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ABSTRACT

Increased global competition and frequent unpredictable market changes are current
challenges facing manufacturing enterprises. Unpredictable changes of part design and
engineering specifications trigger frequent and costly changes in process plans, which
often require changes in the functionality and design of the manufacturing system.
Process planning is a key logical enabler that should be further developed to cope with
the changes encountered at the system level as well as to support the new manufacturing
paradigms and continuously evolving products. Retrieval-based process planning
predicated on rigid pre-defined boundaries of part families, does not satisfactorily support
this changeable manufacturing environment. Since purely generative process planning
systems are not yet a reality, a sequential hybrid approach at the macro-level has been
proposed. Initially the master plan information of the part family's composite part is
retrieved, then modeling tools and algorithms are applied to arrive at the process plan of
the new part, the definition of which does not necessarily lie entirely within the boundary
of its original part family. Two distinct generative methods, namely Reconfigurable
Process Planning (RPP) and Process Re-Planning were developed and compared.

For RPP, a genuine reconfiguration of process plans to optimize the scope, extent
and cost of reconfiguration is achieved using a novel 0-1 integer-programming model.
Mathematical programming and formulation is proposed, for the first time, to reconfigure
process plans to account for changes in parts' features beyond the scope of the original
product family. The computational time complexity of RPP is advantageously
polynomial compared with the exponentially growing time complexity of its classical
counterparts. As for Process Re-Planning, a novel adaptation of the Quadratic
Assignment Problem (QAP) formulation has been developed, where machining features
are assigned positions in one-dimensional space. A linearization of the quadratic model
was performed. The proposed model cures the conceptual flaws in the classical Traveling
Salesperson Problem; it also overcomes the complexity of the sub-tour elimination
constraints and, for the first time, mathematically formulates the precedence constraints,
which are a corner stone of the process planning problem.

iv



The developed methods, their limitations and merits are conceptually and
computationally, analyzed, compared and validated using detailed industrial case studies.
A reconfiguration metric on the part design level is suggested to capture the logical extent
and implications of design changes on the product level; equally, on the process planning
level a new criterion is introduced to evaluate and quantify impact of process plans
reconfiguration on downstream shop floor activities. GAMS algebraic modeling
language, its SBB mixed integer nonlinear programming solver, CPLEX solvers and
Matlab are used. The presented innovative new concepts and novel formulations
represent significant contributions to knowledge in the field of process planning. Their
effectiveness and applicability were validated in different domains.
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NOMENCLATURE

Reconfigurable Process Planning (RPP) Model:
? ? is RPP problem size and it is the total number of decision

variables and it could also be interpreted as the total number of
machining features including the new machining feature to-be-
inserted.

c c=tcij] is the nx(n-l) precedence penalty matrix. A row would
be assigned to each possible insertion position. For each row, a
relatively large value would be assigned if the precedence
between the feature/operation to be inserted and each
feature/operation of the original sequence, at a time, is violated.

S S=[Sjj] is the nx(n-l) work piece repositioning time matrix. A
row would be assigned to each possible insertion position. For
each row, the time required to reposition the work piece on the
given fixtures (setups) in order to be able to switch between
each pair of the successive features/operations of the new
possible permutation, i.e after the insertion of the new
feature/operation to be.

Os Os= {Osj} is the lxn old work piece repositioning time vector,
which is a vector of the time required to reposition the work
piece on the given fixtures (setups) in order to be able to switch
between pairs of successive features/operations of the original
sequence (i.e. not to include the new feature/operation) after
subtracting the missing features/operations.

Tr Tr={Tri} is the lxn right tool change time vector (i.e. the tool
change between the new to-be-inserted feature/operation and
every feature/operation in the old sequence from the right side).

Tl Tl ={Tlj} is the lxn left tool change time vector (i.e. the tool
change between the new to-be-inserted feature/operation and
every feature/operation in the old sequence from the left side).

Ot Ot ={Otj} is the lxn old tool change time vector, which is a
vector of the tool change time in order to be able to switch
between pairs of successive features/operations of the original
sequence after subtracting the missing features/operations, i.e.
not including the new feature/operation to-be-inserted.

Xi 0-1 integer decision variable, where i runs from 1 to n. 1 if new
feature is inserted at position i; O otherwise. The position i takes
the value 1 when the new feature is inserted right before the
first feature of the original array of features and takes the value
? when it is positioned right after the last feature of the original
array, i.e. feature fn.i.
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Quadratic Assignment Problem (QAP) Model:
m QAP problem size, which is defined as the total number of

decision variables. It is also the total number of machining
features to be sequenced; that is as far as the physics of the
problem goes.

T T= [tjj] is an mxm symmetric handling time matrix.

yi,k 0-1 integer decision variable, where both i and k run from 1 to
n. The value of the decision variable is 1 if the feature i is
positioned in location k; otherwise it is zero.

q¡j,k A new 0-1 decision variable qy^ is introduced in the linearized
QAP model; the variable holds all three indices of the problem:
I and j the features' indices and k the position index.

Simulated Annealing-based Heuristic:
P Precedence constraint matrix, where every element in the matrix

represents a precedence relationship between a pair of two
features/operations. Each row is composed of two
features/operations IDs representing a predecessor successor
relationship.

T T= [tjj] is an mxm symmetric handling time matrix,

t t is the annealing temperature; initial annealing temperature is
to-

B Search current point.
N New search point after applying the SA operator, where a move

is randomly chosen to one of the neighboring solutions.
S Outer loop counter, whose ceiling (upper limit) is Smax.
? Inner loop count; it decreases by a, where 0<a<l. For the first

loop it is starts with a value zmax.
j Inner loop counter.

BestSoFar A variable to store the best search point visited so far.

ObjFn Value of the objective function for a given sequence.

?? AE=ObJFn(N)-ObJFn(B).

General Metrics:

RlDesign Design Reconfiguration Index, which is a metric that measures
the extent of design changes on the product (part/assembly)

xix



level; it is an input to the process planning problem and is used
to select the most suitable planning method accordingly.

pian Process Plan Reconfiguration Index, which is a metric that
measures the percentage change, i.e. reconfiguration of the
original master or existing process plan, due to adding and/or
removing feature(s).
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1. INTRODUCTION

In this chapter, the motivation behind the current work, the proposed approaches, and
an overview of the dissertation is briefly given. Evolution of both product families and
manufacturing systems are briefly overviewed. Physical and logical enablers for
advanced state-of-the-art manufacturing systems are presented. Finally, an important soft
enabler- process planning- the subject of this work is discussed.

1.1 Evolvable Products & Part Families
Manufacturers worldwide are faced with increased competition and major challenges

to achieve agility, responsiveness and cost-effectiveness. They need to respond promptly
to customer needs and to quickly introduce cost-competitive products to the market.
Product families have become more dynamic; i.e., part families' definitions are not rigid
anymore. A part family is the collection of all part instances obtained by varying the
composite part features' parameters within its feasible range set by the designer (Huang
and Yip-Hoi 2003). Parametric modeling has become a widely accepted mechanism for
generating data set variants for product families. These data sets include geometric
models and process plans. These ranges denote the extent or envelope of the product
family, which is continuously changing, as clear product evolution has been witnessed.
After a few generations, new product families gradually lose their roots (missing
features) and develop new and different branches (additional features). The extent of
difference between product generations depends of the number and nature of feature
changes (ElMaraghy 2006 and ElMaraghy et al. 2008).

ElMaraghy et al. (2008) suggested that this evolution occurs in two modes. The first
is a chronological mode, where change develops gradually over time and represents a
unidirectional natural progression as more knowledge and better technology become
available. This type of evolution is unidirectional because as new and better solutions are
obtained, it does not make sense to revert to older inefficient or flawed designs. The
second type is functional evolution, which is caused by a significant and major change in
requirement, which is normally forced by many factors. It is often selective and discrete,
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although a major overhaul is also possible. This type of change may be bi/multi-
directional as the new product fulfills different functional requirements, but does not
necessarily render previous designs obsolete.

1.2 Changeable Manufacturing Systems
Mass customization and agile manufacturing are paradigms that have emerged quite

recently to face the new challenges due to highly customized and rapidly varying
products. As explained in section 1.1, products are continuously evolving beyond the
boundaries of their original part families. Different types of manufacturing systems with
unique characteristics and scope exist.

At the design level, product variety and new product introductions are not usually
considered for flow lines. Dedicated manufacturing systems enable mass production and
economy of scale. A Flexible Manufacturing System (FMS) overcomes the rigidity of
flow lines by having all the needed functionality built-in a priori; however, this results in
high initial capital investments as well as relatively lower utilization. For mass
customization and economy of scope, FMS are best suited.

In order to stay competitive, new responsive manufacturing systems and their
enablers are beginning to emerge to support new business paradigms such as mass
customization and agile manufacturing (ElMaraghy 2005). Reconfigurability is an
engineering technology that deals with cost-effective, quick reaction to market changes
(Koren et al. 1999). Reconfigurable Manufacturing Systems (RMS) are achieved by
incorporating basic process modules that can be rearranged or replaced quickly and
reliably to adjust the production capacity and functionality, in response to new market
conditions and new process technology. Modularity, integrability, customization,
convertibility, and diagnosability are its distinct characteristics (Mehrabi et al. 2000a).
When these characteristics are embedded in the system design, a high degree of
reconfigurability is achieved (Koren and Ulsoy 2002). This new type of manufacturing
system allows flexibility not only in producing a variety of parts, but also in changing the
system itself. These systems will be open-ended and will run less risk of becoming
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obsolete, because they will enable rapid changes of system components and rapid
addition of application-specific software modules (Mehrabi et al. 2000b).
Reconfigurability aims at achieving more competitiveness by exploiting new technology
and supporting business paradigms (ElMaraghy 2005). Gradually, RMS is becoming a
reality, and is being deployed by many mid-to-large volume manufacturers (Li et al.
2006).

Wiendahl et al. (2007) commented on the differences between FMS and RMS.
According to them, it is necessary to clearly define the boundaries between flexibility and
reconfigurability. In summary, flexibility is interpreted as the ability of a system to
change its behavior without changing its configuration, where reconfigurability is
conversely interpreted as the ability to change the behavior of a system by changing its
configuration. These definitions can be used only if the boundary of the system is clearly
defined. Depending on the defined borders, change can be interpreted as either
reconfigurability or flexibility. It was concluded that: "it is better to refer in general
statements to the term changeability which encompasses both characteristics". Therefore,
changeability in this context is defined as characteristics to accomplish early and
foresighted adjustments of the factory's structures and processes, on all levels, to change
responsively and economically.

1.3 Changeability Enablers
Reconfiguration could be achieved at the system or machine levels and it may be

classified as soft (logical) or hard (physical) in nature (ElMaraghy 2005). Hard/physical
changes require corresponding major changes in the soft and logical support functions,
whether in the planning and control of individual machines, complete cells, and systems
as well as the individual processes and production. Logical or soft reconfiguration
includes many aspects of flexibility that can be achieved through good system design and
software solutions. Products, technology and hardware changes using presently available
technology require that soft/logical enablers, such as process planning, not only be in
place, but also be easily adaptable and reconfigurable (ElMaraghy 2005). Soft/logical
enablers allow manufacturers to cope with changes in products, process technologies or
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capacity of the changeable manufacturing systems and equipment. The soft/logical
enablers of change can extend the usability and life of any manufacturing system and
increase productivity, competitiveness and profitability.

1.4 Process Planning
Process planning is an important soft type enabler for such changeable systems. It is

an essential function for the smooth operation of any manufacturing system running
under the variable conditions described earlier. Bedworth et al. (1991) defined process
planning as a set of instructions that describe how to fabricate a part or build an assembly
that will satisfy engineering design specifications. The resulting set of instructions may
include any or all of the following: operation sequence, machines, tools, materials,
tolerances, notes, operating parameters, processes, jigs, fixtures, time standards, setup
details, inspection instructions, gauges, and graphical representations of the part in
various stages of processing.

Process planning is the interface between design and manufacturing. It translates the
design specifications into process and operations sheets. Process planners or process
planning systems should be capable of querying all geometric, feature, and functional
information about the product. Process planning systems are usually developed for a
single manufacturing process, limiting themselves in some instances to certain geometry
like prismatic or cylindrical parts. Metal Cutting is the primary area of investigation;
however, assembly and inspection processes are also included.

The current process planning approaches, particularly the retrieval-based methods
with their rigid definition of the boundaries of part families, do not satisfactorily support
both the current advances and evolution of both manufacturing systems and product
families. Since truly generative process planning systems are not yet a reality, a hybrid
sequential process planning methodology is proposed in this work, where new planning
methods, concepts and novel mathematical programming models have been developed
for process planning in changeable and reconfigurable manufacturing at a macro-level
(Azab and ElMaraghy 2007c). The proposed methodology reconfigures process plans to
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support both the current trends in product design and evolution of part families and
manufacturing systems. For the generative portion of the developed approach, two
distinct approaches are presented to reconfigure process plans namely: Reconfigurable
Process Planning (RPP) and Process Re-Planning.

1.5 Research Hypotheses
The main hypotheses of the current research are:
1. Mathematical modeling and programming are crucial solution methods in the

field of process planning. Moreover, they are fundamental because they also serve
as a conceptual basis for the rest of the non-traditional methods in the field.

2. Variant process planning, with its rigid definition of part families' boundaries, is
not best suited for the current manufacturing environment with its evolvable part
families and changeable manufacturing systems. Pure generative process planning
on the other hand is not yet a reality. Therefore, a hybrid semi-generative process
planning that is variant in nature, but yet also able to generate process plans for
new parts that are not members of the original part family's master plan would,
best match the current challenging manufacturing trends.

3. For low- to mid-volume job shops and batch production, it would be better to
reconfigure existing or master process plans than to re-plan them from scratch,
and hence, cause the least change and disruption in all the downstream activities
on the shop floor.

1.6 Overview of the Dissertation

The following is an outline of the dissertation:
• Chapter Two presents the related different research directions in the literature. A

thorough critique is provided.
• Chapter Three sketches the overall planning methodology, in which retrieval of

master or existing plans, followed by generative processing by means of
algorithmic and optimization methods takes place. The different variant and
generative phases of the proposed approach are outlined.



• Chapter Four presents the first developed process plan reconfiguration method.
Details of the proposed mathematical model are provided. A benchmark problem
from the literature was used to illustrate the entire iterative reconfigurable
method.

• Chapter Five describes an alternative proposed Process Re-Planning method. Both
mathematical programming and non-traditional optimization methods are
presented. Linearization of the developed quadratic model is carried out. Non-
traditional optimization is also used to solve instances of large size. The same
illustrative problem is used to demonstrate the models and methods proposed.

• Chapter Six presents a machining case study of a single cylinder front engine
cover family.

• Chapter Seven is dedicated to verification in domains other than metal cutting.
Two case studies in assembly and inspection planning are given.

• Chapter Eight concludes the dissertation with a brief discussion and a list of the
research findings and conclusions.

The dissertation has two appendices. Appendix A provides more details of the
Reconfigurable Process Planning (RPP) formulations. Appendix B provides details of the
Quadratic Assignment Problem (QAP) formulations.
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2. CRITICAL LITERATURE REVIEW

This chapter provides primarily a review of the literature with the most relevance to
the problem of reconfiguring a process plan. Also, work related to the problem of Process
Re-Planning with emphasis on mathematical modeling and programming approaches is
covered. Besides metal cutting, the primary field of investigation, both assembly and
inspection planning were also considered. A chronological order was generally followed.
Critique and gaps in this area of research are highlighted.

2.1 Introduction

Very few publications had tackled the problem of reconfiguring a process plan. Zaeh
et al. (2006) suggested that agility is necessary in process planning in order to be able to
produce individualized products for the constantly reconfiguring companies structures
(Warnecke 1993). ElMaraghy (2006) classified the various process planning concepts
and approaches, based on their levels of granularity, degrees of automation, and scope.
The new concept of "Evolving Parts/Products Families" was introduced. The need for
"Evolvable and Reconfigurable Process Plans", which are capable of responding
efficiently to both subtle and major changes in "Evolving Parts/Products Families" and
changeable and Reconfigurable Manufacturing Systems was indicated.

The most relevant process planning approaches that support, to varying degrees,
changeable and agile manufacturing paradigms are reviewed in the following sections.
Also emphasis on mathematical modeling and programming was provided. Finally,
application in both assembly and inspection planning is demonstrated.

2.2 Macro- Versus Micro-Level Process Planning
Process planning has two distinguished levels, Macro- and Micro-level planning

(ElMaraghy 1993). At the Macro-level, planning is concerned with identifying the main
tasks and their best sequence and the type of manufacturing processes. Micro-level
planning details process parameters, required tools and setups, process time and
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resources. Macro-level process planning is difficult because of its dependence on
declarative process knowledge including part geometry, tools, machine tools, fixtures and
technological requirements and also its implied time-dependency represented by the order
in which the given features should be machined. The optimization criteria used range
from minimizing transportation of parts between and within machine tools to minimizing
change of cutting conditions and rapid tool-traverse. The problem had traditionally been
solved through rule-based knowledge that was acquired from machining practices (Lin et
al. 1998). Most of the available research utilized geometric information and constraints
for precedence creation for sequencing of operations. Almost all mathematical models
developed for the classical macro-level process planning problem are based on the
Traveling Sales-Person (TSP) problem formulation (e.g. Lin & Wang 1993). Refer to
section 2.5 for a thorough critical review of process planning modeling.

2.3 Variant- Versus Generative-Type Process Planning
Process planning can also be classified as either variant or generative. Retrieval-type

process planning techniques, based on a master template of a composite part, lend
themselves to RMS predicated on a defined part family. However, this approach results
in less than optimum process plans, because of the lack of specificity, precision,
refinement and optimization possible at this high level of abstraction. Hetem (2003)
discussed research, development and deployment of concepts and technologies to
develop variant process planning systems for RMS. Bley and Zenner (2005) proposed
another variant concept - an integrated management concept that allows meeting
requirements of different markets and changing needs by generating a generalized
product model. Both papers presented a strictly variant type system, which did not
support the introduction of new features into the part family caused by changing
demands.

Generative process planning is better able to handle products variety by generating
process plans from scratch using rule-based and knowledge-based systems, heuristics and
problem specific algorithms. Pure generic generative systems are not yet a reality. In
most of the literature, mathematical formulations and programming are not used, but
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rather informal procedural methods (Azab 2003) that are solved using either non-
traditional optimization methods or search heuristics.

There is a dearth of literature that offers generative process planning solutions for
changeable Reconfigurable Manufacturing Systems (RJvIS). Xu et al. (2004) presented a
clustering method for multi-part operations. Based on analysis of process plans for
Reconfigurable Machine Tool (RMT) design, a tolerance-based and concurrent-
machining-based clustering method for a single part was proposed. The mathematical
model and algorithm of the pattern recognition for recognizing the similar sub-operation
groups within the entire part family was established. Shabaka and ElMaraghy (2005)
proposed an approach for selecting different types of machines and their appropriate
configurations to produce different types of parts and features, according to the required
machines capabilities. The structures of the machine tools were represented by a
kinematic chain that showed the number, type and order of different axes of motion on
both the tool and the work piece sides of the machine. More than one minimum machine
configuration for a single operation cluster was generated and, hence, increased the

flexibility in machine tool selection and operations assignment (Shabaka and ElMaraghy
2007). This approach was not limited to RMS, and is applicable to any manufacturing
system where dynamic and flexible process planning and machine assignments are
required. Shabaka and ElMaraghy (2006) also developed a Genetic Algorithm (GA)
method for operation selection and sequencing that could serve as a tool in aiding the
machine assignment/selection activities. The proposed method guaranteed that operations
that have related tolerance or logical constraints, are clustered together and manufactured
on the same machine. Jin et al. (2007) introduced a novel method of process route and
layout design to accelerate and rationalize the reconfiguration process of an RMS. A
directed network model of process planning based on graph theory was constructed. The
Dijkstra algorithm was applied to select the optimal process route in the established
network model. Song et al (2007) presented a dynamic Computer Aided Process
Planning (CAPP) system structure to support RMS, where a strategy of dynamic decision
of manufacturing resource allocation using neural networks is suggested.
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In this work, generative mathematical models and solution algorithms based on
mathematical programming and non-tradional optimization methods using Simulated
Annealing (SA) search heuristics are presented and compared. Hence, application of SA
in process planning is briefly reviewed.

Simulated Annealing (SA), sometimes combined with Genetic Algorithms, was
adopted for solving the process planning problem. Lee et al. (2001) proposed four SA
algorithms to solve the operations sequencing problem. Ma et al. (2000) reported an SA
algorithm for operations selection and sequencing. Ma et al. (2002) presented the
development of a computer-aided process planning (CAPP) system based on genetic
algorithm and simulated annealing. Brown et al. (1997), Li et al. (2002), Shan et al.
(2006), Li et al. (2002) developed hybrid GA-SA optimization approaches process plans,
setup plans and operations sequencing in multiple domains such as metal cutting and
assembly planning.

2.4 Dynamic and Adaptive Versus Non-linear Planning
Besides changeability of manufacturing systems, dynamicity of the plant and shop

floor has always been a key factor in process planning. According to Ssemakula and
Cloyd (1994) dynamic process planning is an approach where both the static and the
dynamic capabilities of the manufacturing shop floor are taken into consideration.
Integration of production scheduling and process planning was envisioned to support the
dynamic nature of the factory floor. Hancok (1988) defined adaptive process planning as
the capability of making efficient process planning, machine routing, and job shop
scheduling decisions in a wide range of actual settings. Conversely, according to the
literature, non-linear process planning entails the generation and ranking of alternative
process plans for a given part prior to production independent of the resource status on
the shop floor. It is important to note, however, that the term "non-linear" is not very
accurate, since non-linear process planning is not based on concepts of linearity or non-
linearity and principles of superposition and homogeneity.
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Usher and Fernandes (1996a) proposed a dynamic process planning approach, where
planning activities were carried ou. in two levels: static and dynamic. The static phase
was concerned with the generation of generic alternative plans. The planning at th,s phase
involved ft. selection, assignment, and sequencing of processes and machines that could
potentially be used if available. The output of this phase would be a set of alternative
macro-level plans. The dynamic planning phase would take place only when a job was
released for production to the shop floor. Then, the developed macro-level plans would
be retrieved and planning would be completed taking into consideration the ava.lab.hty
of the shop-floor resources. Usher and Fernandes (1996b) focused on the implementation
of «he dynamic phase of planning and its integration with scheduling. The output of th,s
phase would be a set of ranked feasible alternative plans. Usher and Fernandes (1999)
considered tool selection within this dynamic process planning approach.

