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BBO is an EA that was introduced in 2008 (Simon, 2008, 2011).
It is modeled after the immigration and emigration of species
between habitats. One distinctive feature of BBO is that in each
generation, BBO uses the fitness of each candidate solution to
determine the candidate solution's immigration and emigration
rate. The emigration rate increases with fitness, and the immigra-
tion rate decreases with fitness. BBO has demonstrated good
performance on benchmark functions (Ma, 2010; Boussaïd et al.,
2012). It has also been applied to many real-world optimization
problems, including economic load dispatch (Bhattacharya and
Chattopadhyay, 2010), wireless network power allocation (Boussaїd
et al., 2011, 2013a), flexible job shop scheduling (Rahmati and
Zandieh, 2012), power system optimization (Jamuna and Swarup,
2012), antenna design (Singh et al., 2010), and others (Chatterjee
et al., 2012; Wang and Xu, 2011).

The main contribution of this paper is to propose new EA
hybridization strategies that are based on migration behaviors in
biogeography. We propose biogeography-based hybridization at
both the iteration level and the algorithm level. Although BBO has
already been hybridized with other algorithms, this paper repre-
sents the first time that EAs have been hybridized with each
other using biogeography-based migration. Our motivation for
biogeography-based migration in hybrid EAs is twofold: first, we
note the good performance obtained in past research with BBO;
and second, we note the good performance obtained in past
research with hybrid EAs. Given these two factors, we hypothesize
that hybridization using biogeography-based operations will pro-
vide some advantages over other hybrid EAs. We demonstrate our
hybridization approaches with several recently-developed EAs,
and we analyze the optimization results with statistical tests.

In iteration-level hybridization we combine various EAs with
BBO. In algorithm-level hybridization we combine various EAs
using ideas from biogeography. Note that in algorithm-level
hybridization, we do not necessarily combine a particular EA with
BBO. Instead we use the BBO migration strategy to combine
multiple EAs. In this approach, various EAs are taken as the
baseline algorithms, and then we make use of the migration
mechanism of BBO to adaptively improve the solutions. That is,
the constituent EAs generate offspring individuals each genera-
tion, and then we use the BBO migration operator to exchange
information between these individuals.

The recently developed EAs that we hybridize include covar-
iance matrix adaptation evolution strategy (CMA-ES) (Hansen,
2006; Hansen et al., 2003), stud genetic algorithm (SGA) (Khatib
and Fleming, 1998), self-adaptive differential evolution (SaDE)
(Zhao et al., 2011), 2011 standard particle swarm optimization
(PSO2011) (Omran and Clerc, 2011), PSO with linearly varying
inertia weight (LPSO) (Shi and Eberhart, 1998; Chatterjee and
Siarry, 2006), and PSO with constriction factor (CPSO) (Clerc and
Kennedy, 2002; Eberhart and Shi, 2000). We choose these algo-
rithms because they are some of the most recent and
best-performing EA variants. The six algorithms that we choose
form a representative set rather than a complete set. We
could hybridize many other algorithms besides these six. However,
the goal here is not to be exhaustive, but rather to present a
general biogeography-based hybridization strategy and demon-
strate it on a representative set of constituent algorithms and
benchmarks.

The rest of this paper is organized as follows: Section 2 gives a
brief overview of EAs, including the constituent algorithms used in
the rest of the paper. Section 3 presents our new hybridization
methods. Section 4 tests our new algorithms on the continuous
optimization benchmark functions from the 2013 Congress on
Evolutionary Computation (CEC) and on some real-world traveling
salesman problems, and performs some robustness tests. Section 5
gives conclusions and directions for future research.

2. Evolutionary algorithms

This section presents the basic outlines of the constituent EAs
used in this paper, including CMA-ES, SGA, SaDE, PSO, and BBO.

2.1. Covariance matrix adaptation evolution strategy (CMA-ES)

ES is an evolutionary algorithm based on the ideas of adapta-
tion during recombination, mutation, and selection. There are
many variants of ES, and CMA-ES is a recent ES variant that has
demonstrated good performance (Hansen, 2006; Hansen et al.,
2003). It is a non-elitist algorithm that first samples a number of
new candidate solutions from a multivariate normal distribution
and then updates the sampling distribution using the better
candidate solutions. The update consists of two major mechan-
isms: step size control and covariance matrix adaptation. In step
size control, the length of the path of the most recent iteration
step is adjusted. In covariance matrix adaptation, the likelihood of
successful steps is increased. The time scales of the two updates
are independent. The step size can change fast to allow for fast
convergence to a good solution. The covariance matrix changes on
a slower time scale to maintain stability.

2.2. Stud genetic algorithm (SGA)

GAs are the most popular EAs, and were introduced as a
computational analogy of adaptive biological systems. They are
modeled on natural selection. There are many GA variants, one of
which is the stud GA (SGA) (Khatib and Fleming, 1998). The basic
idea of SGA is to use the best solution in the population as one of
the parents in all recombination operations. That is, instead of
stochastic selection of both parents, only one parent is selected
stochastically, and the other parent is always chosen as the fittest
individual (the stud). The benefits of this GA variation are
improved optimization performance and computational efficiency.

2.3. Self-adaptive differential evolution (SaDE)

DE is a simple evolutionary algorithm that creates new candi-
date solutions by combining the parent solution and several other
candidate solutions. A candidate solution replaces the parent
solution if it has better fitness. This is a greedy selection scheme
that often outperforms traditional evolutionary algorithms. SaDE
is one of the best DE variants (Zhao et al., 2011). It uses a self-
adaptive mechanism on control parameters F and CR. Each
candidate solution in the population is extended with control
parameters F and CR that are adjusted during evolution. Better
values of these control parameters lead to better candidate
solutions, which in turn are more likely to survive the selection
process to produce the next solution and propagate the good
parameter values. SaDE is highly independent of the optimization
problem's characteristics and complexity, and it involves self-
adaptation and learning by experience. SaDE demonstrates con-
sistently good performance on a variety of problems, including
both unimodal and multimodal problems.

2.4. Particle swarm optimization (PSO)

PSO is a swarm optimization algorithm that is inspired by
the collective behavior of a flock of birds or a school of fish. PSO
consists of a swarm of particles moving through the search space
of possible problem solutions. Every particle has a position vector
encoding a candidate solution to the problem and a velocity vector
to update position. PSO relies on the learning strategy of the
particles to guide its search direction. Traditionally, each particle
uses its historical best value and the global best value of the entire



swarm to guide its search. PSO2011 is a standard PSO implemen-
tation that includes PSO improvements that have been made over
a period of many years (Omran and Clerc, 2011). PSO2011 has a
structure that is more complex than standard PSO, but it demon-
strates good optimization performance. Many other methods have
also been proposed to improve the performance of PSO, and we
use two of them in this paper: PSO with linearly varying inertia
weight (LPSO) (Shi and Eberhart, 1998; Chatterjee and Siarry,
2006), and PSO with constriction factor (CPSO) (Clerc and
Kennedy, 2002; Eberhart and Shi, 2000).

2.5. Biogeography-based optimization (BBO)

BBO is an EA that is inspired by biogeography (Simon, 2008).
In BBO, a biogeography habitat denotes a candidate optimization
problem solution, and it is comprised of a set of features, which are
also called decision variables, or independent variables. A set of
biogeography habitats denotes a population of candidate solutions,
and habitat suitability index (HSI) in biogeography denotes the fitness
of a candidate solution. Like other EAs, each candidate solution in BBO
probabilistically shares decision variables with other candidate solu-
tions to improve candidate solution fitness. This sharing process is
analogous to migration in biogeography. That is, each candidate
solution immigrates decision variables from other candidate solutions
based on its immigration rate, and emigrates decision variables to
other candidate solutions based on its emigration rate. BBO consists of
two main steps: migration and mutation.

Migration is a probabilistic operator that is intended to
improve a candidate solution yk. For each decision variable of a
given candidate solution yk, the candidate solution's immigration
rate λk is used to probabilistically decide whether or not to
immigrate. If immigration is selected, then the emigrating candi-
date solution yj is probabilistically chosen based on the emigration
rate μj. The generalization of the standard BBO migration operator
is written as follows (Ma and Simon, 2011a):

ykðaÞ’δykðaÞþð1�δÞyjðaÞ ð1Þ

where a is a decision variable index; and δ is a real number
between 0 and 1 which could be random or deterministic, or it
could be proportional to the relative fitness of the solutions yk and
yj. Eq. (1) means that the new decision variable of yk comes from a
combination of its own decision variable and a decision variable of
the emigrating solution yj. When δ¼ 0, the decision variable of yk
is completely replaced by the decision variable of yj. Note that if a
decision variable immigrates to yk(a), then that decision variable is
replaced in yk. However, if a decision variable emigrates from yj(a),
then that decision variable still remains in yj. This is analogous to
migration in nature: some representatives of species emigrate to
new islands, but other representatives of that species remain on
their original island.

