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Abstract

Metabolic and gene regulatory networks are two classic models of systems biology.
Biologically, gene regulatory networks are the control system of protein expression
while metabolic networks, especially the genome-scale reconstructions consist of
thousands of enzymatic reactions breaking down nutrients into precursors and en-
ergy to support the cellular survival. Metabolic-genetic networks, in addition, in-
clude the translational processes as an integrated model of classical metabolic net-
works and the gene expression machinery. Conversely, genetic regulation is also
affected by the metabolic activities that provide feedbacks and precursors to the
regulatory system. Thus, the two systems are highly interactive and depend on
each other.

Up to now, various efforts have been made to bridge the two network types. Yet,
the dynamic integration of metabolic networks and genetic regulation remains a
major challenge in computational systems biology.

This PhD thesis is a contribution to mathematical modeling approaches for study-
ing metabolic-regulatory systems. Inspired by regulatory flux balance analysis
(rFBA), we first propose an analytic pipeline to explore the optimal solution space
in rFBA. Then, our efforts focus on the dynamic combination of metabolic net-
works together with enzyme production costs and genetic regulation. For this
purpose, we first explore the intuitive idea that incorporates Boolean regulatory
rules while iterating resource balance analysis. However, with the iterative strat-
egy, the gene expression states are only updated in discrete time steps. Further-
more, formalizing the metabolic-regulatory networks (MRNs) by hybrid automata
provides a new mathematical framework that allows the quantitative integration
of the metabolic-genetic network with the genetic regulation in a hybrid discrete-
continuous system. For the application of this theoretical formalization, we de-
velop a constraint-based approach regulatory dynamic enzyme-cost flux balance
analysis (r-deFBA) as an optimal control strategy for the hybrid automata repre-
senting MRNs. This allows the prediction of optimal regulatory state transitions,
dynamics of metabolism, and resource allocation capable of achieving a maximal
biomass production over a time interval. Finally, this PhD project ends with a
chapter on perspectives; we apply the theory of product automata to model the
dynamics at population-level, integrating continuous metabolism and discrete reg-
ulatory states.

vii





Chapter 1

Introduction

Since the days of Claude Shannon and Norbert Wiener, who introduced informa-
tion theory (Shannon, 1948) and cybernetics (Wiener, 1948), the system-level un-
derstanding of biology using information and communication has gained much at-
tention. People noticed that a biological system is not merely composed of different
kinds of chemical molecules with a certain structure. Organisms, including human
beings, operate like a machine based on the processing of information between dif-
ferent components such as genes and proteins (Quastler, 1953; Simon, 1991). This
involves the interconnection of multiple biological parts and an enormous amount
of information communicated as a huge network (Hartwell et al., 1999).

Yet, systematic studies were hindered by limited datasets in the early days. Compu-
tational systems biology did not come of age until the emergence of high through-
put technologies, particularly in genomics (Sanger and Coulson, 1975; Maxam
and Gilbert, 1977; Anderson, 1981) and proteomics (Aebersold and Mann, 2003).
Rather than focusing on isolated molecules, systems biology reveals the funda-
mental mechanism of molecular interactions at a systematic level (Kitano, 2002;
Westerhoff and Palsson, 2004). In the past, many formal mathematical frameworks
have been introduced to understand biological systems, especially in relevance to
the main topics of this thesis: cellular metabolism and genetic regulation.

In the conversion of nutrients into energy and building blocks to produce func-
tional macromolecules, cellular metabolism implicates thousands of biochemical
molecules that are interconnected with one another in a huge metabolic network.
So is the genetic regulation evolved in parallel by nature to assure the cellular per-
formance in response to a changing environment or stimulus. The gene regulatory
network transfers the internal/external signals to the genes encoding enzymes of
metabolic reactions via regulatory proteins or transcription factors. This functions
as a control system for metabolism. Conversely, the genetic regulation is affected
by metabolism as well. This is because the internal metabolism gives feedback to
the regulatory system and provides precursors for regulatory proteins or transcrip-
tion factors. Thus, the integration of cellular metabolism with genetic regulation
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Chapter 1. Introduction

is indispensable for elucidating the molecular mechanisms of cells particularly the
genotype-phenotype relationships. To date, however, the investigation of interac-
tions between the metabolic network and the gene regulatory system, especially
their dynamic interplay, remains a challenge because of the intricacies involved.

In the past, several formal mathematical frameworks have been developed to study
genetic regulation and metabolism, either separately or integrated together. How-
ever, the dynamic integration of metabolic and gene regulatory networks is still
under study. Thus, there is a strong need for more efficient computational algo-
rithms and approaches that will allow understanding and predicting the metabolic-
regulatory processes. For this purpose, this PhD thesis concentrates on develop-
ing computational methods to improve dynamic modeling of the integration of
metabolism and genetic regulation.

Before we go on to the main part, some basics of this thesis are introduced next.

Glycolysis

PPP pathway

TCA cycle

Nitrogen assimilation

Biomass reaction
Common by-products

Figure 1.1: Central metabolic network of E. coli condensed via genome-scale model iAF1260
(Feist et al., 2007; Orth, 2010). The nodes represent the intracellular metabolites and edges denote
the reactions. The key metabolic pathways are marked by annotations.
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1.1 Metabolic networks

1.1 Metabolic networks
Cellular metabolism includes all enzymatic biochemical reactions in a cell, which
can be classified as anabolism and catabolism, referring to the ‘building up’ and
‘breaking down’ of large molecules respectively. Mathematically, metabolism can
be represented by a directed hypergraph called metabolic network (MN), with the
metabolites as nodes and the reactions as hyperarcs.

With the flood of high-throughput datasets, hundreds of metabolic networks from
microbes to plants, to human beings, have been successfully reconstructed based on
the annotated genome and proteome (Förster et al., 2003a; de Oliveira Dal’Molin
et al., 2010; Duarte et al., 2007). Many of them are available in the online databases,
e.g., Biomodels (Le Novere et al., 2006). As an example, the directed hypergraph
in Figure 1.1 represents the metabolic network for the central metabolism of Es-
cherichia coli (E. coli) (Orth, 2010), which has been obtained by a reduction from
the genome-scale metabolic network iAF1260 (Feist et al., 2007). It is composed
of 95 reactions and 72 intracellular metabolites which convert external sources like
glucose into a biomass reaction. The relationship between reactions and metabo-
lites is represented by a stoichiometric matrix normally denoted by S . Each row
of S represents an intermediate metabolite and each column a reaction. Then entry
S i, j denotes the stoichiometric coefficient of the i−th metabolite in the j−th reac-
tion. When the i−th metabolite operates as a substrate in the j−th reaction, S i, j is
often given a negative value. Conversely, S i, j is often defined as a positive value
if the i−th metabolite is produced. Thus, the stoichiometric matrix of the central
metabolic network of E. coli has 72 rows and 95 columns, which denote the 72
metabolites and 95 reactions respectively.

H+ + ADP +

O

C

C

CH2

O−

O P O−

O−

O Pyruvate kinase
ATP +

O

C

C

CH3

O−

O

(Pyruvate)(Phosphoenolpyruvate)

Figure 1.2: A biochemical reaction converting phosphoenolpyruvate (PEP) into pyruvate, releas-
ing a ATP and catalyzed by the enzyme pyruvate kinase.

S =

...
H+

ADP
PEP
ATP

Pyruvate
...



... ... ...

... -1 ...

... -1 ...

... -1 ...

... 1 ...

... 1 ...

... ... ...


. (1.1)
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Chapter 1. Introduction

Although there are fewer reactions and metabolites than in the genome-scale model
iAF1260, the principle pathways, including glycolysis, citric acid cycle (TCA),
pentose phosphate pathway (PPP), and nitrogen assimilation reactions are still cov-
ered. For instance, the reaction shown in Figure 1.2 is a key biochemical reaction of
the glycolysis pathway that transfers a hydrogen ion (H+), adenosine diphosphate
(ADP) and phosphoenolpyruvate (PEP) to a pyruvate, while yielding a ATP at the
same time. It is catalyzed by an enzyme named pyruvate kinase, which is somehow
ignored in this central network. The stoichiometric ratios of all the metabolites in
this reaction are 1:1. So, the stoichiometry of this reaction is shown in Eq. 1.1,
from which we can see how it appears in the whole stoichiometric matrix S . The
five intermediate metabolites of the reaction are annotated in the left column, which
corresponds to the related rows in S . The middle column represents the reaction.
For the substrates of the reaction, the coefficients of H+, ADP and PEP are −1,
while the stoichiometric coefficients of ATP and pyruvate are 1 because they are
products.

The extracellular metabolites, such as the external nutrients and by-products, ex-
ist in the environment outside the cell and may be shared by numerous cells in
the community. However, the cells are unable to survive without external re-
sources, and such extracellular metabolites also interconnect with the intracellu-
lar metabolism. Therefore, in addition to internal reactions, exchange reactions
are added to the metabolic network to transport the extracellular metabolites. The
metabolic reactions that can go in both directions are defined as reversible. The
reactions that can only go in one direction are defined as irreversible.

Therefore, in the directed hypergraph of a metabolic network, the nodes denote
all the metabolites. The directed hyperedges indicate the reactions. Mathemat-
ically, these connections between nodes are encoded by a stoichiometric matrix
S , in which the rows denote all the metabolites, and the columns denote all the
reactions including internal and exchange reactions. Therefore, a metabolic net-
work can be mathematically defined as a tuple (M,R, S ). M represents the set
of metabolites. R = Rrev ∪ RIrr is the reaction set including reversible reactions
Rrev and irreversible reactions RIrr. S ∈ RM×R is the stoichiometric matrix of a
metabolic network. For a metabolic network (M,R, S ), we define a flux vector
v ∈ R|R| to denote the reaction rates of turnover of molecules through the metabolic
network, and a vector M ∈ R|M|

≥0 represents the quantities of metabolites inM.

1.2 Computational modeling of metabolism
1.2.1 Kinetic modeling
Computational modeling approaches have become a powerful tool for elucidating
the fundamental mechanisms of cellular metabolism. A first approach to model
cellular metabolism is kinetic modeling. Dating back to the year 1943, Chance
studied a biochemical system by ordinary differential equations (ODEs) and nu-
merical simulation (Chance, 1943). For decades, ODE-based kinetic models have
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1.2 Computational modeling of metabolism

been widely developed to study metabolism (Heinrich and Schuster, 1996). Typ-
ically, the metabolite concentrations are modeled with continuous variables. The
derivative of each metabolite concentration can be described by the sum of the
fluxes producing the metabolite (input fluxes) minus the sum of the fluxes utiliz-
ing the metabolite (output fluxes). That is, for a metabolic network (M,R, S ), the
dynamics can be written as

dM
dt

= S · v. (1.2)

The reaction fluxes v can be further described by rate laws, as a function depending
on metabolite concentrations and kinetic parameters. Then we obtain

dM
dt

= S · v(M,K), (1.3)

where K is a vector with kinetic parameters. Thus, the metabolic network can be
simulated by solving the system of ODEs.

Kinetic models must be built according to the rate laws and the associated kinetics.
Selecting the appropriate chemical rate law is pivotal to kinetic modeling. Up till
now, several rate laws have been proposed, and two widely used rate laws are
described below.

Law of mass action

The law of mass action is a foundation principle of chemical kinetics originally
posited by Guldberg and Waage (Waage and Guldberg, 1864). The law states
a relationship between the chemical reaction rate and the corresponding reactant
concentrations. Specifically, it implies that the velocity of a chemical reaction is
proportional to the product of concentrations of reactants. To illustrate this law
suppose a sample reaction aA + bB→ C. According to the law of mass action, its
reaction velocity v can be calculated by

v = α[A]a[B]b. (1.4)

Here α is termed as a rate constant for such a reaction, while [A], [B] are the con-
centrations of substrates A and B, and a, b are the stoichiometric coefficients. It is
a non-linear mathematical equation and might be time-varying. Despite the use-
fulness of mass action in modeling reactions (Voit et al., 2015), its non-linearity
makes it difficult to be analyzed, especially for complex reactions.

Michaelis-Menten kinetics

Another common chemical rate law is Michaelis-Menten kinetics, which focuses
on enzyme-catalytic reactions. Since its proposal by Leonor Michaelis and Maud
Menten (Menten and Michaelis, 1913), Michaelis-Menten equations have been
widely used to simulate enzymatic reactions. Suppose a reaction is catalyzed by an
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Chapter 1. Introduction

enzyme E in the conversion of a substrate s to a product p, then the reaction rate v
can be expressed by the Michaelis-Menten equation

v =
dp
dt

= vmax ·
s

KM + s
. (1.5)

Here vmax is the maximal rate that can be achieved by saturating the substrate con-
centration, and KM is called Michaelis constant, which indicates the substrate con-
centration for which the reaction rate is half of the maximal value vmax. In order to
further determine the maximal reaction rate, certain assumptions have been made
in the investigation of the enzymatic kinetics. For example, under the condition that
the substrates are highly saturated, the maximal reaction rate is assumed to be lin-
ear with the enzyme concentration E by the corresponding turnover rate kcat. The
turnover rate indicates the maximum number of substrates converted into product
per enzyme per time. That is

vmax = kcat · E. (1.6)

Thus, Michaelis-Menten kinetics is commonly formulated as

v =
dp
dt

=
s · kcat · E
KM + s

(1.7)

to describe the dynamics of p and to calculate the reaction rate v depending on the
substrate concentration, the enzyme abundance and the associated kinetic parame-
ters.

Although there are limitations, the law of mass action and Michaelis-Menten ki-
netics are still the most common chemical laws used in kinetic modeling. Using
kinetic modeling, not only can the enzyme kinetics be simulated, but the genetic
regulation can also be quantified using Hill functions (Hill, 1910; De Jong, 2002;
Rosenfeld et al., 2005). Hill functions are commonly represented by a sigmoid
curve and will be detailed later. Although many studies have shown that kinetic
modeling is considerably realistic in simulation, pure kinetic models are currently
highly difficult to analyze. As a lot of unknown kinetic parameters and non-linear
computations are often required, the kinetic modeling of complex reaction systems
must resort to simplification. For example, order reduction algorithms and reli-
able reduced models can be used to obtain simpler models while keeping the key
features of the complex systems (Okino and Mavrovouniotis, 1998).

Later, a simplified mathematical framework —constraint-based modeling —was
proposed, which only considers certain constraints while ignoring the kinetic de-
tails. Constraint-based modeling has become an effective tool in the analysis of
metabolic behaviors, especially in genome-scale metabolic networks after 30 years
of development (Bordbar et al., 2014; King et al., 2015; Lloyd et al., 2018).
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1.2 Computational modeling of metabolism

1.2.2 Constraint-based modeling
As the biological information, especially kinetic parameters, is often not available,
constraint-based modeling was introduced based on the fact that the cellular be-
haviors are subject to some constraints. By imposing these constraints in a model,
we can make inferences what is possible and what is not, and how a cell might
behave, but never predict it deterministically (Palsson, 2000; Price et al., 2004).
Such modeling approaches target a solution space, where each solution represents
a possible behavior that satisfies the imposed constraints. Thus, in spite of using
incomplete information, one can interpret and even predict cellular functions.

The constraints that cells are subject to limit the possible behaviors. It is also
these constraints that define the solution space for constraint-based models. The
solutions that violate these constraints are excluded from the solution space. The
solution space can be reduced by additional constraints. One necessary type of
constraint are invariants, which are inviolable and not adjusted in the biological
processes. For example, the thermodynamic constraints must always be conserved.
There are also time-varying constraints that are adjusted depending on time or con-
ditions, e.g., nutrient availability.

One of the core constraints for this type of modeling are the stoichiometric con-
straints. They are based on the assumption that all the intermediate metabolites are
at steady-state. The fluxes of their production and consumption are balanced under
the steady-state assumption. For a metabolic network (M,R, S ) at steady-state, we
obtain the stoichiometric constraints:

dM
dt

= S v = 0. (1.8)

The thermodynamic constraints in steady-state stoichiometric models regard the
reversibility of a reaction. For irreversible reactions, the reactants convert to prod-
ucts, and the products cannot turn back to reactants. Thus, constraints

vRIrr ≥ 0 (1.9)

are added for irreversible reactions RIrr.

Another critical point in constraint-based modeling is that the detailed enzyme
kinetics describing reaction rates, e.g., Michaelis-Menten kinetics, is replaced by
suitable lower and upper bounds on the reaction fluxes. This leads to the flux
capacity constraints

lb ≤ v ≤ ub, (1.10)

where lb,ub are vectors of lower and upper bounds for the reaction fluxes v. How-
ever, with more and more biological information becoming available, one can con-
strain the reaction rates with their enzyme abundances and kinetic parameters. This
leads to the, so-called, enzymatic capacity constraints in resource allocation mod-
els, which will be discussed later. Besides the stoichiometric, thermodynamic, and

7



Chapter 1. Introduction

flux capacity constraints described above, there are possibly other constraints to de-
termine the solution space for a metabolic network, such as regulatory constraints
and environmental constraints (Price et al., 2004).

Geometrically, the stoichiometric matrix S mathematically defines a linear space
for the fluxes v at steady-state by S v = 0. Putting together constraints S v = 0 and
vRIrr ≥ 0, the solution space becomes a polyhedral cone, which is called the flux
cone (Terzer, 2009). If there are lower and upper bounds on the reaction fluxes, the
solution space is a polytope defined by S v = 0 and lb ≤ v ≤ ub.

To further study the metabolic behaviors under these constraints, many constraint-
based approaches are using linear optimization, which can be solved very effi-
ciently. Linear optimization is a technique to optimize a linear objective function
subject to linear equalities and linear inequalities. The best known optimization-
based method is flux balance analysis (FBA), which was shown to be in agreement
with experimental observations by many studies (Förster et al., 2003b; Shlomi
et al., 2005). It assumes that the cells maximize the biomass production rate or
some other cellular objectives (Savinell and Palsson, 1992; Orth et al., 2010). With
this objective function and the stoichiometric, thermodynamic, and flux capacity
constraints, a linear optimization problem (LP) can be constructed to predict the
flux distribution. Mathematically, FBA can be expressed as

max
v

: cT v

s.t. S v = 0

lb ≤ v ≤ ub,

(1.11)

where c is a vector with the coefficient of each reaction contributing to the objective
function, ·T denotes the transposition.

Although FBA provides a unique value for the objective function, the optimal so-
lution is not always unique. There often exist alternative optimal solutions wherein
the same maximal objective value can be achieved. Even though FBA maximizes
objective function with the constraints shown in Eq. 1.11, it is often the case that
the optimal solution space does not shrink to a single point. There may be alterna-
tive pathways leading to the same optimal value. To explore the alternate optimal
solutions, several approaches have been proposed, such as flux variability analysis
(FVA) (Mahadevan and Schilling, 2003).

The objective function in FBA is often defined as the biomass reaction flux in or-
der to maximize the growth rate. Several other objectives have also been used
in constraint-based modeling approaches (Holzhütter, 2004; Knorr et al., 2006;
Schuetz et al., 2007). As Price et.al summarized in (Price et al., 2004), the objec-
tive functions are generally formed for three purposes: first, the exploration of the
phenotypic potential of a metabolic network (Price et al., 2002); second, the de-
termination of likely physiological behaviors by choosing different objective func-
tions (Edwards et al., 2001), e.g., biomass and ATP productions; third, the design
of strains to satisfy an engineering purpose (Burgard et al., 2003).
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1.2 Computational modeling of metabolism

1.2.3 Resource allocation modeling

In recent years, genome-scale reconstructions have increasingly moved towards
the integrated models of metabolism and macromolecular production (Thiele et al.,
2009). Some parts neglected in FBA-type approaches are more and more noted es-
sential for understanding cellular growth, which is the topic of this section: trade-
off between costs and benefits of enzyme production. Although the enzymes speed
up metabolic reactions, they consume a lot of precursors and energy as well. The
costs and benefits must be balanced for optimal growth (Weiße et al., 2015). It has
been revealed that how the cell allocates its resources to build numerous functional
macromolecules, especially ribosomes and enzymes, is significant to the under-
standing of cellular growth, behaviors and physiology (Dekel and Alon, 2005). The
resulting resource allocation models can be described by so-called self-replicator
models (Koch, 1988; Molenaar et al., 2009; Giordano et al., 2016; Yegorov et al.,
2019). Compared with classical metabolic networks, these introduced an additional
precursor costs for macromolecules such as enzymes, transporters, constructional
compounds and ribosomes.

Goelzer and coworkers further developed a constraint-based approach resource
balance analysis (RBA) to predict the resource allocation based on the self-
replicator models (Goelzer and Fromion, 2011; Goelzer et al., 2011). RBA consid-
ers the translational apparatus and the enzyme-catalytic relationships besides the
stoichiometric information of a metabolic network at steady-state. Independently,
classical metabolic models also have been extended to integrate protein expression
machinery by Lerman et al., which are termed as ME-models (Lerman et al., 2012).
Instead of directly maximizing the growth rate in RBA, they proposed to minimize
the production rate of ribosomes while still supporting its growth.

However, such static approaches cannot allow the inspection of dynamic adap-
tations of resource allocation in response to the changing environment. Re-
cently, several dynamic approaches have been developed to predict the dynamic
metabolism, including the costs of enzyme production. Dynamic enzyme-cost flux
balance analysis (deFBA) was proposed to predict the dynamic reaction fluxes and
enzyme amounts using a dynamic optimization algorithm (Waldherr et al., 2015).
To simulate the phototrophic growth of cyanobacteria over a diurnal cycle, condi-
tional flux balance analysis (cFBA) was introduced in consideration of the chang-
ing light intensity of the day (Rügen et al., 2015). In addition, RBA was extended
to dynamical resource balance analysis (dRBA) and available for modeling dy-
namical conditions during the batch culture in a bioreactor (Jeanne et al., 2018).
In 2019, Yang et al. also developed an algorithm to cover time-course metabolism
based on ME-models. They called it DynamicME (Yang et al., 2019). In that
work, two procedures for the iteration of ME-models were proposed, one of which
accounted for protein dynamics while the other did not.

Yet, the gene regulatory system is not considered in all these existing approaches
capable of predicting resource allocation. Instead, it is considered to be substituted
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m

Figure 1.3: Sigmoid curves. m is the Hill coefficient. When m → ∞, the associated Hill function
can be approximated by a step function.

by the optimization. For example, deFBA and cFBA maximize the total biomass
along a time course. DynamicME maximizes the growth rate at each time interval
with the iterative strategy. However, there is no guarantee of consistency between
metabolism and regulation. Also, genetic regulation does not always maximize the
growth rate. All in all, there is a strong need for new mathematical frameworks
capable of integrating regulatory events with these resource allocation models or
ME-models.

1.3 Modeling gene regulation
It is generally believed that the gene regulatory system functions as a control sys-
tem that administrates when and which protein is translated to which extent and in
which location inside a cell. Gene regulation also involves thousands of molecules,
such as protein, DNA and mRNA, interconnected mutually as a huge net akin to
metabolic networks. Mathematical models and computational tools are essential
for revealing the fundamental mechanism of regulatory networks because of its
complexity. Here, we give an overview of a few main established mathematical
frameworks to model, analyze and simulate gene regulation.

1.3.1 Hill functions

Hill functions have been extensively used to quantify the relationship between the
evolution of regulated protein and the corresponding transcription factor (TF) or
regulatory protein (RP) concentration. They were first formalized in 1910 by
Archibald Hill (Hill, 1910) to describe how the fraction of a macromolecule de-
pends on the concentration of its ligand. Since the regulatory process is exerted by
TF binding with the translational apparatus such as DNA and mRNA, Hill func-
tions are also extended to model gene regulation.
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1.3 Modeling gene regulation

Hill functions are often represented by sigmoid curves, see Figure 1.3. Suppose a
gene encoding protein p is up- or down-regulated by a transcription factor TF, then
the regulatory effect can be individually calculated by the Hill functions

F+
m(T F, θ) =

T Fm

θm + T Fm ; F−m(T F, θ) =
θm

θm + T Fm , (1.12)

where m is the Hill coefficient indicating the number of binding sites for ligands in
a protein. θ is a threshold indicating that the gene encoding p can be activated or
inactivated when the relevant transcription factor abundance T F reaches θ. Hence,
the translation rate of regulated protein p can be quantified as

dp
dt

= vp ·
T Fm

θm + T Fm − γd · p;
dp
dt

= vp ·
θm

θm + T Fm − γd · p, (1.13)

where the reaction rate parameter vp is often assumed to be the maximum expres-
sion rate of protein p and γd represents the degradation or dilution rate. By the Hill
functions, the up- or down-regulation can be directly integrated with ODE-based
kinetic modeling.

1.3.2 Piecewise linear differential equations
Similar to the kinetic models, modeling genetic regulation by Hill functions must
resort to finer simplification, especially because of the Hill type (Okino and
Mavrovouniotis, 1998). Therefore, people’s attention shifted from quantifying
the regulatory effects to the qualitative features of regulatory controls (Glass and
Kauffman, 1973; Thomas, 1973). Monod and Jacob first introduced gene states
and logical equations to model gene regulatory systems (Jacob and Monod, 1961).
Further, Sugita posited that genetic regulation is a biochemical molecular system.
Actually, the rate of the dynamic process is controlled by parameters, the logic na-
ture of which is equivalent to the switch of a logical circuit having input, output
and a time delay (Sugita, 1963). The logical states depend on the concentrations of
related TFs and thresholds. To perform a comparison with Hill functions, we in-
troduce a gene state g encoding the protein p in Eq. 1.13. g performs as the logical
control for the synthesis of protein p, which is classified as ḡ+ and ḡ− depending
on the up- or down-regulation of a TF. As shown in Figure 1.3, when m in the Hill
function 1.12 is big enough, the relevant Hill function can be approximated as a
step function that can be formalized as

ḡ+(T F, θ) =

{
1 T F ≥ θ
0 T F < θ

; ḡ−(T F, θ) =

{
0 T F ≥ θ
1 T F < θ

. (1.14)

Based on the approximation, a Hill function can be substituted by a Boolean vari-
able as the logical control on gene expression, resulting in a Piecewise Linear Dif-
ferential Equation (PLDE) (Glass and Kauffman, 1973; Snoussi, 1989; De Jong,
2002; De Jong et al., 2004)

dp
dt

= vp · g − γd · p, (1.15)
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A B C

Figure 1.4: A sigmoid curve (A), its Boolean logical state (B) and PLDE curve (C).

where p is the protein concentration. g is the associated gene state that can be ḡ+

or ḡ− in Eq. 1.14 depending on the TF abundance and the threshold. The reaction
rate parameter vp here can also be defined based on chemical laws such as the mass
action and Michaelis-Menten kinetics, as suggested in the studies of (Chaves et al.,
2019).

1.3.3 Boolean logical networks

The early ideas (Jacob and Monod, 1961; Sugita, 1963) of modeling gene regula-
tion as logical systems resulted in the development of Boolean regulatory networks
and discrete regulatory networks (Kauffman, 1969; Thomas, 1973). Nearly in the
same year in which PLDE was introduced to model gene regulation, these authors
formalized the gene regulatory network by Boolean rules, which combine Boolean
variables by logical operators AND, OR and NOT (Kauffman, 1969; Thomas,
1973). In the formalization, each gene has two expression state (on or off) and
completely ignored the quantitative regulatory effect. Figure 1.4 shows the car-
icatures of sigmoid curve, the Boolean logical state and PLDE. Compared with
Hill functions and PLDE, Boolean regulatory networks only require the Boolean
logical rules to perform regulatory control. Thus, the essential control behavior is
preserved and able to capture the qualitative control of the genetic regulation in a
simplified fashion. Besides Boolean variables, the gene states can also have multi-
ple values, which are extended into a discrete logical network. Currently, Boolean
regulatory networks are one of the best-known methodologies in the investigation
of gene-state transitions. Moreover, they have been applied in the study of molecu-
lar interactions on the genome scale (Kauffman et al., 2003; Li et al., 2004; Samal
and Jain, 2008).

Mathematically, the classic transcriptional regulatory networks (TRNs) having n
genes can be defined as a directed network with nodes denoted by a vector g ∈
{0, 1}n where the value 0 corresponds to off and 1 to on. The edges represent gene
interactions, which are usually labeled by negative/positive sign. Each gene state
can be determined by a Boolean function fi of Boolean variables with the logical
connectives OR, AND and NOT. Therefore, for a TRN with n genes (nodes), the
Boolean states are composed of the expression states of n genes, which are 2n in
total.
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1.4 Integration of metabolism and regulation

To analyze the dynamics of TRNs, discrete time was introduced so that the gene
state at a given time point t is g(t). Synchronous and asynchronous algorithms are
matured for an understanding of the dynamic state transitions of a TRN (Bernot
et al., 2004; Fauré et al., 2006). For synchronous dynamics, all the genes update
their states simultaneously. This never happens in real cells in that all the genes will
not be expressed within the same period to reach the thresholds to activate/inhibit
the other genes. As Thomas and Kaufman argued in (Thomas and Kaufman, 2001),
there is no reason why the time delays should be equal and in fact they are often
very unequal. The duration of the delay depends mainly on the production/decay
rate of gene product involved in the regulatory process. They proposed that differ-
ent delays must be considered for the update of gene states, which would lead to
the non-deterministic asynchronous dynamics. In the absence of precise informa-
tion about the time delays in biological systems, Siebert and Bockmayr proposed
to impose constraints on the time delays in the form of inequalities (Siebert and
Bockmayr, 2008). They applied the theory of timed automata to track the time
while the system evolves. Thus, the imposed constraints on the time delays can
be evaluated for state transitions in the evolution of the system. Unlike the ODE-
based kinetic modeling that gives precise dynamics, the transition systems of such
logic-based regulatory networks are non-deterministic. Therefore, they are highly
favorable in the exploration of state transitions, searching for attractors, as well as
in model-checking (Thieffry et al., 1993; Devloo et al., 2003; Bernot et al., 2004;
Batt et al., 2005). At present, computational and simulation tools permit the sys-
tematic study of gene regulatory networks, even at the genome-scale (Luscombe
et al., 2004).

1.4 Integration of metabolism and regulation
1.4.1 Hybrid modeling
Dating back to 1963, Sugita already introduced the idea of molecular automata
(Sugita, 1963). The cellular molecular system, for instance protein expression, is
controlled by the genetic circuits. Typically, the protein expression that is encoded
by a gene is a continuous process. On the other hand, its regulatory control involves
a TF binding with the gene, which is considered a discrete event. It was realized
later that the metabolic-regulatory system exhibits both discrete and continuous
behaviors, and is, in fact, a hybrid system. A hybrid system combines discrete
states and continuous dynamics, which perfectly captures the cellular regulatory
control and dynamic metabolism. In the past, several attempts and processes have
been made in modeling such discrete-continuous dynamics.

For instance, McAdams et al. first developed a hybrid modeling method by in-
corporating the biochemical kinetic model into the gene circuits (McAdams and
Shapiro, 1995). Hybrid system approaches combining the idea of control theory
and computer science are then introduced to model biomolecular networks with
genetic circuits (Alur et al., 2001; Lincoln and Tiwari, 2004), which, for instance,
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Chapter 1. Introduction

have been successfully applied in simulating Delta-Notch signaling (Ghosh and
Tomlin, 2001) and cell cycle (Singhania et al., 2011). Bockmayr and Courtois
proposed that hybrid concurrent constraint programming may provide a promis-
ing tool in modeling dynamics of biological systems, such as genetic regulation
on biochemical pathways, by reaching thresholds and enzyme kinetics (Bockmayr
and Courtois, 2002). Hybrid automata, as a formal hybrid system, have also been
introduced to model genetic regulatory networks (De Jong et al., 2003; Bortolussi
and Policriti, 2008; Ye et al., 2008).

1.4.2 Constraint-based modeling with genetic regulation

Constraint-based modeling approaches permit the reconstruction and analysis of
genome-scale metabolic networks. However, such methods lead to incorrect pre-
dictions when the metabolism is significantly affected by regulatory events. To
extend the predictive capability of classic FBA, Covert et al. developed regu-
latory flux balance analysis (rFBA) to incorporate Boolean regulatory rules into
the metabolic network (Covert et al., 2001). This has been implemented in Sac-
charomyces cerevisiae (Herrgård et al., 2006) and Escherichia coli (Covert et al.,
2008). By a similar strategy, FlexFlux (Marmiesse et al., 2015) was proposed to
integrate multi-valued discrete logical rules into the metabolic network. The basic
idea of both rFBA and FlexFlux is iterating FBA by splitting the growth phase into
discrete time steps. At each time step, the gene states are updated. The updated
gene states are then imposed as bounds onto the reaction fluxes.

Integrated FBA (iFBA) was developed to model the dynamics of metabolism, reg-
ulatory Boolean logic and signaling networks, the strategy of which is to integrate
the rFBA framework and ODE-based kinetic models (Covert et al., 2008). In iFBA,
rFBA is combined with a set of ODEs by passing variables from one to each other,
showing significant improvement as compared with rFBA and ODE-based kinetic
modeling. In parallel, integrated dynamic FBA (idFBA) was proposed as an iter-
atively dynamic approach for modeling an integrated system which includes sig-
naling, metabolic and regulatory networks (Lee et al., 2008). Compared to rFBA
and iFBA, idFBA integrates regulatory rules by introducing a binary parameter for
each reaction at each time point, thereby indicating whether the reaction is active
or not. As for the whole network, the binary parameters are represented by a ma-
trix, in which the rows are reactions and the columns are time points. At each time
step, the binary parameter is used to constrain the reaction activity by multiplying
the upper bound of the corresponding reaction flux.

