A B gives the maximum  factor by which each point in B  can be multiplied such 

that the resulting approximation set is weakly dominated by A:  

 2 1 1 2( , ) inf :
R

I A B z B z A z z 
                                  (21)  

where the dominance  relation  is defined as: 

1 2 ,1 ,21.. : i iz z i n z z                                      (22)

 The Unary epsilon indicator 1( )I A  for a given approximation set A is defined by: 

1( ) ( , )I A I A R                                           (23)

 3) The R2 indicator is used to compare approximation sets on the basis of a set of utility functions. A 

utility function u maps from the set Z of objective space vectors to the set R of real numbers   :u Z  R . 

The R2 indicator 2RI  given by [52]: 

* *

2

( , ) ( , )
( )R

u A u R
I A 

 








      (24)   

where *u is the maximum value reached by the utility function u   with weight vector   on an 

approximation set A, i.e. *( , ) max ( )z Au A u z  ,  is a set of  weight vectors that contain weight 

combinations  with 
1

1.. : 0 1
n

n j
j

i n  


     .  
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The utility function we choose is the augmented Tchebycheff function given by [52]: 

* *

1..
1..

( ) max j j j j j
j n

j n

u z z z z z 




 
     

 
                               (25)   

Where  is a sufficiently small positive number. For all the above-mentioned quality indicators the smaller 

values indicate better Pareto front approximations. More details about performance assessment of multi-

objective stochastic algorithms can be found in  [52]. It must be pointed out that along with the quality 

indicators we have compared the three algorithms regarding computational time.  

 

4.2 Best compromised solution 

In order to choose the best compromised solution from the Pareto Front a suitable decision maker has to 

used. The fuzzy set theory has been used as a decision maker in several applications in the literature like 

transportation planning, vendor selection, etc. [53, 54]. The satisfaction degree of each  objective function 

is represented by a linear fuzzy membership function  expressed as  

min

max
min max

max min

max

1

0

k k

k k
k k k k

k k

k k

if z z

z z
if z z z

z z

if z z



 


  


 

                              (26)  

where kz the value of k-th objective function, min
kz , max

kz  are the minimum and maximum value of the  k-th 

objective function respectively.  The best compromised solution is found by using 

1

1 objn

k
kobj

s
n




                                           (27) 

where objn  is the number of objectives and s is the degree of satisfaction. 

For each Pareto Front point, we calculate the value of s. The point with the maximum s value is the best 

compromised solution.  
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4.3 Pareto fronts and performance indicators 

The first example is that of case 1, which assumes High Definition (HD) video coverage (receiver 

sensitivity set to -68dBm and -68.1dBm for WiFi and LTE respectively) for all points with coverage limit   

99%, 0.25 /limit limitC E V m  . The sensitivies above correspond to 54Mbps throughput for WiFi and 

40Mbps for LTE respectively. The exposure limit is low in order to test the algorithms' performance on 

demanding cases. 

The 3D Pareto fronts for this case found by all algorithms are shown in Fig. 4. Each point of the Pareto 

front denotes a feasible network configuration. We notice that NSGA-II obtained Pareto fronts with a 

larger number of APs than GDE3 and MOBBO. The tradeoff for this case is the lower electric field values. 

The Pareto Fronts obtained by MOBBO and GDE3 are comparable. Both algorithms have obtained an 

almost equal number of non-dominated solutions 60 and 65 for MOBBO and GDE3 respectively.  

 

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 4 Pareto fronts for case 1 found by (a) MOBBO, (b) NSGA-II and (c)  GDE3. 

The second case example assumes also HD video coverage for all points with coverage limit  

99%, 0.04 /limit limitC E V m  . One may notice that the exposure is set to extremely low. Again, our 

objective is to force the algorithms to find solutions for complex cases.  

Fig. 5 depicts the Pareto fronts found by all algorithms. It is obvious for this case that MOBBO 

outperforms NSGA-II and GDE3. One may notice that the range of APs for MOBBO is from 12 to 14. The 

other algorithms for the same exposure and coverage range have obtained solutions that range from 12 to 
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21 and from 17, which indicates that these solutions are dominated by those obtained by MOBBO. The 

number of Pareto front points is 21, 15, and 15 for MOBBO, NSGA-II and GDE3 respectively.    

