1,673 research outputs found

    Battery Charge Applications Based on Wide Output Voltage Range

    Get PDF
    In this study, high efficiency design procedure of a phase shifted full bridge (PSFB) converter is presented for on-board electrical vehicle (EV) battery charger. Presented design methodology used lithium-ion battery cells because of their high voltage and current rates compared to a lead-acid battery cells. In this case, PSFB converter can be regulated wide range output voltage with while its soft switching operation is maintained. The basic operation principles of PSFB converter is defined and its soft switching operation requirements are given. To evaluate the performance of the converter over wide output voltage range, zero voltage switching (ZVS) operation of converter is discussed based on dead time requirement. To improve efficiency, the snubber inductance effects on soft switching over wide output voltage range are evaluated. Finally, operation of the PSFB converter is validated experimentally with a prototype which has 42-54 V/15 A output range at 200 kHz switching frequency

    A review of power electronics equipment for all-electric ship MVDC power systems

    Get PDF
    Medium Voltage DC (MVDC) distribution Power Systems for all-electric ships (AES) can be regarded as functionally composed of three subsystems, namely the power sources, the load centers and the distribution network. Extensive use of power electronics is required for connecting power sources and load centers to the MVDC bus and for protecting the MVDC power system through properly placed DC circuit breakers. In this paper, an overview is given of the power electronics equipment found in the literature and on the market that could be suitable for use in future AES MVDC power systems. Some industrial experiences regarding DC generator systems, energy storage apparatus and solid-state DC circuit breaker prototypes are reported in the paper as examples of state-of-the-art realizations. Different DC/DC converters, which can be employed as solid-state transformers, are also discussed and a structure obtained by combining them is proposed

    Double Resonant High-Frequency Converters for Wireless Power Transfer

    Get PDF
    This thesis describes novel techniques and developments in the design and implementation of a low power radio frequency (40kHz to 1MHz) wireless power transfer (WPT) system, with an application in the wireless charging of autonomous drones without physical connection to its on-board Battery Management System (BMS). The WPT system is developed around a matrix converter exploiting the benefits such as a small footprint (DC-link free), high efficiency and high power density. The overall WPT system topology discussed in this thesis is based on the current state-of-the-art found in literature, but enhancements are made through novel methods to further improve the converter’s stability, reduce control complexity and improve the wireless power efficiency. In this work, each part of the system is analysed and novel techniques are proposed to achieve improvements. The WPT system design methodology presented in this thesis commences with the use of a conventional full-bridge converter. For cost-efficiency and to improve the converters stability, a novel gate drive circuit is presented which provides self-generated negative bias such that a bipolar MOSFET drive can be driven without an additional voltage source or magnetic component. The switching control sequences for both a full-bridge and single phase to single phase matrix converter are analysed which show that the switching of a matrix converter can be considered to be the same as a full-bridge converter under certain conditions. A middleware is then presented that reduces the complexity of the control required for a matrix converter and enables control by a conventional full-bridge controller (i.e. linear controller or microcontroller). A novel technique that can maximise and maintain in real-time the WPT efficiency is presented using a maximum efficiency point tracking approach. A detailed study of potential issues that may affect the implementation of this novel approach are presented and new solutions are proposed. A novel wireless pseudo-synchronous sampling method is presented and implemented on a prototype system to realise the maximum efficiency point tracking approach. Finally, a new hybrid wireless phase-locked loop is presented and implemented to minimise the bandwidth requirements of the maximum efficiency point tracking approach. The performance and methods for implementation of the novel concepts introduced in this thesis are demonstrated through a number of prototypes that were built. These include a matrix converter and two full WPT systems with operating frequencies ranging from sub-megahertz to megahertz level. Moreover, the final prototype is applied to the charging of a quadcopter battery pack to successfully charge the pack wirelessly whilst actively balancing the cells. Hence, fast battery charging and cell balancing, which conventionally requires battery removal, can be achieved without re-balance the weight of the UAV

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    Soft-Switching DC-DC Converters