The static steady-state approaches are particularly advantageous to the genome-
scale metabolic-regulatory models. Steady-state regulatory flux balance analy-
sis (SR-FBA) allows, for the first time, predicting the steady-state behaviors in
an integrated genome-scale metabolic-regulatory model, which was presented in
(Shlomi et al., 2007). Mathematically, by the gene-reaction mapping, it converts
the Boolean logic of gene regulation to the linear inequalities. Combining these
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1.5 Structure of the thesis

linear inequalities with FBA formalism, SR-FBA can be formulated as a mixed-
integer linear program (MILP) (Shlomi et al., 2007; Jensen et al., 2011). Another
idea is to integrate high-throughput data with metabolic networks directly since
the gene regulatory networks are inferred based on biological datasets, e.g. mi-
croarray datasets (Wang et al., 2006). In 2010, Chandrasekaran and Price put for-
ward another approach to integrate the regulatory information with FBA, based
on high-throughput data called Probabilistic regulation of metabolism (PROM)
(Chandrasekaran and Price, 2010). Compared to Boolean logic-based approaches,
this permits the construction of genome-scale metabolic-regulatory networks and
allows the integration of quantitative regulation with constraint-based modeling.

Yet, the protein expression machinery is not considered in all these approaches.
Overall, the interplay between the gene regulatory system and the metabolic net-
work is still poorly understood, despite these modeling frameworks have been de-
veloped. There is a need for formal, dynamic and efficient mathematical frame-
works to integrate diverse biological processes particularly genetic regulation, pro-
tein production costs and metabolism.

1.5 Structure of the thesis
Based on the previous endeavors in modeling metabolism and gene regulation, this
PhD thesis concentrates on developing computational algorithms that allow the
study of the dynamic integration of the two systems. Chapter 2 describes several
extension approaches of classic flux balance analysis, including dynamic flux bal-
ance analysis (DFBA), regulatory flux balance analysis (rFBA), resource balance
analysis (RBA) and dynamic enzyme-cost flux balance analysis (deFBA), which
are the basis for the following chapters.

In Chapter 3, we propose an analytic pipeline to explore the optimal solution space
in rFBA with applications to the core carbon network and the central metabolic
network of E. coli.

We then present our early attempts for iterating resource balance analysis with
Boolean regulatory rules in Chapter 4. Specifically, two approaches are intro-
duced, one of which merely iterates RBA while updating the external substrates
and biomass. It is called iterative resource balance analysis (iRBA). The other
further incorporates Boolean regulatory rules into iRBA using a strategy similar to
rFBA. It is called regulatory iterative resource balance analysis (riRBA).

In Chapter 5, we propose metabolic-regulatory networks (MRNs) to represent the
typical dynamic interaction between cellular metabolism and transcriptional gene
regulation. Formalizing metabolic-regulatory networks by hybrid automata cap-
tures well the continuous dynamics of metabolism and the discrete regulatory con-
trol. The formalization introduces an innovative mathematical framework that
combines metabolic-genetic networks and gene regulatory networks in a hybrid
discrete-continuous system.
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Chapter 1. Introduction

To apply the theoretical formalization in Chapter 5, we further show in Chapter 6
that the optimal control strategy for the hybrid discrete-continuous systems repre-
senting our MRNs can be constructed as a dynamic optimization program. Thus,
a constraint-based approach termed regulatory dynamic enzyme-cost flux balance
analysis (r-deFBA) is developed to predict the dynamics of metabolism, discrete
state transitions and optimal resource allocation that maximize the biomass pro-
duction over a time interval.

Chapter 7 continues presenting another possible application of the theoretical for-
malization in Chapter 5. Instead of focusing on an individual-level metabolic-
regulatory systems, we use product automata to model the population-level
metabolic-regulatory networks in Chapter 7. At last in Chapter 8, we summarize
and conclude this PhD thesis.
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Chapter 2

Extensions of classic FBA

This chapter aims at providing the basis for the following chapters. Several
extensions of classic flux balance analysis: dynamic flux balance analysis
(dFBA), regulatory flux balance analysis (rFBA), resource balance analy-
sis (RBA) and dynamic enzyme-cost flux balance analysis (deFBA) will be
presented.

2.1 Dynamic flux balance analysis
Since the 1980s, flux balance analysis (FBA) has been a powerful method (Orth
et al., 2010) for the prediction of reaction fluxes in metabolic networks. Later,
dynamic flux balance analysis (DFBA) was developed by extending FBA to ac-
count for the dynamics of extracellular metabolites and biomass. There exist two
variants of DFBA: dynamic optimization approach (DOA) and static optimization-
based DFBA approach (SOA) (Mahadevan et al., 2002). To illustrate FBA-type
formalisms intuitively, we construct a schematic metabolic network in Figure 2.1.

Y X
RbiomassRY biomass

RX

Figure 2.1: A schematic metabolic network.

Y represents extracellular metabolites with the associated concentrations Y, in
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Chapter 2. Extensions of classic FBA

which N are nutrients. N ⊆ Y. RY is the set of exchange reactions between
Y and intermediate metabolites X with the fluxes vY. In particular, RN is the set of
uptake reactions of nutrientsN and vN is the vector of uptake fluxes. X represents
the concentrations of X. RX is the set of intermediate reactions with the corre-
sponding fluxes vX. Rbiomass is the biomass reaction to produce biomass with the
flux vbiomass, which indicates the growth rate µ. R is a set including all reactions
such that R = RY ∪ RX ∪ Rbiomass.

With the abbreviations and notation above, we will first explain the strategy of
static optimization-based DFBA.

2.1.1 Updating biomass and external metabolites

Consider the metabolic network presented in Figure 2.1. People often model the
dynamics of extracellular metabolite and biomass by ordinary differential equa-
tions (Varma and Palsson, 1994; Mahadevan et al., 2002):

dBio
dt

= µ · Bio, (2.1)

dY
dt

= SY,RY · vY · Bio, (2.2)

where Bio is the biomass concentration and µ denotes the growth rate. Y are ex-
ternal metabolite concentrations. SY,RY is the stoichiometric matrix in which the
rows represent external metabolites and the columns denote exchange reactions.
vY are the exchange fluxes following the convention that nutrient uptake fluxes are
negative and secretion fluxes are positive.

DFBA (SOA) connects classic FBA with a dynamically changing environment in
an iterative way. The simulation period is divided into n time intervals of length
∆t. In DFBA (SOA), an FBA program is solved at the beginning of each interval
to get the flux distribution at time step k, denoted by vk. In the iterative course, the
external metabolite and biomass concentrations are updated stepwise by

Biok = Biok−1 · eµ
k ·∆t, (2.3)

Yk = Yk−1 −
SY,RY · v

k
Y

µk · Biok · (1 − eµ
k ·∆t), (2.4)

where Biok represents the biomass concentration and Yk represents the external
metabolite concentrations at the end of time step k. µk is the growth rate and vk

Y
is

the set of exchange reaction fluxes at time step k. Here, uptake fluxes are assumed
to be negative while exchange reaction fluxes for secretions are positive. We note
that the starting time point of the current time step is equal to the endpoint of
the previous time step. To start the iterative process, the initial concentrations of
biomass and external species have to be specified.
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2.1 Dynamic flux balance analysis

2.1.2 Updating constraints on uptake fluxes

The uptake fluxes of nutrients are constrained by the varying external metabolites.
For example, the uptake flux vi of a nutrient Ni may follow a Michaelis-Menten
kinetics

vk
i =

Nk−1
i

Ki
M + Nk−1

i

· v∗i , (2.5)

where vk
i represents the uptake flux at time step k of the nutrient Ni, Nk−1

i de-
notes the nutrient concentration at the end of time step (k − 1), Ki

M is the relevant
Michaelis constant and v∗i is the maximum uptake flux. Differently, in the imple-
mentation of DFBA (SOA) of Cobra Toolbox (https://opencobra.github.
io/cobratoolbox) (Becker et al., 2007), the uptake flux of nutrient Ni is con-
strained with

−Nk−1
i

Biok−1 + ∆t
≤ vk

i ≤ 0, (2.6)

where Biok−1 is the total biomass concentration at the end of time step (k − 1). By
convention, the uptake fluxes of nutrients are negative. So, the maximal value of
uptake flux is 0. Mathematically, such a dependency of uptake rates on nutrient
concentrations can be formulated as

lbi(Nk−1) ≤ vk
i ≤ ubi(Nk−1), i ∈ RN (2.7)

where Nk−1 represents the nutrient concentrations at the end of the previous time
step (k − 1), which actually denotes the nutrient concentrations available for the
growth at time step k. lbi,ubi are lower and upper bounds on the fluxes of uptake
reactions i ∈ RN depending on the nutrient concentrations Nk−1.

2.1.3 Static optimization problem

Given FBA formalism and the effect of dynamically changing nutrients, we obtain
the static optimization problem in DFBA (SOA)

max
vk

vk
biomass

s.t. SX,R · vk = 0

lbi(Nk−1) ≤ vk
i ≤ ubi(Nk−1), i ∈ RN

lb ≤ vk ≤ ub,

(2.8)

at time step k ∈ {1, . . . , n}. Here vk
biomass is the flux of biomass reaction that is

normally defined as the growth rate µk, SX,R is the stoichiometry matrix in which
the rows are the intermediate metabolites X and the columns are the reactions R,
vk denotes the flux distribution at time step k, and lb,ub are the vectors of lower
and upper bounds on reaction fluxes.
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Chapter 2. Extensions of classic FBA

To start DFBA (SOA), the initial concentrations of the extracellular metabolites
and biomass are given by the modeler. The static optimization problem in Eq. 2.8
is iteratively solved to obtain the flux distribution vk and growth rate µk at time
step k. Eq. 2.3 and Eq. 2.4 are used to calculate the concentrations of biomass and
external species at the end of time step k. The iterative process stops at the end of
the simulation period, which is set based on the initial concentrations of nutrients.
It does not make sense to continue the process after the nutrients are exhausted and
unable to support cellular growth. Rather than solving FBA iteratively in DFBA
(SOA), DFBA (DOA) maximizes the whole biomass over a given simulation period
and solves the optimization problem once. This results in a non-linear dynamic
optimization problem which is hard to solve, especially for large networks. That
limits its application. In the following DFBA denotes the SOA approach unless we
specifically stress DFBA (DOA).

2.2 Regulatory flux balance analysis
Based on the strategy of DFBA, regulatory flux balance analysis (rFBA) aims at
predicting the metabolic shifts in a changing environment taking into account ge-
netic regulation (Covert et al., 2001). It incorporates Boolean regulatory rules into
the iterative dynamic process of DFBA. In a Boolean transcriptional regulatory
network (TRN), each gene state gi ∈ {0, 1} takes the values of 1 resp. on or 0 resp.
off, which is decided by a Boolean-valued function fi. For a Boolean dynamical
system regulating metabolism, gk

i represents the gene state with values 0 or 1 at
time step k. Biologically, the dynamics of gene states of a TRN is determined by
the presence or absence of extracellular species Y and regulatory proteins RP, as
well as the reaction activities. So, the Boolean dynamical rules for updating gene
states from one time step to the next can be formalized by an equation (Samal and
Jain, 2008)

gk
i = fi(I

k
Y, I

k
vY , I

k
vX , gk−1

RP ), (2.9)

where I
k
Y ∈ {0, 1} indicates the absence or presence of extracellular metabolites

Y at time step k, and I
k
vY , I

k
vX ∈ {0, 1} indicate the activity states of reactions RY

and RX. gk−1
RP ∈ {0, 1}

|RP| represents the gene expression states encoding regulatory
proteins RP at time step (k − 1). There is a time delay between the gene states
in this equation because the regulatory proteins are able to activate/inhibit the next
gene expression state only when their synthesis or decay time has elapsed.

To integrate the Boolean regulatory rules with DFBA, the gene states updated by
Eq. 2.9 are imposed to constrain the reaction activities in the static optimization
problem of FBA in Eq. 2.8. The flux distribution v resulting from FBA, in turn,
affects the update of the gene states. Therefore, on one hand, rFBA iterates FBA
by knocking out genes resp. reactions whose states are off in the current time
step. The biomass and external substrate concentrations are updated in every time
step according to the Eq. 2.3 and Eq. 2.4. On the other hand, the gene states in the
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2.2 Regulatory flux balance analysis

regulatory network are updated iteratively, depending on the external metabolite
concentrations and some reaction fluxes. The dependency of the uptake fluxes on
the dynamically changing nutrients is formulated in Eq. 2.7. Again, at the next
step, the genes resp. reactions are knocked out if the gene states are off in running
the static optimization of FBA.

Therefore, rFBA is also an iterative approach. The growth phase is divided into n
time intervals of length ∆t. The flux distribution at time step k is denoted by vk.
For each reaction flux vk

i there is binary variable rk
i describing whether reaction i is

active or not. The value of rk
i is determined by a set of Boolean rules that encode

how the current activity of a reaction is affected by the extracellular metabolite
concentrations and the reaction fluxes. If rk

i = 1, the reaction flux is constrained
by the original FBA bounds lbi and ubi. If rk

i = 0, the reaction flux is set to 0.
Mathematically, at time step k ∈ {1, . . . , n}, rFBA solves the static optimization
problem:

max
vk

vk
biomass

s.t. SX,R · vk = 0

rk
i = fi(Yk−1, vk−1)

lbi · rk
i ≤ vk

i ≤ ubi · rk
i

lbi(Nk−1) ≤ vk
i ≤ ubi(Nk−1), i ∈ RN

lb ≤ vk ≤ ub,

(2.10)

where vk
biomass denotes the biomass reaction flux and indicates the growth rate µk

at time step k, SX,R is the stoichiometric matrix, Yk is a vector that includes the
extracellular metabolite concentrations, and fi is a Boolean-valued function that
determines the activity state of reaction i at time step k, depending on the external
metabolite concentrations and reaction fluxes at the end of the previous time step.

Altogether, Eq. 2.10 is solved to get the flux distribution vk and growth rate µk at
time step k. Eq. 2.3 and Eq. 2.4 are used to update the biomass and substrate con-
centrations at the end of time step k. The resulting flux distribution and substrate
concentrations are further used to decide the reaction activity states at the next time
step. The initial values of the extracellular metabolite concentrations and biomass
are given according to the environmental conditions.

One thing that must be taken note of when running rFBA is the initialization of
the Boolean variables. Although the initial external metabolite concentrations are
fixed, the initial fluxes must also be specified in order to determine the initial values
of the Boolean variables. To avoid that the predicted metabolism oscillates in the
beginning, the authors of (Covert et al., 2001) suggested that all initial fluxes are set
to zero to calculate a stable state under which the Boolean variables do not change
any more. Then, use the stable state to initiate the first time step of rFBA.

21



Chapter 2. Extensions of classic FBA

Another thing we wish to point out is that the time interval of rFBA shall be defined
based on the protein synthesis and degradation rate. This is because it requires a
certain time period to update the expression states between genes. Also, there
exists a time delay between the reaction activities and the gene states encoding the
corresponding enzymes. In a steady-state condition, the average protein synthesis
and decay time are assumed to be equal. It was set to 15 min in (Covert et al.,
2001).

2.3 Resource allocation analysis
Resource allocation models were proposed to reveal how the cell allocates its re-
sources among proteins to achieve a maximal growth rate (Goelzer and Fromion,
2011; Lerman et al., 2012). Indeed, the idea originates from the hypothesis that
cellular growth rate results from the trade-off between the investments among en-
zymes, ribosomal proteins, structural components and catabolic pathways. It is
even demonstrated that allocating the resources and energy plays an essential role
during cellular growth since giving the resources to one biological process would
reduce the amounts available for the others. In this section, we aim to detail cellular
resource allocation principles and formalisms with the metabolic-genetic network
inspired by a self-replicator model designed by Molenaar and coworkers (Molenaar
et al., 2009). Compared with classical metabolic networks, it includes the protein
expression costs and a detailed relationship between genotype and phenotype.

2.3.1 Metabolic-genetic networks
Cellular metabolism is a system of chemical reactions that on one hand converts
the external nutrients into building blocks, while on the other hand, builds macro-
molecules, especially enzymes, to speed up the reactions. It integrates two kinds
of metabolism: catabolism and anabolism. Catabolism aims at breaking down the
nutrients into small precursors, e.g. amino acids and ATP, and providing the build-
ing blocks for the macromolecules. It also has some small recyclable intermediate
metabolites such as hydrogen ion, ADP, NADH etc. Anabolism then uses these pre-
cursors to assemble macromolecules which drive the catabolism conversely. At the
same time, by-products are frequently secreted. For mathematical modeling, such
processes can be abstracted to a simplified network shown in Figure 2.2, which is
used to introduce the structure of metabolic-genetic network models.

Specifically, Y is a set including all the external metabolite species that are trans-
ported by exchange reactions RY. RX represents the set of reactions that conduct
the conversion between internal metabolites X, which are used to assemble the
macromolecules including all the enzymes, ribosomes, transporters T and non-
catalytic macromolecules, named quota compounds Q. At the same time, enzymes
and transporters are utilized to catalyze all the intermediate reactions and exchange
reactions. The production of proteins requires the binding of ribosomes with mes-
senger RNA. The ribosomes, to some extent, can be considered as the enzyme for
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Catabolism Anabolism

catalyze

Y X

Q

RE

RQ
RY

ERX

Figure 2.2: A schematic metabolic-genetic network. Y represents extracellular metabolites with
the associated concentrations Y. RY is the set of exchange reactions between extracellular speciesY
and intermediate metabolites X with the fluxes vY. X represents the concentrations of intermediate
species. RX is a set of intermediate reactions with the associated fluxes vX. E is a set of all the
catalytic molecules and E is a vector of their abundances. Q denotes a set of quota compounds with
Q of abundances. RE,RQ, vE, vQ are the corresponding production reactions and fluxes.

all protein production reactions, including ribosomes themselves. For simplicity,
we use E to represent all the catalytic molecules including all the enzymes, ribo-
somes and transporters.

The metabolic-genetic network model is constructed using several types of
metabolic species, reactions and parameters. The abbreviations and notation are
as follows:

• the set of extracellular metabolites Y with the associated concentrations Y.
N ⊆ Y denotes the nutrients with the associated concentrations N,

• the set of intermediate metabolites X with the corresponding concentrations
X,

• the set of quota compounds Q, such as lipids, DNA, RNA etc., with concen-
trations Q,

• the set of catalytic molecules E with concentrations E for catalyzing chem-
ical reactions R, with T ⊆ E the set of transporters for exchange reactions
RY.

We define the set of macromolecules P = E∪Q with P representing the concentra-
tions. The species here can also be measured by molar amounts, depending on the
modeler, while units have to be consistent within the approach. The set of reactions
is denoted by R with the relevant flux set v. The reactions are classified into three
types:

• the set of exchange reactionsRY with the flux set vY, in whichRN represents
the uptake reactions for nutrients with fluxes vN ,
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• the set of intermediate reactions RX with the flux set vX,

• the set of macromolecule synthesis reactions RP with the fluxes vP, in which
RE ⊆ RP is the set of reactions producing E with fluxes vE, and RQ ⊆ RP is
the set of reactions producing Q with fluxes vQ.

Parameters are

• ki, j
cat: turnover rate of enzyme j catalyzing reaction i,

• cat(E) := {i ∈ R | enzyme E catalyzes reaction i},

• S i, j describing the stoichiometric coefficient of metabolite i in reaction j,

• Ki
M denoting the Michaelis constant giving the concentration of substrate i

needed to reach half of the maximal reaction rate.

2.3.2 Steady-state assumption during growth phase

During the exponential growth phase, microbes grow and divide as fast as they
can. A significant phenotypic feature during this period is that the biomass and
the volume of the microbial population increase exponentially with a growth rate
µ measured by a unit of time, such as 1/min. Particularly, as the major components
of biomass, proteins have to be produced along with the growth rate to support the
exponential growth. Degradation is normally ignored since the degradation rate is
negligible compared to the high growth rate.

If we measure the macromolecule abundances by amounts, e.g. mmol, they are
obviously increasing with the production rates. However, if we measure the macro-
molecular abundances as concentrations, e.g. g/l and mmol/gDW, they are directly
diluted after the production by enlarging cellular volume or biomass. In other
words, the macromolecular concentrations remain stable if we model the metabo-
lites using concentrations. Therefore, the significant traits of exponential growth
phase are summarized below:

• the metabolic transients are extremely rapid so that all the intermediate
metabolites are assumed to be at steady-state;

• each macromolecule amount, cellular size, total biomass and population size
are assumed to increase exponentially according to the growth rate;

• the concentrations of macromolecules also remain constant because the in-
creased amounts are diluted by the increasing cellular volume or biomass.

Instead of a biomass reaction composed of certain coefficients of metabolites in
FBA-type models (see Figure 2.1), resource allocation models define the growth
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rate either as the exponential increase of biomass, or by the dilution rate of macro-
molecule concentrations. Considering the dilution by growth, the dynamics of
macromolecular concentrations can be expressed as

dP
dt

= SP,RP · vP − µ · P, (2.11)

where P represents the vector of macromolecular concentrations in P. SP,RP is the
stoichiometric matrix of macromolecules P in reactions RP. We can see that the
macromolecular concentrations increase with the production rate and decrease with
the dilution rate. At steady-state, each macromolecular concentration remains con-
stant because the produced molecules are directly diluted by enlarging the volume
or biomass, written as

SP,RP · vP − µ · P = 0. (2.12)

To avoid the computation of cellular volume and to maintain consistency with
FBA-type approaches, the unit of macromolecular concentrations is suggested to
be mmol/gDW instead of mmol/l.

2.3.3 Resource allocation constraints
Based on the classical metabolic networks, resource allocation models additionally
consider protein production costs besides the stoichiometry and thermodynamics of
biochemical reactions. Using the abbreviations and notation of metabolic-genetic
network shown in Figure 2.2, we formulate the basic biological principles as math-
ematical constraints to predict the optimal resource allocation.

Metabolic capability constraints

The metabolic capability constraints ensure that the metabolic network has the
ability to provide sufficient precursors for macromolecules. Enough intermediate
metabolites X must be produced to run all the macromolecule productions. Due
to the steady-state assumption for intermediate metabolites, the constraint can be
expressed as

SX,RY · vY + SX,RX · vX + SX,RP · vP = 0, (2.13)

where SX,RY , SX,RX , SX,RP are the stoichiometric matrices, in which each row rep-
resents an intermediate metabolite in X and each column is an individual reaction
in the set of exchange reactions RY, the set of intermediate reactions RX or the set
of macromolecular synthesis reactions RP. vY, vX and vP are the corresponding
fluxes.

At steady-state, the metabolic network capability has to be large enough to main the
stable macromolecule concentrations. Specifically, with the schematic metabolic-
genetic network in Figure 2.2, we obtain

S E,RE · vE − µ · E = 0, (2.14)

SQ,RQ · vQ − µ ·Q = 0, (2.15)
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where S E,RE , SQ,RQ are the stoichiometric matrices in which each row denotes a
macromolecule in E and Q, and each column a macromolecular synthesis reaction
in reaction sets RE and RQ. vE, vQ are the relevant fluxes.

Enzymatic and translational capacity constraints

The performance of the metabolic machinery is determined not only by the nutri-
ents but also by the catalytic macromolecules. According to Michaelis-Menten ki-
netics, the maximal reaction rate vmax at saturating substrate concentration is given
by vmax = kcatE, where E is the enzyme concentration and kcat is the catalytic con-
stant. Therefore, the metabolic reaction fluxes are bounded by the related enzyme
abundances and the associated turnover rates.

For the reactions sharing the same enzyme, the sum of all the reaction fluxes is lim-
ited by the enzyme concentration. For example, ribosomes can be considered as the
shared enzyme for all the protein production reactions, which includes ribosomal
proteins themselves. Thus, the enzymatic and translational capacity constraints can
be formalized as ∑

i∈cat(E)

|vi|

ki,E
cat

≤ E, for all E ∈ E (2.16)

where vi represents the flux of reaction Ri catalyzed by enzyme E. E also denotes
the enzyme concentration. ki,E

cat is the corresponding catalytic constant, and cat(E)
the set of reactions i catalyzed by enzyme E.

The external nutrients are not at steady-state. They are consumed due to the cellu-
lar growth. Naturally, their uptake rates are also limited by the associated nutrient
concentrations, in addition to the transporters. Thus, an additional constraint is im-
posed for the uptake reactions catalyzed by the transporters T . By the convention
that the uptake fluxes are negative, the uptake reaction flux of a nutrientNi is extra
constrained by the Michaelis–Menten equation

vi = −
Ni

Ki
M + Ni

· ki,T
cat · T, for all i ∈ RN ,T ∈ T , (2.17)

where ki,T
cat is the catalytic rate of transporter T for uptake reaction i. Ki

M repre-
sents the half-saturation constant. Ni is the concentration of the nutrient converted
through exchange flux vi. By convention, the uptake fluxes of nutrients are nega-
tive. Nutrient concentrations N are fixed as an environmental condition for static
resource allocation approaches, such as RBA. T is the corresponding transporter
concentration.

Density constraint

A cell can not grow without limit. The cell volume has a limitation since it is com-
posed of the membrane. This means that the sum of all macromolecular concentra-
tions is bounded by a maximal density. Therefore, a cellular density constraint is
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introduced to ensure suitable macromolecular concentrations. It can be formulated
as

dT
P
· P ≤ D. (2.18)

Here, D is a constant value representing the maximal density, P denotes the vector
of macromolecular concentrations while dP is a vector with the density coefficients
of macromolecules. The operation ·T denotes transposition.

Fixing quota compound concentrations

Quota compounds, e.g. DNA, the lipid membrane, or the cell wall, are essential
to the cellular growth and survival. Their concentrations have been found to be
independent of growth rate (Marr, 1991). Since these macromolecules do not have
any catalytic functionalities and only require resources, maximizing the growth
rate results in allocating few resources to them. The authors of RBA (Goelzer
et al., 2011) proposed to fix quota compound concentrations Q for running RBA.
Therefore, we obtain

Q = Q f ix, (2.19)

where Q f ix is a vector with the fixed concentrations of quota compounds in Q.

2.3.4 Non-linear optimization problem
All the constraints presented above make up the feasible space for cellular
metabolism capable of supporting a growth rate µ. Adding an objective function
maximizing the growth rate, we obtain a non-linear optimization problem predict-
ing resource allocation,

max
v,E,µ

µ

s.t. SX,RY · vY + SX,RX · vX + SX,RP · vP = 0,

S E,RE · vE − µ · E = 0,

SQ,RQ · vQ − µ ·Q = 0,∑
i∈cat(E)

|vi|

ki,E
cat

≤ E, for all E ∈ E \ T

vi = −
Ni

Ki
M + Ni

· ki,T
cat · T, for all i ∈ RN , T ∈ T

dT
P
· P ≤ D,

Q = Q f ix,

P, µ ≥ 0,

(2.20)

where N is the vector of the nutrient concentrations given as the environmental
condition. In (Goelzer et al., 2011), RBA authors relaxed the metabolic capacity
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constraints in Eq. 2.13 to

SX,RY · vY + SX,RX · vX + SX,RP · vP ≥ 0, (2.21)

to allow the overproduction of intermediate metabolites. Constraints in Eq. 2.14
and Eq. 2.15 were also consistently relaxed to impose that the macromolecules
shall increase, at least, by the growth rate µ, leading to

S E,RE · vE − µ · E ≥ 0, (2.22)

SQ,RQ · vQ − µ ·Q ≥ 0. (2.23)

Solving the non-linear program by bisection

We can clearly see that the optimization problem in Eq. 2.20 aims at obtaining a
flux distribution v and macromolecular concentrations P, as well as the optimal
growth rate µ. Under a given condition that the nutrient concentrations N are fixed,
however, the optimization problem shown in Eq. 2.20 is still a quadratic and non-
linear optimization problem due to the item µ ·E. Since there have been no efficient
algorithms to solve such a non-linear program, Goelzer and co-authors applied the
bisection idea to convert it into a linear program by fixing µ iteratively (Goelzer
et al., 2011).

The basic idea is when µ is fixed, the optimization problem illustrated in Eq. 2.20
denoted by RBA(µ) is equivalent to a linear program and then can be solved by
efficient optimization solvers such as Gurobi (http://www.gurobi.com), Cplex
(https://www.ibm.com/products/ilog-cplex-optimization-studio),
etc. First, µ must be given a small value. Keep doubling µ and solving for
RBA(2µ), until no feasible solution of RBA(2µ) can be found. The maximal
growth rate µ must be in the interval [µ, 2µ]. Next, repeatedly split the interval and
fix µ to the midpoint, and then check if the linear program is feasible. At the end,
the maximal growth rate will be fixed in a sufficiently small interval. When the
subinterval is even smaller than the tolerance δ, the midpoint is considered as the
maximal growth rate. Details of this bisection strategy are shown in Algorithm 1.
The tolerance can be regarded as the precision of the problem, which should be
given initially.

2.3.5 Discussion

Cellular growth requires a balance between resource costs for various functional
macromolecules and the corresponding benefits, an issue that is normally ig-
nored in classic constraint-based modeling approaches. In RBA, the authors intro-
duced macromolecule productions and their functionalities with extra linear con-
straints such as enzymatic and translational capability constraints. Converting the
quadratic optimization into a linear program via bisection, RBA allows the efficient
prediction of flux distribution and enzyme concentrations with the maximal growth
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Algorithm 1: Algorithm to search a maximal µ with the precision δ.
Data: RBA(µ), δ
Result: maximal µ
µ = δ

while exist a feasible solution RBA(2µ) do
µ = 2µ

end
∆µ = µ/2
while ∆µ > δ do

if exist a feasible RBA(µ + ∆µ) then
µ = µ + ∆µ

end
∆µ = ∆µ/2

end

rate. To build an RBA model, information on macromolecule composition, kinetic
parameters and realistic quota concentration has to be collected.

Another issue to be discussed here is the extension of resource allocation models,
such as RBA and ME-models. As RBA and ME-models are static, one idea is to
incorporate a time scale into the resource allocation analysis to predict the dynam-
ics of cellular metabolism while taking into account enzyme costs. One possibility
is to iterate resource allocation analysis step by step like in the static approach of
DFBA. This is basically the idea of dynamicME method and iRBA, as detailed in
Chapter 4. Another way is based on dynamic optimization. This is used in deFBA
(Waldherr et al., 2015), which we describe next.

2.4 Dynamic enzyme-cost flux balance analysis
Dynamic enzyme-cost flux balance analysis (deFBA) was proposed to predict the
optimal dynamics of metabolism and resource allocation. Compared to the static
and iterative approaches to predict resource allocation, deFBA models metabolism
with pure continuous variables while developing an optimal control algorithm to
maximize the total biomass over the whole simulation time period. By integrat-
ing dynamically the metabolic network with enzyme production costs, deFBA en-
ables the prediction of optimal reaction fluxes and the dynamics of macromolecule
amounts. Moreover, by discretizing the continuous variables in time, deFBA prob-
lems can be transformed into linear optimization problems.

2.4.1 Metabolic constraints and objective
In contrast to RBA and ME-models, macromolecules are modeled by molar
amounts with unit mmol in deFBA. As discussed above, macromolecular con-
centrations do not change during the exponential growth because of the dilution
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with cellular volume or biomass. However, the molar amounts of macromolecules
should always be evolving with the corresponding production rates. Therefore, in
deFBA, external metabolites and macromolecules evolve over time and, of course,
they are not at steady-state. However, for all the intermediate metabolites such as
building blocks, deFBA assumes they are at steady-state. That means they are im-
mediately used to build macromolecules or converted to other precursors after they
have been produced. Like RBA, the mathematical formalization is built by con-
verting the biological laws into linear constraints. Using the schematic metabolic-
genetic network (shown in Figure 2.2) and the related abbreviations, the metabolic
processes are illustrated together with the corresponding constraints below.

Dynamics of external species

In deFBA, the initial amounts of external metabolites, especially the nutrient
amounts, are specified by the modeler. That is

Y(t0) = Y0, (2.24)

where Y0 represents the initial amounts of extracellular species and t0 indicates
the starting time point when running deFBA. As the cell grows by converting the
nutrients into the precursors and macromolecules, the external nutrients are contin-
uously depleted and by-products are secreted. So, the external metabolite amounts
Y are changing with the exchange reaction fluxes. Mathematically, this can be
expressed as

Ẏ(t) = SY,RY · vY(t). (2.25)

SY,RY is the stoichiometric matrix, in which the rows represent extracellular
metabolite species Y and the columns the exchange reactions RY. vY(t) is the
vector of exchange reaction fluxes at time point t.

Dynamics of macromolecules

Macromolecules are assembled from the building blocks to ensure cellular survival
and growth. The total biomass of a cell is assumed to be the sum of all the macro-
molecules which are accumulated as the cell grows. As such, the derivatives of
amounts P(t) depend on the production reaction fluxes (assumed to be positive).
That is

Ṗ(t) = SP,RP · vP(t), (2.26)

where SP,RP is the stoichiometric matrix, in which the rows represent macro-
molecules P and the columns the synthesis reactions RP. vP is the flux vector
of the synthesis reactions. The initial values for P(t0) can be given by modeler, i.e.,

P(t0) = P0. (2.27)
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Additionally, instead of specifying the initial amounts of individual macro-
molecules, the total initial biomass can be constrained within certain values, e.g.
Bio(t0) = 1g (Reimers et al., 2017b). However, as the macromolecule amounts are
modeled by molar amounts in deFBA, a vector of molecular weights has to be in-
troduced to convert the molar amounts of macromolecules into their masses. That
is

bT
P
· P(t0) = Bio(t0), (2.28)

where bP is a vector of molecular weights of all the macromolecules P with the
associated unit mg/mol. The operation ·T denotes transposition.