Usher and Bowden (1996) considered operation sequencing as one part of distributed
process planning, where planning is performed in two stages: floor resource independent
planning followed by resource dependent planning. The purpose of the resource
independent stage was to provide a means for determining and archiving the best set of
p.ans for a part, independent of the status of the shop floor resources' avai.ab.l.ty. Then,
later when production of that part was released to the shop floor, ,he resource dependent
planning phase completed the planning «asks. Features were classified by the author asprimary and secondary features, with «he primary features defining the basic shape of the
par. while secondary features provide detailed shape aspects like threads. Kiri.sis andPorche. (1996) presented a Petri ne. based approach for dynamic process planmng and
sequencing, where ,he reachabilhy analysis is performed and a reachability tree ,s
automatically created. Zhang e, al. (1999) believed that accurate description of resources
and .heir avallabili«, is a key elemen, of an adaptive and practical process planmng
system Ohashi (1999) proposed a hierarchical approach for dynamic process planmng of
pa,le.ized work pieces. At level one, group technology methods were applied to solvework piece grouping problem to combine similar machining operations for several work
pieces At level two, a model was formulated to optimally allocate «he work pieces on a
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pallet. Finally, at the last level, sequencing and scheduling of machining operations for
the grouped work pieces were performed.

Chen and Liu (2001) developed an adaptive GA, where the genetic operator
probabilities were varied in run-time. Joo et al (2001) presented a conceptual framework
for adaptive and dynamic process planning, where machine, cutting tool and machining
parameters selection were considered. Cheraghi et al (2006) adaptively modified process
routing A mathematical model was proposed to generate operational tolerances, machine
assignments, and to provide a measure of plans feasibility, identify sources of
infeasibility, recommend alternative machines, and identify the required process
capabilities to make an infeasible plan feasible. Cai et al (2008) developed an adapüve
setup planning approach for various multi-axis machine tools focusing on kinematic
analysis of tool accessibility and optimal setup plan selection.

On the other hand, for non-linear process planning, Kruth et al (1996) presented
several methods that would cut down its response time. One method was to classify the
features into important and non-important, which resembles the reasoning pattern that a
human process planner would adopt. Another method for performance improvement was
to group features that have strong resemblance. Jang et al (2003) provided methods to
validate non-linear process plans and hence, correct them. The authors expressed the need
to validate the generated process plans created manually or by CAPP against various
criteria such as the final shape of the finished part, features interaction and interference,
features manufacturability, etc. Metrics had been provided to quantify the degree of
invalidity of the process plan.

2.5 Mathematical Modeling in Process Planning
The problem of sequencing ? sub-operations while satisfying a set of precedence

constraints has the structure of the famous Traveling Salesperson Problem (TSP) (Lin and
Wang 1993 Irani et al 1995, Kim and Suh 1998). Papadimitriou and Steightz (1982)
defined TSP as: given ? (where ? is an integer and n>0) distance between every pair of ?
cities and a tour as a closed path that visits every city exactly once, then the problem is to
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find a tour with minimal total length. Lin and Wang (1993), Irani et al. (1995) and Kim
and Suh (1998) stated that the problem is equivalent to that of extracting the Hamiltonian
path of least cost that visits all of the features once and only once. Rardin (1998)
proposed a Quadratic Assignment Problem (QAP) formulation for TSP. Lin et al. (1998)
stated that an operation sequence had traditionally been determined through rule-based
knowledge that was acquired from machining practices. Halevi and Weill (1992)
enumerated the different types of precedence constraints as: (1) accessibility of a feature
by the tool, taking into consideration the tool axis (approach) direction which is denoted
as a vector approaching to the feature, (2) logical sequence of operations (e.g. drilling is
done after center drilling, and boring is done after drilling), and (3) dimensional
Precedence, for example a machined feature may be used as the reference datum from
which another machining feature is to be measured (A surface being dimensioned in
relation to another surface).

The modeling of the problem at hand is relatively difficult because it is not only
dependent on the declarative process knowledge including part geometry, tools, machine
tools, fixtures and technological requirements, but also time dependent, as it is heavily
dependent on the order of the different sub-operations and their precedence. Most of the
models in the literature, if not all, are based on the popular TSP. Criteria used in the
literature are many and diverse, ranging form minimal transportation of parts between
and within machine tools to the minimal change of cutting conditions. Chiang and Yang
(1991) formulated and presented a technique to determine the optimal operation sequence
for manufacturing a part using a saw derived by a robot. The criterion of optimization
was minimizing the total manufacturing cost. The manufacturing cost was categorized
into transition and direct cost. Transition cost was the cost of changing the manufacturing
process from one to another. This included three items: tool exchange, traveling, and
priority. The authors have included the direct processing cost of each sub-operation as an
objective, although operations sequencing is independent ofthat cost component.

Lin and Wang (1993) had included operations sequencing as the fourth step in a
four-step approach for operation planning. The problem was solved in two steps. Tooling
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requirements were first considered, and then machining steps are sequenced in an effort
to minimize tool changes. A Modified Traveling Salesperson Problem model was
developed. The authors proposed a new sub tour elimination constraint; however the
constraint prevents only subtours of size two from taking place; subtours of size greater
than or equal to three could result. Moreover, the authors used two additional sub-indices
for tools, where only two would suffice since tools were implicitly represented by the
cost coefficients. Koulamas (1993) combined the problem of determining the operation
sequence and cutting speeds. The problem was initially formulated as a continuous
nonlinear optimization problem combined with a discrete combinatorial scheduling
problem. As for Irani et al (1995), they took the following criteria in consideration:
machining parameter change, cutting tool change and setup change. The term 'setup
change' was mistakenly used to denote the repositioning of the work piece or fixture. The
problem was formulated as an unconstrained optimization problem where a penalty
objective function was used. Penalty functions were improperly modeled. The TSP model
can only model immediate predecessor-successor constraints. Hence, the author
artificially tried to assign very large values to all indirect precedence in the cost matrix
that would lead to the prohibited precedence, which is itself a search problem worthy of
research. Irani et al (1995), Bhashkara Reddy et al (1999), Dereli and Feliz (1999), Qiao
et al (2000) and Gan et al (2001) had adopted the same flawed method of applying
penalties in order to model precedence constraints. The error in modeling precedence was
obvious in a number of their published works as manifested by the infeasible plans
generated.

Wong and Siu (1995) represented the necessary precedence of operations using a
sequence tree structure, which was used to generate the final operations sequence using a
refinery and linearization algorithm. Bhaskara Reddy et al. (1999) had adopted the same
classification of features adopted by (Usher and Bowden, 1996). The fact that a
secondary feature was defined as residing on a primary feature dictated that the
machining of primary features must have come first. The authors had used a multi
objective function where the minimal number of repositioning of work piece or fixture,
tool changes, tool travel and finally good machining practice were all taken into
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consideration. A scoring method was devised to rate each objective on a scale from 0 to
1 . The square of the weighted sum of these scores was used to determine the overall
objective function value. A single time objective function could have been used instead,
where all the above stated criteria could be combined.

Gu et al. (1997) suggested that feature prioritization should be performed before
operations sequencing could begin. After feature prioritization, operation sequencing of
the important features, those with high priority, could be carried out first within a much
smaller search space and then the operations of the less important features could be
arranged easily due to reduced constraints. Although the authors mentioned that the
importance of a feature was evaluated according to two aspects: the design function of
the feature and the manufacturability or the manufacturing difficulty of the feature,
however their work only focused on the analysis of the manufacturability of the part
stating that the functional importance of a feature was generally quite well correlated
with its manufacturability.

Kim and Suh (1998) performed optimal grouping and sequencing by minimizing
non-cutting time in a multistage machining system. The authors considered medium to
large size batch of products, where a flow line in which processing time in each stage was
limited. An integer programming model based on TSP was developed to minimize non-
cutting time. The authors had introduced additional integer decision variables to express
the order of an operation, and hence model precedence constraints. Order in a TSP
problem is not defined since the output of a TSP model is a tour with no start and no end.
Also, the term non-cutting time proposed by the authors is not very accurate, since non-
cutting time include other components than handling that could not be optimized such as
servicing time, and fatigue time for instance.

A number of researches had tackled the operations sequencing problem for
simultaneous machining. An example of the work done on parallel machining is Chiù et
al. (1999). The author proposed a mixed integer programming model. The proposed
mixed integer program sought the minimum cycle time (completion time) of the
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corresponding operation sequence for a given work piece. The model was formulated
under the assumptions that turrets are equipped with live tools and that automated tool
change time was negligibly small. The computational complexity of the problem was not
considered.
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2.6 Process Planning for Non-Cutting Operations
The primary field of investigation of this research is metal cutting. However, the

developed concepts, models, and methods are also tested and verified in other domains of
application such as assembly and inspection. A brief review of both process planning for
assembly and inspection is provided respectively in the following subsections.

2.6.1 Assembly Planning
The time spent on the design and assembly planning for a new product is quite

considerable. For products with long life cycles, which are produced in rather large
quantities and often assembled manually, such time investments are justifiable
(Laperriere and ElMaraghy 1994). However, present market conditions demand that
products be produced with much shorter life cycles and in smaller volumes. Therefore,
the time spent on product development, at large, including that spared in assembly
planning activities has to be reduced. Furthermore, as explained in chapter one, the
current manufacturing environment with its continuously evolvable product and part
families as well as its advanced changeable manufacturing systems dictate the
development of new process planning concepts, models and tools for all manufacturing
processes, including assembly operations.

The main objective of assembly planning is usually to determine the feasible optimal
assembly sequence that minimizes assembly handling time. This is mainly composed of
two components: 1) time required repositioning the different subassemblies in-process on
the fixtures; 2) time required to perform tool changes in case of automated assembly
systems. The assembly planning problem is a combinatorial optimization problem.
Hence, in the last two decades, increased application of non-traditional optimization
methods such as GA, SA, Tabu Search, Ants Colony, etc. is witnessed. Chen (1990)
proposed Hopfield neural networks to solve a Traveling Salesperson Problem (TSP)
formulation of the automated planning problem, where AND/OR precedence
relationships were mapped into networks of neurons. The problem with the AND
precedence relationship could be solved using a traditional second-order Hopfield
network whereas higher-order Hopfield networks are used to solve those with the OR
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precedence relationships (Chen 1992). The cost of the prohibited precedence is
artificially set to a very large value to guarantee the satisfaction of the specified
constraints. This concept of restricting the movement of the next states was inaccurately
called, by Chen (1990 & 1992), State-Constrained Traveling Salesman Problem. A ten-
part gear box assembly was used for verification.

Park and Chung (1991) graphically modeled the problem, where all possible
planning alternatives were exhaustively enumerated. Parallelism of assembly tasks,
whether by the use of multiple robots or workers, is taken into account. A graph-theoretic
approach was also employed by Laperriere and ElMaraghy (1994) to generate the
assembly sequence. Only the feasible search space was considered, by including the
precedence constraints when generating the search graph. An A algorithm was used,
where the evaluation of assembly-related criteria as the search graph expands, guides the
search towards an optimal solution. Huang and Wu (1995) argued that a backward search
would be more efficient than a forward search by converting the problem of finding how

to assemble a given product into an equivalent problem of finding the same product can
be disassembled. Zhao and Masood (1999) employed a graph set technique for creating
an assembly model.

Guan et al (2002) presented a hierarchical evolution algorithm approach, where a
compound chromosome encoding was constructed to represent the abundant assembly
process information. Geometric reasoning was used to distinguish the geometric
feasibility of the chromosomes. Del Valle et al. (2003) developed a model to support
multi-robotic assembly environments. The established criterion was the minimization of
the total assembly makespan. Assembly times, available resources, tool change time, and
the delays due to the transportation of intermediate subassemblies between different
workstations were all issues taken into consideration. The authors included both GA and

a greedy algorithm for solution. Galantucci et al. (2004) proposed a hybrid fuzzy logic
GA method to plan the automatic assembly and disassembly operations. The suggested
GA-Fuzzy Logic approach was implemented onto two levels. First, fuzzy controller
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parameters were optimally determined by using GA. Second, a fuzzy function is used to
determine the optimal sequence or disassembly plan.

Tseng et al (2007) considered the global logistic supply chain aspect of the assembly
planning problem, where a product could be designed and manufactured at different
plants at multiple locations. A mathematical programming model was formulated to
evaluate all the feasible multi-plant assembly sequences. The objective was to minimize
the total cost of assembly.

2.6.2 Inspection Planning
The main purpose of inspection processes is to compare a product against its design

specifications. Effective planning of inspection processes is to obtain the best timely and
good quality product. Artificial intelligence, neural network, fuzzy rules and non-
traditional optimization are all tools to optimize inspection processes (Mohib et al 2008).
Sample publications that are believed to be representative of the work done in the last
decade are surveyed in this section.

ElMaraghy and Gu (1989) presented the first expert system for planning inspection
operations for a Coordinate Measurement Machine (CMM). The developed system was
generative in nature and feature-based. Chan and Gu (1993) developed an object-oriented
knowledge-based inspection planner; however, the planning problem was not solved for
optimality. The issues involved in CAD-directed inspection planning were examined; the
task of inspection process planning is decomposed into several modules. An inspection
planning system was designed as a multi-module knowledge-based system; each of these
modules had its own knowledge base. Moroni et al (1998) developed an expert system to
generate touch probe configurations and to select the most suitable probe for CMM
dimensional inspection. The considered optimization criteria are minimization of probe
changes (tip, stylus, probe and accessories) and probe orientation changes. A depth-first
strategy was adopted by means of priority scores assigned to the inspection rules.
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Lu et al. (1999) used an artificial Neural Network technique for multi-component
inspection path management. Genetic Algorithms were applied to reduce the distance
moved by the probe to obtain a collision-free path. Hwang et al. (2004) proposed a CMM
inspection planner to arrange the inspection feature measurement sequence by
minimizing part repositioning on the given setups/fixtures and probe orientation changes,
using a greedy heuristic and continuous Hopfield Neural Network. Hwang et al. (2002)
developed a knowledge-based inspection planning system using a hybrid Neuro-Fuzzy
method with weight parameters optimized using Genetic Algorithms. Beg and
Shunmugam (2002 and 2003) developed an object-oriented planner using Fuzzy Logic to
select and sequence part and probe orientations for the inspection of prismatic parts.
Ketan et al. (2002) developed a feature-based geometric reasoning approach for planning
the inspection of prismatic parts. Cho et al. (2005) developed a series of heuristic rules by
analyzing the feature information, such as the nested relation and the possible probe
approach directions to inspect work pieces having many primitive features.

2.7 Summary & Conclusions
Dynamic and adaptive process planning considers change of the manufacturing

system due to the inherent dynamicity of the shop floor environment by adaptively
configuring the current process plans according to manufacturing resources availability.
Non-linear process planning, on the other hand, generates alternative process plans a
priori to account for those sudden plant floor breakdowns.

Hetem (2003), Xu et al. (2004), Bley and Zenner (2005), etc., considered the
changeability of the current and future manufacturing systems. Most of the work
proposed strict variant-type systems because RMS in principle is, like FMS, built for a
given part family. However, this pure retrieval-based approach does not support the
introduction of new features into the part family caused by the changing demands,
unpredictability and turbulence of today's globalized markets. Shabaka and ElMaraghy
(2005, 2006 and 2007) addressed the problem of reconfiguring machine tools to account
for these new changes on the part level. Song (2007) suggested dynamic adaptive process
planning systems for RMS. In conclusion, none of the work surveyed genuinely
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considered continuous change and evolution of parts and products families. No genuine
reconfiguration of the process plan was proposed.

In summary, the existing methods for adapting process plans may be classified as
pre-planning or re-planning approaches. Non-linear process planning is an example of
pre-planning scenarios, where alternate process plans are developed and stored ahead of
time in anticipation of potential future changes. There is an obvious cost and
computational burden involved in this approach for changes that may not materialize.
Total re-planning, where for every change a whole new process plan is re-created, with
limited benefit from available plans with its existing fixtures (setups) and tooling, also
represents a major cost for manufacturers. Re-planning should be carefully optimized,
and new approaches developed to improve its effectiveness and reduce resulting direct
and indirect cost.

As for mathematical modeling and programming for process planning, most, if not
all, the models in the literature were based on the popular symmetric TSP model.
However, applying TSP for process planning was not very successful. Hence, most of the
work in the literature relied on non-traditional and non-mathematical programming
methods. To begin with, it is wrongly believed (e.g., in Lin and Wang (1993), Irani et al.
(1995), and Kim and Suh (1998)), that the problem of sequencing while satisfying a set
of precedence constraints best takes the structure of the TSP problem. The output of a
TSP is a tour and not a sequence with a start and an end. As for the precedence
relationships, which are a corner stone of the problem in hand, TSP is limited to
modeling immediate predecessor-successor constraints. Also, the TSP is well known for
the complexity of its sub-tour elimination constraints. Moreover, the few formulated
TSP-based models contained major flaws. Lin and Wang (1993) suggested a new sub-
tour elimination constraints that only prevent subtours of size two from taking place. Irani
et al. (1995), Bhaskara Reddy et al. (1999), Dereli and Feliz (1999), Qiao et al. (2000)
and Gan et al. (2001) had adopted an incorrect method of applying penalty functions in
an effort to model precedence constraints. The authors had artificially assigned very large
values in the cost matrix to all indirect precedence predecessor-successor relationships
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that would lead to the prohibited precedence, which appears itself to be a search problem
worthy of research. Kim and Suh (1998) had dependent additional integer decision
variables to their TSP-based formulation defining the order of operations. The authors
failed to notice that order in TSP is not defined in the first place since the output is a
cyclic tour.

Another line of research in the literature had adopted multi-objective optimization
approaches such as utility functions, goal programming, etc. A single, time objective
function, would have been better to use, where all the stated criteria are expressed in units
of time. In some instances, direct machining cost was also mistakenly included as a
criterion. Direct cost components could only contribute when simultaneous machining,
multi-robot assembly, etc., are in question. Finally, some of the terminology used was not
accurate. For example, the term "setup change" was used to denote the repositioning of
the work piece on the jigs and fixtures. Non-linear process planning is not based on the
concepts of linearity/non-linearity and principles of superposition and homogeneity. Non-
cutting time was also inaccurately used on some occasions, where time components other
than the handling time exist, such as operator fatigue and service/maintenance activities,
which are not to be minimized by the optimization problem at hand.
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3. SEQUENTIAL PROCESS PLANNING

This chapter presents an overview of the overall methodology developed for process
planning, which is based on Azab and ElMaraghy (2007c). Continuous evolution of parts
and product families and the paradigm shift in manufacturing systems and their increased
flexibility, reconfigurability and changeability requires corresponding responsiveness in
the underlying support functions to achieve cost-effective adaptability. Process planning
is a significant logical enabler at the production planning and control level. Azab and
ElMarghy (2007c) argued that variant process planning systems, with their rigid
definition of part families' boundaries, are not best suited for RMS and that generative
process planning has more potential as an enabler of such new technology. In generative
process planning, all plan details including the operations sequence are developed based
on numerical algorithms, mathematical modeling and programming, decision tables and
trees, etc., as well as possessed and stored manufacturing knowhow; pure generative
systems do not presently exist. Instead, semi-generative process planning systems are
developed, where a pre-process plan is generatively prepared and then further developed
and refined by a process planner. Therefore, since purely generative process planning
systems are not yet a reality, a hybrid semi-generative process planning system would be
more suitable and achievable (Azab et al. 2006 2007).

3.1 Conceptual Framework
The need to have process planning techniques and methodologies that are capable of

coping with frequent changes in design specifications, material, production technologies
and manufacturing resources in an efficient and cost effective manner has always been
expressed by process planners regardless of the type of the targeted manufacturing
system. Its importance has been heightened by the continuous evolution of products and
manufacturing systems and the emergence of new manufacturing system paradigms,
where change is becoming the norm and the availability of enablers such as process plans
that are easily adaptable to changes is proving to be an essential support function.
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fart family's
composite part

New part with new features,
some of which do not strictly
belong to the part family as
defined by its composite part

Figure (3.1) Step one of the proposed sequential methodology: retrieval of the closest master nla„ f„the new part (the line drawing illustration of the part family is taken f™lSe"S
Variant process planning lends itself to changeable manufacturing systems including

FMS as well as RMS, which are usually designed for a certain part family but with wider
scope. However, generative process planning systems are better able to handle un-
planned product variations. Therefore, it is believed that a hybrid process planning
approach that is both variant in nature as well as capable of generating process plans for
parts with features beyond those present in the current part family's composite part can
best meet these current challenges. Therefore, a new part would typically have new as
well as missing features/operations. Such an approach is sequential in nature; firstly,
variant process planning is applied where the master process plan of the part family's
composite part is retrieved as illustrated in Figure 3.1; precedence graphs and their
associated data structures, which depict the precedence relationships and other
declarative knowledge of the features/operations, are manipulated. Secondly, generative
modeling tools and algorithms are then applied, as illustrated in Figure 3.2, to arrive at an

24



optimal process plan for the new parts, whose definition do not necessarily lie entirely
within the rigid boundary of their respective part family.

1
I
I

J
I

Generative Tools

& Algorithms

Master Process Plan of New Part Process Plan
Composite Part

Figure (3.2) Step two of the proposed sequential methodology: generation of the new part's process
plan starting from the composite part's master plan using reconfiguration or re-planning methods.

This work focuses on two different methods for the generative processing portion of
the proposed methodology, namely Reconfigurable Process Planning (RPP) and Process
Re-Planning.