In BBO, each candidate solution yk has its own immigration
rate λk and emigration rate μk. A good candidate solution has a
relatively high emigration rate and low immigration rate, while
the converse is true for a poor candidate solution. Here, immigra-
tion rate λk and emigration rate μk are based on particular
migration curves, such as the linear migration curves presented
in Fig. 1, where the maximum immigration rate and maximum
emigration rate are both equal to 1. Nonlinear immigration rates λk
and emigration rates μk have been discussed by Ma and Simon
(2011b) in detail, and are also discussed in Section 4.4. The
probability of immigrating to yk and the probability of emigrating
from yk are calculated respectively as

Probðimmigration to ykÞ ¼ λk
Probðemigration from ykÞ ¼ μk

∑N
j ¼ 1μj

ð2Þ

where N is the population size, and the probability of emigration
from yk is based on roulette-wheel selection.

Mutation is a probabilistic operator that randomly modifies a
decision variable of a candidate solution. The purpose of mutation
is to increase diversity among the population, just as in other EAs.
A description of one generation of BBO is given in Algorithm 1.

Algorithm 1. One generation of the BBO algorithm. y is the entire
population of candidate solutions, yk is the kth candidate solution,
yk(a) is the ath decision variable of yk, and δ is a control parameter
between 0 and 1.

1: For each candidate solution yk do
2: For each candidate solution decision variable index
a do

3: Use λk to probabilistically decide whether to
immigrate to yk (see Eq. (2))

4: If immigrating then
5: Use {μ} to probabilistically select the
emigrating candidate solution yj (see Eq. (2))

6: ykðaÞ’δykðaÞþð1�δÞyjðaÞ
7: End if
8: End for
9: Probabilistically decide whether to mutate yk
10: End for

3. Hybrid evolutionary algorithms

In this section, we propose two kinds of hybrid evolutionary
algorithms based on biogeography. One is iteration-level hybridi-
zation (Section 3.1) and the other is algorithm-level hybridization
(Section 3.2).

3.1. Iteration-level hybridization

Iteration-level hybridization is a straightforward method in
which various EAs are executed in sequence. Iteration-level
hybridization divides the search procedure into two stages:
(1) in the first stage, one EA with high convergence speed is used
to shrink the search region to more promising areas; (2) in the
second stage, another EA with good exploration ability is used to
explore the previously-limited area more extensively to find better
solutions. Iteration-level hybridization will perform at least as well
as one algorithm alone, and more often will perform better due to
the synergy of exploration and exploitation. Previous studies have

µk

λk

n

Fig. 1. Linear migration curves for BBO. λk is immigration rate and μk is emigration
rate, n is the best fitness, and we assume that the maximum immigration rate and
maximum emigration rate are both equal to 1.



found that this kind of hybrid EA improves optimization perfor-
mance (Jaimes and Coello Coello, 2005). Another attractive feature
of iteration-level hybridization is that its structure is simple and
easily programmed.

In this paper, we implement iteration-level hybridization by
combining recently developed EAs with BBO, in which one of
recently developed EAs is used in the first stage to obtain good
candidate solutions, and then BBO is used in the second stage to
improve the candidate solutions obtained by the first EA. The goal
of this hybridization approach is to balance the exploration and
exploitation ability of various EAs with BBO. A general flowchart of
iteration-level hybridization is shown in Fig. 2. The main proce-
dure of iteration-level hybridization is shown in Algorithm 2. One
generation of an iteration-level hybridization of SaDE and BBO is
shown in Algorithm 3, which is a special case of Algorithm 2. Note
that Algorithm 3 is provided for purposes of illustration. Any other
EA could be hybridized at the iteration level with BBO, in which
case Algorithm 3 would be modified accordingly.

Algorithm 2. Iteration-level hybridization.

1: Randomly initialize the parent population P
2: Evaluate the fitness of all candidate solutions in P
3: While the halting criterion is not satisfied do
4: Execute a recently developed EA (for example,
SaDE) to create offspring population O

5: Evaluate the fitness of each solution in offspring
population O

6: Calculate the immigration rate λ and emigration
rate μ of each solution

7: Perform one generation of BBO as shown in
Algorithm 1 to improve the solutions in offspring population
O

8: Replace the parent population P with the
offspring population O

9: End while

Algorithm 3. One generation of an iteration-level hybridization of
SaDE and BBO, where N is the population size. y and z comprise
the entire population of candidate solutions, yk is the kth candi-
date solution, and yk(a) is the ath decision variable of yk. CR and F
are the probability of crossover and the scaling factor of SaDE
respectively, and δ is a BBO control parameter between 0 and 1.

1: z’y
2: For each candidate solution zk (k¼1 to N ) do
3: For each candidate solution decision variable index
a do

4: Pick three random solutions yr1, yr2 and yr3
mutually distinct from each other and from zk

5: Pick a random index n between 1 and N
6: Use CR (probabilistic) or n (deterministic) to
decide on recombination

7: If recombination then
8: zkðaÞ’yr1ðaÞþFðyr2ðaÞ�yr3ðaÞÞ
9: End if
10: Update the control parameters F and CR using
the SaDE adaptive mechanism

11: End for
12: Evaluate the fitness of each candidate solution zk in
the population

13: For each zk define emigration rate μk proportional
to the fitness of zk, where μkA[0,1]

14: For each candidate solution zk define immigration
rate λk¼1 � μk

15: For each candidate solution decision variable index
a do

16: Use λk to probabilistically decide whether to
immigrate to zk

17: If immigrating then
18: Use {μ} to probabilistically select the
emigrating solution yj

19: zkðaÞ’δzkðaÞþð1�δÞyjðaÞ
20: End if
21: End for
22: End for
23: y’z

3.2. Algorithm-level hybridization

Algorithm-level hybridization is a method that involves several
subpopulations running independently and periodically exchan-
ging information with each other (Jaimes and Coello Coello, 2005).
This hybridization method is shown in Fig. 3. The information
exchange provides the mechanism to enhance a given subpopula-
tion with the improvements achieved in other subpopulations.
Therefore, algorithm-level hybridization will perform as good as
each constituent algorithm, and more often it will perform better
due to the exchange of information among the algorithms.

An important aspect of algorithm-level hybridization is the
migration strategy, which is configured by various parameters: (i)
migration frequency: how often is information shared between
algorithms? (ii) migration rate: how much information migrates
between algorithms? (iii) information selection: what information
is selected to migrate between algorithms? and (iv) migration
topology: which subpopulations exchange information with each
other? A study of migration parameters has been presented by
Jaimes and Coello Coello (2005), but that strategy needs to be
adjusted based on a priori knowledge of the problem. It is hard to
obtain useful information about the best migration strategy in the
most real-world problems.

Generate the initial population P

Maximum number of
function evaluations reached?

Create offspring O from P using a
recently developed EA

Improve offspring O using BBO

Output

N

Y

Replace parent P with O

Fig. 2. Flowchart of iteration-level hybridization combining a recently developed
EA with BBO, where P is the parent population and O is the offspring population.



In our approach to algorithm-level hybridization, the fitness of
each solution is used by BBO to determine the migration strategy
between each algorithm, including migration frequency, migration
rate, information selection, and migration topology. This migration
strategy is naturally adaptive because of the information-
exchanging mechanism of BBO. The advantage of this method
is that BBO determines the migration parameter settings of
algorithm-level hybridization, and interaction with a human
decision maker does not need to occur during optimization. This
hybridization approach, which combines recently developed EAs
using biogeography-based strategies, has the common features
of algorithm-level hybridization, but it also has the distinctive
migration characteristics of BBO.

A flowchart of algorithm-level hybridization combining
recently developed EAs using biogeography is shown in Fig. 4,
where three subpopulations are used, although fewer or more
could also be used, depending on the application. Different
subpopulations execute independently and generate their own
offspring subpopulations. All offspring subpopulations are com-
bined with biogeography-based migration. In this way, algorithm-
level hybridization will always keep the solutions that are
improved by migration, which will lead to better optimization
performance.

The main procedure of this approach to algorithm-level hybri-
dization is shown in Algorithm 4. One generation of an algorithm-
level hybridization of SaDE and BBO is shown in Algorithm 5,
which is a special case of Algorithm 4. Note that Algorithm 5 is
provided for purposes of illustration. Any other EA could be
hybridized at the algorithm level with BBO, in which case
Algorithm 5 would be modified accordingly.