Steady state for intermediate metabolites

Unlike the extracellular species, all the intermediate metabolites must be balanced
since they are used to build macromolecules immediately after they are broken
down from the nutrients. Here, all the intermediate metabolites are assumed to be
at a steady-state during the whole growth period. This can be expressed as

SX,RY · vY(t) + SX,RX · vX(t) + SX,RP · vP(t) = 0, (2.29)

where SX,RY , SX,RX , SX,RP are the stoichiometric matrices, in which the rows rep-
resent intermediate metabolites X and the columns are the reactions in RY,RX and
RP respectively. vY(t), vX(t), vP(t) are the fluxes at time point t.

Biomass composition constraint

Quota compounds without catalytic property, such as lipids and DNA, are indis-
pensable for cellular growth and replication. In order to guarantee the production
of non-catalytic compounds Q, deFBA imposes a biomass composition constraint
stating that the total mass of quota compounds has to be at least ΦQ of the total
biomass at each time point t, where 0 < ΦQ < 1, e.g. ΦQ = 35%. The total
biomass at each time point t is defined by summing up all the masses of macro-
molecules. Mathematically, we have a constraint

bT
Q
·Q(t) ≥ ΦQ · bT

P
· P(t), (2.30)

where bP is a vector with the molecular weights of all the macromolecules P, bQ
is the subvector of the molecular weights of the quota compounds Q, the operation
·T denotes transposition, and 0 < ΦQ < 1 is a constant.

Enzymatic and translational capacity constraints

As shown in Figure 2.2, catalytic macromolecules E are used to catalyze the re-
lated reactions. Similar to RBA and ME-models, deFBA includes enzymatic and
translational capacity constraints that bound the fluxes of catalyzed reactions. If
one enzyme catalyzes more than one reaction, the sum of all the reaction fluxes is
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limited by the enzyme amount and the catalytic rates. Similar to the enzymatic and
translation capacity constraints in RBA, such constraints in deFBA are mathemat-
ically expressed by ∑

i∈cat(E)

|vi(t)|

ki,E
cat

≤ E(t), for all E ∈ E, (2.31)

where cat(E) represents the catalytic relationship between enzyme E and the re-
lated reaction i, ki,E

cat is the relevant turnover rate and E also represents the enzyme
amount.

Note that deFBA does not impose any extra constraints on the exchange reaction
rates by Michaelis-Menten kinetics as RBA does by Eq. 2.17. If the exchange
reaction fluxes are constrained with Michaelis-Menten kinetics, the optimization
program would be non-linear. To avoid the non-linearity problem, deFBA directly
uses Eq. 2.31 to constrain the fluxes of all the catalyzed reactions.

Objective: maximizing the biomass production over a time interval

Up till now, we have presented the metabolic constraints of deFBA. In order to
predict the dynamic flux distribution and macromolecular amounts, a particular
objective function has to be defined to build an optimization problem. deFBA
has considered three different objectives in (Waldherr et al., 2015), which are the
maximization of biomass at the end of the simulation period, the minimization of
the time required to exhaust the given nutrients, and the maximization of the total
biomass over a simulation time span. Although deFBA is not limiting the objective
function, maximizing the biomass over a simulation time span is widely employed.
So, for a simulation time span [t0, t f ], the biomass integral is∫ t f

t0
bT
P
· P(t)dt, (2.32)

where P denotes all the macromolecular amounts in the model and bT
P

is the cor-
responding vector of molecular weights that is introduced to convert the molar
amounts into biomass.

2.4.2 Formulation of deFBA
Therefore, deFBA can be formulated as a dynamic optimization problem maximiz-
ing the biomass production over a simulation time interval [t0, t f ] in Figure 2.3. We
see that the continuous variables in deFBA include molar amounts Y(t), P(t), their
derivatives Ẏ(t), Ṗ(t), and the fluxes v(t).

2.4.3 Discretization of the variables in time
An optimization problem as shown in Figure 2.3 has to be solved numerically
and there are several methods available. deFBA problems are solved based on the
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max
Y(t),Ẏ(t),P(t),Ṗ(t),v(t)

∫ t f

t0
bT
P
· P(t)dt

s.t. SX,RY · vY(t) + SX,RX · vX(t) + SX,RP · vP(t) = 0,

Ṗ(t) = SP,RP · vP(t),

Ẏ(t) = SY,RY · vY(t),∑
i∈cat(E)

|vi(t)|

ki,E
cat

≤ E(t), for all E ∈ E

bT
Q
·Q(t) ≥ ΦQ · bT

P
· P(t),

lb ≤ v(t) ≤ ub,
Y(t0) = Y0,

P(t0) = P0,

Y(t),P(t), t ≥ 0.

Figure 2.3: Formulation of deFBA

discretization of the dynamic variables in time (Reimers, 2017). According to the
midpoint rule, a differential equation: x′(t) = f (x(t), t), can be discretized with a
step size ∆t by

xk = xk−1 + ∆t · f (
xk + xk−1

2
, tk−1 +

∆t
2

), (2.33)

where xk is the variable at time point tk.

(Reimers, 2017) suggests to discretize Y and P at each time point tk. The flux vari-
ables v and the derivatives Ṗ, Ẏ are discretized at the midpoint tk+tk−1

2 . Assuming n
discretization points, the dynamic optimization problem in Figure 2.3 can be trans-
formed to the linear optimization problem in Figure 2.4. The dynamic variables
are Y(tk), P(tk), v

(
tk+tk−1

2

)
, Ẏ

(
tk+tk−1

2

)
and Ṗ

(
tk+tk−1

2

)
, k = 1, . . . , n.

2.5 Conclusions
To summarize, the approaches explained above extend classic flux balance analy-
sis in three different directions: (1) dynamics; (2) whether regulation is included
or not; (3) if enzyme production costs are considered. DFBA solves a static FBA
problem iteratively accounting for dynamically changing environments. rFBA ad-
ditionally integrates Boolean regulatory rules that impose the logical control of ge-
netic regulation on the metabolic reaction activities. Considering enzyme produc-
tion costs, metabolic-genetic networks allow studying resource allocation, either at
steady-state (RBA, ME-models) or in a dynamic setting (deFBA).

Given these developments, there is the need for a general mathematical framework
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max
P,Ṗ,v,Y,Ẏ

n∑
k=1

bT
P
· P (tk)

s.t. SX,RY · vY
( tk + tk−1

2

)
+ SX,RX · vX

( tk + tk−1

2

)
+ SX,RP · vP

( tk + tk−1

2

)
= 0,

Ṗ
( tk + tk−1

2

)
= SP,RP · vP

( tk + tk−1

2

)
,

Ẏ
( tk + tk−1

2

)
= SY,RY · vY

( tk + tk−1

2

)
,

∑
i∈cat(E)

|vi
(

tk+tk−1
2

)
|

ki,E
cat

≤
E(tk) + E(tk−1)

2
, for all E ∈ E

bT
Q
·Q(tk) ≥ ΦQ · bT

P
· P(tk),

P(tk) = P(tk−1) + ∆t · Ṗ
( tk + tk−1

2

)
,

Y(tk) = Y(tk−1) + ∆t · Ẏ
( tk + tk−1

2

)
,

lb ≤ v
( tk + tk−1

2

)
≤ ub,

Y(t1) = Y0, P(t1) = P0,

P(tk),Y(tk) ≥ 0,

for all k = 1, . . . , n.

Figure 2.4: LP for solving deFBA model

to predict the dynamics of cellular metabolism integrating protein expression and
regulatory events. This will be further addressed in the following chapters.
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Chapter 3

Exploring the optimal solution
space in rFBA

Standard regulatory flux balance analysis (rFBA) leads to a unique pre-
diction of dynamic growth, ignoring possible alternative solutions. In this
chapter, we propose an analytic pipeline that first characterizes the optimal
solution space in rFBA by calculating vertices, rays, and linealities. Next,
in order to explore the elementary flux modes (EFMs) on which the cell
is growing, and how these combine with one another at optimal growth,
a mixed-integer program is used to decompose the vertices of the optimal
solution space to a minimal set of EFMs. In two case studies, the analytic
pipeline is applied to a core carbon network and the Escherichia coli central
network. We describe how the EFMs combine and how they shift upon the
change of external substrate concentrations. Section 3.2 and Section 3.3 has
been accepted for publication in the Proceedings of the Evry Spring School
on advances in systems and synthetic biology, 2018.

3.1 Introduction
Methods that integrate the transcriptome with metabolism enable us to better un-
derstand how transcriptional regulation is leading to flux responses at the metabolic
level (Covert et al., 2001; Samal and Jain, 2008; Covert et al., 2008; Chan-
drasekaran and Price, 2010). Regulatory flux balance analysis (rFBA) (Covert
et al., 2001; Covert and Palsson, 2002, 2003) has been proposed to predict the dy-
namics of metabolism by combining a stoichiometric model of metabolism with
Boolean rules for transcriptional regulation. Genome-scale rFBA models have
been developed for Escherichia coli (E. coli) (Covert et al., 2004) and Saccha-
romyces cerevisiae (S. cerevisiae) (Herrgård et al., 2006).
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Chapter 3. Exploring the optimal solution space in rFBA

As explained in Section 2.2, the basic idea of rFBA is to iterate flux balance anal-
ysis (FBA) in discrete time steps. At each step, genes resp. reactions are knocked
out according to the regulatory rules. These are represented by Boolean-valued
functions that depend on the external metabolite concentrations and the reaction
fluxes at the previous time step. Since it is based on FBA and linear programming,
rFBA computes only one optimal solution at each time step. However, the solution
of an FBA problem need not be unique. In general and at each time step, the set
of all optimal flux distributions defines a polyhedron. The structure of this poly-
hedron constrained by the regulatory rules in response to various conditions is not
well understood yet.

The polyhedron representing the optimal solution space is expected to change with
the regulatory constraints, which are dynamic and depend on the environment. For
example, the optimal solution space may be reduced when a certain reaction is
inhibited by some regulatory rules from one time step to the next. Some pathways
may not be permitted due to the regulatory constraints (Covert and Palsson, 2003).
In contrast to the single optimum solution found by executing a linear program in
FBA, exploring an optimal space gives a comprehensive description of the set of
alternative optima.

In this chapter, we propose an analytic pipeline to explore the optimal solution
space in rFBA. First, we characterize the polyhedron through its geometric fea-
tures, including vertices, rays, and linealities (Kelk et al., 2012). Then, a mixed-
integer program is applied to decompose the vertices into minimal sets of elemen-
tary flux modes (EFMs). Analyzing a core carbon network and the E. coli central
network, we illustrate the non-decomposable pathways used by the two networks,
their combination under certain condition, and the ways they shift upon the changes
of external substrates.

3.2 Analytic pipeline

The workflow of the analytic pipeline is shown in Figure 3.1. There are roughly
four steps. It begins with a standard rFBA simulation integrating Boolean regula-
tory rules with the metabolic network. Secondly, flux variability analysis (FVA)
is used to determine the range of reaction fluxes at each time step (Mahadevan
and Schilling, 2003). Thirdly, the optimal polyhedron is characterized by geomet-
ric features, including vertices, rays, and linealities (Kelk et al., 2012; Maarleveld
et al., 2015). After computing the set of EFMs by EFMtool (Terzer and Stelling,
2008), a mixed-integer linear program is applied to decompose the vertices into a
minimal set of EFMs. Standard rFBA is formulated in Eq. 2.10, see Section 2.2 in
detail. We start to describe FVA for the analytic pipeline in the following section.
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Simulation by Computing vertices,Flux variability analysis

(FVA) rays, and linealities

Decomposing the

vertices into EFMsrFBA

Figure 3.1: Analytic pipeline diagram.

3.2.1 FVA
Flux variability analysis (FVA) analyzes the range of fluxes and alternative opti-
mal solutions achieving the same objective in an FBA problem (Mahadevan and
Schilling, 2003). Let zopt be the objective value obtained by FBA. Then FVA can
be mathematically described as follows. For all reactions i:

max /min : vi

s.t. S · v = 0,

cT · v ≥ zopt,

lb ≤ v ≤ ub,

(3.1)

where cT v is the objective function from Eq. 1.11.

3.2.2 Characterizing the optimal solution space
Comprehensive Polyhedron Enumeration Flux Balance Analysis (CoPE FBA)
(Kelk et al., 2012; Maarleveld et al., 2015) is an approach to characterize the poly-
hedron defined by the optimal solutions of an FBA problem in terms of vertices,
rays, and linealities. Vertices correspond to flux vectors, rays to irreversible cy-
cles and linealities to reversible cycles in the network. Any optimal FBA solutions
can be written as the sum of a linear combination of linealities, a conic (i.e., non-
negative linear) combination of rays, and a convex combination of the vertices
according to Minkowski sum (Grötschel et al., 1988):

zopt =

n∑
i=1

Υi · lini +

m∑
i=1

Ψi · rayi +

k∑
i=1

Ωi · vertexi, (3.2)

where lini, rayi, vertexi are vectors representing the linealities, rays and vertices
and Υi, Ψi, Ωi are the coefficients. n, m, k represent the maximal numbers of lin-
ealities, rays and vertices in this sum. Particularly, Υi can be any real number
indicating the linear combination of linealities, whereas Ψi ≥ 0 represent the conic
combination of rays and

∑k
i=1 Ωi = 1, the convex combination of vertices.

In CoPE FBA, the geometry of the optimal solution space is shaped by the sub-
networks which are defined in terms of futile cycles with a fixed input-output re-
lationship between substrates and products. These subnetworks are composed by
reactions that carry flux variabilities. Vertices of the network come from the com-
bination of alternative flux routes in these subnetworks.
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Chapter 3. Exploring the optimal solution space in rFBA

The CoPE FBA pipeline is a collection of Python scripts to enumerate the set of
vertices, rays, and linealities of the optimal solution space of an FBA problem.
This software was developed by the authors of (Kelk et al., 2012; Maarleveld et al.,
2015) and can be downloaded from http://memesa-tools.sf.net.

3.2.3 Decomposing vertices into EFMs
Each flux distribution can be decomposed into a set of EFMs, the minimal opera-
tional units satisfying the stoichiometric and thermodynamic constraints in FBA
(Schuster and Hilgetag, 1994; Schuster et al., 2002). The set of EFMs of a
metabolic network can be calculated by EFMtool (Terzer and Stelling, 2008). Here
we use a simple mixed-integer linear programming (MILP) approach to find all
minimal conic combinations of EFMs corresponding to a given vertex v obtained
during rFBA. The MILP can be expressed mathematically:

min
λ,a

:
∑

ai

s.t.
u∑

i=1

λi · ei = v, (3.3)

0 ≤ λi ≤ bigM · ai, ai ∈ {0, 1} (3.4)

where e1, . . . , eu are the EFMs in the metabolic network and bigM is a sufficiently
large constant giving an upper bound for the coefficient λi (“big M constraint”).
The binary variables ai indicate whether the EFM ei is used in the decomposition
of v or not. By solving this optimization problem with the objective of minimizing
the sum of binary variables, we obtain a minimal set of EFMs in the decomposition.

In order to explore all the alternative solutions in this MILP, we add constraints to
calculate all the solutions (“no-good cuts”). Assume that one solution of the above
MILP is (a∗, λ∗). Then we require: ∑

ai =
∑

a∗i , (3.5)∑
a∗i · (1 − ai) +

∑
(1 − a∗i ) · ai ≥ 1. (3.6)

Eq. 3.5 constrains the new solution to have the same objective function value as the
original solution. Eq. 3.6 is added to exclude the solutions already found. These
constraints are added iteratively until there are no more feasible solutions.

3.2.4 Analytic pipeline
The analytic pipeline that we constructed has been implemented in Matlab.
For rFBA we used the Cobra Toolbox (https://opencobra.github.io/
cobratoolbox). Flux variability can be calculated by adding FVA to rFBA in each
time step. To compute the vertices of the optimal flux space we use the CoPE FBA
pipeline (see above). The EFMs of the metabolic network are calculated by EFM-
tool (Terzer and Stelling, 2008). MILPs are solved by the MILP solver Gurobi
(http://www.gurobi.com).
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3.3 Case study on a core carbon network

3.3 Case study on a core carbon network
We first evaluated our analytic pipeline on a small metabolic network proposed in
(Covert et al., 2001), which mimics core carbon metabolism including glycolysis,
citric acid cycle (TCA), carbon storage pathway, amino acid synthesis, pentose
phosphate pathway (PPP) and fermentation pathway, as shown in Figure 3.2. The
detailed reactions and regulatory rules are given in Table 3.1.

Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Dext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5aR5b

Growth

Biomass

O2ext

(a) Core carbon metabolic network.

Inputs

Outputs

Carbon1

RPc1 RPO2 RPb RPh

R2aR5a R5b R7 R8aRresTc2

O2ext vR2b vTh

(b) Regulatory rules

Figure 3.2: Core carbon network and the associated regulatory rules.

3.3.1 Network description

The metabolic network contains 20 reactions, including 7 exchange reactions as
shown in Figure 3.2a. The pathway from A to C is regarded as glycolysis, which
includes reactions R1, R2a, R2b. The cycle between C and G is considered as TCA
cycle. R5a is the aerobic pathway and R5b is the anaerobic pathway. R3 connecting
B and F denotes PPP. H represents the amino acid. Reactions R8a and R8b link
the TCA cycle with the amino acid uptake pathway. D and E represent the secre-
tions. This core carbon network does not consider enzyme production. Instead,
the macromolecule production reactions are replaced by a total biomass reaction
Growth. For the details of the metabolic reactions see Table 3.1.

Besides the metabolism above, four regulatory proteins were added (Covert et al.,
2001), which perform the regulatory control of the activities of the metabolic re-
actions. As shown in Table 3.1, RPc1 is the regulatory protein in the Carbon 1 −
Carbon 2 diauxic shift, which is inhibited by Carbon 1 and then inactivates the
transport of Carbon 2. This ensures that the cell cannot uptake Carbon 2 if
Carbon 1 is in the culture.

RPO2 is responsible for the switch between aerobic growth and fermentation. The
expression state of RPO2 is inhibited by the external oxygen O2ext. The aerobic
pathway indicated by R5a is further activated by the absence of RPO2, and the
anaerobic pathway represented by R5b is inhibited. The metabolite H in this core
carbon network represents the amino acid. The reactions R8a, R8b connect the TCA
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Reaction Name Regulation
Exchange reactions
Carbon 1→ A Tc1
Carbon 2→ A Tc2 Not RPc1
Fext → F T f

Hext → H Th

O2ext → O2 TO2
D→ Dext Td

E → Eext Te

Metabolic reactions
A + AT P→ B R1
B→ C + 2AT P + 2NADH R2a Not RPb

C + 2AT P + 2NADH → B R2b

C → 2AT P + 3D R6
C + 4NADH → 3E R7 Not RPb

B→ F R3
C → G R4
G + AT P + 2NADH → H R8a Not RPh

H → G + AT P + 2NADH R8b

G → 0.8C + 2NADH R5a Not RPO2
G → 0.8C + 2NADH R5b RPO2
O2 + NADH → AT P Rres Not RPO2
Biomass reaction
C + F + H + 10AT P→ Biomass Growth

Regulatory proteins

RPO2 Not O2ext

RPc1 Carbon 1
RPh vTh > 0
RPb vR2b > 0

Table 3.1: Metabolic reactions and regulatory rules of the core carbon network

cycle and the usage of extracellular amino acid. Actually, this is one reversible
reaction whose direction is regulated by the transport process Th via the regulatory
protein RPh. The regulatory protein RPh is activated when the cells are able to
uptake external amino acid, which is indicated by vTh > 0. The activity of reaction
R8a is then repressed by the absence of RPh so that the cells are unable to synthesize
amino acid from the TCA cycle. Hence, RPh is used to balance the assimilation
of the carbon source and the amino acid. The regulatory rules ensure that the cells
do not synthesize the amino acid from the carbon pathway when it can be taken up
from the external environment (Umbarger, 1978).

The last regulation is to balance the key intermediate metabolites in the cells, which
are denoted by B and C in this network. By regulating the level of B, the cell
can balance the different metabolic pathways like glycolysis, TCA cycle, Pentose
phosphate pathway etc. Since the concentration of the internal metabolite B is not
available in rFBA, the flux through reaction R2b is used as the signal to determine
the value of the regulatory protein RPb (Covert et al., 2001). The positive flux
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3.3 Case study on a core carbon network

of reaction R2b is used as a signal that there is too much C in the cell. Whenever
vR2b > 0, the regulatory protein RPb is activated to inhibit the activity of R2a. Thus,
C cannot be produced from B anymore if R2a is repressed.

3.3.2 Results

Time profiles of substrates and secretory products

We consider the growth on two different carbon sources, Carbon 1 and Carbon 2,
which are both set to 10 mM initially. The oxygen concentration O2ext is set to
1000 mM to make it available in excess, whereas Hext and Fext are set to 0. The
time step is set to 0.25 hour, which is assumed to be the minimum time for protein
synthesis/degradation. The bounds for the exchange reactions are chosen according
to (Covert et al., 2001). Figure 3.3 shows that growth is interrupted by a lag phase.
Only after the preferred carbon source Carbon 1 has been completely exhausted,
followed by the lag phase, the cell can restart to grow on the non-preferred carbon
source Carbon 2 (Stülke and Hillen, 1999). In rFBA, the regulatory protein RPc1
plays an essential role in performing the carbon switch during the lag phase.

But why is there a pause after Carbon 1 is depleted? How long should it be?

In rFBA, the lag phase is assumed to arise from the time delay between gene states.
It requires a time period to transmit the signal to regulatory proteins and then fi-
nally, to regulate metabolism. In this case, the key regulatory pathways are man-
aged by the regulatory protein RPc1. The regulatory process is that the expression
state of RPc1 is initially activated since Carbon 1 is in the media. Consequently, Tc2
is repressed because of the presence of RPc1 in growth phase (a). When Carbon 1
suddenly disappears, the expression state of RPc1 is inhibited immediately. How-
ever, at least one time step is required for RPc1 to totally disappear either by pro-
tein degradation or dilution. Another time step is needed in order to synthesize the
transporter of uptake reaction Tc2 after the expression state of its encoding gene has
been activated. Such a delay is represented by the lag phase that includes two time
steps, which is the growth phase (b) in Figure 3.3. This ensures that reaction Tc2
can be activated after the lag phase to continue the growth on Carbon 2. Therefore,
there are two time steps in the lag phase in this case, starting from the absence of
Carbon 1 to the activation of reaction Tc2.

Flux variability analysis during carbon shift

In order to explore the alternative optima, we use FVA to get insight into the ro-
bustness of the reaction fluxes reaching the same optimal objective value, see Fig-
ure 3.4. We can observe the robustness of the reaction fluxes during the dynamic
growth. Only reactions R8a, R8b exhibit an obvious variability. The fluxes of R7, Te

are close to zero, and can be neglected. In fact, reactions R8a, R8b make up an irre-
versible cycle, which indicates a ray in the metabolic network when their fluxes are
not bounded. Even though their fluxes can be +∞ if there are no upper bounds, the
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Figure 3.3: Predicted concentrations of the external metabolites during carbon shift. Shown are
the substrates Carbon 1 and Carbon 2 that cells take up and the by-product Dext secreted during the
dynamic growth.

pure flux from metabolite G to H must be 2.41 mmol/gDW*hr in this case. This is
because Hext is not there and H has to be converted from G to support the growth.

Characterization of the polyhedron in dynamic growth

For the FBA solution of the core carbon network without regulation, 12 possi-
ble vertices are found by CoPE FBA. Consistent with the FVA result that reaction
fluxes show little variability in the diauxic shift, the number of vertices in the rFBA
simulation is always 1. However, the vertex is changing depending on the exter-
nal substrate concentrations. Figure 3.5 shows the switch. In growth phase (a),
since Carbon 1 is sufficient, the fluxes stay constant and vertex (A) is the vertex
during this first growth phase. Vertex (B) is the vertex of the growth phase (c) on
Carbon 2 (see Figure 3.5). The white squares of the bars below the vertex rep-
resent the reactions that are switched off according to the regulatory rules. In the
time interval 0-3.25hr, for example, Tc2 and R5b are repressed by Carbon 1 and
O2ext respectively.

Decomposing the vertices to elementary flux modes

Using the mixed-integer program described in Section 3.2.3, the two vertices (A)
and (B) are decomposed into EFMs, which allows us to understand the shift of
EFMs during the growth phase. The results are listed in Table 3.2. The complete
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3.3 Case study on a core carbon network

Figure 3.4: Robustness of reaction fluxes during carbon shift. The X axis represents time, the Y
axis the reaction fluxes. Each subfigure shows in green the flux variability of one reaction.

A . 0 - 3.25hr B. 3.75 - 4.25hr

Vertex BVertex A

Dext
Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5aR5b

Growth

Dext
Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5aR5b

Growth

Tc2 R2a R5a R5b R7 R8a Rres Tc2 R2a R5a R5b R7 R8a Rres

BiomassBiomass

O2ext O2ext

Figure 3.5: Shift of vertices during the carbon switch. Grey dotted resp. black lines indicate the
inactive resp. active reactions, green lines show the differences.

set of 81 EFMs for the core carbon network is given in (Covert and Palsson, 2003).
We use the same names for the EFMs in Table 3.2 and the details are shown in
Figure 3.6 .
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EFMs efm 30 efm 34 efm 58 efm 62
Vertex A (0-3.25hr) 0.59 1.82 0 0
Vertex B (3.75-4.25hr) 0 0 0.59 1.82

Table 3.2: Decomposition of vertices during the diauxic shift. The numbers are the weights of
EFMs in the conic combination representing the corresponding vertex.

Tc2 R2a R5a R5b R7 R8a Rres Tc2 R2a R5a R5b R7 R8a Rres

A . 0 - 3.25hr

B. 3.75 - 4.25hr

Dext
Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5aR5b

Growth

Dext
Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5aR5b

Growth

Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5b

Growth

Dext
Carbon 1

Carbon 2

Fext

A B C

D

E

H

F

G

O2

NADH ATP

Hext

Eext

Tc1

Tc2 R1

Tf

Th

TO2

R2b

R2a

Td

Te

R6

R7

R3

R8a

R8b

Rres

R4

R5b

Growth

Dext

Tc2 R2a R5a R5b R7 R8a Rres Tc2 R2a R5a R5b R7 R8a Rres

R5aR5a

Biomass Biomass

BiomassBiomass

R5a

R5a

efm 30 efm34

efm58 efm62

O2ext O2ext

O2extO2ext

Figure 3.6: Comparison of the EFMs composing the vertex (A) and vertex (B). During the carbon
switch, the EFMs shift from efm 30, efm 34 to efm 58, efm 62. Grey dotted resp. black lines indicate
the inactive resp. active reactions, green lines show the differences.

In the first exponential growth phase of the diauxic shift, the cells use efm 30 and
efm 34 (see Figure 3.6) to achieve optimal growth, along with the weights 0.59 and
1.82. Comparing these two EFMs, we see that they share several active reactions,
such as Tc1, R2a, To2, R4 and Growth. However, efm 30 has an active reaction R5a,
whereas efm 34 does not. Instead, efm 34 uses R6 and Td to build the vertex (A) of
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3.4 Case study on the central metabolic network of E. coli

the optimal solution space. For the second growth phase, efm 58 and efm 62 build
the vertex (B) with the corresponding weights 0.59 and 1.82. From Figure 3.6, we
can see that efm 58 is similar to efm 30 except that Tc1 is replaced by Tc2, since
Carbon 1 is exhausted in the second growth phase. The same holds for efm 34
and efm 62. Therefore, when Carbon 1 is depleted, the EFMs efm 30, efm 34 for
vertex (A) shift to the EFMs efm 58, efm 62 for vertex (B).

3.3.3 Conclusions

Analyzing the optimal solution space and looking at non-decomposable EFMs dur-
ing rFBA enable us to better explore all the alternative pathways. In this section,
we proposed an analytic pipeline to evaluate the polyhedron of optimal solutions in
rFBA. We then applied this pipeline to a core carbon network in a first case study.
We used FVA to study the robustness of the optimal fluxes, calculated the vertices
of the optimal solution space, and decomposed each of them into a minimal set of
EFMs. At the end, we obtained a combination of EFMs shifting with the change
in the external environment. The network used here is very small and only a few
alternative pathways could be observed. To observe more variability in the optimal
solutions, we next apply our pipeline to a larger metabolic network: the central
metabolic network of E. coli.

3.4 Case study on the central metabolic network of E. coli

3.4.1 Network description

The central metabolic network of E. coli was constructed by condensing the
genome-scale metabolic network iAF1260 (Feist et al., 2007; Orth, 2010), which
has been shown in Figure 1.1. In contrast to the core carbon metabolic network il-
lustrated in Figure 3.2a, the central metabolic model of E. coli contains more details
of the central metabolism, including glycolysis, TCA cycle, PPP, nitrogen pathway,
and by-product secretions. It has 95 reactions, 72 metabolites, and 137 genes, of
which 56 genes are regulated (Orth, 2010). There are 11 external substrates and
12 internal reactions involved as the extracellular and intracellular signals in gene
regulation. 16 genes encoding regulatory proteins are directly affected by these
signals, which are then used to regulate the other genes of regulatory proteins or to
directly control the metabolic reactions.

In this case study, we consider the aerobic growth on glucose, which is set to 8
mM initially. The other carbon sources are all set to 0, except that initial acetate is
given 0.3 mM. The oxygen concentration is set to 1000 mM to make it available in
excess.

45



Chapter 3. Exploring the optimal solution space in rFBA

0
0

2 4 6 8 10 12 0 2 4 6 8 10 12

C
o
n
ce

n
tr

a
ti

o
n
 (

g
/l
)

C
o
n
ce

n
tr

a
ti

o
n
 (

m
M

)

1

2

3

4

5

6

7

8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Glucose_ext
Acetate_ext

Biomass

Time (hr) Time (hr)

a b c

Figure 3.7: Predicted dynamic concentrations of biomass, glucose and acetata. Growth phase is
divided into three phases (a, b and c). Glucose is the only carbon source in phase (a). Acetate is first
secreted during phase (a) and then is assimilated in phase (c) after a short pause (b).
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Figure 3.8: Regulatory rules involved in glucose-acetate shift. Glucose ext and Acetate ext
denote the external glucose and acetate respectively. FadR, IclR, and GlcC are regulatory proteins.
ICL and MALS are the reactions of TCA cycle shown in Figure 1.1.

3.4.2 Results

Dynamics of biomass and external substrates

First, the dynamics of the total biomass and external substrates resulting from rFBA
has been investigated. We can see in Figure 3.7 that the model is taking up exter-
nal glucose Glucose ext to produce biomass during growth phase (a). External
acetate Acetate ext is produced in this growth phase. After the external glucose
is depleted, there is a lag phase (b). The interesting observation is that external
acetate Acetate ext is then used as the carbon source after the pause (b), which
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Figure 3.9: Robustness of reaction fluxes during glucose-acetate switch. The X axis represents
time, the Y axis the reaction fluxes. Each subfigure shows in green the flux variability of one reaction.
Above each subfigure is the corresponding reaction name.

is the growth phase (c) in Figure 3.7. The growth stops when Acetate ext is
also exhausted. However, since the acetate produced during the growth phase (a)
is limited, the biomass does not increase significantly in phase (c).

Figure 3.8 presents the regulatory rules that are important in this case, which
provide an explanation for the lag phase during the glucose-acetate switch. It is
clearly observed from this figure that reaction ICL is inhibited by external glucose
Glucose ext through the regulatory proteins FadR and IclR. Therefore, when
there is glucose in the environment, the usage of acetate is repressed. This is be-
cause the reactions ICL and MALS are required for growing on acetate. When the
glucose is exhausted, the expression of FadR and IclR is inhibited, and reaction
ICL is activated. Thus, acetate can be used for supporting growth. In rFBA, three
time steps are needed to activate reaction ICL, since the gene regulatory network
state is updated stepwise. The three steps are reflected by the lag phase (b). Bi-
ologically, the regulatory proteins FadR and IclR require a time period to vanish
after Glucose ext is exhausted. The relevant enzyme must be produced before
reaction ICL can be activated. Yet, only the time delay is considered by time steps
in rFBA while the protein expression is ignored.

47



Chapter 3. Exploring the optimal solution space in rFBA

Flux variabilities

In contrast to the case study on the core carbon network, the central metabolic net-
work of E. coli shows a larger robustness of reaction fluxes. Figure 3.9 illustrates
the variability of some significant reaction fluxes in the network. During growth
phase (a), the acetaldehyde secretion pathway including reactions ACALD, PDH,
and the pyruvate production reaction PYRt2r contain variabilities. During growth
phase (b), there are variabilities in the TCA cycle including reactions such as FUM,
CS, MDH, AKGDH, etc. During growth phase (c), flux variability exists in reac-
tions PYK, ME1, ME2, PPCK, which connect the glycolysis pathway and the TCA
cycle.

Characterization of the optimal solution space

The number of vertices in the rFBA simulation of the E. coli central network is cal-
culated by CoPE FBA. During growth phases (a), (b), and (c), the optimal solution
space has 2, 11, and 3 vertices respectively. In total, 161749 EFMs are computed
by EFMtool in the central metabolic network of E. coli. Then, we individually de-
compose the calculated vertices into a minimal set of EFMs. The results are listed
in Table 3.3.