 

 

 

 

(a) 

 

 

(b) 

 



> < 24

 

(c) 

Fig. 5 Pareto fronts for case 2 found by (a) MOBBO, (b) NSGA-II and (c)  GDE3. 

The final example presents a network layout where 25Mpbs video (SD) is required for all points. The 

receiver sensitivity is set to  -79dBm and -77.1dBm for WiFi and LTE respectively. The constraints for this 

case are 99%, 0.1 /limit limitC E V m  . For this case we assume that a LTE femtocell is always present 

with EIRP=10 dBm at a specific position. This is the heterogeneous case, consisting of both WiFi Aps and 

LTE femtocells. The Pareto fronts found are shown in Fig. 6. The APs range for MOBBO is from 3 to 7. 

The NSGA-II for the same exposure and coverage range obtained solutions that range from five to eight. 

GDE3 also obtained solutions with AP number that varies from three to eight.  

 

Table 1.  Performance indicators  of the MOEAs.  the Smallervalues are in bold ( HI =Hypervolume difference indicator , 1I = 

Unary epsilon indicator 2RI =
 
R2 indicator) 

Case 1:HD video coverage 99%, 0.25 /
limit limit

C E V m   

 

Performance  

Indicator 

MOBBO GDE3 NSGA-II 

HI  0.064 0.047 0.474 

1I  0.084 0.090 0.500 
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2RI  0.006 0.007 0.117 

Average time 

(sec) 

1681.7 1785.4 1449.2 

Case 2:HD video coverage with low exposure

99%, 0.04 /
limit limit

C E V m   

 

Performance  

Indicator 

MOBBO GDE3 NSGA-II 

HI  0.024 0.559 0.083 

1I  0.100 0.445 0.200 

2RI  0.002 0.124 0.021 

Average time 

(sec) 
1228.1 1778.2 1410 

Case 3:SD video coverage 99%, 0.1 /
limit limit

C E V m   

 

Performance  

Indicator 

MOBBO GDE3 NSGA-II 

HI  0.039 0.073 0.352 

1I  0.200 0.200 0.400 

2RI  0.002 0.016 0.083 

Average time 

(sec) 
835.4 885.2 827.3 

 

The quality of the Pareto fronts found is measured using the performance indicators in Table 1.  The best 

values are the smaller ones.  For case 1, the MOBBO and GDE3 values are close, while both outperform 

NSGA-II.  In this case, NSGA-II requires slightly less computational time than GDE3 and MOBBO for the 

same number of objective functions evaluations.  NSGA-II has found the smallest number of Pareto points 

than the other algorithms.  For case 2, as it could be expected from the Pareto Fronts,  MOBBO clearly 

outperforms the other algorithms.  The MOBBO algorithm for this case requires slightly less computational 
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time than the other algorithms.  In case 3, MOBBO outperforms the other algorithms in terms of 

performance indicators, while GDE3 outperforms NSGA-II.  In terms of computational time, NSGA-II is 

slightly faster than the other algorithms. We notice that MOBBO in all  three cases obtained the best results 

in terms of performance indicators. GDE3 has also performed well and its results are close to that of 

MOBBO. In terms of computational time NSGA-II is in general slighly faster than the other algorithms. 

This could be due to the lower computational complexity of NSGA-II compared with the other algorithms. 

It is also evident from the results that NSGA-II performs better for lower exposure limits.  

 

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 6 Pareto fronts for case 3 found by (a) MOBBO, (b) NSGA-II and (c)  GDE3. 

 

4.4 Best Solutions: comparison of algorithms 

Table 2 reports the best compromised solutions found by all algorithms in the three cases. It must be 

pointed out that comparison between different MOEAs is performed using the performance indicators 

given in Table 1. These performance indicators compare the whole set of solutions that each algorithms 
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produces. In cases, where single solutions from the above algorithms are used like in this section one might 

not directly conclude which algorithm performs better. For example, if we obtain two solutions from two 

solution sets then these solutions could be non-dominated. In that case, it cannot be directly concluded that 

one algorithm is better than the other. We notice that for case 1 MOBBO obtained the solution with the 

lowest number of APs. The solution found by NSGA-II is that with the lowest electric-field value. One 

might notice that these solutions are non-dominated. For case 2 the AP number is larger than 10 in all 

algorithms. This is due to the low exposure limit of 0.04 V/m, set in order to oblige the algorithms to place 

several APs with low power levels, satisfying the coverage requirement. The MOBBO obtained result has 

fewer APs (13) and a lower field exposure (0.033 V/m).  This solution dominates the solutions found by the 

other algorithms. The results for case 3 also differ. The number of APs is lower than that of the other cases. 