Algorithm 4. Algorithm-level hybridization.

1: Randomly initialize the overall population P and divide it
into subpopulations Pi (i¼1…n, where n denotes the number
of subpopulations)

2: Evaluate the fitness of all candidate solutions in P
3: While the halting criterion is not satisfied do
4: For each subpopulation Pi do
5: Perform an independent EA to create offspring
subpopulation Oi

6: End for
7: Evaluate the fitness of offspring population O, which
is composed of all subpopulations Oi

8: Calculate the immigration rate λ and emigration rate
μ for each offspring in the overall population O

9: For each offspring subpopulation Oi do
10: Immigrate solution information from the overall
offspring population O using one generation of BBO as shown
in Algorithm 1

11: End for
12: End while

Algorithm 5. One generation of an algorithm-level hybridization
of SaDE and BBO, where Pi is the subpopulation, n is the number of
subpopulations, and K is the subpopulation size. y and z are the
entire population of candidate solutions, yk is the kth candidate
solution, and yk(a) is the ath decision variable of yk. CR and F are
the probability of crossover and the scaling factor of SaDE
respectively, and δ is a BBO control parameter between 0 and 1.

1: z’y
2: Divide z into subpopulations Pi (i¼1 to n )
3: For each subpopulation Pi do
4: For each candidate solution zik (k¼1 to K ) do
5: For each candidate solution decision variable
index a do

6: Pick three random solutions yr1, yr2 and yr3
mutually distinct from each other and from zik

7: Pick a random index n between 1 and the
population size

8: Use CR (probabilistic) or n (deterministic) to
decide on recombination

9: If recombination then
10: zikðaÞ’yr1ðaÞþFðyr2ðaÞ�yr3ðaÞÞ
11: End if
12: Update the control parameters F and CR using the
SaDE adaptive mechanism

13: End for
14: End for
15: End for

Fig. 3. Algorithm-level hybridization.

Divide the overall population into
subpopulations P1, P2, and P3

Maximum number of
function evaluations reached?

Create offspring
O1 from P1 using

a recently
developed EA

Create offspring
O2 from P2 using

a recently
developed EA

Create offspring
O3 from P3 using

a recently
developed EA

Migrate information between O1, O2 and
O3 using BBO. Replace parent

populations with offspring populations

Output

N

Y

Fig. 4. Flowchart of algorithm-level hybridization combining recently developed
EAs with biogeography-based migration, where there are three subpopulations.
P1, P2, P3 are parent subpopulations, and O1, O2, O3 are offspring subpopulations.



16: Evaluate the fitness of each candidate solution zik in all
subpopulations

17: For each zik define emigration rate μik proportional to
fitness of zik, where μikA[0,1]

18: For each candidate solution zik define immigration rate
λik¼1 � μik

19: For each subpopulation Pi do
20: For each candidate solution zik do
21: For each candidate solution decision variable
index a do

22: Use λik to probabilistically decide whether to
immigrate to zik

23: If immigrating then
24: Use {μ} to probabilistically select the
emigrating solution yj from the combined population

25: zikðaÞ’δzikðaÞþð1�δÞyjðaÞ
26: End if
27: End for
28: End for
29: End for
30: y’z

4. Experimental results

In this section we investigate the performance of iteration-level
and algorithm-level hybrid EAs. Section 4.1 discusses the simula-
tion setup, Section 4.2 presents performance comparisons on the
2013 CEC benchmark functions, Section 4.3 presents the results of
statistical tests, Section 4.4 discusses the robustness to tuning
parameters of the best hybrid algorithm in this study, and Section
4.5 applies the proposed hybrid algorithms to real-world traveling
salesman problems.

4.1. Simulation setup

The performances of iteration-level and algorithm-level hybri-
dization combining recently developed EAs with BBO are evalu-
ated on the 28 global continuous optimization benchmark
functions presented in Table 1, which are from the 2013 Congress
on Evolutionary Computation (CEC) 〈http://www3.ntu.edu.sg/
home/EPNSugan/〉. To prevent exploitation of symmetry of the
search space and of the typical zero value associated with the
global optimum, the optimum point in the search space is shifted
to a value different from zero and the function values of the global
optima are shifted to non-zero values (Liang et al., 2013).

The recently developed EAs in the proposed hybrid methods
include CMA-ES, SGA, SaDE, PSO2011, LPSO, and CPSO. We select
CMA-ES because it is the most successful variant of ES (Hansen,
2006; Hansen et al., 2003). We select SGA because it is an
improvement of the basic GA that uses the best individual at each
generation for crossover (Khatib and Fleming, 1998). We select
SaDE because it is one of the most powerful DE algorithms and has
demonstrated excellent performance on many problems (Zhao
et al., 2011). We select PSO2011 because it is popular in the
literature, and contains improvements gained as a result of many
years of PSO studies (Omran and Clerc, 2011). We select PSO with
linearly varying inertia weight (LPSO) (Shi and Eberhart, 1998;
Chatterjee and Siarry, 2006) and PSO with constriction factor
(CPSO) (Clerc and Kennedy, 2002; Eberhart and Shi, 2000) because
they are classic PSO variants that are known to perform well for a
large number of problems.

We do not test any hybridization using basic DE variants. One
reason is that we instead hybridized SaDE, as described above, and

SaDE generally performs better than basic DE. Another reason is
that BBO has already been hybridized with basic DE in several
publications, to which we refer the reader for additional details
(Boussaïd et al., 2011, 2013a, 2013b).

In summary, we propose the following hybrid EAs: SGA/BBO-I;
SGA/BBO-A; CMA-ES/BBO-I; CMA-ES/BBO-A; SaDE/BBO-I; SaDE/
BBO-A; PSO2011/BBO-I; PSO2011/BBO-A; LPSO/BBO-I; LPSO/BBO-
A; CPSO/BBO-I; and CPSO/BBO-A, where I and A denote iteration-
level hybridization and algorithm-level hybridization respectively.

For example, SGA/BBO-I denotes iteration-level hybridization of
SGA and BBO and is given in Fig. 2, Algorithms 2, and 3, where
SaDE in the algorithm is replaced with SGA. Similarly, SGA/BBO-A
denotes algorithm-level hybridization of SGA and BBO and is given
in Fig. 4, Algorithms 4, and 5, where SaDE in the algorithm is
replaced with SGA. Similar statements can be made for each of the
hybrid EAs studied in this paper.

The next step is to set the parameters of each constituent
algorithm. For BBO we use a maximum immigration rate and a
maximum emigration rate of 1, linear migration curves as sug-
gested in Fig. 1, a mutation probability of 0.001, and the parameter
δ¼ 0 in (1) which denotes standard migration. For SGA we use real
coding, roulette-wheel selection, single-point crossover with a
crossover probability of 1, and a mutation probability of 0.001. For
CMA-ES we use the parameter given by Hansen (2006). The SaDE
parameter settings are adapted according to the learning progress
(Zhao et al., 2011): the scaling factor F is randomly sampled from
the normal distribution N(0.5, 0.3), and the crossover rate CR
follows the normal distribution N(0.5, 0.1). For PSO2011, we use an
inertia weight w¼ 1=2 log ð2Þ, a cognitive constant c1 ¼ 0:5þ
log ð2Þ, and a social constant c2 for neighborhood interaction that
is the same as c1. For LPSO we use a fixed initial inertia weight
winit ¼ 0:2, an inertia weight slope m¼ �2:5� 10�4, and a non-
linear modulation index n¼ 1 (Shi and Eberhart, 1998). For CPSO
we use a constriction coefficient K ¼ 2=2�φ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2�4φ

p
, where

φ¼ 4:1 (Clerc and Kennedy, 2002). The other parameters of LPSO
and CPSO are the same as those of PSO2011.

For algorithm-level hybridization, we use three subpopulations,
and each subpopulation implements the same EA. The population
size of each subpopulation in algorithm-level hybridization is 30,
so the total population size is 90. For fair comparisons, the
population size of iteration-level hybridization is also set to 90.
We evaluate each function in 50 dimensions with the function
evaluation limit of 500,000. All algorithms are terminated after the
maximum number of function evaluations is reached, or if the
objective function error value is below 10�8.

