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Abstract 

The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm – Support Vector 

Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The 

algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY 

exchange rates. The proposed methodology genetically searches over a feature space (pool of 

individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for 

each exchange rate. This is achieved by applying a fitness function specialized for financial purposes 

and adopting a sliding window approach. The individual forecasts are derived from several linear and 

non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs 

and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO 

neural network. The statistical and trading performance of all models is investigated during the 

period of 1999-2012. As it turns out, RG-SVR presents the best performance in terms of statistical 

accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the 

success of the implemented fitness function and training procedure, while it validates the benefits of 

the proposed algorithm. 
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1. INTRODUCTION 

 

Forecasting financial time series appears to be a challenging task for the scientific community 

because of its non-linear and non-stationary structural nature. On one hand, traditional statistical 

methods fail to capture this complexity, while on the other hand non-linear techniques present 

promising empirical evidence. However, their practical limitations and the expertise required to 

optimize their parameters are creating skepticism on their utility.  

This study introduces a hybrid Rolling Genetic Algorithm – Support Vector Regression (RG-SVR) 

algorithm for optimal parameter selection and feature subset combination when applied to the task of 

forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed model 

genetically searches over a feature space (pool of individual forecasts) and then combines the optimal 

feature subsets for each exchange rate. A novel fitness function specialized for financial purposes is 

used to simultaneously minimize the error of the obtained forecasts, increase the profitability of the 

final forecast combination and reduce the complexity of the algorithm. This is crucial in financial 

applications, where statistical accuracy is not always synonymous with the financial profitability of 

the deriving forecasts. The reduced complexity of the algorithm decreases the computational cost of 

the proposed methodology and makes it ideal for trading applications, where time efficiency is 

important. At the same time, it acts as a protection against overfitting and impeded generalization 

abilities. The model employs a sliding window training approach and is capable of capturing the 

time-varying relationship that dominates the financial trading series.  

RG-SVR is benchmarked against seven models. Their statistical and trading performance is 

compared during the period of 1999-2012. The rationale behind the selection of the benchmarks is 

twofold. Firstly, Support Vector Machine (SVM) and Support Vector Regression (SVR) architectures 

with genetically and non-genetically optimized parameters are dominant in the relevant literature. 

The six most popular and promising variants are identified and included in the study (see section 

4.3). Secondly, it would be unfair to compare the hybrid RG-SVR only with hybrids of the same 

methodology class, especially when other proposed methodologies have shown statistical and trading 

superiority in a similar task. One such example is the hybrid Neural Network (NN) that combines 

Adaptive Radial Basis Functions with Particle Swarm Optimization (ARBF-PSO), as introduced 

recently by Sermpinis et al. (2013). The authors apply ARBF-PSO to the task of forecasting and 

trading the same exchange rates that the present study is investigating. Their results show that ARBF-

PSO is outperforming several linear and non-linear models, while its structural complexity is not 

high. Consequently, ARBF-PSO’s selection as a benchmark to this application is required and 

justified. 

To the best of our knowledge, the proposed RG-SVR methodology has not been presented in the 

literature. Similar hybrid applications exist but they are either limited in classification problems (Min 



et al. (2006), Huang and Wang (2006), Wu et al. (2007), Dunis et. al. (2013)) or the Genetic 

Algorithm (GA) does not extend to optimal feature subset selection (Pai et al. (2006), Chen and 

Wang (2007), Yuan (2012)). In addition to this fact, the RG-SVR hybrid is the first GA hybrid SVR 

algorithm that deploys v-SVR models, minimizes the number of support vectors and applies a 

specialized loss function and a sliding window training approach. A detail comparison of the 

algorithm and the previous two algorithms is presented in the next section. The genetically optimized 

SVM model (GA-SVM) proposed by Min et al. (2006), Huang and Wang (2006), Wu et al. (2007) 

and Dunis et. al. (2013) and the genetically optimized ε-SVR model (GA-εSVR) proposed by Pai et 

al. (2006), Chen and Wang (2007) and Yuan (2012) will act as benchmarks to the RG-SVR 

algorithm. Compared to non-adaptive algorithms presented in the literature, the proposed model does 

not require from the practitioner to follow any time-consuming optimization approach (such as cross 

validation or grid search) and is free from the data snooping bias (all parameters of RG-SVR are 

optimized in a single optimization procedure). 

From the results of this analysis, it emerges that RG-SVR presents the best performance in terms of 

statistical accuracy and trading efficiency for all exchange rates under study. RG-SVR’s trading 

performance and forecasting superiority not only confirms the success of the implemented fitness 

function, but also validates that applying GAs in this hybrid model to optimize the SVR parameters is 

more efficient compared to the optimization approaches (cross validation and grid search algorithms), 

that dominate the relevant literature. 

The rest of the paper is organized as follows. Section 2 is a literature review of previous relevant 

research on SVMs and SVRs in forecasting. A detailed description of the study’s dataset, the 

EUR/USD, EUR/GBP and EUR/JPY European Central Bank (ECB) fixing series, is presented in 

Section 3. Section 4 includes the complete description of the hybrid RG-SVR model, while the 

statistical and trading performance of the implemented models is presented in sections 5 and 6 

respectively. The concluding remarks are provided in section 7. The essential theoretical background 

for the complete understanding of the proposed methodology is given in the appendix section, along 

with the technical characteristics of the models used in this study.  

 

2. LITERATURE REVIEW 

 

SVMs were originally developed for solving classification problems in pattern recognition 

frameworks. The introduction of Vapnik’s (1995) insensitive loss function has extended their use in 

non-linear regression estimation problems. SVRs’ main advantage is that they provide global and 

unique solutions and do not suffer from multiple local minima, while they present a remarkable 



ability of balancing model accuracy and model complexity (Kwon and Moon (2007) and Suykens 

(2005)).  

The literature of SVM and SVR applications is voluminous, especially when they are applied in 

financial tasks. This study aims to delve deeper into their hybrid structures that are already very 

popular (Lo, 2000). Lee et al. (2004) propose the multi-category SVM as an extension of the 

traditional binary SVM and apply it in two different case studies with promising results. They note 

that their proposed methodology can be a useful addition to the class of nonparametric multi-category 

classification methods. Liu and Shen (2006) advance the previous mentioned approach by presenting 

the multi-category ψ-learning methodology. The main advantage of their method is that the convex 

SVM loss function is replaced by a non-convex ψ-loss function, which leads to smaller number of 

support vectors and sparser solution. Martens et al. (2007) introduce two extraction techniques for 

SVMs and prove their utility in a series of tests. Hsu et al.(2009) integrate SVR in a two-stage 

architecture for stock price prediction and present empirical evidence that show that its forecasting 

performance can be significantly enhanced compared to a single SVR model. Lu et al. (2009) and 

Yeh et al. (2011) propose also hybrid SVR methodologies for forecasting the TAIEX index and 

conclude that that they perform better than simple SVR approaches and other autoregressive models. 

Wu and Liu (2007) introduce the Robust Truncated Hinge Loss SVM and claim that their method can 

overcome drawbacks of traditional SVM models, such as the outliers’ sensitivity in the training 

sample and the large number of support vectors. Huang et al. (2010) forecast the EUR/USD, 

GBP/USD, NZD/USD, AUD/USD, JPY/USD and RUB/USD exchange rates with a hybrid chaos-

based SVR algorithm. In their application, they confirm the forecasting superiority of their proposed 

technique compared to chaos-based NNs and several traditional non-linear models. Lin and Pai 

(2010) introduce a fuzzy SVR model for forecasting indices of business cycles, Kim and Sohn (2010) 

forecast the credit score of small and medium enterprises with SVM, while Wu and Akbarov (2011) 

apply successfully weighted SVRs to the task of forecasting warranty claims. Moreover, Jiang and 

He (2012) propose a hybrid SVR that incorporates the Grey relational grade weighting function. 

When applied to financial time series forecasting, the local Grey SVR outperforms locally weighted 

counterparts in terms of computational speed and prediction accuracy. A hybrid architecture for 

computer products’ sales forecasting is also introduced by Lu (2014) based on SVR and multivariate 

adaptive regression splines.  

Most recently, Yao et al. (2015) use SVRs in the credit risk modeling framework. Specifically, the 

authors evaluate the predictive ability of SVR over recovery rates of defaulted corporate instruments 

between 1985 and 2012. The results show the superiority of the SVR techniques in forecasting these 

rates compared to other commonly used methods, such as linear regression, fractional response 

regression and the two-stage methodology. Finally, Geng et al. (2015) present a forecast competition 

of methodologies, such as NNs, SVM, decision trees and majority voting classifiers, to the task of 



predicting financial distress of listed Chinese companies. The empirical evidence of that study shows 

that NNs outperform the SVM, but they acknowledge that this is contradicting previous literature. 

Similar applications to the proposed hybrid approach of this study can be found in the literature. For 

example Min et al. (2006) and Wu et al. (2007) use hybrid GA-SVM models in order to forecast the 

bankruptcy risk. In both applications, the GAs optimizes the parameters of the SVM and selects the 

financial ratios that most affect bankruptcy. Dunis et al. (2013) developed a GA-SVM algorithm and 

applied it to the task of trading the daily and weekly returns of the FTSE 100 and ASE 20 indices. 

This approach deals with financial forecasting as a classification problem and has limited 

applicability. In financial forecasting, though, it is crucial to obtain forecasts that predict not only the 

sign but also the size of the examined financial indices. 

Pai et al. (2006) apply epsilon SVR with genetically optimized parameters (GA-εSVR) in forecasting 

exchange rates, while Chen and Wang (2007) forecast the tourist demand in China with a similar 

model. Yuan (2012) suggests that a GA-εSVR model is more efficient than traditional SVR and NN 

models, when applied to the task of forecasting sales volume. All these GA-εSVR applications do not 

deploy the GA to locate the optimal feature subset but restrict it in optimizing the parameters of the ε-

SVR models and select the model’s inputs empirically. 

As described in the previous paragraph, a variety of hybrid methodologies combining SVM/SVR 

models with GAs have been proposed during the last decade. However, the proposed RG-SVR 

theoretically outperforms them as it deploys v-SVR models, which are more suitable to this problem 

than SVMs and ε-SVR. SVMs are constrained to classification problems and their applicability is 

limited. The ε-SVR models require the desired accuracy of the approximation to be specified 

beforehand and are extremely sensitive to the selection of the ε parameter compared to the sensitivity 

of v-SVRs to the v parameter (Schölkopf et al., 2000). Moreover, RG-SVR optimizes on parallel the 

SVR’s parameters and the input’s subset, it deploys a sliding window approach to capture the 

dynamic nature of the examined financial time series, it employs a specialized loss function and tries 

to minimize the number of support vectors of the final model in order to improve its generalization 

abilities. The advantages of RG-SVR over other published methodologies are outlined in table 1.  