3.2 Step I: Knowledge Retrieval and Manipulation
Presently, in most industries, the basic input to process planning is the part CAD

feature-based model including the part's form features attributes, the working Geometric
Dimensions and Tolerances (GD&T) and surface finish specifications. Initially, the new
part's CAD model is analyzed, and the part family with which the new part could be most
closely identified is determined. All the declarative knowledge associated with the
composite part of that part family, including knowledge of available manufacturing
resources (e.g. fixtures and tools), precedence, sequences and different data structures,
are retrieved. The large number of interactions that exists between the different form
features constituting the part complicates the problem. These interactions between the
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different features generate precedence constraints for related features and operation and
are modeled using Feature Precedence Graphs (FPG) and Operation Precedence Graphs
(OPG), which are tree-like structures (directed graphs), where machining features and
operations are mapped onto nodes; arcs between nodes represent features precedence.
The following notation is also used to model precedence constraints
(FeatureX—»FeatureY), which means Feature X has to precede Feature Y; the wild card *
means all features or operations; for example (Facel 01 ->{*}) means feature FacelOl
precedes all other features as shown in the FPG given by Figure 3.3 where Face and Bore
were abbreviated as F and B respectively. In generating FPGs/OPGs, redundancy among
precedence relationships was considered; for example for the following two precedence
constraint sets (Facel01^{*}), (Bore 103^ {Bore 109, Borei 10, Borei 11, Borei 12}),
the precedence constraint FacelOl -+Borei 12 was implied by the following constraints:
Facel 01 -»Borei 03 and Borei 03 ->Borel 12; and hence, it was not included. Another key
characteristic of the problem at hand is the handling time/cost matrix, where each element
represents the handling time/cost between a pair of successive features/operations, which
approximates the handling tasks to be performed between possible consecutive
features/operations. This matrix could be represented in units of time or cost depending
on the objective function used, whether it would be a cost- or time-objective function; see
example handling time matrices in Chapters Five and Seven.

B112
B103

B111
B102

F101

(f112)F112

ÍBIO9)B109
F113

Figure (3.3) An example Feature Precedence Graph.
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For the composite part or the existing parts on the shop floor, FPG/OPGs are
retrieved and edited by adding and removing nodes and arcs. Only logical changes on the
part level are taken into account; features which exhibit design changes not yet translated
into modifications in the logical precedence relationships are not considered changes. See
section 7.2.1 for clarification through an example.

There exist different types of precedence constraints (or the so called anteriorities by
Halevi and Weill (1995)) for which certain sequences cannot be reversed. The following
precedence constraints must be satisfied otherwise the feasibility boundaries would be
violated:

• Accessibility of the feature by the tool: this constraint deals mainly with the
positioning of the part and with the fixturing system. For each operation to be
machined, the position of the part has to allow the cutting tool to access the
feature for machining.

• Technological constraints: these constraints have to be respected in order to
execute sequences of operations properly. For example considering the drilling
and milling of a surface, a typical technological constraint is that the drilling must
come before the finish surface milling of the surface.

• Dimensional and geometric constraints: these constraints refer to situations in
which a feature acts as a datum point for other features. The case of a dimensional
precedence is when the position of a feature refers to another feature; the case of a
geometric constraint is when there is a geometrical relationship (i.e. co-axiality,
perpendicularity, etc.) between two features and one is acting as datum for the'
other.

Economic constraints: these constraints are considered in order to reduce
production costs and wear or breakage of costly tools, etc.
Non-destruction constraints: the non-destruction constraint ensures that
subsequent machining operation does not destroy the properties of features
produced in previous machining operations.
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Feature Precedence Graphs (FPGs) are manipulated by adding and removing nodes
in order to accommodate additional as well as missing machining features in the new
parts. It is translated into an Operation Precedence Graph (OPG), where each feature
corresponds to one or more machining operation. A machining feature is defined in this
work as a geometrical feature that requires processing by one or more operation.
Sequencing is carried out on the machining features level, taking the following into
consideration: Within each feature, a logical sequence of operations is used to order the
feature's sub-operations. Some features are represented by more than one node in
exceptional cases, due to interdependence on precedence relationships with other
features. The ratio of the time required to position the work piece on a different fixture
(composed mainly of unloading the work piece, cleaning the setup and loading the work
piece) to the tool change time is taken as 2: 1 based on practical experience.

3.3 Step II: Generative Planning
In the following sub-sections two conceptually and mathematically/computationally

different methods for the generative portions of the developed process planning
methodology are introduced. They are for: a) optimal local reconfiguration, and b)
optimal global re-planning.

3.3.1 Reconfigurable Process Planning (RPP)
Reconfigurable Process Planning (RPP) is realized for the most part by optimal

reconfiguration of the precedence graphs in terms of reconfiguration scope and cost by
inserting/removing features iteratively using a novel 0-1 integer programming model
(Azab and ElMaraghy 2007). Mathematical programming and formulation is presented,
for the first time, to genuinely reconfigure process plans to account for changes in parts'
features beyond the scope of the original product family as was pictured in Chapter One.
The proposed RPP mathematical scheme scales better with problem size compared with
classical process planning models. The reconfiguration process is iterative in nature as
will be explained in Chapter Four. The formulation of the mathematical model at each
iterative step of reconfiguration has been automated. A process plan and part
reconfiguration indices have been introduced to capture the extent of changes on the part

28



and plan levels respectively and their implications and significance have been introduced
and discussed. A prismatic benchmark is used to demonstrate the method. Chapters Six
and Seven are dedicated for validation and testing by solving industrial case studies in
metal cutting and assembly. The computational behavior and advantages of the proposed
model are discussed, analyzed and compared with classical models.

3.3.2 Process Re-Planning
A Process Re-Planning model based on the Quadratic Assignment Problem (QAP)

formulation, where machining features are assigned positions in one-dimensional space is
introduced. The proposed model overcomes the complexity of the sub-tour elimination
constraints in the classical Traveling Salesperson Problem (TSP) and, for the first time,
mathematically formulates the precedence constraints, which are a corner stone of the
process planning problem. Linearization of the quadratic model was performed. The
problem at hand is a combinatorial optimization problem. Hence, non-traditional
optimization is also used to solve large instances of the problem. Application is illustrated
with an example from the literature. The new process planning model is compared
against other models such as TSP and RPP.

3.4 Summary
In this chapter the underlying overall developed methodology was outlined.

Sequential Process Planning is a hybrid semi-generative approach where both variant and
generative planning are applied sequentially. The proposed approach overcomes the
shortcomings of the two fundamental planning approaches, namely variant and
generative. Initially retrieval and manipulation of master or existing plans, and related
declarative knowledge and graphs take place by adding and removing nodes in order to
account for the new and missing features of the new part. This step is followed by
generative processing of the retrieved information. Master precedence graphs and data
structures, which depict the precedence relationships between features/operations are
manipulated after retrieval and before applying generative processing by
adding/removing nodes and their associated attributes. The generative portion of the
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proposed approach, which consists of either Reconfiguration or Re-Planning, is discussed
in Chapters Four and Five respectively.



4. RECONFIGURABLE PROCESS PLANNING

This chapter is based on Azab and ElMaraghy (2007a) and Azab and ElMaraghy
(2007c). The paradigm shift in manufacturing systems and their increased flexibility, and
changeability require corresponding responsiveness in support functions to achieve cost-
effective adaptability. Reconfigurable Process Planning (RPP), the subject of this chapter,
is envisioned as the enabler of changeability for evolving products and systems on the
process planning level. Section 4. 1 highlights the conceptual framework behind RPP. In
Section 4.2, mathematical programming and formulation is presented, for the first time,
to reconfigure process plans to account for changes in parts' features beyond the scope of
the original product family. Reconfiguration of precedence graphs to optimize the scope
and cost of process plans reconfiguration is achieved by inserting/removing features
iteratively using a novel 0-1 integer programming model.

The model's computation complexity is discussed in Section 4.3. Two metrics that
capture the extent of changes in the part and plan and their implications have been
introduced in Section 4.4. Section 4.5 presents a prismatic benchmark that is used for
illustration and verification. The computational behavior and advantages of the proposed
model are discussed, analyzed and compared with classical models.

4.1 Conceptual Basis
Reconfigurable Process Planning (RPP) is the development of a process plan for a

new part some features of which are not within the boundaries of the existing parts family
or its composite part and master plan, i.e., the new part belongs to an evolving parts
family (ElMaraghy 2006). Reconfigurable Process Planning is a differential method,
where a master or existing plan is iteratively reconfigured to meet the requirements of the
new part and its added features. New portions of the process plan, corresponding to the
new additional features (and their machining operations), are generated and optimally
positioned within the overall process plan.
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If the sequence of features processing, which respects precedence constraints, is
thought of as a genetic sequence, the added new features would represent mutation of that
sequence by optimally inserting new genes (See Figure 4.1). This is consistent with the
concept of evolving parts families. An innovative mathematical formulation using 0-1
integer programming is developed and algorithms have been written to automate the
tedious and time-consuming formulation process.

A new part/product contains a set of new and/or missing features compared with the
original existing part/product. In this model, the missing features/operations in the new
part are subtracted from the original sequence, and the set of the new features/operations
are inserted. It is important to note that the problem is still subject to precedence
constraints and an objective function of minimizing the additional handling time spent
mainly in repositioning the work piece or fixture and tool changes. The handling time
changes are to reduce the changes of setup and tooling, and consequential implications
on the shop floor such as possible machine tool reconfiguration, the need to retrain
personnel on new plans, possible resulting quality errors, downtime, and opportunity
cost. A work piece is defined in this context as the stock in process in-case of metal
cutting or the assembly in-process in case of assembly. This combined
generative/retrieval process plan reconfiguration is summarized as follows:

1. Retrieve the macro-level master process plan for the family's composite or
existing part/product on shop floor, which contains the collection of
feature/operation precedence graphs and their sequence, knowledge of available
manufacturing resources (e.g. fixtures and tools) and their sequence.

2. Compare the new part with the composite/existing part to identify new and
missing features.

3. For missing features, subtract the fragments corresponding to these features from
the master plan.

4. For new/added features, formulate and apply iteratively the proposed
mathematical model for generative reconfiguration by subsequent insertion of the
new features in the original sequence of the existing/composite part.
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5. For common features, retain the corresponding features graph portions.

Figure (4.1) Illustration for finding the best position for a new added feature/operation (f ) in themaster ong.nal sequence using the evolving process planning sequence and genetic mutation
metaphors.

4.2 Reconfigurable Process Planning Mathematical Modeling
& Programming

The problem of macro-level process planning has long been modeled as a sequencing
problem. The concept used in the proposed RPP is totally different. The objective is to
determine the best location to insert the new feature(s) in the existing sequence while
optimizing objective criteria and without violating specified constraints.

4.2.1 Assumptions & Notations
The assumptions made in this model are as follows:

1 . The considered precedence constraints include:
a) Accessibility of the feature by the tool.
b) Logical sequence of operations.
c) Geometric Dimensioning & Tolerancing (GD&T) constraints.
d) Non-destruction of completed operations & features.
e) Machined fixture datum points on the part.
f) Good manufacturing practices and knowledge.

2. Feature Precedence Graph (FPG) is used to model the interactions and
precedence relations, i.e., constraints that exist among the different features.
An FPG is a tree-like structure graph where machining features are mapped to
nodes and precedence constraints to arcs.
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3. A machining feature is defined in this work as a geometrical feature that
requires processing by one or more operation.

4. Sequencing is carried out on machining features taking the following into
considerations:

a) Within each feature, a logical sequence of operations is used to order the
feature's sub-operations.

b) Some features are represented by more than one node in exceptional cases
due to interdependence on precedence relationships with other features.

5. Operation selection was done in advance.

6. Work piece repositioning on setups/fixtures, and tool information required for
each operation was specified and given in advance.

7. The ratio of the time required to position the work piece on a different fixture
(composed mainly of unloading the work piece, cleaning the setup and
loading the work piece) to the tool change time is assumed to be 2:1.

The notations used are as follows:

• ? denotes the problem size and it is the total number of decision variables and
it could also be interpreted as the total number of machining features
including the new machining feature to-be-inserted.

• c=[cij] is the nxn precedence penalty matrix. A row would be assigned to
each possible insertion position. For each element in a row, a relatively large
value (i.e. of different order of magnitude) would be assigned if the
precedence between the feature to be inserted and each feature of the original
sequence, at a time, is violated.

• s=[sij] is the nxn work piece repositioning time matrix. A row would be
assigned to each possible insertion position. For each row, the time required to
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reposition the work piece on the given fixtures (setups) in order to be able to
switch between each pair of the successive features of the new possible
permutation, i.e., after the insertion to be of the new feature/operation.

• Os= {Osj} is the lxn old work piece repositioning time vector, which is a
vector of the time required to reposition the work piece on the given fixtures
(setups) in order to be able to switch between pairs of successive features of
the original sequence (i.e. not to include the new feature) after subtracting the
missing features.

• Tr={Tr¡} is the lxn right tool change time vector (i.e. the tool change between
the new to-be-inserted feature and every feature in the old sequence from the
right side).

• Tl ={Tlj} is the lxn left tool change time vector (i.e. the tool change between
the new to-be-inserted feature and every feature in the old sequence from the
left side).

• Ot ={Otj} is the lxn old tool change time vector, which is a vector of the tool
change time in order to be able to switch between pairs of successive
features/operations of the original sequence after subtracting the missing
features/operations, i.e., not including the new feature/operation to-be-
inserted.

The decision variables are:

x¡ is a 0-1 integer variable, where i runs from 1 to n. 1 if new feature is inserted at
position i; O otherwise. The position i takes the value 1 when the new feature is inserted
right before the first feature of the original array of features and takes the value ? when it
is positioned right after the last feature of the original array, i.e. feature fn.i(see Figure
4.1).

4.2.2 Formulation

Two criteria are considered: 1) time for repositioning the work piece on different
fixtures, and 2) time for tools change. The objective is to minimize the non-cutting time.

35



The time spent for rapid tool traverse from one feature to the other is ignored due to its
relatively minor contribution. Also the time required for transportation of the work piece
between different machine tools as well as that spent to adjust machining conditions are
also ignored since these detailed parameters are not determined at this macro-level. The
objective function is given by equation 4.1.

? Ai-I ? ?-I ? ? ?

t??· SSß·7'·?' + S(S?·*)·?' " S0*·*' + S(?? + 77,)·?' ~ Sa,·?' (4· ^
(=1 y=l /=1 k=\ ;=1 (=1 ;=1

The first term represents the penalty for violating precedence constraints, where the
precedence relation between every feature in the original sequence and the inserted new
feature is checked. The second term represents the time required to reposition the work
piece on the given fixtures (i.e. setup change time as commonly referred to in the
literature). The first summation of Sj^ over k represents the work piece repositioning time
on the given fixtures/setups associated with a new sequence, i.e. between every pair of
preceding features in each new permutation. The terms Tr¡ and Tl¡ with their summation
over i from 1 to ? depict the tool change cost. They account for the new precedence cost
due to the insertion of the new feature between two existing features in the original
sequence- one to the right (Tr¡) and one to the left (Tl,). Finally, the Os¡ and Ot¡ terms
represent the handling time change incurred due to changing the original precedence
between the two features in the original sequence after subtracting the missing features
that are to be separated by inserting the new feature, and hence, the old work piece
repositioning and tool change time components are subtracted.

The constraints system of the RPP model is advantageously simple and is
represented by equation 4.2 as follows:

» + 1

S*- = 1 (4·2)
7 = 1

This constraint prevents a feature from being inserted more than once at any position.
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4.3 Computational Time Complexity
The comparison of the computational time complexity of the proposed model with

the classical re-planning using a TSP model raises some interesting observations. The
TSP model is a network of nodes representing different features of a part connected by
arcs that represent the routes between them. The decision variable is the value associated
with the arc; if the value is 1 then the route represented by this arc is in use; it is 0
otherwise. An arc in use means that the two features are sequenced consecutively. This
model is characterized by its exponentially growing solution space and the complexity of
the sub-tour elimination constraints. The picture is completely different for the proposed
RPP model. The time complexity for inserting an m feature into an original sequence of
size ? grows polynomialy. For one iteration, the solution space is n; the total solution
space is of the form n+(n+l)+...+(n+m). The RPP optimization problem is by far more
tractable since it offers a computational time complexity of O(n) compared with the NP-
complete exponentially growing classical TSP counterpart. Hence, typical industrial
problems can be easily solved for optimality using the RPP model.

4.4 Reconfiguration Indices
Two different indices are formulated in this section to evaluate the extent of

reconfiguration at the part and the process plan levels respectively. The Design
Reconfiguration Index is primarily used to evaluate the extent of the input design changes
on the product level, before generating a new process plan to help determine the
appropriate planning methods best suitable for process planning the product in question,
which could be a part or a complete assembly depending on the domain of application
(see case studies in Chapters 6 and 7 for more details and explanation). The Plan
Reconfiguration Index is used to evaluate the quality of the generated process plans in
terms of the extent of reconfiguration and changes of the reconfigured plans. This is used
for comparing several solutions and selecting the best reconfigured plan that would cause
the least disruption in downstream activities.
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4.4.1 Design Reconfiguration Index
As explained in chapter one, parts and product families undergo continuous change

and evolution due to changes in consumer's requirements and market forces and
demands. Product evolution and the continuously changing and moving boundaries of the
existing part families are the primary motives and drivers behind the current study.
Hence, it was very important to develop a metric that would measure the extent of
changes in the problem inputs, i.e. the changes on the product level, and hence decide on
the planning methods to use.

The proposed Design Reconfiguration Index (RiDesign) quantifies the extent of design
change on the product level from a logical point of view. It consists of three different
components as given by Equation 4.3: 1) ratio of the number of introduced new features
in the new product to be planned to the number of features in the original existing or
composite part, 2) ratio of number of missing features in the new product to the number
of features in the original existing or composite part, and finally 3) ratio of number of
new precedence relationships to the number of precedence relationships in the original
existing or composite part. Larger weights are assigned to the first and the third
component since it was noticed that missing features contribute the least to the resulting
planning reconfiguration effort. Missing features are simply subtracted and, hence, cause
the least changes in the planning logic. The newly added features result in a far more
substantial optimal iterative insertion procedure (an arbitrary value of 0.6 is assigned to
the ß coefficient). Furthermore, the newly developed precedence relationships complicate
this insertion process. The increase in the complexity of the precedence constraints is
measured by counting the number of added arcs in the Feature Precedence Graph (FPG)
of the new part; an arbitrary value of 0.3 is assigned to a. If input data is only available
on the operation level in form of OPGs and related information, they may be taken as a
rough measure of the changes on the design features level.
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/UDesign =

?

Number of added new features in new part/product design
Total number of features of master or existing plan

a Number of added new arcs in new FPG/OPG in new product/part design
Total number ofarcs of master or existing plan

(1 _ „ ?) Number of missing features in new product/part design
Total number of features of master or existing plan

100 (4.3)

J

4.4.2 Plan Reconfiguration Index
A master process plan is reconfigured to arrive at a new plan for a new part using the

proposed methodology and mathematical model. A new performance index is proposed
to measure the percentage of change, i.e., reconfiguration of the original master or
existing process plan due to the additional inserted feature(s). The Plan Reconfiguration
Index (RIp18n), as expressed by Equation 4.4, measures the amount of added work, time
and hence cost that is needed to reconfigure the original process plan. RIProcess consists of
two components: repositioning of work piece on the given fixtures/setups and tool
changes. Weights are used to normalize the index and to reflect the relative importance of
its respective terms.

RI?\m =
a Number of new/missing acts of repositioning the work piece in new plan

Total number of work piece repositioning of master plan
+(1 a) Number of added/missing tool changes in new plan

Total number of tool changes of master plan
100 (4.4)

The higher the value of RIprocess, the more extensive is the process plan
reconfiguration and its associated cost. For the coefficient a, it takes a value proportional
to the average amount of time to reposition the work piece on a new fixture relative to the
time required to change a tool. For example, if the ratio of time to reposition a work piece
on a new fixture to that to change a tool is presumed to be 3:1, then a would take a value
of 3/(4+ I)=O. 75.
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4.5 Illustrative Example
A handspike/lever (Bhaskara Reddy et al. 1999) is assumed to be the new part with a

new feature. It is composed of 8 features (Table 1). For simplicity, the composite part is
the same part less feature B and the tapping operations associated with features D, E and
F are disregarded. Table 1 shows the features setup and tooling data. Figure 2 shows the
FPGs for both the composite and the new part. The process sequence for the composite
part is obtained using the exact optimal algorithm developed in (Azab 2003). The
obtained sequence is {Ar, G, C, Af, E, D, F}. Feature A is divided into sub-features Ar
and Af for the reasons explained in section 4.1 and clearly justified by the FPGs shown in
Figure 4.2.
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\

Figure (4.2) Model of the new handspike family member, adapted from Bhaskara Reddy et aL
[1999).

The problem is formulated and solved using Xpress-MP. Feature B was inserted at
position 3 in the process plan sequence, i.e. X3= 1. The new reconfigured sequence is {Ar,
G, B, C, Af, E, D, F}. The penalty, work piece repositioning and tool change time
matrices and vectors are given in Tables 4.2- 4.13, and are derived from the setup/tooling
information in Table 4.1. An element C1- j represents the penalty between a pair of two
features; one always being the inserted feature. For example, Tables 4.2 and 4.3 show
that there is a penalty of M if Ar is preceded by B, and 0 otherwise. For the rest of the
coefficient matrices/vectors, an element would represent the tool change or the work
piece repositioning time between a pair of features/operations. Unlike the C matrix, for
the rest of the matrices the work piece repositioning/tool change time of a given
feature/operation pair and its transpose have the same values since the order does not
affect the tool change time or work piece repositioning time on a fixture. For example in
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Table 4.12 the tool change time of having Ar being preceded by B or vice versa is the
same. Note that the first and last elements of the old work piece repositioning vector Os
and those of the tool change vector Ot are always zero since if the new feature is inserted
right before all the features or after them, no old setup cost has to be considered. Also, the
first element of the left tool change time vector and the last element of the right tool
change time element have to be zeros, because for the left tool change the new feature is
inserted such that the original features come to the left and hence the first decision
variable would not be associated with any of its elements. However, note that the values
of the left tool change time vector are exactly the same as the right tool change time
vector, but shifted by one element.

Table (4.1) Setup/Tooling data for the handspike.
Feature Name

Ar

D

Af

Fixtures

(Setup)
Sl
Sl
S2
S2
S2
Sl
Sl
S2

Tooling

Tl
T2
T3
T3
T3
T4
T5
T6

Note that B in table 4.1 is the new feature for the new part; other features exist in
both the composite and new part.

