24 research outputs found

    Optimisation of a weightless neural network using particle swarms

    Get PDF
    Among numerous pattern recognition methods the neural network approach has been the subject of much research due to its ability to learn from a given collection of representative examples. This thesis is concerned with the design of weightless neural networks, which decompose a given pattern into several sets of n points, termed n-tuples. Considerable research has shown that by optimising the input connection mapping of such n-tuple networks classification performance can be improved significantly. In this thesis the application of a population-based stochastic optimisation technique, known as Particle Swarm Optimisation (PSO), to the optimisation of the connectivity pattern of such “n-tuple” classifiers is explored. The research was aimed at improving the discriminating power of the classifier in recognising handwritten characters by exploiting more efficient learning strategies. The proposed "learning" scheme searches for ‘good’ input connections of the n-tuples in the solution space and shrinks the search area step by step. It refines its search by attracting the particles to positions with good solutions in an iterative manner. Every iteration the performance or fitness of each input connection is evaluated, so a reward and punishment based fitness function was modelled for the task. The original PSO was refined by combining it with other bio-inspired approaches like Self-Organized Criticality and Nearest Neighbour Interactions. The hybrid algorithms were adapted for the n-tuple system and the performance was measured in selecting better connectivity patterns. The Genetic Algorithm (GA) has been shown to be accomplishing the same goals as the PSO, so the performances and convergence properties of the GA were compared against the PSO to optimise input connections. Experiments were conducted to evaluate the proposed methods by applying the trained classifiers to recognise handprinted digits from a widely used database. Results revealed the superiority of the particle swarm optimised training for the n-tuples over other algorithms including the GA. Low particle velocity in PSO was favourable for exploring more areas in the solution space and resulted in better recognition rates. Use of hybridisation was helpful and one of the versions of the hybrid PSO was found to be the best performing algorithm in finding the optimum set of input maps for the n-tuple network

    Adaptive swarm optimisation assisted surrogate model for pipeline leak detection and characterisation.

    Get PDF
    Pipelines are often subject to leakage due to ageing, corrosion and weld defects. It is difficult to avoid pipeline leakage as the sources of leaks are diverse. Various pipeline leakage detection methods, including fibre optic, pressure point analysis and numerical modelling, have been proposed during the last decades. One major issue of these methods is distinguishing the leak signal without giving false alarms. Considering that the data obtained by these traditional methods are digital in nature, the machine learning model has been adopted to improve the accuracy of pipeline leakage detection. However, most of these methods rely on a large training dataset for accurate training models. It is difficult to obtain experimental data for accurate model training. Some of the reasons include the huge cost of an experimental setup for data collection to cover all possible scenarios, poor accessibility to the remote pipeline, and labour-intensive experiments. Moreover, datasets constructed from data acquired in laboratory or field tests are usually imbalanced, as leakage data samples are generated from artificial leaks. Computational fluid dynamics (CFD) offers the benefits of providing detailed and accurate pipeline leakage modelling, which may be difficult to obtain experimentally or with the aid of analytical approach. However, CFD simulation is typically time-consuming and computationally expensive, limiting its pertinence in real-time applications. In order to alleviate the high computational cost of CFD modelling, this study proposed a novel data sampling optimisation algorithm, called Adaptive Particle Swarm Optimisation Assisted Surrogate Model (PSOASM), to systematically select simulation scenarios for simulation in an adaptive and optimised manner. The algorithm was designed to place a new sample in a poorly sampled region or regions in parameter space of parametrised leakage scenarios, which the uniform sampling methods may easily miss. This was achieved using two criteria: population density of the training dataset and model prediction fitness value. The model prediction fitness value was used to enhance the global exploration capability of the surrogate model, while the population density of training data samples is beneficial to the local accuracy of the surrogate model. The proposed PSOASM was compared with four conventional sequential sampling approaches and tested on six commonly used benchmark functions in the literature. Different machine learning algorithms are explored with the developed model. The effect of the initial sample size on surrogate model performance was evaluated. Next, pipeline leakage detection analysis - with much emphasis on a multiphase flow system - was investigated in order to find the flow field parameters that provide pertinent indicators in pipeline leakage detection and characterisation. Plausible leak scenarios which may occur in the field were performed for the gas-liquid pipeline using a three-dimensional RANS CFD model. The perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is expected to help in improving the understanding of multiphase flow behaviour induced by leaks. The results of the simulations were validated against the latest experimental and numerical data reported in the literature. The proposed surrogate model was later applied to pipeline leak detection and characterisation. The CFD modelling results showed that fluid flow parameters are pertinent indicators in pipeline leak detection. It was observed that upstream pipeline pressure could serve as a critical indicator for detecting leakage, even if the leak size is small. In contrast, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is chosen for leak detection. The results also reveal that when two leaks of different sizes co-occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the large leak size. However, in the event of a double leak with equal dimensions, the leak closer to the pipe upstream is easier to detect. The results from all the analyses demonstrate the PSOASM algorithm's superiority over the well-known sequential sampling schemes employed for evaluation. The test results show that the PSOASM algorithm can be applied for pipeline leak detection with limited training datasets and provides a general framework for improving computational efficiency using adaptive surrogate modelling in various real-life applications