Table 1: Theoretical Comparison of RG-SVR with other existing hybrid combinations of GAs with 
SVM/SVR based models  

Method SVM type S liding 
 Window 

Parameters  
Optimization  

Using GA 

Input Subset  
Optimization  
Using GAs 

Minimization of  
the Support Vectors 

RG-SVR v-SVR Yes Yes Yes Yes 

Pai et al. (2006), Chen and 
Wang (2007) and Yuan 

(2012) 
ε-SVR No Yes No No 

Min et al. (2006), Wu et al. 
(2007)  and Dunis et al. 

(2013) 
RBF-SVM No Yes Yes No 

 



3. THE EUR/USD, EUR/GBP AND EUR/JPY EXCHANGE RATES AND RELATED 

FINANCIAL DATA 

The ECB publishes a daily fixing for selected EUR exchange rates. These reference mid-rates are 

based on a daily concentration procedure between central banks within and outside the European 

System of Central Banks, which normally takes place at 2.15 p.m. ECT time. The reference exchange 

rates are published both by electronic market information providers and on the ECB's website shortly 

after the concentration procedure has been completed.  

Although only a reference rate, many financial institutions are ready to trade at the EUR fixing and it 

is therefore possible to leave orders with a bank for business to be transacted at this level. Thus, the 

ECB daily fixings of the EUR exchange rate are tradable levels and using them is a more realistic 

alternative to, say, London closing prices. This superiority for financial institutions to transact at the 

EUR fixing is a well-known fact by FX markets participants. Financial institutions and institutional 

investors, and therefore through them, High Net Worth individuals (HNW) would definitely be able 

to transact at the ECB fixing through their investments with hedge funds, private banks, etc. Smaller 

private investors could also benefit from reasonably attractive cost conditions (see 

www.interactivebrokers.com), although they would not be able to transact at the ECB fixing as 

considered in this study. 

In this paper, the ECB daily fixings of EUR/USD, EUR/GBP and EUR/JPY exchange rates are 

examined over the period of 01/02/1999 to 30/04/2012. The range of these observations (3395 

trading days) is used in four consecutive forecasting exercises. In order to train the RG-SVR, it is 

necessary to divide the in-sample dataset to training and test subsets (see section 4.1). The test dataset 

constitutes approximately the 38%1 of the in-sample dataset in each forecasting exercise. The total 

dataset and the length of each forecasting exercise are presented in the table below. 

 
Table 2: The Total Dataset - Neural Networks’ Training Datasets 

* The in-sample dataset is the sum of the training and test dataset  

                                                 
1 This choice is based on in-sample experimentation. We obtain similar trading and statistical in-sample RG-SVR 
performance for test datasets that constitute the 29% up to the 47% of the in-sample dataset.   

FORECASTING 

EXERCISE 
PERIODS TRADING DAYS START DATE END DATE 

 
 
1 

Total Dataset 1857 01/02/1999 28/04/2006 
Training Dataset (Ntr)* 831 01/02/1999 30/04/2002 

Test Dataset 511 02/05/2002 30/04/2004 
Out-of-sample Dataset  515 03/05/2004 28/04/2006 

 
 
2 

Total Dataset 1852 01/02/2001 30/04/2008 
Training Dataset (Ntr) 826 01/02/2001 30/04/2004 

Test Dataset 515 03/05/2004 28/04/2006 
Out-of-sample Dataset 511 02/05/2006 30/04/2008 

 
 
3 

Total Dataset 1854 03/02/2003 30/04/2010 
Training Dataset (Ntr) 832 03/02/2003 28/04/2006 

Test Dataset 511 02/05/2006 30/04/2008 
Out-of-sample Dataset 511 02/05/2008 30/04/2010 

 Total Dataset 1857 01/02/2005 30/04/2012 



 

 
The graph below shows the total dataset for the three exchange rates under study.  
 

 

Figure 1: The EUR/USD, EUR/GBP and EUR/JPY total dataset. 

 

The three observed time series are non-normal (Jarque-Bera statistics (1980) confirm their non-

normality at the 99% confidence interval) containing slight skewness and high kurtosis. They are also 

non-stationary and hence they are transformed them into three daily series of rate returns2 using the 

following formula: 

                                         
1

ln t
t

t

PR
P−

 
=  

 
                                                    [1] 

Where Rt   is the rate of return and Pt is the price level at time t.  

The summary statistics of the EUR/USD, EUR/GBP and EUR/JPY return series reveal that the slight 

skewness and high kurtosis remain. In addition, the Jarque-Bera statistic confirms again their non-

normality at the 99% confidence interval.  

 

The aim of these forecasting exercises is to forecast and trade the one day ahead EUR/USD, 

EUR/GBP and EUR/JPY exchange rate return (E(Rt)). As a first step, we estimate the three return 

series with several linear and non-linear models. Then, these estimations are used as potential inputs 

to the RG-SVR algorithm. 

                                                 
2 Confirmation of their stationary property is obtained at the 1% significance level by both the Augmented Dickey Fuller 
(ADF) and Phillips-Perron (PP) test statistics.  
 

0

20

40

60

80

100

120

140

160

180

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

01
 F

eb
 1

99
9

30
 Ju

n 
19

99
26

 N
ov

 1
99

9
28

 A
pr

 2
00

0
27

 S
ep

 2
00

0
28

 F
eb

 2
00

1
01

 A
ug

 2
00

1
03

 Ja
n 

20
02

06
 Ju

n 
20

02
04

 N
ov

 2
00

2
07

 A
pr

 2
00

3
08

 S
ep

 2
00

3
09

 F
eb

 2
00

4
09

 Ju
l 2

00
4

07
 D

ec
 2

00
4

09
 M

ay
 2

00
5

05
 O

ct
 2

00
5

06
 M

ar
 2

00
6

07
 A

ug
 2

00
6

08
 Ja

n 
20

07
11

 Ju
n 

20
07

07
 N

ov
 2

00
7

11
 A

pr
 2

00
8

10
 S

ep
 2

00
8

11
 F

eb
 2

00
9

15
 Ju

l 2
00

9
11

 D
ec

 2
00

9
17

 M
ay

 2
01

0
13

 O
ct

 2
01

0
11

 M
ar

 2
01

1
11

 A
ug

 2
01

1
10

 Ja
n 

20
12

EU
R

/J
PY

 

EU
R

/U
SD

 &
 E

U
R

/G
B

P 

1st February 1999 to 30th April 2012 

EUR/USD EUR/GBP EUR/JPY

 
4 

Training Dataset (Ntr) 830 01/02/2005 30/04/2008 
Test Dataset 511 02/05/2008 30/04/2010 

Out-of-sample Dataset 516 03/05/2010 30/04/2012 



 

4. HYBRID RG-SVR MODEL 

 

The hybrid Rolling Genetic – Support Vector Regression (RG-SVR) model for optimal parameter 

selection and feature subset combination is presented in this section. Initially, the generic architecture 

of the proposed methodology is described. Then the feature space, in which the model will search for 

the optimal subsets and combinations, is identified along with the models that are going to be used as 

benchmarks. The SVR models are more suitable than the classical SVMs ones for this daily 

forecasting task, as they provide an exact prediction instead of a binary output. The exact prediction 

enables the effective application of confirmation filters to improve its performance and provide a hint 

about the strength of the trading signal.  

4.1 Architecture 

The proposed model genetically searches over the feature space (pool of individual forecasts) and 

then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. In 

order to achieve this, a simple GA is used where each chromosome comprises feature genes that 

encode the feature subsets and parameter genes that encode the choice of parameters.  

The lack of information about the noise’s nature and parameters of the training datasets makes the a 

priori ε-margin setting of ε-SVR a difficult task. In order to overcome this and decrease the 

computational demands of the methodology, the RBF v-SVR approach is applied in this hybrid RG-

SVR model (see appendix A.2). The impact of ε parameter in ε-SVR is much more crucial than the 

impact of ν in ν-SVR. The ν-SVR method is limiting with an upper and lower bound the number of 

SVs. In this way, the optimization becomes more stable and the algorithm needs less iterations to find 

an optimal v value, which would provide accurate results and good generalization properties. The use 

of the RBF kernel is justified by its extensive use in the literature and its superiority to other types of 

kernels, when used in financial time series forecasting (Ince and Trafalis (2008) and Lu et al. (2009)). 

A RBF kernel is in general specified as: 

     2( , ) exp( ), 0γ γ= − − >i iK x x x x      [2] 

where γ represents the variance of the kernel function. Consequently, the parameters which should be 

optimized by the GA are C, v and γ. 

Binary representation is used to model the chromosome. Every feature gene is represented with a 

binary digit. If that gene takes value 1 (0), then this indicates that the relevant feature should be used 

(not be used) as input. For the parameter genes 50 bits are used, which are specified as follows: 

• 10 bits to represent the integer part of parameter C of SVRs ( range [0-1024])  



• 10 bits to represent the decimal part of parameter C of SVRs (~ 0.001 precision) 

• 10 bits to represent the integer part of the γ parameter of RBF functions ( range [0-1024]) 

• 10 bits to represent the decimal part of the γ parameter of RBF functions  (~ 0.001 precision) 

• 10 bits to represent the ν parameter of v-SVR ( range [0-1] with ~ 0.001 precision) 

During the initialization step all genes are randomly set with values 0 or 1 with equal probabilities 

for both of them. 

The GA uses the one-point crossover and the mutation operators. The one-point crossover creates 

two offspring from every two parents. The parents and a crossover point cx are selected at random. 

The two offsprings are made by both concatenating the genes that precede cx in the first parent with 

those that follow (and include) cx in the second parent. The probability for selecting an individual as 

a parent for the crossover operator is called crossover probability and in this application is set to 

0.90. Having a high crossover probability enables the model to keep some population for the next 

generation, hoping to create better new chromosomes from good parts of the old chromosomes. The 

offspring produced by the crossover operator replaces their parents in the population. The one-point 

crossover is used for simplicity and to allow bigger blogs of genes to be exchanged during the 

crossovers. The uniform crossover is usually better only when small mutation probabilities (for 

example 0.001) are used in order to keep the diversity of chromosomes in the population. In this 

study, the applied mutation probability is quite big (0.1) and thus the one-point crossover is adequate. 

The crossover probability is not set to 1 to leave a space for very good solutions of a population to 

pass through the next generation’s population without being altered. The other variation operator 

which is deployed is the mutation one. The mutation operator places random values in randomly 

selected genes with a certain probability named as mutation probability.  This operator is very 

important for avoiding local optima and exploring a larger surface of the search space. This 

probability is set to 0.1 in order to prevent the algorithm from performing a random search. 

For the selection step of the GA, the roulette wheel selection process is used (Holland, 1975). In 

roulette wheel selection chromosomes are selected according to their fitness. The better the 

chromosomes are, the more chances to be selected they have. In the proposed approach, elitism is 

used to raise the evolutionary pressure in better solutions and to accelerate the evolution. In that way, 

it is assured that the best solution is copied without changes to the new population, so the best 

solution found can survive at the end of every generation.  