Table (4.2) Precedence penalty matrix C.
-BAT
ArB
ArB
ArB
ArB
ArB
ArB
ArB

BC
BC
CB
CB
CB
CB
CB
CB

BD
BD
BD
DB
DB
DB
DB
DB

BE
BE
BE
BE
EB
EB
EB
EB

BF
BF
BF
BF
BF

_FB_
FB
FB

BG
BG
BG
BG
BG
BG
GB
GB

BA, .
BAf

JaT
BAf
BAf

-BAl
BAf
AfB
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Table (4.3) Filled-in precedence penalty matrix C.
M

JVL
JvL
M

JvI
JvL

M
JvL
JVL
M

JVL
JVL JVl

Table (4.4) Old work piece repositioning time vector Os.
0 I ArC I CD I DE I EF I FG I GAp

Table (4.5) Filled-in old work piece repositioning time vector Os.
?S

Table (4.6) Old tool change time vector Ot.
O I ArC I CD I DE I EF I FG I GA

Table (4.7) Filled-in old tool change time vector Ot.
_QL

Table (4.8) Left tool change vector Tl.
ArB ! CB Í DB 1 EB I FB ! GB 1 AfB i

Table (4.9) Filled-in left tool change vector Tl.

Table (4.10) Right tool change time vector Tr.
BAr I BC I BD 1 BE I BF I BG I BAp

Table (4.1 1) Filled-in right tool change time vector Tr.
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Table (4.12) Work piece repositioning time matrix S.
BAr

£3_
ArC
ArC
ArC
ArC
ArC
ArC

ArC
BC
CB
CD
CD
CD
CD
CD

CD
CD
BD
DB
DE
DE
DE

_DE_

DE
DE
DE
BE
EB
EF
EF
EF

EF
EF
EF
EF
BF
FB
FG
FG

FG
FG
FG
FG
FG
BG
GB
GAf

GAf
GAf
GAf
GAf
GAf
GAf
BAf
AiB

Table (4.13) Filled-in work piece repositioning time matrix S.
S
S S

S 0
0

_8_ 0
Û S

S
S

?
Figure (4.3) Features Precedence Graphs (FPGs) for the composite part and new handspike.

The formulation coefficient matrices/vectors are shown with the feature pairs to
illustrate the method and then with their corresponding values as shown in Tables 2-13.
The work piece repositioning objective function component is 'S', the tool change
objective function component is 'T', while 'M' is a very high positive value representing
a penalty. Cells in both the C penalty cost matrix and the S setup cost matrix are
highlighted to demonstrate the repeatability of the different elements. One is not required
to fill in all the elements for both matrices. In fact for matrix C, only the first row and the
diagonal are filled in and the rest is simply a repetition. The diagonal is highlighted; all
the elements below the diagonal are identical and equal to its respective diagonal
elements. All the elements above a diagonal element are the same as the cells in the
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matrix first row. As for the S matrix, there is a diagonal band with a width of two
identical elements. The elements below the band are identical to their respective diagonal
elements. The elements above the band are the same as those of the first row. Populating
these matrices, although straightforward, can be error prone and tedious for relatively
large size problems. Therefore, the process of generating the different penalty, setup and
tool change time coefficient matrices has been automated using algorithms implemented
in Matlab and fed to Xpress-MP using an input data file.

4.6 Summary
Reconfiguration of precedence graphs to optimize the scope and cost of process plan

reconfiguration is achieved by inserting/removing features iteratively, using a novel 0-1
integer programming model. The formulation of the mathematical model at each iterative
step of reconfiguration has been automated. Computational complexity was discussed.
The proposed RPP mathematical scheme scales better with problem size compared with
classical process planning models. Reconfiguration indices at both the part and the
process plan levels were introduced to quantify the extent of change and reconfiguration,
evaluate the newly developed plans, and advise on which methods to choose. A
benchmark from Bhaskara Reddy et al. (1999) is used to illustrate the application of the
developed model and method.
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5. PROCESS RE-PLANNING

As explained in chapter one, manufacturers worldwide are faced with increased
competition and major challenges to achieve agility, responsiveness and cost-
effectiveness, and respond promptly to customer needs by providing cost-competitive
products to the market. On the systems' side, changeability supported the increased
dynamicity of part families and their witnessed evolution. Therefore, appropriate process
planning concepts and methods should be developed to support this new agile changeable
manufacturing environment. In this chapter, generative Re-Planning mathematical
programming and non-traditional optimization is developed. For higher production
volumes, when it is desired to arrive at highly optimized global plans, Re-Planning
methods would be used to avoid the inherent locality of the RPP method implied by its
objective of limiting the extent of plan changes and by the adoption of a specific
sequence of insertion for the added new features. A benchmark problem has been solved
to illustrate the proposed method and model. Industrial case studies are conducted in
Chapters Six and Seven. This chapter is based on Azab and ElMaraghy (2007b, 2007c).

5.1 Quadratic Assignment Problem Mathematical Modeling &
Programming

The objective is to sequence a global set of machining operations of a given part,
subject to a number of precedence constraints, in order to minimize the total idle time
spent mainly in repositioning the work piece or fixture and tool changes. The Quadratic
Assignment Problem (QAP) is the problem of assigning a set of ? objects to another set
of ? objects in order to minimize the sum of the costs associated with pairs of assignment
(Erdogan and Tansel 2007). Some of the most common cases producing quadratic
assignment models arise in facility layout planning, where a collection of machines,
offices, departments or stores are to be arranged within a facility, and a set of locations
within which they must fit. The problem is usually solved in two-dimensional space
where a very common objective is to minimize the material handling cost or in other
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words the flow-distance, i.e., the product of flow volumes between facilities and the
distances between their assigned locations.

Since the process planning/operations sequencing is conceptually different from the
2-D or 3-D layout problems, a novel adaptation of the QAP is proposed. In process
planning, it is required to assign ? objects, which are the machining features of the part to
be process-planned to ? positions; in one-dimensional space representing the sequence of
machining operations / features. These differences have been translated into variations in
the objective function, where the cost coefficient matrix is no longer a function of the
locations to which the objects would be assigned. Also, precedence constraints for the
process planning problem have been formulated.

5.1.1 Assumptions
The assumptions made in this model are summarized as follows:
¦ A Feature Precedence Graph (FPG) is used to model the interactions and

precedence relations, i.e. constraints that exist among the different features. A
machining feature is defined in this work as a geometric feature that requires
processing by one or more operations.

• Sequencing is carried out on machining features taking the following into
consideration:

o Within each feature, a logical sequence of operations is used to order the
feature's sub-operations.

o Some features are represented by more than one node in exceptional cases
due to their interdependence on precedence relationships with other
features.

¦ Operation selection was done in advance.

¦ Setup, and tool information required for each operation was specified and given in
advance.

¦ The tool magazine of the machine tools used has enough capacity to hold all the
required tools as well as the redundant tools used for back-up.

¦ Tool changes do not take place during loading and unloading of the part.
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The considered precedence constraints include:
o Accessibility of the feature by the tool.
o Logical sequence of operations.
o GD&T constraints,

o Non-destruction of surfaces and features completed by preceding
operations.

o Machined fixture datum points on the part.
o Good manufacturing practices and knowledge.

5.1.2 Notation

¦ y¡;k is the problem decision variable; it is a 0-1 integer variables, where both i and
k runs from 1 to m. The value of the decision variable is 1 if the feature i is

positioned in location k; otherwise it is zero.
¦ m denotes the problem size defined as the total number of decision variables. It is

also the total number of machining features to be sequenced; that is as far as the
physics of the problem goes.

¦ T is the symmetric handling time matrix [ty].

5.1.3 Formulation

Two criteria are considered: 1) time for repositioning the work piece on different
fixtures, and 2) time for tool changes. The objective is to minimize the non-cutting time.
The time spent for rapid tool traverse from one feature to the other is ignored due to its
relatively minor contribution. The time required for transportation of the work piece
between different machine tools as well as that spent to adjust machining conditions are
also ignored since these detailed parameters are not determined at this macro-level.
Therefore, the objective function is defined as in equation 5.1.

m m m-\

min . J] J] Ti, ,J] yi, k nyj, * + 1 (5.1)
i=] j=i k=\

Subject to:
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fil

5>.* = 1 Vi g {1,2, ...,m} (5.2)
k=\

Equation 5.2 is a feasibility constraint that ensures that a manufacturing feature is
only assigned once.

5>u = l V*e{l,2,...,m} (5.3)
( = 1

Equation 5.3 is a feasibility constraint that ensures that no more than one
manufacturing feature is assigned to position k.

?>.*>S>·'
k=\ <t=l

V/ g {1,2,. ..,m} (5.4)

For a pair of machining features i and j, this precedence constraint (i —? j) mandates
that feature i be assigned a position in the plan sequence before feature j. The decision
variable y,,k would be equal to one when feature i is placed at position k. For that to take
place, the machining features i and j, y,.,, and y.n would equal one when the index kl is
less than the index k2 as demonstrated by Figure 5.1. Hence, the summation of >>,.* over k
would must always be greater than or equal that of y¡.k over k. The summation would run
? times where each time it stops at a different value; it starts with 1 and ends at n.
Therefore, for every precedence constraint a set of ? inequalities represented by equation-
5.4 have to be defined.

?,?

Xj. ?

Figure (5.1) Values of the decision variables for a precedence constraint (i —? j) between machining
features i and j
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>*.* = (0,1) \/i,ke{\,2,...,m) (5.5)

5.2 Illustrative Example
A handspike/lever, shown in Figure 4.2, (Bhaskara Reddy et al. 1999) is assumed to

be the new member part of the handspike part family that contains a new feature. It is
composed of 8 features. For simplicity, the composite part is considered to be the same
part less feature B and the tapping operations associated with the three small holes
(features D, E and F) are disregarded. Table 5.1 shows the features setup and tool change
data. The FPGs for both the composite and the new part is shown in Figure 4.3.

Table (5.1) Setup/Tooling data for the handspike
Feature

Al.

D

G

£-
B

Setup
Sl
Sl
S2
S2
S2
Sl
Sl
S2

Tooling
Tl
T2
T3
T3
T3
T4
T5
T6

*Note: B is the new feature for the new part; otherfeatures exist in both the composite and new part.

5.2.1 The Composite Part
As explained earlier, the composite part is the model shown in Figure 4.2 without

feature B. The handling time matrix T is listed in Table 5.2. Only the upper part of the
matrix is filled since the C matrix is symmetric. In Table 5.2, S denotes the time required
to reposition the work piece on a different setup, while T denotes the tool change time.
The ratio S:T is taken as 3: 1 .
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Table (5.2) Handling time matrix T for the Handspike composite part
Ar C D E F G Af

Ar
C
D
E
F
G
Af

S+T
S+T

S+T
S+T

S+T
S+T T

S+T
S+T
S+T

S+T
S+T
S+T

*Note: Matrix is symmetric.

Equations- 5.6-5.16 represent the formulation for the composite part. Sample
constraints and the objective function are also expanded for the composite part in the
Appendix to clearly demonstrate the model constraint equations and inequalities.

Subject To:

7 7 6

min · SS Tu ^S >*· * W' k +
/=1 y=l A=I

S>.* = 1 Vi e {1,2, ...,7}
k=\

(5.6)

(5.7)

5>* = 1 VkG(I, 2, ...,7}
/=1

(5.8)

For precedence constraint Ar—»D, where features Ar and D are represented by indices
land 3:

Í><>Í>< V/e{l,2,...,7} (5.9)
k=\ k=\

For precedence constraint Ar—»E, where features Ar and E are represented by indices
1 and 4:

k=\ k=\
V/e{l,2,...,7} (5.10)
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For precedence constraint Ar->F, where features Ar and F are represented by indices
1 and 5:

?>'^?>> V/ e {1,2,...,?}A=I A=I (5.11)

For precedence constraint Ar-+C, where features Ar and C are represented by indices
1 and 2:

2>4>£.y,t V/ e {1,2,..., 7} (5.12)A=I *=l v '

For precedence constraint Ar->G, where features Ar and G are represented by indices
and 6:

2><>?>,* V/ e {1,2,..., 7}
A = I A=] (5.13)

For precedence constraint C->Af, where features C and Af are represented by indices
2 and 7:

2>>>S>< V/e{l,2,..,7} (5.14)

For precedence constraint G->Af, where features G and Af are represented by indices
1 and 3:

S^>S->^ V/ e {1,2,..., 7} (5.15)A = I A=I v '

.y,* = (0,1) Vi,* e {1,2,..., 7} (5.16)

The QAP process planning model was solved using GAMS algebraic modeling
language and the SBB solver. SBB is a new GAMS solver for Mixed Integer Nonlinear
Programming (MINLP) models. It is based on a combination of the standard Branch and
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Bound (B&B) method known from Mixed Integer Linear Programming and some of the
standard Nonlinear Programming (NLP) solvers already supported by GAMS.

The obtained near-optimal solution is {Ar, G, C, Af, F, E, D}, where yM, y2>3, y37,
Y4.6, ys,5, y6>2, y7,4 are equal to one; the rest are zero. The obtained corresponding value of
the objective function is 7 time units.

5.2.2 The New Member Part

The new handspike part is the model shown in Figure 4.2. The handling time matrix
T for the new part is listed in Table 5.3.

Ar
C

D

E

F

G

Af
B

Table (5.3) Handling time matrix T for the handspike new part.
Ar C D E F G A,

T S+T

S+T

S+T

S+T

*Note: Matrix is symmetric.

S+T

S+T

S+T

S+T

S+T

S+T

S+T

S+T

B

S+T

S+T

T

T

S+T

S+T

Equations 5.17-5.29 represent the formulation for the composite part. For the new
feature highlighted in the FPG in Figure 4.3, five new precedence constraints represented
by equations 20, 23-26 are formulated. The model is also solved using GAMS and the
SBB solver and the values of the following decision variables (y,,,, y2i2, y3,6, y4A, y55,
ye,?, y?,8, y8,3) were equal to one; the rest was zeros, i.e., the obtained sub-optimal plan
sequence is {Ar, C, B, E, F, D, G, Af}. The highlighted features represent the features in
the sequence whose order was completely changed when compared with the original
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master plan sequence of the composite part. By assuming the same ratio of 3:1 time units
between S and T, the objective function value obtained is 1 1 time units.

8 8 7

min . ]G ^T,Sy>- " nyj- * + ' (5-17)

Subject To:

|>,* = 1 Vi e {1,2, ...,8} (5.18)
k=\

]?>.* = 1 Vk e {1,2, ...,8} (5.19)
/=?

For precedence constraint Ar—»B, where features Ar and B are represented by 1 and
8:

2>,*>?>, V/e{l,2,...,8} (5.20)
k=\ k=\

For precedence constraint Ar—>C, where features Ar and C are represented by 1 and
2:

S^>S>> V/e{l,2,...,8} (5.21)
k=\ k=\

For precedence constraint Ar—>G, where features A1- and G are represented by 1 and
6:

S><>S>< V/e{l,2,...,8} (5.22)
k=\ k=\

For precedence constraint B—>D, where features B and D are represented by 8 and 3:
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?>·^S>* V/e{l,2,...,8} (5.23)
k=\ k=\

For precedence constraint B-*E, where features B and E are represented by 8 and 4:

S>->S^- V/ e {1,2,. ..,8} (5.24)
* = 1 *=1

For precedence constraint B->F, where features B and F are represented by 8 and 5:

S>^S^' V/ €{1,2,. ..,8} (5.25)

For precedence constraint B->Af, where features B and Af are represented by 8 and 7:

2>,*>Ì>,* V/e{l,2,...,8} (5.26)

For precedence constraint C-*Af, where features C and Af are represented by 2 and 7:

2>*>¿.y" V/e{l,2,...,8} (5.27)

For precedence constraint G—>Af, where features G and Af are represented by 6 and 7:

S?..>*S?,.> V/e{l,2,...,8} (5.28)
*=l *=1

>.e{0, 1} Vz,*e{l,2,...,8} (5.29)

5.3 QAP Linearization
The Quadratic Assignment Problem (QAP) presented in section 5.1 is a non-linear

model since it holds a quadratic objective function. This section presents a linearized
version of the QAP model. A procedure adopted from (Taha 1987) for linearizing integer
programming models has been applied. The two models are equivalent and produce exact
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optimal results. A new 0-1 decision variable qiJ;k is introduced with all three indices of
the problem: i and j the features' indices and k the position index. This new decision
variable qiJjk replaces the original QAP objective function quadratic term. Two extra
constraints, represented by equations 5.34 and 5.35 for each objective function term are
added to ensure that the new decision variable would have a value 1 only if both original
variables y¡,k and Vjjk+i equal 1. Solutions provided by the linearized model are guaranteed
to be exact global optimal solutions; however, it is important to note that only instances
of limited size can be solved for optimality since the problem at hand is of a
combinatorial nature, as is explained in more detail in Section 5.5. The linearized model
can be solved by almost all commercial optimization packages and solvers. GAMS
algebraic modeling language and the CPLEX solver were used.

m m m-\

min· SSTi' ^S &· j'k (5j°)
,=1 j=\ ?t = 1

Subject to:

m

S^-,* = 1 Vi e {1,2, ..,m} (5.31)
k=ì

Equation 5.31 is a feasibility constraint that ensures that a manufacturing feature is
only assigned once.

m

Y^yitk = \ Vi e {1,2, ..., m} (5.32)
k=\

Equation 5.32 is a feasibility constraint that ensures that no more than one
manufacturing feature is assigned to position k.

S^'^S^' V/ e {1,2,.'..,/«} (5.33)
*=l k=\
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Equation 5.33 expresses precedence constraints of the form (i —? j) as explained in
section 5.1.

y.-t + y^.i-lq,.,.^ 0 Vz, y',* (5.34)

y.t + y.t^-q,.,.^ 1 V/, y,* (5.35)

As explained above, equations 5.34, and 5.35 ensure that the new decision variable
q¡j,k would only have a value when both original decision variables yi;k and yjik+i equal 1
as in the original model.

y,>, #.,.. = (0,1) Vi,j,ke{\,2,...,m} (5.36)

5.4 Conceptual Comparison of Proposed QAP Model, Classical
TSP and Latest RPP Models

In this section, the proposed QAP-based process planning model is compared with
the classical TSP as well as the RPP model introduced in Chapter 4. As mentioned
earlier, several mathematical models have been presented in the literature for process
planning. Many of them were informal procedural models (Azab 2003), and the few
mathematical formulations were based on the popular symmetric (Traveling Salesperson
Problem) TSP model. In this chapter, a novel adaptation of the QAP model has been
proposed and developed for use in process planning (Azab and ElMaraghy 2007).

The QAP model is entirely conceptually different compared to its earlier TSP-based
counterparts. First of all, as shown in Figure 5.2, the TSP model formulates the problem
as a search for the optimal tour with the minimal distances between its cities. A tour has

no start and no end, while the required sequence has. Lin and Wang (1993), Irani et al.
(1995) and Kim and Suh (1998) stated that the problem is equivalent to that of extracting
the Hamiltonian path of least cost that visits all of the features once and only once.
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However, conceptually a tour remains equivalent to a cyclic closed sequence with one
more route between the start and the end city. Hence, a slightly different problem with
one more route is being optimized. On the other hand, QAP optimally allocates the
manufacturing features/operations to a one-dimensional array, i.e., a sequence.

TSP fails to model properly precedence constraints, which are a corner stone of the
process planning problem. As explained earlier in Chapter Two, the only precedence
constraints that could be specified in the TSP model are immediate predecessor successor
relationships. Some endeavors have been made to model precedence by applying penalty
functions; however, it was not completely conceptually sound and in most cases resulted
in infeasible solutions (see critique given in Chapter Two). As for the QAP model,
rigorous general precedence constraints were mathematically modeled properly. Finally,
the proposed QAP model overcomes the complex sub-tour elimination constraints of the
TSP formulation. In contrast, the QAP is a non-linear model, i.e. near optimal solutions
are expected. Therefore, linearization of the quadratic model was carried out in section
5.3.

The proposed QAP-based scheme offers a novel method of process re-planning,
which could be conveniently used when products and systems are reconfigured. Re-
Planning addresses the same problem that has been approached by Reconfigurable
Process Planning (RPP) (Azab and ElMaraghy 2007). As explained in Chapter Four, RPP
is the development of a process plan for a new part, some features of which are not within
the boundaries of the existing parts family or its composite part and master plan, i.e., the
new part belongs to an evolving parts family (ElMaraghy 2006). The master plan would
be modified to meet the requirements of the new part and its added features. New
portions of the process plan, corresponding to the new additional features (and their
machining operations), are generated and optimally positioned within the overall process
plan. If the sequence of features processing, which respects precedence constraints, is
thought of as a genetic sequence, then the added new features would represent mutation
of that sequence by optimally inserting new genes (Azab and ElMaraghy 2007).
Reconfiguring Process Plans (RPP) offers locally reconfigured solutions. Solutions
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obtained are minimally reconfigured compared with the existing or master plans. The
localized solutions minimize the extent of reconfiguration and the impact on the related
downstream shop floor activities. Hence, they would incur less reconfiguration costs,
cause less disruptions and minimal changeover effort. This, in turn, would decrease the
time required to introduce new products to the market, i.e., less opportunity cost. Minimal
time and cost required for labor training on the new plans would be required and hence,
possibly less mistakes that would affect product quality. All these factors could prove to
be an important edge for relatively low- to medium-volume production and agile
manufacturing, where products evolve and are customized frequently or when
engineering changes are numerous, which is typical in present manufacturing
environments during the product/process development phase.

On the other hand, the proposed QAP-based method conversely re-configures the
process plan for the new part by re-planning. The problem is re-solved by mathematical
programming after having the original model of the composite part re-formulated for the
new part. One advantage of this approach is that the solution is a global exact optimal,
whereas that offered by RPP seeks to partially reconfigure the process plan. Globally
highly optimized solutions are obtained by Re-Planning, which would be more

. appropriate to use for higher volume of production.