4.2. Performance comparisons

We simulated each algorithm discussed in the previous section
25 times on each benchmark, and the results are shown in
Tables 2, 3 and 4. The tables show that SaDE/BBO-A performs best
on 13 functions (F1, F3, F4, F5, F7, F10, F11, F14, F18, F19, F23, F24
and F28), SaDE/BBO-I performs best on 12 functions (F1, F2, F5, F6,
F8, F9, F13, F15, F17, F20, F21, and F27), CMA-ES/BBO-A performs
best on 5 functions (F1, F11, F14, F16 and F25), PSO2011/BBO-A
performs best on 4 functions (F1, F5, F12 and F14), LPSO/BBO-A
performs best on 3 functions (F1, F5 and F22), CPSO/BBO-A
performs best on 3 functions (F1, F5 and F26), PSO2011/BBO-I,
LPSO/BBO-I, and CPSO/BBO-I performs best on 2 functions (F1 and
F5), and CMA-ES/BBO-I performs best on function F11.

The results indicate that the 18 algorithms can generally be listed
in order from best-performing to worst-performing as follows:

(1) SaDE/BBO-A
(2) SaDE/BBO-I
(3) CMA-ES/BBO-A



(4) PSO2011/BBO-A
(5) LPSO/BBO-A and CPSO/BBO-A
(6) PSO2011/BBO-I, LPSO/BBO-I, and CPSO/BBO-I

(7) CMA-ES/BBO-I
(8) SGA, SGA/BBO-I, SGA/BBO-A, CMA-ES, SaDE, PSO2011, LPSO,

and CPSO

Table 1
2013 CEC benchmark functions, where the search range of all functions is �100rxir100. More details about these functions can be found in Liang et al. (2013).

Function name Minimum

Unimodal functions F1 Sphere function �1400
F2 Rotated high conditioned elliptic function �1300
F3 Rotated bent cigar function �1200
F4 Rotated discus function �1100
F5 Different powers function �1000

Basic multimodal functions F6 Rotated Rosenbrock function �900
F7 Rotated Schaffer F7 function �800
F8 Rotated Ackley function �700
F9 Rotated Weierstrass function �600
F10 Rotated Griewank function �500
F11 Rastrigin function �400
F12 Rotated Rastrigin function �300
F13 Discontinuous rotated Rastrigin function �200
F14 Schwefel function �100
F15 Rotated Schwefel function 100
F16 Rotated Katsuura function 200
F17 Lunacek Bi_Rastrigin function 300
F18 Rotated Lunacek Bi_Rastrigin function 400
F19 Expanded Griewank plus Rosenbrock function 500
F20 Expanded Schaffer F6 function 600

Composition functions F21 Composition function 1 (n¼5, rotated) 700
F22 Composition function 2 (n¼3, unrotated) 800
F23 Composition function 3 (n¼3, rotated) 900
F24 Composition function 4 (n¼3, rotated) 1000
F25 Composition function 5 (n¼3, rotated) 1100
F26 Composition function 6 (n¼5, rotated) 1200
F27 Composition function 7 (n¼5, rotated) 1300
F28 Composition function 8 (n¼5, rotated) 1400

Table 2
Comparisons of the best error values of the 2013 CEC benchmark functions with D¼50 for SGA and CMA-ES. Here [a7b] indicates the mean value and the corresponding
standard deviation of 25 independent simulations. The best result in each row (Tables 2, 3 and 4 combined) is shown in bold font. CPU times (min) are shown in the last row
of the table.

SGA SGA/BBO-I SGA/BBO-A CMA-ES CMA-ES/BBO-I CMA-ES/BBO-A

F1 4.57E–0671.53E–07 4.66E–1272.36E–13 7.19E–1575.15E–16 6.11E–1479.10E–15 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F2 1.90Eþ0674.62Eþ05 1.93Eþ0378.09Eþ02 3.28Eþ0172.46Eþ00 1.90Eþ0473.83Eþ03 4.02Eþ0273.32Eþ01 5.65Eþ0175.44Eþ00
F3 7.19Eþ0373.28Eþ02 1.34Eþ0176.12Eþ00 6.71Eþ0073.90Eþ00 3.59Eþ0174.62Eþ00 5.28Eþ0071.89Eþ00 8.03Eþ0071.93Eþ00
F4 9.01Eþ0377.23Eþ02 4.21E–0173.54E–02 8.08E–0171.78E–02 1.21Eþ0077.78E–01 4.45E–0274.20E–03 1.26E–0373.86E–04
F5 9.16E–0279.65E–03 1.23E–0477.89E–05 3.25E–0677.19E–07 5.18E–0576.01E–06 3.21E–1078.31E–11 7.78E–1271.19E–13
F6 1.11Eþ0272.32Eþ01 2.36E–0178.38E–02 1.19E–0372.35E–04 6.63Eþ0179.77Eþ00 8.91E–0276.63E–03 1.55E–0274.65E–03
F7 7.85Eþ0774.16Eþ06 3.81Eþ0473.29Eþ03 2.37Eþ0371.19Eþ02 1.33Eþ0872.25Eþ07 6.33Eþ0571.25Eþ04 7.90Eþ0579.03Eþ04
F8 2.33Eþ0671.90Eþ05 8.90Eþ0375.66Eþ03 1.26Eþ0372.37Eþ02 7.06Eþ0576.38Eþ04 1.86Eþ0174.78Eþ00 1.52Eþ0276.67Eþ01
F9 5.47Eþ1072.19Eþ09 1.54Eþ0672.17Eþ05 4.44Eþ0471.19Eþ03 8.92Eþ1071.17Eþ09 9.28Eþ0471.93Eþ03 8.80Eþ0778.23Eþ06
F10 6.89Eþ1173.13Eþ10 5.78Eþ0778.94Eþ06 3.25Eþ0676.77Eþ05 4.97Eþ1074.56Eþ09 1.38Eþ0472.25Eþ03 8.32Eþ0571.19Eþ04
F11 7.76Eþ1071.85Eþ09 3.26Eþ0871.05Eþ07 7.89Eþ0773.28Eþ06 9.00Eþ0777.89Eþ06 4.24Eþ0072.15Eþ00 4.24Eþ0073.77Eþ00
F12 2.66Eþ0873.28Eþ07 1.98Eþ0472.44Eþ03 9.17Eþ0171.16Eþ00 1.35Eþ0671.92Eþ05 8.80Eþ0275.23Eþ01 9.29Eþ0172.44Eþ00
F13 9.05Eþ0574.27Eþ06 9.86Eþ0077.83E–01 5.54Eþ0271.32Eþ00 7.66Eþ0279.08Eþ01 1.15E–0179.91E–02 5.56E–0272.79E–03
F14 8.21Eþ1178.03Eþ10 7.27Eþ0872.70Eþ07 7.89Eþ0379.33Eþ02 7.26Eþ1074.43Eþ09 8.36Eþ0476.26Eþ03 2.17Eþ0174.21Eþ00
F15 9.32Eþ0374.26Eþ02 2.60Eþ0375.16Eþ02 9.76Eþ0371.27Eþ02 3.28Eþ0271.95Eþ01 8.08Eþ0272.84Eþ01 1.99Eþ0174.47Eþ00
F16 6.71Eþ0973.19Eþ08 5.89Eþ0671.93Eþ05 3.71Eþ0374.26Eþ02 5.44Eþ0874.83Eþ07 1.36Eþ0271.16Eþ01 2.46E–0178.93E–02
F17 5.66Eþ0471.83Eþ03 3.25Eþ0276.67Eþ01 2.26Eþ0279.83Eþ01 1.36Eþ0371.59Eþ02 7.02Eþ0275.53Eþ01 9.18Eþ0271.22Eþ01
F18 2.41Eþ1176.65Eþ10 1.87Eþ0875.26Eþ07 5.32Eþ0671.64Eþ05 2.19Eþ1074.54Eþ09 4.39Eþ0879.90Eþ07 3.42Eþ0575.82Eþ04
F19 1.99Eþ1076.27Eþ09 1.19Eþ0571.38Eþ04 9.01Eþ0773.14Eþ06 9.09Eþ0877.16Eþ07 1.90Eþ0473.65Eþ03 1.26Eþ0679.43Eþ05
F20 7.85Eþ0471.26Eþ03 5.46Eþ0272.14Eþ01 6.65Eþ0078.91E–01 3.24Eþ0378.85Eþ02 2.21Eþ0178.29Eþ00 8.85E–0178.89E–02
F21 8.05Eþ0774.16Eþ06 3.24Eþ0373.25Eþ02 3.28Eþ0179.00Eþ00 1.15Eþ0579.93Eþ04 5.46Eþ0272.38Eþ01 9.29Eþ0371.25Eþ02
F22 9.43Eþ0571.75Eþ04 1.17Eþ0379.05Eþ02 1.27Eþ0371.01Eþ02 2.26Eþ0276.50Eþ01 3.21Eþ0176.67Eþ00 1.77Eþ0079.90E–01
F23 9.79Eþ1076.17Eþ09 4.93Eþ0874.21Eþ07 8.89Eþ0875.76Eþ07 4.58Eþ0873.18Eþ07 7.52Eþ0672.46Eþ05 3.10Eþ0571.26Eþ04
F24 8.23Eþ0874.31Eþ07 1.92Eþ0676.63Eþ05 1.25Eþ0771.92Eþ06 9.04Eþ0978.99Eþ08 1.16Eþ0579.03Eþ04 8.93Eþ0777.38Eþ06
F25 1.16Eþ0878.53Eþ07 8.05Eþ0578.01Eþ04 6.78Eþ0478.95Eþ03 8.87Eþ0771.50Eþ06 5.29Eþ0572.25Eþ04 9.01Eþ0171.22Eþ00
F26 1.03Eþ0672.95Eþ05 9.17Eþ0571.54Eþ04 5.99Eþ0379.73Eþ02 1.26Eþ0471.11Eþ03 6.13Eþ0477.16Eþ03 5.57Eþ0474.37Eþ03
F27 7.80Eþ1077.99Eþ09 8.22Eþ0673.28Eþ05 1.25Eþ0878.17Eþ07 5.53Eþ0772.83Eþ06 9.04Eþ0573.32Eþ04 1.13Eþ0576.62Eþ04
F28 6.34Eþ1071.26Eþ09 7.38Eþ0871.19Eþ07 3.18Eþ0872.33Eþ07 2.23Eþ1071.27Eþ09 4.33Eþ0677.79Eþ05 7.74Eþ0574.87Eþ04
CPU time 126.79 167.24 131.70 235.44 279.65 240.36