More specifically, the selection step is used to resemble the survivor of the fittest principle. In that 

way better solutions have higher probabilities to provide offspring in the next generation. After the 

application of selection probability, an intermediate population of solutions is formed with each one 

of them being identical to the solutions from the previous population. Then, crossover and mutation 

probabilities are applied to provide offsprings combining solutions from this intermediate population. 



Before the application of the crossover operator, the solutions from this intermediate population are 

used to make pairs of solutions.  Some of these pairs are combined using the crossover operator (with 

the crossover probability) to produce new solutions, while the others are passed to the next 

intermediate population without being altered. The offspring is derived from the crossover operator 

and the pairs of solutions that are not recombined form the next intermediate population. After this 

process, the intermediate population is altered using the mutation operator. In the case of this study, 

binary mutation is used. If a gene is selected for mutation, then a new random binary value (0 or 1) is 

constructed and replaces the previous value in this gene. In order to re-assure that no good solutions 

are missed, elitism is applied. In that way, the best solution is allowed to pass to the next population. 

The crossover probability is not set to 1 to leave space also for some solutions that are close to 

optimal not to be recombined, but just change only with the mutation operator (which is applied only 

in a few genes of the whole chromosome).  

For example, assuming population size is N and elitism of one member, the use of the selection 

operator leads to an intermediate population of N solutions, which form N/2 pairs. Some of these 

pairs are selected for crossover using the crossover probability and others are passing on for 

mutation, as they are. When the mutation process is completed, a complete set of final N solutions is 

derived. The next iteration starts once one solution is randomly replaced with the best solution of the 

previous generation.   

 

The RG-SVR hybrid performs a rolling window forecasting exercise. The window size is always ten 

days (two trading weeks). Else the parameters and the inputs of the algorithm are re-estimated every 

two weeks. This fact allows the model to capture any structural brake in the dataset. Trading series 

are exhibiting a highly non-linear nature and are affected by a wide range of factors. Mathematical 

models with fixed parameters are impossible to model them perfectly. Fund managers and 

professionals apply a range of different models and re-estimate their parameters frequently. The 

nature of the financial markets and their erratic behavior make impossible a perfect ex-ante 

configuration of the re-estimation period. Frequent re-estimations dramatically increase the 

computational time and might induce noise in the estimations3. Infrequent re-estimations will lead to 

a low trading performance. The ten trading days sliding window approach is selected based on a 

trade-off between the in-sample trading performances of RG-SVR and the computational time 

needed for its estimation with the used dataset. 

The population of chromosomes is initialized in the training sub-period. The optimal selection of 

chromosomes is achieved, when their forecasts maximized the proposed loss function (see equation 

[3] below) in the test-sub period. Then, the optimized parameters and selected predictors of the best 

                                                 
3 Financial markets are vulnerable to behavioural (Froot et. al., 1992) and exogenous factors such as political decisions 
(Fisman, 2001). These factors are impossible to capture with mathematical models and include noise to time series 
estimations.  



solution are used to train the SVR and produce the final optimized forecast for the next observation. 

This procedure is repeated in each of the four forecasting exercises. For each of these forecasting 

exercise, the algorithm stores its optimized C, γ and v parameters and set of optimal predictors.  

In order to achieve the optimal selection of the feature subsets (individual forecasts) a three-objective 

fitness function is applied to the hybrid approach. Firstly the annualized return of the SVR forecast 

combinations should be maximized and secondly the Root Mean Square Error (RMSE) of the output 

should be minimized in the test sub-period. The presence of the SVs term in the proposed fitness 

function enables RG-SVR to extract the minimum prediction models which present good prediction 

accuracy improving its generalization abilities. Based on the above, the fitness function takes the 

form of equation [3]: 

                                 10* 0.001*( / )Fitness Annualized Return RMSE SVs Ntr= − −                  [3]  

Where Ntr is the size of the training sample. 

The aim is to maximize equation [3]. The proposed fitness function aims to bring a balance between 

trading profitability (first factor of equation [3]) and statistical accuracy (second factor) while 

retaining the complexity of the algorithm to a minimum. This is very important in trading 

applications as statistical accuracy does not always imply financial profitability. Additionally, 

complex models in trading applications are not always applicable due to the increased computation 

time and the dangers of over fitting and lack of generalization. There are two computational time 

metrics related to the task of building forecasting models and applying them to new data. The first 

one is the Computational Time required for Training a model (CTT). The second is the 

Computational Time for the Application of the trained model to new data (CTA) 4. The training phase 

is an offline procedure. Thus, the CTT is of minor importance. It is not required to be applied in real 

time and can be applied in scheduled times (for example once per week). The critical phase in terms 

of time complexity is the application to new data phase, as this is probably applied in real time.  In 

the proposed approach, the term SVs/Ntr is introduced in the fitness function. This term does not 

affect the CTT, but dramatically decreases the CTA by using simplest models. This approach has also 

a significant effect in the model’s generalization properties reducing the danger of overfitting. The 

RMSE is multiplied by 10 to make the first two factors in equation [3] more or less equal in levels. 

SVs is the number of Support Vectors of the trained SVR model. This number is first divided to Ntr 

to normalize its values from 0-1 and then it is further divided with 1000 to decrease its impact to the 

final fitness function. Reducing model complexity is a secondary task compared to forecasting 

accuracy and the trading profitability.  

The size of the initial population is set to 40 chromosomes while the maximum number of 

generations is set to 200. The algorithm though terminates when the number of generations is 60 on 
                                                 
4 For our experiments the CTT time using a simple personal computer with Intel I7 processor ranged from 3-4 hours 
while the CTA time for 10 trading days was a less than 1 sec. 



average. This number must be reached in combination with a termination method that stops the 

evolution, when the population is deemed as converged. The population is deemed as converged 

when the average fitness across the current population is less than 5% away from the best fitness of 

the current population. More specifically, when it is less than 5% the diversity of the population is 

very low and evolving it for more generations is unlikely to produce different and better individuals 

than the existing ones or the ones already examined by the algorithm in previous generations.  

The summary of the GA’s characteristics is presented in table 3 below. 

 
Table 3: GA Characteristics and Parameters 

Population Size 40 
Maximum Generations 200 

Selection Type Roulette Wheel Selection 
Elitism Best member of every population is maintained in the next generation. 

Crossover Probability 0.9 
Mutation Probability 0.1 

Fitness Function 10* 0.001*( / )Fitness Annualized Return RMSE SVs Ntr= − −   

 

The flowchart of the proposed methodology is depicted in detail in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 
 
 
 
 
 
 
 
 
 

Figure 2: Hybrid RG-SVR flowchart  

 



 

4.2 Feature Space and Feature Subset Selection  

The forecasting ability of the proposed methodology is evaluated over a feature space that is 

synthesized by individual linear and non-linear forecasts of each exchange rate over the periods 

outlined in table 2. More specifically, the pool is consisted by a Random Walk (RW), a series of  

Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA) linear 

models and five non-linear algorithms, namely a Nearest Neighbors Algorithm (k-NN) a Multi-Layer 

Perceptron (MLP), a Recurrent Neural Network (RNN), a Higher Order Neural Network (HONN) 

and a Psi-Sigma Neural Network (PSN). A summary of the used linear models is presented in table 4 

below, while the applied non-linear models are explained in Appendix B. 

 
Table 4: The summary description of the linear models  

LINEAR MODELS DESCRIPTION TOTAL INDIVIDUAL 
 FORECASTS 

RW 

( ) , ~ (0,1)t t tE R e e Nµ= +  
 Where: 
• μ the in-sample mean 

 
1 

AR (p) 

0
1

( )
p

t i t i
i

E R Rβ β ′ ′−
′=

= +∑  

Where: 
• p=1,…,20  
• 0 , iβ β ′  the regression coefficients  

 
20 

MA (q) 
1( ) ( ... ) /t t t qE R R R q− −= + +  

Where: 
• q=3...25 

 
23 

ARMA (m', n') 

0 0
1 1

( )
m n

t j t j k t k
j k

E R R a w aj j
′ ′

′ ′ ′ ′− −
′ ′= =

= + + +∑ ∑  

Where:  
• m', n'=1,..,15 
• 0 , jj j ′  the regression coefficients  

• 0 , t ka a ′−  the residual terms  

• kw ′  the weights of the residual terms 
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These models create a pool of 259 individual forecasts in total for each forecasting exercise. The 

algorithm genetically searches the above feature space and selects the optimal feature subsets. In all 

cases, GA selects as inputs for the proposed model among the MLP, HONN, RNN, PSN and k-NN 

predictors. In other words, the model discards as inputs the linear predictors in favor of the non-



linear models (see table 5). This was expected to some extent due to the non-linear nature of the 

financial time series.  

In the final stage of the algorithm, RG-SVR applies a GA to select the SVR parameters. As 

mentioned before this process is repeated every ten trading days, in order the proposed model capture 

any possible structural break in the series under study. Although the selection of the inputs seems to 

be consisted in the majority of the runs for the three exchange rates, this is not the case for the SVR 

parameters as the C, v and γ parameters vary between 4.10 to 9.20, 0.35 to 0.84 and 8.12 to 19.77 

respectively. These variations of the parameters through the different sliding window iterations 

enable it to adjust to the continuously changing real financial model. It is worth noting that the 

proposed RG-SVR methodology is fully adaptive. The practitioner does not need to experiment with 

the parameters of the algorithm in order to optimize the forecasts. RG-SVR structure and its 

parameters are generated in a single optimization procedure, which prevents the data snooping effect. 

  

4.3 Benchmark Models  

The statistical and trading efficiency of the hybrid model is initially evaluated by benchmarking it 

with traditional genetic and non-genetically optimized SVRs and SVMs. For the non-genetically 

optimized SVRs, the selection of the inputs and the SVR parameters is optimized with the statistical 

methods that dominate the relevant literature (grid search or 5-cross validation over the in-sample 

period)5. The genetically optimized SVR and SVM benchmarks are constructed following the 

instructions of those introducing them in the literature (see table 1). A summary of the SVR-SVM 

benchmarks is presented below: 

• An ε-SVR model that implements a 5-fold cross-validation and a simple data-driven 

calculation on the in-sample dataset to calculate parameters ε, γ and C respectively (ε-SVR1). 

• A v-SVR model that calculates its parameters v, γ and C as the ε-SVR1 (v-SVR1). 

• An ε-SVR and v-SVR model that all parameters are selected based on a grid-search algorithm 

in the in-sample dataset (ε-SVR2 and v-SVR2). 

• A GA-SVM model as proposed by Min et al. (2006), Wu et al. (2007)  and Dunis et al. 

(2013) 

• A GA-εSVR model as proposed by Pai et al. (2006), Chen and Wang (2007) and Yuan 

(2012). 