    Get PDF
    Power electronics converters are implemented with switching devices that turn on and off while power is being converted from one form to another. They operate with high switching frequencies to reduce the size of the converters\u27 inductors, transformers and capacitors. Such high switching frequency operation, however, increases the amount of power that is lost due to switching losses and thus reduces power converter efficiency. Switching losses are caused by the overlap of switch voltage and switch current during a switching transition. If, however, either the voltage across or the current flowing through a switch is zero during a switching transition, then there is no overlap of switch voltage and switch current so in theory, there are no switching losses. Techniques that ensure that this happens are referred to as soft-switching techniques in the power electronics literature and there are two types: zero-voltage switching (ZVS) and zero-current switching (ZCS). For pulse-width modulated (PWM) Dc-Dc converters, both ZVS and ZCS are typically implemented with auxiliary circuits that help the main power switches operate with soft-switching. Although these auxiliary circuits do help improve the efficiency of the converters, they increase their cost. There is, therefore, motivation to try to make these auxiliary circuits as simple and as inexpensive as possible. Three new soft-switching Dc-Dc PWM converters are proposed in this thesis. For each converter, a very simple auxiliary circuit that consists of only a single active switching device and a few passive components is used to reduce the switching losses in the main power switches. The outstanding feature of each converter is the simplicity of its auxiliary circuit, which unlike most other previously proposed converters of similar type, avoids the use of multiple active auxiliary switches. In this thesis, the operation of each proposed converter is explained, analyzed, and the results of the analysis are used to develop a design procedure to select key component values. This design procedure is demonstrated with an example that was used in the implementation of an experimental prototype. The feasibility of each proposed converter is confirmed with experimental result obtained from a prototype converter

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Morphing Switched-Capacitor Converters with Variable Conversion Ratio

    Get PDF
    High-voltage-gain and wide-input-range dc-dc converters are widely used in various electronics and industrial products such as portable devices, telecommunication, automotive, and aerospace systems. The two-stage converter is a widely adopted architecture for such applications, and it is proven to have a higher efficiency as compared with that of the single-stage converter. This paper presents a modular-cell-based morphing switched-capacitor (SC) converter for application as a front-end converter of the two-stage converter. The conversion ratio of this converter is flexible and variable and can be freely extended by increasing more SC modules. The varying conversion ratio is achieved through the morphing of the converter's structure corresponding to the amplitude of the input voltage. This converter is light and compact, and is highly efficient over a very wide range of input voltage and load conditions. Experimental work on a 25-W, 6-30-V input, 3.5-8.5-V output prototype, is performed. For a single SC module, the efficiency over the entire input voltage range is higher than 98%. Applied into the two-stage converter, the overall efficiency achievable over the entire operating range is 80% including the driver's loss

    Multiple-output DC–DC converters: applications and solutions

    Get PDF
    Multiple-output DC–DC converters are essential in a multitude of applications where different DC output voltages are required. The interest and importance of this type of multiport configuration is also reflected in that many electronics manufacturers currently develop integrated solutions. Traditionally, the different output voltages required are obtained by means of a transformer with several windings, which are in addition to providing electrical isolation. However, the current trend in the development of multiple-output DC–DC converters follows general aspects, such as low losses, high-power density, and high efficiency, as well as the development of new architectures and control strategies. Certainly, simple structures with a reduced number of components and power switches will be one of the new trends, especially to reduce the size. In this sense, the incorporation of devices with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and Silicon Carbide (SiC), will establish future trends, advantages, and disadvantages in the development and applications of multiple-output DC–DC converters. In this paper, we present a review of the most important topics related to multiple-output DC–DC converters based on their main topologies and configurations, applications, solutions, and trends. A wide variety of configurations and topologies of multiple-output DC–DC converters are shown (more than 30), isolated and non-isolated, single and multiple switches, and based on soft and hard switching techniques, which are used in many different applications and solutions.info:eu-repo/semantics/publishedVersio

    A Review of Power Converters for Ships Electrification

    Get PDF
    Fully electric ships have become popular to meet the demand for emission-free transportation and improve ships' functionality, reliability, and efficiency. Previous studies reviewed the shipboard power systems, the different types of shipboard energy storage devices, and the influences of the shore-to-ship connection on ports' electrical grid. However, the converter topologies used in the electrification of ships have received very little attention. This article presents a comprehensive topological review of currently available shore-to-ship and shipboard power converters in the literature and on the market. The main goal is to anticipate future trends and potential challenges to stimulate research to accelerate more efficient and reliable electric ships
    • …
    corecore