111 research outputs found

    Study on high Performance and Effective Watermarking Scheme using Hybrid Transform (DCT-DWT)

    Get PDF
    Nowadays healthcare infrastructure depends on Hospital Information Systems (HIS), Radiology Information Systems (RIS),Picture archiving and Communication Systems (PACS) as these provide new ways to store, access and distribute medical data . It eliminates the security risk. Conversely, these developments have introduced new risks for unsuitable deployment of medical information flowing in open networks, provided the effortlessness with which digital content can be manipulated. It is renowned that the integrity and confidentiality of medical data is a serious topic for ethical and legal reasons. Medical images need to be kept intact in any condition and prior to any operation as well need to be checked for integrity and verification. Watermarking is a budding technology that is capable of assisting this aim. In recent times, frequency domain watermarking algorithms have gained immense importance due to their widespread use. Subsequently, the watermark embedding and extraction are performed in frequency domain using the presented scheme. The proposed watermarking scheme, the watermark extraction compared with the original image for calculating SSIM.The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results

    Blind Image Watermark Detection Algorithm based on Discrete Shearlet Transform Using Statistical Decision Theory

    Get PDF
    Blind watermarking targets the challenging recovery of the watermark when the host is not available during the detection stage.This paper proposes Discrete Shearlet Transform as a new embedding domain for blind image watermarking. Our novel DST blind watermark detection system uses a nonadditive scheme based on the statistical decision theory. It first computes the probability density function (PDF) of the DST coefficients modelled as a Laplacian distribution. The resulting likelihood ratio is compared with a decision threshold calculated using Neyman-Pearson criterion to minimise the missed detection subject to a fixed false alarm probability. Our method is evaluated in terms of imperceptibility, robustness and payload against different attacks (Gaussian noise, Blurring, Cropping, Compression and Rotation) using 30 standard grayscale images covering different characteristics (smooth, more complex with a lot of edges and high detail textured regions). The proposed method shows greater windowing flexibility with more sensitive to directional and anisotropic features when compared against Discrete Wavelet and Contourlets

    High-capacity watermarking of high dynamic range images

    Get PDF
    High dynamic range (HDR) imaging techniques address the need to capture the full range of color and light that the human eyes can perceive in the real world. HDR technology is becoming more and more pervasive. In fact, most of the cameras and smartphones available on the market are capable of capturing HDR images. Among the challenges posed by the spread of this new technology there is the increasing need to design proper techniques to protect the intellectual property of HDR digital media. In this paper, we speculate about the use of watermarking techniques to cope with the peculiarities of HDR media to prevent the misappropriation of HDR images

    Study of Various Image Fusion Techniques for the Enhancement of Digital Images

    Get PDF
    Image fusion is process which is applied to combine two distorted images in order to obtain a single meaningful image. Image fusion is done by extracting some important features from more than one image. Then these extracted features are merged to a single image which is fused image. The fused image has more enhanced quality in comparison to the input images. The image fusion is done by using specific techniques. Some of the techniques are discussed in this work. Image fusion attracts number of researchers to this domain. This work also provides an overview to the work that had been done in past by various authors. This is a guide to the scholars who are working in this domain

    New Digital Audio Watermarking Algorithms for Copyright Protection

    Get PDF
    This thesis investigates the development of digital audio watermarking in addressing issues such as copyright protection. Over the past two decades, many digital watermarking algorithms have been developed, each with its own advantages and disadvantages. The main aim of this thesis was to develop a new watermarking algorithm within an existing Fast Fourier Transform framework. This resulted in the development of a Complex Spectrum Phase Evolution based watermarking algorithm. In this new implementation, the embedding positions were generated dynamically thereby rendering it more difficult for an attacker to remove, and watermark information was embedded by manipulation of the spectral components in the time domain thereby reducing any audible distortion. Further improvements were attained when the embedding criteria was based on bin location comparison instead of magnitude, thereby rendering it more robust against those attacks that interfere with the spectral magnitudes. However, it was discovered that this new audio watermarking algorithm has some disadvantages such as a relatively low capacity and a non-consistent robustness for different audio files. Therefore, a further aim of this thesis was to improve the algorithm from a different perspective. Improvements were investigated using an Singular Value Decomposition framework wherein a novel observation was discovered. Furthermore, a psychoacoustic model was incorporated to suppress any audible distortion. This resulted in a watermarking algorithm which achieved a higher capacity and a more consistent robustness. The overall result was that two new digital audio watermarking algorithms were developed which were complementary in their performance thereby opening more opportunities for further research

    Improvement Of Hybrid Digital Image Watermarking Schemes Based On Svd In Wavelet Transform Domain