For more on the ε-SVR1 and v-SVR1 approaches see Duan et al. (2003) and Cherkassky and Ma 

(2004), while for the ε-SVR2 and v-SVR2 see Schölkopf and Smola (2002).  
                                                 
5 The inputs in all cases of forecasting exercise 1 are selected based on 5-fold cross validation, while in forecasting 
exercises 2 and 3 with grid search. For the forecasting exercise 4, the inputs selected for EUR/USD and EUR/GBP are 
based on grid search algorithms, while the ones for EUR/JPY are derived based on 5-fold cross validation.  



In addition, Sermpinis et al. (2013) introduce the ARBF-PSO method in a forecasting and trading 

competition of several linear and non-linear models. Their hybrid NN structure proves to be superior 

in statistical and trading terms over the more traditional MLP, RNN and PSN. The authors 

investigate the ECB daily fixings of EUR/USD, EUR/GBP and EUR/JPY over the period of 

04/01/1999 to 29/04/2011 (3158 trading days). Their statistical and trading results are not directly 

comparable with the ones of this study, since their in-sample and out-of-sample periods are 

overlapping with those of table 2. Nonetheless, ARBF-PSO’s performance is impressive over a 

dataset of the same three exchange rates that this study is investigating. Thus, ARBF-PSO seems a 

perfect benchmark for RG-SVR. More details on the ARBF-PSO can be found in appendix B.  

The selected inputs for all the benchmark models are presented in the following table.  

Table 5: Summary of selected inputs of all models  

*Panel A and B include the input selection per each series under study for forecasting exercises 1, 2 and 3, 4 respectively. RG-SVR 

re-estimates its inputs every 10 trading days. In other words, in each of the four forecasting exercises RG-SVR algorithm re-

estimates its inputs 51 times (the out-of-sample is always between 511 and 516 days). In the table below for the sake of space, we 

present the three most popular inputs of RG-SVR in each forecasting exercise (RG-SVR(pop)). The minimum numbers of inputs 

(for all forecasting exercises and re-estimations) selected by the GA for the RG-SVR were 3 and the maximum 5.  

PANEL A 
1 2 

EUR/USD EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY 

ARBF-PSO  MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN,PSN, k-NN 

MLP, HONN, 
RNN,PSN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN 

ε-SVR1 MLP, HONN, 
RNN, PSN, k-NN 

MLP, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN RNN, PSN, k-NN MLP, HONN, 

RNN, PSN, k-NN 
MLP, RNN, 
PSN, k-NN 

ε-SVR2 MLP, HONN, 
RNN, PSN, k-NN MLP, HONN, RNN MLP, HONN, 

RNN, PSN 
HONN, RNN, 

PSN, k-NN 
MLP, HONN, 

RNN, PSN 
MLP, HONN, 

RNN, PSN, k-NN 

v-SVR1 MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

HONN, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN 

v-SVR2 MLP, HONN, RNN MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN,PSN 

MLP, HONN, 
RNN, PSN, k-NN 

GA-SVM MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN 

MLP, , RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

GA-εSVR MLP, HONN, 
RNN, PSN, k-NN RNN, PSN, k-NN MLP, HONN, 

RNN, PSN, k-NN 
MLP, HONN, 
RNN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

HONN, RNN, 
PSN, k-NN 

RG-SVR 
(pop) MLP, HONN, RNN MLP, RNN, k-NN MLP, HONN, 

RNN 
MLP, HONN, 

RNN MLP, HONN, RNN MLP, RNN, 
PSN 

PANEL B 3 4 
EUR/USD EUR/GBP EUR/JPY EUR/USD EUR/GBP EUR/JPY 

ARBF-PSO  MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
PSN, k-NN MLP, HONN, RNN MLP, HONN, 

PSN, k-NN 
MLP, RNN, 
PSN, k-NN 

ε-SVR1 MLP, HONN, 
RNN, PSN 

MLP, HONN, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, RNN, 
PSN, k-NN 

ε-SVR2 MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN, k-NN 

HONN, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN, k-NN 

v-SVR1 MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

HONN, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN 

v-SVR2 HONN, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

GA-SVM MLP, HONN, 
RNN, PSN 

MLP, HONN, 
RNN, PSN 

MLP, HONN, 
PSN, k-NN 

HONN, RNN, 
PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

GA-εSVR MLP, HONN, 
RNN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN 

MLP, HONN, 
RNN, PSN, k-NN MLP, HONN, RNN MLP, HONN, 

RNN, PSN 
MLP, HONN, 

RNN, PSN, k-NN 
RG-SVR 

(pop) MLP, HONN, PSN HONN, RNN, k-NN MLP, RNN, 
PSN MLP, HONN, RNN MLP, HONN, RNN HONN, RNN, PSN 

 

It is notable that all models apply non-linear predictors as inputs. The five non-linear predictors seem 

to contain all the information that the two hundred fifty four linear ones contain. This was expected 

to some extent by the non-linear behavior of financial trading series such as the ones under study. 



 

5. STATISTICAL PERFORMANCE 

 

As it is standard in the literature, in order to evaluate statistically the obtained forecasts, the Root 

Mean Squared Error (RMSE) is computed. The mathematical formula of this statistic is presented in 

Appendix C. The lower the output the better the forecasting accuracy of the model concerned. The 

Pesaran-Timmermann (PT) test (1992) examines whether the directional movements of the real and 

forecast values are in step with one another. In other words, it checks how well rises and falls in the 

forecasted value follow the actual rises and falls of the time series. The null hypothesis is that the 

model under study has no power on forecasting the relevant exchange rate. The in-sample statistical 

performance of the models for the four forecasting exercises and the EUR/USD, EUR/GBP and 

EUR/JPY exchange rates is presented in table 6 below.  

Table 6: Summary of In-Sample Statistical Performance 

 

The results of table 6 show that RG-SVR presents the best in-sample statistical performance for 

every exchange rate under study. The PT-statistics rejects the null hypothesis of no forecasting power 

at the 1% confidence interval for all models and series under study. It is also notable that the v-SVR 

models (v-SVR1 and v-SVR2) have lower RMSEs of the statistical measures than the ε-SVR ones (ε-

SVR1 and ε-SVR2). Additionally the genetically optimized models clearly outperform their statistical 

optimized SVR benchmarks. ARBF-PSO presents occasionally better RMSE values than some SVR-

In-Sample  Period Series Statistic ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR 

 
01/02/1999- 
30/04/2004 

EUR/USD RMSE 0.0058 0.0061 0.0057 0.0055 0.0054 0.0049 0.0045 0.0041 
PT-statistic 12.28 8.13 9.63 10.81 11.06 12.92 13.64 15.28 

EUR/GBP 
RMSE 0.0041 0.0056 0.0053 0.0052 0.0049 0.0047 0.0045 0.0038 

PT-statistic 11.58 7.79 9.05 10.28 11.38 12.27 13.79 15.38 

EUR/JPY 
RMSE 0.0060 0.0063 0.0060 0.0057 0.0053 0.0050 0.0049 0.0045 

PT-statistic 11.52 7.57 9.17 10.79 11.37 12.02 12.98 15.03 

 
01/02/2001- 
28/04/2006 

EUR/USD RMSE 0.0059 0.0072 0.0064 0.0065 0.0057 0.0053 0.0048 0.0046 
PT-statistic 11.31 7.61 8.82 8.64 10.93 11.95 13.22 14.69 

EUR/GBP RMSE 0.0046 0.0068 0.0060 0.0058 0.0053 0.0049 0.0047 0.0044 
PT-statistic 12.01 7.93 8.81 9.60 10.54 12.06 12.95 14.38 

EUR/JPY RMSE 0.0059 0.0062 0.0064 0.0056 0.0051 0.0048 0.0046 0.0043 
PT-statistic 11.05 7.76 7.54 9.30 10.57 11.92 12.53 14.21 

 
03/02/2003- 
30/04/2008 

EUR/USD RMSE 0.0056 0.0064 0.0058 0.0053 0.0052 0.0048 0.0045 0.0040 
PT-statistic 12.25 7.93 9.22 10.54 12.00 13.12 13.89 14.77 

EUR/GBP RMSE 0.0046 0.0065 0.0061 0.0056 0.0057 0.0051 0.0048 0.0043 
PT-statistic 10.95 7.88 8.19 10.13 10.84 12.29 13.14 14.81 

EUR/JPY RMSE 0.0060 0.0060 0.0058 0.0053 0.0052 0.0049 0.0047 0.0042 
PT-statistic 11.48 8.52 9.79 10.18 10.27 12.74 12.68 14.22 

 
01/02/2005- 
30/04/2010 

EUR/USD RMSE 0.0059 0.0070 0.0071 0.0064 0.0057 0.0053 0.0048 0.0047 
PT-statistic 12.03 7.44 7.40 8.74 10.23 11.58 12.57 12.83 

EUR/GBP RMSE 0.0056 0.0066 0.0061 0.0055 0.0054 0.0052 0.0050 0.0044 
PT-statistic 10.56 7.48 9.15 10.80 10.91 11.67 12.41 14.69 

EUR/JPY RMSE 0.0069 0.0067 0.0064 0.0059 0.0055 0.0051 0.0052 0.0048 
PT-statistic 12.15 7.52 7.88 10.40 11.38 12.56 12.51 12.93 



SVM benchmarks, but it always underperforms in comparison to RG-SVR. Table 7 summarizes the 

statistical performance of the models under study in the out-of-sample period. As a reference, the 

overall performance of the best predictor is presented in the first column (see Appendix D). 