As could be expected, the lower smartphone (Wifi and LTE) receiver sensitivity results in fewer APs 

needed. We notice that the solution obtained by MOBBO is the one with the lowest number of APs. The 

solution obtained by NSGA-II is the one with the lowest exposure value. We notice that the E-field 

standard deviation values are lower for lower exposure limits. This implies that the E-field distribution is 

more homogeneous for these cases. We also notice that the solutions obtained by NSGA-II are the ones 

with the lower standard deviation values. The tradeoff for lower AP number (thus lower power 

consumption) is higher field exposure values and larger dispersion of  E-field values. All three solutions are 

non-dominated.  

The network layout and the E-field distribution for the best configurations obtained by MOBBO is shown 

in Figs 7a-7c. Again, case 2 (Fig 7b) is the one with the highest number of APs, while the least APs are 

present for case 1 (least strict exposure limit). In case 3 (Fig. 7c), the LTE femtocell (EIRP of 10 dBm) and 

wiFi Aps are indicated. It is evident that increasing the number of APs results to lower exposure values and 

more homogeneous E-field distribution.   

Table 2.  Best compromised solutions 

Case 1:HD video coverage
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99%, 0.25 /
limit limit

C E V m   

 

Algorithm Number 

of APs 

Coverag

e (%) 

Emedian

(V/m) 

Std. Dev.  

MOBBO 5 100 0.113 0.142 

NSGA-II 13 100 0.037 0.045 

GDE3 6 100 0.085 0.112 

Case 2:HD video coverage with low exposure

99%, 0.04 /
limit limit

C E V m   

 

Algorithm Number 

of APs 

Coverag

e (%) 

Emedian

(V/m) 

Std. Dev. 

MOBBO 13 100     0.033 0.031 

NSGA-II 15 100 0.036 0.030 

GDE3 14 100 0.033 0.031 

Case 3:SD video coverage

99%, 0.1 /
limit limit

C E V m   

 

Algorithm Number 

of APs 

Coverag

e (%) 

Emedian

(V/m) 

Std. Dev. 

MOBBO 4 100     0.030 0.058 

NSGA-II 6 100 0.024 0.043 

GDE3 5 100 0.027 0.101 

 

  

(a) 

 

(b) 
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(c) 

 

 Fig 7. Network layout of best-compromised solutions found by  MOBBO a) Case 1 b) Case 2 c) Case 3. (WiFi AP = dot, LTE 

femtocell = hexagon, EIRP is indicated within dot or hexagon). 

5. Conclusion 

The problem of heterogeneous (LTE and WiFi) network planning for optimal coverage with the lowest 

power consumption and the lowest exposure is addressed in this paper. An application for a realistic office 

environment is investigated leading to reductions of cost and exposure when multi-objective algorithms are 

applied. We proposed a multi-objective algorithm based on BBO and the concept of non-dominated 

ranking. MOBBO has been compared against NSGA-II and GDE3 for the network planning problem. 

MOBBO and GDE3 are quite efficient in producing the Pareto front for design cases. They produce better 

results than NGSA-II for the same population size and for the same number of generations. MOBBO 

produced better results than GDE3 for all design cases. This is also shown by the calculation of 

performance indicators suitable for multi-objective evolutionary algorithms.   

The numerical results obtained by multi-objective algorithms allow the network engineer the possibility 

of selecting from a set of optimal solutions. All the above algorithms can be easily applied to different 

network planning problems. In our future work, we intend to examine different network configurations 

using different constraints.  Additionally, possible modifications of the MOBBO algorithm will be 
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examined. These could include the modification of the migration models and new mutation operators.     
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