    Get PDF
    Digital image watermarking techniques have enabled imperceptible information in images to be hidden to ensure the information can be extracted later from those images. Robustness, imperceptibility, capacity and security are the most important requirements of any watermarking scheme. Recently, hybrid Singular Value Decomposition (SVD)- based watermarking schemes in the wavelet domain have significantly gained a lot of attention. The aim of this study is to develop hybrid digital image watermarking schemes by combining the properties of SVD and the chosen wavelet transforms to achieve high robustness and imperceptibility, as well as maintaining the trade-off between robustness, imperceptibility and capacity. The security issue due to the false positive problem (FPP) that may be occurring in most of SVD-based watermarking schemes, has been covered and addressed. This study proposes five hybrid robust SVD-based image watermarking schemes in the wavelet domain. In the first scheme, a grey image watermark is embedded directly into the singular values (S) of each redundant discrete wavelet transform transform (RDWT) sub-band of the host image. The scheme is named RDWT-SVD. The second proposed scheme, namely IWT-SVD-AT, utilised the integer wavelet transform (IWT) instead of RDWT due to its properties. The watermark is scrambled using Arnold Transform (AT) before being embedded into the S of each IWT sub-band host. Despite the impressive results by the first and the second schemes, they were vulnerable to the FPP. Thus, they have failed to resolve the rightful ownership. In the third scheme, a hybrid IWT-SVD scheme is proposed with a novel Digital Signature (DS)-based authentication mechanism to solve the FPP. The scheme outperforms the previous schemes in terms of robustness, capacity, security, computation time and attains high imperceptibility. In the remaining two proposed schemes; the fourth and fifth schemes, the FPP is totally avoided using new different embedding strategies. In the fourth scheme namely IWT-SVD-MOACO, the singular vector U of the watermark is embedded into the S of IWT LL sub-band. Multi-objective ant colony optimisation (MOACO) is used to find the optimal multiple zooming/scaling factor (MZF) instead of the single scaling factor (SSF) to achieve the optimal trade-off between imperceptibility and robustness. Finally, a hybrid SVD block-based scheme namely DWT-SVD-HVS using discrete wavelet transform (DWT) is developed. A binary watermark is embedded into a number of blocks which is selected based on some human visual system (HVS) criterion. The scheme shows a high imperceptibility and good robustness. Finally, all the proposed schemes are evaluated with different colour images and had been shown a successful applicability with colour images

    Watermarking of HDR images in the spatial domain with HVS-imperceptibility

    Get PDF
    This paper presents a watermarking method in the spatial domain with HVS-imperceptibility for High Dynamic Range (HDR) images. The proposed method combines the content readability afforded by invisible watermarking with the visual ownership identification afforded by visible watermarking. The HVS-imperceptibility is guaranteed thanks to a Luma Variation Tolerance (LVT) curve, which is associated with the transfer function (TF) used for HDR encoding and provides the information needed to embed an imperceptible watermark in the spatial domain. The LVT curve is based on the inaccuracies between the non-linear digital representation of the linear luminance acquired by an HDR sensor and the brightness perceived by the Human Visual System (HVS) from the linear luminance displayed on an HDR screen. The embedded watermarks remain imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Extensive qualitative and quantitative evaluations on several HDR images encoded by two widely-used TFs confirm the strong HVSimperceptibility capabilities of the method, as well as the robustness of the embedded watermarks to tone mapping, lossy compression, and common signal processing operations

    Embedding distortion analysis in wavelet-domain watermarking

    Get PDF
    Imperceptibility and robustness are two complementary fundamental requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility, but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often infuse distortions resulting in poor visual quality in host images. This article analyses the embedding distortion for wavelet-based watermarking schemes. We derive the relationship between distortion, measured in mean square error (MSE), and the watermark embedding modification and propose the linear proportionality between MSE and the sum of energy of the selected wavelet coefficients for watermark embedding modification. The initial proposition assumes the orthonormality of discrete wavelet transform. It is further extended for non-orthonormal wavelet kernels using a weighting parameter that follows the energy conservation theorems in wavelet frames. The proposed analysis is verified by experimental results for both non-blind and blind watermarking schemes. Such a model is useful to find the optimum input parameters, including the wavelet kernel, coefficient selection, and subband choices for wavelet domain image watermarking

    Ownership protection of plenoptic images by robust and reversible watermarking

    Get PDF
    Plenoptic images are highly demanded for 3D representation of broad scenes. Contrary to the images captured by conventional cameras, plenoptic images carry a considerable amount of angular information, which is very appealing for 3D reconstruction and display of the scene. Plenoptic images are gaining increasing importance in areas like medical imaging, manufacturing control, metrology, or even entertainment business. Thus, the adaptation and refinement of watermarking techniques to plenoptic images is a matter of raising interest. In this paper a new method for plenoptic image watermarking is proposed. A secret key is used to specify the location of logo insertion. Employing discrete cosine transform (DCT) and singular value decomposition (SVD), a robust feature is extracted to carry the watermark. The Peak Signal to Noise Ratio (PSNR) of the watermarked image is always higher than 54.75 dB which is by far more than enough for Human Visual System (HVS) to discriminate the watermarked image. The proposed method is fully reversible and, if no attack occurs, the embedded logo can be extracted perfectly even with the lowest figures of watermark strength. Even if enormous attacks occur, such as Gaussian noise, JPEG compression and median filtering, our method exhibits significant robustness, demonstrated by promising bit error rate (BER) performance
    corecore