Table 7: Out-Of-Sample Statistical Performance 

 
Out-of-sample 

Period 
Series Statistic Best Predictor ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR 

03/05/2004- 
28/04/2006 

EUR/USD RMSE 0.0080 0.0061 0.0074 0.0069 0.0066 0.0062 0.0059 0.0057 0.0054 
PT-statistic 5.77 8.15 6.23 7.25 7.72 8.03 8.64 9.27 9.62 

EUR/GBP RMSE 0.0077 0.0055 0.0073 0.0068 0.0061 0.0056 0.0055 0.0053 0.0052 
PT-statistic 5.86 8.99 6.34 7.22 8.18 8.92 9.12 9.60 9.78 

EUR/JPY RMSE 0.0082 0.0065 0.0076 0.0071 0.0070 0.0067 0.0060 0.0056 0.0053 
PT-statistic 5.79 8.35 6.21 6.86 7.27 7.91 8.57 9.31 9.73 

02/05/2006 - 
30/04/2008 

EUR/USD RMSE 0.0075 0.0059 0.0069 0.0066 0.0067 0.0061 0.0058 0.0055 0.0051 
PT-statistic 5.88 8.02 7.01 7.52 7.43 8.02 8.64 9.51 9.90 

EUR/GBP RMSE 0.0078 0.0058 0.0072 0.0068 0.0063 0.0057 0.0053 0.0053 0.0050 
PT-statistic 5.84 9.12 6.27 7.44 7.95 8.81 9.64 9.57 10.13 

EUR/JPY RMSE 0.0083 0.0064 0.0073 0.0074 0.0068 0.0066 0.0059 0.0057 0.0055 
PT-statistic 5.74 7.81 6.37 6.31 7.33 7.79 8.48 9.30 9.52 

02/05/2008- 
30/04/2010 

EUR/USD RMSE 0.0077 0.0057 0.0071 0.0068 0.0067 0.0062 0.0058 0.0056 0.0052 
PT-statistic 5.85 7.78 6.63 7.14 7.47 7.83 8.59 9.28 9.71 

EUR/GBP RMSE 0.0075 0.0055 0.0070 0.0067 0.0064 0.0061 0.0056 0.0054 0.0051 
PT-statistic 5.89 9.12 6.72 7.33 7.98 8.27 9.35 9.66 9.94 

EUR/JPY RMSE 0.0085 0.0065 0.0075 0.0071 0.0065 0.0063 0.0060 0.0056 0.0053 
PT-statistic 5.69 8.17 6.18 6.92 7.59 7.80 8.41 9.26 9.72 

03/05/2010- 
30/04/2012 

EUR/USD 
RMSE 0.0084 0.0058 0.0078 0.0077 0.0070 0.0065 0.0063 0.0059 0.0055 

PT-statistic 5.65 8.86 5.87 5.93 6.68 7.61 7.80 8.38 9.41 

EUR/GBP 
RMSE 0.0077 0.0054 0.0070 0.0066 0.0064 0.0061 0.0059 0.0058 0.0052 

PT-statistic 5.88 8.54 6.64 7.40 7.57 8.12 8.66 9.05 9.81 

EUR/JPY 
RMSE 0.0076 0.0063 0.0069 0.0065 0.0064 0.0063 0.0058 0.0059 0.0055 

PT-statistic 5.82 7.81 6.87 7.54 7.63 7.74 8.90 8.72 9.33 
 

From table 7 it is suggested that RG-SVR retains its forecasting superiority in the out-of-sample 

period. The genetically optimized SVRs and SVMs outperform their statistically optimized 

benchmarks while the PT-statistics indicate that all models continue to forecast accurately the 

directional change of the three exchange rates. In the out-of-sample statistical evaluation, ARBF-

PSO still remains less efficient than the proposed model, although in most cases it outperforms the 

traditional SVR in terms of RMSE. Tables 5 and 6 show that the grid-search optimized SVRs 

outperform their counterparts optimized with 5-cross validation while the v-SVR models produce 

more accurate forecasts that the ε-SVR algorithms. The results support the arguments of Yuan (2012) 

on the performance of the GA-εSVR over the traditional SVR models. 

In order to further verify the statistical superiority of the proposed algorithm, the Diebold-Mariano 

(DM) (1995) statistic for predictive accuracy is computed, while the MSE is considered as the loss 

function. The test is applied in the four consecutive out-of-sample periods. Table 8 below presents 

the DM statistic comparing the RG-SVR with its benchmarks. 

Table 8: Diebold-Mariano statistic for each exchange rate under study 

 Period Best Predictor ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR 
E 03/05/2004- -7.26 -3.95 -5.47 -5.31 -5.10 -4.66 -3.92 -3.55 



U 
R 
/ 
U 
S  
D 

28/04/2006 
02/05/2006 - 
30/04/2008 -6.90 -3.86 -6.14 -5.20 -5.74 -4.75 -3.46 -3.13 

02/05/2008- 
30/04/2010 -7.05 -3.91 -5.88 -5.42 -5.01 -4.77 -4.01 -3.72 

03/05/2010- 
30/04/2012 -7.47 -3.94 -5.63 -5.84 -5.15 -4.89 -4.35 -4.16 

E 
U 
R 
/ 
G 
B 
P 

03/05/2004- 
28/04/2006 -6.72 -3.75 -5.47 -5.39 -5.06 -4.53 -3.84 -3.58 

02/05/2006 - 
30/04/2008 -7.14 -3.87 -5.42 -5.11 -4.88 -4.46 -3.69 -3.22 

02/05/2008- 
30/04/2010 -6.81 -3.96 -5.79 -5.62 -5.35 -4.92 -3.57 -3.42 

03/05/2010- 
30/04/2012 -6.92 -3.99 -5.74 -5.23 -4.84 -4.56 -3.88 -3.60 

E 
U 
R 
/ 
J 
P 
Y 

03/05/2004- 
28/04/2006 -7.23 -4.25 -6.49 -6.10 -5.71 -5.39 -4.18 -4.05 

02/05/2006 - 
30/04/2008 -7.56 -4.63 -6.12 -6.45 -5.22 -4.75 -4.51 -4.10 

02/05/2008- 
30/04/2010 -7.61 -4.07 -6.57 -6.19 -5.70 -5.15 -3.73 -3.51 

03/05/2010- 
30/04/2012 -7.18 -4.12 -5.88 -5.51 -4.95 -4.67 -3.75 -3.94 

 
From the above table it is obvious that the null hypothesis of equal predictive accuracy is rejected for 

all comparisons and for both loss functions at the 1% confidence interval (absolute values higher than 

the critical value of 2.33). Moreover, the statistical superiority of RG-SVR forecasts is confirmed as 

the realizations of the DM statistic are negative6.  

 

6. TRADING PERFOMANCE 

 

Section 5 evaluates the forecasts through a series of statistical accuracy measures and tests. However, 

statistical accuracy is not always synonymous with financial profitability. In financial applications, 

the practitioner’s utmost interest is to produce models that can be translated to profitable trades. It is 

therefore crucial to further examine the proposed model and evaluate its utility through a trading 

strategy. The trading strategy applied is to go or stay ‘long’ when the forecast return is above zero 

and go or stay ‘short’ when the forecast return is below zero. The ‘long’ and ‘short’ EUR/USD, 

EUR/GBP or EUR/JPY position is defined as buying and selling Euros at the current price 

respectively. Therefore, the trigger for taking a position is the sign of the daily obtained forecast. 

In order to calculate transaction costs, trading positions are needed. Transaction costs for a tradable 

amount, say USD 5-10 million, are about 1 pip per trade (one way) between market makers. But 

since the EUR/USD, EUR/GBP and EUR/JPY time series are considered as a series of middle rates, 

the transaction cost is one spread per round trip. For this dataset a cost of 1 pip is equivalent to an 

average cost of 0.0074%, 0.0117% and 0.0091% per position for the EUR/USD, the EUR/GBP and 

the EUR/JPY respectively. The annualized return after transaction costs is simply the annualized 
                                                 
6 In this study, we apply the DM test to couples of forecasts (RG-SVR vs. another forecasting model). A negative 
realization of the DM test statistic indicates that the first forecast (RG-SVR) is more accurate than the second forecast. 
The lower the negative value, the more accurate are the RG-SVR forecasts. 



return minus the relevant annualized transaction cost. The annualized transaction cost is the 

annualized number of transactions multiplied with their relevant cost.  Table 9 presents the summary 

of the in-sample trading performance of the models for each exchange rate under study, while 

Appendix C includes the specification of the trading performance measures used in this paper. 

Table 9: Summary of In-Sample Trading Performance  

In-Sample Period Series Statistic ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR 

01/02/1999- 
30/04/2004 

EUR/USD 

Annualized Return 
 (including costs) 25.95% 18.25% 19.99% 22.13% 22.81% 25.77% 28.20% 32.92% 

Information Ratio 
 (including costs) 2.41 1.69 1.85 2.01 2.09 2.34 2.59 2.99 

Maximum Drawdown -20.11% -11.12% -12.11% -11.33% -12.92% -13.45% -12.53% -12.74% 

EUR/GBP 

Annualized Return 
 (including costs) 28.44% 19.94% 20.18% 21.70% 23.29% 25.62% 27.91% 29.57% 

Information Ratio 
 (including costs) 2.62 1.81 1.83 1.97 2.12 2.31 2.53 2.69 

Maximum Drawdown -14.55% -13.96% -13.58% -12.61% -12.84% -12.28% -12.56% 12.16% 

EUR/JPY 

Annualized Return 
 (including costs) 27.07% 21.45% 21.62% 22.47% 22.93% 27.12% 28.38% 30.65% 

Information Ratio  
(including costs) 2.32 1.96 1.99 2.07 2.11 2.48 2. 64 2.74 

Maximum Drawdown -21.57% -12.84% 13.46% -12.05% -12.88% -12.01% -12.17% -11.93% 

01/02/2001- 
28/04/2006 

EUR/USD 

Annualized Return 
 (including costs) 23.14% 20.53% 22.77% 21.84% 22.98% 25.80% 27.64% 30.04% 

Information Ratio  
(including costs) 2.25 1.88 2.08 1.97 2.11 2.35 2.53 2.77 

Maximum Drawdown -21.35% -13.17% -12.55% -12.26% -14.61% -12.10% -12.04% -12.11% 

EUR/GBP 

Annualized Return  
(including costs) 30.55% 22.79% 24.06% 26.56% 27.85% 29.14% 31.02% 33.43% 

Information Ratio 
 (including costs) 2.78 2.05 2.18 2.39 2.53 2.62 2.81 3.04 

Maximum Drawdown 15.39% -14.23% -13.79% -13.32% -14.47% -13.01% -13.94% -13.29% 

EUR/JPY 

Annualized Return 
 (including costs) 30.44% 24.71% 24.98% 25.57% 27.99% 28.61% 30.48% 32.80% 

Information Ratio  
(including costs) 2.76 2.27 2.29 2.34 2.55 2.60 2.79 2.99 

Maximum Drawdown -19.05% -13.47% -14.91% -13.03% -14.52% -15.11% -13.18% -13.48% 

03/02/2003-
30/04/2008 

EUR/USD 

Annualized Return 
 (including costs) 30.11% 23.57% 25.66% 27.83% 28.90% 31.29% 32.78% 33.16% 

Information Ratio  
(including costs) 2.87 2.19 2.40 2.57 2.68 2.92 3.04 3.09 

Maximum Drawdown -23.59% -14.08% -14.72% -14.05% -13.49% -13.63% -14.81% -14.38% 

EUR/GBP 

Annualized Return 
 (including costs) 28.33% 22.06% 23.61% 24.40% 25.77% 27.83% 27.58% 29.45% 

Information Ratio  
(including costs) 2.67 2.07 2.21 2.28 2.42 2.61 2.59 2.76 

Maximum Drawdown -15.92% -13.75% -14.42% -13.40% -14.09% -14.45% -14.16% -14.21% 

EUR/JPY 

Annualized Return 
 (including costs) 30.90% 23.92% 24.58% 26.61% 27.84% 29.15% 31.77% 32.36% 

