29,353 research outputs found

    Optimal Economic Schedule for a Network of Microgrids With Hybrid Energy Storage System Using Distributed Model Predictive Control

    Get PDF
    Artículo Open Access en el sitio web el editor. Pago por publicar en abierto.In this paper, an optimal procedure for the economic schedule of a network of interconnected microgrids with hybrid energy storage system is carried out through a control algorithm based on distributed model predictive control (DMPC). The algorithm is specifically designed according to the criterion of improving the cost function of each microgrid acting as a single system through the network mode operation. The algorithm allows maximum economical benefit of the microgrids, minimizing the degradation causes of each storage system, and fulfilling the different system constraints. In order to capture both continuous/discrete dynamics and switching between different operating conditions, the plant is modeled with the framework of mixed logic dynamic. The DMPC problem is solved with the use of mixed integer linear programming using a piecewise formulation, in order to linearize a mixed integer quadratic programming problem.Ministerio de Economía, Industria y Competitivadad DPI2016-78338-RComisión Europea 0076-AGERAR-6-

    Unifying metabolic networks, regulatory constraints, and resource allocation

    Get PDF
    Metabolic and gene regulatory networks are two classic models of systems biology. Biologically, gene regulatory networks are the control system of protein expression while metabolic networks, especially the genome-scale reconstructions consist of thousands of enzymatic reactions breaking down nutrients into precursors and energy to support the cellular survival. Metabolic-genetic networks, in addition, include the translational processes as an integrated model of classical metabolic networks and the gene expression machinery. Conversely, genetic regulation is also affected by the metabolic activities that provide feedbacks and precursors to the regulatory system. Thus, the two systems are highly interactive and depend on each other. Up to now, various efforts have been made to bridge the two network types. Yet, the dynamic integration of metabolic networks and genetic regulation remains a major challenge in computational systems biology. This PhD thesis is a contribution to mathematical modeling approaches for studying metabolic-regulatory systems. Inspired by regulatory flux balance analysis (rFBA), we first propose an analytic pipeline to explore the optimal solution space in rFBA. Then, our efforts focus on the dynamic combination of metabolic networks together with enzyme production costs and genetic regulation. For this purpose, we first explore the intuitive idea that incorporates Boolean regulatory rules while iterating resource balance analysis. However, with the iterative strategy, the gene expression states are only updated in discrete time steps. Furthermore, formalizing the metabolic-regulatory networks (MRNs) by hybrid automata provides a new mathematical framework that allows the quantitative integration of the metabolic-genetic network with the genetic regulation in a hybrid discrete-continuous system. For the application of this theoretical formalization, we develop a constraint-based approach regulatory dynamic enzyme-cost flux balance analysis (r-deFBA) as an optimal control strategy for the hybrid automata representing MRNs. This allows the prediction of optimal regulatory state transitions, dynamics of metabolism, and resource allocation capable of achieving a maximal biomass production over a time interval. Finally, this PhD project ends with a chapter on perspectives; we apply the theory of product automata to model the dynamics at population-level, integrating continuous metabolism and discrete regulatory states

    Predictive control of an olive oil mill with multi-objective prioritization

    Get PDF
    INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL. WORLD CONGRESS (15.2002.BARCELONA)This paper presents a multi-objective controller applied to an olive oil mill. The practical experience using a Generalized Predictive Controller (GPC) in the real plant showed the necessity of including objectives, with different priorities, in the process control. The analysis demonstrates that GPC with prioritization objectives can control the process and fulfill the specified operational conditions. The results are illustrated with some simulations that compare the traditional GPC to the multi-objective one.Comisión Europea 1FD97-0836 (FEDER

    Control systems of offshore hydrogen production by renewable energies

    Get PDF
    Esta tesis trata sobre un proyecto de diseño de un Sistema de Gestión de Energía (SGE) que utiliza Modelo de Control Predictivo (MPC) para equilibrar el consumo de energía renovable con electrolizadores productores de hidrógeno. La energía generada se equilibra regulando el punto de operación y las conexiones de los electrolizadores usando un MPC basado en un algoritmo de Programación Mixta-Entera Cuadrática. Este algoritmo MPC permite tener en cuenta previsiones de energía, mejorando así el equilibrio y reduciendo el número de encendidos de los equipos. Se han realizado diferentes casos de estudio en instalaciones compuestas por unidades de generación de energía eléctrica a partir de energía renovable. Se considera la técnica de ósmosis inversa como paso intermedio para la producción de agua que alimenta a los electrolizadores. La validación se realiza utilizando datos meteorológicos medidos en un lugar propuesto para el sistema, mostrando el funcionamiento adecuado del SGE desarrollado.Departamento de Ingeniería de Sistemas y AutomáticaDoctorado en Ingeniería Industria

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Reconfiguring process plans: A mathematical programming approach

    Get PDF
    Increased global competition and frequent unpredictable market changes are current challenges facing manufacturing enterprises. Unpredictable changes of part design and engineering specifications trigger frequent and costly changes in process plans, which often require changes in the functionality and design of the manufacturing system. Process planning is a key logical enabler that should be further developed to cope with the changes encountered at the system level as well as to support the new manufacturing paradigms and continuously evolving products. Retrieval-based process planning predicated on rigid pre-defined boundaries of part families, does not satisfactorily support this changeable manufacturing environment. Since purely generative process planning systems are not yet a reality, a sequential hybrid approach at the macro-level has been proposed. Initially the master plan information of the part family\u27s composite part is retrieved, then modeling tools and algorithms are applied to arrive at the process plan of the new part, the definition of which does not necessarily lie entirely within the boundary of its original part family. Two distinct generative methods, namely Reconfigurable Process Planning (RPP) and Process Re-Planning were developed and compared. For RPP, a genuine reconfiguration of process plans to optimize the scope, extent and cost of reconfiguration is achieved using a novel 0-1 integer-programming model. Mathematical programming and formulation is proposed, for the first time, to reconfigure process plans to account for changes in parts\u27 features beyond the scope of the original product family. The computational time complexity of RPP is advantageously polynomial compared with the exponentially growing time complexity of its classical counterparts. As for Process Re-Planning, a novel adaptation of the Quadratic Assignment Problem (QAP) formulation has been developed, where machining features are assigned positions in one-dimensional space. A linearization of the quadratic model was performed. The proposed model cures the conceptual flaws in the classical Traveling Salesperson Problem; it also overcomes the complexity of the sub-tour elimination constraints and, for the first time, mathematically formulates the precedence constraints, which are a comer stone of the process planning problem. The developed methods, their limitations and merits are conceptually and computationally, analyzed, compared and validated using detailed industrial case studies. A reconfiguration metric on the part design level is suggested to capture the logical extent and implications of design changes on the product level; equally, on the process planning level a new criterion is introduced to evaluate and quantify impact of process plans reconfiguration on downstream shop floor activities. GAMS algebraic modeling language, its SBB mixed integer nonlinear programming solver, CPLEX solvers and Matlab are used. The presented innovative new concepts and novel formulations represent significant contributions to knowledge in the field of process planning. Their effectiveness and applicability were validated in different domains
    corecore