The RPP approach is also an iterative algorithm where the RPP mathematical model
is solved ? times corresponding to the ? new features of the new part. However, the
computational time complexity of the RPP model is superior since each iteration is
solved in polynomial time. Hence, the RPP model has by far a better computational time
complexity polynomial function than the NP-complete QAP.
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Problem Input: ? features (F1, F2 Fn) to
be sequenced, the handling time cost
coefficients among each pair of them is C,,.

Proposed Quadratic _
Assignment Problem (QAP)
Model: ? machining feature
(F1, F2 Fn) to be assigned
to ? positions (P1, P2 Pn) of
a uni-dimensional plan
sequence of size n.

2

©
5

Travelling Salesperson^
Problem (TSP) Model:
machining features (F1,
F2 Fn) to be visited
only once with no
subtours minimizing the
total travelled distance.

P7

Figure (5.2) Conceptual comparison of the classical TSP mode, with the proposed QAP-based model
The RPP model was applied to the same Handspike benchmark problem formulated

and solved using Xpress-MP solver and modeling language. The original plan sequence
for the composite part is {Ar, G, C, Af, E, D, F>. Upon solving the RPP model, feature B
was inserted at position 3 in the process plan sequence. The new reconfigured sequence is
{Ar, G, B, C, Af, E, D, F} (Azab and ElMaraghy 2007). The corresponding value of the
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objective function is 14 time units compared with 11 time units obtained by the QAP-
based proposed method. It is also evident by looking at the plan sequences obtained by
both methods, shown in Table 5.4 that the RPP method results in partial reconfiguration
of the original plan sequence of the composite part, whereas the QAP-based re-planning
method re-shuffles the original composite plan sequence since it re-plans the processes
from scratch. The RPP solution limits the changes to the original process sequence/plan
by locally reconfiguring it. This reduces the potentially costly efforts on the shop floor
for changing set-ups or fixtures and associated ripple effects.

Table (5.4) Comparing RPP against QAP-based Re-planning

Method

RPP

QAP-based
Re-planning

Solutions

Composite: {Ar, G, C, Af, E, D, F}
New: (An G, B1 C1 Afl E, D, F)
Composite: {Ar, G, C, Af, F, E, D}
New: {Ar, C, B, E, F, D, G, Af}

Objective
function value

7 time units
14 time units
7 time units
11 time units

In essence, the two models approach the process sequencing/planning variation
problem differently, one by locally re-configuring it (RPP) and the other by re-planning it
(QAP-based). Both approaches have their advantages and applications.

5.5 A Combinatorial Optimization Problem
The problem in hand constitutes a combinatorial optimization problem which is

proven to be NP-complete (Garey and Johnson (1979), Irani et al. (1995), Reddy et al.
(1999)). The acronym NP is for "Non-deterministic Polynomial". An NP-complete
problem is a computational problem that is as hard as any reasonable problem
(Papadimitriou and Steiglitz 1982). Examples of NP-complete problems are the layout
problem, Knapsack problem, integer-linear programming in general, etc. The practical
significance of an NP-complete problem lies exactly in the widespread belief that such
problems are inherently intractable from the computational point of view; that they are
not susceptible to efficient algorithmic solution; and that any algorithm that correctly
solves an NP-complete problem will require in worst case an exponential amount of time,
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and hence will be impractical for all but very small instances (Papadimitriou and Steiglitz
1982).

The distinction between exponential functions and polynomials becomes clear since
polynomials grow more slowly than exponential functions. So polynomial algorithms
with growth rate nk (even when k is large) are more efficient in comparison with
exponentially growing algorithms. A problem is said to be difficult if it can be proved
that any algorithm, which will solve every instance of the problem is an exponential
algorithm. Such problems do exist, but they are rather obscure. A problem for which no
polynomial algorithm is known is called an intractable problem. If there is a polynomial
algorithm to solve a problem, one can claim it is easy to solve. It requires some
sophisticated mathematical techniques to show that the complexity of any algorithm
conceivable for the problem cannot be bounded above by a polynomial. Such techniques
are being discovered by computer scientists with the advent of latest developments in
computational complexity theory.

The introduction of the concept of NP-completeness is important in this field. When
a problem is shown to be NP-complete, this does not mean that it is unsolvable, but it can
be claimed that instances of the problem can be solved and that a general solution is not
available. The following are the possible solution trends: The first trend is using a non-
polynomial time algorithm. The time complexity functions reflect the worst-case
behavior of the algorithms. An exponential time algorithm may perform well on average-
case inputs. An example of such algorithms is the well-known simplex algorithm used to
solve the linear programming problem. In the worst case the algorithm may require an
exponential time, but practice shows that the algorithm performs with a low order
polynomial on average inputs. As for the second trend, heuristics, approximate
algorithms can be used to settle at a good or near-optimal solution. Most optimization
methods fall in this category. The non-linear QAP as well as the linearized model could
still be applied to solve large instances of the problem; however, termination criterion
should be pre-specified. Evolutionary methods, strategic meta-heuristics, etc., could also
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be used to obtain approximate sub-optimal solutions. A random based search heuristic is
proposed in Section 5.5 to solve large instances of the Process Re-Planning problem.

5.6 Non-Traditional Optimization
The objective, as mentioned earlier, is to sequence a global set of machining

operations of a given part, subject to a number of precedence constraints, in order to
minimize the total idle time spent mainly in repositioning the work piece or fixture and
tool changes. This problem has already been proven to be NP-hard as explained in
Section 5.4. Hence, a new search heuristic based on Simulated Annealing (SA) has been
developed. SA is a hill-climbing search method suitable for solving combinatorial
problems as well as continuous problems with multi-modal objective functions (Vidal
1993). A search heuristic based on SA is tailored towards the problem at hand. The
notation used is as follows:

? Precedence constraint matrix, where every represents a precedence
relationship between a pair of two features/operations. Each row is
composed of two features/operations IDs representing a predecessor
successor relationship.

j ?= [tjJ] is an mxm symmetric handling time matrix.
t t is the annealing temperature; initial annealing temperature is t0.
B Search current point.

N New search point after applying the SA operator, where a move is
randomly chosen to one of the neighboring solutions.

Smax 0uter looP count-

S Outer loop counter.

? Inner loop count; it decreases by a, where 0«x<l. For the first loop it is
starts with a value zmax.

j Inner loop counter.
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BestSoFar A variable to store the best search point visited so far.
ObjFn Value of the objective function for a given sequence.
?? AE=ObJFn(N)-ObJFn(B).

1. Read problem input:
px2 precedence constraint matrix (P).
mxm handling time matrix (t).

2. Set initial search parameters (Temperature/Inner loop count):
Set t <- t0; set ? <- zmax. , .3 Randomly generate initial search point B (also current search point) us.ng a function togenerate a random permutation of size m; also store the B in BestSoFar, Wh.ch .s storage

for the best search point visitied so far:
Set B <- randperm(m); set BestSoFar <- B.

4. Initialize outer loop counter:
SetS<- 1.

5. Initialize inner loop counter:
Setj <r 1.

? Create a new search point , i.e. sequence (N): .Randomly choose a move to one of the neighbor solutions of the current search point B.
7. Check feasibility of N:

f feasible jump to step 10
[infeasible proceed to next step

8. Make another move: , . · t „„„„t»r ;Randomly choose a move to a neighbor solution; increment a counter ?IfN is infeasible & i < 10 goto step 7; ifelse B is feasible jump to step 10; else proceed to
next step.

9 Validate N against precedence constraints: ... AA tailored repair mechanism specifically designed for the problem in hand is used.
,0. Calculai^¿™^^j^where objFn is the objective function value of a sequence.
1 !- TMt^SZ Í^Tarrofbetter quality and, Mowing an exponential random

distribution, some that are of less quality. D„ctc„parIf ?? < 0 or rand < e<àn) set B <r N. IfB is of better quality than BestSoFar, set BestSoFar
<-B.

12. Repeat for current temperature:
Set j <r j+1; if j < za, goto step 6.13. Lower the SA temperature & increment outer loop counter:
Set t <- at; z=az: 0<a<l ; set S <- S+l .

14. Apply a mutation operator:
Set B <- Shuffle(B).

IS Check termination criteria: . ,If no progress is made for ? loops terminate; i.e. if S < Smax goto step 5, otherw.se the
algorithm terminates. .

Figure (5.3) Proposed search algorithm for sequencing m features with ? precedence constraints.
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The proposed algorithm is detailed in Figure 5.3; it is comprised of two nested loops,
an outer loop (steps 4-15 of proposed algorithm given in Figure 5.3) where the annealing
temperature (t) decreases and an inner one, which iterates a number of loops that decrease
with t (steps 5-12). In the inner loop new moves to neighboring solutions are accepted if
they are of better quality to allow for hill climbing as demonstrated by step 1 1 ; lower
quality solutions are also accepted with an exponential probability distribution. An
algorithm is developed to validate the generated relaxed sequences against the
precedence constraints and, then as needed, repair them if no valid feasible solutions are
generated after a certain number of moves. The reason behind this validation process is
that the solution space before the application of the constraints is factorial in size; it is
also believed that the size of this part of the solution space is exponential in nature, which
renders the search infeasible after applying the constraints. Therefore, it would be
inefficient to wait until a feasible solution is generated randomly since the probability of
its generation was shown to be poorly low. Also a Genetic Algorithms mutation operator
is applied at the end of each outer loop to increase the chances of exploring more parts of
the feasible solution space (step 14). The best solution found is always stored and
updated. Generation of the objective function cost matrices for the different
configurations of a given part was automated using an algorithm that exploited the
symmetry property of the objective function matrices.

5.7 Summary
A novel mathematical model has been developed for process planning in changeable

and reconfigurable manufacturing at a macro-level. Global optimum process plans are
obtained by re-planning from scratch, when highly optimized process plans are required
for economies of scale of mass production and the new mass customization
manufacturing paradigms. The new process planning model compares favorably with the
TSP model. Since the Re-Planning problem is combinatorial in nature, a random-based
evolutionary Simulated Annealing algorithm has also been tailored to solve large instance
problems.
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6. APPLICATION IN METAL-CUTTING

This chapter is dedicated to present the main case study of this dissertation, where a
family of front engine cover parts is machined on a Vertical Reconfigurable Machining
Center. The proposed methodology was applied, where both generative Reconfigurable
Process Planning (RPP) and Process Re-Planning models and methods were exploited
and compared. The chapter concludes with a discussion of the obtained results.

6.1 Case Study Description
An engine front cover family of parts is used in this chapter. The two developed

process planning methodologies were employed and compared in terms of their
performance and merits. The cover belongs to an aluminum single-cylinder, air-cooled
engine with overhead valves. Two variants of the front cover are given: an original
existing one, which is currently being machined on the shop floor and a new instance
with new and missing features. The original instance could also be the family's
composite part in a typical retrieval planning argument. The aluminum front covers are
die cast to the near net shape; finish machining is required for precision features and the
tapped holes. Chamfered Cores are used where possible in the casting process to
eliminate drilling for several tapped and clearance holes.

6.2 Setup Information
A three axis horizontal RMT would be used, hence three setups are required to

produce the part in order to access the features on the front and back faces (-Z, +Z) and
the side face (+X). The part is located on specific cast datum points to machine the
features on the back face (+Z). Hence, machined datum points are generated and used to
machine features on the front face. In each fixture, the part is placed on three pins (datum
points A as shown in Figure 6.1). The two dowel holes of the part are inserted in two pins
to restraint the planner three degrees of freedom (datum points Y as shown in Figure 6.1).
These two pins are of varying cross section; one is circular while the other is diamond.
Finally, two clamps ensure that the part does not get lifted off the setup. The ratio of the
time required to position the work piece on a different fixture (composed mainly of
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unloading the work piece, cleaning the setup, and loading the work piece) to the tool
change time is assumed 2:1 based on practical experience. Note that it is assumed that the
time required to reposition the work piece does not include that for tool changeover if
required.

-A-

,f¿L·
-Y-

¦ ill·' '>-*

1^v AS ' K't
• Si'' J

N _ •

Figure (6.1) The fixturing scheme adopted for the single cylinder engine front cover part family.

6.3 Precedence Information

The precedence constraints applied in this case study are: 1) the features
accessibility; 2) the logical sequence of operations; 3) the dimensional and geometrical
precedence constraints are considered; 4) ilie non-destructive constraints; 5) the
precedence due to machined setup datum points; and 6) good machining practices.

TC®7T@)
Figure (6.2) Feature precedence graph (FPG) of the original composite and the new single cylinder

engine front cover
66



Figure (63) Composite part of the engine front covers family.

The Features Precedence Graphs (FPGs) for both the composite and the new part are
shown in Figure 6.2, which can be easily translated to an OPG using the operations
information given in Tables 6.1 and 6.2. The type of precedence is shown on the FPG by
having the arrows carrying a symbol denoting its type. Precedence due to fixture or setup
éairan poiaìs is radicated by an V; n.d. for non-destruction constraints as explained in
section 2; d for dimensional precedence and if it was GD&T, the appropriate GD&T
symbol is then used. Some feature labels in the FPG were suffixed by r or f to indicate
when necessary; for some specific features both roughing and finishing operations are
required when these roughing and finishing nodes for the same feature are separated by
some other features due to non-destruction precedence constraints. For example G is a
precision through hole, while D is flat smooth surface perpendicular to £2. In this case a
rough milling of D has to take place before £2 can be drilled. At the same time, finish
milling cannot take place except after G is done, otherwise burrs due to the drilling
operation would destroy the surface finish of O. The machining alternative employed is
given in Table 6.3 by considering a possible Tool Access Direction (TAD) combination.
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Some dimensions, as well as GD&T constraints, dictate that some operations be
performed using the same setup. If an alternative violates any of these conditions, a
penalty cost is incurred to represent the extra time and effort required to achieve the
desired tolerances.

Table (6.1) Features, operations, tools, and TAD for engine front cover composite part
Features

ID

Fl

F2

F3

F4

F5

Function

Locate cover
onto the
cylinder block

Governor
mechanism
seating bore

Description
8mm precision
dowel holes,
through holes

Governor
mechanism
mounting face

Seating face for
external device

Crankshaft
bearing pocket

Precision bore,
through hole

Flat, smooth
surface
perpendicular
to bore ?2

Operations
ID

OPl
0P2

0P3
0P4

Description
Drilling
Boring
Finish boring

0P5

OP6
0P7

0P8

Boss with cast
blind hole

Stepped
through hole.
Concentricity
critical

0P9

OPlO

OPIl

0P12

Drilling
Boring
Finish boring
Rough milling
Finish milling

Tools

ID
Tl

T2
T3

T4

T2
T3

T5
T6

Finish milling

Rough boring

Semi-finish
boring

Finish boring

T6

T7

T8

Description
Step drill 07mm
Bore 07.5mm

Bore 08mm
Drill 07mm

Bore 07.5mm
Bore 08mm

End mill

Face mill

TADs

Z5-Z

Face mill

Special rough
boring tool

T9

Special semi-
finish boring
tool

Special finish
boring tool

#of
Features

F6 Cylinder block
mounting
holes

8 clearance
holes on part
profile

OP13 Drilling T4 Drill 07mm Z1-Z

F7

F8

Seating face for
external device

Oil plug

Flat, smooth
surface

0P14 Milling T5 End mill

Tapped hole for
oil plug,
through hole

0P15

0P16

Drill's spot face TlO Spot face and tap
drill

Tapping TIl M20-1.5tap
F9 External device

mounting
holes

4 tapped blind
holes

0P17 Tapping T12 M10-1.5tap -Z

FlO Cam shaft
seating bore

Precision bore,
blind

OP18 Rough boring T13 Bore 016.25mm
OP19 Semi-finish

boring
T14 Bore 017.25mm

OP20 Finish boring T15 Bore 018mm
FIl External device

mounting
holes

6 holes for
bosses

OP21 Drilling Tl Step drill 07mm -Z
OP22 Tapping T16 Special 9/32

(inch) tap
F12 Sensor

mounting hole
Blind hole OP23 Drilling Tl Step drill 07mm
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Table (6.2) Features, operations, tools, and TAD for engine front cover composite part
(continued).

Features

ID

?3

?4

F15

F16

Function
Sensor
mounting hole

External device
mounting
holes

Gasket sealing
surface

External
component
mounting
feature

Description
Blind hole

Boss with
internal blind
hole

Operations
ID

OP24

Smooth, flat
surface.
Datum -z-

Step hole

OP25

OP26

OP27
OP28

Description
Drilling

Finish milling

Tools

ID
Tl

T6

Finish milling

Drilling

OP29

OP30

Boring
Finish boring
Drilling

T6

T4
T2

Description
Step drill 07mm

Face mill

Face mill

Drill 07mm

TADs

T3

T17

Bore 07.5mm
Bore 08mm

Special drill
04.5mm

-Z

#of
Features

1

6.4 Part Family
In this section, details of two parts of the engine front cover part family are given: a

hypothetical composite part and a new variant belonging to the family.

6.4.1 Composite Part
The part shown in both Figures 6 and IA is assumed to be the family's composite

part. 3D views are used to represent the front cover for compactness, while front and
back views are shown in Appendix A. Important dimensioning and geometric tolerance
specifications and annotations relevant to the applied precedence constraints are specified
on the rear and front 3D views. Details of each feature, its corresponding operations,
tools, and TAD are shown in Tables 6.1 and 6.2. The objective function matrix can be
easily constructed using the tooling and TAD information.

Table (6.3). Employed TAD alternative for engine front cover composite part
Features

fl F2 O f4 f5 f6 f7 f8 f9 flO f1 1 ?2 f1 3 fl4 ?5 fl6
Z-ZZ X -Z
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Figure (6.4) Engine front cover composite part (front and back views).

6.4.2 New Member Part

A new member of the front cover extended family, illustrated in Figure 7, is
introduced. It contains eight features in common with the existing composite part
(highlighted in black in both Figures Al and Al in Appendix A), but it also has seven
new features, which do not exist in the original part family's composite part. Details of
the features are shown in Tables 6.5 and 6.6. The machining alternative employed is
given in Table 6.4 by considering a possible TAD combination.

Table (6.4) Employed TAD alternative for the new variant of engine front covers
______________________________ Features

fl f2 O f4 ß f6 f7 F8 F17 f1 8 f1 9 F20 F21 F22 F23
Z-ZZ-ZZ-Z-ZXX -Z -Z Z -Z -Z -Z
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Figure (6.5) Engine new front cover variant.

Table (6.5) Features, operations, tools, and TAD for a new variant of engine front covers.
Features

ID
Fl

F2

ß

F4

F5

F6

Function
Locate cover
onto the
cylinder
block

Governor

seating bore

Governor
mechanism
mounting
face

Seating face
for external
device

Camshaft
bearing
pocket

Cylinder block
mounting
holes

Description
8mm precision
dowel holes,
through holes

Operations
ID

OPl
OP2

0P3

Precision bore, OP4
rirs'cst ;"o

Flat, smooth
surface
perpendicular
to bore O

Boss with cast
blind hole

OP6
OP7

OP8

OP9

Stepped blind
hole

8 clearance
holes on part
profile

OPlO

OPIl

OP12
OP13

Description
Drilling
Boring
Finish boring
Drilling
Sarins

Tools

ID
Tl
T2

T3

Finish boring
Rough milling

T4

T3

Finish milling

Finish milling

Rough boring

T5

T6

T6

T18

Semi-finish
boring
Finish boring
Drilling

T19

T20

Description
Step Drill 07miri
Bore 07.5mm
Bore 08mm

Drill 07mm

TADs

^9 "°£j

Bore 08mm
End mill

Face mill

Face mill

T4

Step drill
049mm

Bore 051mm

Bore 052mm
Drill 07mm Z, -Z

#of
Features
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Table (6.6) Features, Operations, tools, and TAD for a new variant of engine front
(continued).

covers

ID

F7

F8

F17

F18

F19

F20

F21

F22

F23

Features

Function

Seating face
for external
device

Oil plug

Oil plug

External
device
mounting
holes

Crankshaft
hole

Crankshaft
bearing
pocket

Sensor
mounting
bore

Sensor
mounting
hole

Description
Flat, smooth
surface

Tapped hole for
oil plug,
through hole

Tapped hole for
oil plug,
through hole

8 tapped blind
holes

21.5mm hole

52mm pocket

16mm bore

7mm hole

Governor
mechanism

Flat, smooth
surface

Operations
ID

OP14'

OP 15'

0P16'

0P17

0P31

OP32

OP33

OP34
OP35

OP36
OP37

OP38

OP39
OP40

0P41

OP42

OP43

OP44

OP45

Description
Rough milling
Finish milling
Ext./int. surface

finishing
Tapping
Ext./internal
surface finishing
Tapping
Tapping

Rough boring
Semi finish
boring
Finish boring
Rough boring

Semi finish
boring
Finish boring
Boring
Boring
Groove

Finish milling
Drilling

Milling

Tools

ID
T5

T21

TlO

T22

TlO

T22

T23

T24

T25

T26
T18

T19

T20
T27

T28

T29

T21

T4

T5

Description
End mill

Face mill b

Spot face and tap
drill

M18-1.5tap
Spot face and tap
drill

M18-1.5tap
Tap drill 07mm

Bore 0 1 9mm

Bore 020.5mm

Bore 021.5 mm

Step drill
049mm

Bore 05 1 mm

Bore 052mm
Bore 014mm

Bore 016mm

Special bore
05mm

Face mill b

Drill 07mm

End mill

TADs

??

Xt

-z

z, -z

-z

:ß &/I7 TAD is different; however reconfiguring the RMT, adding a 4' axis, eliminated this distinction.

6.5 Reconfigurable Machining Resources
The original three-axis horizontal configuration of the RMT is not sufficient for

producing the new part; an extra dedicated setup or two special angle head tools would be
required to machine feature f1 7, for example. Hence, the machine tool would have to be
reconfigured by adding an appropriate rotational axis of motion to the spindle or table,
i.e., the RMT transforms into a 4-axis horizontal machining center.
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Figure (6.6) Engine new front cover variant (front and back views).