Information Ratio 
 (including costs) 2.79 2.14 2.20 2.37 2.49 2.61 2.84 2.91 

Maximum Drawdown -18.55% -14.42% -14.68% -14.26% -14.17% -14.85% -14.51% -14.63% 

01/02/2005- 
30/04/2010 

EUR/USD 

Annualized Return  
(including costs) 31.05% 20.49% 21.03% 25.37% 27.72% 30.51% 32.00% 33.46% 

Information Ratio 
 (including costs) 2.84 1.88 1.92 2.33 2.53 2.79 2.93 3.07 

Maximum Drawdown -24.17% -17.91% -18.46% -17.05% -17.88% -17.60% -18.59% -17.96% 

EUR/GBP 

Annualized Return 
 (including costs) 30.87% 22.96% 24.85% 27.54% 27.16% 29.83% 31.48% 33.20% 

Information Ratio 
 (including costs) 2.89 2.14 2.28 2.56 2.53 2.78 2.93 3.10 

Maximum Drawdown -17.25% -17.49% -17.22% -17.95% -17.20% -17.51% -17.72% -17.38% 

EUR/JPY Annualized Return 
 (including costs) 20.36% 20.78% 22.45% 23.39% 25.05% 28.71% 29.99% 32.64% 



Information Ratio 
 (including costs) 1.86 1.92 2.08 2.17 2.34 2.68 2.79 3.04 

Maximum Drawdown -20.15% -17.74% -18.53% -18.86% -18.02% -18.22% -18.84% -18.49% 
 

From the results of the above table, RG-SVR demonstrates superior trading performance in terms of 

annualized return and information ratio for all exchange rates and in-sample periods. The maximum 

drawdowns of the benchmark models are worse than the RG-SVR ones. Their trading performance in 

the out-of-sample period is presented in table 10 below.  

Table 10: Summary of Out-of-Sample Trading Performance  

Out-of-Sample 
Period Series Statistic Best 

Predictor ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR 

03/05/2004- 
28/04/2006 

EUR/USD 

Annualized Return 
(including costs) 8.17% 20.05% 10.44% 11.06% 15.87% 17.81% 19.90% 20.65% 24.77% 

Information Ratio 
(including costs) 0.76 1.85 0.96 1.02 1.46 1.64 1.83 1.90 2.34 

Maximum Drawdown -15.26% -15.03% -14.09% -14.42% -13.01% -13.65% -12.41% -12.69% -12.84% 

EUR/GBP 

Annualized Return 
(including costs) 10.39% 19.87% 12.21% 14.55% 15.40% 16.92% 18.79% 20.26% 22.04% 

Information Ratio 
(including costs) 1.04 1.91 1.22 1.47 1.54 1.69 1.89 2.03 2.27 

Maximum Drawdown -14.36% -10.85% -14.60% -13.85% -13.88% -13.93% -13.86% -13.10% -13.28% 

EUR/JPY 

Annualized Return 
(including costs) 9.08% 18.56% 10.96% 12.47% 15.91% 16.53% 19.39% 20.20% 23.65% 

Information Ratio 
(including costs) 0.83 1.67 0.99 1.13 1.43 1.50 1.75 1.82 2.13 

Maximum Drawdown -15.82% -13.92% -14.19% -14.52% -14.39% -14.01% -13.62% -13.40% -13.81% 

02/05/2006 - 
30/04/2008 

 

EUR/USD 

Annualized Return 
(including costs) 8.83% 18.92% 10.29% 13.04% 12.85% 14.47% 18.37% 19.86% 22.19% 

Information Ratio 
(including costs) 0.81 1.71 0.94 1.19 1.17 1.32 1.67 1.80 2.02 

Maximum Drawdown -15.53% -14.58% -14.39% -14.23% -13.99% -13.44% -14.61% -14.70% -14.57% 

EUR/GBP 

Annualized Return 
(including costs) 10.10% 20.38% 13.64% 15.58% 16.75% 18.16% 20.14% 21.08% 24.61% 

Information Ratio 
(including costs) 1.12 2.24 1.49 1.70 1.83 1.98 2.21 2.28 2.79 

Maximum Drawdown -16.82% -11.03% -15.61% -15.29% -14.58% -14.33% -14.89% -14.48% -14.84% 

EUR/JPY 

Annualized Return 
(including costs) 9.29% 19.04% 12.22% 12.83% 14.80% 15.32% 18.41% 19.62% 22.47% 

Information Ratio 
(including costs) 0.81 1.63 1.06 1.11 1.28 1.33 1.58 1.69 1.93 

Maximum Drawdown -15.93% -13.14% -15.30% -15.46% -15.04% -15.53% -15.62% -15.45% -15.24% 

02/05/2008-
30/04/2010 

EUR/USD 

Annualized Return 
(including costs) 10.68% 23.15% 12.25% 14.72% 16.50% 19.00% 21.12% 22.95% 24.71% 

Information Ratio 
(including costs) 1.07 2.34 1.23 1.47 1.66 1.89 2.11 2.30 2.49 

Maximum Drawdown -15.29% -10.23% -14.08% -14.15% -14.06% -13.48% -13.63% -14.85% -14.30% 

EUR/GBP 

Annualized Return 
(including costs) 8.59% 20.15% 10.06% 12.61% 13.24% 14.97% 18.34% 19.01% 20.65% 

Information Ratio 
(including costs) 1.05 2.32 1.18 1.49 1.55 1.76 2.16 2.21 2.44 

Maximum Drawdown -16.11% -11.47% -15.19% -15.51% -15.70% -14.84% -14.29% -15.02% -15.31% 

EUR/JPY 

Annualized Return 
(including costs) 8.74% 23.19% 12.03% 13.35% 16.42% 17.56% 20.02% 22.87% 24.96% 

Information Ratio 
(including costs) 0.70 1.89 0.97 1.08 1.33 1.42 1.63 1.86 2.02 

Maximum Drawdown -15.18% -9.17% -15.58% -15.32% -16.00% -15.82% -14.73% -14.92% -15.02% 

03/05/2010- 
30/04/2012 

EUR/USD 

Annualized Return 
(including costs) 9.54% 21.56% 11.63% 12.48% 15.12% 16.69% 19.09% 20.60% 23.41% 

Information Ratio 
(including costs) 0.86 1.95 1.06 1.15 1.39 1.50 1.75 1.90 2.14 

Maximum Drawdown -16.77% -9.32% -16.20% -16.27% -15.84% -16.49% -15.35% -15.58% -15.64% 

EUR/GBP Annualized Return 
(including costs) 9.18% 22.19% 12.16 12.29% 14.76% 14.71% 18.14% 20.77% 23.52 % 



Information Ratio 
(including costs) 1.06 2.59 1.40 1.42 1.73 1.69 2.09 2.37 2.71 

Maximum Drawdown -18.52% -12.93% -18.06% -17.17% -17.95% -17.63% -17.22% -17.53% -17.39% 

EUR/JPY 

Annualized Return 
(including costs) 8.37% 20.35% 10.25% 11.82% 12.48% 14.02% 17.43% 18.12% 22.08% 

Information Ratio 
(including costs) 0.68 1.62 0.79 0.96 1.03 1.15 1.42 1.48 1.80 

Maximum Drawdown -14.49% -10.74% -14.81% -14.74% -15.01% -14.36% -14.57% -14.23% -14.40% 
 

RG-SVR continues to outperform all other SVR forecast combination models in terms of trading 

efficiency. GA-εSVR is found to be the second best model in forecasting exercises 1 and 2. RG-SVR 

presents on average 3% higher annualized returns and 0.33 higher information ratios compared to 

GA-εSVR in these first two simulations. In the other two exercises the results of ARBF-PSO are 

better than GA-εSVR, which is ranked third. RG-SVR again achieves higher profits and information 

ratios than ARBF-PSO on an average of 1.46% and 0.15 respectively. Thus, the proposed 

methodology clearly outperforms its benchmarks in terms of statistical accuracy and financial 

profitability.  The non-genetically optimized SVR methodologies remain less efficient in trading 

terms compared to their counterparts. But it is interesting to outline the profitability divergence 

between the different SVR models.  For instance, between v-SVR2 and ε-SVR1 there is an average 

difference of 4.55% in annualized returns after transaction costs for the three exchange rates. Smaller 

differences are also evident in the other SVR approaches. The SVR’s trading performance appears 

very sensitive to the parameters optimization process.  

 

7. CONCLUDING REMARKS 

 

The motivation of this paper is to introduce a RG-SVR model for optimal parameter selection and 

feature subset combination, when applied to the task of forecasting and trading the EUR/USD, 

EUR/GBP and EUR/JPY exchange rates. The proposed model genetically searches over a pool of 

individual forecasts, identifies the optimal feature subsets and finally provides a robust single SVR 

forecast combination for each exchange rate. This is achieved by applying a fitness function 

specialized for financial purposes and adopting a sliding window approach. RG-SVR is benchmarked 

not only against genetically and non-genetically optimized SVRs, but also a robust hybrid NN, the 

ARBF-PSO.  

RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all 

the exchange rates under study. RG-SVR’s superiority not only confirms the success of the 

implemented fitness function, but also validates the benefits of applying GAs to v-SVR models. The 

results also support prior evidence of ARBF-PSO’s efficiency in forecasting and trading the three 

exchange rates. ARBF-PSO outperforms in all simulations the traditional SVRs. RG-SVR is far more 

profitable, though. The large differences in the trading performance of the models under study, 



indicates the sensitivity of SVRs to their parameters optimization processes. In summary, the 

empirical evidence provided by this study should go some way towards convincing statisticians and 

practitioners to experiment beyond the bounds of traditional SVR optimization techniques. 
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APPENDIX  

 

A. THEORETICAL BACKGROUND 

 
In this section follows a short theoretical background on SVR, GAs and the issues of parameter and 

feature subset selection.  

 

A.1.The ε-SVR 

If we consider the training data {(x1,y1), (x2,y2)…, (xn, yn)}, where , , 1...i ix X R y Y R i n∈ ⊆ ∈ ⊆ =  

and n the total number of training samples, then the SVR function can be specified as:  

 ( ) ( )Tf x w x bϕ= +                                   [A.1] 

where w and b are the regression parameter vectors of the function and φ(x) is the non-linear function 

that maps the input data vector x into a feature space where the training data exhibit linearity (see 

figure A.1.c). The ε-sensitive loss function Lε is defined as:  

                                                
0 | ( ) |

( ) ,
| ( ) |

i i
i

i i

if y f x
L x

y f x if othere e
e

− ≤ e
= ≥ 0 − −

                                          [A.2] 



Equation A.2 identifies the predicted values that have at most ε deviations from the actual obtained 

values yi. The ε parameter defines the ‘tube’, while the two slack variables, iξ and *
iξ , show the 

distance of yi and yi * from the upper and lower bound of the ‘tube’ respectively (see figure A.1.a and 

A.1.b). 