Tables 2–4 show that the constituent algorithms of the hybrid EAs,
including SGA, CMA-ES, SaDE, PSO2011, LPSO, and CPSO, cannot find
any optimal solutions, and the performance of the hybrid algorithms

are better than their constituent algorithms. These results indicate that
hybrid biogeography-based algorithms can improve performance for
the continuous benchmark functions in this paper.

Table 3
Comparisons of the best error values of the 2013 CEC benchmark functions with D¼50 for SaDE and PSO2011. Here [a7b] indicates the mean value and the corresponding
standard deviation of 25 independent simulations. The best result in each row (Tables 2, 3 and 4 combined) is shown in bold font. CPU times (min) are shown in the last row
of the table.

SaDE SaDE/BBO-I SaDE/BBO-A PSO2011 PSO2011/BBO-I PSO2011/BBO-A

F1 3.32E–1074.47E–11 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 3.35E–1973.44E–20 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F2 6.53Eþ0373.29Eþ02 1.12Eþ0171.98Eþ00 6.73Eþ0272.37Eþ01 7.36Eþ0371.39Eþ02 3.41Eþ0275.34Eþ01 6.51Eþ0271.77Eþ01
F3 4.19Eþ0272.16Eþ00 3.01E–0172.67E–01 9.12E–0274.28E–02 1.43Eþ0172.38Eþ00 8.90Eþ0077.18Eþ00 8.98Eþ0073.29Eþ00
F4 3.11Eþ0072.45E–01 2.35E–0679.05E–07 7.73E–1071.02E–11 6.55Eþ0071.66E–01 4.01E–0473.98E–05 7.50E–0871.38E–09
F5 7.66E–1072.79E–11 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 4.26E–0875.44E–09 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F6 1.30Eþ0271.35Eþ01 1.23E–0574.53E–06 6.77E–0472.11E–05 5.90Eþ0273.28Eþ02 3.28E–0371.90E–04 3.43E–0372.24E–04
F7 6.63Eþ0777.72Eþ06 8.67Eþ0273.28Eþ01 5.14Eþ0076.42E–01 8.34Eþ0774.16Eþ06 9.12Eþ0274.46Eþ01 6.87Eþ0271.16Eþ01
F8 5.99Eþ0578.29Eþ04 2.27E–0174.43E–02 8.01Eþ0079.03E–01 4.51Eþ0675.89Eþ05 6.87Eþ0172.38Eþ00 2.93Eþ0175.33Eþ00
F9 1.82Eþ0977.01Eþ08 5.65Eþ0071.39E–01 6.65Eþ0072.17E–01 7.82Eþ1077.33Eþ09 8.90Eþ0771.15Eþ06 9.19Eþ0671.90Eþ05
F10 6.05Eþ1071.25Eþ08 2.90Eþ0176.65Eþ00 8.93Eþ0072.93E–01 9.16Eþ1072.16Eþ09 1.10Eþ0675.54Eþ05 6.77Eþ0677.35Eþ05
F11 1.17Eþ0776.67Eþ06 2.16Eþ0175.33Eþ00 4.24Eþ0071.18Eþ00 8.01Eþ0974.58Eþ08 2.11Eþ0373.29Eþ02 8.01Eþ0172.66Eþ00
F12 3.99Eþ0573.19Eþ04 9.92Eþ0071.18E–01 8.00Eþ0074.66E–02 6.63Eþ0673.29Eþ05 4.63Eþ0072.73E–01 3.22E–0373.25E–04
F13 2.52E–0175.12E–02 7.54E–0572.71E–06 1.92E–0178.93E–02 1.19Eþ0171.76Eþ00 6.79E–0171.22E–02 6.76E–0371.03E–04
F14 1.88Eþ0976.24Eþ08 3.90Eþ0178.03Eþ00 2.17Eþ0173.34Eþ00 8.21Eþ0974.44Eþ08 1.18Eþ0377.36Eþ02 2.17Eþ0171.09Eþ00
F15 2.67Eþ0478.87Eþ03 1.16Eþ0176.67Eþ00 1.11Eþ0272.54Eþ01 7.76Eþ0575.34Eþ04 4.35Eþ0275.89Eþ01 5.44Eþ0375.39Eþ02
F16 4.26Eþ0771.25Eþ06 7.82Eþ0178.80Eþ00 3.43Eþ0177.65Eþ00 2.17Eþ0871.65Eþ07 8.82Eþ0271.90Eþ01 7.12Eþ0272.88Eþ01
F17 7.09Eþ0374.33Eþ02 1.35E–0172.23E–02 5.67Eþ0174.26E–01 3.43Eþ0272.19Eþ01 7.76Eþ0172.34Eþ00 9.83Eþ0074.32E–01
F18 3.18Eþ0871.28Eþ07 7.70Eþ0571.19Eþ04 8.98Eþ0175.38Eþ00 8.92Eþ0978.75Eþ08 9.93Eþ0571.76Eþ04 6.01Eþ0271.23Eþ01
F19 6.67Eþ0578.10Eþ04 8.54Eþ0475.99Eþ03 1.65Eþ0179.87Eþ00 9.08Eþ0572.15Eþ05 1.18Eþ0272.90Eþ01 5.99Eþ0479.06Eþ03
F20 1.55Eþ0171.16E–05 2.43E–0271.05E–03 1.90Eþ0171.22Eþ00 7.71Eþ0374.43Eþ04 6.02Eþ0174.33Eþ00 1.34Eþ0277.76Eþ01
F21 2.35Eþ0272.24Eþ01 7.81Eþ0074.43E–01 8.73Eþ0274.34Eþ01 2.59Eþ0473.29Eþ03 8.60Eþ0175.27Eþ00 7.18Eþ0371.22Eþ02
F22 1.73Eþ0177.55Eþ00 9.01Eþ0075.29E–01 9.56Eþ0278.08Eþ01 2.34Eþ0271.38Eþ02 6.67E–0271.38E–03 9.21E–0375.47E–04
F23 9.09Eþ0974.32Eþ08 8.87Eþ0673.88Eþ05 3.62Eþ0275.76Eþ01 8.93Eþ0972.16Eþ08 3.32Eþ0774.26Eþ06 7.74Eþ0676.63Eþ05
F24 2.63Eþ0473.89Eþ03 9.12Eþ0271.37Eþ01 2.11Eþ0271.64Eþ00 9.32Eþ0674.43Eþ05 9.25Eþ0471.44Eþ04 1.10Eþ0574.11Eþ04
F25 5.56Eþ047511Eþ03 3.45Eþ0372.05Eþ02 6.84Eþ0278.73Eþ01 6.89Eþ0575.23Eþ04 7.87Eþ0473.19Eþ03 7.63Eþ0472.18Eþ03
F26 1.44Eþ0272.35Eþ01 7.76Eþ0274.16Eþ01 8.63Eþ0271.29Eþ01 1.90Eþ0371.77Eþ02 1.80Eþ0275.27Eþ01 8.89Eþ0377.35Eþ02
F27 3.91Eþ0679.00Eþ05 8.13Eþ0273.99Eþ01 9.12Eþ0277.06Eþ01 5.76Eþ0774.10Eþ06 7.75Eþ0573.00Eþ05 1.14Eþ0476.68Eþ03
F28 7.05Eþ0978.71Eþ08 7.76Eþ0574.45Eþ04 9.12Eþ0279.18Eþ01 3.11Eþ0975.43Eþ08 8.67Eþ0674.24Eþ05 6.02Eþ0577.19Eþ04
CPU time 194.18 252.71 207.42 155.04 213.74 162.83

Table 4
Comparisons of the best error values of the 2013 CEC benchmark functions with D¼50 for LPSO and CPSO. Here [a7b] indicates the mean value and the corresponding
standard deviation of 25 independent simulations. The best result in each row (Tables 2, 3 and 4 combined) is shown in bold font. CPU times (min) are shown in the last row
of the table.