6.6. Results

6.6.1 Reconfigurable Process Planning (RPP) Results
The master macro-process plan for the composite engine cover, originally solved

using a Genetic Algorithms toolbox developed by Azab (2003), is retrieved. The obtained
features sequence is {A3, fl2, fl, f5, f6, fl5, Or, flO, «, f4, A4, £2, fl6, fl 1, f9, Í7, Of}.
The common features {fl, f5, f6, f3r, f8, f4, f2, f7, f3f> are extracted from this solution
by subtracting those that are not found in the new part. Now, that the initial features
sequence is obtained, the RPP procedure is applied to find the optimum insertion position
for features fl7- £23 respectively. Seven iterations were performed to optimally insert the
seven new features as shown in Table 6.7.

Table (6.7) Results for the seven RPP iterations
#1 {fl, f5, fö, Or, fl7, f8, f4, f2, f7r, f7f, Of}
#2 {fl, f5, f6, Or, ?7, f8, f4, f2, f7r, ?8, f7f, Of}
#3 {fl, f5, fl9, f6, Or, fl7, f8, f4, f2, f7r, fl8, f7f, Of}
#4 {fl, f5, Í20, fl9, f6, Or, fl7, f8, f4, f2, f7r, fl8, f7f, Of}
#5 {fl, f5, f20, fl9, f6, Or, fl7, f8, f4, £2, £7r, fl8, £7f, Cl, Of}
#6 {fl, f5, GO, fl9, f6, Or, fl7, f8, f4, f2, f7r, fl8, f7f, £21, £22, Of}
#7 {fl f5, £20, fl9, f6, £23, Or, fl7, f8, f4, £2, £7r, fl8, £7f, £21,£22, Of}
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The obtained solution and its corresponding objective function value for the obtained
reconfigured part are shown in Table 6.8. Formulation details for the first and second
iterations are given, for demonstration purposes, in Appendices A.

Table (6.8) Final RPP Solution & Corresponding Objective Function Value
Solution Objective

function
value

{f1, f5, f20, f19, f6, f23, f3r, f17, f8, f4, f2, f7r, f18, f7f, f21,f22, f3f} 21 time
units

The Plan Reconfiguration Index (RIPIan) reported a value of 90%, indicating that the
master plan was significantly reconfigured, i.e., the obtained best plan sequence for the
new part was significantly different as a result of planning reconfiguration of the original
composite plan for the part family's master part.

6.6.2 Process Re-planning Results
Ten SA runs were performed for each engine front cover, the composite as well as

the new member of the front cover family. The near optimal operation sequences are
given in Tables 6.9 and 6.10. For the composite part, the mean and standard deviation of
the objective function values are 21.1 and 1.2 time units respectively. The mean and
standard deviation for the new cover are 20.7 and 3.3 time units respectively.

Table (6.9) Planning runs results for the engine front covers original composite part
Plan Sequences

5 6 15 3 12 13 8 10 16 2 11 7 3f 4 U
5 15 6 3 11 16 7 9
12 13 5 6 15 10 3 11
1 5 6 13 12 15 3 11
5 126 15 13 3 16 2
12 1 5 8 6 15 3 16
13 5 12 6 10 15 3 11
13 5 6 12 15 10 3 2

2
2
4
11
2
4

5 6 15 3 10 8 11 16 7 2
12 1 5 6

14 9
4 14 10 3f 13 12 8
16 8 3f 7 4 9 14
9 14 7 2 16 3f 10
4 9 14 7 10 3f 8

9 3f 10 4 14
16 9 7 8 3f

7 16 9
9 3f 134 14

11
14

7
2

3f 14 4 11

15 3 10 11 14 16 2 3f 7 4 9 8

~1
Solution in boldface is the best one obtained.

Mean
Standard Deviation

Objective Function
Value

(Time Units)
22
20
21
20
21
22
19
23
22
21

21.1
1.2
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For the front cover composite part, it can be concluded from the small difference in
magnitude (2.1 time units) between the best objective function values obtained and the
averages, as well as the small values of the standard deviation that the results obtained
were consistent. In many cases, more than one solution is obtained with an identical value
of the objective function. The search algorithm parameters were tested to arrive at the
best working ranges. Figure 8 demonstrates the output and convergence for one of the
runs.

Table(6· l °) Re-Planning runs results for the engine front covers new variant
1 ¦— ¦ .

1st Run
2nd Run
3rd Run
4th Run
5,h Run
6th Run
7th Run'
8'h Run
9th Run

10,h Run

Plan Sequences

5 20 3 4 7 18 7f 6 2 23 21
5 20 3 7 2 17 3f 18 7f 19
5 17 20 3 7 19 18 2 7f 8
5 20 3 19 23 7 2 4 17 18
7 5 20 3 23 4 19 18 7f 21
7 23 3 5 20 4 18 7f 21
5 20 3 7 23 2 3f 4 6
3 7 23 18 4 7f 21 5 20
5 3 20 2 7 18 19 23 3f 7f 21
1 5 20 7 18 23 4 7f 19 21 22

21
23
3f
2

17 8
19 18
17 19

Solution in boldface is the best one obtained.

3f 19 22 17 8
22 6 23 8 4
21 22 6 3f 4
7f 21 8 6 22
22 6 17 3f 8

19 2 22 3f
21 22 17 8
22 2 3f 6
17 8 22 6
3f 6 17 8

Mean
Standard Deviation

6
7f
8
4
2

Objective
Function

Value
(Time Units)

17
23
23
23
24
21
15
24
20
17

20.7
3.3

Since re-planning was carried out from scratch, the plans obtained using the Process
Re-Planning method were significantly different than the original composite plans and
hence, a high value of 128% of RIPlan was reported, i.e. 1.28 more tool changes and work
piece repositioning were reported in the new plan than the original existing or composite
ones. The Design Reconfiguration Index RIDesign reported a high value of 60% (in the
design space the new part's design is quite significantly distant from the original one);
therefore, it was anticipated that in the process planning space the globally highly
optimized plans obtained by Re-Planning would be quite distant from the original
existing or master plans and hence, from the localized RPP plans which would be closer
to the old plans (PJPIan=90% for RPP). The quality of the new plans obtained by Re-
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Planning showed a slight improvement in terms of the value of the handling time
objective criteria, over their RPP counterpart when considering the mean obtained for the
preformed 10 runs. However, the difference is quite significant between the RPP solution
and the best solution obtained by Re-Planning, which showed about 25% improvement
over the RPP counterpart. This is expected since the Re-Planning approach solves the
whole global sequencing problem, while the RPP algorithm limits reconfiguration to a
subset of the total solution space. This is an advantage in agile manufacturing
environments where product customization, changes, and evolution occur frequently as it
reduces the changes to be made on the shop floor to execute the new process plans. The
RPP methodology offers a quick, feasible and optimal solution albeit not necessarily the
exact global optimum.
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Figure (6.7) Conversion curve for one of 10 SA runs performed for the new engine front cover.

6.7 Summary

An industrial case study of a family of single cylinder front engine covers is used for
illustration and verification. Both generative Reconfigurable Process Planning (RPP) and
Process Re-Planning are used to alter the current existing plans and arrive at the new ones
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for the new part with its newly introduced features. The computational behavior and
advantages of the proposed models are discussed, analyzed and compared with classical
models.
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7. APPLICATION AND VERIFICATION IN INSPECTION
AND ASSEMBLY

In this chapter, the developed methodology, mathematical models and solution
methods are being implemented in different domains of application than metal cutting
and machining manufacturing (Azab et al 2008). The primary purpose is to test and
validate the conceptual soundness of the proposed methods in both assembly and
inspection planning. The sequential hybrid process planning methodology, along with the
Reconfigurable Process Planning (RPP) generative model, is used in assembly planning.
The problem was also solved using Process Re-Planning by solving the proposed
linearized Quadratic Assignment Problem (QAP) model. QAP-based planning was tested
and verified in the field of inspection planning, where both the original nonlinear and the
linearized models were solved. Application of the RPP and the QAP planning schemes
for assembly and inspection planning are discussed in Sections 7.1 and 7.4 respectively
case studies in the fields of assembly and inspection planning are presented in sections
7.2 and 7.5 respectively. A thorough analysis and comparison of the proposed methods
are presented in section 7.3. Section 7.6 concludes and summarizes the main issues in this
chapter.

7.1 Reconfigurable Assembly Planning
Assembly planning is an important production planning activity in the product

development cycle. It specifies assembly operations to combine components or sub-
assemblies together to form the finished product. The main objective, as discussed earlier
in Section 2.6, is to organize a proper assembly sequence in which the components can be
grouped or fixed together to construct a final product in minimal assembly time and,
hence, with minimal cost. In case of planning single task assembly operations, where one
assembly head is used at a time, the objective becomes to minimize the transient
changeover time between consecutive assembly operations.
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7.1.1 Assumptions & Notations
The assumptions made in this model are as follows:

1 . The considered precedence constraints include:
¦ Logical sequence of operations.
¦ Geometric Dimensioning & Tolerancing (GD&T) constraints.

2. Sequencing is carried out on the assembly operations level.
3. Operation, tooling and fixtures selection was done in advance.
4. Setup, and tool information required for each operation was specified and

given in advance

The notations used are as follows:

• ? denotes the problem size and it is the total number of decision variables and
it could also be interpreted as the total number of assembly operations
including the new operations to-be-inserted.

• c=[Cij] 'S the nxn precedence penalty matrix. A row would be assigned to
each possible insertion position. For each row, a relatively large value would
be assigned if the precedence between the operation to be inserted and each
operation of the original sequence, at a time, is violated.

• s=[sij] is the nxn work piece repositioning time matrix. A row would be
assigned to each possible insertion position. For each row, the time required to
reposition the work piece on the given fixtures (setups) in order to be able to
switch between each pair of the successive operations of the new possible
permutation, i.e after the insertion of the new operation to be..

• Os={Osi} is the lxn old work piece repositioning time vector, which is a
vector of the time required to reposition the work piece on the given fixtures
(setups) in order to be able to switch between pairs of successive operations of
the original sequence (i.e. not to include the new operation) after subtracting
the missing operations.
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• Tr={Tri} is the lxn right tool change time vector (i.e. the tool change between
the new to-be-inserted operation and every operation in the old sequence from
the right side).

• Tl ={Tli} is the lxn left tool change time vector (i.e. the tool change between
the new to-be-inserted operation and every operation in the old sequence from
the left side).

• Ot ={Otj} is the lxn old tool change time vector, which is a vector of the tool
change time in order to be able to switch between pairs of successive
operations of the original sequence after subtracting the missing operations,
i.e. not including the new operation to-be-inserted.

The decision variables are:

x¡ is a 0-1 integer variable, where i runs from 1 to n. Its value is 1 if new operation is
inserted at position i; 0 otherwise. The position i takes the value 1 when the new
operation is inserted right before the first feature of the original array of operations and
takes the value ? when it is positioned right after the last feature of the original array, i.e.
feature fn.j.

7.1.2 Formulation

Two criteria are considered: 1) time for repositioning the assembly in-process on
different fixtures, and 2) time for tools changeover in case of robotic assembly. The
objective is to minimize the handling time. The time spent for rapid tool traverse between
consecutive operations is ignored due to its relatively minor contribution. Also the time
required for transportation of the assembly in-process between different assembly
workstations as well as that spent to adjust the assembly setups and tool change are also
ignored since these detailed parameters are not determined at this macro-level. The
objective function is given by equation 7.1 .
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min. jJ2a^ + ZŒ&-*)-*"Èft'·*^ C7·1)
,=1 y=l ;=1 k=\ i=\ /=1 '=1

The first term represents the penalty for violating precedence constraints. The second
term represents the cost of repositioning the assembly in-process on the different fixtures
(i.e. setup cost as commonly referred to in the literature). The first summation of S¡,k over
k represents the setup cost associated with a new sequence, i.e. the setup cost between
every pair of preceding features in this permutation.

The terms Tr¡ and TIj with their summation over i from 1 to ? depict the tool change
cost. They account for the new precedence cost due to the insertion of the new assembly
operation between two existing operations in the original sequence- one to the right (Tri)
and one to the left (TIj). Finally, the Os¡ and Ot¡ terms represent the handling time change
incurred due to changing the original precedence between the two operations in the
original sequence after subtracting the missing features that are separated by inserting the
new operation, and hence, the old setup and tool change time are subtracted.

The constraints system of the RPP model is advantageously simple and is
represented by:

j> = l (7-2)

This constraint prevents a operation from being inserted more than once at any
position.

7.2 Assembly Planning of a Family of a Household Product
7.2.1 Case Study Description

The assembly process of a family of a household product is the subject of this
section. Two different variants of a small kitchen appliance (a kettle) were considered.
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Figure (7.1) Electric kettle family original Assembly Design exploded CAD model.
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Table (7.1) Electric kettle original assembly operations details.
Operation

ID
1

10
11
12
13
14
15
16
17
18

19

20
21
22
23

Description of Assembly Operations
Put main body (Part #6)

Fix water indicator (Part #7)
Fix lead wire (Part #23)

Insert lens cover (Part #17)
Insert steam switch (Part #16)
Insert steam tube (Part #15)

Insert steam separator (Part #3)
Fix screw (Part #2)

Insert switch cover (Part #14)
Fix filter frame (Part #5)

Insert filter (Part #4)
Fix handle (Part #18)

Fix lid cover (Part #13)
Fix lid (Part #1)

Put body lower (Part #9)
Insert controller (Part #19)

Insert heating plate (Part #10)
Insert heating O'Ring (Part #21)

Assemble body lower subassembly with main
body

Assembly power base upper (Part #11)
Fix power cord (Part #22)
Insert adaptor (Part #20)

Assemble power base lower (Part #8)

Setup Used
(Assembly Direction)

Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright

24 Screw power base subassembly to the main body(Part #12)

Body lower Setup
Body lower Setup
Body lower Setup
Body lower Setup

Vertical, Upside down
Vertical, Upside down
Vertical, Upside down
Vertical, Upside down
Vertical, Upside down
Vertical, Upside down

Figure (7.2) Original Electric kettle FPG.
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Figure (7.3) Electric kettle new variant exploded CAD.

The original product design is shown in Figure 7.1. Design For Assembly (DFA)
analysis was performed to enhance the assemblability of the product. A modified product
design was introduced as shown in Figure 7.3. The part count in the new variant kettle
was reduced from 24 to 22. The components of the Power Base Lower subassembly were
all combined in the newly designed Body Lower part # 9 in the new variant kettle. All
details related to the assembly operation are given in Tables 7.1 and 7.2. Three different
setups are needed for the new design compared to two for the original design. Two setups
are used for the main body in two opposite assembly directions (one position where the
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kettle would be upright and another where it would be upside down), and a third setup to
assemble the Body Lower subassembly. Manual assembly of the two variants is assumed;
hence, the tool change time is ignored. Operations Precedence Graphs (OPGs) for both
kettle family variants are given in Figures 7.2 and 7.4.

Table (7.2) Electric kettle new variant assembly operations details.
Operation

ID
1

Description
Put main body (Part #6)

Fix water indicator (Part #7)
Fix lead wire (Part #23)

Setup Used
Vertical, Upright
Vertical, Upright
Vertical, Upright

Insert lens cover (Part #17)
Insert steam switch (Part # 1 6)
Insert steam tube (Part #15)

Vertical, Upright
Vertical, Upright
Vertical, Upright

Insert steam separator (Part #3) Vertical, Upright
Fix screw (Part #2) Vertical, Upright

10
Insert switch cover (Part #14)

Fix filter frame (Part #5)
Vertical, Upright
Vertical, Upright

11
12
13
14
15

Insert filter (Part #4)
Fix handle (Part #18)

Fix lid cover (Part #13)
Fix lid (Part #1)

Put body lower (Part #9)

Vertical, Upright
Vertical, Upright
Vertical, Upright
Vertical, Upright
Body lower Setup

16
17

Insert controller (Part #21)
Insert heating plate (Part #20)

Body lower Setup
Body lower Setup

18 Insert heating O'Ring (Part #8) Body lower Setup

24

Assemble body lower subassembly with mainbody Vertical, Upside down
Screw body lower subassembly to main body(Part #10) Vertical, Upside down

25
26

Insert bushing (Part #19)
Fix power cord (Part #18)

Body lower Setup
Body lower Setup
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10 11

8

©·1 6 12 13
9

19 24

15 16 17 18

Figure (7.4) New FPG showing new operations for the new electric kettle variant (Highlighted in
red).

7.2.2 Reconfigurable Assembly Planning Results
Two iterations were carried out to insert the new two operations. In Tables 7.3- 7.5,

precedence cost, setup and tool change formulation matrices and vectors for the second
iteration are given respectively. As mentioned earlier, tool change is neglected since
manual assembly is used. Hence, all tool change vectors are zero vectors. Setup change
time is assumed to take an arbitrary unit time. Precedence penalties of a 1000 unit time
are assumed.

The given plan for the original variant of the Electric Kettle is {15, 16, 17, 18, 1, 10,
1 1, 2, 3, 4, 5, 6, 7, 9, 8, 12, 13, 14, 19, 20, 21, 22, 23, 24}. Missing assembly operations
for the new kettle (variant 2) were subtracted resulting in the following sequence {15, 16,
17, 18, 1, 10, 1 1, 3, 4, 5, 6, 7, 9, 8, 12, 13, 14, 2, 19, 24}. Results of each iterative step of
the RPP solution method are given in Table 7.6, where the new inserted sequence is
highlighted in bold face. The value of the objective function is 2 time units corresponding
to 2 acts of repositioning the assembly in-process on different fixtures. It should be noted
that each act of repositioning is assumed to take an arbitrary time period of one unit time
in this case study, since only repositioning of the work piece is considered. Manual
operation is performed and hence, the handling time objective function tool change
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component is absent in this case because of its relatively minor and negligible
contribution.

Table (7.3) Precedence penalty C for the second iteration.
1000
1000
1000
1000

1000
1000

Table (7.4) Old work piece repositioning time vector S for the second iteration.
0000010000000000000100

This case study demonstrated the beauty of the proposed reconfigurable process
planning methods. Only logical changes on the part level, as emphasized before by the
introduced Design Reconfiguration Index, make a difference. For example, the Body
Lower Subassembly design is changed in the new product variant; hence, operation 24 is
considered technically different in the new product variant. In spite of this technical
difference, they are still considered the same operation since logically, from a pure
planning perspective, they are not any different; both operations attach the lower sub-
assembly into the main body regardless of the DFA enhancements in that lower
assembly. On the other hand, operation 21 in the original assembly and operation 26 in
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the modified one exhibited different logical precedence relationships; hence in spite of
them being technically identical they are considered different entities at the operations
macro-planning level.

Table (7.5) Work piece repositioning time matrix C for the second iteration.

Table (7.6) New part plan detailed results
Iteration {15, 16, 17, 18, 1, 10, 11,3,4, 5, 6, 7, 9, 8, 12, 13, 14,2, 19,24}
Iteration 2: {15, 16, 17,25, 18, 1, 10, 11,3,4,5,6,7,9,8, 12, 13, 14,2, 19,24}

Final Sequence: {15, 16, 17, 25, 18, 26, 1, 10, 1 1, 3, 4, 5, 6, 7, 9, 8, 12, 13, 14, 2, 19, 24}

7.2.3 Assembly Re-Planning Results
The same problem was solved by the Process Planning method from scratch, where

linearized QAP mathematical programming was utilized. The problem formulation is
given by equations 7.3-7.10. The handling time matrix is shown in Table 7.7. The GAMS
algebraic modeling language and CPLEX Mixed Integer Programming (MIP) solver were
used.
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Table (7.7) Handling time matrix T for electric kettle new variant.
0 0 0

0 0

0 0 0

0 0
0 0

0 0
0 0

0 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0 0 0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0

0 0 0 0

Subject to:

22 22 21

min· SS7^S^*
/=1 y=l k=\

(7.3)

22

S>,* = 1 Vi g {1,2, ...,22}
k = \

22

S>,* = 1 Vi e {1,2, ...,22}
k = \

y,,k + yj.k + \-2qi,j,k > 0 Vz,y,£e{l,2,...,22}

(7.4)

(7.5)

(7.6)

y¡,k + yj,k + \ -q,,j,k < 0
Equations 7.4-7.7 are feasibility constraints.
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]>>,*> 2>o,* V/e{l,2,...,22} (7.8)
k=\ *=1

/ /

S>"».* > 2>24.* V/ e {1,2,..., 22} (7.9)
k=\ k=ì

Equations 7.8-7.9 provide a sample of the precedence constraints given by Figure
7.4. For example, equation 7.8 represents the first precedence constraint (1 — 10);
equation 7.9 represents the last precedence constraint (19—24). The rest of the
precedence constraints {(10—11), (11 — 13), (1—2), (1—3), (3—4), (4—5), (5—6),
(6-7), (7-9), (7-8), (9-12), (8-12), (12-13), (13-14), (15-16), (16-17),
(17-18), (18-19), (15—25), (25—26), (26—19)} could be easily expressed
mathematically in the same way.

y,A, q,,j-,* = (0,1) Vi,j,ke{\,2,...,22} (7.io)

The problem was modeled using the GAMS algebraic modeling language and solved
using the Mixed Integer Programming (MIP) CPLEX solver. This is an instance of a
large problem size; thus, a termination criterion of a 1000 second solution time was
specified. The optimality of the obtained solution is not guaranteed, i.e. sub- or near-
optimal solutions may be obtained. The values of the following decision variables (y¡ ?,
Y2.I9, y3,9, y4,10, Y5.I1, Y6.13, Y7.14, Ys. 1 6, Y9.15, YlO.2, Yll.12, yi2,17, Y13.18, yi4,20, Yl5,3, yi6,6, Yl7,7,
yi8,8, yi9.2i, y2o,22, y2i,4, Y22,5) were equal to one; the rest were zeros, i.e., the obtained plan
sequence is {1, 10, 15, 25, 26, 16, 17, 18, 3, 4, 5, 11, 6, 7, 9, 8, 12, 13, 2, 4, 9, 8, 12, 13,
2, 4, 19, 24}. The values of the following auxiliary decision variables (qi,io,i, q2.14.19,
q3,4,9, q4,5,10, q5,ll,ll, q6,7,13, q7,9,14, q8,12,l6, q9,8,15, qiO.15,2, qi 1,6,12, qi2,l3,17, qi3,2,18, qi4,19,20,
qi5,2i,3, q 1 6, 1 7,6, qi7,i8,7, qi8,3,8, qi9.20.2i, q25,26,4, q26,i6.s) were equal to one; the rest were
zeros. Note that the values of the auxiliary variables are consistent with those of the main
decision variables. An auxiliary variable q¡j;k denotes that operation j is preceded by
operation i, where the order of operation i is k. Also note that q24** is all zeros since
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Operation 24 was sequenced as the last operation. The obtained value of the objective
function is 3 time units. The sub-optimal solution obtained by the linearized QAP
mathematical programming method is clearly quite distant from the exact optimal
solution; it is even in this case of an inferior quality compared to that obtained by
Assembly Re-Planning in section 7.2.1. This demonstrates the strength and advantage of
using the RPP method for problems with relatively minor input product design changes
expressed by Resign (10%). It could be concluded that for problems with low input
product design change, both the localized RPP and the global solution methods (QAP-
based or non-traditional optimizers) are quite close (see Figure 7.5).