    Adaptive algorithms for history matching and uncertainty quantification

    Get PDF
    Numerical reservoir simulation models are the basis for many decisions in regard to predicting, optimising, and improving production performance of oil and gas reservoirs. History matching is required to calibrate models to the dynamic behaviour of the reservoir, due to the existence of uncertainty in model parameters. Finally a set of history matched models are used for reservoir performance prediction and economic and risk assessment of different development scenarios. Various algorithms are employed to search and sample parameter space in history matching and uncertainty quantification problems. The algorithm choice and implementation, as done through a number of control parameters, have a significant impact on effectiveness and efficiency of the algorithm and thus, the quality of results and the speed of the process. This thesis is concerned with investigation, development, and implementation of improved and adaptive algorithms for reservoir history matching and uncertainty quantification problems. A set of evolutionary algorithms are considered and applied to history matching. The shared characteristic of applied algorithms is adaptation by balancing exploration and exploitation of the search space, which can lead to improved convergence and diversity. This includes the use of estimation of distribution algorithms, which implicitly adapt their search mechanism to the characteristics of the problem. Hybridising them with genetic algorithms, multiobjective sorting algorithms, and real-coded, multi-model and multivariate Gaussian-based models can help these algorithms to adapt even more and improve their performance. Finally diversity measures are used to develop an explicit, adaptive algorithm and control the algorithm’s performance, based on the structure of the problem. Uncertainty quantification in a Bayesian framework can be carried out by resampling of the search space using Markov chain Monte-Carlo sampling algorithms. Common critiques of these are low efficiency and their need for control parameter tuning. A Metropolis-Hastings sampling algorithm with an adaptive multivariate Gaussian proposal distribution and a K-nearest neighbour approximation has been developed and applied

    Heuristic Solution Approaches to the Solid Assignment Problem

    Get PDF
    The 3-dimensional assignment problem, also known as the Solid Assignment Problem (SAP), is a challenging problem in combinatorial optimisation. While the ordinary or 2-dimensional assignment problem is in the P-class, SAP which is an extension of it, is NP-hard. SAP is the problem of allocating n jobs to n machines in n factories such that exactly one job is allocated to one machine in one factory. The objective is to minimise the total cost of getting these n jobs done. The problem is commonly solved using exact methods of integer programming such as Branch-and-Bound B&B. As it is intractable, only approximate solutions are found in reasonable time for large instances. Here, we suggest a number of approximate solution approaches, one of them the Diagonals Method (DM), relies on the Kuhn-Tucker Munkres algorithm, also known as the Hungarian Assignment Method. The approach was discussed, hybridised, presented and compared with other heuristic approaches such as the Average Method, the Addition Method, the Multiplication Method and the Genetic Algorithm. Moreover, a special case of SAP which involves Monge-type matrices is also considered. We have shown that in this case DM finds the exact solution efficiently. We sought to provide illustrations of the models and approaches presented whenever appropriate. Extensive experimental results are included and discussed. The thesis ends with a conclusions and some suggestions for further work on the same and related topics

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)