LPSO LPSO/BBO-I LPSO/BBO-A CPSO CPSO/BBO-I CPSO/BBO-A

F1 2.15E–1573.78E–16 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 5.53E–1671.274E–17 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F2 4.12Eþ0372.44Eþ02 5.22Eþ0271.39Eþ01 7.81Eþ0374.23Eþ02 8.04Eþ0474.32Eþ02 1.21Eþ0272.30Eþ01 3.17Eþ0272.28Eþ01
F3 2.04Eþ0175.42Eþ00 1.04Eþ0173.16Eþ00 1.00Eþ0173.65Eþ00 5.52Eþ0177.32Eþ00 1.77Eþ0171.05Eþ00 6.32Eþ0071.15Eþ00
F4 4.36E–0271.81E–03 5.64E–0672.11E–07 7.15E–0873.66E–09 5.36E–0472.47E–05 8.71E–0779.38E–08 2.45E–0874.16E–09
F5 4.24E–1275.23E–13 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 5.64E–1571.18E–16 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F6 1.21E–0177.20E–02 6.32E–0371.14E–04 7.78E–0471.29E–05 7.63E–0274.15E–03 7.65E–0273.29E–03 8.76E–0475.35E–05
F7 9.30Eþ0575.77Eþ04 4.65Eþ05 73.28Eþ04 7.63Eþ0472.31Eþ03 7.65Eþ0571.96Eþ04 2.74Eþ0476.31Eþ03 7.99Eþ0374.65Eþ02
F8 5.36Eþ0772.44Eþ06 7.58Eþ0471.19Eþ03 3.62Eþ0274.19Eþ01 6.35Eþ0672.28Eþ05 7.42Eþ0372.15Eþ02 3.64Eþ0275.20Eþ01
F9 7.26Eþ0975.13Eþ08 5.36Eþ0472.38Eþ03 4.12Eþ0578.36Eþ04 2.28Eþ0877.65Eþ07 6.36Eþ0574.11Eþ04 4.34Eþ0373.72Eþ02
F10 7.31Eþ0875.66Eþ07 7.25Eþ0571.18Eþ04 3.46Eþ04 75.09Eþ03 4.43Eþ0877.70Eþ07 5.65Eþ0474.74Eþ03 1.31Eþ0474.43Eþ03
F11 7.75Eþ0672.31Eþ05 4.36Eþ0678.14Eþ05 9.63Eþ0471.17Eþ03 4.32Eþ0772.36Eþ06 5.98Eþ0371.19Eþ02 3.47Eþ0276.54Eþ01
F12 7.59Eþ06 72.16Eþ05 7.63Eþ0071.18E–01 4.35E–0177.64E–02 4.21Eþ0672.47Eþ05 1.16Eþ0073.28E–01 4.33E–01 72.71E–02
F13 2.33Eþ0171.02Eþ00 7.45E–0278.65E–03 7.74E–0372.01E–04 7.75E–0172.26E–00 1.12E–0171.39E–02 8.69E–0174.43E–02
F14 7.66Eþ0672.34Eþ05 4.69Eþ0377.14Eþ02 1.53Eþ0274.11Eþ01 2.66Eþ0571.35Eþ04 6.35Eþ0372.48Eþ02 7.98Eþ0175.56Eþ00
F15 1.23Eþ0576.33Eþ04 2.71Eþ0372.78Eþ02 6.35Eþ0271.29Eþ01 8.65Eþ0673.32Eþ05 1.66Eþ0372.39Eþ02 8.74Eþ0374.43Eþ02
F16 2.17Eþ0971.65Eþ08 8.82Eþ0471.90Eþ03 4.71Eþ0372.36Eþ02 5.04Eþ0773.28Eþ06 1.76Eþ0374.52Eþ02 8.65Eþ0473.74Eþ03
F17 9.65Eþ0273.28Eþ01 4.17Eþ0072.30E–01 5.44Eþ0072.23E–01 7.65Eþ0374.11Eþ02 3.24Eþ0176.78Eþ00 6.03Eþ0077.12E–01
F18 5.59Eþ0777.74Eþ06 2.15Eþ0378.66Eþ02 5.39Eþ0474.28Eþ03 1.76Eþ0673.14Eþ05 6.53Eþ0272.47Eþ01 8.65Eþ0374.26Eþ02
F19 1.05Eþ0576.61Eþ04 5.33Eþ0472.47Eþ03 3.19Eþ0371.18Eþ02 5.65Eþ0474.41Eþ03 3.25Eþ0477.76Eþ03 1.12Eþ0478.86Eþ03
F20 5.32Eþ0374.17Eþ04 7.75E–0172.36E–02 3.22E–0177.54E–02 2.39Eþ0376.40Eþ04 8.32E–0171.66E–00 8.42E–0272.32E–01
F21 1.86Eþ04 75.24Eþ03 2.26Eþ0177.14Eþ00 2.96Eþ0375.40Eþ02 6.32Eþ0371.76Eþ02 4.22Eþ0176.17Eþ00 9.02Eþ0373.76Eþ02
F22 7.26Eþ0179.01Eþ02 7.49E–0272.33E–03 2.77E–0375.19E–04 4.99Eþ0172.40Eþ02 7.32E–0374.23E–03 3.21E–0276.55E–03
F23 5.33Eþ0777.18Eþ06 4.26Eþ0471.31Eþ03 6.54Eþ0474.23Eþ03 2.66Eþ0975.14Eþ08 7.65Eþ0372.81Eþ02 3.22Eþ0377.13Eþ02
F24 1.01Eþ0773.47Eþ06 2.85Eþ0473.64Eþ03 5.41Eþ0372.26Eþ02 2.61Eþ0771.96Eþ06 4.32Eþ0378.64Eþ02 9.68Eþ0473.47Eþ03
F25 3.24Eþ0675.17Eþ05 6.84Eþ0473.22Eþ03 1.89Eþ0474.36Eþ03 8.82Eþ0777.43Eþ06 9.85Eþ0472.35Eþ03 7.14Eþ0474.49Eþ03
F26 6.47Eþ0371.56Eþ02 5.33Eþ0372.17Eþ02 8.65Eþ0271.25Eþ01 8.77Eþ0471.48Eþ03 6.32Eþ0277.14Eþ01 4.36Eþ0171.23Eþ01
F27 3.69Eþ0872.38Eþ07 7.48Eþ0475.19Eþ03 3.48Eþ0573.64Eþ04 1.26Eþ0872.35Eþ07 6.14Eþ0377.16Eþ02 4.43Eþ0375.31Eþ02
F28 1.16Eþ0773.22Eþ06 3.26Eþ0477.74Eþ03 1.07Eþ0477.80Eþ03 6.48Eþ0877.71Eþ07 3.22Eþ0578.62Eþ04 2.37Eþ0371.45Eþ02
CPU time 172.02 232.91 193.70 185.13 246.52 202.01



We also note from the above ordered list of best-performing
algorithms that SaDE hybrids perform best, and algorithm-level
hybrids perform better than iteration-level hybrids. This leads to a
couple of interesting conclusions. First, it indicates that SaDE
performs better than the other algorithms, at least for the tuning
parameters and benchmarks considered in this paper. Second, it
indicates the superiority of algorithm-level hybridization over
iteration-level hybridization. This may be due to the interacting
subpopulations that comprise algorithm-level hybridization,
which is a structure that other research has also found to be
highly efficient for global optimization (Das et al., 2011; Lassig and
Sudholt, 2010).

Next we briefly consider the types of functions for which the
various algorithms are best-suited. Tables 2, 3, and 4 show that the
best-performing algorithm on each of the unimodal functions (F1–
F5) is always one of the SaDE/BBO hybrids. The SaDE/BBO hybrids
also perform well on the other function categories, but their
superior performance on all five unimodal functions indicates that
the performance levels of the hybrid algorithms become more
even as the optimization problem becomes more difficult. We also
note from the tables that algorithm-level hybrids perform best on
six of the eight composition functions (F21–F28). This implies that
for extremely difficult and complex optimization problems,
algorithm-level hybridization would probably be preferred over
iteration-level hybridization. This is consistent with the observa-
tion in the previous paragraph about the superiority of algorithm-
level hybridization due to its interacting subpopulations.