 

Figure A.1: a) The f(x) curve of SVR and the ε-tube, b) plot of the ε-sensitive loss function and c) mapping 

procedure by φ(x) 

 

The goal is to solve the following argument: 

     Minimize 2*

1

1( )
2

n

i i
i

C wξ ξ
=
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0

0
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i

i

C

ξ

ξ
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 
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 − − ≤ + + 
 

+ − ≤ + +  
             [A.3] 

The above quadratic optimization problem is transformed in a dual problem and its solution is based 

on the introduction of two Lagrange multipliers *,i ia a and mapping with a kernel function ( , )iK x x  : 

     
*

1
( ) ( ) ( , )

n

i i if x a a K x x b
i=

= − +∑  , where *0 ,i ia a C≤ ≤                     [A.4] 

 

SVs are called all the xi that contribute to equation [A.4], thus they lie outside the ε-tube, whereas 

non-SVs lie within the ε-tube. Increasing ε leads to less SVs’ selection, whereas decreasing it results 

to more ‘flat’ estimates. The norm term 
2w characterizes the complexity (flatness) of the model and 

the term *

1
( )

n

i i
i

ξ ξ
=

 
+ 


∑ is the training error, as specified by the slack variables. Consequently the 

introduction of the parameter C satisfies the need to trade model complexity for training error and 

vice versa (Cherkassky and Ma, 2004).  



 

A.2. The v-SVR 

The v-SVR algorithm encompasses the ε parameter in the optimization process and controls it with a 

new parameter (0,1)v∈ (Basak et al., 2007). In v-SVR the optimization problem transforms to: 

 Minimize 2*
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[A.5]  

The methodology remains the same as in ε-SVR and the solution takes a similar form: 

                                *

1
( ) ( ) ( , )

n

i i if x a a K x x b
i=

= − +∑  where *0 ,i i
Ca a
n

≤ ≤                                      

[A.6] 

Based on the ‘v-trick’, as presented by Schölkopf et al. (1999), increasing ε leads to the proportional 

increase of the first term of *

1

1 ( )
n

i i
i

v
n

ε ξ ξ
=

 
+ + 

 
∑ , while its second term decreases proportionally to 

the fraction of points outside the ε-tube. So v can be considered as the upper bound on the fraction of 

errors. On the other hand, decreasing ε leads again to a proportional change of the first term, but also 

the second term’s change is proportional to the fraction of SVs. That means that ε will shrink as long 

as the fraction of SVs is smaller than v, therefore v is also the lower bound in the fraction of SVs.   

 

A.3. SVR Parameter Selection  

Although SVR has emerged as a highly effective technique for solving non-linear regression 

problems, designing such a model can be impeded by the complexity and sensitivity of selecting its 

parameters. This procedure can be summarized in the following steps: 

1. Selection of the kernel function 

2. Selection of the regularization parameter C  

3. Selection of parameters of the kernel function  

4. Selection of the tube size of the ε-sensitive loss function 

This selection can be even more complicated and computationally demanding, since individual 

optimization of the parameters of the above steps is not sufficient. Thus, SVR’s performance depends 

on all parameters being set optimally. Numerous approaches for this optimization have been 

presented in literature. For example in the ε-SVR, parameter ε can be set simply as a non-negative 

constant for convenience (ε=0 or equal to a very small value) (Trafalis and Ince, 2000). This 

parameter can also be calculated by maximizing the statistical efficiency of a location parameter 

estimator (Smola et al., 1998). Many researchers turn to the v-SVR approach because it is easier to 



control parameter ε with parameter v (Schölkopf et al., 1999; Basak et al., 2007). Cherkassky and Ma 

(2004) apply RBF kernels in v-SVR and propose a data-driven choice of parameter C, based on the 

range of the output values of the training data.  But the most popular approach is to use the cross-

validation technique (Cao et al., 2003; Duan et al., 2003) or grid-search algorithms over the dataset 

(Schölkopf and Smola, 2002). 

 

A.4. Feature Selection and GAs  

Feature selection is an optimization problem that refers to the search over a space of possible feature 

subsets in order to find those that are optimal with respect to specific criteria. Such a problem 

requires a search strategy that picks the feature subsets and an evaluation method that tests their 

goodness of fit. Many searching strategies have been proposed in literature, but those who seem to 

attract more attention are the randomized searches, where probabilistic steps are applied (Sun et al., 

2004). Gas are commonly used in such cases (Siedlecki and Sklansky, 1989). GAs, formerly 

introduced by Holland (1975), are search algorithms inspired by the principle of natural selection. 

They are useful and efficient if the search space is big and complicated or there is not any available 

mathematical analysis of the problem. A population of candidate solutions, called chromosomes, is 

optimized via a number of evolutionary cycles and genetic operations, such as crossovers or 

mutations. Chromosomes consist of genes, which are the optimizing parameters. At each iteration 

(generation), a fitness function is used to evaluate each chromosome, measuring the quality of the 

corresponding solution, and the fittest chromosomes are selected to survive. This evolutionary 

process is continued until some termination criteria are met. In general, GAs can deal with large 

search spaces and do not get trapped in local optimal solutions like some other search algorithms. 

 
 
B. NON-LINEAR MODELS 

This appendix section provides a brief description of the k-NN and the NN algorithms applied in this 

study.  

 

B.1. Nearest Neighbors Algorithm (k-NN) 

Nearest Neighbors is a non-linear and non-parametric forecasting method based on the work of Fix 

and Hodges (1951). It is based on the idea that pieces of time series in the past have patterns which 

might have resemblance to pieces in the future. Similar patterns of behavior are located in terms of 

nearest neighbors using a distance called the Euclidean distance and these patterns are used to predict 

behavior in the immediate future. It only uses local information to forecast and makes no attempt to 

fit a model to the whole time series at once. The user defines parameters such as the number of 

neighbors K, the length of the nearest neighbor’s pattern m and the weighting of final prices in a 



neighbor α'. When α' is greater than 1, a greater emphasis is given to similarity between the more 

recent observations. Huck and Guégan (2005) suggest that a good approximation for choosing the 

parameters K and m is dependent on the size of the information set. They choose m from the interval: 

             [ (ln( )), (ln( ) 2)]m R T R T= +                                                [B.1] 

where R is the rounding function rounding to the immediate lower figure and T the size of the in-

sample dataset. They also suggested that K should be approximately twice the value of m. Thus, for 

our dataset m lies between 7 and 9 and K lies between 14 and 18 7.Based on the above guidelines and 

Dunis and Nathani (2007) who apply k-NN in financial series, we experiment in the in-sample 

dataset. The set of parameters selected are those that provide the highest trading performance in the 

in-sample period. 

  

B.2. Neural Networks (NNs) 

The simpler and most popular NN architecture is the Multi-Layer Perceptron (MLP). A standard 

MLP has at least three layers. The first layer is called the input layer (the number of its nodes 

corresponds to the number of explanatory variables). The last layer is called the output layer (the 

number of its nodes corresponds to the number of response variables). An intermediary layer of 

nodes, the hidden layer, separates the input from the output layer. Its number of nodes defines the 

amount of complexity the model is capable of fitting. In addition, the input and hidden layer contain 

an extra node called the bias node. This node has a fixed value of one and has the same function as 

the intercept in traditional regression models. Normally, each node of one layer has connections to all 

the other nodes of the next layer.   

The network processes information as follows: the input nodes contain the value of the explanatory 

variables. Since each node connection represents a weight factor, the information reaches a single 

hidden layer node as the weighted sum of its inputs. Each node of the hidden layer passes the 

information through a non-linear activation function and passes it on to the output layer if the 

calculated value is above a threshold. The training of the network (which is the adjustment of its 

weights in the way that the network maps the input value of the training data to the corresponding 

output value) starts with randomly chosen weights and proceeds by applying a learning algorithm 

called back-propagation of errors (Shapiro, 2000)8. The maximum number of the allowed back-

propagation iterations is optimized by maximizing a fitness function in the test dataset (see table 2) 

through a trial and error procedure. More specifically, the learning algorithm tries to find those 

                                                 
7 Based on table 2, the in-sample datasets of forecasting exercises 1, 2, 3 and 4 are 1342, 1341, 1343 and 1341 trading 
days respectively. The difference between these datasets is very small in terms of observations. Therefore, the rounded 
range of m (and consequently K) remains the same for all four exercises.  
8 Backpropagation networks are the most common multi-layer networks and are the most commonly used type in 
financial time series forecasting (Kaastra and Boyd, 1996). 



weights which minimize an error function (normally the sum of all squared differences between 

target and actual values). Since networks with sufficient hidden nodes are able to learn the training 

data (as well as their outliers and their noise) by heart, it is crucial to stop the training procedure at 

the right time to prevent overfitting (this is called ‘early stopping’). This is achieved by dividing the 

dataset into 3 subsets respectively called the training and test sets used for simulating the data 

currently available to fit and tune the model and the validation set used for simulating future values. 

The network parameters are then estimated by fitting the training data using the backpropagation of 

errors. The iteration length is optimized by maximizing the forecasting accuracy for the test dataset. 

Then the predictive value of the model is evaluated applying it to the validation dataset (out-of-

sample dataset).  

In addition to the classical MLP network, a Recurrent Neural Network is also applied. For an exact 

specification of recurrent networks, see Elman (1990). A simple recurrent network has an activation 

feedback which embodies short-term memory. In other words, the RNN architecture can provide 

more accurate outputs because the inputs are (potentially) taken from all previous values. Although 

RNN require substantially more computational time (see Tenti (1996), they can yield better results in 

comparison with simple MLPs due to the additional memory inputs. The third NN model included in 

the feature space is the Higher Order Neural Network (HONN). HONNs are able to simulate higher 

frequency, higher order non-linear data, and consequently provide superior simulations. For more 

information on HONNs see Dunis et al. (2010 and 2011). Psi Sigma Networks (PSNs) are considered 

as a class of feed-forward fully connected HONNs. First introduced by Ghosh and Shin (1991), the 

PSN creation was motivated by the need to create a network combining the fast learning property of 

single layer networks with the powerful mapping capability of HONNs, while avoiding the 

combinatorial increase in the required number of weights. The order of the network in the context of 

PSN is represented by the number of hidden nodes. In a PSN the weights from the hidden to the 

output layer are fixed to 1 and only the weights from the input to the hidden layer are adjusted, 

something that greatly reduces the training time. More details on the PSN model can be found in 

Ghosh and Shin (1991).   