It is quite important to note that the design changes for this case study are measured
using the given available assembly operations information, which reflect the
enhancements achieved by using the DFA method. As for the Process Planning
Reconfiguration Index (Ripian), zero value was reported for the RPP method, which
signifies that no changes would be incurred in setups and fixtures due to reconfiguring
the process plan/sequence. The RIpian for this case study accounts for the fixture changes
only since the tool change component is absent for manual assembly. Therefore, it could
be noted that the amount of reconfiguration (RIpian) of the process plans produced by the
RPP method is proportional to the amount of change at the product design level measured
by RIDesign·

7.3 Comparison Between Re-Configurable Planning and Re-
Planning

The problem of determining the most appropriate planning methods is a function of
two independent planning factors on two different levels: product design level and
manufacturing system one. It is beneficial at this point before proceeding any further to
summarize the distinctive differences between the different proposed generative planning
solution methods. As shown in Figure 7.5, Reconfigurable Process Planning (RPP)
offers, by design, localized optimal plans, which minimize the distance in the process
planning domain between the original existing or master plans and the resulting new
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plans and, hence, minimizes the reconfiguration effort. The exact optimal Linearized
Quadratic Assignment Problem (QAP) mathematical programming method provides the
exact optimal solution; however, limitations on problem sizes that could be solved for
optimality exist. Finally, approximate algorithms and heuristics, which include either
non-traditional optimization such as the SA-based heuristic, or QAP mathematical
programming with a termination criterion, provide near- or sub-optimal plans. The SA
generally takes less computation run time than the QAP mathematical programming.

The first factor in selecting one of these planning methods is related to the input of
the process planning problem, which is the extent of change and evolution of the design
of the product being considered. The second factor is related to the manufacturing system
capacity and the required volume of production where the extent and cost of change in
process plans, set ups, and fixtures may or may not be justified.

On the product level, the proposed Design Reconfiguration Index (RIDesign) offers a
systematic method of evaluation and quantification of the extent of changes that took
place on the design level, which is an input to the problem at hand by definition. This
metric captures the design changes that would impact, and be translated into, logical
changes on the process planning level. ElMaraghy et al. (2008) provided a more thorough
and in-depth analysis and methods to express the changes and evolution that products and
part families exhibit based on Cladistics. The purpose of the introduced design
reconfiguration index is to quantify the distance between the new variant and its
existing/composite counterpart in the design features space (see Figure 7.5).

The larger this distance is the higher the value of RIDesign and vice versa. As shown in
Figure 7.5, the distance in the design space is quite indicative of the corresponding
distance in the process planning solution space. Hence, for lower values of RIDesign, it
would be expected that the global optimum would lie in the proximity of the original
existing solution in the process planning domain. Therefore, the localized RPP solution
would most likely yield satisfactory results. Moreover, for large size instances of the
problem, the RPP is capable of providing exact optimal solutions, albeit not global,
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because of its advantageous polynomial computational time complexity. As for the exact
QAP mathematical programming method, it is clearly limited to planning problems of
limited size, yet it provides exact global optimal solutions. Finally, for the approximate
algorithms, the near optimal solutions obtained in this case could produce even inferior
quality solutions in comparison with the localized RPP plans. However, it is important to
note that this is not the general case. This argument was validated and proven by the
results obtained in the Kitchen Household Product Family case study, where the quality
of the Reconfigurable Assembly Planning solutions was better than the near optimal ones
obtained by the approximate QAP mathematical programming method. Note that the
RlDesign was only 10% for this problem.

Design
PlanningDomain
Domain

Variant 2
Exact Optimal Plan2

anant

Exact Optimal Plani

Original
Part/Product ngmal

Figure (7.5) Change in the Product Design Domain/Versus that in the Process Planning One.

For higher Rfoesign values, which means larger distance between the two variants in
the features/operations space and hence in the planning one as well, the situation is the
opposite. Approximate algorithms would most probably yield solutions of more superior
quality than those obtained by the localized RPP method in terms of the handling time
objective criteria. But, the question then becomes how large the volume of production in
question, which would lead us to the second factor in selecting the appropriate solution
method.
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On ,he manufacturing system ,eve,, ,he ,arge,ed volume of production a,so
mfluences as we„ ,he se,ec,io„ of ,he so,u,io„ me,hod. For examp,e, for ,he previous
htgher RIDtiign case s,udy of ,he From Engine Cover Part Family in Chapter Six ,he
approbate algorithms would mos, likely yield more optimized solutions in terms of ,he
objective criteria; however, ,his does no, necessarily mean ,ha, applying ,hese better
handhng „me plans is „ha, is bes, considering ,he whole situation, where production
volume is believed to be a critical con,ribu,i„g fac,or. For lower-volume job shops and
batch production, ,he localized RPP method could mos, likely be a beer choice since
the localized optima, plans would be immedtately translated into less reconfiguration and
change on ,he shop floor. Less reconfigura«»« effort for all ,he downstieam activities
would occur, such as production scheduling, setup changes, labor ,raining, ramp-up
quahty, etc. Conversely, for larger volumes of production such as dedicated flow lines
and high capachy RMS, global highly optimized plans would be a mus, since ,he running
cos, component are likely ,0 be of greater impac, ,han ,he initial fixed ones. Therefore
the approximated algorithms and heuristics, and the exac, optimal QAP methods if
applicable, would be preferred.

7.4 Quadratic Assignment Problem (QAP) Inspection Planning
With ,he growing compe,i,ion in ,he global market, pursuing high product quality is

a major concern in ,he manufacturing industry. To assure desired quality requirements
conducting massive inspections has become an important «ask in modem quality control'
The coordinate measuring machine has been recognized as a powerful ,ool for
d,mens,onal and geometric «oterance inspection in «he manufacturing industry (Hwang e,
? 2004). In «his section, «he application of «he QAP process plannmg model in
inspection planning is demonstrated.

The objective in inspection planning is ,0 sequence a global set of inspection tasks
for a gtven par, and inspection sensors in order ,0 minimize ,he total changeover time ,0
sw„ch be«ween successive inspection operations. This changeover time is mainly time
spared ,„ sensor changes, repositioning of ,he work piece, probe orientation changes and
finally «he total rapid traverse time traveled by the probe (Mohib et al 2008).
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The Quadratic Assign™« Problem (QAP) is ,he problem of assigning . se, of „
objecs ,„ another se, of „ objects in order to minimize ,he sum of ,he costs associated
w„h pa,rs of assignmen, (Erdogan and Tanscl 2007). In inspection planning ¡, ¡, required
«o assign „ objects, which are ,he inspecion fea,ures of ,he par, ,0 be inspected ,0 „
pos.tions, in one-d.mcnsional space representing the order of inspecion ,asks/fea,ure,

The assumptions made, in this model, arc summarized as follows:
Sequencing is carried ou, on ,he inspecion features level. An inspection fea,urc is

the feature on which a ,„,crance item is specified. A tolerance item is a dimensional or
geometric tolerance.

Based on industrial practice, the average time to change part setup is 13 minutes· the
tunc lequued to change probe orientation is 3 minutes (Hwang et al 2004). The rapid
traverse time to switch between two successive operations is evaluated by dividing the
travel distance by the probe traveling speed (Mohib et al 2008).

To create a feasible measurement plan, precedence constraints and common practice
rules must be respected. According to GD&T, certain geometric tolerances, such as
concentncity and parallelism, require that datum features be measured before the features
that use them as a reference (Hwang et al. 2004).
7.4.1 Notation

The problem size, defined as the total number of decision variables, is denoted as m
It could also be interpreted as the total number of inspection features.

The handling time matrix, which is an mxm symmetric, is denoted by T=[t ¦¦]¦ it
represents the time taken to change sensors, part and probe orientation, as well JtLt
taken by the probe to rapid traverse between consecutive inspection operations. Tactile
sensing only ,s considered; hence, sensor changes are not included.
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7.4.2 Decision variables

The decision variable y¡,k is a 0-1 integer variables, where both i and k runs from 1 to
n. The value of the decision variable is 1 if the feature i is positioned in location k;
otherwise it is zero.

7.4.3 Objective function formulation

Three different criteria are considered: 1) time required for repositioning of the work
piece being inspected, 2) time required to change the probe orientation, and finally 3)
time spared by the probe traveling from one feature to the other. The objective is to
minimize the idle time, where no value adding takes place. Therefore, the objective
function is:

mm m-

min · SS Ti' 7S y¡- k °yj' k +
/=1 j=l k = \

7.4.4 Constraints Formulation
The constraints of the QAP-based model are:

(7.11)

]?>.* = ! Vie{l,2,...,m}
k = \

(7.12)

Constraint 2 ensures that an inspection feature is only assigned once.

in

S^·* = 1 Vk e {1,2, ...,m} (7.13)

Constraint 3 ensures that no more than one inspection feature is assigned to position k.

S>?>2>? Vl e {1,2,. ..,m} (7.?4)
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For a pair of machining features i and j, this precedence constraint (i —> j) mandates
that inspection feature i be measured prior to measuring feature j. The decision variable
y,.k would be equal to one when inspection feature i is measured at position k. For that
to take place, the inspection features i and j, jv*i and y,.u would equal one when the
index kl is less than the index k2. Hence, the summation of ? »over k must always be
greater than or equal that of y.t over k. The summation would run ? times, where each
time it stops at a different value; it starts with 1 and ends at n. Therefore, for every
precedence constraint, a set of ? inequalities represented by equation 7.14 have to be
defined.

^* = (0,1) V/',?: e {1,2,. ..,ra} (7.15)

7.5 Inspection Planning of a Machine Spindle Cover
This section is based on a case study presented by Hwang et al. (2004). The part is

a spindle cover of a machine tool; the blue prints defining the part's dimensioning and
GD&T, and the part's features are shown in Figures 7.6 and 7.7 respectively. All
dimensions in the drawings are in inch. Only inspection feature defined in Table 7.8 are
considered; the rest of the features require a special probe to measure the distance
between two threaded features.
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Figure (7.6) Spindle cover drawings.

After performing accessibility analysis, the features accessibility information is used
to derive the required part setup and probe orientation (Hwang et al. 2004). Only one part
setup is necessary for inspecting all of the CMM measurement items, where the part is
positioned in a vertical upside position, i.e. part orientation -Z is facing the probe's axis.
As for the necessary probe orientations, probe orientations -Z and -X are required. The
inspection features are measured in orientations -Z and -X.
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Figure (7.7) Spindle cover inspection features.

Table (7.8) Inspection features data.
Feature

ID

Inspection
Feature

FacelOl

Facell2

Facell3

Bore 102

Bore 103

Feature

Type
Part Orientation

Planar

Planar

Planar

Cylindrical

Bore 109

Borei 10

Borei

Borei 12

Cylindrical

Vertical Upside down (-Z)
Vertical Upside down (-Z)
Vertical Upside down (-Z)
Vertical Upside down (-Z)

Cylindrical
Cylindrical
Cylindrical
Cylindrical

Vertical Upside down (-Z)
Vertical Upside down (-Z)
Vertical Upside down (-Z)
Vertical Upside down (-Z)
Vertical Upside down (-Z)

M m.¿a

-Chamfer 104

Y
-Chamfer103

Face113 Face112
Face114 Xl

Probe Access

Direction

-X

-Z

-Z

-Z

Several GD&T constraints exist. FacelOl is a primary datum. The primary datum
GD&T constraint would be expressed as follows: (FacelOl^j*}), which means feature
FacelOl precedes all other features as illustrated in the FPG given by Figure 7.8 (note
Face and Bore were abbreviated as F and B respectively in Figure 7.8). Bore 103 and
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Bore 102 are datum features for features Bore 109, Borei 10, Borei 11 and Borei 12; i.e.
(Bore 103 — {Bore 109, Borei 10, Borei 11, Borei 12}), (Bore 102^ {Bore 109, Borei 10,
Borei 11, Borei 12}).

( BIOS)

Figure (7.8) Feature precedence graph for Spindle Cover part.

Table (7.9) Symmetric rapid traverse time matrix.

FacelOl

Facet 12

Facell3

Borel02

Bore 103

Borel09

Borei 10

Borei 11

Borei 12

FacelOl Facell2

3.000

Facell3

4.000

!.000

Bore 102

0.950

3.825

4.825

Bore 103

0.125

3,125

4.125

0.825

Borel09

2.916

4.000

5.000

3.741

3.041

Borei 10

2.916

6.000

7.000

3.741

3.041

3.000

Borei 11

2.916

6.000

7.000

3.741

3.041

5.831

5.000

Borei 12

2.916

4.000

5.000

3.741

3.041

5.000

5.831

3.000
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FacelOl

Facein

Face 113

Bore 1 02

Bore 103

Borel09

Borei 10

Borei 11

Borei 12

Table (7. 1 0) Symmetric probe orientation change-time matrix.
FacelOl Facell2

3.000

FacelU

3.000

0.000

Bore 102

0.000

3.000

3.000

Bore 103

0.000

3.000

3.000

0.000

Bore 109

0.000

3.000

3.000

0.000

0.000

Borei 10

0.000

3.000

3.000

0.000

0.000

0.000

Borei il

0.000

3.000

3.000

0.000

0.000

0.000

0.000

Borei 12

0.000

3.000

3.000

0.000

0.000

0.000

0.000

0.000

The Total handling time matrix C is shown in Table 7.1 1. As explained earlier, part
setup time, probe orientation change time and probe rapid traverse time sum up to the
total changeover time. Since only one part setup is used to inspect the Spindle Cover, the
summation of the rapid traverse time matrix (given by Table 7.9) and the probe
orientation change matrix (given by Table 7.10) result in the handling time matrix. Since
all matrices are symmetric, only the upper triangular part of each matrix is shown for
illustration.

Table (7.1 1) Symmetric handling time matrix T.

FacelOl

Facell2

Facell3

Bore 102

Bore 103

Borel09

Borei 10

Borei 11

Borei 12

FacelOl Facell2

6.000

Facell3

7.000

1.000

Bore 102

0.950

6.825

7.825

Bore 103

0.125

6.125

7.125

0.825

Bore 109

2.916

7.000

Borei 10

2.916

9.000

8.000

3.741

3.041

10.000

3.741

3.041

3.000

Borei 11

2.916

9.000

10.000

3.741

3.041

5.831

5.000

Borei 12

2.916

7.000

8.000

3.741

3.041

5.000

5.831

3.000
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The QAP-based formulation is given by equations 7.16-7.35. Sample constraints and
the objective function are also expanded in Appendix B to clearly demonstrate the model
constraint equations and inequalities.

9 9 8

min · SS Tu JSy- k W' k + ' (7- 1 6)
; = 1 j = \ k = i

Subject To:
9

]>>,* = 1 Vi G {1,2, ...,9} (7.17)
A=I

]?>,* = 1 VkG(1, 2, ...,9} (7.18)
/=1

For GD&T datum relationship (Facel 01—+{*}), a set of precedence constraints
represented by equations 7.19-7.26 express mathematically this dimensional relationship.
Note, that according to Table 7.7, inspection feature FacelOl's ID is 1.

S>·**S;?>·· v/g{i,2,...,9} (7.19)
A = I A=I

/

1
A = I A=I
Zy>-*Zy·-· v/e{i,2,...,9} (7.20)

íy--zi
A=I A=I
SJ^ Z^-* V/g{1,2,...,9} (7.21)

S^-^S^·* V/g{1,2,...,9} (7.22)
A = I A=I
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jt = l Jt=I
j>.. > j>.· V/e{l,2,...,9} (7.23)

í>,*>¿>.* V/ e {1,2,. ..,9} (7.24)
* = 1 *=1

Jk=I Jt=I
S>^S;^ v/e{i,2,...,9} (7.25)

?>,*>2>* V/ e {1,2,. ..,9} (7.26)
t=l Jt=I

For GD&T datum relationship (Bore 103-? {Bore 109, Borei 10, Borei 11, Borei 12}),
a set of precedence constraints represented by equations 7.27-7.30 express
mathematically this dimensional relationship. Note, that according to table 7.7, inspection
feature Bore 103' s ID is 5, while those of Bore 109, Borei 10, Borei 1 1 and Borei 12 are 6,
7, 8 and 9 respectively.

ty^í
k=\ Jt=I
S>·^S>·* V/ e {1,2,. ..,9} (7.27)

?
Jt=I Jt=I
Zj^ S-y- V/e{l,2,...,9} (7.28)

¿>,*>S>* V/ g {1,2,. ..,9} (7.29)
Jt=I Jt=I

S^>S^' V/e{l,2,...,9} (7.30)
Jt = I Jt=I

For GD&T datum relationship (Borei 02-» {Bore 109, Borei 10, Borei 11, Borei 12}),
a set of precedence constraints represented by equations 7.31-7.34 expresses
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mathematically this dimensional relationship. Note, that according to Table 7.1,
inspection feature Borel02's ID is 4, while those of Bore 109, Borei 10, Borei 11 and
Borei 12 are 6, 7, 8 and 9 respectively.

?> *>£>;,* V/e{l,2,...,9}
k=\ k=\

2>,<·>1>., V/e{1,2,...,9}

S^->S>- V/ e {1,2,. ..,9}
Ar=I k=\

2>,<>Í>,, V/g{1,2,...,9}

(7.31)

(7.32)

(7.33)

(7.34)

J^ = (0,1) Vi,*e{l,2,..,9} (7.35)

The QAP inspection planning model was solved using the GAMS algebraic
modeling language and the Mixed Integer Non-Linear Programming (MINLP) SBB
solver. SBB is a new GAMS solver developed for Mixed Integer Nonlinear Programming
(MINLP) models. It is based on a combination of the standard Branch and Bound (B&B)
method known from Mixed Integer Linear Programming and some of the standard
Nonlinear Programming (NLP) solvers already supported by GAMS.

Solving the non-linear QAP yielded the following near optimal solution {Face 101,
Bore 102, Bore 103, Borei 12, Borei 11, Borei 10, Bore 109, Face 112, Facell3}, where the
values of the following decision variables (y,,,, y2>8, y3,9, y4,2, y5,3, y6,7, y7,6, y8>5, y9>4) were
equal to one and the rest was zeros. The obtained sub-optimal corresponding objective
function value is 23.8 minutes. The linearized QAP model was also formulated and
solved to arrive at the exact optimal solution {FacelOl, Borel03, Borel02, Borei 12,
Borei 11, Borei 10, Borel09, Facell2, Facell3}. The corresponding value of the
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objective function was slightly improved to 23.7 minutes. This shows part of the
argument presented in section 7.3, where it was explained that approximate non-linear
methods would yield near optimal solutions, whereas exact optimal methods such as the
linearized QAP mathematical programming yields exact optimal plans. The difference
between the exact and approximate solution is very minor, but for larger problem
instances this difference would be more significant. The solutions obtained are consistent
with those obtained by (Hwang et al. 2004) using an approximate Neural Network and a
greedy algorithm.

7.6 Summary
In conclusion, the developed sequential process planning approach was tested and

validated in domains of applications other than metal cutting. It was demonstrated how
the developed abstract concepts and mathematical models could be applied in both
assembly and inspection planning. An assembly case study of a family of kitchenware
products were used to verify the generative Reconfigurable Process Planning (RPP)
method, whereas a benchmark problem of a spindle cover inspection was used to
demonstrate the applicability of the Quadratic Assignment Problem (QAP) method. The
results obtained were thoroughly discussed and analyzed in both sections 7.3 and 7.5. The
strength of the proposed approach was demonstrated through the logical reconfiguration
that takes place on the process plans side, where missing and new operations and features
were being elegantly subtracted and inserted respectively. It was demonstrated how only
logical changes on the part and product levels result in changes on the planning level.
Optimal reconfiguration of the original existing plans has taken place with the minimum
possible effort in order to minimize: 1) the extent of changes on the shop floor of all
downstream activities, 2) labor training on the new plans and finally 3) any possible
errors due to their introduction.
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8. DISCUSSION & CONCLUSION

8.1 Discussion

Globalization, unpredictable markets, increased products customization and the quest
for competitive advantages are but a few of the many challenges manufacturing
enterprises are increasingly facing now and in the future. Frequent changes in products,
production technologies and manufacturing systems are evident today along with their
significant implementation cost. This trend is on the rise in view of the paradigm shifts
witnessed in manufacturing systems and their increased flexibility, agility and
changeability to cope with the evolution of both parts and product families. Change is
inevitable and it requires corresponding responsiveness in manufacturing support
functions, both at the physical level, by providing modular and reconfigurable machinery
and control systems, and at the logical level, through novel planning and re-planning at
the process and production planning and control levels to achieve cost-effective
adaptability.