Growth phase a (0-8hr) b (8-8.75hr) c (8.75-10.75hr)
Vertices 2 (a1,a2) 11 (b1-b11) 3 (c1-c3)
Number of decomposed EFMs 35 12 4
Number of decompositions 178 13 3

Table 3.3: Number of vertices, decompositions, and EFMs during each growth phase.

Decomposing the vertices into elementary flux modes

The two vertices during growth phase (a) are shown in Figure 3.10 and Figure 3.11.
As mentioned in the results of FVA, only the pyruvate and acetaldehyde produc-
tion pathways contain variabilities in growth phase (a). The two pathways are
alternatives. The internal pyruvate in excess is either secreted to Pyruvate ext
or converted into external acetaldehyde Acetaldehyde ext. In vertex (a1), the
internal pyruvate is secreted extracellularly at a large rate while the acetalde-
hyde production pathway is inactive. On the other hand, all is converted into
Acetaldehyde ext in vertex (a2). Both vertices (a1) and (a2) are decomposed
into 4 EFMs in each decomposition. There are 35 different EFMs in all the de-
compositions. 64 solutions have been found for decomposing vertex (a1), and 114
solutions for decomposing vertex (a2). Thus, the total number of decompositions
during growth phase (a) is 178 (see Table 3.3). Particularly, EFM a12 (shown in
Figure 3.12) occurs in every decomposition of both vertex (a1) and vertex (a2).
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Figure 3.10: Vertex (a1) of the optimal polyhedron during the growth phase (a) (0-8 hr). Grey
lines indicate the inactive reactions, and red lines the active reactions.

Therefore, we may say that EFM a12 is the backbone EFM of the vertices during
growth phase (a).

During growth phase (b), the cell does not grow and its biomass production is 0.
It only assimilates external acetate Acetate ext and oxygen to release CO2, H2O
and ATP at the same time. This is because that the lower bound on ATP production
is 8.39 in the E. coli central metabolic network (Orth, 2010). The solution space
has a total of 11 vertices. 2 vertices have two decompositions and the other vertices
only have one decomposition. So, the decomposition of these 11 vertices has a
total of 13 solutions with 12 EFMs. There is also one EFM that exists in all the
decompositions of the vertices in this growth phase. This EFM is named EFMb, as
shown in Figure 3.16. Particularly, two vertices are only composed of 1 EFM, but
with different coefficients, which is the backbone EFMb. In one vertex, the uptake
rate of Acetate ext is 2.5 while in another vertex, it is 1.97 to ensure a minimal
ATP releasing rate of 8.39.
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Figure 3.11: Vertex (a2) of the optimal polyhedron during the growth phase (a) (0-8 hr). Grey lines
indicate the inactive reactions, and red lines the active reactions. The difference between vertices
(a1) and (a2) exists in the production pathways of external pyruvate Pyruvate ext and external
acetaldehyde Acetaldehyde ext.

The 3 vertices of growth phase (c) are shown in Figure 3.13, Figure 3.14, and
Figure 3.15. They each represent three possible pathways that break down
Acetate ext into energy and precursors supporting biomass production through
the TCA cycle and glycolysis. Each vertex is decomposed into 2 EFMs with only
one solution listed in Table 3.4. All the vertices in the growth phase (c) continue to
use EFMb, which is the backbone EFM of all vertices during growth phase (b). In
the decompositions of vertices (c1), (c2) and (c3), EFMb must be combined with
EFM c1, EFM c2, and EFM c3 respectively.

In this case study, the cell grows on glucose during phase (a) with an optimal poly-
hedron having two vertices: (a1) and (a2). They are composed of at least 4 EFMs
with 178 possible combinations involving 35 EFMs. EFM a12 is essential among
the 178 decompositions. When the external glucose is exhausted, the metabolic
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Figure 3.12: EFM a12 existing in all the decompositions of both vertex (a1) and vertex (a2). It
is considered as the backbone EFM of vertices in growth phase (a). Grey lines indicate the inactive
reactions, and red lines the active reactions.

Growth phase (c) (8.75-10.75hr) Vertex (c1) Vertex (c2) Vertex (c3)
EFMb 1.974 1.974 1.974

EFM c1 0.0114 0 0
EFM c2 0 0.0114 0
EFM c3 0 0 0.0114

Table 3.4: Decomposition of vertices (c1), (c2), and (c3) during growth phase (c).

flux space shifts to a polyhedron with 11 vertices with the backbone EFMb in
growth phase (b). In this solution space, biomass is not accumulated while ATP is
produced at the minimal rate of 8.39. After the lag phase (b), metabolism switches
to grow on acetate with an optimal polyhedron that has three vertices. An interest-
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Figure 3.13: Vertex (c1) of the optimal polyhedron during the growth phase (c).

ing observation is that the backbone EFMb still exists in all decompositions of the
three vertices during phase (c). This means the backbone EFMb in growth phase
(b) does not change during the shift from phase (b) to phase (c). In contrast, there
is no overlap of EFMs between the decompositions during growth phases (a) and
(b).

3.4.3 Conclusions

In this case study, our analytic pipeline has been applied to the central metabolic
network of E. coli. The aerobic growth on glucose is simulated by rFBA. With gene
regulatory rules, the model first grows on external glucose to produce acetate and
then assimilates the secreted acetate after external glucose has been depleted. FVA
is used to study the variability of the optimal fluxes, while the vertices of the opti-
mal polyhedron are calculated by CoPE FBA. Finally, the vertices are decomposed
into EFMs.
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Figure 3.14: Vertex (c2) of the optimal polyhedron during the growth phase (c).

Compared to the core carbon network in Section 3.3, we obtain a larger optimal
solution space in this case study. All the three growth phases have one backbone
EFM, which exists in the decomposition of each vertex, such as EFM a12 in growth
phase (a). Growth phase (b) shares the backbone EFM EFMb with phase (c).

3.5 Discussion
For the lag phase, there are two time steps in the core carbon metabolic network.
However, there are three time steps in the lag phase for the E. coli central metabolic
network. Comparing the regulatory rules of the two models in Figure 3.2b and
Figure 3.8, we can see that the core carbon metabolic network needs two time steps
to activate the key reaction Tc2 to grow on Carbon 2 when Carbon 1 is exhausted.
However, the E. coli central metabolic model requires three time steps to activate
reaction ICL, which is necessary for growing on external acetate. Thus, in rFBA,
the length of the lag phase is determined by the gene regulatory network and the
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Figure 3.15: Vertex (c3) of the optimal polyhedron during the growth phase (c). The three vertices
are named in order. The difference between the three vertices (c1), (c2) and (c3) exist in reactions:
PYK, ME1, and ME2.

time interval. Biologically, it depends on the production or degradation/dilution
of the proteins involved in the regulation. Hence, the time step for implementing
rFBA should be given based on the rates of protein synthesis and degradation. In
both case studies, the time interval is 0.25 hr, which is assumed to be the average
protein synthesis/degradation rate at steady-state (Covert et al., 2001).

In conclusion, exploring the optimal solution space and looking for non-
decomposable EFMs in rFBA enable us to comprehensively understand all the
alternative pathways. Although the models implemented here are both small, we
can still observe the changing optimal solution space with time and see how the
EFMs switch during different growth phases. However, the flux variabilities of the
reactions are limited in small metabolic models. We expect that by considering
larger, possibly genome-scale metabolic reconstructions and multiple nutrients in
the environment, we will observe much more variability in the optimal solutions,
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Figure 3.16: EFMb existing in each decomposition of vertices in growth phase (b) and phase (c).

which can be further explored by our approach.
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Figure 3.17: EFM c1 in the decomposition of vertex (c1) besides EFMb.
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Figure 3.18: EFM c2 in the decomposition of vertex (c2) besides EFMb.
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Figure 3.19: EFM c1 in the decomposition of vertex (c3) besides EFMb. The difference between
the three EFMs c1, c2 and c3 exists in reactions: PYK, ME1, and ME2.
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Chapter 4

Iterating RBA incorporating
regulatory rules

In this chapter, we present the early attempts of this PhD project to integrate
resource allocation models with gene regulatory rules, while accounting for
dynamic changes. First, we illustrate a strategy that iterates the resource
allocation model to predict the dynamic fluxes and enzyme concentrations,
which is called iterative resource balance analysis (iRBA). Then, regula-
tory resource balance analysis (riRBA) is proposed to additionally incorpo-
rate Boolean regulatory rules into iRBA.

4.1 Introduction
As introduced in Section 1.2.2, constraint-based modeling approaches have be-
come a powerful tool in the analysis of genome-scale metabolic network recon-
structions (Bordbar et al., 2014; Lewis et al., 2012). While standard FBA requires
very few data, it is unable to capture more complex phenomena such as dynam-
ics, resource allocation, or gene regulation. Extending the work by Palsson et al.
(Varma and Palsson, 1994), Mahadevan et al. in 2002 introduced dynamic flux bal-
ance analysis (DFBA) (Mahadevan et al., 2002) to maximize biomass production
over a time interval, taking into account the dynamics of extracellular metabolites
and biomass. To incorporate the synthesis costs of macromolecules, Goelzer et al.
developed resource balance analysis (RBA) (Goelzer et al., 2011, 2015), which
allows predicting an optimal resource allocation for maximizing the steady-state
growth rate. Lerman et al. introduced ME-models (Lerman et al., 2012; O’Brien
et al., 2013), a related approach for integrating metabolism and gene expression
at steady-state. To combine these two ways of extending FBA, dynamics and re-
source allocation, several frameworks have been developed during the last years,
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which include dynamic enzyme-cost FBA (deFBA) (Waldherr et al., 2015), condi-
tional FBA (cFBA) (Rügen et al., 2015; Reimers et al., 2017a), dynamic resource
balance analysis (dRBA) (Jeanne et al., 2018) and dynamicME (Yang et al., 2019).

Concerning integrated modeling of metabolism and regulation, there exist ap-
proaches such as regulatory flux balance analysis (rFBA) (Covert et al., 2001) and
FlexFlux (Marmiesse et al., 2015), which combine Boolean or multi-valued logi-
cal rules for the transcriptional regulation with a steady-state stoichiometric model
of metabolism. Like the SOA variant of DFBA (Varma and Palsson, 1994; Ma-
hadevan et al., 2002), these techniques iterate flux balance analysis by splitting the
growth phase into discrete time steps. At each time step, the updated regulatory
states are imposed as bounds on the reaction fluxes, while ignoring the costs for
enzyme production. Integrated FBA (iFBA) (Covert et al., 2008) allows combing
rFBA with a differential equation model for a specific subnetwork, while integrated
dynamic FBA (idFBA) (Lee et al., 2008) brings together metabolism, regulation,
and also signal transduction.

In addition to these iterative methods, there are also static approaches for combin-
ing metabolism and gene regulation. Steady-state regulatory flux balance analysis
(SR-FBA) (Shlomi et al., 2007) aims at studying the steady-state behaviors of a
metabolic-regulatory network by adding Boolean rules to the linear constraints of
FBA, resulting in a mixed-integer linear program (Shlomi et al., 2007). Probabilis-
tic regulation of metabolism (PROM) (Chandrasekaran and Price, 2010) makes
use of microarray data sets to constrain the reaction upper bounds within a certain
percentage of the maximal upper bound.

Approaches
No regulations Regulations included

No enzyme costs Enzyme costs included No enzyme costs Enzyme costs included

Static FBA (1980s)
RBA (Goelzer and Fromion, 2011) SR-FBA (Shlomi et al., 2007)
ME models (Lerman et al., 2012) PROM (Chandrasekaran and Price, 2010)

Iterative DFBA (SOA)((Varma and Palsson, 1994))
dynamicME (Yang et al., 2019) rFBA (Covert et al., 2001) idFBA(Lee et al., 2008)

iRBA (Chapter 4) iFBA (Covert et al., 2008) riRBA (Chapter 4)
FlexFlux (Marmiesse et al., 2015)

Dynamic DFBA (DOA)(Mahadevan et al., 2002)
deFBA (Waldherr et al., 2015)

cFBA (Rügen et al., 2015) r-deFBA (Chapter 6)
dRBA (Jeanne et al., 2018)

Table 4.1: Constraint-based flux balance approaches.

To summarize, we classified in Table 4.1 existing flux balance approaches accord-
ing to whether or not they include dynamics, macromolecule production costs, and
gene regulation. As can be seen from Table 4.1, there has been no approach with
the idea of iterating resource allocation models, such as RBA and ME-models, at
the beginning of this PhD project. DynamicME applied the iterative idea to include
the time-course of cellular metabolism and protein expression (Yang et al., 2019).
It was developed based on the ME-models. Our iRBA has been done independently
of dynamicME, which was published in January 2019. We already presented this
work as a poster in the 17-th International Workshop on Bioinformatics and Sys-
tems Biology, in Jul. 2017 in Berlin, Germany.
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4.2 iRBA

From the perspective of the three features in Table 4.1, the intuitive strategy of
combining a resource allocation model, gene regulation, and dynamic growth con-
sists in iterating RBA while additionally including gene regulatory rules. To im-
plement this idea, iterative resource balance analysis (iRBA) is first introduced to
predict the dynamics of metabolism, considering enzyme expression costs. Next,
we add Boolean regulatory rules and propose regulatory iterative resource balance
analysis (riRBA).

4.2 iRBA
Like in DFBA (SOA), see Section 2.1, the time course is discretized into n time
intervals of length ∆t in iRBA. At each time step, a resource allocation model is
solved at the beginning to obtain the flux distribution and enzyme concentrations
during this time step. In iRBA, we introduce RBA(µ)k to represent the static opti-
mization problem of the resource allocation at time step k for k ∈ {1, . . . , n}. The
biomass and external metabolite concentrations are iteratively updated based on the
optimal growth rate and fluxes resulting from RBA(µ)k. Below, we formulate iRBA
for the metabolic-genetic network model (see Figure 2.2) with the corresponding
abbreviation and notations (see the details in Section 2.3.1).

4.2.1 Dynamics of biomass and external metabolites
We begin this section by shortly recalling the strategy used for the update of ex-
ternal metabolite and biomass concentrations, which was described in Section 2.1.
Using the same strategy as DFBA, we also use the equations

Biok = Biok−1 · eµ
k ·∆t, (2.3)

Yk = Yk−1 −
SY,RY · v

k
Y

µk · Biok · (1 − eµ
k ·∆t), (2.4)

to update the external metabolite and biomass concentrations in iRBA. µk is the
optimal growth rate, and vk

Y
is the set of exchange reaction fluxes at time step k

resulting from RBA(µ)k, which is solved at the beginning of the time step k. Yk

represents the external metabolite concentrations at the end of time step k, and
the nutrient concentrations Nk is a subvector of Yk. Biok represents the biomass
concentration at the end of time step k. Notice that in Eq. 2.4, uptake fluxes are
assumed to be negative, and exchange fluxes for secretions are assumed to be posi-
tive by convention. The initial concentrations of biomass and external species must
be specified to initiate the iterative procedure.

4.2.2 Updating uptake fluxes of nutrients
Considering the fact that the metabolic fluxes are instantaneously affected by the
changing external nutrient concentrations, we let the uptake fluxes of nutrients fol-

61



Chapter 4. Iterating RBA incorporating regulatory rules

low Michaelis-Menten kientics

vk
i = −

Nk−1
i · ki,T

cat

Ki
M + Nk−1

i

· T k, for all i ∈ RN , T ∈ T , (4.1)

where ki,T
cat is the catalytic rate of transporter T for uptake reaction i. Ki

M represents
the Michaelis constant. Nk−1

i is the concentration of the nutrient at the end of time
step (k − 1) and vk

i is the uptake flux at time step k. T k is the concentration of
the transporter of the uptake reaction. Therefore, the uptake fluxes of nutrients are
updated along with the dynamically changing nutrient concentrations.

4.2.3 Static non-linear optimization problem

As discussed above, iRBA iteratively solves RBA(µ)k for k ∈ {1, . . . , n}. It also
assumes a steady-state, under which the metabolites maintain constant concentra-
tions. Accordingly, RBA(µ)k adopts the resource allocation formalism described
in Section 2.3. Combining the resource allocation formalism with the iterative pro-
cess, the static optimization at time step k ∈ {1, ..., n} represented by RBA(µ)k can
be expressed as:

max
vk ,Ek ,µk

µk

s.t. SX,RY · v
k
Y

+ SX,RX · v
k
X

+ SX,RP · v
k
P

= 0,

S E,RE · v
k
E
− µk · Ek = 0,

SQ,RQ · v
k
Q
− µk ·Qk = 0,∑

i∈cat(E)

|vk
i |

ki,E
cat

≤ Ek, for all E ∈ E \ T

vk
i = −

Nk−1
i · ki,T

cat

Ki
M + Nk−1

i

· T k, for all i ∈ RN , T ∈ T

dT
P
· Pk ≤ D,

Qk = Q f ix,

lb ≤ vk ≤ ub,

Pk, µk ≥ 0.

(4.2)

RBA(µ)k as presented in Eq. 4.2 is a non-linear optimization problem. This is be-
cause the term µk ·Ek is not linear if we search for an optimal µ. To solve this prob-
lem, we use the bisection approach that is detailed in Algorithm 1, Section 2.3.4.

At each time step k, µ is initially fixed with a small value, and we get the rele-
vant linear optimization program RBA(µ)k. Then, we keep doubling µ and solving
RBA(2µ)k, until no feasible solution of RBA(2µ)k can be found. The maximal
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growth rate must be in the interval [µ, 2µ]. Next, we repeatedly bisect the interval
and fix µ to the midpoint, and then check whether or not the linear program is fea-
sible. The bisection process is continued until the interval is sufficiently small. In
the end, we obtain the approximate maximal growth rate with a certain precision,
see details in Section 2.3.4.

Therefore, our iRBA involves two computational loops. By converting the non-
linear optimization problem into a standard linear program, the inner loop indicates
the bisection method detailed in Algorithm 1. At each time step, the maximal
growth rate and the corresponding flux distribution are obtained from the inner
loop computation. The outer loop iteratively solves the static optimization problem
in Eq. 4.2 from the time step 1 to n. At each time step k ∈ {1, . . . , n} of the outer
loop, the external metabolite concentrations Yk and biomass Biok are updated by
the optimal growth rate and the flux distribution. Thus, the dynamics of nutrients
are accounted for in our iRBA, which simultaneously limits the uptake fluxes by
Michaelis-Menten kinetics in Eq. 4.1.

4.2.4 Discussion
iRBA allows us to simulate the resource allocation with the consideration of the
dynamics of external metabolites. Imagine a batch culture in a fixed bioactor. Af-
ter the initial nutrients are given, the cells start to grow until all the nutrients are
exhausted. At the same time, the biomass in the bioactor accumulates and the cell
population may increase. In iRBA, RBA(µ)k is solved to predict the flux distribu-
tion vk and the maximal growth rate µk at time step k. The biomass and extracel-
lular metabolite concentrations are updated with vk and µk. The uptake fluxes are
also updated at each time step according to the dynamically changing nutrients.
Thus, RBA(µ)k is iteratively solved and the concentrations of external species and
biomass are correspondingly updated until the end of the culture.

Looking closer at the iRBA algorithm reveals that the only connection between
the time steps is the dynamics of biomass and external metabolites calculated by
Eq. 2.3 and Eq. 2.4. The protein abundances between time steps are independent.
Their changes between time steps can be freely adjusted. Yet, the protein adjust-
ment in a dynamic and changing environment should be constrained, even though
the deterministic constraint may not be clear to us.

Hence, the plausibility of our iRBA is limited. It is worth mentioning that dynam-
icME solved this by introducing protein “inertia” constraints that account for the
proteome dynamics (Yang et al., 2019). In dynamicME, they distinguish between
two procedures, one that takes into consideration the protein dynamics between
time steps and the other that does not. Their simulations, when discounting pro-
tein dynamics, only checks whether the nutrients are exhausted or newly available
for constraining the uptake reaction fluxes. If not, they do not perform their ME-
model. Otherwise the new ME-model is performed with the updated uptake reac-
tion fluxes. Their second implementation removed the steady-state assumption in
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macromolecule concentrations. Instead, the protein “inertia” constraints:

vi − µ · pi = δi, ∀i ∈ Complex, (4.3)

pi = p0
i + δi · ∆t, ∀i ∈ Complex (4.4)

are added, where Complex is the set of protein complexes, pi denotes a protein
complex concentration, p0

i represents the protein complex concentration at the pre-
vious time step, µ is the growth rate, and vi is its production rate (Yang et al., 2019).
Thus, the accumulation or depletion indicated by δi is taken into account. If δi > 0,
the relevant protein complex is accumulated. Else if δi < 0, it is depleted or di-
luted. δi is then used to update the protein abundance by Eq. 4.4. Regarding the
proteome adjustment in response to the changing environment and perturbations,
we also came up with the idea of minimizing the metabolic change between time
steps. Nevertheless, we did not continue but instead, focused on the integration of
the gene regulatory rules with iRBA in the following section.

4.3 riRBA
4.3.1 Regulatory constraints
Based on the iRBA and rFBA formalisms, we next introduce riRBA for embedding
Boolean regulatory rules in the iterative procedure of iRBA. Hence, riRBA is also
an iteratively dynamic approach.

As enzyme productions are included in the resource allocation models, we intro-
duce a Boolean variable pk

∈ {on, off} to represent the expression state of a gene
encoding an enzyme p at time step k. This means that the on/off state of pk indi-
cates whether or not the gene encoding enzyme p can be expressed. If pk = on, the
production rate of enzyme p is constrained by the original flux bound. If pk = off,
the production rate is set to 0.

Similar to rFBA as formulated in Section 2.2, we also use a Boolean-valued func-
tion fi that determines the expression activity of an enzyme p depending on the
presence or absence of external metabolites and reaction fluxes at time step (k− 1).
Therefore, for k = 1, . . . , n, the regulatory constraints in riRBA can be formulated
as:

pk = fi(Yk−1, vk−1), p ∈ E (4.5)

lbp · pk
≤ vk

p ≤ ubp · pk, p ∈ E (4.6)

where pk is a Boolean variable that can only be 1 corresponding to on or 0 resp.
off. pk represents the production state of an enzyme in E at time step k. vk

p is the
reaction flux that synthesizes enzyme p at time step k. Particularly, the expression
state of protein pk is updated according to the Boolean function in Eq. 4.5. Eq. 4.6
ensures that the reaction flux vk

p can only be zero if pk = 0. However, it is bounded
by the original upper and lower bounds ubp, lbp when pk = 1.
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4.3 riRBA

4.3.2 Static non-linear optimization problem with regulatory con-
straints

Putting together the above regulatory constraints and the iRBA formalism, we ob-
tain a non-linear optimization problem riRBA(µ)k at time step k ∈ {1, . . . , n},

max
vk ,Ek ,µk

µk

s.t. SX,RY · v
k
Y

+ SX,RX · v
k
X

+ SX,RP · v
k
P

= 0,

S E,RE · v
k
E
− µk · Ek = 0,

SQ,RQ · v
k
Q
− µk ·Qk = 0,∑

i∈cat(E)

|vk
i |

ki,E
cat

≤ Ek, for all E ∈ E \ T

vk
i = −

Nk−1
i

Ki
m + Nk−1

i

· ki,T
cat · T

k, for all i ∈ RN , T ∈ T

dT
P
· Pk ≤ D,

Qk = Q f ix,

pk = fi(Yk−1, vk−1), ∀ p ∈ E

lbp · pk
≤ vk

p ≤ ubp · pk, ∀ p ∈ E

lb ≤ vk ≤ ub,

Pk, µk ≥ 0, pk
∈ {0, 1},

(4.7)

where lb,ub denote the original lower and upper bounds on reaction fluxes.

In riRBA, the biomass and external metabolite concentrations are updated with
Eq. 2.3 and Eq. 2.4. The resulting flux distribution and external metabolite con-
centrations are further used to determine the reaction activity states at the next time
step. The initial medium is indicated by the initial values of the concentrations of
external metabolites and biomass.

We note that the initial values of the Boolean variables p, p ∈ E cannot be directly
calculated using Eq. 4.5. This is because even though initial concentrations of
external metabolites can be set as an environmental condition, the initial reaction
fluxes at the starting time point are hard to determine. Therefore, when running
riRBA, the Boolean variables also have to be initialized by the modeler. We sug-
gest using a stable state of the gene regulatory network to avoid oscillation in the
beginning of the simulation.

Solving riRBA also involves two computational loops, like in iRBA. The inner
loop applies the bisection strategy to solve riRBA(µ)k for obtaining the maximal
growth rate µk and fluxes vk. In the outer loop, riRBA(µ)k is iteratively solved from
time step 1 to n. The biomass and external metabolite concentrations are updated
in the outer loop by Eq. 2.3 and Eq. 2.4.
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Unlike iRBA, riRBA additionally updates the gene states of regulated proteins ac-
cording to the regulatory rules. As enzyme productions are included in the resource
allocation models, riRBA controls the production of regulated enzymes. This is
different from the strategy used in rFBA. Without considering protein expression,
rFBA directly knocks out intermediate reactions when their associated genes are
inhibited via the gene-reaction mapping. In riRBA, the enzyme production is in-
hibited when the state of its encoding gene is off. Finally, we note that the enzyme
synthesis is constrained with the expression state pk, p ∈ E. The production of reg-
ulatory proteins is not accounted for. Like in rFBA, we only use the gene states
of the regulatory proteins to update the expression states of the enzymes, whose
abundances further control the metabolic activities.

4.4 Comparison between DFBA, rFBA, iRBA and riRBA
4.4.1 A core carbon metabolic-genetic network and regulatory rules
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Figure 4.1: Metabolic-genetic network of core carbon model with gene regulatory rules. The
gray-dashed arrow line directing to the regulatory proteins indicates that their production reactions
are ignored in riRBA.

In this section, we illustrate the implementation of our iRBA and riRBA on the core
carbon model. It was originally created to mimic the central carbon metabolism in
(Covert et al., 2001), which was described in Section 3.3.1. To build the relevant
metabolic-genetic network, reactions producing transporters, enzymes, ribosome,
and also structural components were added following (Waldherr et al., 2015) (see
Figure 4.1).

Catabolism of the core carbon network —the upper part of the metabolic-genetic
network shown in Figure 4.1 —has already been described in Section 3.3.1. Be-
sides catabolism, the anabolism is added to include the enzyme production (yellow
box in Figure 4.1). The stoichiometric information and kinetic constants are given
based on (Waldherr et al., 2015), see the details in Table 4.2 and Table 4.3. For
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the density constraint, we define the density coefficients of macromolecules dP ac-
cording to their length in amino acids, which are indicated by the numbers of H in
the core carbon network.

With the notation from Section 2.3.1, we have the following molecular species:

X = {A, B,C,D, E, F,G,H,NADH,ATP,O2},

Y = {Carbon 1,Carbon 2,O2ext,Dext, Eext, Fext,Hext},

E = {ETc1, ETc2, ER1, ER2a, ER2b, ER3, ER4, ER5a, ER5b,

ER6, ER7, ER8a, ER8b, ET f , ETh, ERres, EQ,Q,R},
T = {ETc1, ETc2, ET f , ETh,Q} ⊆ E,
Q = {Q}.

(4.8)

Reaction Name Enzyme Turnover rate
i E ki,E

cat [1/min]
Exchange reactions

Carbon 1→ A Tc1 ETc1 3000
Carbon 2→ A Tc2 ETc2 2000
Fext → F T f ET f 3000
Hext → H Th ETh 3000
O2ext → O2 TO2 Q 1000
D→ Dext Td Q 1000
E → Eext Te Q 1000

Metabolic reactions
A + ATP→ B R1 ER1 1800
B→ C + 2ATP + 2NADH R2a ER2a 1800
C + 2ATP + 2NADH → B R2b ER2b 1800
C → 2ATP + 3D R6 ER6 1800
C + 4NADH → 3E R7 ER7 1800
B→ F R3 ER3 1800
C → G R4 ER4 1800
G + ATP + 2NADH → H R8a ER8a 1800
H → G + ATP + 2NADH R8b ER8b 1800
G → 0.8C + 2NADH R5a ER5a 1800
G → 0.8C + 2NADH R5b ER5b 1800
O2 + NADH → ATP Rres ERres 1800

Table 4.2: Metabolic reactions with corresponding enzymes and turnover rates.

To obtain reasonable flux bounds on reactions to describe the diffusive exchange
across the plasma membrane, we define the structural component Q as the enzy-
matic macromolecule for the exchange reactions Td,Te and TO2. However, we also
classify Q as the quota compoundQwhose concentration is fixed for running RBA.
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Macromolecular synthesis reaction Density coefficient Turnover rate Gene
npH + mpATP→ p dp kp,R

cat [1/min]
Synthesis reactions of enzymes

400H + 1600AT P→ ETc1 4 2.5 gETc1

1500H + 6000AT P→ ETc2 15 0.67 gETc2

400H + 1600AT P→ ET f 4 2.5 gET f

400H + 1600AT P→ ETh 4 2.5 gETh

500H + 2000AT P→ ER1 5 2 gER1

500H + 2000AT P→ ER2a 5 2 gER2a

500H + 2000AT P→ ER2b 5 2 gER2b

1000H + 4000AT P→ ER6 10 1 gER6

1000H + 4000AT P→ ER7 10 1 gER7

2000H + 8000AT P→ ER3 20 0.5 gER3

500H + 2000AT P→ ER4 5 2 gER4

4000H + 16000AT P→ ER8a 40 0.25 gER8a

4000H + 16000AT P→ ER8b 40 0.25 gER8b

500H + 2000AT P→ ER5a 5 2 gER5a

500H + 2000AT P→ ER5b 5 2 gER5b

500H + 2000AT P→ ERres 5 2 gERres

500H + 2000AT P→ EQ 5 2 gEQ

4500H + 21000AT P + 1500C → R 60 0.2 gR

Synthesis reaction of structural components
dQ kQ,EQ

cat
250H + 1500AT P + 250C + 250F → Q 7.5 3

Table 4.3: Macromolecule synthesis reactions with corresponding genes, density coefficients, and
turnover rates.

The corresponding gene regulatory network is shown in Figure 4.1B. The four
genes in the middle layer are the genes that encode the four regulatory proteins
RPo2, RPc1, RPh and RPb as described in Table 3.1. Regarding these regulatory
rules, we briefly recall the role of the four regulatory proteins. The expression
state of gRPc1 is activated by the presence of Carbon 1. It represses the expression
state of gETc2 so that the model cannot uptake Carbon 2 if Carbon 1 is present in
the medium. gRPO2 is off when oxygen O2ext is in the environment. RPO2 then
regulates the expression states of gER5a and gER5b , which encode the isoenzymes for
the aerobic and anaerobic pathways respectively. Lastly, gRPb is active when vR2b >

0, and gRPb then inhibits the expression states of gER2a and gER7 . The metabolic-
genetic network and the regulation part are shown in Figure 4.1.

Note that we only consider the gene states of the regulatory proteins (the middle
layer in Figure 4.1B) to further affect the enzyme synthesis. The production reac-
tions of RPo2, RPc1, RPh and RPb are not included.
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4.4.2 Investigating the relationship between fixed quota compound
and maximal growth rate

The concentration of the structural component Q should be fixed for solving the
RBA model, as explained in Section 2.3.3. However, in order to achieve a higher
growth rate, the cell prefers to produce less quota compounds, since such macro-
molecules do not have any catalytic functionality but only cost resources. So, the
value to which the quota compound should be fixed is important for the application
of RBA. Here, we investigate the relationship between the fixed value of Q and
the maximal growth rate in the core carbon network. To do so, we run RBA while
changing the fixed value of Q from 0.005 to 0.1. The ways in which the maximal
growth rate is affected by the fixed Q is shown in Figure 4.2a. We can see that as
the fixed concentration of Q is increasing, the maximal growth rate resulting from
RBA is decreasing. Therefore, when utilizing RBA, it is better to choose a precise
quota concentration based on experiment in order to get a prediction closer to the
real cells, cf. (Goelzer et al., 2011; Goelzer and Fromion, 2011; Goelzer et al.,
2015).
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Figure 4.2: Relationships of the optimal growth rate with the fixed concentration of Q and how
ribosome fraction among biomass is affected by the predicted optimal growth rate.

We also investigate how the ribosome concentration changes with the obtained
growth rate while varying Q. The result in Figure 4.2b illustrates the linear rela-
tionship between ribosome fraction among biomass and growth rate, which was
validated by several studies (Scott et al., 2014; Bosdriesz et al., 2015)

4.4.3 Predictions by riRBA, iRBA, rFBA and DFBA
In this section, we compare the predictions of riRBA, iRBA, rFBA, and DFBA and
show the differences of the four approaches. Note that the metabolic models re-
quired for these four methods are different. Specifically, iRBA uses the metabolic-
genetic network detailed in Table 4.2 and Table 4.3, which includes additional
information about the protein expression as compared to the metabolic network
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shown in Figure 3.2a. riRBA additionally integrates the gene regulatory network
that is shown in Figure 4.1B. For DFBA, we use the metabolic network described
in Table 3.1 without the regulatory rules required for applying rFBA.

