12,056 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Sever: A Robust Meta-Algorithm for Stochastic Optimization

    Full text link
    In high dimensions, most machine learning methods are brittle to even a small fraction of structured outliers. To address this, we introduce a new meta-algorithm that can take in a base learner such as least squares or stochastic gradient descent, and harden the learner to be resistant to outliers. Our method, Sever, possesses strong theoretical guarantees yet is also highly scalable -- beyond running the base learner itself, it only requires computing the top singular vector of a certain n×dn \times d matrix. We apply Sever on a drug design dataset and a spam classification dataset, and find that in both cases it has substantially greater robustness than several baselines. On the spam dataset, with 1%1\% corruptions, we achieved 7.4%7.4\% test error, compared to 13.4%20.5%13.4\%-20.5\% for the baselines, and 3%3\% error on the uncorrupted dataset. Similarly, on the drug design dataset, with 10%10\% corruptions, we achieved 1.421.42 mean-squared error test error, compared to 1.511.51-2.332.33 for the baselines, and 1.231.23 error on the uncorrupted dataset.Comment: To appear in ICML 201

    Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations

    Get PDF
    The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm

    Estimating Photometric Redshifts Using Support Vector Machines

    Full text link
    We present a new approach to obtaining photometric redshifts using a kernel learning technique called Support Vector Machines (SVMs). Unlike traditional spectral energy distribution fitting, this technique requires a large and representative training set. When one is available, however, it is likely to produce results that are comparable to the best obtained using template fitting and artificial neural networks. Additional photometric parameters such as morphology, size and surface brightness can be easily incorporated. The technique is demonstrated using samples of galaxies from the Sloan Digital Sky Survey Data Release 2 and the hybrid galaxy formation code GalICS. The RMS error in redshift estimation is <0.03<0.03 for both samples. The strengths and limitations of the technique are assessed.Comment: 10 pages, 3 figures, to appear in the PASP, minor typos fixed to make consistent with published versio

    European exchange trading funds trading with locally weighted support vector regression

    Get PDF
    In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms are generated and applied to the task of forecasting and trading five European Exchange Traded Funds. The trading application covers the recent European Monetary Union debt crisis. The performance of the proposed models is benchmarked against traditional Support Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR input selection procedure is introduced based on a principal component analysis and the Hansen, Lunde, and Nason (2011) model confidence test. The results demonstrate the superiority of the wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note that the performance of all models varies and considerably deteriorates in the peak of the debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis Function is the optimum choice for financial series
    corecore