The average running times of all algorithms are shown in the
last row of Tables 2, 3 and 4. Here MATLABs is used as the
programming language, and the computer is a 2.40 GHz Intel
Pentiums 4 CPU with 4 GB of memory. We find that the average
running times of the constituent algorithms are less than their
corresponding hybrid algorithms. For example, the average run-
ning times of SGA are less than SGA/BBO-I and SGA/BBO-A. We
also find that the algorithms can be ranked from fastest to slowest
as follows:

(1) SGA and its hybrid algorithms
(2) PSO2011 and its hybrid algorithms
(3) LPSO and its hybrid algorithms
(4) CPSO and its hybrid algorithms
(5) SaDE and its hybrid algorithms
(6) CMA-ES and its hybrid algorithms.

We also find that the average running times of the algorithm-
level hybrids are less than those of the iteration-level hybrids for
the same constituent algorithm. For example, the average running
time of SGA/BBO-A is less than SGA/BBO-I. The reason is that
algorithm-level hybridization uses multiple parallel subpopula-
tions to reduce computation time with the same total population
size as iteration-level hybridization. Certain EA operations, such as
roulette-wheel selection, have computational effort on the order
of N2, where N is the population size. So multiple subpopulations
are more computationally efficient than a single large population.
Multiple subpopulations are also amenable to parallel processing,
which can further reduce computational effort.

Finally, we note from Table 2 that SGA and its hybrid algorithms
did not perform the best in any of the 28 benchmarks. This could
be due to the simplicity of SGA, which we see from the fact that
SGA and its hybrid algorithms have the fastest run time. Better
performance might be obtained by varying the tuning parameters
of SGA, but SGA includes only a couple of tuning parameters
(crossover probability and mutation probability), and also, better
performance might also be obtained in the other EAs with
additional tuning. We conclude that SGA is a simple algorithm

that provides good performance, but is generally not competitive
with more complex EAs such as CMA-ES, DE, and PSO.

4.3. Statistical tests

In order to further compare the performance of the hybrid
algorithms, we perform a Holm multiple comparison test, con-
sidering SADE/BBO-A as the control method, which is regarded as
the best algorithm based on the results of Section 4.2. The Holm
multiple comparison test is a nonparametric statistical test that
obtains a probability (p-value) that determines the degree of
difference between a control algorithm and a set of alternative
algorithms, assuming that the algorithms have statistically sig-
nificant differences as a whole (Demsar, 2006). To quantify
whether a set of algorithms shows a statistically significant
difference as a whole, we first apply Friedman's test (with a
significance level α¼0.05) to the mean error rankings (Friedman,
1940). If the test rejects the null hypothesis that all of the
algorithms perform similarly, we consider the best algorithm as
the control method and compare it with the remaining algorithms
according to their rankings (Demsar, 2006; Dunn, 1961; Hochberg
and Tamhane, 1987). Additional details about the Holm multiple
comparison test can be found in the literature (Derrac et al., 2011).

We compare our proposed hybrid algorithms with seven
algorithms that were accepted for the 2013 CEC competition
〈http://www3.ntu.edu.sg/home/EPNSugan/〉. We collect bench-
mark performance data for these EAs from the below references.
Note that in 〈http://www3.ntu.edu.sg/home/EPNSugan/〉 there are
22 accepted papers, but we only use the seven that show relatively
good performance and that provide software to reproduce results.

(1) iCMAES-ILS, which is a hybrid algorithm combining IPOP-
CMA-ES (CMA-ES with increasing population size) and iterated
local search (ILS) (Liao and Stuetzle, 2013).

(2) NBIPOP-aCMA-ES, which is an active CMA-ES with increasing
bi-population size and decreasing initial step-size (Loshchilov,
2013).

(3) DRMA-LSch-CMA, which is a dynamically updated region-
based memetic algorithm with local search chaining and
CMA-ES (Lacroix et al., 2013).

(4) SHADE, which is success history based adaptive differential
evolution (Tanabe and Fukunaga, 2013).

(5) MVMO-SH, which is a mean–variance mapping optimization
algorithm incorporating local search and multi-parent cross-
over strategies (Rueda and Erlich, 2013).

(6) SPSRDEMMS, which is structured population size reduction
differential evolution with multiple mutation strategies
(Zamuda et al., 2013).

(7) b6e6rl-CDE, which combines 12 different differential evolution
strategies and parameter settings (Tvrdik and Polakova, 2013).

Table 5 shows the results of the Holm multiple comparison test
between SADE/BBO-A as the control algorithm, and all other
algorithms, including the other hybrid algorithms proposed in this
paper and the 2013 CEC algorithms.

As we see in Table 5, for the 2013 CEC benchmark functions,
NBIPOP-aCMA-ES is the best algorithm with an average rank of 6.37,
iCMAES-ILS is the second best with an average rank of 6.64, and our
newly proposed SaDE/BBO-A algorithm is the third best with an
average rank of 6.68. Although SaDE/BBO-A is not the best, it is in the
top three algorithms. If we add some state-of-the-art operators to the
algorithm, we might be able to improve performance. Furthermore,
Table 5 shows statistically significant differences between SADE/BBO-A
and all other algorithms except NBIPOP-aCMA-ES and iCMAES-ILS,
as indicated by p-values smaller than 0.05. The larger p-values for
NBIPOP-aCMA-ES and iCMAES-ILS, which are 0.34785 and 0.55134



respectively, indicate that although NBIPOP-aCMA-ES and iCMAES-ILS
obtain better performance than SaDE/BBO-A, the difference is not
statistically significant.

4.4. Robustness tests

EAs often show sensitivity to variations in tuning parameters.
In this section, we perform some robustness studies on the best
hybrid algorithm, SaDE/BBO-A. We consider only the tuning
parameters of BBO since SaDE is adapted according to the learning
progress. Here we investigate the sinusoidal migration curve as
suggested by Ma and Simon (2011b), the generalized migration
operator with δ¼ 0:5 in (1), and a mutation rate of 0.1. The
benchmark functions and all other parameters are the same as
those in the previous experiments, and the results are shown in
Table 6.

According to Table 6, SaDE/BBO-A with sinusoidal migration
performs best on 7 functions (F2, F3, F6, F12, F15, F16, and F26),
SaDE/BBO-I with generalized migration with δ¼ 0:5 performs best
on 7 functions (F4, F9, F17, F21, F25, F27, and F28), SaDE/BBO-A
with the mutation rate of 0.1 performs best on 6 functions (F8, F10,
F13, F18, F22, and F24), and standard SaDE/BBO-A performs best
on 6 functions (F7, F11, F14, F19, F20, and F23). For functions F1
and F5, all algorithms find the optimal solution. The results show

that SaDE/BBO-A with sinusoidal migration, and SaDE/BBO-A with
generalized migration with δ¼ 0:5 have the same performance.
They are slightly better than standard SaDE/BBO-A, and SaDE/BBO-
A with the mutation rate of 0.1. These results indicate that SaDE/
BBO-A tuning parameters can influence performance, but in
general the effect is not significant.

4.5. Real-world applications to traveling salesman problems

In this section we apply the proposed hybrid algorithms to the
traveling salesman problem (TSP), which is an important and
representative real-world combinatorial problem because it is
simple to state but difficult to solve, and because many combina-
torial problems can be reduced to a TSP. The closed TSP can be
simply described as follows. The salesman is required to find the
shortest tour connecting all cities, but he must visit each city only
once, and he must return to the original city. There is much
literature that discusses TSP algorithms using various hybrid EAs
(Mo and Xu, 2010; Nguyen et al., 2007; Simon et al., 2011). Here
we use the inver-over operator (Tao and Michalewicz, 1998),
which has proven to be an effective crossover operator for the
TSP. Details discussing the combination of EAs with the inver-over
operator can be found in the literature (Simon et al., 2011). We use
seven TSP benchmarks, including Bays-29, Berlin-52, St-70, Ch-

Table 5
Holm multiple comparison test results of the hybrid EAs and the 2013 CEC benchmark algorithms, which shows the average rank and the p-values. SaDE/BBO-A is the control
algorithm, and its average rank is 6.68 based on the Friedman test (not shown in the table).