We individually implemented riRBA, iRBA, rFBA and DFBA to predict the batch
growth and compare the predictions. All the simulations aim at studying the di-
auxic shift between Carbon 1 and Carbon 2, which are set to 50 and 5 mM ini-
tially for the four methods. The oxygen concentration O2ext is given as 1000 mM
in excess and Hext, Fext are set to 0. So, initially (Carbon 1, Carbon 2, Fext, Hext,

O2ext,Dext, Eext)(t0) = (50, 5, 0, 0, 1000, 0, 0). The initial gene expression states for
riRBA and rFBA are set according to (Covert et al., 2001). Using the same initial
conditions, the dynamic reaction fluxes are predicted by riRBA, iRBA, rFBA and
DFBA respectively.
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Figure 4.3: Optimal growth rate and external metabolite concentrations predicted by riRBA, iRBA,
rFBA and DFBA.

All methods are able to predict the dynamics of metabolism during a simulation
period. In Figure 4.3, each growth phase is divided into phase (a) and (b). We can
see that the lag phase, the significant phase of diauxic growth, can only be predicted
by riRBA and rFBA but not by iRBA and DFBA. Because of the regulatory rules in
riRBA and rFBA, the model cannot metabolize Carbon 2 initially since the activity
of the exchange reaction of Carbon 2 is repressed by the presence of Carbon 1
through regulatory protein RPc1. After Carbon 1 has been used up, the cell needs a
short period to disappear RPc1 and produce ETc2 to uptake Carbon 2. This leads to
a lag phase, in which the cells do not grow. In iRBA and DFBA, gene regulation is
not considered and the model uses both Carbon 1 and Carbon 2 in phase (a). After
Carbon 1 is exhausted the cell can absorb Carbon 2. This is growth phase (b) of the
predictions in iRBA and DFBA, as shown in Figure 4.3 and Figure 4.5. Using both
Carbon 1 and Carbon 2 during growth phase (a), the model of DFBA reaches an

70



4.4 Comparison between DFBA, rFBA, iRBA and riRBA

optimal growth rate 0.05 1/min approximately. However, the optimal growth rate
in growth phase (a) of rFBA prediction is around 0.04 1/min. As compared with
the rFBA prediction, the cell would grow faster in DFBA result while the carbon
sources are exhausted earlier, see Figure 4.3.
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Figure 4.4: Production rates of ETc1, ETc2, ER5a, ER5b predicted by riRBA and iRBA.

From Figure 4.4, we can see that transporter ETc2 has a higher concentration than
ETc1 in growth phase (a) in the prediction of iRBA. Consistent with the transporter
concentration, both carbon sources are used in growth phase (a). However, it is
inconsistent with the gene regulation. Unlike DFBA, the enzyme production costs
are covered in iRBA. The model prefers to use Carbon 1 in iRBA because building
up ETc2 consumes more energy than ETc1 (see Table 4.3). During growth phase (a),
iRBA gets a growth rate that is larger than the one of riRBA as the iRBA model
takes up both Carbon 1 and Carbon 2 in parallel, see Figure 4.3.

The resource allocation can be predicted by riRBA and iRBA in con-
trast to rFBA and DFBA. Figure 4.4 shows four reaction fluxes producing
ETc1, ETc2, ER5a, ER5b. We can see that in the result of riRBA, the model pro-
duces ETc1 first and only starts to produce ETc2 after Carbon 1 is used up. ER5a

is produced during the whole growth phase since O2ext is excess in this case. Yet,
the result of iRBA is not consistent with the regulation without the consideration
of regulatory rules. Both ETc1 and ETc2 are produced first in the iRBA prediction.
In fact, reaction R5a and R5b have the same role for the model. Hence, ER5a and
ER5b can be chosen alternatively from the perspective of optimization.

Figure 4.5 displays the activity states of the reactions. We can see how the ac-
tive reactions shift from growth phase (a) to phase (b) and the differences between
the four methods. According to the regulatory rules, reactions Tc2 and R5b are
repressed by external Carbon 1 and O2ext in growth phase (a), which is only pre-
dicted by riRBA and rFBA (red crosses in Figure 4.5). From the results of iRBA
and DFBA in Figure 4.5, we can see that Tc2 is active in phase (a) and reactions
R5a and R5b are picked, which is in contradiction to the regulation. DFBA uses R5b

for respiration during the whole growth course, which is actually the fermentation
reaction. In iRBA, there is also no regulation to ensure that the model chooses R5a
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for respiration. R5a is active first, then switches to R5b during growth phase (b) (see
Figure 4.5).

Moreover, we see in the comparison whether or not the approaches include enzyme
costs and regulation. As described above, the regulatory constraints are only in-
cluded in riRBA and rFBA. The enzyme production costs are considered in riRBA
and iRBA. The differences are shown in Figure 4.5. The gene regulation is marked
in red, as shown in Figure 4.5, and the protein costs reactions are marked in blue.

4.5 Conclusions and discussion
In this chapter, we presented an intuitive way to extend RBA while accounting for
dynamical growth and gene regulation, which resulted in two methods: iRBA and
riRBA. Both successfully predict the dynamics of metabolism during the simula-
tion period, based on the optimal principle. Using the core carbon network, the
diauxic shift between two carbon sources has been investigated and compared with
the results of DFBA and rFBA. The metabolic dynamics resulting from iRBA is
due to the consideration of the changing nutrients and resource costs for the op-
timal growth rate. In riRBA, metabolism is additionally controlled by the gene
regulatory rules, which guarantees a consistency between metabolism and gene
regulation.

The differences between riRBA, iRBA, rFBA, and DFBA can be seen from the
comparison in Figure 4.5. Without covering the enzyme cost reactions, DFBA and
rFBA are incapable of predicting the resource allocation. DFBA and iRBA fail to
predict correctly the active reactions consistent with gene regulation as the regula-
tory events are not considered. The situation is even worse for DFBA and iRBA
when there are alternative reactions that play the same role in the network. Using
only optimization without any gene regulatory information, they cannot guarantee
to choose the right pathway.

Although regulation and enzyme costs are both considered in riRBA, such pro-
cesses are not integrated seamlessly within a continuous dynamic framework. The
regulatory protein expressions are also not included. Besides the steady-state as-
sumption for intermediate metabolites, an assumption must be made in the applica-
tion of iRBA and riRBA, which is that the protein abundances between time steps
are independent and can be adjusted freely from one time step to the next. This
is why we obtain the iRBA and riRBA formulas in Eq. 4.2 and Eq. 4.7. Regard-
ing this problem, as mentioned before, Yang et al. introduced protein “inertia”
constraints in dynamicME (Yang et al., 2019). Yet, dynamicME is still an itera-
tive optimization-based framework, see Table 4.1. Furthermore, gene regulation
is not included. As a more powerful mathematical framework, we propose in the
next chapters a hybrid discrete-continuous system to unify the metabolic reactions,
macromolecule synthesis, and transcriptional regulation.

72



4.5 Conclusions and discussion

Growth phase (a) Growth phase (b)
riRBA

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

Enzymes Ribosomes

R5b
R5a

Regulation

Structural components

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

Enzymes Ribosomes

R5b
R5a

Regulation

Structural components

iRBA

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

Enzymes Ribosomes

R5b
R5a

Regulation

Structural components

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

Enzymes Ribosomes

R5b
R5a

Regulation

Structural components

rFBA

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

R5b
R5a

Biomass
Regulation

Growth

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

R5b
R5a

Biomass
Regulation

Growth

DFBA

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

R5b
R5a

Biomass
Regulation

Growth

Carbon1

Carbon2

A B C

D

E

Dext

Eext

Fext F

Hext

O2ext

H

O2

G

NADH

ATP

Tc1

Tc2

R1
R2a

R2bR3Tf

Th

R8a

R8b

R6

R7

R4
Rres

TO2

Td

Te

RPc1

RPO2 RPb

RPh

R5b
R5a

Biomass
Regulation

Growth

Figure 4.5: Metabolic activities predicted by riRBA, iRBA, rFBA and DFBA. The growth phase
(a) and growth phase (b) are the growth phases shown in Figure 4.3. Grey lines represent the inactive
reactions. The red crosses and red dotted lines are the reactions repressed according to the regulatory
rules. The gray ‘regulation’ means the gene regulation is not included in the relevant method.
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Chapter 5

Formalizing metabolic-regulatory
networks by hybrid automata

In this chapter, we present a metabolic-regulatory network model (MRN)
that allows integrating metabolism with transcriptional regulation, macro-
molecule production and enzyme resources. Using this model, we show
that the dynamic interplay between these different cellular processes can
be formalized by a hybrid automaton, combining continuous dynamics and
discrete control. To validate the formalization, we build a hybrid automa-
ton for the carbon catabolite repression to model the diauxie. The for-
malization in this chapter provides a theoretical basis for the following
chapters. The work in this chapter has been done in collaboration with
Alexander Bockmayr and material is from: ‘Liu, L., Bockmayr, A. For-
malizing Metabolic-Regulatory Networks by Hybrid Automata. Acta Bio-
theor 68, 73–85 (2020).’ It is available in https://doi.org/10.1007/
s10441-019-09354-y (Liu and Bockmayr, 2019a,b)

5.1 Introduction
Computational approaches in systems biology have become a powerful tool for
understanding the fundamental mechanisms of cellular metabolism and regulation.
However, the interplay between the regulatory and the metabolic system is still
poorly understood. In particular, there is a need for formal mathematical frame-
works that allow analyzing metabolism together with dynamic enzyme resources
and regulatory events.

Concerning integrated modeling of metabolism and regulation, as summarized in
Table 4.1 there exist approaches such as regulatory flux balance analysis (rFBA)
(Covert et al., 2001) and FlexFlux (Marmiesse et al., 2015) that combine Boolean
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or multi-valued logical rules for transcriptional regulation with a steady-state sto-
ichiometric model of metabolism. These techniques iterate flux balance analysis
(FBA) by splitting the growth phase into discrete time steps. At each time step,
the updated regulatory states are imposed as bounds on the reaction fluxes while
ignoring the costs for enzyme production. At a different level, there exist meth-
ods to predict metabolic resource allocation considering enzyme-catalytic relation-
ships, either at steady-state (RBA (Goelzer et al., 2011), ME-models (Lerman et al.,
2012)) or in a dynamic setting (deFBA (Waldherr et al., 2015), cFBA (Rügen et al.,
2015; Reimers et al., 2017a), dRBA (Jeanne et al., 2018), dynamicME (Yang et al.,
2019)). But, regulation is not included in these approaches. Besides Boolean logic
and stoichiometric models, piecewise-linear differential equations (Ropers et al.,
2006; Chaves et al., 2019) and other types of hybrid systems (Bockmayr and Cour-
tois, 2002; De Jong et al., 2003; Bortolussi and Policriti, 2008) have also been used
to study the dynamics of metabolic-genetic networks. Most of these studies, how-
ever, merely consider metabolism and regulation, and do not combine these with
macromolecule production and enzymatic relationships.

In the present chapter, we introduce a metabolic-regulatory network model (MRN)
extending the self-replicator system proposed in (Molenaar et al., 2009). Our
modeling framework allows integrating metabolism with transcriptional regula-
tion, macromolecule production, enzyme resources, and structural building blocks.
Using this framework, we show that the dynamic interplay between cellular
metabolism, macromolecule production and regulation can be formalized by a
hybrid automaton, combining continuous dynamics and discrete control. In this
formalization, the amounts of molecular species are represented by continuous
variables. The discrete states of the system are composed of all gene expression
states for the regulated proteins, which include regulatory proteins and regulated
enzymes. In each discrete state, the continuous variables evolve according to a sys-
tem of differential equations that is specific for this state. The guard conditions for
the state transitions depend on the amounts of the molecular species and associated
thresholds.

Our formalization makes it possible to apply hybrid system tools for analyzing
metabolic-regulatory cellular processes. Compared to the approaches mentioned
above, this will allow us including regulation, macromolecule production and en-
zyme resources into the prediction of the dynamics of cellular metabolism.

To validate our approach, we present a hybrid automaton for a simplified model
of the diauxic shift in bacteria, which is inspired by the work in (Molenaar et al.,
2009; Covert et al., 2001). We illustrate three possible dynamic trajectories of the
model using the syntax and semantics of hybrid automata. The results demonstrate
that our formalization in this chapter extends the mathematical frameworks of di-
auxie, as reviewed in paper (Kremling et al., 2018), which integrates the continuous
dynamics of metabolism with the discrete regulation and resource allocation.
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5.2 Construction of the MRN model

Metabolism

v

Regulation

R
RE

X

E
Signal

Signal

RP

RP

Nutrients

Figure 5.1: Typical metabolic-regulatory processes in response to the external/internal signals,
with regulatory proteins RP, ribosomes R, regulated enzymes RE, enzymes E, metabolites X, and
fluxes v.

In Figure 5.1, we show the typical regulatory processes in a cell in response to
external/internal signals (Simmons et al., 2009). Regulatory proteins RP first sense
extra- or intracellular signals and transmit these to the gene expression machinery,
which then alters the production of proteins, in particular enzymes E. Changes of
enzyme amounts will affect the metabolite levels which in turn provide feedback
as internal signals. Furthermore, via the process of breaking nutrients into energy
and building blocks (catabolism), metabolism influences the level of signaling by
providing the precursors of regulatory proteins.

We formalize the interactions between metabolism and regulation by a metabolic-
regulatory network (MRN) that is given in Figure 5.2. Regarding metabolism, Y
represents the set of all external metabolites and RY is the set of reactions for the
conversion between external species Y and intermediate metabolites X. Y,X are
vectors of the associated amounts of Y and X. RX denotes the set of reactions
for the conversion between intermediate metabolites X. vX, vY denote fluxes of
reactions RX and RY. The macromolecular production reactions RRP, RQ and
RE = RRE ∪ RNRE use the intermediate metabolites X to build regulatory proteins
RP, non-catalytic macromolecules Q, and enzymes E. To keep the model sim-
ple, the set of enzymes E contains all catalytic molecules, including transporters
and ribosomes. However, we distinguish between regulated enzymes RE and non-
regulated enzymes NRE, i.e., E = RE ∪ NRE. Non-catalytic macromolecules,
termed as quota compounds Q (Reimers et al., 2017b), e.g. DNA and lipids, are
included in the model because they are essential for growth and consume a lot of
cellular resources.

In the metabolic part, our network is inspired from the self-replicator model by
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Y X NRE
RY

Catabolism

Regulation

RRP

RNRE

RQ

RRE

Q
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∅
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Degradation

RX

RP

RE

Figure 5.2: Schematic model of a metabolic-regulatory network (MRN). Y represents extracellu-
lar metabolites with the associated molar amounts Y. RY is the set of exchange reactions between
extracellular species Y and intermediate metabolites X. X represents molar amounts of intermediate
species and RX is a set of intermediate reactions. Instead of classifying the macromolecules as trans-
porters, enzymes and ribosomes, we use E to represent all the catalytic macromolecules here with
molar amounts E. Q denotes a set of non-catalytic macromolecules and Q is a vector of their molar
amounts. In order to include regulation, E are classified as regulated enzymes RE and non-regulated
enzymes NRE with associated amounts RE, NRE. That is E = RE ∪ NRE. The metabolism is
represented by blue lines and the gene regulation by the red lines. Additionally, the degradation of
macromolecules is shown by gray lines.

Molenaar et al. (Molenaar et al., 2009). Compared to the FBA-type models of
metabolism, these authors include metabolic resource allocation. However, they
do not consider regulation. Similar to (Covert et al., 2001), we focus here on
transcriptional regulation, i.e., we do not model post-transcriptional modifications.

In the following, we will show how the dynamics of the metabolic-regulatory
model, i.e., the interactions between metabolism and regulation can be naturally
described by a hybrid automaton.

5.3 Hybrid discrete-continuous dynamics

5.3.1 Continuous variables

Kinetic modeling of metabolic networks by ordinary differential equations (ODEs)
has a long history in systems biology. Based on our metabolic-regulatory network
(see Figure 5.2), we define the set of molecular species

M = Y ∪ X ∪ RP ∪ E ∪ Q (5.1)

as the union of all extracellular metabolites, intermediate metabolites, enzymes
(including ribosome), regulatory proteins, and quota compounds. In a purely con-
tinuous modeling approach, the dynamics of the network would be described by a
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system of ODEs

Ṁ(t) =
dM
dt

= F(M,K, S , t), (5.2)

where K is a vector of kinetic parameters, S is the stoichiometric matrix and t
denotes time. Following (Waldherr et al., 2015; Reimers et al., 2017b), we as-
sume throughout this chapter that M(t) denotes the molar amounts of the molecular
species in M at time t. However, it would also be possible to use M(t) to model
instead concentrations. The function F represents the kinetic laws that govern the
dynamics, which could be mass action, Michaelis-Menten, Hill kinetics etc.

5.3.2 Discrete states
Continuous modeling of gene regulatory networks is known to be very difficult due
to the lack of the necessary kinetic data. Therefore, we adopt a more qualitative
approach to include regulation in our model. It is based on the logical modeling
framework pioneered in the 1970’s by L. Glass, S. Kauffman, R. Thomas and oth-
ers, see (Abou-Jaoudé et al., 2016) for a recent review. We assume that for each
regulated protein p there are two possible states on and off, describing whether
the gene encoding p is expressed or not.

Formally, for all p ∈ RP ∪ RE, we introduce a Boolean variable p = p(t) ∈ {0, 1}
and a logical function fp : Rn → {0, 1}. Here, the Boolean value 0 corresponds to
off and the value 1 to on. Each function fp is defined as a Boolean combination
(using the Boolean operations ¬ (not), ∧ (and), ∨ (or)) of atomic formulae xi ≥ θi,
where xi is a real variable and θi is a constant. As an example, consider f : R2 →

{0, 1}, f (x1, x2) = (x1 ≥ 1) ∧ ¬(x2 ≥ 2), for which we get f (1, 1) = 1 and f (1, 2) =

0. Overall, the regulation of our MRN is then formalized by a system of Boolean
equations of the form

p(t) = fp(RP(t),Y(t),X(t)), for all p ∈ RP ∪ RE. (5.3)

Here, fp describes how the expression state of the gene encoding the regulated pro-
tein p depends on the current amounts of regulatory proteins, external metabolites,
and intermediate metabolites.

5.4 Combining discrete and continuous dynamics in a hy-
brid automaton

Combining metabolism and regulation in this way leads to a hybrid discrete-
continuous system. Here, all amounts of molecular species are modeled by con-
tinuous variables. However, the evolution of regulated proteins p is controlled by
the expression state p of the corresponding genes. Thus, depending on the discrete
state p, there are two different continuous dynamics. The system will jump from
one discrete state to the other if some regulatory event occurs, see Figure 5.3 for
illustration.
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p = on

Ṁp(t) = vp(M(t))− kdp ·Mp(t) Ṁp(t) = −kdp ·Mp(t)

Jump(on, σ, off)

Jump(off, σ′, on) M(t) ≥ 0M(t) ≥ 0

p = off

Figure 5.3: Graphic depiction of continuous evolution in the discrete states p = on and p = off,
for regulated proteins p ∈ RP∪RE. In the on−state, protein synthesis and degradation are described
by the kinetic law vp(M(t)) resp. −kdp ·Mp(t), with degradation constant kdp, while in the off-state
only degradation occurs. The invariant under both states is that the amounts of all molecular species
cannot be negative, which is M(t) ≥ 0.

Composing the discrete states together with their continuous dynamics for all reg-
ulated proteins p ∈ RP ∪ RE leads to a hybrid automaton

H = (Loc,Σ, Edge, X, Init, Inv, Flow, Jump), (5.4)

with the following components (Raskin, 2005; Henzinger, 2000):

• Loc is a finite set of discrete states or locations. Here, Loc = {0, 1}RP∪RE

consists of all possible combinations of expression states p ∈ {0, 1} of reg-
ulated proteins p ∈ RP ∪ RE. In other words, for a MRN with n regulated
proteins, there will be in total 2n discrete states or locations in the hybrid au-
tomaton. However, not all of these have to be reachable from a given initial
state.

• Σ is a finite set of events. In our case, these are given by the regulatory
rules in Eq. 5.3. For instance, a regulatory event σ can be that the amount
of a regulatory protein RPi is larger than a certain threshold θi, which is
expressed mathematically as σ = (RPi ≥ θi).

• Edge ⊆ Loc × Σ × Loc is the set of possible transitions from one location to
another, which are labeled by an event from Σ.

• X is a finite set of real variables. In our case, X =M = Y∪X∪RP∪E∪Q.
In each location l, these continuous variables evolve according to a specific
dynamics depending on l, which is specified by the predicate Flow(l).

• Init, Inv, Flow are functions that assign logical predicates to each location
l ∈ Loc:

1. Init(l) is a predicate which describes the possible initial values for the
continuous variables when the automaton starts its execution in state l.

2. Inv(l) is a predicate which describes the possible values of the contin-
uous variables when the control of the automaton lies in l.
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3. Flow(l) is a predicate which describes the possible continuous evolu-
tions when the control of the automaton is in l, for example by a system
of ODEs.

• Jump is a function that assigns to each e ∈ Edge a predicate Jump(e) de-
scribing when the discrete change modeled by e is possible and what the
possible updates of the continuous variables are when this change is made.

For a formal specification of the discrete-continuous dynamics of the hybrid au-
tomaton H we refer to (Raskin, 2005; Henzinger, 2000). In the next section, we
explain the main principles by an illustrative example.
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RP ≥ α
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T2 : vC2

R : vQ

R : vR

R : vT1

R
: v
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Figure 5.4: A specific model for modeling CCR with two regulatory rules. C1,C2 are the two
carbon sources. T1,T2 are the enzymes for converting carbon sources into precursor M. Q denotes a
house-keeping protein. RP is a regulatory protein. R represents the ribosome catalyzing the protein
production. γ, α are the thresholds of the two regulatory rules.

5.5 Biological application
Carbon catabolite repression (CCR) is a common phenomenon in bacteria, espe-
cially in Escherichia coli (Görke and Stülke, 2008). While these bacteria are able
to grow on different carbon sources, they do not consume these in parallel, but
one after the other. Mathematical modeling of diauxie has played an important
role in understanding these phenomena (Kremling et al., 2015, 2018). To illustrate
our approach, we present here a new hybrid discrete-continuous model for CCR,
which integrates continuous dynamics of metabolism with discrete regulation and
resource allocation.

5.5.1 MRN model of the diauxic shift
Starting from the generic model in Figure 5.2, we consider two alternative car-
bon sources C1,C2 and a regulatory protein RP to build the MRN shown in Fig-
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Parameter Description Value Unit References

kcat1 Max import rate of T1 3000 min−1

kcat2 Max import rate of T2 2000 min−1

KT Enzymatic threshold 1000 mmol
kr Max elongation rate 1260 aa min−1 (Bremer et al., 1996)
Kr Elongation threshold 7 aa (Weiße et al., 2015)

nQ,nRP Average length of non-ribosomal enzymes 300 aa (Brandt et al., 2009)
nT1 Length of T1 400 aa
nT2 Length of T2 1500 aa
nR Length of ribosome 7459 aa (Keseler et al., 2010)
w Average molar weight of amino acids 100 mg mmol−1

kdQ,kdR,kdT1,kdT2 Enzyme degradation rate 0.01 min−1 (Kennell and Riezman, 1977)
kdRP Regulatory protein degradation rate 0.2 min−1

Table 5.1: Model parameters. Here, aa stands for amino acids, which correspond to the precursor
M in the coarse-grained CCR model of Figure 5.4.

ure 5.4. The two regulated proteins in our model are RP and T2, with corresponding
Boolean variables RP and T 2. As shown by the red lines, the regulatory rules are
the following: If the external amount of C1 is above the threshold γ, the gene en-
coding for RP is activated. If the amount of RP inside the cell is above the threshold
α, the gene encoding for T2 is repressed. More formally:

RP = 1⇔ (C1 ≥ γ) and T 2 = 0⇔ (RP ≥ α) (5.5)

Together, these regulations ensure that C1 is the preferred carbon source for the
model.

5.5.2 Hybrid automaton model of the diauxic shift

Next we construct the hybrid automaton Hdiaux for the metabolic-regulatory net-
work in Figure 5.4. We get the continuous variables Xdiaux = {C1, C2, M, RP, T1,

T2, R, Q} describing time-dependent molar amounts (in mmol) and the discrete
locations Locdiaux = {(RP,T 2) | RP,T 2 ∈ {on, off}}. To specify the dynamics of
Hdiaux, we use the graphical representation in Figure 5.5, which is more intuitive
than the formal definition according to Eq. 5.4.

The four nodes in Figure 5.5 correspond to the discrete states or locations. Within
each node, we specify the continuous dynamics of the molecular species by a set of
ODEs and some invariants. The arcs represent the discrete jumps between different
states. They are labeled by the guards that the system has to satisfy in order to
perform the corresponding transition.

For the uptake of C1,C2 we assume a Michaelis-Menten kinetics

vC1 =
kcat1 ·C1 · T1

KT + C1
, vC2 =

kcat2 ·C2 · T2

KT + C2
. (5.6)

All the parameters are listed in Table 5.1. Regarding the synthesis rate vp of a
protein p consisting of np amino acids, we assume like in (Faizi et al., 2018) a
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Ṫ1 =
1

4nT1
· vM − kdT1 · T1
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Figure 5.5: Graphic illustration of the hybrid automaton Hdiaux.

Michaelis-Menten type kinetics of the form

vp =
βp

np
· vM, with vM =

kr · M · R
Kr + M

and p ∈ {RP,T1,T2,R,Q}. (5.7)
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The weights βp ≥ 0 denote the fraction of cellular resources allocated to protein p,
with

∑
p βp = 1. For each location of the hybrid automaton shown in Figure 5.5,

we assume for simplicity that the cellular resources are shared equally between the
proteins that are expressed at this location. In other words, βp = 1/3 in location
(off, off), βp = 1/4 in location (on, off) resp. (off, on), and βp = 1/5 in location
(on, on). The total biomass Biomass(t) is defined as the sum of the molecular
masses

Biomass(t) = w · M(t) +
∑

p∈{RP,T1,T2,R,Q}

w · np ·Mp(t). (5.8)

If RP = on, the regulatory protein RP is built from the precursor M, catalyzed
by the ribosome R. Whenever C1 < γ is reached, RP switches to off and RP
is degraded with rate kdRP. Similarly, the enzyme T2 is produced if T 2 = on,
which is equivalent to RP < α, and degraded if T 2 = off. Due to mass balance,
the dynamics of the precursor M also depends on the location and the regulatory
control. The dynamics of the other variables C1,C2,T1,R is not directly controlled
by the discrete states, but depends on them as well via the shared variables.

5.5.3 Exploring the dynamics of Hdiaux

Given the hybrid automaton Hdiaux, we explore the dynamics of the system for three
simulations, see Figure 5.6, Figure 5.7, and Figure 5.9. In all the three simulations,
the kinetic parameters are the same and the initial state is (on, on). Following
(Weiße et al., 2015), we assume that the cell starts growing with some positive
amounts of precursors and ribosomes, but without any enzymes. Thus, the initial
enzyme amounts T1,T2 are set to 0, so that the system first has to produce them
before carbon uptake can start.

In Simulation 1 and Simulation 2, we use the hybrid automaton illustrated in Fig-
ure 5.5. In each location, the cellular resources are shared equally between the
proteins whose expression states are on at this location. The only difference be-
tween Simulations 1 and Simulation 2 is that the initial amount of C1 is decreased
from C1 = 500 mmol in Simulation 1 to C1 = 50 mmol in Simulation 2.

Simulation 3 has the same initial condition as Simulation 1, including initial values
of continuous variables and initial discrete state. Differently, we specify βp with
different values for proteins that are expressed in each state in Simulation 3. For
the specific βp in Simulation 3, see Figure 5.8 in detail.

Simulation 1

For Simulation 1, we see in Figure 5.6 that both RP and T2 initially increase be-
cause (RP,T 2) = (on, on). C1,C2 are consumed very slowly in the beginning,
because the model is initialized with T1 = T2 = 0. When the amount of the regu-
latory protein RP reaches the threshold α = 0.03 mmol (corresponding to 900 mg)
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Figure 5.6: Time course for Simulation 1: (A) Metabolites C1, C2, M (left axis) and total biomass
(right axis). The initial location is (RP,T 2) = (on, on) with initial values (C1, C2, M, RP, T1, T2, R,
Q) = (500, 1000, 20, 0, 0, 0, 0.01, 0.1). Discrete state transitions are indicated by dashed lines. The
thresholds are γ = 20 and α = 0.03. (B) Macromolecular masses RP,T1,T2,Q,R.

and C1 is still larger than γ = 20 mmol, T 2 gets inactivated and the system will
jump to the location (RP,T 2) = (on, off). Now, the enzyme T2 stops being pro-
duced and, with T2 getting close to 0, uptake of C2 is not possible anymore. Thus,
the system can only use C1. The location (RP,T 2) = (on, off) therefore indicates
a first growth phase on the preferred carbon source C1. Once the guard condition
C1 < 20,RP ≥ 0.03 is satisfied, the system will switch to the new state (off, off).
This location represents the lag phase during diauxie, in which C1 is exhausted
while the utilization of C2 is still repressed. Furthermore, the synthesis of the reg-
ulatory protein RP is inhibited and its amount decreases with the degradation rate
kdRP. When the amount of RP reaches the threshold α = 0.03, T 2 is turned on
again and we get to the final state (off, on). Now, the cell can produce T2 and will
consume carbon source C2 until this is finally also exhausted.

Simulation 2

In Simulation 2, the initial amount of C1 is decreased to 50 mmol. Starting again
from the location (on, on), RP and T2 will increase and both carbon sources are
assimilated. Due to the smaller initial value of C1, the event C1 < 20 ∧ RP < 0.03
is triggered first in this case. Hence the system directly jumps to (off, on) by
skipping (on, off) and (off, off). As we can see in Figure 5.7, there are no clear
carbon switch and lag phase in this case. The regulatory protein RP does not reach
the critical threshold α before C1 is depleted. From the biological viewpoint, this
means that the amount of the preferred carbon source C1 is too small to inhibit the
uptake of C2.
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Figure 5.7: Time courses for Simulation 2: (A) Dynamics of metabolites C1, C2, M (left axis)
and total biomass (right axis). The data are the same as in Simulation 1, except the initial value
C1 = 50. Note that there is no lag phase. The model directly jumps from (on, on) to (off, on), since
the initial amount of C1 is too small to inhibit the uptake of C2 via RP. (B) Macromolecular masses
RP,T1,T2,Q,R.

Simulation 3

Simulation 3 aims to investigate the effects of resource allocation on biomass accu-
mulation. Specifically, the continuous dynamics in each discrete location is listed
by the set of ODEs in Figure 5.8. The results are shown in Figure 5.9. Clearly,
the carbon sources are exhausted earlier at nearly 35 min in this simulation while
they are depleted at around 50 min in Simulation 1 (see Figure 5.6). The maxi-
mal biomass obtained is much larger than the maximal biomass obtained in Sim-
ulation 1. This simulation demonstrates that averaging the resources for all pro-
teins expressed in each state is not an optimal strategy for the maximization of
the biomass. It is probably not optimal for cellular growth. Therefore, how the
cell allocates its resources significantly influences the biomass accumulation. This
directly refers to the topic of predicting optimal resource allocation in cells. In
order to explore the optimal control strategies for the hybrid automata representing
our MRNs, we propose a constraint-based approach in the next chapter to predict
the optimal resource allocation besides the dynamic metabolism and discrete state
transitions.

The three simulations illustrated above exhibit just three possible behaviors of
Hdiaux. Figure 5.5 and Figure 5.8 show all state transitions that are possible
based on our regulatory rules and the specific resource allocation. According to
our model, the cellular behavior during diauxie depends on the whole metabolic-
regulatory network. For example, in our model, the house-keeping protein Q also
influences the discrete state, as it shares the precursor pool and competes with other
regulated proteins for the limited ribosomes.

Regarding the diauxie phenomenon, it has been experimentally observed that the
longer the cells grow in the preferred carbon source, the longer the lag phase is
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Figure 5.8: Graphic illustration of Hdiaux for Simulation 3. Particularly, the resource fractions
βp, p ∈ {RP,T1,T2,R,Q} are specified differently for proteins that are expressed in each location.
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Figure 5.9: Time course for Simulation 3. (A) Metabolites C1, C2, M (left axis) and total biomass
(right axis). The setting is the same as in Simulation 1, except βp, p ∈ {Q,R,RP,T1,T2} that are
specified differently, see Figure 5.8. (B) Macromolecular masses RP,T1,T2,Q,R.

(New et al., 2014). Our Simulation 2 shows there is even no lag phase when the
initial amount of C1 is very small. The reason is still unclear. Yet our simulations
suggest that when staying longer in the preferred carbon source, more regulatory
proteins will be accumulated. Thus it will take more time to activate the second car-
bon source C2. The comparison between Simulation 1 and Simulation 3 shows that
the cellular resource allocation among proteins likewise decides the cellular per-
formance. Thus indicates that there is a need for algorithms to predict the optimal
dynamics of the hybrid automata representing our metabolic-regulatory networks.

5.6 Conclusion
In this chapter, we have proposed a new hybrid discrete-continuous modeling
framework for metabolic-regulatory network that integrates metabolism, transcrip-
tional regulation, macromolecule production and enzyme resources. Compared to
classical logic-based gene regulatory networks (Thomas, 1973), we consider the
expression states of proteins as discrete states or locations in a hybrid discrete-
continuous system. Under each location, proteins evolve with a specific set of dif-
ferential equations based on the cellular metabolic system. Thus, the time delays
demanded for transmitting states are quantified by the dynamics of regulatory pro-
teins, which is impossible in the framework of classical Boolean gene regulatory
networks.