As benchmark to the RG-SVR, this study applies an ARBF-PSO NN model. Its complexity, 

architecture and characteristics differ from the previous mentioned NNs. Compared to them, in the 

ARBF-PSO the parameters are optimized through a Particle Swarm Optimization9 algorithm. This 

protects the ARBF-PSO from the dangers of over-fitting and data snooping. However, the 

practitioner still needs to select the network’s inputs (in contrast with RG-SVR which is fully 

adaptive) through a trial and error approach in the in-sample dataset. For a complete description of 

                                                 
9 The PSO algorithm is a population based heuristic search algorithm based on the social behavior of birds within a flock. 
In PSO, individuals which are referred to as particles are placed initially randomly within the hyper dimensional search 
space. Changes to the position of particles within the search space are based on the social-psychological tendency of 
individuals to emulate the success of other individuals. 



the ARBF-PSO see Sermpinis et al. (2013). In order the forecasting completion to be fair, the ARBF-

PSO has the same pool of inputs as the RG-SVR. 

 There is no formal theory behind the selection of the NN inputs and their characteristics, such as 

number of hidden neurons, learning rate, momentum and iterations. For that reason, we conduct NN 

experiments and a sensitivity analysis on a pool of autoregressive and autoregressive-moving average 

terms of the series in the in-sample dataset.10 For example for the number of iterations, our 

experimentation started from 5.000 iterations and stopped at the 200.000 iterations, increasing in 

each experiment the number of iterations by 5.000. This is a very common approach in the literature 

(Tenti, 1996; Zhang et al., 1998). Based on these experiments and the sensitivity analysis, the sets of 

variables selected are those that provide the higher trading performance for each network in the in-

sample period.  For example, in the first forecasting exercise the different sets of inputs of the four 

NNs for the three series under study are presented in table B.1 below: 

Table B.1: Neural Network Inputs 

*EUR/USD (1) means that as input is used the EUR/USD exchange rate 

lagged by one day. Thus, today’s closing price is used to forecast the 

tomorrow’s one. 

                                                 
10 We also explored as inputs autoregressive and autoregressive–moving-average terms of other exchange rates (e.g. the 
USD/JPY and GBP/JPY exchange rates), commodities prices (e.g. Gold Bullion and Brent Oil) and stock market prices 
(e.g. FTSE100, DJIA, NASDAQ and S&P500). However, the set of inputs presented in table 2 provide the highest 
trading performance in the in-sample period.  

 MLP RNN HO NN PSN 

E 
U 
R 
/ 
U 
S 
D 

EUR/USD (1)* EUR/USD (3) EUR/USD (2) EUR/USD (1) 

EUR/USD (2) EUR/USD (5) EUR/USD (6) EUR/USD (5) 
EUR/USD (5) EUR/USD (6) EUR/USD (7) EUR/USD (6) 
EUR/USD (6) EUR/USD (8) EUR/USD (9) EUR/USD (8) 
EUR/USD (8) EUR/USD (10) EUR/USD (10) EUR/USD (11) 

EUR/USD (10) EUR/USD (11) EUR/USD (12) EUR/USD (12) 
EUR/USD (11) EUR/GBP (1) EUR/GBP (3) EUR/GBP (1) 

EUR/GBP (1) EUR/GBP (5) EUR/GBP (5) EUR/GBP (3) 
EUR/GBP (7) - EUR/JPY (4) EUR/GBP (4) 

EUR/JPY (2) - EUR/JPY (7) EUR/JPY (4) 

E 
U 
R 
/ 
G 
B 
P  

EUR/USD (2) EUR/USD (1) EUR/USD (4) EUR/USD (3) 

EUR/USD (3) EUR/USD (2) EUR/USD (5) EUR/USD (4) 
EUR/USD (5) EUR/USD (5) EUR/USD (7) EUR/USD (6) 

EUR/USD (7) EUR/USD (9) EUR/USD (8) EUR/USD (7) 
EUR/USD (8) EUR/USD (10) EUR/USD (11) EUR/USD (10) 

EUR/USD (10) EUR/GBP (5) EUR/USD (12) EUR/USD (11) 
EUR/GBP (1) EUR/GBP (6) EUR/GBP (1) EUR/GBP (3) 

EUR/GBP (5) EUR/JPY (6) EUR/JPY (2) EUR/JPY (4) 
EUR/JPY (4) - EUR/JPY (4) - 

EUR/JPY (5) - - - 

E 
U 
R 
/ 
J 

EUR/USD (1) EUR/USD (2) EUR/USD (1) EUR/USD (3) 
EUR/USD (2) EUR/USD (5) EUR/USD (2) EUR/USD (6) 

EUR/USD (5) EUR/USD (6) EUR/USD (4) EUR/USD (7) 
EUR/USD (8) EUR/USD (7) EUR/USD (7) EUR/USD (9) 



 

 

 

  
 

The following table shows the design and training characteristics of all the above NN architectures 

for the first forecasting exercise. 

Table B.2: Neural Network Design and Training Characteristics 
Note: The input of every node is zψ, where ψ = 1… n'' and n'' is the number of nodes of the previous layer. The vector indicating the center of 
the Gaussian function is C' and σ' is the value indicating its width. 

P 
Y 

EUR/USD (9) EUR/USD (10) EUR/USD (8) EUR/USD (10) 
EUR/USD (12) EUR/USD (11) EUR/USD (9) EUR/GBP (1) 

EUR/GBP (3) EUR/GBP (2) EUR/GBP (2) EUR/GBP (4) 
EUR/GBP (4) EUR/GBP (3) EUR/GBP (4) EUR/JPY (6) 

EUR/JPY (1) EUR/JPY (5) - EUR/JPY (7) 
EUR/JPY (2) - - - 

 PARAMETERS MLP RNN HO NN PSN ARBF-PSO  

E 
U 
R 
/ 
U 
S 
D 
 

Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Particle Swarm Optimization 

Learning rate 0.004 0.002 0.4 0.3 - 
Momentum 0.005 0.003 0.5 0.4 - 

Iteration steps 40000 30000 20000 20000 - 
Initialisation  

of weights N(0,1) N(0,1) N(0,1) N(0,1) - 

Input nodes 10 8 10 10 4 
Hidden nodes  8 7 5 6 8 

Output node 1 1 1 1 1 

Hidden node  
activation function ( ) 1/ (1 )zF z e ψ

ψ
−= +  ( ) 1/ (1 )zF z e ψ

ψ
−= +  ( ) 1/ (1 )zF z e ψ

ψ
−= +  

''

1
( )

n

F z zψ ψ
ψ =

=∑  2

2

'
F( ) exp

2 '
z C

z ψ
ψ σ

 − =
 
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Output node  
activation function 

''

1
( )

n

F z zψ ψ
ψ =

=∑  ''

1
( )

n

F z zψ ψ
ψ =

=∑  ''

1
( )

n

F z zψ ψ
ψ =

=∑  
( ) 1/ (1 )zF z e ψ

ψ
−= +  ''

1
( )

n

F z zψ ψ
ψ =

=∑  

E 
U 
R 
/ 
G 
B 
P 

 

Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Particle Swarm Optimization 
Learning rate 0.002 0.003 0.5 0.4 - 

Momentum 0.004 0.005 0.5 0.5 - 
Iteration steps 35000 30000 30000 30000 - 
Initialisation  

of weights N(0,1) N(0,1) N(0,1) N(0,1) - 

Input nodes 10 8 9 8 4 

Hidden nodes  9 7 5 5 7 
Output node 1 1 1 1 1 

Hidden node  
activation function ( ) 1/ (1 )zF z e ψ

ψ
−= +  ( ) 1/ (1 )zF z e ψ

ψ
−= +  ( ) 1/ (1 )zF z e ψ

ψ
−= +  

''

1
( )

n

F z zψ ψ
ψ =

=∑  2

2

'
F( ) exp

2 '
z C

z ψ
ψ σ

 − =
 
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Output node  
activation function 

''

1
( )

n

F z zψ ψ
ψ =

=∑  ''

1
( )

n

F z zψ ψ
ψ =

=∑  ''

1
( )

n

F z zψ ψ
ψ =

=∑  
( ) 1/ (1 )zF z e ψ

ψ
−= +  ''

1
( )

n

F z zψ ψ
ψ =

=∑  

E 
U 
R 
/ 
J 
P 
Y 

 

Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Particle Swarm Optimization 

Learning rate 0.003 0.003 0.5 0.3 - 
Momentum 0.005 0.005 0.5 0.4 - 

Iteration steps 45000 35000 30000 20000 - 
Initialisation  

of weights N(0,1) N(0,1) N(0,1) N(0,1) - 

Input nodes 10 9 8 9 5 

Hidden nodes  13 11 6 6 5 
Output node 1 1 1 1 1 

Hidden node 
 activation function ( ) 1/ (1 )zF z e ψ

ψ
−= +  ( ) 1/ (1 )zF z e ψ

ψ
−= +  ( ) 1/ (1 )zF z e ψ

ψ
−= +  

''

1
( )

n

F z zψ ψ
ψ =

=∑  2

2

'
F( ) exp

2 '
z C

z ψ
ψ σ

 − =
 
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Output node 
 activation function 
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1
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n

F z zψ ψ
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1
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C. STATISTICAL AND TRADING PERFORMANCE MEASURES 

The statistical and trading performance measures are calculated as shown in table C.1 and table C.2 

respectively. 

 
 Table C.1: Statistical Performance Measures 

STATISTICAL PERFO MANCE MEASURES DESCRIPTIO N 

Mean Squared Error 

2

1

1 ( ( ) )
t N

t
MSE E R Y

N t t
t

′+

= +

= −
′ ∑

,with Yτ being the actual value, ( )E Rτ
 the forecasted 

value and N ′  the number of forecasts 

Root Mean Squared Error 
2

1

1 ( ( ) )
t N

t
RMSE E R Y

N t t
t

′+

= +

= −
′ ∑  

 

Table C.2: Trading Performance Measures and Calculation 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

TRADING PERFOMANCE MEASURES DESCRIPTION 

Annualized Return (before transaction costs) 
1

1252* *( )
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AR R
N τ
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′ ∑  where Rτ

the daily return 
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N τ
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Information Ratio 
A
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1, , ; 1, , ji N j i

MD Min R
τ

ττ = = =
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∑

 

 



D. BEST PREDICTOR 

Table D.1 presents the best predictors for the four forecasting exercises and three exchange rates in 

the in-sample. The overall performance of the best predictor in trading terms is used as benchmark to 

the SVR and SVM forecast combinations. For example, the best predictor for the EUR/USD 

exchange rate is composed by the RNN out-of-sample forecasts for the first, second and fourth 

forecasting exercise and the PSN out-of-sample forecasts for the third forecasting exercise.   
Table D.1: Best Individual Forecasting Model 
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 FO RECASTING  
EXERCICE 

BEST PREDICTO R  
IN TRADING TERMS 

BEST PREDICTO R 
 IN TERMS O F RMSE 

EUR/USD 

1 RNN RNN 
2 RNN RNN 
3 PSN RNN 
4 RNN RNN 

EUR/GBP 

1 PSN RNN 
2 RNN RNN 
3 PSN PSN 
4 RNN RNN 

EUR/JPY 

1 RNN RNN 
2 PSN PSN 
3 PSN RNN 
4 PSN RNN 
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