Algorithm Rank p-value Algorithm Rank p-Value Algorithm Rank p-Value

SGA/BBO-I 16.89 0.00008 PSO2011/BBO-A 10.89 0.00755 NBIPOP-aCMA-ES 6.37 0.34785
SGA/BBO-A 14.61 0.00072 LPSO/BBO-I 10.96 0.00704 DRMA-LSch-CMA 8.46 0.02883
CMA-ES/BBO-I 12.77 0.00399 LPSO/BBO-A 9.64 0.02077 SHADE 8.35 0.02270
CMA-ES/BBO-A 9.96 0.01001 CPSO/BBO-I 10.21 0.00780 MVMO-SH 8.69 0.02446
SaDE/BBO-I 7.21 0.08426 CPSO/BBO-A 9.17 0.01115 SPSRDEMMS 9.85 0.01018
PSO2011/BBO-I 11.21 0.00479 iCMAES-ILS 6.64 0.55134 b6e6rl-CDE 11.38 0.00424

Table 6
Comparisons of the best error values of the 2013 CEC benchmark functions for SaDE/BBO-A with sinusoidal migration, generalized migration with δ¼ 0:5, and a mutation
rate of 0.1. Here [a7b] indicates the mean value and the corresponding standard deviation, and the best result in each row is shown in bold font.

SaDE/BBO-A SaDE/BBO-A with sinusoidal migration SaDE/BBO-A with δ¼ 0:5 SaDE/BBO-A with mutation rate¼0.1

F1 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F2 6.73Eþ0272.37Eþ01 1.05Eþ0274.21Eþ01 2.55Eþ0273.29Eþ01 3.18Eþ0277.16Eþ01
F3 9.12E–0274.28E–02 1.09E–0274.87E–03 5.24E–0277.52E–03 3.26E–0276.88E–03
F4 7.73E–1071.02E–11 2.36E–0971.15E–10 6.28E–1073.04E–11 2.81E–0271.86E–03
F5 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00 0.00Eþ0070.00Eþ00
F6 6.77E–0472.11E–05 1.54E–0477.98E–05 7.56E–04 77.21E–05 3.22E–0377.14E–04
F7 5.14Eþ0076.42E–01 2.72Eþ0176.35Eþ00 9.04Eþ0073.28E–01 7.18Eþ0072.44E–01
F8 8.01Eþ0079.03E–01 7.31Eþ0073.72E–01 7.85Eþ0074.16E–01 6.32Eþ0072.37E–01
F9 6.65Eþ0072.17E–01 9.54E–0172.16E–02 2.47E–0172.36E–02 1.21Eþ0075.98E–01
F10 8.93Eþ0072.93E–01 1.33Eþ0175.41Eþ02 1.24Eþ0173.22Eþ02 2.19Eþ0074.26E–01
F11 4.24Eþ0071.18Eþ00 8.14Eþ0073.22Eþ00 6.18Eþ0072.31Eþ00 7.24Eþ0076.33Eþ00
F12 8.00Eþ0074.66E–02 4.33Eþ0077.18E–01 5.25Eþ0077.19E–01 5.54Eþ0071.79Eþ01
F13 1.92E–0178.93E–02 4.26Eþ0073.14E–01 3.79Eþ0075.12E–01 1.03E–0178.58E–01
F14 2.17Eþ0173.34Eþ00 4.51Eþ0173.47Eþ00 6.32Eþ0177.26Eþ00 7.19Eþ0173.35Eþ00
F15 1.11Eþ0272.54Eþ01 1.99Eþ0174.25Eþ00 3.87Eþ0175.90Eþ00 5.17Eþ0274.65Eþ01
F16 3.43Eþ0177.65Eþ00 2.16Eþ0074.50E–01 4.25Eþ0073.87E–01 8.76Eþ0174.25Eþ00
F17 5.67Eþ0174.26E–01 2.77Eþ0074.25E–01 1.42Eþ0077.55E–01 3.78Eþ0274.16Eþ01
F18 8.98Eþ0175.38Eþ00 7.54Eþ0272.16Eþ01 9.58Eþ0272.47Eþ01 6.35Eþ0173.29Eþ00
F19 1.65Eþ0179.87Eþ00 3.21Eþ0174.39Eþ00 7.54Eþ0172.18Eþ00 8.46Eþ0175.01Eþ00
F20 1.90Eþ0171.22Eþ00 4.16Eþ0173.42Eþ00 2.37Eþ0177.11Eþ00 2.35Eþ0174.86Eþ00
F21 8.73Eþ0274.34Eþ01 2.60Eþ0271.54Eþ01 2.27Eþ0179.19Eþ00 3.74Eþ0171.18Eþ00
F22 9.56Eþ0278.08Eþ01 7.41Eþ0173.56Eþ00 4.16Eþ0175.59Eþ00 2.70Eþ0175.13Eþ00
F23 3.62Eþ0275.76Eþ01 9.20Eþ0277.58Eþ01 7.62Eþ0276.00Eþ01 7.26Eþ0275.43Eþ01
F24 2.11Eþ0271.64Eþ00 3.05Eþ0274.17Eþ01 1.43Eþ0276.38Eþ01 1.03Eþ0277.75Eþ01
F25 6.84Eþ0278.73Eþ01 4.17Eþ0175.98Eþ00 3.36Eþ0171.15Eþ00 4.33Eþ0273.24Eþ01
F26 8.63Eþ0271.29Eþ01 1.06Eþ0173.47Eþ00 2.39Eþ0174.44Eþ00 5.70Eþ0271.25Eþ01
F27 9.12Eþ0277.06Eþ01 5.47Eþ0173.26Eþ00 4.26Eþ0177.98Eþ00 8.14Eþ0273.29Eþ01
F28 9.12Eþ0279.18Eþ01 7.71Eþ0272.88Eþ01 5.38Eþ0274.46Eþ01 7.11Eþ0376.37Eþ02



130, Brg-180, Rat-575, and D-1291, all of which are available in
Reinelt (2008). Note that the number in each benchmark label
indicates the number of cities in the problem; for example, the D-
1291 problem includes 1291 cities. The parameters used in the
hybrid algorithms here are the same as those in Section 4.1.

Table 7 shows comparisons of the cost (traveling distance) after
10,000 generations, averaged over 25 simulations. The results
show that SaDE/BBO-A obtains the best cost for five of the
problems, and the second best cost for the other two problems.
This indicates that SaDE/BBO-A is significantly better than the
other hybrid algorithms for the TSP benchmarks we study. These
results are also consistent with the continuous benchmark func-
tion results in Section 4, which also found that SaDE/BBO-A was
the best hybrid algorithm.

5. Conclusion

We proposed a new EA hybridization strategy based on
information exchange mechanisms from biogeography. We then
used the new approach to hybridize several popular EAs, and we
tested the hybrid EAs on the continuous optimization benchmark
functions from the 2013 Congress on Evolutionary Computation
(CEC). The proposed hybridizations included algorithm-level
hybridization and iteration-level hybridization, both of which have
a simple structure. The new hybrid algorithms make use of the
optimization ability of the recently developed EAs, augmented
with the information exchange mechanism of biogeography for
improved performance. The test results showed that the proposed
hybrids significantly outperformed their constituent algorithms
with the selected tuning parameters and generation limits, and
algorithm-level hybridization was slightly better than iteration-
level hybridization for the continuous benchmark functions that
we studied. Statistical tests showed that SaDE/BBO-A was at least
the third best algorithm when compared to the 2013 CEC algo-
rithms, and was statistically even with the best two algorithms.

We applied our proposed hybrid EAs to the traveling sales-
man problem, and the results showed that our proposed SaDE/
BBO-A is the best hybrid algorithm for the real-world problems
that we tested. We also studied the tuning parameters of SaDE/
BBO-A to confirm that its performance is relatively robust to
tuning parameters.

For future work, we suggest several important directions. First,
future work could include testing on additional benchmark functions,
testing with higher dimensions, testing on noisy functions, and
comparing the proposed hybrid algorithms with additional EAs. The
second direction for future work is to develop and study the
performance of other biogeography-based hybridization algorithms
on the continuous optimization benchmark functions in this paper.
The third direction for future work is to apply the proposed hybrid EAs
to more real-world problems. The fourth direction for future work is to

incorporate additional state-of-art operators to our proposed hybrid
algorithms to obtain better performance.

Finally, we note that just as ideas from BBO have been used in
this paper to develop new hybridization approaches, ideas from
other EAs could also be used to develop new hybridization
approaches. For example, information exchange mechanisms
based on DE, PSO, SGA, or any other EA, could be used to combine
EAs running in parallel. The use of BBO as a hybridization strategy
should motivate the investigation of other EAs as hybridization
strategies, and then these hybridization strategies could be com-
pared with one another in future work.
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