In the biological application, we illustrated the approach on a small self-replicator
model and applied it to study the diauxic shift in bacteria. Compared to classic reg-
ulatory flux balance analysis (rFBA) (Covert et al., 2001), our model quantifies the
synthesis and degradation of the regulatory protein, which determines the length
of the lag phase. In contrast to kinetic modeling, we consider a discrete regulatory
control for the continuous evolution of the molecular species. Using this formal-

88



5.6 Conclusion

ization, we can use theoretical concepts and software tools for hybrid systems, e.g.
reachability analysis or model checking, to study the dynamic interplay between
metabolism and regulation. We particularly introduce an approach that allows the
exploration of the optimal control strategy for the hybrid system representing our
MRN and predicting the optimal resource allocation in Chapter 6.
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Chapter 6

Regulatory dynamic enzyme-cost
flux balance analysis

In this chapter, we introduce a new constraint-based modeling framework
named regulatory dynamic enzyme-cost flux balance analysis (r-deFBA),
which unifies dynamic modeling of metabolism, cellular resource alloca-
tion and transcriptional regulation in a hybrid discrete-continuous setting.
With r-deFBA, we can predict the discrete regulatory states together with
the continuous dynamics of reaction fluxes, external substrates, enzymes,
and regulatory proteins needed to achieve a cellular objective such as max-
imizing the biomass over a time interval. The dynamic optimization prob-
lem underlying r-deFBA can be reformulated as a mixed-integer linear op-
timization problem, for which there exist efficient solvers. The work has
been done with Alexander Bockmayr (Liu and Bockmayr, 2019c), and is
available as a bioRxiv preprint at https://doi.org/10.1101/802249.

6.1 Introduction
As can be seen from Table 4.1, there is currently no approach that integrates the
three features: dynamics, macromolecule production costs and gene regulation in
a unifying framework. In Chapter 5, we introduced metabolic-regulatory networks
(MRNs) to formalize the interplay of metabolism, macromolecule synthesis and
gene regulation. To specify the dynamics of MRNs, we used a hybrid automata
framework, combining continuous dynamics of metabolism with discrete control
by regulatory events. In this formalization, the amounts of molecular species are
represented by continuous variables. The discrete states of the system correspond
to gene expression states of regulated proteins, which include regulatory proteins
and regulated enzymes. In each discrete state, the continuous variables evolve
according to a system of differential equations that is specific for this state. The
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guard conditions for the discrete state transitions depend on the amounts of the
molecular species and associated thresholds.

In the present chapter, we look at dynamic optimization or optimal control of the
hybrid automata representing MRNs, which leads us to a new constraint-based
modeling framework called regulatory dynamic enzyme-cost flux balance analysis
(r-deFBA). Like in other flux balance approaches, we apply a steady-state assump-
tion for the intermediate metabolites. The resulting dynamic optimization problem
can be transformed into a mixed-integer linear optimization problem (MILP), for
which there exist efficient solvers.

The organization of this chapter is as follows: We start in Section 6.2 by shortly
recalling the definition of MRNs and the hybrid modeling framework described
in Chapter 5. In Section 6.3, we formally introduce r-deFBA by formulating the
metabolic constraints, the regulatory constraints, and the resulting dynamic opti-
mization problem. In Section 6.4, we give a possible way to transform the dynamic
optimization into a MILP. To illustrate our approach, we consider two biological
applications. In Section 6.5 we analyze the carbon catabolite repression model
(CCR) already considered in Chapter 5. Finally, in Section 6.6, we apply our ap-
proach to a model of core carbon metabolism, inspired from (Covert et al., 2001)
and (Waldherr et al., 2015).
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RNRE
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Degradation
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Figure 6.1: Schematic model of a metabolic-regulatory network (MRN) for presenting r-deFBA.
We distinguish three types of molecular species: extracellular species Y, intermediate metabolites
X, and macromolecules P. Y,X,P are vectors of their molar amounts. RY, vY are the exchange
reactions and fluxes. RX is a set of intermediate reactions with the associated fluxes vX. The macro-
molecules P = Q∪RE∪NRE∪RP are classified into quota compounds Q, non-regulated enzymes
NRE, regulated enzymes RE, and regulatory proteins RP with their amounts Q,NRE,RE,RP.
RRE,RNRE,RQ,RRP, vRE, vNRE, vQ, vRP are the corresponding production reactions and fluxes. The
intracellular signals are indicated by reaction fluxes vY and vX in r-deFBA.
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6.2 Hybrid dynamics of metabolic-regulatory networks
In Figure 6.1, we illustrate the schematic structure of a MRN model for presenting
r-deFBA. It has the same structural components, abbreviations and notation as the
metabolic-regulatory network model described in Section 5.2 shown in Figure 5.2.
Therefore, the set of molecular species is defined as

M = Y∪X∪P = Y∪X∪(Q∪E∪RP) = Y∪X∪(Q∪RE∪NRE∪RP). (6.1)

6.2.1 Continuous dynamics

In a purely continuous modeling approach, the dynamics of the network would be
described by a system of ordinary differential equations

Ṁ(t) =
dM(t)

dt
= F(M,K, S , t). (6.2)

Following (Waldherr et al., 2015; Reimers et al., 2017b; Liu and Bockmayr,
2019b), we assume that M(t) denotes the molar amounts of the molecular species
inM at time t. Furthermore, K is a vector of kinetic parameters, S is the stoichio-
metric matrix, and t denotes time. The function F represents the kinetic laws that
govern the dynamics, which could be mass action, Michaelis-Menten, Hill kinetics
etc.

6.2.2 Discrete control

In this context, regulatory interactions, as illustrated by the red arrows in
Figure 6.1, refer to transcriptional regulation, i.e., we do not consider post-
translational modifications. We assume that for each regulated protein p ∈ RP∪RE
there are two possible states on and off, describing whether at a particular time t
the gene encoding p is expressed or not. Formally, we introduce a Boolean vari-
able p = p(t) ∈ {0, 1} and a logical function fp : Rn → {0, 1}. Here, the Boolean
value 0 corresponds to off and the value 1 to on. Each function fp is defined as
a Boolean combination (using the Boolean operations ¬ (not), ∧ (and), ∨ (or)) of
atomic formulas of the form x ≥ θ, where x is a real variable and θ a threshold
value.

The set of discrete states is composed of the expression states of regulated proteins
RE and RP that is Loc = {0, 1}RP∪RE. Note that in contrast to the metabolic-
regulatory networks described in Chapter 5, amounts of intermediate metabo-
lites X(t) have been replaced with the flux values vX(t) and vY(t). This is due
to the steady-state assumption for intermediate metabolites, which is typical for
constraint-based modeling approaches, see also in (Covert et al., 2001). Hence, the
regulation of our MRN is then formalized by a system of Boolean equations of the
form

p(t) = fp(RP(t),Y(t), vY(t), vX(t)), for all p ∈ RP ∪ RE (6.3)
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in r-deFBA. The logical function fp indicates how the expression state of the regu-
lated protein p depends on the current amounts of regulatory proteins, extracellular
metabolites, and the reaction fluxes.

6.2.3 Hybrid discrete-continuous system

Combining the continuous dynamics of metabolism in Eq. 6.2 with the discrete
logical control in Eq. 6.3 leads to a hybrid discrete-continuous system, which we
further explore in Section 6.3.

6.3 Formalization of r-deFBA
The r-deFBA framework that we propose in this chapter aims at predicting from
some initial conditions the continuous dynamics of metabolism and resource al-
location together with discrete state transitions coming from genetic regulation.
Compared with our earlier approach deFBA (Waldherr et al., 2015), regulatory
logical constraints are included in addition to the metabolic constraints. Based
on the schematic MRN model in Figure 6.1 and the notation in Section 5.2, the
metabolic and regulatory constraints of r-deFBA will now be described in detail.

6.3.1 Metabolic constraints

We start by recalling the constraints on metabolism, which are derived from dy-
namic enzyme-cost flux balance analysis (deFBA) (Waldherr et al., 2015; Reimers
et al., 2017b). deFBA is formalized in Section 2.4. Here, we shortly list these
individual constraints:

• Dynamics of external metabolitesY (nutrients and by-products): the dynam-
ics of the extracellular metabolites is modeled by a system of differential
equations

Ẏ(t) = SY,RY · vY(t). (6.4)

• Dynamics of macromoleculesP: the synthesis and the degradation of macro-
molecules are described by a system of differential equations

Ṗ(t) = SP,RP · vP(t) − kdP ◦ P(t), (6.5)

where the vector kdP contains the degradation rates of macromolecules P =

RP∪RE∪NRE∪Q and ◦ denotes the component-wise product of vectors.
The initial amounts of macromolecules can be specified by modeler, i.e.,

P(t0) = P0, (6.6)
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where P0 represents the given initial amounts of macromolecules. Alterna-
tively, the initial biomass can be constrained within certain values, e.g.

bT
P
· P(t0) = Bio(t0), (6.7)

where Bio(t0) is a constant value.

• Steady state for intermediate metabolites: for the intermediate metabolites
X we assume that they are at steady-state, i.e., the rate of production is equal
to the rate of consumption. This leads to a system of algebraic equations

Ẋ(t) = SX,RY · vY(t) + SX,RX · vX(t) + SX,RP · vP(t) = 0, (6.8)

with stoichiometric matrices SX,RY , SX,RX , SX,RP and fluxes vY, vX, vP.

• Biomass composition constraint: in order to guarantee a sufficient produc-
tion of non-catalytic macromolecules Q such as lipids and DNA, which are
indispensable for cell growth and proliferation, we require that the mass of
these quota compounds has to be at least a given fraction of the total biomass.
Mathematically,

bT
Q
·Q(t) ≥ ΦQ · bT

P
· P(t), (6.9)

where bP is a vector with the molecular weights of all the macromolecules
P, bQ is the subvector of the molecular weights of the quota compounds Q,
the operation ·T denotes transposition, and 0 < ΦQ < 1 is a constant.

• Enzymatic and translational capacity constraints: fluxes through enzyme-
catalyzed reactions are bounded by the amount of the corresponding en-
zymes. If an enzyme catalyzes more than one reaction, the sum of all the
reaction fluxes is limited by the enzyme amount. Formally, we get∑

i∈cat(E)

|vi(t)|

ki,E
cat

≤ E(t), for all E ∈ E, (6.10)

where cat(E) is the set of all reactions i catalyzed by enzyme E and ki,E
cat is the

corresponding turnover rate. Note that this constraint also holds for protein
translation and the ribosome, which is considered to be a special enzyme in
our framework (see Section 5.2).

6.3.2 Regulatory logical control constraints
Extending the existing approaches for dynamic metabolic resource allocation such
as deFBA, we now add two types of regulatory constraints. The first one describes
the control of the discrete state transitions by the continuous variables, which cor-
responds to the triggering of the discrete jumps in the hybrid system. The second
one is the control of the evolution of the continuous variables depending on the
discrete state. Taken together, these two types of regulatory constraints specify the
interplay between cellular regulation and metabolism.
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Control of discrete state jumps

The key to the discrete dynamics of a hybrid system is how discrete state transitions
are triggered by the continuous variables. According to Section 6.2, the expression
state p(t) of all regulated proteins p is determined by a logical function fp : Rn →

{0, 1} depending on the amounts of regulatory proteins, extracellular metabolites
and reaction fluxes, i.e.,

p(t) = fp(RP(t),Y(t), vY(t), vX(t)), (6.3)

for all p ∈ RP ∪ RE.

Control of the continuous dynamics by the discrete states

While the regulatory constraints in Eq. 6.3 describe how the discrete states depend
on the continuous variables, we also have to specify how the continuous dynamics
depends on the discrete state.

For a regulated protein p, the value of p determines whether protein p is expressed
or not. Therefore, if p(t) = 1, we impose as constraint that the production flux vp(t)
should be at least εp, while we require vp(t) to be zero in the case p(t) = 0. More
formally, we obtain for all p ∈ RP ∪ RE the implications

p(t) = 1 ⇒ vp(t) ≥ εp, (6.11)

p(t) = 0 ⇒ vp(t) = 0, (6.12)

where εp > 0 is a lower bound for the production rate vp(t) of p in state on. We
could also allow εp = 0 if we want to relax the model and determine the values of
vp(t) by optimization.

Note that the values of the parameters εp significantly influence the dynamics of the
system. Since the lower bounds constrain the production rates, they directly affect
the abundances of the regulatory proteins and the regulated enzymes. Conversely,
p is strictly constrained to be degraded whenever p(t) = off.

6.3.3 Formulating r-deFBA as a dynamic optimization problem

Up to now, we have specified the metabolic constraints defining a dynamic solution
space for cellular metabolism. In addition, we introduced the regulatory constraints
to incorporate the dynamic interplay between gene regulation and metabolism. In
order to predict how the cell can achieve optimal growth under these constraints,
we formulate r-deFBA as a dynamic optimization problem, see Eq. 6.13. The
objective is to compute time courses v(t),P(t),Y(t), p(t) that maximize the total

96



6.4 Numerically solving r-deFBA as a MILP

biomass production over a given time interval [t0, t f ].

max
v(t),P(t),Y(t),p(t)

∫ t f

t0
bT
P
· P(t)dt

s.t. Ẏ(t) = SY,RY · vY(t),

Ṗ(t) = SP,RP · vP(t) − kdP ◦ P(t),

SX,RY · vY(t) + SX,RX · vX(t) + SX,RP · vP(t) = 0,

bT
Q
·Q(t) ≥ ΦQ · bT

P
· P(t),∑

i∈cat(E)

|vi(t)|

ki,E
cat

≤ E(t), for all E ∈ E

p(t) = fp(RP(t),Y(t), vY(t), vX(t)), for all p ∈ RP ∪ RE

(p(t) = 1) ⇒ (vp(t) ≥ εp), for all p ∈ RP ∪ RE

(p(t) = 0) ⇒ (vp(t) = 0), for all p ∈ RP ∪ RE

lb ≤ v(t) ≤ ub,
Y(t0) = Y0, p(t0) = p0, for all p ∈ RP ∪ RE,

P(t),Y(t), vP(t) ≥ 0,

p(t) ∈ {0, 1}, for all p ∈ RE ∪ RP.

(6.13)

By Y0 and p0 we denote the initial values of Y(t) and p(t) at time t = t0. In Eq. 6.13,
the initial amounts P(t0) are variables whose values are determined by the dynamic
optimization. Alternatively, initial values for P(t0) could be precomputed using
RBA.

Involving discrete and continuous variables, the r-deFBA problem in Eq. 6.13
can be reformulated as a mixed-integer linear optimization problem (MILP), for
which exist efficient solvers. To solve r-deFBA numerically, the dynamic real and
Boolean variables are discretized in time like in (Reimers et al., 2017a; Reimers,
2017). The Boolean equations Eq. 6.3 and the logical implications Eq. 6.11-
Eq. 6.12 can be transformed into a system of linear 0-1 inequalities using a standard
recursive substitution procedure (Shlomi et al., 2007; Jensen et al., 2011).

6.4 Numerically solving r-deFBA as a MILP
6.4.1 Transforming logical functions into linear inequalities
To solve the dynamic optimization problem in Eq. 6.13, the logical functions rep-
resenting regulatory logical control constraints in Eq. 6.3, Eq. 6.11 and Eq. 6.12
can be converted into linear 0-1 inequalities (Duffin et al., 1956). However, ex-
tra Boolean variables must be added for the conversion, which are called indicator
variables. Note that the discrete states in the hybrid automata of MRNs are not
affected by these indicator variables.
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Converting the control of discrete state jumps into linear inequalities

We introduce a vector of indicator variables IRP ∈ {0, 1}RP (resp. IY ∈ {0, 1}Y)
to indicate whether or not the regulatory protein amounts RP (resp. the extracel-
lular metabolite amounts Y) are above the associated thresholds θRP (resp. θY).
Mathematically

rp(t) ≥ θrp ⇔ Irp(t) = 1, for all rp ∈ RP (6.14)

y(t) ≥ θy ⇔ Iy(t) = 1, for all y ∈ Y. (6.15)

Eq. (6.14)–(6.15) can be transformed into linear inequalities by the reformulation

x ≥ θ ⇔ x = 1 { l · (1 − x) ≤ x − θ ≤ (u + ε) · x − ε, (6.16)

where x is a real variable, x ∈ {0, 1} is the corresponding indicator variable, θ is the
threshold, l resp. u is a lower resp. upper bound for x − θ, and ε is a small positive
number.

By IvY ∈ {0, 1}
RY and IvX ∈ {0, 1}

RX we describe the activity states of the reaction
fluxes vY and vX. If a reaction flux is not zero, it is assumed to be active, i.e.,

vr(t) , 0 ⇔ Ivr (t) = 1, for all r ∈ RX ∪ RY. (6.17)

We transform these logical relations into linear inequalities by the reformulation

v , 0 ⇔ Iv = 1 {


l · Iv ≤ v ≤ u · Iv,

(l − ε)(1 − Ī2
v ) + ε ≤ v ≤ (u + ε)(1 − Ī1

v ) − ε,
Iv = Ī1

v + Ī2
v ,

(6.18)
where v is a real variable, Iv ∈ {0, 1} is the corresponding indicator variable, l resp.
u is a lower resp. upper bound for v, ε is a small positive number, and Ī1

v , Ī2
v ∈ {0, 1}

are two auxiliary 0-1 variables.

After introducing the indicator variables IRP, IY, IvY and IvX , the regulatory con-
straints (6.3) are converted into Boolean equations

p(t) = f p(IRP(t), IY(t), IvY(t), IvX(t)), for all p ∈ RE ∪ RP. (6.19)

Similar to the original function fp in (6.3), the Boolean function f p is defined in
terms of the indicator variables IRP, IY, IvX , IvY and the operations ¬ (not), ∧ (and),
∨ (or), such that f p(IRP(t), IY(t), IvY(t), IvX(t)) = fp(RP(t),Y(t), vX(t), vY(t)).

Eq. (6.19) can be transformed into a set of linear inequalities by recursively apply-
ing the rules

y = ¬x1 { y = 1 − x1 (6.20)

y = x1 ∧ x2 { y ≤ x1, y ≤ x2, x1 + x2 ≤ 1 + y (6.21)

y = x1 ∨ x2 { x1 ≤ y, x2 ≤ y, y ≤ x1 + x2 (6.22)

for variables x1, x2, y ∈ {0, 1} and by introducing additional 0-1 variables for the
intermediate results.
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Converting the control of the continuous dynamics into linear inequalities

For the logical control of the continuous dynamics, Eq. 6.11 and Eq. 6.12 are con-
verted into linear inequalities by the reformulation

p(t) = 1 ⇒ vp(t) ≥ εp

p(t) = 0 ⇒ vp(t) = 0

}
{ εp · p(t) ≤ vp(t) ≤ up · p(t), (6.23)

where p ∈ RP ∪ RE is a regulated protein, εp > 0 is lower bound on the flux vp(t)
if p is expressed, and up is an upper bound on vp(t).

Using these transformations, the regulatory constraints can be reformulated as
mixed 0-1 linear inequalities, see also (Shlomi et al., 2007; Jensen et al., 2011).
Together with the metabolic constraints, the dynamic r-deFBA optimization prob-
lem can be solved as a MILP by discretizing the continuous and Boolean variables
in time.

6.4.2 Discretizing the variables in time to solve r-deFBA

To solve numerically the dynamic optimization problem of r-deFBA, we discretize
the variables in time, using the midpoint rule like in (Reimers et al., 2017a). The
macromolecular amounts P and extracellular metabolite amounts Y are discretized
at each time point tk, k ∈ {0, . . . , n}. The flux variables v and the derivatives Ṗ, Ẏ
are discretized at the midpoint tk+tk−1

2 , k ∈ {1, . . . , n}. In order to control the protein
production, whose fluxes vp are discretized at midpoint tk+tk−1

2 , the Boolean vari-
ables p, p ∈ RP∪RE, are discretized at tk+tk−1

2 , too. Indicator variables IvY and IvX
are also considered at the midpoint, which is consistent with the reaction fluxes vY
and vX. For IY and IRP, we calculate the corresponding amounts Y and RP at the
time points tk and tk−1 to determine the indicator values by

rp(tk) + rp(tk−1)
2

≥ θrp ⇔ Irp

( tk + tk−1

2

)
= 1, for all rp ∈ RP, (6.24)

y(tk) + y(tk−1)
2

≥ θy ⇔ Iy

( tk + tk−1

2

)
= 1, for all y ∈ Y. (6.25)

The resulting mixed-integer linear program (MILP) is given in Figure 6.2. As
we can see, all macromolecule amounts P, the derivatives Ṗ and all reaction
fluxes v at each time point are continuous variables. The indicator variables
of the extracellular species IY, regulatory proteins IRP, reaction fluxes IvY , IvX
and expression states of regulated proteins p involved in the regulation are 0-
1 variables. The biomass integral over the simulation period [t0, t f ] is de-
fined as the sum of all the macromolecule masses at each time point. Using
this MILP, values for all the variables can be predicted using efficient MILP
solvers such as Gurobi (http://www.gurobi.com), Cplex (https://www.
ibm.com/products/ilog-cplex-optimization-studio) or Scip (https://
scip.zib.de/).
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While the reformulation of r-deFBA as an MILP problem is our current solution
strategy, developing possible alternative solution approaches is a topic of further
research.

max
n∑

k=0

bT
P
· P (tk) ,

s.t. Ẏ
( tk + tk−1

2

)
= SY,RY · vY

( tk + tk−1

2

)
,

Ṗ
( tk + tk−1

2

)
= SP,RP · vP

( tk + tk−1

2

)
− kdP ◦

P(tk) + P(tk−1)
2

,

SX,RY · vY
( tk + tk−1

2

)
+ SX,RX · vX

( tk + tk−1

2

)
+ SX,RP · vP

( tk + tk−1

2

)
= 0,

∑
i∈cat(E)

|vi
(

tk+tk−1
2

)
|

ki,E
cat

≤
E(tk) + E(tk−1)

2
, for all E ∈ E,

bT
Q
·Q(tk) ≥ ΦQ · bT

P
· P(tk),

P(tk) = P(tk−1) + (tk − tk−1) · Ṗ
( tk + tk−1

2

)
,

Y(tk) = Y(tk−1) + (tk − tk−1) · Ẏ
( tk + tk−1

2

)
,

vr

( tk + tk−1

2

)
, 0 ⇔ Ivr

( tk + tk−1

2

)
= 1, for all r ∈ RX ∪ RY,

rp(tk) + rp(tk−1)
2

≥ θrp ⇔ Irp

( tk + tk−1

2

)
= 1, for all rp ∈ RP,

y(tk) + y(tk−1)
2

≥ θy ⇔ Iy

( tk + tk−1

2

)
= 1, for all y ∈ Y,

p
( tk + tk−1

2

)
= f p

(
IRP

( tk + tk−1

2

)
, IY

( tk + tk−1

2

)
, IvY

( tk + tk−1

2

)
, IvX

( tk + tk−1

2

))
,

for all p ∈ RP ∪ RE,

p
( tk + tk−1

2

)
= 1 ⇒ vp(

tk + tk−1

2
) ≥ εp, for all p ∈ RP ∪ RE,

p
( tk + tk−1

2

)
= 0 ⇒ vp(

tk + tk−1

2
) = 0, for all p ∈ RP ∪ RE,

P(tk),Y(tk) ≥ 0, vmin ≤ v
( tk + tk−1

2

)
≤ vmax,

IvX

( tk + tk−1

2

)
, IvY

( tk + tk−1

2

)
, IRP

( tk + tk−1

2

)
, IY

( tk + tk−1

2

)
∈ {0, 1},

p
( tk + tk−1

2

)
∈ {0, 1}, for all p ∈ RP ∪ RE, for all k = 1, . . . , n,

Y(t0) = Y0, p(t0) = p0, for all p ∈ RP ∪ RE.

Figure 6.2: MILP for solving r-deFBA model
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6.5 Biological Application 1 on CCR model
The carbon catabolite repression (CCR) model and the corresponding hybrid au-
tomaton have been described in Section 5.5. The parameters are listed in Table 5.1.
To illustrate r-deFBA, we construct in Section 6.5.1 an r-deFBA model for this net-
work. In Section 6.5.2 we compare the resulting dynamics for r-deFBA to standard
deFBA and to the hybrid automata framework considered in Chapter 5.

The general workflow for building an r-deFBA model is illustrated in Figure 6.3.
Starting from a metabolic and a transcriptional regulatory network, we first con-
struct a metabolic-regulatory network (MRN), as presented in Section 6.2.

C1

gRP

C1

C2

M

Q

T1

T2
RRP

r-deFBA model

Metabolic network

Transcriptional regulatory network

Regulatory constraints:

C1(t) ≥ γ ⇔ RP (t) = 1

RP (t) ≥ α ⇔ T 2(t) = 0

RP (t) = 1⇒ vRP (t) ≥ εRP

T 2(t) = 1⇒ vT2(t) ≥ εT2

C1

C2

M

RP

T1
T2

R

kdRP

C1 ≥ γ
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∅

∅

∅

∅

kdR

kdT1

kdT2

Q ∅
kdQ

Metabolic-regulatory network

vC2

vC1

vRP

vQ

vR

vT1

vT2

gT2

T 2(t) = 0⇒ vT2(t) = 0

RP (t) = 0⇒ vRP (t) = 0

Objective function:

Regulatory constraints:

∫ tf
t0
Biomass(t)dt

for all p ∈ {RP, T1, T2, R,Q}

max

Ċ1(t) = −vC1(t), Ċ2(t) = −vC2(t)

Ṁp(t) = vp(t)− kdp ·Mp(t)

vC1(t) + vC2(t)−
∑

np · vp(t) = 0

nQ ·Q(t) ≥ 35% ·
∑

np ·Mp(t)

vC1(t) ≤ kcat1 · T1(t)
vC2(t) ≤ kcat2 · T2(t)∑ vp(t)

kp,R
cat

≤ R(t)

Dynamics of external substrates

Dynamics of proteins

Steady state for internal metabolite M

Biomass composition

Enzymatic and translational capacity

...

......

Figure 6.3: Workflow to build an r-deFBA model for the CCR model with two regulatory rules.
The Boolean variables RP,T 2 describe the expression state of the genes gRP, gT2 , which determines
the production of proteins RP,T2. The thresholds εRP, εT2 define the minimal expression levels for
the regulated proteins RP,T2 to be in state on

6.5.1 r-deFBA and deFBA model of CCR
In the metabolic network of Figure 6.3, we have two carbon sources Y = {C1,C2},
which are converted into precursor molecules X = {M}. For simplicity, we assume
only two uptake reactions C1 → M,C2 → M, catalyzed by enzymes T1 resp. T2.
The precursor molecules M are used to synthesize five types of macromolecules
P = {Q,R,T1,T2,RP}, which are the enzymes T1,T2, regulatory proteins RP,
housekeeping proteins Q, and ribosomes R. The stoichiometry of the synthesis
reactions and corresponding parameter values are given in Table 6.1. The total
biomass Biomass(t) is defined as the sum of the molecular masses

Biomass(t) = w · M(t) +
∑
p∈P

w · np ·Mp(t), (6.26)
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where w corresponds to the molar weight of one precursor molecule M and np is
the number of precursor molecules needed to build one macromolecule p. By M(t)
and Mp(t) we denote again the molar amounts [mmol] of M resp. p ∈ P at time t.

In the regulatory network of Figure 6.3, gRP and gT2 denote the two genes encoding
the regulated proteins RP and T2. We assume that gRP is activated by the presence
of C1 and that gT2 is inhibited by gRP. This leads to two regulatory rules

RP(t) = 1 ⇔ C1(t) ≥ γ and T 2(t) = 0 ⇔ RP(t) ≥ α, (6.27)

with thresholds α, γ > 0. The expression states RP,T 2 are linked to the flux vari-
ables vRP, vT2 by the implications

RP(t) = 1 ⇒ vRP(t) ≥ εRP, T 2(t) = 1 ⇒ vT2(t) ≥ εT2,

RP(t) = 0 ⇒ vRP(t) = 0, T 2(t) = 0 ⇒ vT2(t) = 0,
(6.28)

using thresholds εRP, εT2 > 0.

The full r-deFBA model of the CCR network in Figure 6.3 reads in Eq. 6.29.

max
v(t),C1(t),C2(t),M(t)

∫ t f

t0
(
∑
p∈P

w · np ·Mp(t) + w · M(t0)) dt

s.t. Ċ1(t) = −vC1(t), Ċ2(t) = −vC2(t),

Mp(t) = vp(t) − kdp ·Mp(t), for all p ∈ P

vC1(t) + vC2(t) −
∑
p∈P

np · vp(t) = 0,

nQ · Q(t) ≥ ΦQ ·
∑
p∈P

np ·Mp(t),

vC1(t) ≤ kcat1 · T1(t), vC2(t) ≤ kcat2 · T2(t),∑
p∈P

vp(t)

kp,R
cat

≤ R(t),

C1(t) ≥ γ ⇔ RP(t) = 1, RP(t) ≥ α⇔ T 2(t) = 0,

RP(t) = 1⇒ vRP(t) ≥ εRP, RP(t) = 0⇒ vRP(t) = 0,

T 2(t) = 1⇒ vT2(t) ≥ εT2, T 2(t) = 0⇒ vT2(t) = 0,

(C1,C2,RP,T1,T2,R,Q)(t) ≥ 0, RP(t),T 2(t) ∈ {0, 1},

(C1,C2,M,RP,T1,T2,R,Q)(t0) =

(1000, 500, 20, 0, 0.001, 0.001, 0.01, 0.15),

(RP,T 2)(t0) = (1, 1).
(6.29)
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The corresponding deFBA model is obtained by omitting the regulatory con-
straints. For the computations, we used the parameter values given in Table 6.1, Ta-
ble 6.2, and Table 5.1. The r-deFBA and deFBA program detailed Eq. 6.29 can be
solved by using optimization solvers such as Gurobi (http://www.gurobi.com).

Metabolic reaction Flux Enzyme Turnover rate [1/min]
C1 → M vC1 T1 kcat1 = 3000
C2 → M vC2 T2 kcat2 = 2000
Biomass reaction Flux Enzyme Turnover rate Degradation rate
npM → p vp kp,R

cat = kr/np [1/min] kdp [1/min]
300M → Q vQ R 4.2 0.01
7459M → R vR R 0.1689 0.01
400M → T1 vT1 R 3.15 0.01
1500M → T2 vT2 R 0.84 0.01
300M → RP vRP R 4.2 0.2

Table 6.1: Metabolic and biomass reactions with corresponding parameters.

t0 t f ΦQ α γ εRP εT2 kr

0 55 0.35 0.03 20 0.01 0.01 1260
min min mmol mmol mmol/min mmol/min 1/min

Table 6.2: Additional parameters. Here, kr denotes the elongation rate.

6.5.2 Comparing r-deFBA, deFBA, and the hybrid automaton
Next, we compare the dynamics of the CCR model obtained by r-deFBA, deFBA
and the hybrid automaton, see Figure 6.4. The dynamics and discrete states of
hybrid automaton Hdiaux are shown in Figure 5.5, see the details in Section 5.5.2.
In all three simulations, we use the same parameter values given in Table 5.1,
Table 6.1 and Table 6.2, and the initial conditions from Eq. 6.29.

The diauxic shift is predicted successfully by all three approaches. However, the
underlying principles are different. By maximizing the biomass production while
taking into account only the metabolic constraints, deFBA shows that the diauxic
shift is an optimal metabolic behavior. In contrast, r-deFBA computes an opti-
mal trajectory for biomass production, taking into account both the metabolic and
the regulatory constraints. Due to the additional regulatory constraints, r-deFBA
produces less biomass than deFBA and needs more time to consume the available
carbon resources, see Figure 6.4D. The continuous metabolic variables of the hy-
brid automaton evolve according to the Michaelis-Menten kinetics of equations in
Figure 5.5. These kinetics depend on the current discrete state, which in turn is de-
termined by the regulatory control, i.e., the jump conditions. As an optimal control
strategy for the hybrid system representing the MRN, r-deFBA clearly gains more
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Hybrid automaton
deFBA
r-deFBA

A B

DC

(on,on)(on,off)(off,off)(off,on) (on,on)(on,off)(off,off)(off,on)

Figure 6.4: Time courses of C1,C2 (left axis),RP (right axis) predicted by r-deFBA (A), the hybrid
automaton (B), deFBA (C) and corresponding biomass production (D). In all three simulations, the
same parameter and initial values were used. For r-deFBA and the hybrid automaton, we also indicate
the discrete states (RP,T 2) with the transitions marked by vertical dashed lines. Due to the steady-
state assumption, the molar amount of the precursor M remains constant in deFBA and r-deFBA.

biomass than the hybrid automaton, but less than deFBA, which does not include
regulation.

Both r-deFBA and the hybrid automaton successfully predict the discrete state tran-
sitions during diauxie. In Figure 6.4A and Figure 6.4B, the time profiles are divided
into three growth phases, corresponding to the discrete state transitions. The tran-
sitions of r-deFBA are consistent with those obtained by the hybrid automaton.
In the first growth phase (a), expression of RP is activated and RP = on because
initially C1 ≥ γ. We also have T 2 = on because RP is initialized by 0. Thus, the
initial state of the network is (RP,T 2) = (on, on). As time goes on, C1 is consumed
while RP is synthesized and accumulated. When RP reaches the threshold α, the
synthesis of T2 is inhibited and the model jumps to the state (on, off). Next, when
C1 < γ, the discrete state changes to (off, off), which represents the lag phase
during diauxie. In this phase, enzyme T2 is still repressed until RP falls below its
threshold α. Once this happens, the system switches to the final state (off, on),
where RP < α and T2 is produced to metabolize C2. Overall, the interactions be-
tween discrete regulation and continuous metabolism are correctly incorporated in
our r-deFBA. In deFBA, the regulatory protein RP remains at the initial value 0,
see Figure 6.4C. From the optimization perspective, there is no benefit in produc-
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ing RP because it is a non-catalytic protein and does not sufficiently contribute to
biomass.