    Learning Optimisation Algorithms over Graphs

    Get PDF
    The paradigm of learning to optimise relies on the following principle: instead of designing an algorithm to solve a problem, we design an algorithm which will automate the design of such a solver. The initial idea was to alleviate the limitations stated by the No Free Lunch Theorem by producing an algorithm which efficiency is less dependent upon known instances of the problem to tackle. Hyper-heuristics constitute the main learning-to-optimise techniques. These rely on a high-level algorithm performing a search process into a space of low-level heuristics to tackle a given problem. Because the latter search space is problem-dependent, the vast majority of hyper-heuristics are designed to tackle a specific problem. Due to this lack of generality, existing works fully redesign hyper-heuristics when tackling a new problem, despite the fact that they may share a similar structure. In this dissertation, we tackle this challenge by proposing a generic way for learning to optimise any problem. To this end, this thesis introduces three main contributions: (i) an analysis of the formal functioning of learning-to-optimise techniques; (ii) a model of generic hyper-heuristic, named Algorithm Learner for Graph Optimisation problems (ALGO), constituting the central point of this work; (iii) a real-world use case where we use our generic hyper-heuristic to automate the design of behaviours within a swarm of drones. In the first part, we provide a formalism for optimisation and learning concepts, which we use to describe the large body of knowledge that combines two layers of optimisation and/or learning. We then put an emphasis on approaches using learning to improve an optimisation process, i.e., aiming at learning to optimise. In the second part, we present ALGO, our model of generic hyper-heuristic. We explain how we abstract from a given problem with a graph structure so that it can be used to tackle any optimisation problem. We also detail the steps to follow in order to use ALGO to tackle a given problem. We finally present the modularity of ALGO with inner components that a user can implement. The second part ends with a validation of our model, i.e., using ALGO to tackle a classical optimisation problem. In the third part, we use ALGO to tackle the problem of area surveillance with a swarm of drones. We demonstrate that ALGO constitutes a novel and efficient way to automate the design of such a distributed and multi-objective problem

    Hybridisation of GA and PSO to Optimise N-tuples

    Get PDF
    Among numerous pattern recognition methods the neural network approach has been the subject of much research due to its ability to learn from a given collection of representative examples. This paper is concerned with the design of a Weightless Neural Network, which demoposes a given pattern into several sets of n points, termed n-tuples. Considerable research has shown that by optimising the input connection mapping of such n-tuple networks classification performance can be improved significantly. This paper investigates the hybridisation of Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO) techniques in search of better connection maps to the N-tuples. Experiments were conducted to evaluate the proposed metho9d of applying the trained classifier to recognise hand-printed digits from a widely used database compiled by US National Institute of Standards and Technology (NIST)

    Learning lost temporal fuzzy association rules

    Get PDF
    Fuzzy association rule mining discovers patterns in transactions, such as shopping baskets in a supermarket, or Web page accesses by a visitor to a Web site. Temporal patterns can be present in fuzzy association rules because the underlying process generating the data can be dynamic. However, existing solutions may not discover all interesting patterns because of a previously unrecognised problem that is revealed in this thesis. The contextual meaning of fuzzy association rules changes because of the dynamic feature of data. The static fuzzy representation and traditional search method are inadequate. The Genetic Iterative Temporal Fuzzy Association Rule Mining (GITFARM) framework solves the problem by utilising flexible fuzzy representations from a fuzzy rule-based system (FRBS). The combination of temporal, fuzzy and itemset space was simultaneously searched with a genetic algorithm (GA) to overcome the problem. The framework transforms the dataset to a graph for efficiently searching the dataset. A choice of model in fuzzy representation provides a trade-off in usage between an approximate and descriptive model. A method for verifying the solution to the hypothesised problem was presented. The proposed GA-based solution was compared with a traditional approach that uses an exhaustive search method. It was shown how the GA-based solution discovered rules that the traditional approach did not. This shows that simultaneously searching for rules and membership functions with a GA is a suitable solution for mining temporal fuzzy association rules. So, in practice, more knowledge can be discovered for making well-informed decisions that would otherwise be lost with a traditional approach.EPSRC DT
    corecore