An optimal macro-level process plan can easily become less optimal in such
changeable production environment; hence, the importance of adapting to the changes
and producing alternate optimal operations sequences for the changed parts becomes
obvious. A novel sequential hybrid process planning methodology has been developed.
Semi-generative planning, which is variant in nature yet capable of generating process
plans for parts with features beyond those present in the current part family can best meet
these challenges. Conceptually, the master process plan of the part family's composite
part is retrieved; then generative modeling tools and algorithms are applied to arrive at
the new process plan for the new part, whose definition does not necessarily lie entirely
within the original boundary of its respective part family. Design changes on the part
level that would be translated into logical changes on the planning level are considered.
Data structures and graphs, which represent the declarative knowledge and precedence
relationships between features/operations, are manipulated. The macro-level process plan
is formulated as a sequence of operations corresponding to a set of features in the part.
Under this proposed sequential, hybrid semi-generative notion, two distinct methods are
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presented and compared in this work: localized Reconfigurable Process Planning (RPP)
and globally highly optimized Process Re-Planning. Both methods support evolving part
families, which are becoming a reality, due to the current challenges of unpredictable
customer-centered markets and emergence of new reconfigurable and changeable
manufacturing equipment and agile business paradigms. For RPP, genuine
reconfiguration of the master process plan of the part family's composite part is carried
out iteratively to arrive at the new process plan of the new part. A novel semi-generative
mathematical model for macro-level based plan reconfiguration has been presented. The
RPP advantageously provides a polynomial computational time complexity compared
with its NP-hard classical counterparts. Matlab scripts have been developed to automate
the tedious, time consuming and error prone formulation steps and procedures per
iteration. Two reconfiguration indices on the part and the plan levels have been
developed to help choose the appropriate methods of planning and evaluate the extent of
reconfiguration and change of the resulting new plans. As for Process Re-Planning, a
planning method suitable for the generation of highly optimized process plans from
scratch of new parts/products has been developed. A novel adaptation of the Quadratic
Assignment Problem (QAP) mathematical model has been developed for process
planning. The new formulation overcomes the limitations, conceptual flaws and
complexity of its classical Traveling Salesperson Problem (TSP) counterpart. The TSP
model outputs a cyclic tour solution with no start or end, unlike the required sequence.
This means that the optimized problem becomes slightly different than the original
problem in question, with one more route or cost component compared to the original
problem. The newly developed QAP formulation assigns the different operations or
features of a plan their positions in a one-dimensional array or sequence. For the first
time, the precedence constraint, which is a corner stone of the process planning problem,
is modeled. Sub-tour elimination constraints are overcome. As the Re-Planning problem
exhibits combinatorial characteristics, a random-based evolutionary Simulated Annealing
algorithm heuristic has been developed to obtain optimal or near-optimal operation
sequences for large instance-size problems. A process plan validation scheme is
developed and used to maintain the specified precedence relationships.
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The developed process planning methods were applied to an industrial example of a
single-cylinder family of engine front covers defined by a composite cover and a
corresponding master process plan. A new macro-level process plan was generated for a
new cover, the features of which differ (new, missing and modified) significantly from
those that exist in the original family. The manufacturing system machines and setups
had to be reconfigured accordingly to be capable of producing the new features in the
introduced front cover. The solution quality of the obtained results from both RPP and
Re-Planning methods are quite close in terms of the objective function value when
considering the statistical mean of the ten different runs of the random-based Re-Planning
method. However, this is not the case when considering the best solutions obtained; the
best Re-Planning solution showed about 25% improvement over its RPP counterpart. The
Re-planning method produces highly optimized global-optimal process plans. This is
expected since the Re-Planning approach solves the sequencing problem globally, while
the proposed RPP algorithm has the advantage of limiting reconfiguration to a subset of
the total solution space to minimize the extent of change. Table 4 summarizes the main
characteristics, pros and cons and significant differences between those two methods.

Table (8.1) Comparison of the two proposed process planning approaches

Criteria Process Planning by
Reconfiguration

Step 1: Retrieval portion T
Step 2: Generative portion Minimal

Quality of Solution Localized exact optimal solutions

Plan

Reconfiguration
Index (RIPian)

Low values indicating minimally
changed plans, i.e. close to

original plan

Process Re-planning

T
Substantial

Global, highly optimized,
near-optimal solutions

High values indicating
significantly changed plans

Computational
Complexity (Cost)

Lower polynomial computational Higher factorial NP-Complete
cost computational cost
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The RPP iterative mathematical scheme scales better than the Re-Planning scheme
with a polynomial complexity compared with the NP-hard classical Re-planning
schemes. The RPP methodology offers a quick, feasible, and localized optimal solution,
albeit not the exact global optimum. This, though an obvious limitation, could prove to be
an important advantage for relatively low volume batch production and in agile
manufacturing environments, where products evolve and are customized frequently or
when engineering changes are numerous, which is presently typical in almost all
manufacturing settings during the product/process development phases. The localized
optimal solutions, obtained by the RPP method, minimize the extent of reconfiguration
and the impact on the related shop floor activities and hence, would incur less costs,
cause less disruptions and minimize effort by all the downstream plant floor activities;
that in turn would decrease the time required to introduce new products to the market,
i.e., less opportunity cost. This would also be translated into minimal time and cost
required for the training of labor on the new plans and hence, less mistakes that would
affect quality. The Plan Reconfiguration Index (RIpIan) shows, as expected, that the
amount of reconfiguration demonstrated by the new process plans obtained by the Re-
Planning method is more than that produced when using RPP.

The process planning effort, whether by employing RPP or Re-Planning, is normally
done off-line. However, as concluded, the time savings and improved efficiency and
solution quality can greatly benefit from the developed fast and computationally efficient
algorithms in order to address the increasingly more frequent introductions of design
modifications during product development and due to the high uncertainty and turbulence
of today's markets. The RPP method is advantageously solved in linear time; it provides
much smaller polynomial solution space and fairly complicated mathematical model with
low number of constraints; hence, it is computationally more tractable. The introduced
Process Re-Planning QAP-based scheme is combinatorial in nature; hence, an
evolutionary simulated annealing heuristic was developed that practically takes negligible
time per run on a Pentium 4 with 2 MB/2 GB memory hierarchy. Multiple runs are
possible to arrive at alternate solutions efficiently. Moreover, converting the code
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deployed on Matlab (an interpreter) into an executable could further reduce the algorithm
execution time.

The presented methodologies readily support evolving parts and products families as
well as manufacturing systems and account for changes in parts' features beyond the
scope of their original respective product families. The developed methods and models
are generic and general, since they operate at a high level of granularity (Macro-
Planning). Hence, they are applicable to reconfiguring process plans in different domains,
e.g. metal removal, additive manufacturing, assembly, robots task planning, etc. This has
been demonstrated for both assembly and inspection planning.

The models introduced could not only serve well outside the field of industrial
engineering but even outside the engineering discipline altogether. The developed
methods are applicable in other fields of science and engineering where classical optimal
sequencing problems exist.

8.2 Conclusions

Changeable Manufacturing Systems represent a natural evolution of previous
manufacturing systems. Future changeable Reconfigurable Manufacturing Systems
(RMS) support economy of scope and also -to a great extent- economy of scale by
providing the exact capacity and functionality required when it is required. This thesis
addresses a new problem that arises due to the increased changes in products and hence,
in systems and the need to manage these changes cost effectively and with least
disruption of downstream production activities and their associated high cost. It proposes
novel solutions for the need to frequently plan and re-plan manufacturing processes. At
the outset, a new Sequential Semi-Generative methodology to solve the classical problem
of process planning is developed to support both evolvable parts, the geometry of which
does not strictly lie within the borders of their respective original families, as well as new
changeable manufacturing systems technologies. Under this proposed hybrid sequential
notion, the following conclusions could be made about the developed generative process
planning schemes:
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1 . One of the main contributions is the development of new mathematical model
for solving the classical problem of process planning, at a macro-level,
through reconfiguration. In this thesis, the planning was conceptually
changed from an act of sequencing to one of insertion and reconfiguration for
certain design changes and for certain low volume of production settings. The
proposed methods enrich the science of manufacturing systems on both a
theoretical and practical levels by providing methods and models for an
important logical enabler to support state of the art manufacturing
technology. The proposed treatment is essential for the realization of
Changeable/Reconfigurable manufacturing, yet not limited to this particular
paradigm, since frequent product changes are experiences in almost all types
of manufacturing.

2. Reconfigurable Process Planning (RPP) is a novel mathematical
programming model to reconfigure macro-level process plans. It supports
evolvable part families, which are becoming a reality, due to the current
challenges of unpredictable customer-centered markets and emergence of
new reconfigurable and changeable manufacturing equipment and agile
business paradigms.

3. The presented RPP model is compared with the classical Traveling
Salesperson Problem (TSP) model. The RPP model provides much smaller
solution space and less complicated number of constraints than its TSP
counterpart; hence, it is computationally more tractable.

4. A Quadratic Assignment Problem (QAP) formulation, which is a new 0-1
integer mathematical model based on a novel adaptation of the classical
formulation, has been developed for process planning. It presents a
mathematical formulation of the precedence constraints for the first time in
the literature. The conceptual flaws in the classical TSP model were corrected
in the proposed model. It also overcomes the complexity of the sub-tour
elimination constraints in the TSP formulation. Solving it, near optimal plans;
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as for the linearized QAP model, it provides absolute exact global optimal
results.

. Reconfiguration indices have been proposed to measure the extent of change
on the product design and process planning levels. RIDesign was proven useful
in the selection of the appropriate method of planning. RIPlan evaluates the
impact of the process plans changes on downstream shop floor activities; and
helps choose among alternate sequences with substantially similar total cost
by opting for the one that causes the least changes on the shop floor, which
saves other indirect costs such as those related to errors and quality issues due
to changes.

Reconfigurable Process Planning (RPP) offers localized optimal plans, which
minimize the distance in the process planning domain between the
original/existing or master plans and the resulting new ones, and hence
minimizes the reconfiguration effort. The amount of reconfiguration (RIP,an)
of the process plans produced by the RPP method is proportional to the
amount of change at the product design level measured by RIDesign·
Linearized exact optimal Quadratic Assignment Problem (QAP)
mathematical programming provides the exact optimal solution; however,
limitations of problem size that could be solved for optimality exist. Finally,
approximate algorithms and heuristics, which are either non-traditional
optimization such as the SA-based heuristic or QAP mathematical
programming applying a termination criterion, provide near- or sub-optimal
plans; practically SA takes less computational run time than QAP
mathematical programming.
One of the main benefits of the proposed methods is to reduce the time and
cost required to generate a process plan. The overall proposed methodology is
more advantageous than existing methods such as the so-called non-linear
process planning or pre-planning scenarios, where alternate process plans are
developed and provided ahead of time in anticipation of future changes. In
addition to the obvious cost and computational burden that is avoided by the
developed approach, future changes in products and technology cannot be
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fully predicted; hence, the usefulness of pre-planned alternatives is
diminished. Furthermore, pre-planned processes would likely become
obsolete as manufacturing resources and technologies are changed. The
presented process planning methods can improve the efficiency of process
planning activities and can help "manage changes" on the shop floor by
introducing an important changeability enabler in the field of process
planning. The planner would have the option of choosing to completely
change the process plans using highly optimized globally optimal re-planning
or to employ localized optimal reconfiguration, depending on anticipated
production volume, product variability and market stability.

9. The problem of determining the most appropriate planning method is
function of two independent planning factors on two different levels: the
product design level and the manufacturing system operation level. The first
factor in the selection of one of these planning methods is related to the input
of the process planning problem, which represents the extent of change and
evolution of the considered product design variants. The second factor is
related to the manufacturing system capacity and the required volume of
production where the extent and cost of change in process plans, setups, and
fixtures may or may not be economically justified. The following guidelines
have been developed for selecting the most appropriate method of process
planning:

a. On the product level, Resign offers a systematic method of evaluation
and quantification of the extent of change of changes that took place
at the design level, which is an input to the planning problem
definition. This metric captures the design changes that would impact
and be translated into logical changes on the process planning level; it
quantifies the distance between the new variant and its

existing/composite counterpart in the design features space. This
distance in the design space is indicative of resultant distances in the

process planning solution space. Low values of Rlpesign indicate that
the global optimum would lie in the proximity of the original existing
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solution in the process planning space. Therefore, the localized RPP
solution would be the recommended choice over the approximate
algorithms. For high RIDesign values, which mean larger distance in
both the features and planning spaces, the case is reversed. The
exact/approximate algorithms would be recommended to process re-
plan from scratch,

b. On the manufacturing system level, the production volume also
affects the selection of the solution method. For low-volume job
shops and batch production, the localized RPP method would be a
better choice, since the localized optimal plans would directly be
translated into less change and less additional cost on the shop floor.
Conversely, for large volumes of production such as dedicated flow
lines and RMS, global and highly optimized plans would be a must
since the running cost components are of significant importance.
Therefore, the approximated algorithms and heuristics, and the exact
optimal QAP methods if applicable, would be preferred.

10. Three industrial case studies in metal cutting, assembly and inspection were
used for testing and application. The developed methods were also illustrated
using a hypothetical benchmark problem. In metal cutting, planning the
machining operations for a family of aluminum engine front covers were
carried out using both RPP and Process Re-Planning. The applicability and
soundness of the newly developed process planning concepts, models, and
methods was demonstrated through assembly and inspection planning for a
household product family and machine tool spare part respectively.
Consistent results were obtained for the reconfigured assembly plan of the
Kitchenware kettle. As for the inspection of the Spindle Cover part,
consistent results to those reported in the work of Hwang et al. (2004) were
obtained, which provides useful verification.
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8.3 Significance

1 . This dissertation addresses a new problem that arises due to the increased changes
in products and systems and the need to manage these changes cost effectively
and with the least disruption of the production activities and their associated high
cost.

2. A New "Changeability Enabler", namely the "Reconfigurable Process Planning
(RPP) was developed.

3. A New Hybrid Sequential Semi-Generative Methodology to solve the problem of
macro-level process planning. Two generative methods, RPP and Process Re-
Planning were proposed and novel mathematical programming models were
developed to satisfy the need to frequently and efficiently plan and re-plan
manufacturing processes were developed.

4. A novel 0-1 RPP integer mathematical programming model for reconfiguring
process plans was formulated and applied, for the first time, to the process
planning/sequencing problem. Reconfiguration of precedence graphs to optimize
the scope and cost of process plans reconfiguration is achieved by
inserting/removing features/operations iteratively in the string representation of
their precedence graphs.

5. A novel adaptation of the Quadratic Assignment Problem (QAP) has been
developed for process planning; it overcomes the complexity and conceptual and
mathematical flaws in the existing models in the literature; it models for the first
time the precedence constraint, which is a fundamental corner stone of the process
planning problem.

6. Two changeability metrics at the Design and Process Planning levels, namely the
Design Reconfiguration Index RIDesign and the Plan Reconfiguration Index RIp)an
haven been introduced. RIDesign is a similarity metric that measures the extent of
changes at the product design level, which is the primary input to the process
planning problem. On the other hand, RIP|an is a novel performance index in the
field of process planning, which is used to evaluate macro-level process plans; it
measures the extent and cost of reconfiguration. Hence, RIP|an can help in
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distinguishing between two alternate process plans with close value of the
handling time objective by opting for the one that would cause the least changes
on the shop floor, i.e. the one with lower RIP)an value.

7. The proposed RPP mathematical model scales better with the problem size
compared with the classical process planning techniques based on the Traveling
Salesperson Problem (TSP) model. The RPP model has an advantageous
polynomial computational time complexity function.

8. The proposed models and methods improve the efficiency of process planning
activities and would be easy to integrate with existing pre- and post-planning
CAD/CAM applications and tools. The proposed Sequential Process Planning
methodology, at large, can help "manage changes" on the shop floor by
introducing an important changeability enabler in the field of process planning. It
also has the potential for making significant cost savings in implementing the
frequent changes in products.

8.4 Future Work

The following issues are suggested for further research and investigation as
extensions of the developed research:

Clustering is important in process planning; clustering of processes
(aggregation) is needed to perform line balance for multi-stage processing; it
is also important to ensure that design requirements, such as grouping of
certain operations on the same fixture or relative to a certain datum to ensure

cost effective fulfillment of the specified tolerances, are met. In this work,
clustering is implied by the employed objective function, where tool
changes and repositioning of the work piece are minimized. However, this
may also be addressed at a different level since the considered problem, in
principle, is primarily a sequencing problem. Clustering could be applied a
priori or a posteriori as a revision tool that would help ensure that all design
specified functionality and requirements are met.
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For Reconfigurable Process Planning (RPP), the order of insertion of the
new features to be considered in the generative process of the new process
plan is amongst one of the critical factors to arrive at a global optimal plan.
However, it is important to point out that the aim of the current RPP
generative method in this work is to obtain localized reconfigured process
plans, where the extent of reconfiguration of the new process plan is
minimized. A new process planning approach is currently being explored to
obtain highly refined global solutions using RPP when high volume of
production is required. A meta-heuristic would be used where the problem
knowledge would be exploited to strategically guide the search within the
problem's combinatorial solution space. The choice of the tool, on the
outset, that would portray the backbone of the heuristic, can potentially
address a lot of issues, such as the order of insertion.

The first step in the proposed sequential process planning methodology
involves identifying the family of parts/products closest to the new variant
and retrieving its master plan and manipulating the corresponding
declarative data. Such choice depends on the measure of similarity between
the two sets of features in old and new variant, which is a challenging
problem that could be subject of future research.

It has been demonstrated that the proposed process planning approach is
practical and easy to implement and apply. It can be readily integrated with
upstream and downstream applications, through standard CAD/CAM data
inputs and outputs, for both pre-processing of data prior to macro-level
planning and further detailing of individual processes through micro-
planning to determine thorough process parameters such as cutting speed,
feed rate, depth of cut, etc., in a metal removal application.
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APPENDIX A: RECONFIGURABLE PROCESS PLANNING

(RPP) FORMULATION

This appendix is provided to give detailed formulations of the RPP model for the
Front Engine Cover Case Study. The penalty cost, setup cost, tool change time matrices
and vectors of the first two iterations were given as an example.

A.l Iteration 1

Table (A.l) Penalty cost matrix
1000 00000000

0 00000000
0 00000000
0 00000000

0 00000000
0 00000000
0 00000000
0 00000000

0 00000000
0 00000000

Table (A.2) Setup cost matrix
202222002
222222002
022222002
022222002
022202002
022202002
022222202
022220222
022220022
022220022

Table (A. 3) Old setup cost vector
0022220020

Table (A.4) Old tool change time vector
0 111111110
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Table (A. 5) Right tool change time vector
0 11110 1111

Table (A.6) Left tool change time vector
11110 11110

A.2 Iteration 2

Table (A.7) Penalty cost matrix
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 1000 0
00000000 0 0
00000000 0 1000
00000000 0 1000

Table (A. 8) Setup cost matrix

02222220002
02220200002
02220200002
02220200002
02220200002
02220200002
02220200022

Table (A. 9) Old setup cost vector
00222020002 0
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Table (A. 10) Old tool change time vector
01111011111 0

Table (A.l 1) Right tooling change cost vector
111111111110

Table (A. 12) Left tooling change cost vector
0 11111111111
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APPENDIX B: QUADRATIC ASSIGNMENT PROBLEM
(QAP) FORMULATIONS

This appendix is provided to give detailed formulations of the QAP model for the
Handspike benchmark. Part of the mathematical model for the composite part solved in
chapter five is expanded. In order to better demonstrate the mathematical equations that
were concisely represented by the notation used in the previous sections, an example of
each type of constraint as well as part of the objective function is expanded. Since each
constraint equation represents a set of equations or inequalities, the following notation
"Constraint a(b)" is used to number the constraint equations and inequalities, where b
represents the equation (inequality) number in the set of equations (inequalities)
representing the a constraint equation, as shown in chapter five.

B.l Objective Function Formulation

Min. Z= (Xi, 1X2,2 + Xl,2X2,3 + X 1,3X2,4 + X 1,4X2,5 + Xl, 5X2,6+ Xl,6X2,7) + 4(Xi,|X3i2 + X 1,2X3,3
+ X 1,3X3,4 + X 1,4X3,5 + X 1,5X3,6+ X 1,6X3,7) + 4(XIjX412 + X 1,2X4,3 + X 1,3X4,4 + X 1,4X4,5 + X 1,5X4,6+
Xl,6X4,7) + 4(Xi, 1X5,2 + X 1,2X5,3 + Xl,3X5,4 + Xl,4X5,5 + Xl,5X5,6+ X 1,6X5,7)+ (Xl,lX6,2 + X 1,2X6,3 +
X 1,3X6,4 + X 1,4X6,5 + X 1,5X6,6+ X 1,6X6,7)+ (X 1,1X7,2 + X 1,2X7,3 + X 1,3X7,4 + X 1,4X7,5 + X 1,5X7,6+
X 1,6X7,7) + X2,lXl,2 + ···+ X3,lXl,2 + ··· X4,lXl,2 + ·¦· X5,lXl,2 + ··· X6,lXl,2 + ··· X7,lXl,2 + ·¦·
X7,6X6,7

B.2 Sample of the Feasibility Constraints

Constraint 1(1):

Xl, 1 + Xl,2 + Xl,3 + Xl,4 + X|,5 + Xl,6 + X|,7 = 1

Constraint 1(7):

X7,l + X7,2 + X7,3 + X7,4 + X7,5 + X7,6 + X7,7 = 1 ;
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Constraint 2(1):
Xl, 1 + X2,l + X3.1 + X4,l + X5,l + ?ß,? + X7,l = l i

Constraint 2(7):
X 1,7 + X2,7 + X3,7 + X4,7 + X5.7 + X6,7 + X7,7 = 1 ;

B.3 Sample of the Precedence Constraints
The following constraints represent the first precedence constraint between Ar and D,

i.e. i indices 1 and 3.

Constraint 3(1):
X 1,1 -x 3,1 >0

Constraint 3(2):

X 1,1 +X 1,2 "? 3,1 "? 3,2 >0

Constraint 3(3):
X 1,1 +X 1,2 + X 1,3 * X 3,1 - X 3,2 " X 3,3 > 0

Constraint 3(4):

X 1,1+ X 1,2 + X 1,3 + X 1,4 - X 3,1 - X 3,2 " X 3,3 - X 3,4 > 0

Constraint 3(5):

X 1,1 +X 1,2 + X 1,3 + X 1,4 +X 1,5 " X 3,1 " X 3,2 - X 3,3 - X 3,4 " X 3,5 > 0

Constraint 3(6):

Xl,l +X 1,2 + X 1,3 + X 1,4 +X 1,5 + X 1,6 "X 3,1 " X3,2 - X 3,3 " X 3,4 "X 3,5 - X 3,6 > 0
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Constraint 3(7):
X M +X 1,2 + X 1,3 + X 1,4 +X 1,5 + X 1,6 +X 1,7 " X3.1 - X 3,2 - X 3,3 "X 3,4 " X 3,5 "X

3,6 "? 3,7 >0

Xi1I1=(I9O), Vi, ke {1,2, ...,7}
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