(on,on)(on,off)(off,off)(off,on) (on,on)(on,off)(off,off)(off,on)

r-deFBA deFBA Hybrid automaton

Figure 6.5: Time courses of RP,T1,T2,R (left axis) and Q (right axis) for r-deFBA, deFBA, and
the hybrid automaton.

Another interesting point is the production of macromolecules, see Figure 6.5. In
deFBA and r-deFBA, the dynamic optimization indicates that the production of T1
should be stopped once C1 is exhausted, although there is no regulatory control for
T1. Intuitively, T1 is not needed anymore for uptake of C1. In order to increase
biomass, it is better to produce T2 and R. When specifying the dynamics of the
hybrid automaton in Figure 5.5, we equally share the available resources between
all synthesis reactions that are active in the current location. In real cells, this is
unlikely to happen and not optimal for biomass production, as can be seen from
Figure 6.4D. Compared with the hybrid automaton, much more ribosome is pro-
duced in r-deFBA and deFBA, leading to a much larger biomass production, see
Figure 6.5. Clearly, how the cell allocates its resources to different enzymes will
affect significantly the cellular growth.

Since r-deFBA is more constrained than deFBA, the maximum biomass predicted
by r-deFBA will always be less than or equal to the one for deFBA. However, the
two maxima can get very close if the regulatory constraints are consistent with
the objective in the dynamic optimization. In our simulation, deFBA successfully
predicts the diauxic shift, even without regulatory control, showing that this is an
optimal strategy for biomass production. However, deFBA fails to provide infor-
mation about how the cell should be regulated in order to achieve this result. In
contrast, r-deFBA allows predicting both the dynamic evolution of regulatory pro-
teins and the discrete state transitions which together enable the cell to implement
an optimal growth strategy.

6.6 Biological Application 2: core carbon metabolism
6.6.1 MRN model of the core carbon network
As before, we first construct a metabolic-regulatory network (MRN), see Fig-
ure 6.6. Here we combine a metabolic and a regulatory network for core carbon

105



Chapter 6. Regulatory dynamic enzyme-cost flux balance analysis
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Figure 6.6: The metabolic-genetic network of core carbon metabolism and corresponding gene
regulatory network.

Macromolecular synthesis reaction Molar weight Turnover rate Regulatory rule
npH + mpATP→ p bp [g/mmol] kp,R

cat [1/min]
Enzymes

400H + 1600ATP→ ETc1 40 2.5
1500H + 6000ATP→ ETc2 150 0.67 ETc2 = on⇔ RPc1 < ϑRP

400H + 1600ATP→ ET f 40 2.5
400H + 1600ATP→ ETh 40 2.5
500H + 2000ATP→ ER1 50 2.0
500H + 2000ATP→ ER2a 50 2.0 ER2a = on⇔ RPb < ϑRP

500H + 2000ATP→ ER2b 50 2.0
1000H + 4000ATP→ ER6 100 1.0
1000H + 4000ATP→ ER7 100 1.0 ER7 = on⇔ RPb < ϑRP

2000H + 8000ATP→ ER3 200 0.5
500H + 2000ATP→ ER4 50 2.0
4000H + 16000ATP→ ER8a 400 0.25 ER8a = on⇔ RPh < ϑRP

4000H + 16000ATP→ ER8b 400 0.25
500H + 2000ATP→ ER5a 50 2.0 ER5a = on⇔ RPO2 < ϑRP

500H + 2000ATP→ ER5b 50 2.0 ER5b = on⇔ RPO2 ≥ ϑRP

500H + 2000ATP→ ERres 50 2.0 ERres = on⇔ RPO2 < ϑRP

500H + 2000ATP→ EQ 50 2.0
4500H + 21000ATP + 1500C → R 600 0.2

Regulatory proteins
300H + 1200ATP→ RPO2 30 3.33 RPO2 = on⇔ O2ext < ϑY

300H + 1200ATP→ RPc1 30 3.33 RPc1 = on⇔ Carbon1 ≥ ϑY

300H + 1200ATP→ RPh 30 3.33 RPh = on⇔ vTh ≥ ϑv

300H + 1200ATP→ RPb 30 3.33 RPb = on⇔ vR2b ≥ ϑv

Structural components
Synthesis reaction Molar weight Turnover rate

bQ [g/mmol] kQ,EQ
cat [1/min]

250H + 1500ATP + 250C + 250F → Q 75 3.0

Table 6.3: Macromolecular synthesis reactions with corresponding molar weights, turnover rates
and regulatory rules
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metabolism based on (Covert et al., 2001; Waldherr et al., 2015). The metabolic
network in Figure 6.6A covers the major carbon pathways including glycolysis,
TCA cycle, carbon storage, amino acid synthesis, pentose phosphate pathway, fer-
mentation, and also the macromolecule synthesis.

Using the notation from Section 6.2, we have the following molecular species:

X = {A, B,C,D, E, F,G,H,NADH,ATP,O2},

Y = {Carbon 1,Carbon 2,O2ext,Dext, Eext, Fext,Hext},

Q = {Q},
RE = {ETc2, ER2a, ER5a, ER5b, ER7, ER8a, ERres},

NRE = {ETc1, ET f , ETh, ER1, ER2b, ER3, ER4, ER6, ER8b, EQ,Q,R},
RP = {RPc1,RPO2,RPb,RPh},

E = RE ∪ NRE, P = Q ∪ E ∪ RP.

(6.30)

The details on the different metabolic and biomass reactions are given in Table 4.2
and Table 6.3. To get reasonable flux bounds on reactions describing diffusive
exchange across the plasma membrane, we define the structural component Q as
the enzymatic macromolecule for these reactions, together with an appropriate rate
constant for diffusion (Waldherr et al., 2015).

Regarding the regulatory network of Figure 6.6B, we identify again the state of
a gene with the activity of the reaction producing the corresponding protein. For
example, the gene state gRPc1 is identified with the activity state RPc1 of the re-
action producing RPc1. This means that the reaction synthesizing RPc1 will be
active whenever the amount of external Carbon 1 exceeds a given threshold. Con-
versely, the reaction will be blocked if insufficient Carbon 1 is available, see the
regulatory rule for RPc1 in Table 6.3. The roles of the four regulatory proteins
RPc1, RPO2, RPh, RPb have been explained in Section 3.3.1. For additional de-
tails, we refer to (Covert et al., 2001).

6.6.2 r-deFBA vs deFBA model of core carbon network

The complete r-deFBA model reads in Eq. 6.31. The deFBA model of the core
carbon network is the upper section of the dynamic optimization program, which
merely includes the objective function and metabolic constraints while ignoring
the regulatory control section. The initial values depend on the specific scenario
and will be specified in the next section.

6.6.3 Comparing r-deFBA and deFBA

In total, there are 11 regulated proteins, which include 4 regulatory proteins and
7 regulated enzymes. The discrete state space thus contains 211 states, which are
difficult to explore by the hybrid automaton. In the following, we present two
scenarios to show how r-deFBA can be used to predict the integrated dynamics
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of metabolism and regulation even in a large state space. In each case, we com-
pare r-deFBA with deFBA, which also models metabolism, but does not take into
account the regulatory control.

max
v(t),P(t),Y(t),p(t)

∫ t f

t0
bT
P

P(t)dt

s.t. Ẏ(t) = SY,RY · vY(t),

Ṗ(t) = SP,RP · vP(t) − kdP ◦ P(t),

SX,RY · vY(t) + SX,RX · vX(t) + SX,RP · vP(t) = 0,

bT
Q · Q(t) ≥ ΦQ · bT

P
· P(t),

vi(t) ≤ ki,E j
cat · E j(t), for all E j ∈ E \ {Q,R},∑

i∈{TO2,Td ,Te}

vi(t)

ki,Q
cat

≤ Q(t),
∑

p∈P\Q

vp(t)

kp,R
cat

≤ R(t),

ETc2 = on⇔ RPc1 < ϑRP, ER2a = on⇔ RPb < ϑRP,

ER7 = on⇔ RPb < ϑRP, ER8a = on⇔ RPh < ϑRP,

ER5a = on⇔ RPO2 < ϑRP, ER5b = on⇔ RPO2 ≥ ϑRP,

ERres = on⇔ RPO2 < ϑRP,

RPO2 = on⇔ O2ext < ϑY , RPc1 = on⇔ Carbon1 ≥ ϑY

RPh = on⇔ vTh ≥ ϑv, RPb = on⇔ vR2b ≥ ϑv,

p(t) = 1⇒ vp(t) ≥ εRP, for all p ∈ RP

p(t) = 1⇒ vp(t) ≥ εE , for all p ∈ RE

p(t) = 0⇒ vp(t) = 0, for all p ∈ RP ∪ RE

P(t),Y(t), v(t) ≥ 0, p(t) ∈ {0, 1}, for all p ∈ RP ∪ RE,

for all t ∈ [t0, t f ].
(6.31)

t0 t1
f t2

f kdE kdRP ϑRP ϑv ϑY εE εRP ΦQ

0 90 50 0.01 0.5 1.0e-3 0.1 1 1.0e-6 1.0e-3 0.35
min min min 1/min 1/min mmol mmol/min mmol mmol/min mmol/min

Table 6.4: Parameter values for E ∈ E,RP ∈ RP and end times t1
f , t

2
f for Scenario 1 and 2.

Scenario 1: diauxie on two carbon sources

Our first scenario focuses again on the diauxie phenomenon. Initially, we set
Carbon 1 and Carbon 2 to 1000 resp. 500 mmol, oxygen is given in excess, all
other extracellular metabolites are set to 0. We do not specify the initial amounts
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of the macromolecules. Instead, these are computed by the optimization algorithm
under the constraint that the initial biomass should be 1g. Thus, the initial values
for t = t0 are:

Carbon 1 Carbon 2 Dext Eext Fext Hext O2ext Biomass
1000 500 0 0 0 0 +∞ 1

(6.32)

The Boolean variables are initialized by the 0-1 values for growth phase (a) in
Table 6.5.

a b c a b c

A B

C D

r-deFBA r-deFBA

deFBAdeFBA

Figure 6.7: Dynamics of external metabolites (left axis), total biomass (right axis) predicted by
r-deFBA (A) and deFBA (C), and key regulated proteins (B and D) in Scenario 1.

Comparing the results of r-deFBA and deFBA in Figure 6.7A resp. 6.7C, we note
that in both approaches, Carbon 1 is metabolized first. Yet, the biphasic increase
of biomass is predicted only by r-deFBA, and not by deFBA. Although most of the
available Carbon 1 is utilized at the beginning, no lag phase is predicted by deFBA.
The overall biomass production in the time interval [t0, t1

f ] predicted by deFBA
amounts to 111.3g, which is 8% more than the 103.0g obtained by r-deFBA.

At the level of individual proteins, RPc1 is produced in growth phase (a) of
r-deFBA, for which Carbon 1 ≥ ϑY , see Figure 6.7B. Here, the expression of
ETc2 is inhibited since RPc1 ≥ ϑRP. Thus, only Carbon 1 supports growth during
this period. Once it is exhausted, the growth shifts to phase (b). The indicator vari-
able RPc1 is triggered to be off, implying that RPc1 is degraded and not produced
anymore. The expression of the transporter ETc2 via ETc2 is only activated when
RPc1 < ϑRP. Therefore, no carbon can be taken up during phase (b) and the total
biomass production shows a lag phase. Finally, in growth phase (c), the transporter
ETc2 is produced and biomass production resumes based on Carbon 2.
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Similarly in deFBA, ETc2 is not synthesized as long as Carbon 1 supports a high
growth rate. The protein dynamics for r-deFBA and deFBA in Figure 6.7B resp.
Figure 6.7D are also relatively close. However, RPc1 is not produced at all in
deFBA and there is no lag phase observed, see Figure 6.7D. In deFBA, the uptake
of Carbon 2 starts well before Carbon 1 is exhausted, while in r-deFBA, Carbon 1
and Carbon 2 are metabolized one after the other, due to the regulatory control by
RPc1. The synthesis of RPc1 generates extra costs in r-deFBA, such that the total
biomass in r-deFBA is smaller than in deFBA.

Growth phase RPc1 ETc2 RPO2 E5a E5b ERres RPb ER2a ER7 RPh ER8a

a 1 0 0 1 0 1 0 1 1 0 1
b 0 0 0 1 0 1 0 1 1 0 1
c 0 1 0 1 0 1 0 1 1 0 1

Table 6.5: Discrete state transitions in Scenario 1.

r-deFBA deFBAA B

Q
R
E \{Q,R}

Q
R
\{Q,R}E

Figure 6.8: Dynamics of biomass composition in Scenario 1 with structural components Q, ribo-
somes R and enzymes E \ {Q,R}.

The discrete state transitions for all the regulated proteins as predicted by r-deFBA
are given in Table 6.5. Here, we group together each of the four regulatory pro-
teins with the corresponding regulated enzymes. The expression of the enzymes
regulated by RPO2 does not change since external oxygen is given in excess. Thus,
RPO2 and ER5b are always inhibited, while ER5a and ERres remain activated. In
Scenario 1, with no extracellular Hext in the environment, reaction R2a is con-
stantly activated, consuming Carbon 1, Carbon 2, while Th is inactive. Thus, the
regulatory proteins RPb, RPh are always off, and ER2a, ER7, ER8a are on. Note
that the r-deFBA framework allows computing an optimal regulatory strategy for
maximizing growth even though the discrete state space is very large.

The resource allocation during the carbon switch can also be investigated. In Fig-
ure 6.8, we compare the dynamic biomass composition predicted by r-deFBA and
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deFBA for three kinds of macromolecules: structural components, enzymes and
ribosomes. At the beginning, both approaches exhibit a stable biomass compo-
sition. The fraction of structural components initially stays around 35%, which
corresponds to the lower bound imposed by the biomass constraint in Eq. 6.9. As
Carbon 1 is depleted, the structural components reach a rather high level, while
the fractions of enzymes and ribosomes are decreasing in both predictions. Inter-
estingly, in r-deFBA, the fractions of ribosomes and enzymes are increasing again
while the structural components are going down at the outset of the second growth
phase. This means that the cell must allocate more resources to the ribosomes to
start the second growth phase. In the last step, r-deFBA predicts a high fraction
of structural components and a low fraction of enzymes and ribosomes, which can
also be validated by experiments (Fischer and Sauer, 2005). Overall, we obtain a
biphasic resource allocation in r-deFBA, which is consistent with the two growth
phases during diauxie. In deFBA, the quota fraction directly increases to about
80% of the total biomass and then keeps constant.

Scenario 2: growth on carbon and amino acid with amino acid in excess

Scenario 2 explores the dynamic growth on carbon and amino acid, with amino
acid in excess. For t = t0 we choose the initial values:

Carbon 1 Carbon 2 Dext Eext Fext Hext O2ext Biomass
100 0 0 0 0 250 +∞ 1

(6.33)

The Boolean variables are initialized by the 0-1 values for growth phase (a) in
Table 6.6.

As can be seen from Figure 6.9, both r-deFBA and deFBA first predict a co-
utilization of Carbon 1 and extracellular amino acid Hext, followed by the uti-
lization of Hext once Carbon 1 has been exhausted. In the co-utilization phase, R2a

instead of R2b is active to metabolize Carbon 1. Consequently, enzyme ER2a is
synthesized in this phase, but not ER2b. When Carbon 1 gets almost exhausted, en-
zyme ER2b starts being produced in order to activate reaction R2b, see Figure 6.9B
and Figure 6.9D. Now, B has to be generated from C, since B is needed for growth.
The switch between R2a and R2b is predicted by both approaches because it bene-
fits growth. Although in deFBA the expression of the regulatory protein RPb is not
triggered to inhibit the synthesis of ER2a, the production of ER2a stops in deFBA as
well. Like ER2a, enzyme ER8b also has a similar dynamics in both approaches.

An interesting observation in the comparison is that deFBA activates enzyme ER5b

responsible for the anaerobic pathway, which is not consistent with the regulation.
In contrast, r-deFBA produces enzyme ER5a to catalyze reaction R5a, in agreement
with the regulation by RPO2. Intuitively, R5a, R5b are two alternative reactions that
play the same role in the network, one in the aerobic, the other in the anaerobic
case. Using only optimization without any regulatory information, deFBA cannot
guarantee to choose the right pathway. Since optimal solutions are not unique, the
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A B

DC

r-deFBA r-deFBA

deFBAdeFBA

Hext

Hext

Carbon1

Carbon1

Biomass

Biomass

a b c a b c

Figure 6.9: Dynamics of external metabolites (left axis) and biomass (right axis) predicted by
r-deFBA(A) and deFBA (C), and key regulated proteins (B and D) in Scenario 2.

Growth phase RPc1 ETc2 RPO2 E5a E5b ERres RPb ER2a ER7 RPh ER8a

a 1 0 0 1 0 1 0 1 1 1 0
b 0 0 0 1 0 1 1 0 0 1 0
c 0 1 0 1 0 1 0 0 0 0 0

Table 6.6: Discrete state transitions in Scenario 2.

solver can choose any of the two reactions or a combination thereof. Indeed, a
small amount of ER5b is produced by deFBA in the last phase of Scenario 1, even
though this is not significant (see Figure 6.7D). Clearly, the consistency between
metabolism and regulation cannot be ensured by deFBA without additional reg-
ulatory information. In contrast, the dynamics of metabolism in r-deFBA highly
depends on the activity of the regulatory proteins, and the converse is also true.

Switching between active reactions by r-deFBA is illustrated in Figure 6.10. We
can see in Figure 6.10A that in the beginning, Carbon 1 and Hext are co-utilized
and H is obtained only from Hext. Since the model starts with a small biomass, even
the TCA cycle is first inactive. Only when enzyme ER5a has been synthesized is
the TCA cycle activated after 18 minutes, see Figure 6.10B. Next in Figure 6.10C,
reaction R8b is activated to furnish the TCA cycle with amino acid H, while releas-
ing ATP and NADH. Now, Carbon 1 is no longer sufficient to provide energy for
growth. Finally, in Figure 6.10D, Carbon 1 has been exhausted, enzyme ER2b is
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Figure 6.10: Patterns of active reactions predicted by r-deFBA in Scenario 2.

synthesized and R2b is used to generate B.

Regarding the discrete state transitions, we divide the simulation period of r-deFBA
again into three phases (a), (b), and (c), see Figure 6.9A and Figure 6.9B. During
the last phase (c), there is no growth since all the nutrients are exhausted. The key
regulatory pathways analyzed in Scenario 2 are operated by the regulatory proteins
RPb and RPh. First, R2a is active rather than R2b for better metabolizing the carbon
source. Hence, RPb is off until Carbon 1 is used up. Soon after growth phase
(a), R2b has to be activated to use H, so that RPb is triggered to be produced (see
Figure 6.9B). The enzymes ER2a, ER7 then switch to off. Before Hext has been
exhausted, the expression state of RPh is on because Th has to be active for the
uptake. Enzyme ER8a is inhibited by RPh. The state transitions related with RPO2
are the same as in Scenario 1 because external oxygen is given in excess during the
whole period. Carbon 1 is given initially and exhausted at the end of growth phase
(a). Although Carbon 2 is set to 0 and the cell cannot use it, the expression state of
ETc2 is activated when RPc1 is totally degraded, due to the regulatory constraints.
In Scenario 2, this happens by chance at the time when Hext is used up. So, ETc2
is on in phase (c). Meanwhile, both Carbon 1 and Hext have been used up and the
two reaction signals vTh > ϑv and vR2b > ϑv are inactive. The indicator variables
RPb,RPh are turned off and the associated proteins RPb, RPh are degraded in the
last phase, see Figure 6.9B.
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6.7 Conclusion
Overall, r-deFBA computes optimal control strategies for hybrid automata repre-
senting metabolic-regulatory networks. Compared to previous approaches, in par-
ticular rFBA (Covert et al., 2001) and deFBA (Waldherr et al., 2015), r-deFBA
allows for more realistic and accurate predictions by integrating the continuous
dynamics of metabolism, including cellular resource allocation, with discrete reg-
ulatory control.

In purely discrete modeling frameworks for regulatory networks like the asyn-
chronous logical formalism of R. Thomas (Thomas and Kaufman, 2001), it is not
possible to quantify the time delay between discrete state transitions. The hybrid
automata approach proposed in (Liu and Bockmayr, 2019b) solves this problem
by using continuous variables for regulatory protein amounts together with thresh-
olds that trigger the discrete jumps. However, exploring the dynamics of these
hybrid automata is difficult due to the exponentially large discrete state space. By
computing an optimal control strategy for the hybrid automaton, r-deFBA is able
to predict, even in large state spaces, the quantitative dynamics of the regulatory
proteins together with the sequence of discrete state transitions that are needed to
achieve optimal growth.

In summary, r-deFBA allows predicting optimal cellular resource allocation in
a dynamic environment by integrating metabolic reactions, enzyme-costs, quota
compounds, and transcriptional regulation. Thus, r-deFBA considerably extends
the predictive capabilities of current constraint-based modeling approaches as sum-
marized in Table 4.1. Based on a hybrid discrete-continuous dynamics, r-deFBA is
able to predict not only the continuous evolution of macromolecules and extracel-
lular metabolites, but also the sequence of regulatory events needed to achieve an
optimal growth. Finally, r-deFBA provides a solution for how to share enzymes be-
tween different reactions, which includes ribosome allocation in protein synthesis
as a special case.
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Chapter 7

Perspectives: Formalizing
metabolic-regulatory networks at
population-level by product
automata

In this chapter, we illustrate a prospective application of the theoreti-
cal work in Chapter 5. In contrast to investigating individual-cell-level
metabolic-regulatory networks (MRNs), the composition of hybrid au-
tomata is introduced to model the dynamics of metabolism and regulatory
states at population-level. In particular, we formalize the population-level
metabolic-regulatory networks by product automata. Such a product au-
tomaton indicates a cellular community, in which each cell is denoted by
a hybrid automaton representing a MRN. To validate the formalization, we
present two case studies in Section 7.4.

7.1 Introduction
Microbes are ubiquitously living in nature within communities. Mathematical
models of metabolism and growth of microbial populations often lump the cells
of a population into an aggregate model, which are so-called non-segregated mod-
els that do not distinguish the individual cells (De Jong et al., 2017). However, the
effects of cell heterogeneity and the interactions between community members are
lost in these non-segregated models. The microbial populations in nature or mi-
crobial cultures in industry are comprised of heterogeneous cells that may differ in
size, intracellular state, metabolite concentrations, etc. The cells may be cooperat-
ing, communicating, competing, or regulating each other as a complex population.
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For instance, there can be a competitive relationship in which the community mem-
bers fight for the limited nutrients in an environment. It is also often the case in
nature that one kind of cells enables the utilization of the by-products or secretions
of another kind of cells. Such relationships are commensalism and mutualism.
There are also signaling pathways that the cell could use to affect its neighboring
cells, such as the Delta-Notch signaling pathway (Campos-Ortega, 1995; Appel
et al., 2001). Such different cellular relationships may lead to completely diverse
behaviors, structures, and dynamics of the community. For example, the micro-
bial population in which the members could cross-feed would grow better than a
community without such metabolically beneficial cooperation.

Studying and predicting the behaviors of a cellular community rather than of indi-
vidual cells has important implications. For example, synthetic microbial consortia
provide a platform to engineer population-level phenotypes that exhibit good ro-
bustness to the changing environment and are beneficial to the population only
when cultured together (Brenner et al., 2008; Chen et al., 2015). Enabling the de-
sign of a microbial community with a particular purpose, such as the production
of drugs, fuels or food, would be a highly promising application in the fields of
biotechnology and synthetic biology. However, established constraint-based mod-
eling approaches and resource allocation studies mostly focus on individual-based
models. They fail to predict microbial community interactions (Gottstein et al.,
2016; Succurro et al., 2017).

In Chapter 5, we formalized an individual-level metabolic-regulatory network
(MRN) as a hybrid automaton. Such a hybrid automaton considers the integration
of catabolism, anabolism, and transcriptional gene regulation, which is suitable for
describing one cellular metabolic-regulatory system. Naturally, a microbial com-
munity which includes numerous cells can be modeled as a composition of hybrid
automata denoting individual MRNs, which is called a product automaton.

In this chapter, we concentrate on exploring the population-level dynamics, includ-
ing continuous metabolism and regulatory discrete states. Specifically, we model
a cellular population as the composition of individual metabolic-regulatory net-
works. Mathematically, we formalize such a population with the theory of product
automata. The cellular relationships that are considered in this formalization can
be competitiveness, commensalism, and mutualism, in which the cells may inter-
act by competing for the same nutrients or cross-feeding. Besides, considering that
the cells may activate or inhibit each other by signaling molecules, we are also
able to model the transcriptional response to the signals between cells. However,
other cellular interactions and communications such as the physical interactions
and signal transductions are hard to consider and are not covered in this chapter.

We first show that the microbial community composed of cells with relation-
ships such as competition, commensalism and mutualism, can be considered as
the composition of hybrid automata representing individual metabolic-regulatory
networks. Such a microbial population is then formalized by a product automaton.
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Finally, using the case studies in Section 7.4, we validate that the dynamics of con-
tinuous metabolism and regulatory discrete states of a cellular community can be
analyzed by the product automata framework.

7.2 Hybrid system of the composition of MRNs
It is important to keep in mind that the cellular relationships considered here focus
on metabolic interactions, particularly the metabolite exchange interactions, and
regulations at the transcriptional level. The common kinds of cellular relationships
in a population are competition, commensalism, and mutualism. We illustrate these
relationships in Figure 7.1. In competition, the cells must compete for the shared
nutrients in the environment. In commensalism, one cell may reuse the by-products
secreted by another cell. There is also mutualism in which both cells could benefit
from each other. However, other types of relationships, e.g. physical interactions,
signal transductions and predation, are not discussed in this chapter.

Metabolic interactions Competition Commensalism/mutualism

Nutrients

v
XRP

R
RP RE

ESignal
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Nutrients

Figure 7.1: Metabolite exchange interactions between community members.

In Figure 7.2, we abstract a cellular community to a population-level metabolic-
regulatory network, which considers the metabolic interactions or transcriptional
regulations between community members. The abbreviations and notation are the
same as explained in Section 5.2. Figure 7.2 presents a two-cellular community
composed by cell 1 and cell 2, which are indicated by the two associated MRNs.
However, it would also be possible to model a multi-cellular community by using
the composition of multiple MRNs.

7.2.1 Continuous variables
Clearly, the cells within a community may share extracellular metabolites repre-
sented by Y. Thus, we define the total extracellular species as the union of the
external metabolites of each MRN, which is Ycell1 ∪ Ycell2 in the two-cellular
case shown in Figure 7.2. The intracellular metabolite species of the community
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Figure 7.2: A two-cellular metabolic-regulatory network. The by-products or secretions belong
to the extracellular species denoted by the union set Ycell1 ∪ Ycell2. We remark that the signaling
molecules produced by one cell to regulate the other are also included in the extracellular species set.
The individual MRN structure has been described in Section 5.2.

members are independent. Therefore, the continuous variables are all metabolite
amounts, including the extracellular species and intracellular metabolites of all the
cells in the community. Thus, we obtain a set of molecular species of the microbial
community of cell 1 and cell 2:

M = Ycell1 ∪ Ycell2 ∪ Xcell1 ∪ Xcell2 ∪ Ecell1∪

Ecell2 ∪ Qcell1 ∪ Qcell2 ∪ RPcell1 ∪ RPcell2.
(7.1)

The purely continuous dynamics of metabolites can be modeled by ODEs accord-
ing to the Law of Mass Action (Waage and Guldberg, 1864), Michaelis-Menten
kinetics (Menten and Michaelis, 1913), or Monod equation (Monod, 1949), which
can be formulated by

Ṁ(t) =
dM
dt

= F(M,K, S , t), (7.2)

where K includes all the kinetic parameters, and S represents the stoichiometric
coefficients of the metabolic reactions of the cellular community and t is time.

7.2.2 Discrete states
For the discrete states, we assume that for each regulated protein p in the population
there are two possible states on and off, describing whether or not the gene encod-
ing p is expressed at a particular time t, cf. Chapter 5. As shown in Figure 7.2, the
cells in a microbial community only share extracellular metabolites, particularly
nutrients, by-products, and signaling molecules. The intracellular metabolites are
separated by cellular membranes. In other words, the MRNs that describe com-
munity cells have common continuous variables but do not share discrete states of
transcriptional regulation.
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Therefore, the whole discrete state space consists of all the possible combinations
of expression states of regulated proteins in all community members, if we com-
pose the relevant MRNs together as a population-level metabolic-regulatory net-
work. Thus, we obtain the discrete state space {0, 1}RPcell1REcell1∪RPcell2∪REcell2 for the
two-cellular community in Figure 7.2. Here, the Boolean value 0 corresponds to
off and the value 1 to on. The regulatory rules for discrete state transitions in the
community can be formalized as

p(t) = fp(RPcelli ,Ycell1∪cell2(t),Xcelli(t)), (7.3)

where for all p ∈ RPcelli ∪ REcelli , i ∈ {1, 2} and fp is the logical function with
Boolean combinations of atomic formulas of the form x ≥ θ, where x is a real
continuous variable and θ denotes the relevant threshold value.

7.3 Combining discrete and continuous dynamics in a
product automaton

In Figure 7.2, the two-cellular community consists of two interacting metabolic-
regulatory networks. We model each as a hybrid automaton Hcell1 and Hcell2 re-
spectively. The two hybrid automata interact with each other by shared metabolites
and regulatory events.

Composing the discrete states together with continuous dynamics of hybrid au-
tomaton Hcell1 = {Loccell1, Σcell1, Edgecell1, Xcell1, Initcell1, Invcell1, Flowcell1,

Jumpcell1} and hybrid automaton Hcell2 = {Loccell2, Σcell2, Edgecell2, Xcell2, Initcell2,

Invcell2, Flowcell2, Jumpcell2} with Loccell1 ∩ Loccell2 = ∅, leads to a product
automaton

H = (Loc,Σ, Edge, X, Init, Inv, Flow, Jump) (7.4)

with the the following components (Raskin, 2005):

– Loc is a finite set of all possible combinations of the expression states of all
the regulated proteins inside the two cells, including regulatory proteins and
regulated enzymes. So, Loc = {0, 1}REcell1∪RPcell1∪REcell2∪RPcell2 .

– Σ = Σcell1 ∪ Σcell2 is a finite set of events. The events are described by the
regulatory rules represented by the logical function in Eq. 7.3.

– Edge ⊆ Loc × Σ × Loc represents the possible state transitions, which are
labeled by events from Σ. We have ((l1cell1, l

1
cell2), σ, (l2cell1, l

2
cell2)) ∈ Edge iff

either:

1. σ ∈ Σcell1\Σcell2, (l1cell1, σ, l
2
cell1) ∈ Edgecell1 and l1cell2 = l2cell2;

2. σ ∈ Σcell2\Σcell1, (l1cell2, σ, l
2
cell2) ∈ Edgecell2 and l1cell1 = l2cell1;

3. σ ∈ Σcell1 ∩ Σcell2, (l1cell1, σ, l
2
cell1) ∈ Edgecell1 and (l1cell2, l2cell2) ∈

Edgecell2.
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In condition 1 and condition 2, the two automata do not share events and
the unshared events are interleaved. However, condition 3 expresses that the
shared events have to occur synchronously in the two automata.

– X = Xcell1 ∪ Xcell2 represents a finite set of continuous variables, including
all external species, intermediate metabolites, regulatory proteins, catalytic
molecules and quota molecules of the two cells. That is X = M = Ycell1 ∪

Ycell2 ∪ Xcell1 ∪ Xcell2 ∪ RPcell1 ∪ RPcell2 ∪ Ecell1 ∪ Ecell2 ∪ Qcell1 ∪ Qcell2.

– Init((lcell1, lcell2)) is a predicate that describes the possible initial values for
the continuous variables when the automaton starts in state (lcell1, lcell2) with
Init((lcell1, lcell2)) = Initcell1(lcell1)∧ Initcell2(lcell2) for any (lcell1, lcell2) ∈ Loc.

– Inv((lcell1, lcell2)) is a predicate that describes the possible values of the con-
tinuous variables when the control of the automaton lies in (lcell1, lcell2) with
Inv((lcell1, lcell2)) = Invcell1(lcell1) ∧ Invcell2(lcell2) for any (lcell1, lcell2) ∈ Loc.

– Flow((lcell1, lcell2)) is a predicate which describes the possible continuous
evolutions when the control of the automaton stays in (lcell1, lcell2) with
Flow((lcell1, lcell2)) = Flowcell1(lcell1) ∧ Flowcell2(lcell2) for any (lcell1, lcell2) ∈
Loc.

