1,012 research outputs found

    A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses

    Full text link
    In many technical fields, single-objective optimization procedures in continuous domains involve expensive numerical simulations. In this context, an improvement of the Artificial Bee Colony (ABC) algorithm, called the Artificial super-Bee enhanced Colony (AsBeC), is presented. AsBeC is designed to provide fast convergence speed, high solution accuracy and robust performance over a wide range of problems. It implements enhancements of the ABC structure and hybridizations with interpolation strategies. The latter are inspired by the quadratic trust region approach for local investigation and by an efficient global optimizer for separable problems. Each modification and their combined effects are studied with appropriate metrics on a numerical benchmark, which is also used for comparing AsBeC with some effective ABC variants and other derivative-free algorithms. In addition, the presented algorithm is validated on two recent benchmarks adopted for competitions in international conferences. Results show remarkable competitiveness and robustness for AsBeC.Comment: 19 pages, 4 figures, Springer Swarm Intelligenc

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Coordination of blade pitch controller and battery energy storage using firefly algorithm for frequency stabilization in wind power systems

    Get PDF
    Utilization of renewable energy sources (RESs) to generate electricity is increasing significantly in recent years due to global warming situation all over the world. Among RESs type, wind energy is becoming more favorable due to its sustainability and environmentally friendly characteristics. Although wind power system provides a promising solution to prevent global warming, they also contribute to the instability of the power system, especially in frequency stability due to uncertainty characteristic of the sources (wind speed). Hence, coordinated controller between blade pitch controller and battery energy storage (BES) system to enhance the frequency performance of wind power system is proposed in this work. Firefly algorithm (FA) is used as optimization method for achieving better coordination. From the investigated test systems, the frequency performance of wind power system can be increased by applying the proposed method. It is noticeable that by applying coordinated controller between blade pitch angle controller and battery energy storage using firefly algorithm the overshoot of the frequency can be reduced up to -0.2141 pu and accelerate the settling time up to 40.14 second

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments
    corecore