– Jump is a function that assigns to each edge ((l1cell1, l
1
cell2), σ, (l2cell1, l

2
cell2)) ∈

Edge a predicate Jump((l1cell1, l
1
cell2), σ, (l2cell1, l

2
cell2)) describing when the dis-

crete change modeled by ((l1cell1, l
1
cell2), σ, (l2cell1, l

2
cell2)) is possible and what

the possible updates for the continuous variables are when the transition is
made. For any edge ((l1cell1, l

1
cell2), σ, (l2cell1, l

2
cell2)) ∈ Edge, we have that:

1. Jump((l1cell1, l
1
cell2), σ, (l2cell1, l

2
cell2)) = Jump((l1cell1, σ, l

2
cell1)) ∧∧

x∈Xcell2\Xcell1 x′ = x if σ ∈ Σcell1\Σcell2;

2. Jump((l1cell1, l
1
cell2), σ, (l2cell1, l

2
cell2)) = Jump((l1cell2, σ, l

2
cell2)) ∧∧

x∈Xcell1\Xcell2 x′ = x if σ ∈ Σcell2\Σcell1;

3. Jump((l1cell1, l
1
cell2), σ, (l2cell1, l

2
cell2)) = Jump((l1cell1, σ, l

2
cell1)) ∧

Jump((l1cell2, σ, l
2
cell2)) if σ ∈ Σcell1 ∩ Σcell2.

In conditions 1 and 2, the effect of discrete jumps that are local to one hybrid
automaton is described by the jump function of that automaton. Condition 3
expresses that the effect is the conjunction of the effects of each discrete
jump when the discrete changes are shared by the two automata.

The formalization above presents the composition of two hybrid automata Hcell1
and Hcell2, which indicates a population consisting of cell 1 and cell 2. However, it
would also be possible to model a multi-cellular community using the composition
of multiple hybrid automata of MRNs. For example, we present a case study that
models a three-cellular competition using a product automaton in Section 7.4.1.
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7.4 Biological applications
7.4.1 Modeling competitiveness of cells having different βR

Several studies have posited that cellular growth is a balance between production
of ribosomal and non-ribosomal proteins (Maitra and Dill, 2015), and a result of
how the cells allocate their resources to diverse functional proteins (Weiße et al.,
2015). In this case, we consider three cells in a community, which allocate differ-
ent fractions of resources to their ribosomes. Each cell is represented by the carbon
catabolite repression network (CCR) shown in Figure 5.4. For ease of understand-
ing, we illustrate the three-cellular community in Figure 7.3.

C1

C2

CCR model

Cell 1

Cell 2

Cell 3

CCR model

CCR model

Figure 7.3: A three-cellular community composed of three CCR models described in Section 5.5.1.

In the dynamics of a hybrid automaton Hdiaux describing the CCR model, βR de-
notes the fraction of resources allocated to the production of ribosome R, see Sec-
tion 5.5.1. In this section, we use a product automaton as the composition of three
hybrid automata of type Hdiaux to model the competition between three cells for
the common carbon sources C1 and C2.

In each CCR network (see Figure 5.4), there are 5 intracellular metabolites
M, Q, T1,T2, RP. The expression states of the two proteins RP,T2 are regulated.
Since C1 and C2 are shared by the three cells, the continuous variables of the three-
cellular system are composed of the two extracellular carbon sources and 5×3 intra-
cellular metabolites, which is 17 in total. The discrete expression state of the regu-
latory protein RP in each model is regulated by the same external carbon source C1.
The expression state of T2 in each cell is decided by the regulatory protein RP in
the same cell. Clearly, the three cells do not share discrete states. Thus, we obtain
the set of discrete states Loc = {(RPcell1,T2cell1,RPcell2,T2cell2,RPcell3,T2cell3) |
RPcell1,T2cell1,RPcell2,T2cell2,RPcell3,T2cell3 ∈ {0, 1}}, which are 26 in total.

For the dynamics of the continuous variables, we shall consider intracellular
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metabolites and extracellular substrates separately. The intracellular metabolites
in different cells do not depend on each other, and the three cells also do not share
discrete states. So, the dynamics of intracellular metabolites can be defined by the
ODEs system that corresponds to each state as described in Section 5.5.1. Take the
production rates of proteins in cell 1 as example. The synthesis rate vp of a protein
p in cell 1 that consists of np amino acids, is

vp =
βpcell1

np
· vM, with vM =

kr · Mcell1 · Rcell1

Kr + Mcell1
, (7.5)

for all p ∈ {RPcell1,T1cell1 ,T2cell1 ,Rcell1,Qcell1}. The parameter values of np, kr, and
Kr are listed in Table 5.1.

The difference between the three CCR models is that we set βR to relatively high,
middle and low values. Technically, we individually fix (βRcell1 , βRcell2 , βRcell3) =

(0.4, 0.25, 0.1) for the three CCR models, regardless of the discrete states, and then
average the resources left for the other proteins that are expressed in each state.
Take cell 1 for example, βpcell1 = (1 − βRcell1)/4, p ∈ {Qcell1,RPcell1,T1cell1 ,T2cell1}

when RPcell1,T2cell1 are both on, and βpcell1 = (1 − βRcell1)/2, p ∈ {Qcell1,T1cell1}

when RPcell1,T2cell1 are both off. The other parameters and initial conditions are
set to be the same values for each cellular model to eliminate the effects of other
factors.

The extracellular substrates C1 and C2 provide carbon sources for all three cells.
Thus, their dynamics depend on the transporters of the three cells given by

Ċ1 = −
kcat1 ·C1 · T1cell1

KT + C1
−

kcat1 ·C1 · T1cell2

KT + C1
−

kcat1 ·C1 · T1cell3

KT + C1
, (7.6)

Ċ2 = −
kcat2 ·C2 · T2cell1

KT + C2
−

kcat2 ·C2 · T2cell2

KT + C2
−

kcat2 ·C2 · T2cell3

KT + C2
. (7.7)

All the kinetic parameters are the same as in the CCR model of Section 5.5.1, see
Table 5.1.

The threshold γ = 20 mmol while the α = 0.01 mmol in this case. As initial con-
dition, we set C1 = C2 = 103 mmol. The initial values of intracellular metabolites
in the three cells are set to: (C,M,RP,R,T1,T2,Q) = (200, 0, 0.01, 0, 0, 0.1) for
each cell. As initially C1 = 1000 and RP = 0 in this case, RP is on and T 2 is
on in all the three cells. Hence, the three-cellular system initially is in location
(on, on, on, on, on, on).

The results are shown in Figure 7.4 and Figure 7.5. We can see in Figure 7.5
that C2 is only used after C1 is exhausted. From the dynamics of RP and T2, we
can see that the state transitions in the three models are (on, on) → (on, off) →
(off, off)→ (off, on), where the first component is RP and the second is T 2. The
discrete jumps of these three cells happen almost at the same time point. As we set
(βRcell1 , βRcell2 , βRcell3) = (0.4, 0.25, 0.1) for the three cells, the ribosome production
in cell 1 is fastest in the three-cellular community.
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Figure 7.4: Biomass comparison.

Since the cell 1 allocates 40% of its resources Mcell1 to ribosome Rcell1, it has the
highest ribosomal production, see Figure 7.5. However, unexpectedly, the pro-
duction of other proteins is not much faster as compared to cell 2 and cell 3. In
particular, the T2cell1 amount is even lower than the amount of T2cell2 and T2cell3 .
Looking at the biomass comparison in Figure 7.4, we can see the biomass of cell 1
is increasing the slowest. The reason is evident if we further look at the dynamics
of the precursors M. A higher production of ribosome would consume so many
precursors that the production of other enzymes is limited by the low level of the
precursor pool. The situation gets even worse at around 25 min in that Mcell1 gets
close to 0. Therefore, the biomass of cell 1 increases comparatively slowly within
this three-cellular community (see Figure 7.4).

Another interesting observation is that Biomasscell2 exceeds Biomasscell3 after
around 31 min, see Figure 7.4. Cell 2 finally ends up with the maximum biomass
among the three cells. The reason is also obvious. Allocating only 10% of the
resources to ribosome in cell 3 results in the lowest level of ribosome Rcell3. Al-
though the remaining precursors that are available for the non-ribosomal proteins
are in excess inside cell 3, the production rates of proteins are limited by the lowest
ribosome amount compared with the other two cells.

We conclude that allocating too many resources to the production of ribosomal
proteins would shrink the precursor pool, which further slows down the protein
expression level. Yet, allocating too few resources to the ribosomal proteins may
result in a low ribosome level that also retards the overall protein expression rates.
Therefore, the resource allocation to ribosomal and non-ribosomal proteins signif-
icantly affects the cellular growth, and the cell with the optimal resource allocation
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Figure 7.5: Dynamics of metabolite species in the three-cellular community.

would gain larger biomass and win in the competition within the microbial com-
munity.

7.4.2 A community consisting of activator and repressor strains

Constructing “activator” and “repressor” strains

In this section, we use our product automata framework to model a community con-
sisting of two distinct microbial strains, inspired by the work in (Chen et al., 2015).
First, an “activator” strain and a “repressor” strain are designed to create a micro-
bial consortium, see Figure 7.6. Figure 7.6A shows that the “activator” strain in-
creases the protein expression in both strains while the “repressor” strain decreases
the protein expression in both strains. To model such activator-repressor popula-
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A B
Activator strain

Repressor strain

N

Mact

Mrep

AactlacIact

Irep
lacIrep

Activator strain

Repressor strain

Arep

Iact
TAact

TIact

TArepTIrep

Ract

Rrep

AoutIout

Tact

Trep

Figure 7.6: A community consisting of “activator” and “repressor” strains and their metabolic-
regulatory networks. By regulating the expression state of ribosomes (Ract and Rrep), the “activator”
strain increases the protein expression in both strains while the “repressor” strain decreases the pro-
tein expression in both strains.

tion with a product automaton, we design two metabolic-regulatory networks that
enzymatically produce and transcriptionally respond to signaling molecules.

In detail, N represents the shared nutrients of the two strains. Mact, Mrep denote the
precursors that are produced from nutrients N and catalyzed by enzymes Tact and
Trep respectively. The precursors Mact, Mrep are used to build proteins individually
in each strain. Ract and Rrep are ribosomes. In both strains, we use the expression
state of ribosomes, which is denoted by Ract, Rrep ∈ {on, off}, to indicate the level
of protein expression. This is because all the translational rates of proteins are
affected by ribosome abundance. If the production state of ribosome turns off,
protein expression will correspondingly decline.

For the positive regulation, we assume that the activator strain enables the produc-
tion of a signaling molecule Aact while the repressor strain does not. On one hand,
Aact activates the expression state of ribosome Ract with threshold θA. Ract has two
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states, either on or off, depending on Aact, lacIact and their thresholds, see Fig-
ure 7.6. On the other hand, Aact is secreted into Aout to the medium by transporter
TAact . Aout is further uptaken into Arep by transporter TAcap of the repressor strain.
This transportation is the only way to accumulate Acap in the repressor strain as
it does not produce it. Arep also serves as the signaling molecule to activate the
production state Rrep of Rrep with threshold θA. Rrep is either on or off, depending
on Arep, lacIrep and their thresholds. Thus, by producing the signaling molecule
Aact, the activator strain activates the protein expression of both strains.

For the regulation of ribosome production, the regulatory proteins lacIact and
lacIrep are additionally introduced to inhibit Ract and Rrep respectively, together
with the signaling molecules Aact and Arep. Therefore, we obtain the regulatory
rules of Ract and Rrep:

Ract = on ⇔ (Aact ≥ θA and lacIact < θlacI), (7.8)

Rrep = on ⇔ (Arep ≥ θA and lacIrep < θlacI). (7.9)

where θA and θlacI are thresholds.

For a negative regulation, we introduce Irep as a signaling molecule that is only
produced in the repressor strain. When above its threshold θI , Irep activates the
production of regulatory protein lacIrep. Above the threshold θlacI , lacIrep fur-
ther inhibits the expression of Ract. Meanwhile, Irep is secreted to the medium by
transporter TIrep . Iout is then uptaken by transporter TIact to accumulate Iact in the
activator strain. Iact also activates the production of lacIact, which further inhibits
the expression of Ract. Therefore, we get the regulatory rules of lacIact and lacIrep:

lacIact = on ⇔ (Iact ≥ θI), (7.10)

lacIrep = on ⇔ (Irep ≥ θI), (7.11)

where θI is the threshold value.

For the signaling molecules Aact and Irep, we assume they are small proteins com-
posed of 100 amino acids produced from precursors Mact and Mrep respectively.
Therefore, in the activator strain, the production of the proteins Tact, TIact , TAact ,

Aact, Ract, lacIact is catalyzed by ribosome Ract. In the repressor strain, it is Rrep

that catalyzes the production of the proteins Trep, TIrep , TArep , Irep, Rrep, lacIrep.
The full details of the metabolic-regulatory networks of the two strains are given
in Table 7.1.

Modeling the activator-repressor consortium by a product automaton

In this section, we build a product automaton Hact−rep for simulating the commu-
nity of the activator strain and repressor strain as illustrated in Figure 7.6B. We
obtain the continuous variables Xact−rep = {N, Mact, Aact, Ract, Tact, TAact , TIact ,
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Activator strain
Biomass reaction Enzyme Turnover rate Degradation rate Regulation
npM → p kp,R

cat = kr/np [1/min] kdp [1/min]
400Mact → Tact Ract 3.15 0.01
7459Mact → Ract Ract 0.1689 0.01 Aact ≥ θA & lacIact < θlacI

1500Mact → TAact Ract 0.84 0.01
1000Mact → TIact Ract 1.26 0.01
300Mact → lacIact Ract 4.2 0.2 Iact ≥ θI

100Mact → Aact Ract 12.6 0.01
Metabolic reaction Enzyme Turnover rate [1/min]
N → Mact Tact kcatN = 3000 0
Aact → Aout TAact kcatA = 100 0
Iout → Iact TIact kcatI = 250 0.05

Repressor strain
Biomass reaction Enzyme Turnover rate Degradation rate Regulation
npM → p kp,R

cat = kr/np [1/min] kdp [1/min]
400Mrep → Trep Rrep 3.15 0.01
7459Mrep → Rrep Rrep 0.1689 0.01 Arep ≥ θA & lacIrep < θlacI

1500Mrep → TArep Rrep 0.84 0.01
1000Mrep → TIrep Rrep 1.26 0.01
300Mrep → lacIrep Rrep 4.2 0.2 Irep ≥ θI

100Mrep → Irep Rrep 12.6 0.05
Metabolic reaction Enzyme Turnover rate [1/min]
N → Mrep Trep kcatN = 3000 0
Aout → Arep TArep kcatA = 100 0.01
Irep → Iout TIrep kcatI = 250 0

Table 7.1: Metabolic and protein production reactions with corresponding parameters.

lacIact, Iact, Arep, Rrep, Trep, TArep , TIrep , lacIrep, Irep, Aout, Iout} describing time-
dependent molar amounts of all the metabolites. The discrete locations correspond
to the different on − off states of Ract, lacIact,Rrep and lacIrep, which means there
are 24 = 16 discrete states. So, Locact−rep = {(Ract, lacIact, Rrep, lacIrep) | Ract,

lacIact,Rrep, lacIrep ∈ {on, off}}.

We also use a set of Michaelis-Menten equations to specify the dynamics of
Hact−rep at each location. Nutrients N provide resources for both strains. Below,
we illustrate the dynamics of the continuous variables in state (on, on, on, on) as
an example:

1. Ṅ = −
kcatN ·N·Tact

KM+N −
kcatN ·N·Trep

KM+N ,

2. Ṁact =
kcatN ·N·Tact

KM+N −
kr·Ract ·Mact

Kr+Mact
,

3. Ȧact = 1
6 ·

kAact ,R
cat ·Ract ·Mact

Kr+Mact
−

kcatA·TAact ·Aact
KM+Aact

− kdAact · Aact,
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4. Ṫact = 1
6 ·

kTact ,R
cat ·Ract ·Mact

Kr+Mact
− kdTact · Tact,

5. ṪAact = 1
6 ·

k
TAact ,R
cat ·Ract ·Mact

Kr+Mact
− kdTAact · TAact ,

6. ṪIact = 1
6 ·

k
TIact ,R
cat ·Ract ·Mact

Kr+Mact
− kdTIact · TIact ,

7. İact =
kcatI ·TIact ·Iout

KM+Iout
− kdIact · Iact,

8. Ṙact = 1
6 ·

kRact ,R
cat ·Ract ·Mact

Kr+Mact
− kdRact · Ract,

9. ˙lacIact = 1
6 ·

klacIact ,R
cat ·Ract ·Mact

Kr+Mact
− kdlacIact · lacIact,

10. Ṁrep =
kcatN ·N·Trep

KM+N −
kr·Rrep·Mrep

Kr+Mrep
,

11. Ȧrep =
kcatA·TArep ·Aout

KM+Aout
− kdArep · Arep,

12. Ṫrep = 1
6 ·

k
Trep ,R
cat ·Rrep·Mrep

Kr+Mrep
− kdTrep · Trep,

13. ṪArep = 1
6 ·

k
TArep ,R

cat ·Rrep·Mrep
Kr+Mrep

− kdTArep
· TArep ,

14. ṪIrep = 1
6 ·

k
TIrep ,R

cat ·Rrep·Mrep
Kr+Mrep

− kdTIrep
· TIrep ,

15. İrep = 1
6 ·

k
Irep ,R
cat ·Rrep·Mrep

Kr+Mrep
−

kcatI ·TIrep ·Irep

KM+Irep
− kdIrep · Irep,

16. Ṙrep = 1
6 ·

k
Rrep ,R
cat ·Rrep·Mrep

Kr+Mrep
− kdRrep · Rrep ,

17. ˙lacIrep = 1
6 ·

k
lacIrep ,R
cat ·Rrep·Mrep

Kr+Mrep
− kdlacIrep · lacIrep ,

18. Ȧout =
kcatA·TAact ·Aact

KM+Aact
−

kcatA·TArep ·Aout

KM+Aout
,

19. İout =
kcatI ·TIrep ·Irep

KM+Irep
−

kcatI ·TIact ·Iout
KM+Iout

.
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w θA θI θlacI KM kr Kr

100 0.3 0.2 0.1 1000 1260 7
mg/mmol mmol mmol mmol

Table 7.2: kr denotes the elongation rate and Kr,KM are Michaelis constants.

Dynamic oscillations

Figure 7.7: A dynamic trajectory of Hact−rep over time period [0, 600].

To understand the dynamic behaviors of Hact−rep, we set the nutrients N to +∞.
With the initial values

Mact Aact Iact Tact Ract TAact TIact lacIact Aout

100 1 0 0 0.01 0 0 0 0
(7.12)

and

Mrep Arep Irep Trep Rrep TArep TIrep lacIrep Iout

100 1 0 0 0.01 0 0 0 0
(7.13)
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we obtain a dynamic trajectory of Hact−rep in time span [0, 600], see Figure 7.7.
We can see that Hact−rep starts in state (on, off, on, off) based on the initial val-
ues. Both lacIact and lacIrep are not produced in the beginning. However, with the
production of the signaling molecule Irep, lacIrep turns on. This is the first state
transition, with jump to state (on, off, on, on). Then, Iact also reaches its threshold
by transporting signaling molecule Iout from the medium. The discrete state transits
to (on, on, on, on). As the regulatory proteins lacIact and lacIrep are both synthe-
sized in this state, lacIact reaches θlacI next. So, the state jumps to (off, on, on, on).
Several minutes later, lacIrep also reaches its threshold and the discrete state turns
to (off, on, off, on). In Figure 7.7, this is the first time Ract and Rrep decline.
Then, the evolution of proteins exhibits the rhythms shown in Figure 7.7.

The amounts of the signaling molecules Aact, Arep, Iact and Irep always oscillate
within a range, see their dynamics in Figure 7.7. However, the four signaling
molecules are always above their thresholds. This means that during the stable
oscillation, both lacIact and lacIrep are on. An interesting observation is that
lacIact, lacIrep do not keep increasing, albeit with on expression state but oscil-
late around the threshold θlacI = 0.1. With the regulatory rules

Ract = on ⇔ (Aact ≥ θA and lacIact < θlacI), (7.8)

Rrep = on ⇔ (Arep ≥ θA and lacIrep < θlacI), (7.9)

as a result, Ract and Rrep are shifting between on and off due to the oscillation of
lacIact and lacIrep above and below θlacI .

Take the activator strain as an example. Since Aact is always oscillating above θA,
Ract jumps to off only if lacIact above its threshold θlacI . In state off, the ribosome
production is inhibited and Ract decreases. However, the reduction of the ribosome
amount further decreases the protein expression level. Thus, lacIact will decline if
its expression cannot compensate for the degradation. Whenever lacIact is below
θlacI , Ract turns on again and Ract increases. When lacIact ≥ θlacI , Ract turns off
again. Then comes another turn.

The dynamics of the total biomass of the two strains is shown in Figure 7.8. The ex-
ponential increase of the biomass in both strains demonstrates that the community
composed of the activator strain and the repressor strain lives well when cultured
together, albeit with the positive and negative regulation.

In conclusion, this case study shows that there is a stable oscillation when the “ac-
tivator” strain and the “repressor” strain in Figure 7.6 are cultured together. Both of
them can survive and neither strain dies in our simulation even if the parameters,
particularly the initial values, are set without any experimental data. We believe
that modeling the metabolite dynamics and gene regulation at population-level is
of great significance in the creation of cooperative strains for metabolic engineering
or synthetic biology.
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Figure 7.8: Dynamics of total biomass of the activator strain and the repressor strain.

7.5 Conclusion and discussion
In this chapter, we formalize population-level metabolic-regulatory networks by
product automata, which allows including the metabolic interactions and transcrip-
tional regulation between community members. As a proof of concept, we have
exemplified two case studies to understand the population-level dynamics under
gene regulation. The mathematical framework we introduce in this chapter allows
not only an understanding of the metabolically cooperative and competitive rela-
tionships of cells, but also how metabolic dynamics and discrete states are affected
by the shared extracellular resources and signaling molecules.

Yet, the cellular interactions considered in our product automata are mainly
metabolic exchange interactions, e.g. competition for shared nutrients or mutual
profits by cross-feeding, and transcriptional responses to signaling molecules of
neighboring cells. It remains an enormous challenge to elucidate more general
cellular interactions between community members, especially when physical inter-
action and signal transduction are included.

Up till now, we have shown several applications of the formalization of MRNs by
hybrid automata in Chapter 5. We are able to explore the discrete and continu-
ous dynamics of the system, and we can predict the optimal dynamics achieving
maximal biomass. We also introduced the theory of product automata to study mi-
crobial communities. Yet, there is a precondition necessary for these applications:
we need precise kinetic parameters to specify the hybrid automata. However, the
enzymatic kinetic parameters are still highly difficult to obtain and most of them
are unknown currently.

131



Chapter 7. Perspectives: Formalizing metabolic-regulatory networks at
population-level by product automata

Model checking, as a common verification technique, provides another promising
direction for making use of our hybrid automata describing metabolic-regulatory
systems, especially when the kinetic parameters are unknown. In a hybrid sys-
tem, the soundness of functionality depends on the parameter setting. Identifying
the right constraints on the free parameters ensuring the sound functionality of a
hybrid automaton has promising implications. In our hybrid automata of MRNs,
the kinetic parameters define the continuous evolution of metabolites and are also
important for the state transitions. The parameters also affect the correct func-
tionality of a metabolic-regulatory network such as the management of the diauxic
shift. Therefore, finding the suitable constraints for the unknown kinetic parame-
ters would be among the most important problems in synthetic biology and engi-
neering.

We believe this could be a promising way to do model-checking for a cellular
metabolic-regulatory system. There are approaches available for proving the cor-
rectness of hybrid systems, although it is one of the most challenging problems in
computer science and mathematics. For example, differential dynamic logic (dL)
has been introduced for reasoning and analysis of hybrid automata (Platzer, 2007).
What’s more, a hybrid theorem prover KeYmaera had been developed for validat-
ing hybrid systems (Platzer and Quesel, 2008). In the end, we hope that the hybrid
system tools for simulation, reachability analysis, reasoning, verification can be
used to study cellular mechanisms and make contributions to synthetic biology
and biotechnologies.
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Chapter 8

Conclusion

This PhD thesis focused on integrating the dynamics of metabolism, protein ex-
pression, transcriptional regulation, and resource allocation. Before the start of
this PhD project, the constraint-based modeling approaches capable of dynam-
ically integrating metabolic networks and gene regulatory rules were limited to
rFBA (Covert et al., 2001) and FlexFlux (Marmiesse et al., 2015). Also, protein
production costs and enzyme-reaction catalytic relationships were not covered in
both methods. From another perspective, despite the fact that RBA (Goelzer and
Fromion, 2011), deFBA (Waldherr et al., 2015) and cFBA (Rügen et al., 2015)
had been developed to predict the resource allocation either at steady-state or in a
dynamic setting, there were no algorithms allowing the dynamic combination of
metabolism with enzyme-costs and the gene regulatory control at the beginning of
this PhD project.

This PhD project was initially inspired by the paper (Covert et al., 2001), which
is an early approach to the integration of metabolic networks with Boolean gene
regulatory rules. We had the idea to explore the optimal solution space in rFBA
after fully studying the paper and noticing that the solution is not unique. This is
the first contribution of this thesis and is detailed in Chapter 3. We specifically pro-
posed an analytical pipeline to explore the optimal solution space and implemented
it on a core carbon network and the central metabolic network of Escherichia coli.
By decomposing the vertices into a minimal set of EFMs, this analytic pipeline
enables us to investigate which EFMs the model could utilize to achieve the max-
imal growth rate, and how they shifted during growth with the control of genetic
regulation.

Hereafter, we aimed to incorporate the dynamics of protein expression and gene
regulation into classical metabolic network models. At first, the intuitive strategy
is combining Boolean regulatory rules with resource balance analysis (RBA) in an
iterative way like in rFBA. Secondly, we can impose the updated regulatory state
as bounds on the enzyme production rates since protein expression is covered in
RBA. This is the work presented in Chapter 4, in which we first developed iRBA to
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extend RBA to account for the dynamically changing extracellular metabolites and
biomass. Then regulatory iRBA was proposed to further incorporate Boolean reg-
ulatory rules into the iterative procedure of iRBA. However, the dynamical change
of proteins is not considered in both approaches, which limits their plausibility.

Next, in order to seamlessly bridge the dynamics of metabolism and transcrip-
tional regulation, we further introduced metabolic-regulatory networks (MRNs),
and formalized the MRNs by hybrid automata, combining continuous dynamics
and discrete control. Besides classical mathematical frameworks of systems biol-
ogy such as constraint-based approaches, ODE-based kinetic modeling and logic-
based qualitative regulatory networks, our formalization in Chapter 5 provides an
innovative mathematical framework that allows the integration of metabolic reac-
tions, protein expression and transcriptional regulation within a hybrid discrete-
continuous system. Also, this work makes it possible to utilize hybrid modeling
tools such as model checking for the study of metabolic regulation.

One potential application is to investigate the optimal trajectories of the hybrid au-
tomata representing our MRNs. From a biological view, our metabolic-regulatory
system basically covers biological processes from nutrient assimilation to gene ex-
pression under the control of gene regulation. Then a question arises: can we
predict the dynamics of metabolism, resource allocation and discrete state tran-
sitions that maximize the cellular growth? The answer is given in Chapter 6, in
which we developed a dynamic optimization approach termed as regulatory dy-
namic enzyme-cost flux balance analysis (r-deFBA) to predict the optimal strategy
maximizing the biomass accumulation over a time interval of the hybrid automata
describing MRNs. Unifying dynamic modeling of metabolism, resource allocation
and transcriptional regulation control, our r-deFBA allows the prediction of the
optimal dynamics of proteins, flux distributions, and state transitions.

As promising perspectives, we introduced the composition of hybrid automata rep-
resenting MRNs to model the dynamics of metabolism and regulatory state of mi-
crobial populations in Chapter 7. Particularly, formalizing metabolic-regulatory
networks at population-level as product automata provides a new framework for
modeling the growth of microbial populations, while taking into account the cellu-
lar heterogeneity and the interactions between community members. For instance,
one can consider the metabolic interactions, competition, cooperative behaviors
and transcriptional reply in response to the signals of neighboring cells. Our frame-
work allows the investigation of how a microbial community could be affected by
diverse cells cultured together.
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Zusammenfassung

Metabolische und genregulatorische Netzwerke sind zwei klassische Modelle der Sy-
stembiologie. Biologisch bilden genregulatorische Netzwerke das Kontrollsystem der Pro-
teinexpression, während metabolische Netzwerke, insbesondere die genomweiten Rekon-
struktionen, aus Tausenden enzymatischer Reaktionen bestehen, die Nährstoffe in Aus-
gangsstoffe und Energie aufspalten, um das Überleben der Zelle zu sichern. Metabolisch-
genetische Netzwerke umfassen darüber hinaus die Translationsprozesse als integrier-
tes Modell klassischer metabolischer Netzwerke und der Genexpressionsmaschinerie.
Umgekehrt wird die genetische Regulation auch durch metabolische Aktivitäten beein-
flusst, die Feedback und Ausgangsstoffe für das regulatorische System liefern. Die beiden
Systeme interagieren somit in hohem Maße und sind voneinander abhängig.

Bisher wurden bereits vielfältige Anstrengungen unternommen, um die beiden Netzwerk-
typen miteinander zu verbinden. Doch die dynamische Integration von metabolischen
Netzwerken und Genregulation bleibt eine große Herausforderung der rechnergestützten
Systembiologie.

Diese Dissertation ist ein Beitrag zu mathematischen Modellierungsansätzen für die Un-
tersuchung metabolisch-regulatorischer Systeme. Inspiriert von der regulatorischen Fließ-
Gleichgewichts-Analyse (rFBA) führen wir zunächst eine analytische Pipeline ein, um
den optimalen Lösungsraum der rFBA zu untersuchen. Anschließend konzentrieren wir
uns auf die dynamische Kombination metabolischer Netzwerke mit Enzymproduktion-
skosten und genetischer Regulation. Dazu verfolgen wir zunächst die intuitive Idee, boo-
lesche Regulierungsregeln in eine iterierte Ressourcen-Gleichgewichts-Analyse zu inte-
grieren. Bei der iterativen Strategie werden die Genexpressionszustände jedoch nur in
diskreten Zeitschritten aktualisiert. Die Formalisierung metabolisch-regulatorischer Netz-
werke (MRN) durch Hybridautomaten liefert darüber hinaus ein neues mathematisches
Rahmenwerk. Dieses ermöglicht die quantitative Integration metabolisch-genetischen
Netzwerken und Genregulation in ein hybrides diskret-kontinuierliches System. Zur
Anwendung dieser theoretischen Formalisierung entwickeln wir den constraintbasierten
Ansatz der regulatorisch-dynamischen Fließ-Gleichgewichts-Analyse von Enzymkosten
(r-deFBA) als optimale Steuerungsstrategie für die Hybridautomaten, welche die MRN
darstellen. Dies ermöglicht die Vorhersage optimaler regulatorischer Zustandsübergänge,
der Dynamik des Stoffwechsels und der Ressourcenallokation, welche eine maximale
Biomasseproduktion über ein simuliertes Zeitintervall erzielen. Die Dissertation endet
mit einem Kapitel über Perspektiven: Wir benutzen die Theorie der Produktautomaten, um
die Dynamik auf Populationsebene zu modellieren, welche kontinuierliche Stoffwechsel-
prozesse und diskrete Regulation umfasst.

147





Acknowledgements

This PhD study has been one of the best and most challenging times of my life.
It would not have been possible to do without the support, guidance, and warm
encouragement from many people.

First and foremost, I owe my deepest gratitude to my PhD supervisor, Alexander
Bockmayr. Thanks to him that I had the opportunity to pursue my PhD study in
FUB and to work in computational systems biology as a student with the biological
background. He helped me come up with the research ideas in the thesis and guided
me through this challenging journey with great patience and excellent supervision.
Without his invaluable suggestions and constant feedbacks, this PhD thesis would
not have been achievable. Many thanks to you, Alexander. You have shown me,
by your example, what a good scientist should be, and I have learned a lot from
working with you.

My sincere thanks go to Hidde de Jong for accepting to be my second reviewer
of this thesis. Many thanks for his time committed to reading and evaluating this
thesis.

I wish to thank all the present and former members of the research groups, Mathe-
matics in Life Science, and Discrete Biomathematics for contributing to a friendly
research environment. Many thanks go to you all: Annika, Alexandra, Hannes,
Katinka, Markus, Ling, Manon, Neveen, Therese, Heike, Adam, Elisa, Kirsten,
Laura, Melania, Robert, and Katja! I am especially grateful to Alexandra and An-
nika who helped me a lot at the start of my PhD, when I was a beginner in this
field. Moreover, I want to thank Markus for the help and fruitful discussions on
Chapter 5 and Chapter 6. Also, a big thanks to Markus and Ling for proof-reading
and commenting on several chapters.

I would like to acknowledge the financial support from China Scholarship Council
and DFG GRK 1772 Computational Systems biology, which allow me to concen-
trate on the research.

I must express my profound appreciation to my family, my parents, my brother and
sisters for always supporting and encouraging me to pursue my dreams. I wish to
thank my loving and supportive boyfriend, Panshuo Wang. Thank you all for your
love.

149



Bibliography

Last but not least, I want to thank all the friends I met in Berlin during this PhD
study, for their love and by the side. I will always treasure the time we party, travel,
cook, chat, discus, etc. I would not go through this challenging journey without all
of you. Many thanks to you all!

Berlin, den January 7, 2020

Lin Liu

150



Declaration
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